
APPLICATIONS OF A DOUBLE-STRANDED ELASTIC
ROD MODEL TO DNA

Jaspreet Singh

A DISSERTATION

in

Mechanical Engineering and Applied Mechanics

Presented to the Faculties of the University of Pennsylvania

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2020

Supervisor of Dissertation

Prashant K. Purohit, Professor Mechanical Engineering and Applied Mechanics

Graduate Group Chairperson

Jennifer R. Lukes, Professor Mechanical Engineering and Applied Mechanics

Dissertation Committee
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ABSTRACT

APPLICATIONS OF A DOUBLE-STRANDED ELASTIC ROD

MODEL TO DNA

Jaspreet Singh,

Prashant K. Purohit

This thesis discusses the development and applications of a double-stranded elastic rod

model for DNA, henceforth called birod model. The model highlights the role of DNA

elasticity in allosteric interactions between two ligands bound to DNA (chapters 3 and

4) and–combined with statistical mechanics–provides insights into the micromechanics

of DNA melting (chapter 5).

In chapters 3 and 4, the birod model for DNA is used to compute the allosteric inter-

action energy between two ligands on DNA. This interaction is quantified by measuring

the change in free energy as a function of the distance between the binding sites for two

ligands. The trends in this interaction energy can be explained using the birod model

which accounts for the helical shape of DNA, elastic deformation of strands and base-

pairs, and the stacking energy due to perturbations in position and orientation of the

bases caused by the binding of ligands. The model predicts that the interaction energy

between two ligands decays exponentially with the distance between them and oscillates

with the periodicity of the double helix, which by appropriate parameter fitting is shown

to quantitatively match with the experimental measurements. Furthermore, the decay-

ing oscillatory trend in the perturbation of groove width in a protein-DNA complex

predicted by the model is consistent with the results from molecular simulations.

In chapter 2, structural transitions in DNA are studied using ideas from the Zimm-

Bragg helix-coil transition theory and the theory of fluctuating elastic rods. Experi-

mental studies on single molecules of DNA have reported several cooperative structural

transitions, including coexistence of three phases, when tensile force or twisting moment

is applied to the molecule. The interface energy between two phases of DNA imparts

the cooperative character to the force-extension curve or torque-rotation curve observed

experimentally. In chapter 5, we choose one such structural transition from dsDNA to

single-stranded DNA–called DNA melting–and study it using the statistical mechanics

and continuum mechanics of an elastic birod. The detailed microscopic description of

the outer-strands and base-pairs admissible in the birod model enables us to decipher

iii



iv

why the DNA oligomers with higher GC content are stiffer. Furthermore, a nonlinear

asymmetric interaction between the outer strands leads to a sudden and highly coop-

erative melting transition. Furthermore, the model enables us to examine the effect of

tensile force on the melting temperature.



Contents

Acknowledgements ii

Abstract iii

Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

2 Structural transitions in torsionally constrained DNA and their de-
pendence on solution electrostatics 9

2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Partition function for three phase coexistence . . . . . . . . . . . . . . . . 13

2.3 Effect of electrostatic interactions . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Elasticity as the basis of allostery in DNA 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Contact forces in the outer strands (n±) . . . . . . . . . . . . . . . 32

3.2.2 Contact moments in the outer strands (m±) . . . . . . . . . . . . 32

3.2.3 Force and moment transferred by the web (f , c) . . . . . . . . . . 33

3.2.4 Contributions from the stacking energy (l, h) . . . . . . . . . . . . 35

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Allosteric interactions in a birod model of DNA 43

4.1 Strategy to compute interaction energy . . . . . . . . . . . . . . . . . . . 43

4.2 Interaction energy for two DNA binding proteins . . . . . . . . . . . . . . 45

4.2.1 Step 1: Deformation of the outer strands . . . . . . . . . . . . . . 45

4.2.2 Step 2: Rotation of strands . . . . . . . . . . . . . . . . . . . . . . 47

4.2.3 Step 3: Mechanics of base-pairing . . . . . . . . . . . . . . . . . . . 49

4.2.3.1 Bending and twisting of the web . . . . . . . . . . . . . . 50

v



Contents vi

4.2.3.2 Extension of the web . . . . . . . . . . . . . . . . . . . . 51

4.2.3.3 Stacking energy . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.4 Step 4: Governing equations . . . . . . . . . . . . . . . . . . . . . 52

4.2.5 Step 5: Boundary conditions . . . . . . . . . . . . . . . . . . . . . 54

4.2.6 Step 6: Energy of the birod . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Elastic constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Statistical mechanics of an elastic birod 65

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Force-displacement curve for birod . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Application to DNA melting . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Effect of tensile force on the melting temperature . . . . . . . . . . . . . . 74

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Conclusion 78

A Supplement to Chapter 2 81

A.1 Dependence of Gibbs free energy on GC content . . . . . . . . . . . . . . 81

A.2 Poisson-Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.3 List of symbols used in the text . . . . . . . . . . . . . . . . . . . . . . . . 83

B Supplement to Chapter 4 85

B.1 Exponential decay of interaction energy in a ‘ladder’ . . . . . . . . . . . . 85

B.1.1 Step 1: Kinematic description of the two strands . . . . . . . . . . 86

B.1.2 Step 2: Rotation of the two strands . . . . . . . . . . . . . . . . . 86

B.1.3 Step 3: Extension and rotation of the web . . . . . . . . . . . . . . 87

B.1.4 Step 4: Governing differential equations . . . . . . . . . . . . . . . 88

B.1.5 Step 5,6 and 7: Interaction Energy . . . . . . . . . . . . . . . . . . 90

B.2 Kinematics of the − strand . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B.3 Evaluation of material properties of the web . . . . . . . . . . . . . . . . . 92

B.4 Choice of eigenvalues obtained in section 5 . . . . . . . . . . . . . . . . . . 94

B.5 Results for α = π radians . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

C Dependence of interaction energy on boundary conditions and elastic
constants. 96

D Supplement to Chapter 5 98

References 101



List of Tables

2.1 The key micro-structural feature distinguishing the three phases is the
number of base-pairs per helical turn. Elastic constants for various phases
of DNA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

A.1 Symbols used in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vii



List of Figures

1.1 Manifestations of DNA elasticity. . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Coexistence lines for force (f) and torque (M) driven structural tran-
sitions in DNA. The three phases of DNA have different double helical
structures characterized by base-pairs per helical turn: B-DNA–ground
state of DNA, 10.3 bp/turn; S-DNA–over-stretched state, 37 bp/turn; P-
DNA–over-twisted state, 3 bp/turn. For more information see Marko et
al (Sarkar et al. (2001)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The birod model of DNA. The proteins P1 and P2 interact via allosteric
interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Coexistence curves for B-, S- and P-DNA obtained by equating the free
energy for two phases at a time. We have used σBS = σBP = σPS = 0.044.
Note that the exact values of σBP and σSP are not known and hence have
been assumed to be equal to σBS . Later, we will examine the effects of
varying σPS , σBP , etc. Experimental data from Bryant et al.(Bryant et
al. (2003)) appear as red dots in the plot above and are in good agreement
with our coexistence lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Torque-rotation curves for a B-DNA to P-DNA transition at constant
force. The optical bead attached to one end of the molecule is twisted
while maintaining a constant tension of 45 pN until B-DNA converts to
P-DNA. Most of the twist takes place at constant torque. The lines in
different colors correspond to different σBP values. The inset shows the
trajectory on an f −M plane. . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Structural transitions in a torsionally constrained DNA molecule. (a)
Force-extension curve, (b) f − M plane, (c) Fractions of B-,S- and P-
DNA. The points labeled A,B,C,D in each panel have the same λext. At
B the molecule enters the triple point and at C it exits the triple point
as extension λext increases. Notice that a mixture of B- and S-DNA
transforms into a mixture of S- and P-DNA. In (a), as σBS increases,
the transition width increases, as expected. This is shown using different
color trajectories in (a) and (b). . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Plot of overstretching force for a torsionally unconstrained DNA as a
function of ion concentration. We use qS = 2.8 and aS = 0.8 nm. In
the figure blue diamonds are the experimental data from Zhang et al
(X. Zhang et al. (2012)). In the inset, the electrostatic free energy for
S-DNA decreases as the concentration increases. . . . . . . . . . . . . . . 21

viii



Contents ix

2.5 Effect of ion concentration on the structural transitions in torsionally con-
strained DNA. (a) force-extension curves, (b) f −M plane, (c) f3 versus
ion concentration, and (d) f4 versus ion concentration. These results as-
sume σBS = 0.044 (Argudo & Purohit (2014a)), σBP = 0.18 (Bryant et
al. (2003)) and σPS = Acn0 . Experimental data from King et al(King et
al. (2016)) is also shown for comparison. The force corresponding two
phase transitions T3 and T4 is marked by f3 and f4 on f − λext. . . . . . . 22

2.6 Non-monotonic trend in external work done per unit reference contour
length. Note that the length of the DNA molecule is of the order of
thousands of nm which is why a small difference in the work done will get
amplified. We take σBS = 0.04, σBP = 0.18 and σPS = Acn0 . . . . . . . . . 24

3.1 Birod model of DNA. The angle between the tangent t+ and e3 is k. A
base pair in reference and deformed state is shown. The director frames
attached to ± ends of the base pair change from Q0 to Q±, respectively.
The rigid rotation of the strand Q = (Q+Q−T )

1
2 Q− and micro-rotation

P = (Q+Q−T )
1
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Distortions to the helical geometry of the + strand. We assume that the
DNA remains straight after the binding of proteins. Therefore, the axis
e3 remains undisturbed. The radius of the helix a changes to a + r, the
phase angle ωx changes to ωx + β, and the length of the infinitesimal
element dx, shown in black, changes to (1 + ξ)dx. . . . . . . . . . . . . . 31

3.3 Free-body diagrams which establish the connection between an elastic rod
and an elastic birod. We deliberately show a straight ladder instead of
helical birod to illustrate the mechanics. An elastic birod comprises two
elastic rods + and −. The + strand exerts a moment c and force f on the
− strand hrough an elastic web. This transfer of moment and force leads
to deformation of the web. In the figure r± denotes the position vector
for ± strands, and n± and m± denote the contact forces and contact
moments in ± strands, respectively. The force and moment balance for
+ and − strand constitute the governing equations (eqn. (3.3)) for the
elastic birod. For further discussion see Moakher and Maddocks (Moakher
& Maddocks (2005)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Variation of r, k3, ξ and β+ = β− = β for a single protein. The red curve
corresponds to the boundary conditions β0 = 0, r0 = 0.05 nm and the
green curve to r0 = 0, β0 = 0.05. The decay length is ld = ζ−1 ≈ 10 bp
which is close to that documented in literature (Kim et al. (2013); Gu et
al. (2015)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 We show the deformed configuration of the double helix, red and green
colors correspond to + and − strand, respectively. In the first figure,
one protein binds at x = 0 with r0 = 0.2 nm and β0 = 0. In the second
figure, two proteins bind at x = ±1.5 nm. In the third figure, two proteins
bind at x = ±3.5 nm. Notice the overlap of deformations in the second
figure which is absent in the third one. This overlap is manifests itself as
interaction energy between the two proteins. The dotted lines denote the
corresponding undeformed configuration. . . . . . . . . . . . . . . . . . . 37



Contents x

3.6 The first figure shows the variation of interaction energy ∆G with distance
p between the two proteins P1 and P2. The boundary conditions r1 =
0.001 nm, β1 = 0.0045 for P1 and r2 = 0.001 nm, β2 = −0.0045 for
P2 give the best fit to the experimental data for ∆G(Kim et al. (2013)).
In the second figure, we show the variation of change in groove width
ρ(x) = g(x)− p

2 when a protein with boundary conditions r0, β0 binds at
x = 0. The decaying sinusoidal character is documented in previous work
(Kim et al. (2013))(Gu et al. (2015)). The magnitude of the change in
groove width (∼ 3 A) is consistent with estimates in (Kopka et al. (1985)). 38

3.7 Eqn. 3.15 shows that the strain parameters r, β, and ξ decay exponentially
while oscillating with the periodicity of the double helix. Let us assume
that the protein binding at x = 0 increases the radius of the double helix
from a to a + r0. This change in radius at x = 0 decays exponentially
while oscillating with the periodicity of the double helix, away from the
binding site. Similar behavior is observed for other strain parameters, β
and ξ. Due to this sinusoidal modulation of the geometry, the binding
of the second protein is facilitated at some locations, while inhibited at
others; this manifests as an exponentially decaying oscillatory behavior
observed in the allosteric interaction energy (∆G). . . . . . . . . . . . . . 39

3.8 Consider two proteins P1 and P2 binding at x = 0 and x = p, respectively.
The first figure shows the variation of normalized free energy ∆G(p)n =

∆G
|∆G|max

and correlation function q(p)n = q(p)
|q|max

with the distance between

the two proteins p. The correlation function q(p) = (r1
0r

2
0 + r1

pr
2
p) +

(β1
0β

2
0 + β1

pβ
2
p) where r1

p is the change in radius caused by protein P1
at x = p. The boundary conditions for the two proteins are given in
the figure. We find that the peaks and valleys of ∆Gn and qn coincide,
however the magnitudes are not identical. We find that the magnitudes
are related as ∆Gn ≈ tanh(3qn), as shown in the inset. We test this
empirical relation for two different sets of boundary conditions and find
a remarkable match. The diamonds denote the free energies computed
using eqn. 4.40 and the solid line denotes the free energy computed using
the normalized correlation function q(p)n. This exercise shows that the
correlation functions can be used as a surrogate for free energies. . . . . 41

4.1 A DNA molecule as a double helical elastic birod is shown on the left. The
phosphate backbones are represented by outer strands while the compli-
mentary base-pairing is represented by the elastic web. The phase angle
between the two helices is α = 2.1 radians. Here R+ = [n+

0 b+
0 t+0 ] and

R− = [n−0 b−0 t−0 ] are the Frenet-Serret frames attached to the + and
− strands, respectively. Base-pairs in reference and current configuration
are shown to the right. Q+

0 = Q−0 = Q0 in the referenece configuration.
In the current configuration, the rigid rotation of the base-pair is quanti-
fied by Q = Z(1 + Φ)Q0 (eqn. 4.23) and the elastic moment c is related

to the Gibbs rotation vector of P = (Q+Q−T )
1
2 (eqn. 4.19). . . . . . . . . 46



Contents xi

4.2 Variation of strain variables for a single protein. We plot the change
in radius r, twist k3. stretch of centerline ξ and change in phase angle
∆β = β+ − β− for the double-helix. The red curve correponds to the
boundary conditions k10 = r0 = 0 and k20 = 0.1 nm−1 at x = 0 and the
green curve corresponds to k10 = k20 = 0 and r0 = 0.05 nm at x = 0.
The asymmetry of the double-helix (there is a major and minor groove
in DNA) arising from the phase angle α = 2.1 radian gives the curves
a slight asymmetry about the site of protein binding. The curves are
exactly symmetric about the site of protein binding if we choose phase
angle α = π radians (which results in no major and minor groove) as
shown in the appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Variation of curvatures k1 and k2 for a single protein. The red curve
correponds to the boundary conditions k10 = r0 = 0 and k20 = 0.1 nm−1

at x = 0 and the green curve corresponds to k10 = k20 = 0 and r0 =
0.05 nm at x = 0. We find that the curvature decays exponentially and
oscillates with a period ≈ 11 bp. . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Variation of r, k3 and ∆β for two proteins. Here a is the distance between
the sites of protein binding. The strain variables decay exponentially
away from the site of protein binding. When the distance between the
proteins is large 10× 3.4 nm, the profile looks like a concatenation of two
solutions for a single protein. . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 We plot the interaction energy between two proteins eqn. (4.40). In (a) we
plot the behavior of ∆G for various boundary conditions. If the boundary
conditions are specified on the curvatures we get an exponentially decay-
ing profile oscillating with 5−6 bp (≈ 11/2 bp). The oscillatory behavior
arises from the periodic geometry of DNA. In (b) the experimental data
reproduced for comparison are from Kim et al (Kim et al. (2013)). We
use k11 = k21 ≈ 0.02 nm−1, k12 = k22 = 0.05 nm−1, r1 = −r2 = 0.02 nm.
The inset in (a) shows a protein DNA complex in which the proteins lo-
cally bend DNA. The inset in (b) shows that bending a DNA oligomer
leads to widening of the groove on one side while narrowing it on the
other. We find that the change in the groove width is approximately
≈ 2 A which is close to the values reported by Kopka et al (Kopka et al.
(1985)) (0.5− 2 A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



Contents xii

4.6 The inset in (b) shows a two protein complex. The boundary conditions
are identical for both the proteins k11 = k21 = k10, k12 = k22 = k20,
r1 = r2 = r0; the legend in (a) contains the exact numerical values. For
(b) the legend is the same as in (a). We examine behavior of ŵ3(x = 2
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Chapter 1

Introduction

This thesis uses the theory of a double stranded elastic rod (Moakher & Maddocks

(2005)) to develop a mechanics-based model of DNA, henceforth called birod model. The

model describes the geometry and elasticity of DNA across several length scales, which

when combined with statistical mechanics reveals the micromechanics behind several

experimentally observed phenomena such as structural transitions in DNA, allosteric

interactions, and DNA melting. DNA is a double-helical long thread-like molecule with

a radius of 1 nm and pitch of 3.4 nm capable of bending, twisting, and stretching

elastically. At the level of a few hundred nanometers, DNA elasticity plays an important

role in determining geometry of the protein-DNA complexes as shown in fig.1.1(a).

This geometry is crucial to biological processes such as DNA replication, ultimately

influencing gene expression (Kim et al. (2013)). The lactose metabolism system in E.

coli is controlled by the Lac Repressor protein which binds to two different sites on

DNA molecule forming a loop as shown in fig. 1.1(b). The gene expression is hence

directly linked to the looping ability (resistance) of DNA (Purohit & Nelson (2006)).

The bending and twisting resistance of DNA determines the forces necessary to package

the viral genome into a capsid (Purohit et al. (2003)). On a macroscopic length scale

spanning a couple of hundred micrometers, DNA elasticity manifests itself as cooperative

structural transitions, which have been used to construct several synthetic molecular

motors capable of performing mechanical work in vivo (Bryant et al. (2003); Rich &

Zhang (2003)) shown in fig.1.1(c,d).

1
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Figure 1.1: Manifestations of DNA elasticity.

In this document, we discuss three problems related to DNA elasticity:

1. Structural transitions in DNA (See fig.1.2) : When a force or torque is ap-

plied to a DNA molecule, it extends or twists elastically up to a certain limit

beyond which it suffers a sudden structural transition whose products depend on

the boundary conditions on the two ends of the molecule. These structural tran-

sitions, akin to first order phase transitions, are cooperative and are characterized

by a sudden jump in the displacement variables followed by a change in the inter-

nal structure of the DNA. The primary concern in chapter 2 is to examine these

structural transitions using a homogeneous elastic rod model for DNA.

x=vt

BEADEND CAP

=0

Figure 1.2: Coexistence lines for force (f) and torque (M) driven structural transi-
tions in DNA. The three phases of DNA have different double helical structures char-
acterized by base-pairs per helical turn: B-DNA–ground state of DNA, 10.3 bp/turn;
S-DNA–over-stretched state, 37 bp/turn; P-DNA–over-twisted state, 3 bp/turn. For

more information see Marko et al (Sarkar et al. (2001))

2. Allosteric interactions in DNA (See fig.1.3): When a ligand binds to DNA it

induces conformational changes at the binding site which propagate to regions tens

of base-pairs away, thereby encouraging or inhibiting the binding of a second ligand
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in those places. Such interactions between two binding agents are called allosteric

interactions. In chapters 3 and 4, we use an elastic birod to study the allosteric

interactions in DNA. Our model provides a framework for viewing allosteric inter-

actions in DNA within the ambit of configurational forces of continuum elasticity.

P1

P2

+

-

Figure 1.3: The birod model of DNA. The proteins P1 and P2 interact via allosteric
interactions.

3. Melting transition in dsDNA: Beyond a certain temperature, called the melt-

ing temperature, the complimentary base-pairing holding together two phosphate

backbones gets disrupted and dsDNA disintegrates into two single strands. This

transition, called the melting transition, is highly cooperative and resembles a

first-order phase transition. A combination of statistical mechanics and contin-

uum mechanics of an elastic birod is used to study various characteristics of the

melting transition. The model predicts that the melting temperature decreases

with increasing tensile loads, in agreement with reported experimental observa-

tions.

To study structural transitions in chapter 2, we use a homogeneous elastic rod model

while we use an elastic birod model to study the allosteric interactions. The reason for

using two different models is the difference in the length scales of the two problems. In

the first problem involving structural transitions, we are dealing with molecules with

lengths ranging from a few tens of µm to a few mm, while allosteric interactions are

restricted to only 1-10 nm (1-3 helical turns of DNA). Therefore, in the former case,

we neglect the double helical geometry and mechanics of base-pairs, and use a homoge-

neous rod model for DNA. In the problem involving allosteric interactions (∼ 10 nm),

we need an additional layer of magnification to deal with the mechanics of strands and

base-pairs separately, which we note, in retrospect, play a crucial role. We attempt to

bridge the gap between the two models by connecting the stretch modulus, twist mod-

ulus and twist-stretch coupling modulus used in the homogeneous elastic rod model to
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the elastic constants in the birod model. The melting transition, observed at various

length scales, is also studied using an elastic birod model because we need to compute

the average distance between the two strands as a function of temperature, which can

be done only in a birod. Furthermore, we show using a statistical mechanical approach

that the fluctuating elastic rod model (or WLC model) can be recovered from the birod

in the limit of long contour length.

The DNA molecule exhibits a double-stranded (ds) right handed helical structure with

a helical repeat of 3.5 nm and 10.5 base pairs (bp) per helical turn in its well known

B-form, the two phosphate backbones being held together by hydrogen bonding arising

from complimentary base pairing and base stacking interactions. The geometrical prop-

erties of the double-stranded helix such as pitch, base pairs per helical turn, and contour

length per base pair characterize different phases of DNA such as B-DNA, S-DNA and

P-DNA etc. (J. F. Marko & Neukirch (2013)). The most commonly observed form of

DNA in living cells is B-DNA. S-DNA can be formed as a product of a force driven

cooperative overstretching transition of torsionally unconstrained B-DNA at lower tem-

peratures which preserves the base pairing (King et al. (2013)). Its contour length is

1.7 times that of B-DNA with 37 base pairs per helical turn (J. F. Marko (2007)). P-

DNA can be formed as a product of a torque driven overstretching transition of B-DNA

(Bryant et al. (2003)). Its contour length is also 1.7 times that of B-DNA, but with

3 base pairs per helical turn. M-DNA (melted-DNA) can be formed as a product of a

force driven overstretching transition of B-DNA at higher temperatures and low ionic

concentrations (King et al. (2013)). It is characterized by the absence of base-pairing,

but both the strands are under tension.

The single molecule experiment in which these phases are produced involves fixing one

end of the DNA molecule and attaching a bead on the other, which is pulled using optical

or magnetic tweezers. The resulting structures can be analysed using various proteins

or dyes which selectively bind to a specific phase of DNA (King et al. (2013, 2016)). In

such experiments the rotation of the glass bead can be held fixed, which corresponds to

a torsionally constrained bead, or it can be allowed to rotate freely, which corresponds

to a torsionally unconstrained bead. The resulting force-extension curves show a strong

sigmoidal nature wherein the displacement suffers a sudden increase over a small interval

of force, which is suggestive of a first-order phase-transition. Such a transition with a

distinct plateau has been referred to as an ‘overstretching transition’ in the literature

(J. F. Marko (2007)).

Several theoretical models have been proposed to study these transitions from the stand-

point of statistical mechanics (Sarkar et al. (2001); Leger et al. (1999)). However, these

models fail to account for the chirality of a DNA molecule which manifests itself as a

twist-stretch coupling (Gore et al. (2006); Kamien et al. (1996)). Thermal undulations

further modify the energetic landscape, the explicit calculations for which using the
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elastic rod model are presented in (Argudo & Purohit (2014b)). Other models such

as the worm-like-chain model (WLC) and freely-jointed-chain model (FJC) can also be

used to understand the various aspects of the overstretching transition in the torsionally

unconstrained case (Rouzina & Bloomfield (2001a,b); Storm & Nelson (2003)). A phase

diagram for DNA on a force-torque plane is calculated in (J. F. Marko & Neukirch

(2013)) by equating the free energies comprising of the sum of the elastic energies of

torsion and stretching (using the WLC model).

The ion concentration plays a critical role in determining the structure of products and

underlying mechanism of the overstretching transition. Experimental observations re-

ported in (King et al. (2013); X. Zhang et al. (2013, 2012)) suggest that in a torsionally

unconstrained molecule, the effect of increasing the ion concentration is two-fold: a) it

leads to an increase in the overstretching force, and b) it dictates whether the over-

stretched state will be ss-DNA, M-DNA or S-DNA. The change in mechanism from

strand unpeeling to cooperative overstretching with increase in ion concentration from

10 mM to 150 mM results in different force-displacement curves (King et al. (2013)).

The objectives of the study presented in chapter 2 are: a) we investigate the overstretch-

ing transition in a torsionally constrained molecule using the elastic rod model postu-

lated in (Kamien et al. (1996)) and (Argudo & Purohit (2014b)), and b) we quantify

the effect of changes in ion concentration of the surrounding media on the overstretch-

ing transition. The primary contribution of our model is to resolve the question: Why

does overstretching force and associated work done vary non-monotonically with ion

concentration in the case of a torsionally constrained DNA (King et al. (2016)), while

in the case of a torsionally unconstrained DNA the aforementioned quantities increase

monotonically with ion concentration (Rouzina & Bloomfield (2001b)). Our methodol-

ogy uncovers how the fractions of B-,S- and P-DNA change while the molecule is pulled

through the triple point in the phase diagram. We conclude the chapter with a form

for the dependence of interfacial energy on ion concentration which leads to falsifiable

predictions.

While the homogeneous elastic rod model for DNA suffices for certain applications such

as structural transitions (King et al. (2016)) and supercoiling of DNA oligomers (Purohit

(2008)), its application is inherently limited for studying phenomenon that are funda-

mentally linked to the double stranded structure of DNA such as allosteric interactions

between two proteins on DNA (Kim et al. (2013)), temperature driven strand sepa-

ration (Rouzina & Bloomfield (2001a)), and origin of negative twist-stretch coupling

(Bryant et al. (2003)). We apply the birod theory proposed Moakher and Maddocks

(Moakher & Maddocks (2005)) to these problems. In a double stranded elastic birod

model, in addition to the standard variables of the Cosserat rod theory (i.e., center line

of the rod cross-section r(s, t) and a material frame [d1(s, t) d2(s, t) d3(s, t)]), there

are two micro-structural variables–w(s, t), a micro-displacement measuring the change
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in distance between the two strands, and P(s, t), a micro-rotation measuring the change

in orientation of one strand relative to the other. Fortunately, the forces conjugate to

these micro-structural variables obey balance laws that look similar to the balance of

forces and moments equations of a standard Cosserat rod. Moakher and Maddocks

(Moakher & Maddocks (2005)) have provided hyper-elastic constitutive laws for these

micro-structural variables that are based on quadratic energies.

In chapters 3 and 4, our motive is to use the elastic birod model to study allosteric

interactions in DNA within the scope of configurational forces of continuum elasticity.

Just as defects produce local elastic fields in a solid, proteins binding to DNA also

deform it locally. Since DNA behaves like an elastic rod at scales of a few tens of

nanometers (Purohit et al. (2008)), we expect that if two proteins bind to DNA sep-

arated by a distance p then the deformation fields created by them will overlap and

lead to an interaction energy which depends on p in a clearly quantifiable way. This

problem has not been theoretically addressed so far, but there is experimental evidence

of the interaction. Some of this experimental evidence has been extracted by connecting

the interaction energy with the kinetics of protein binding/unbinding. In spirit, this

is similar to continuum elasticity in which configurational forces often determine defect

dynamics through a kinetic law (Phillips & Rob (2001); Gurtin (1999)). Kim et al. (Kim

et al. (2013)) have exploited this connection of interaction energies to kinetics to show

that gene expression, which depends on RNA polymerase binding affinity to DNA in

live bacteria, is a function of the proximity of LacR and T7 RNA polymerase bound to

DNA.

In the experiments of Kim et al. (Kim et al. (2013)) one end of a DNA molecule is

attached to the passivated surface of a flow cell and binding sites are provided for two

specific proteins to bind. The length of the DNA between these binding sites, a, is

increased in 1bp increments between 7 base-pairs (bp) and 45bp. First, one type of

fluorescently labeled protein (call it A) is flowed into the cell so that it binds to the

DNA. Then, the second protein (call it B) is flowed in at a specific concentration. The

dissociation times of the fluorescent protein are then monitored as a function of a. This

dissociation time depends on the free-energy change ∆G of the DNA + two protein

complex from the state when the two proteins are bound to that when protein A is

unbound. Now, in general, the free energy ∆G of the ternary complex formed by the

DNA and proteins A and B consists of three parts (Kim et al. (2013)):

∆G = ∆GA + ∆GB + ∆∆GAB(a), (1.1)

where ∆GA and ∆GB are the free energy changes caused by binding of A and B alone

respectively to the DNA. These are constants. The last term ∆∆GAB(a) is the portion

of the free energy change that accounts for the interaction of the two proteins bound
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to the DNA while being separated by a distance a. In chapters 3 and 4, we give a

mechanical origin for the variation of ∆∆G(a).

Allosteric effects and their relation to protein DNA interactions have been studied using

molecular dynamic (MD) simulations (Gu et al. (2015); Hancock et al. (2013)). Gu et

al.(Gu et al. (2015)) have studied various kinds of deformations which include shift, roll,

rise, twist, slide, and tilt of the DNA bases. They observed a sinusoidal correlation in

the major groove widths similar to the one observed by Kim et al.(Kim et al. (2013)).

Furthermore, Gu et al. point out that the presence of GC rich sequences dampens the

allosteric effects which is what Kim et al. observe experimentally. Kim et al (Kim et

al. (2013)) classify the DNA binding proteins into two categories: ones that bind to

straight DNA and others that bend DNA. In chapter 3, we deal with the simpler case

involving proteins that bind to straight DNA. In chapter 4, we extend that formulation

by incorporating the 3-D bending and torsion of DNA molecules.

In chapter 5, we combine statistical mechanics (Landau & Lifshitz (1969)) with the

continuum mechanics of an elastic birod (Moakher & Maddocks (2005)) to study tem-

perature driven strand separation in dsDNA. This phenomenon is called DNA melting

and there is plenty of experimental evidence for it (Williams et al. (2001); Rouzina &

Bloomfield (2001b)). Additionally, several models have also been proposed which cap-

ture the experimental data. Experimental evidence suggests that this entropic transition

from dsDNA to ssDNA is strongly cooperative (Gibbs-Davis et al. (2007); Nishigaki et

al. (1984)), and the increase in the inter-strand distance with temperature is sudden as

opposed to a mere incremental linear thermal expansion.

Although thermal melting of DNA has been studied extensively for some decades now

(Lehman & McTague (1968); Crothers (1968)), it has not been analyzed within the

birod framework of continuum mechanics. The sharp transition characterizing the co-

operative DNA melting depends on various factors such as (X. Zhang et al. (2012)), i)

the internal base-pair sequence: DNA fragments with higher GC content have higher

melting temperatures, ii) the tensile force: experimental evidence suggests that the melt-

ing temperature decreases as the tensile load increases, and iii) the ion concentration:

the ion concentration regulates the balance between the transition to S-DNA and ss-

DNA–increasing the ion concentrations favors the former. Most attempts to model the

melting transition rely on using the Clausius-Clayperon equation to get empirical rela-

tions between the various quantities of interest such melting temperature versus tensile

force and over-stretching force vs the ion concentration et cetra (Rouzina & Bloomfield

(2001a,b)). Since these empirical models interface directly with the experimental data,

they have superior predictive capabilities and produce experimentally verifiable predic-

tions. However, this approach obscures the underlying mechanics or biochemistry driving

the process. To circumvent this drawback to some extent, several statistical mechanics

based models such as (Dauxois et al. (1993); Peyrard & Bishop (1989)) begin by positing
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an energy functional that reproduces the characteristic cooperative melting transition

behavior observed experimentally. The detailed description sheds light on the underlying

mechanism–cooperative H-bond disruption–and enables one to clearly discern the effect

of various parameters such as the cooperativity parameter and asymmetric interactions

on the melting transition. However, the inherent analytical intractability involved in

evaluating the path integrals central to these approaches limits their application to rel-

atively simple energy functionals. Molecular dynamics simulations have also been used

to study several problems related to melting transition, unzipping of DNA, and other

structural transformations in DNA (Pérez et al. (2012); F. Zhang & Collins (1995)).

The interaction potentials are available for various chemical bonds in DNA thereby per-

mitting a very detailed description of the structure, shape, and chemistry crucial to the

problem. The results from the simulations agree well with the experimental data, but,

they entail a huge computational burden.

Here, the DNA is modeled using an elastic birod; for analytical tractability it is as-

sumed to be a straight ladder-like birod. However despite this simplifying assumption,

the model is able to capture the key mechanical characteristics of DNA such as the

worm-like-chain force-extension curve for long DNA oligomers, the cooperativity in the

melting transition, and the effect of tensile force on the melting temperature. The

force-extension curve from the model can be approximated by a worm-like-chain chain

formula with a persistence length of a few tens of nm which is close the actual persistence

length of dsDNA (50 nm). The model improves upon the existing statistical mechanics

approaches by computing (as opposed to positing) the energy functional from the kine-

matic description. Additionally, the novelty achieved in our model is two-fold: i) we find

that the elasticity of the outer strands is responsible for the cooperativity observed in

the melting transitions, and ii) our model accounts for the effect of tensile force on the

melting temperature. However, since the model uses a straight elastic birod restricted

to planar deformations, instead of a helical birod with 3-D deformations and rotations,

it can not be used to study phenomena such as phase transitions among B-,S-, and P-

DNA (Sarkar et al. (2001)). Furthermore, it can not account for a negative twist-stretch

coupling of DNA helix (Bryant et al. (2003)).



Chapter 2

Structural transitions in

torsionally constrained DNA and

their dependence on solution

electrostatics

2.1 Model

The single molecule experiment under consideration involves attaching one end of the

DNA molecule to an end cap while the two strands on the other end are bound to

an optically or magnetically trapped bead. We conceive of a displacement controlled

experiment wherein the bead is pulled at a constant velocity in a quasistatic manner

resulting in a uniaxial extension of the molecule. As the displacement on the bead

increases, various structural transitions occur in the molecule whose study is the object

of central concern in this section. The temperature is assumed to be constant at 300 K

throughout the experiment.

The behavior of a DNA molecule in response to force and torque is markedly different

from both an elastic rod and an entropic polymer. The ability of DNA to resist torsional

loading distinguishes it from classical polymers wherein free rotation is permitted at the

joints of the monomers. As a result, the persistence length of DNA is much larger than

the persistence length of classical polymers. On the other hand, a pronounced effect of

entropic disturbances on a molecular length scale distinguishes its response from that of

an ideal elastic rod.

In order to incorporate the effects of entropic disturbances on the slender topology of the

molecule, we borrow ideas from theory of fluctuating elastic rods (Purohit et al. (2008);

9
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Argudo & Purohit (2014b)) to posit a free energy function which is a sum of the elastic

component Gej and the entropic component Gfj , Gj = Gej+G
f
j , where j denotes the phase

of DNA. Gj is the Gibbs free energy of the molecule per unit reference contour length

which is approximately 3 times (1/0.34 = 2.94 bp/nm) the energy per base pair. Such a

treatment inherently presumes the DNA molecule to be a long homogeneous elastic rod

capable of undergoing phase transitions and responding to thermal fluctuations.

The linear elastic component of Gibbs free energy per unit reference length is quadratic

in force f and torque M .

Gej = − Cj
2(SjCj − g2

j )
f2 +

gj
SjCj − g2

j

fM − Sj
2(SjCj − g2

j )
M2 − λj0f − κ

j
0M, (2.1)

where Cj , Sj and gj denote the elastic moduli for twisting, stretching and twist-stretch

coupling for the j phase. The units for these constants are pNnm2, pN and pNnm un-

less otherwise stated. λ0
j and κ0

j denote inherent axial stretch and torsional strain of the

j phase of DNA with respect to B-DNA. These constants depend on the geometrical

structure for each phase and are archived in table 2.1. bj denotes the contour length per

base pair for the j phase, bB = 0.34nm/bp. The stretch and torsion are calculated with

respect to the contour length in the reference configuration, i.e. B-DNA.

We have assumed that bending energy does not make significant contributions to the

bp/turn Aj Sj Cj gj λ0
j κ0

j Sources

B-DNA 10.3 205 1400 369 -84 1 0 Gore et al. (2006),
Argudo & Purohit (2014b),

Leger et al. (1999),
J. F. Marko & Neukirch (2013).

S-DNA 37 28.7 3030 140 -122 1.7 -1.4 Fu et al. (2011),
Zhao & Purohit (2016),

J. F. Marko & Neukirch (2013).

P-DNA 3 61.5 1600 900 -120 1.6 4.4 Zhao & Purohit (2016),
Leger et al. (1999),

Allemand et al. (1998).

Table 2.1: The key micro-structural feature distinguishing the three phases is the
number of base-pairs per helical turn. Elastic constants for various phases of DNA.

elastic energy. Since the magnitude of force in these single molecule experiments is large

(> 10 pN), the formation of plectonemes has also been neglected (for more information

see Purohit (2008)). Our formulation does not account for observed sequence depen-

dent behavior of DNA, such as the variation of mechanical properties with base-pair

sequence (Weber et al. (2009); Lankas et al. (2000); Eslami-Mossallam et al. (2016)), or

the dependence of the end products on the sequence and location of basepairs (X. Zhang

et al. (2013)). For example, it has been pointed out that certain sequences of base

pairs, such as ATAT..., have lower elastic constants than others (Weber et al. (2009);
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Eslami-Mossallam et al. (2016)). As another example, the stretching, bending, twisting

stiffnesses, etc., of AA, AT, GC and GG sequnces (with just two base-pairs) have been

tabulated in Lankas et al. (Lankas et al. (2000)) in their table 1. In order to capture such

effects in the parameters in our Table 2.1, which represents much longer DNA fragements

(thousands of base-pairs), we could follow the approach of Manning et al. (Manning et

al. (1996)) who came up with homogenized effective elastic constants starting from the

geometric and kinematic details of base stacking. However, the stiffness values in table

1 of (Lankas et al. (2000)) are only for B-DNA. Similar stiffness values for the S-, P-

or other phases are not known; similarly, parameters relating to the stacking geometry,

such as, the relative rotation of one base-pair relative to the other are well-documented

only for B-DNA, not for S-, P-, or other phases of DNA. Hence, we present a different

calculation that accounts for sequence dependence in the expression for the Gibbs free

energy of the DNA molecule in Appendix A. This calculation relies on experimental

data for how the melting temperature of DNA depends on the fraction of GC base-pairs

rGC in the molecule (X. Zhang et al. (2012)). Although, the above approach cannot

give us the details of how the twist, bend, stretching moduli depend on rGC , but can

still provide useful information to study the phase behavior of DNA, at least when it is

torsionally unconstrained. On the other hand, many features of the phase behavior of

DNA under torsional constraints can be captured using our simpler formulation (with-

out sequence dependence), as was shown successfully for other experimental conditions

in (Argudo & Purohit (2014b); Zhao & Purohit (2016)).

For a force f and torqueM , the entropic contribution to the free energy of a homogeneous

rod with reference contour length L subjected to tension and twist is βGLj = C1−lnQj+

ln
[
(exp

LQj

Aj
)(1−exp(−2LQj

Aj
))
]

(Argudo & Purohit (2014b)). Here Qj =
√
Ajf −M2/4,

L is the reference contour length, C1 is a constant independent of force and torque and

β = 1
kBT

where kB is the Boltzmann constant and T is the absolute temperature.

The DNA segment in the experiments under consideration is held under high tension

to prevent the torsional buckling which occurs at Mc = 2
√
Ajf . The applied torque

M << Mc which implies Q >> 1 and the molecule is stable under small perturbations

caused by thermal bombardment, then

Gfj ≈
GLj
L

=
Qj
βAj

− lnQ

L
, (Q >> 1). (2.2)
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Figure 2.1: Coexistence curves for B-, S- and P-DNA obtained by equating the free
energy for two phases at a time. We have used σBS = σBP = σPS = 0.044. Note that
the exact values of σBP and σSP are not known and hence have been assumed to be
equal to σBS . Later, we will examine the effects of varying σPS , σBP , etc. Experimental
data from Bryant et al.(Bryant et al. (2003)) appear as red dots in the plot above and

are in good agreement with our coexistence lines.

The total Gibbs free energy per unit contour length can be obtained by adding the

contributions from the elastic and entropic components:

Gj = Gej +Gfj

= − Cj
2(SjCj − g2

j )
f2 +

gj
SjCj − g2

j

fM − Sj
2(SjCj − g2

j )
M2 − λj0f − κ

j
0M +

Qj
βAj

− lnQ

L
.

(2.3)

We obtain the coexistence curves for B- and S-DNA, B- and P-DNA and for S- and

P-DNA by equating the respective free energies per base pair. The results are shown in

figure 2.1 as solid lines with a triple point for B-, S- and P-DNA occuring at f = 120pN,

M = 24pNnm. Now, we calculate the range of force and torque over which the structural

transitions occur. We call these ranges ‘widths’, henceforth. We employ the Zimm-Bragg

theory for helix-coil transitions (Grosberg et al. (1995)) to compute the widths. Consider

a point on the B-S coexistence line wherein B- and S-DNA are in equilibrium with each

other as we go from B → S. We define two Zimm-Bragg parameters s = e−βgBS(f,M)

and σ = e−βfBS where gBS(f,M) = bB(GS(f,M) − GB(f,M)) is the change in free

energy per base pair and fBS is the energy of one junction between the B- and the

S- phase of DNA. Note that a conversion factor of bB = 0.34 nm/bp is required to

convert free energy per unit reference contour length to free energy per base pair. The

fraction of S-DNA is given by rS(f,M) = 1/2 + (s− 1)/[2
√

(s− 1)2 + 4sσ2] (Grosberg

et al. (1995)) and is obtained from an Ising-like model for the structural transition. The

values of σBS are archived in (Argudo & Purohit (2014a)), however, the values of σSP

and σBP are not known, which is why each has been assumed to be equal to σBS for

the purpose of obtaining the phase diagram in figure 2.1. The force and torque widths
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for the B-S coexistence curve are defined to be ∆f = ∂f
∂rS
|s=1 and ∆M = ∂M

∂rS
|s=1. The

slope of the force f versus the fraction rS curve for a force driven structural transition at

sS = 1, (which is equivalent to saying ∆gBS = 0 or rS = 1/2), is directly proportional to

the fluctuation of the force ∆f during the phase transition. Analogous reasoning holds

for a torque driven transition in which we are interested in ∆M . A similar procedure

is followed for the P-S and B-P coexistence lines as well. These widths are shown

in figure 2.1 for each transition. Our phase diagram is in good agreement with the

experimental data reported by Bryant et al (Bryant et al. (2003)).

The kinematic quantities, stretch λj and twist κj , conjugate to the force f and torque M

respectively, can be obtained from the free energy function for the j phase. It is worth

pointing out that the above expressions are valid in the limit when the force is high

enough to suppress large bending fluctuations i.e., the terms of O(1/Q2
j ) are neglected.

λj = −∂Gj
∂f

= λj0 +
[Cjf − gjM
SjCj − g2

j

]
− 1

2βQj
,

κj = −∂Gj
∂M

= κj0 +
[SjM − gjf
SjCj − g2

j

]
+

M

4βAjQj
.

(2.4)

2.2 Partition function for three phase coexistence

In this section, we build upon the foundational ideas behind the Zimm-Bragg model

(Grosberg et al. (1995)) and apply it to our 1-D continuum model of DNA. Conven-

tionally, the Zimm-Bragg model has been used to study helix-coil transitions in macro-

molecules, especially polymer chains. A potent feature of this model is a closed-form

transfer matrix that enables us to conveniently sum the partition function of a macro-

molecule over the admissible micro-states and calculate the fraction in helix (coil) phase.

We have already utilized these expressions to compute the widths of the coexistence lines

along the force and torque axes in the previous section. Now, we want to admit the pos-

sibility that three phases of DNA can coexist at some force and torque as they do at a

triple point in the phase diagram. We conjecture an analog of the Zimm-Bragg model

with three distinct phases viz. B-, S- and P-DNA with respective interfaces between

them. Our ensemble is a molecule with fixed number of base-pairs and each of them

can be in either B-,S- or P- state; the preference for each is dictated by free energy

and interfacial energy considerations. We propose the following rules for calculating the

partition function for one molecule.

• We assume the ground state be B-DNA and attach our energetic datum to it.

Consequently, the statistical weight of B-DNA is 1.
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• The statistical weight of S- and P-DNA is sS = e−β∆gBS and sP = e−β∆gBP ,

respectively where ∆gBS = bB(GS(f,M)−GB(f,M)) and ∆gBP = bB(GP (f,M)−
GB(f,M)) are the free energy differences per base pair between S- and B-DNA

and P- and B-DNA (bB=0.35 nm/bp).

• There are three possible interfaces B-S, S-P and B-P, each of which has an energy

associated with it that must be penalized. Every interface has a statistical weight

of σij = e−β∆γij where i 6= j and i = B,S, P and j = B,S, P and ∆γij is the free

energy of the interface between i and j phase. If the interfacial energy is small

i.e. (σij ∼ kBT ), there could be multiple interfaces throughout the length of the

molecule and the associated sigmoidal transition is broad with a large variance or

width. On the contrary, if the interfacial energy is large (σij >> kBT ), then there

exists only one interface and the corresponding sigmoidal transition proceeds via

a steep jump, or it has a small width.

The partition function Zn+1 for a molecule with (n + 1) base pairs can be obtained by

raising the transfer matrix to power n:

Zn+1 =
∑

k∈Ωn+1

e−βEk =
[
1 sS sP

]
Tn


1

1

1

 , (2.5)

where T is the transfer matrix given by

T =


P (B|B) P (S|B) P (P |B)

P (B|S) P (S|S) P (P |S)

P (B|P ) P (S|P ) P (P |P )

 =


1 σBSsS σBP sP

σBS sS σSP sP

σBP σSP sS sP

 . (2.6)

In the above P (S|B) represents the probability that the current base-pair is in the

S-DNA state, given that the previous base-pair is in the B-DNA state and similarly

for P (P |B), etc. In the limit n → ∞ the behavior of the system is governed by the

largest eigenvalue of T (say Λ) and the corresponding eigenvector is used to calculate

the fractions of B-, S- and P-DNA states as in the classical Zimm-Bragg theory. Thus,

if [ψB ψS ψP ]T is the eigenvector, then
1 σBSsS σBP sP

σBS sS σSP sP

σBP σSP sS sP



ψB

ψS

ψP

 = Λ


ψB

ψS

ψP

 . (2.7)
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Figure 2.2: Torque-rotation curves for a B-DNA to P-DNA transition at constant
force. The optical bead attached to one end of the molecule is twisted while maintaining
a constant tension of 45 pN until B-DNA converts to P-DNA. Most of the twist takes
place at constant torque. The lines in different colors correspond to different σBP

values. The inset shows the trajectory on an f −M plane.

Let the fractions of B-,S- and P-DNA be denoted by rB, rS and rP , respectively. We

follow the standard scheme given in (Grosberg et al. (1995)) to get
rB(f,M)

rS(f,M)

rP (f,M)

 =


ψ2
B

ψ2
SsS

ψ2
P sP

 (2.8)

We already know the functional dependence of gBS(f,M), gBP (f,M), consequently of

sS , sP , on the force f and torque M applied on the molecule. In the most general case,

we expect that σij is also a function of force and torque. While there are several estimates

for σBS (Argudo & Purohit (2014a); Rouzina & Bloomfield (2001a)), the values of σBP

and σPS are not known.

In order to estimate σBP , we use the experimental data from Bryant et al (Bryant et al.

(2003)) in which a bead attached to a torsionally unconstrained DNA molecule is twisted

to convert B-DNA to P-DNA while the tension is maintained constant throughout using

a feedback mechanism. The transition from B-DNA to P-DNA is highly cooperative and

takes place at a constant torque ( 32 pNnm) accompanied by a sudden jump in the twist

which is characteristic of a first-order phase transition. The corresponding trajectory on

an f −M plane is a straight line parallel to torque axis (see inset of figure 2.2). Now

to estimate σBP , we pick the experimental data (∆M = 2 pNnm at f = 45 pN and

M = 34 pNnm) from Bryant et al.(Bryant et al. (2003)). We substitute these values

in ∆M = ∂M
∂rP
|s=1 to get σBP = 0.18. The resulting torque-rotation curve is plotted

in figure 2.2 together with the data from Bryant et al.(Bryant et al. (2003)). Using

our model we predict that almost 3.7× 103 turns are required to transform 5100 nm of

B-DNA completely into P-DNA, the corresponding experimental value being 4.0 × 103
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(Bryant et al. (2003)). A notable observation is that most of the twist goes into changing

the phase of the molecule from B-DNA to P-DNA. In figure 2.2 we also explore the effects

of the variation of interfacial energy which leads to changes in σBP . A large σBP ∼ 2.0,

corresponds to a small interfacial energy, which leads to increase in the range of force (or

width of the coexistence line along the force axis) over which the structural transition

occurs, which means there is a possibility of multiple interfaces throughout the molecule.

On the other hand, a small σBP ∼ 0.044 corresponds to a large interfacial free energy

and the associated structural transition is sharp.

We now apply this model to study the response of a torsionally constrained DNA

molecule. For a prototypical experiment described in figure 2.1 (inset), the sum of

the displacements of the three phases is equal to the externally imposed displacement

and the sum of the twists of the individual phases is zero due to the torsional constraint,

thus

rBλB + rSλS + rPλP = λext,

rBκB + rSκS + rPκP = 0.
(2.9)

The stretches (λB, λS , λP ), twists (κB, κS , κP ) and fractions (rB, rS , rP ) of the individual

phases are functions of force f and torque M , the explicit expressions for which have

been computed in eqn. (2.4) and eqn. (2.8). Then, for an imposed λext the two equations

given above are two non-linear equations in two unknowns, f and M . We solve these

equations and plot the results in figure 2.3. Figure 2.3a shows the force-extension curve,

figure 2.3b shows the corresponding trajectory on f −M plane and figure 2.3c shows

how the fraction of base-pairs in each phase evolves with the extension λext. In the

beginning, the whole molecule is in its ground state, i.e. B-DNA, which transforms into

a mixture of B- and S-DNA which, subsequently, converts to a mixture of S- and P-DNA

while passing through the triple point as shown in figure 2.3a and figure 2.3c. These

two transitions have been experimentally observed using fluorescence microscopy (King

et al. (2016)). A bulk of the extension, characterized by a 70% jump in the contour

length of the molecule, takes place at the triple point (24 pNnm,120 pN) of B-,S- and

P-DNA (see figure 2.3b). A linear trend in the variation of the fractions of various phases

at the triple point in figure 2.3c is a direct consequence of the fact that at fixed force

and torque the linking number of the molecule is conserved. We observe that before

entering the triple point, the molecule is a mixture of B- (90%)and S-DNA (10%) which

is converted to a mixture of S-DNA (80%) and P-DNA (20%) which is exactly what has

been reported by King et al (King et al. (2016)). The sigmoidal plateau observed in

the force-displacement curves corresponds to the extension of the molecule at the triple

point. To demonstrate the utility of our formulation, we investigate the effect of the
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Figure 2.3: Structural transitions in a torsionally constrained DNA molecule. (a)
Force-extension curve, (b) f −M plane, (c) Fractions of B-,S- and P-DNA. The points
labeled A,B,C,D in each panel have the same λext. At B the molecule enters the triple
point and at C it exits the triple point as extension λext increases. Notice that a
mixture of B- and S-DNA transforms into a mixture of S- and P-DNA. In (a), as σBS

increases, the transition width increases, as expected. This is shown using different
color trajectories in (a) and (b).

variation of σBS on the response of the molecule. As expected, the transition becomes

more diffuse on the force axis as σBS increases.

2.3 Effect of electrostatic interactions

Our objective, in this section, is to present a systematic approach to account for the elec-

trostatic interactions between a negatively charged DNA molecule and the ions present

in the surrounding media. We assume the DNA molecule to be a polyelectrolyte which

dissociates in an aqueous solution to form a polyanion wherein the phosphate groups

attached to the sugar rings form the repeated electrolyte group. The behavior of such

a charged polyion is markedly different from a neutral polymer, especially in polar sol-

vents, and varies as the concentration of ions in the solution changes.
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The implications of changing the ion concentration of the solution are immense and

various experiments have been carried out to understand its effect on the overstretch-

ing transition in a torsionally unconstrained DNA molecule (X. Zhang et al. (2012);

King et al. (2013)). As the ion concentration increases the mechanism for overstretching

changes from a force induced melting leading to formation of ss-DNA (single stranded

DNA) to a highly cooperative transition leading to S-DNA. The interactions between

the cations in the solution and the negatively charged DNA backbone stabilizes S-DNA

at higher ion concentration. The melting temperature of DNA also increases as the

ion concentration increases and is related linearly to the logarithm of the concentration

(X. Zhang et al. (2012)). Since base-pair disruption is highly sensitive to the ion con-

centration the overstretching transition could be non-hysteretic or hysteretic depending

on ion concentration (King et al. (2016); X. Zhang et al. (2012)).

In torsionally constrained DNA, there are two transitions – first in which B-DNA con-

verts to a mixture of B- and S-DNA (or melted M-DNA), and second in which the

mixture of B- and S-DNA (or M-DNA) undergoes overstretching at the triple point (110

pN) to a mixture of S- and P-DNA – while conserving linking number throughout (King

et al. (2016)). The ion concentration governs the competition between the formation of

S-DNA and M-DNA, the former being preferred at higher ion concentration. A notable

observation pertaining to the second overstretching transition at 110 pN is the non-

monotonic trend in stability of P-DNA versus ion concentration (King et al. (2016)).

This is in contrast to S-DNA, whose stability increases as ion concentration increases.

We seek a quantitative explanation for these experimental observations by accounting

for electrostatics in solution.

We use the Poisson-Boltzmann equation to describe the electrostatics in solution and

employ the polyelectrolyte model of DNA described in (Frank-Kamenetskĭı (n.d.)) to get

the contribution of ion concentration to the Gibbs free energy. This treatment presumes

a DNA molecule to be an infinite rod of radius a carrying a negative (non-dimensional)

charge per unit length, q, immersed in a dielectric continuum, which in our case is an

aqueous solution of pH 7 with dielectric constant D = 80 (for further information see

Frank-Kamenetskĭı (n.d.)). To describe the electrostatics of one phase of DNA, we need

two constants:

1. The dimensionless charge q = lB/(b/2) where lB = e2/DkBT is Bjerrum length of

water at 300 K, e is the charge of an electron and b/2 is half the distance between

successive base pairs. Thus, big changes in the dimensionless charge density due to

structural transitions in DNA enter through a change in b. For B-DNA, qB = 4.2

(Frank-Kamenetskĭı (n.d.)).
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2. The radius of the molecule a. For B-DNA the radius is aB = 1nm (Frank-

Kamenetskĭı (n.d.)).

Since the magnitude of elastic stretching for individual phases is extremely small even at

forces as high as 100 pN ((CBf/(SBCB−g2
B) ≈ 0.07 at f = 100 pN), we can safely ignore

their effect on q. The treatment above presumes the negative charge to be independent of

the ion concentration. More generally, the charge could depend on the interplay between

the ionization constant (pKa) of the DNA base and pH of the solution (Grosberg et al.

(1995)). We introduce a dimensionless potential u = eU/kBT and employ the Poission-

Boltzmann equation in cylindrical geometry to model the electrostatics for such a rod

(see details in A.2. A full list of symbols used here is given in A.3.):

u′′(y) + r−1u′(y) = −4πlb(c
+(y)− c−(y)). (2.10)

Here y is the distance from the center of the cylinder and c+(y) and c−(y) are the

concentrations of positively and negatively charged ions which are functions of y. We

assume that the solution consists of only monovalent ions such as K+, Na+ and Cl−.

Following standard assumptions of the Poisson-Boltzmann theory (Frank-Kamenetskĭı

(n.d.)), cp(y) = c0e
−pu(y) where p = −,+, and c0 is the concentration of both species at

infinity, and u is dimensionless. It is now possible to pose a boundary value problem to

describe the above system.

u′′(y) + r−1u′(y) = χ2 sinhu(y),

u′(a) = 2q/a, u(R) = 0, R→∞,
1

χ
= rD =

1√
8πlBc0

.

(2.11)

We note here that since we model the DNA molecule as a homogeneous elastic rod with

a constant charge per unit length we cannot capture sequence dependent responses.

However, this way of accounting for the electrostatics predicts important aspects of the

B-DNA to Z-DNA transition (Frank-Kamenetskĭı (n.d.)) and the dependence of DNA

melting temperature on ion concentration (X. Zhang et al. (2012)).

The electrostatic free energy of the cylindrical rod Gel per base pair can thus be calcu-

lated by charging the model cylinder incrementally from 0 to q as follows:

Gel = −2kBT

∫ 1

0
u(a, tq, c0)dt. (2.12)

The accuracy of the theory is contingent on precisely knowing the values of a and q for

a particular phase of DNA. The Gibbs free energy function can now be conveniently
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decomposed into elastic, entropic and electrostatic components:

Gj(f,M, c0) = Gej(f,M) +Gfj (f,M) +Gelj (c0). (2.13)

Notice that the electrostatic component is independent of force and torque which is why

adding it does not change the constitutive relations in eqn.2.4. However, the coexistence

lines in the phase diagram will move depending on the ion concentration because now

the free energy per base pair has an electrostatic contribution that we did not consider

earlier. This electrostatic part of the free energy will change depending on the phase of

the DNA.

As an application of this idea consider an experiment involving torsionally unconstrained

pulling of a DNA molecule. The overstretching transition from B-DNA to S-DNA at

0.1 M occurs at 64 pN. In many previous papers it has been shown that the force at

which the overstretching transition occurs is related linearly to the logarithm of the ion

concentration (Rouzina & Bloomfield (2001b); X. Zhang et al. (2012)) (see the appendix

for how the above model leads to the logarithmic dependence of fov on ion concentration).

For a given ion concentration we can find the overstretching force fov by equating the

free energy per base pair of B- and S-DNA; conversely, since the dependence of fov on

the ion concentration c0 is known from experiments to be fov = 71+7 log c0 (X. Zhang et

al. (2012)), we can fit the constants qS and aS for S-DNA by equating free energies of the

two phases. A rough estimate for qS can be obtained from the definition q = lB
b/2 where

lB = 0.71 nm is the Bjerrum length and b/2 is half the distance between successive base

pairs. For S-DNA, b = 0.34 × 1.7 nm which gives qS ≈ 2.5. Also, it has been pointed

out in (X. Zhang et al. (2012)) and (Rouzina & Bloomfield (2001b)) that inter-strand

distance of overstretched DNA is less than 1 nm. Using qS = 2.8 and aS = 0.8nm, we

plot the overstretching force as a function of ion concentration in figure 2.4 which is in

excellent agreement with experimental data by Zhang et al (X. Zhang et al. (2012)).

When we plug these constants into the expression for the electrostatic part of the free

energy of S-DNA we find that it decreases as the ion concentration increases as shown

in Figure 2.4 (inset). Hence, the double-stranded helical charged phosphate backbone

is stabilized by the cations in the solution and the stability of S-DNA increases with

increasing ion concentration (X. Zhang et al. (2012); King et al. (2016)).

Now we want to determine the consequences of the above electrostatic model on over-

stretching in torsionally constrained DNA. For doing so we need qP and aP for P-DNA

which are estimated as follows. As the molecule is twisted the helix angle of the right

handed B-DNA increases which leads to reduction of the radius. As the helix angle

reaches 70◦ the base pairing gets disrupted and the corresponding helix radius at that

point is 0.6 nm (Allemand et al. (1998)). We, hence, estimate aP = 0.65 nm. Since, the
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Figure 2.4: Plot of overstretching force for a torsionally unconstrained DNA as a
function of ion concentration. We use qS = 2.8 and aS = 0.8 nm. In the figure blue
diamonds are the experimental data from Zhang et al (X. Zhang et al. (2012)). In the
inset, the electrostatic free energy for S-DNA decreases as the concentration increases.

contour length of P-DNA is 1.7 times that of B-DNA the distance between successive

base pairs is bP = 0.34×1.7 = 0.58 nm (Bryant et al. (2003); Allemand et al. (1998)) for

P-DNA. Using the definition of dimensionless charge q, we obtain qP = lB/(b/2) ≈ 2.5.

We use these constants to examine the effect of electrostatic interactions on the structural

transitions in a torsionally constrained DNA. We deploy our analog of the Zimm-Bragg

model developed in section (3) to calculate the fractions of the various phases. The

Zimm-Bragg parameters sS and sP entering the transfer matrix given in eqn. (2.6),

now have contributions from the electrostatic free energy for each phase. Our goal is to

compute the force f and torque M for prescribed extension λext. Note that the additive

decomposition posited in eqn. (2.13) implies that the constitutive equations relating

the stretch and twist to force and moment given in eqn. (2.4) remain unchanged, but

the relative fractions of the three phases calculated using the transfer matrix changes.

The force-extension curves and the corresponding trajectories on the f −M plane for

a torsionally constrained DNA molecule are presented in figure 2.5a and figure 2.5b,

respectively. Experimental data from King et al.(King et al. (2016)) for two different

ion concentrations are also shown in figure 2.5a and are in excellent agreement with

our model. The overall form of the curves in these two figures is similar to those in

figure 2.3a and figure 2.3b.

In the most general scenario, the interfacial energies, and consequently σBS , σPS and

σBP , are functions of the ion concentration of the surrounding media. We deduce,

based upon the data presented in (Argudo & Purohit (2014a)), that σBS increases with

increase in ion concentration but the change is small and the effect of that change is

minimal and is indistinguishable in our plots (such as, figure 2.5a). As pointed out, the
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Figure 2.5: Effect of ion concentration on the structural transitions in torsionally
constrained DNA. (a) force-extension curves, (b) f −M plane, (c) f3 versus ion con-
centration, and (d) f4 versus ion concentration. These results assume σBS = 0.044
(Argudo & Purohit (2014a)), σBP = 0.18 (Bryant et al. (2003)) and σPS = Acn0 . Ex-
perimental data from King et al(King et al. (2016)) is also shown for comparison. The
force corresponding two phase transitions T3 and T4 is marked by f3 and f4 on f−λext.

value of σBS ∼ 0.044, itself is an order of magnitude smaller than the experimentally

inferred value of σBP ∼ 0.18. We do not have any information on the effect of ion

concentration on σBP , which is why we take it to be a constant, σBP = 0.18, in the

treatment henceforth. The values for σSP are not available in literature. But, we

assume the interfacial energy between S- and P-DNA is related to the logarithm of the

concentration ∆γPS/kBT = a+n log c0, which upon exponentiating gives σSP = Acn0 for

some constants A and n that must be fitted to establish agreement with experimental

data. This is done as follows by focusing on the force f3 at which the molecule enters

the triple point and force f4 at which it exits the triple point (see figure 2.5a).

In their experiments King et al.(King et al. (2016)) label the two critical structural

transitions of interest in a torsionally constrained DNA as:

1. T3: Where the mixture of B- and S-DNA enters the triple point marked by [B] on

force-extension curve given in figure 2.5a, the corresponding force being f3. In the
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region A→B, only B- and S-DNA are present with the majority of the molecule

(rB ∼ 0.9) being in the B-DNA phase.

2. T4: Where the mixture of B-, S- and P-DNA exits the triple point marked by [C]

on the force-extension curve given in figure 2.5a, the corresponding force being f4.

Conservation of linking number dictates that in the region C→D the fraction of

P-DNA should be approximately 20% (rP ∼ 0.2−0.3) while that of S-DNA should

be close to 80% (rS ∼ 0.7 − 0.8). These fractions are exactly the same as what

have been experimentally observed in (King et al. (2016)).

The sigmoidal plateau B→C in the force-extension curve sandwiched between T3 and

T4 denotes the triple point of B-,S- and P-DNA. We plot the variation of f3 and f4 with

concentration for various values of σSP in figure 2.5c and figure 2.5d, respectively. As

can be deduced from the plots, the parameter A can be related to the overstretching

force while the parameter n controls the non-monotonicity of the resulting trend. The

values A = 1.0 and n = 1.5 (σSP = 1.0c1.5
0 ) give good agreement with the experimental

data of (King et al. (2016)) for both f3 and f4. As the concentration increases there is a

sharp increase in f3 and f4 which eventually tapers off as the concentration goes beyond

0.4 mol/L. While both B-DNA and S-DNA get stabilized at higher concentration, this

is not so for P-DNA whose stability has a minimum at concentration equal to 0.3 mol/L

(King et al. (2016, 2013)). The non-monotonic trend observed for f3 and f4 can be

attributed to the minima in the stability of P-DNA. Notice how the trajectories for

various concentrations collapse closely onto the P-S coexistence line in figure 2.5b while

a large deviation from B-S coexistence line is observed. This is because the magnitude

of fluctuations in torque on the P-S coexistence line are much smaller than those on the

B-S coexistence line as shown in figure 2.1.

We have found that A and n have a profound impact on the nature of the force-extension

curves and even lead to non-monotonic variation of force with the ion concentration. This

is counter-intuitive, since for a torsionally unconstrained extension the overstretching

force increases monotonically with increase in ion concentration (X. Zhang et al. (2012,

2013)). Nonetheless, such non-monotonic trends have been experimentally observed by

King et al (King et al. (2016)) and our model produces results which are in excellent

agreement with experimental data . Furthermore, we find that such trends are not

observed if instead of σSP , we vary σBS and σBP with ion concentration. Thus, the value

of σPS plays a critical role in determining how the overstretching forces corresponding

to various structural transitions vary with ion concentration.

We can further calculate the work done by the external agency in pulling a torsionally

constrained DNA molecule for various values of A and n. Since the twist of the optical

bead is held fixed, the work done per unit reference contour length is the area under the
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Figure 2.6: Non-monotonic trend in external work done per unit reference contour
length. Note that the length of the DNA molecule is of the order of thousands of nm
which is why a small difference in the work done will get amplified. We take σBS = 0.04,

σBP = 0.18 and σPS = Acn0 .

force-extension curve (Wext(c0) =
λext∫
0

fdλ), and is a function of concentration only. The

results of this exercise are plotted in figure 2.6. We find again that n determines the

non-monotonicity of the trend. For low values of n, which implies a weak dependence

of σSP on concentration, the trend is monotonic. The trend is strongly non-monotonic

for higher values of n, and in particular for n = 1.5 has a maximum at 0.3 mol/L,

which is indeed what King et al(King et al. (2016)) have reported in their experiments.

This observation can also be attributed to the low stability of P-DNA at intermediate

concentrations (∼ 0.3 mol/L).

2.4 Discussion

Our goal in this chapter is to quantitatively understand structural transitions in tor-

sionally constrained DNA molecules. In a typical experiment under consideration, two

strands of DNA are attached to an optical/ magnetic bead whose rotation is held fixed

while it is pulled using optical/ magnetic tweezers. This leads to various structural and

conformational changes in the molecule. The slender shape of the molecule allows us

to model it as a fluctuating elastic rod. For such a system, the free energy can be de-

composed additively into an elastic component and an entropic component. The elastic

energy is quadratic in force f and torque M and takes into account stretching, torsion

and the interplay between these. Since the forces in the experiment are large (> 10

pN), the bending energy can be neglected and the entropic contribution due to bending

fluctuations is small. We equate the free energy per base pair for various phases and

compute the phase diagram for DNA on a force-torque (f −M) plane. The constitutive

relations relating the stretch and twist to force and torque are obtained using the Gibbs
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free energy functional.

The kinematic conditions of a torsionally constrained DNA molecule dictate that the

sum of the changes in the length of three phases is equal to the external displacement

of the bead and the sum of the respective twists is zero. In order to calculate the frac-

tions of various phases, we develop an analog of Zimm Bragg model for three phases.

This treatment allows us to examine the effect of interfacial energy on the sigmoidal na-

ture of force-extension curves and the respective trajectories on the force-torque plane.

Our model correctly predicts the overstretching force (∼ 115 pN) corresponding to the

triple point and the fractions of the molecule before (rB = 0.9 and rS = 0.1) and af-

ter (rP = 0.2 and rS = 0.8) the transition (King et al. (2016)). We further note that

the fractions of different phases vary linearly as the molecule passes through the triple

point. We employ our model to study the transition of B-DNA to P-DNA and find that

for f = 45 pN, overstretching torque is 32 pNnm and that almost 3.7 × 103 turns are

required to convert a 5100 nm long B-DNA completely into P-DNA. These results are in

agreement with the experimental data reported by Bryant et al (Bryant et al. (2003)).

In order to study the effect of electrostatic interactions, we assume the molecule to be

an infinite rod of radius a carrying a uniform charge q per unit length. We use the

Poisson-Boltzmann equation to calculate the resultant axisymmetric dimensionless elec-

trostatic potential which is integrated to compute the electrostatic contribution to the

free energy functional. We find that when the magnitude of the dimensionless poten-

tial is small, the free energy computed using Poisson-Boltzmann varies linearly with

logarithm of concentration. We use the data available from previous work (Argudo &

Purohit (2014a); X. Zhang et al. (2012); Bryant et al. (2003)) to get the values for

σBS and σBP . We start by testing our model by computing the overstretching force

for a torsionally unconstrained DNA molecule and observe that our results are in good

agreement with the experimental data (X. Zhang et al. (2012)). Due to lack of any

experimental data, we assume that the energy of the interface between S- and P-DNA is

related linearly to the logarithm of the concentration (∆γSP = a+ n log c0), which im-

plies σSP = Acn0 where c0 is the ion concentration. We obtain the force-extension curves

for a torsionally constrained DNA for various ion concentrations and show that our re-

sults are in good agreement with the experimental data reported by King et al (King et

al. (2016)). The effect of constants A and n is archived in figure 2.5 and we conjecture

that such dependence of σSP on concentration could be a reason for the non-monotonic

trends observed in the overstretching force with increasing ion concentration. We also

calculate the external work done by integrating the force-extension relation and observe

that its dependence on the ion concentration is monotonic for small values of n and

non-monotonic for larger ones. As pointed out by King et al. (King et al. (2016)), this

non-monotonic dependence in work done is related to a minimum in stability of P-DNA



Chapter 2: Structural transitions in torsionally constrained DNA and their dependence
on solution electrostatics 26

at intermediate concentrations (0.3-0.4 mol/L). Our expression σSP = Acn0 and its con-

sequences in figure 2.5 and figure 2.6 are predictions that can be tested by performing

new experiments.

2.5 Conclusion

The overarching objective of this chapter was to explore the implications of variation in

ion concentration on the structural transitions driven by external forces in a torsionally

constrained DNA molecule. Specifically, the mechanics of the overstretching transition–

characterized by a 70% jump in contour length converting a mixture of B- and S-DNA

converts into a mixture of S- and P-DNA–is examined. This transition proceeds via the

triple point of B-, S- and P-DNA whose comprehensive understanding was the central

concern in this chapter. Despite the fact that the results produced using the methodology

are corroborated by experimental data at every step, it suffers from two drawbacks. The

homogeneous continuum model that forms the bedrock of the framework precludes its

utility in studying sequence dependent behaviors. Our methodology for electrostatic

interactions works only for monovalent cations such as Na+ and K+. Nonetheless, it

can be used to study many aspects of structural transitions in DNA and makes specific

testable predictions.



Chapter 3

Elasticity as the basis of allostery

in DNA

3.1 Introduction

When a ligand binds to DNA it induces conformational changes at the binding site which

could propagate to regions tens of base-pairs away, thereby encouraging or inhibiting

the binding of a second ligand in those places. Such interactions between two binding

agents are called allosteric interactions. Our focus here is on a mechanism for allostery

based on elasticity of long molecules. Although we will illustrate our theory using DNA

as an example, long range allosteric interactions have been documented in actin, micro-

tubules and helical peptide chains. For example, myosin binds to actin filaments leading

to suppression of the formation of cofilin clusters via allosteric signalling (Ngo et al.

(2016)). Long range structural changes induced by taxol binding to microtubules inside

a cell prevents cell division thus making it a potent anti-tumor agent (Mitra & Sept

(2008)). The transfer of chiral stimulus triggered by a binding agent across a helical

peptide chain gives the molecule an overall chiral character and is yet another instance

of allostery (Ousaka & Inai (2009)). Instances of allostery in DNA have been known for

decades (Ridge et al. (1994); Krugh & Young (1977)). Anti tumor drug actinomycin D

binds to DNA by intercalating between the adjacent base pairs (Krugh & Young (1977))

containing a guanine base. However, in the presence of daunomycin, another anti-tumor

drug, actinomycin is observed to bind to poly(dAT) DNA oligomers too. This is due to

the allosteric stabilizing influence exerted by the already bound daunomycin molecule

near its binding site. We will analyze allostery in dsDNA because detailed experimen-

tal and simulation results are available for it (Drsata et al. (2014); Kim et al. (2013);

Koslover & Spakowitz (2009)), thus allowing quantitative comparisons with our theory.

27
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We define the allosteric interaction energy ∆G = E
{0,p}
12 − E0

1 − E
p
2 , where E

{0,p}
12 is the

free energy of the protein-DNA complex consisting of two proteins separated by dis-

tance p, and E0
1 andEp2 are the free energies of the protein-DNA complexes consisting of

one protein. Kim et al.(Kim et al. (2013)) have conducted single molecule experiments

using fluorescence techniques to measure allosteric interaction energy ∆G between two

proteins on a DNA oligomer. In their paper (Kim et al. (2013)), DNA binding proteins

are are categorized as (a) proteins that bend DNA such as LacR and T7-RNAp, and (b)

proteins that bind to straight DNA such as GRDBD and BamHI. Here we deal with the

latter category.

We use the theory of elastic birods (Moakher & Maddocks (2005)) to develop a mechan-

ical model for investigating protein-DNA interactions. A birod consists of two elastic

strands joined by an elastic web. We represent the sugar-phosphate backbone of DNA

using the outer strands and the complimentary base pairing is modeled using the elastic

web. A birod model of DNA has different properties than a homogeneous rod model at

short length scales; however, as the length of the birod increases the elastic properties

of both models become indistinguishable (Wolfe et al. (2012)).

We discuss key features that distinguish our model from the state of art(Koslover &

Spakowitz (2009)) worm like chain model for DNA allostery.

1. Helical geometry : Kim et al(Kim et al. (2013)) discovered that the interaction

energy ∆G between two proteins on DNA decays exponentially while oscillating

with the periodicity of the DNA double helix. It is thereby imperative that we

account for the double helical geometry of DNA which is conveniently incorporated

in a birod model(Moakher & Maddocks (2005)), but is absent in a worm like chain

model of DNA.

2. Elasticity of base-pairs: Proteins interact with DNA by altering the geometry

of the double helix, such as changing the width of major/minor groove(Kopka

et al. (1985); Drsata et al. (2014)). The elasticity of the basepairs, represented

by the elastic web in a birod model is essential to accurately model these local

deformations.

3. Stacking energy : Stacking energy penalizes the change in orientations of the base-

pairs with respect to each other. We use a stacking energy quadratic in the twist

and stretch of the DNA-double helix.

In an existing model (Koslover & Spakowitz (2009)) of allostery, tension in the worm-

like polymer chain to which the two proteins are bound, plays an important role in the

decaying oscillatory behavior of the interaction energy ∆G. However, in the experiments

of Kim et al. (Kim et al. (2013)) and simulations of Dršata et al. (Drsata et al. (2014))
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the oscillatory exponentially decaying allosteric interactions on DNA are present even

in the absence of tension. Here we show through an analytical model that decaying

oscillatory behavior of the interaction energy can arise from the interplay between the

double helical geometry and the elasticity of the base pairs.

Our model provides key insights into the structural deformations of the DNA helix,

changes in the groove width when a ligand binds to DNA, and the allosteric interaction

energy ∆G between two proteins on DNA. We compute the correlations between the

displacement variables at the two sites of protein binding and establish their connection

to the interaction energy between the two proteins. Our results are in excellent quanti-

tative agreement with the experimental data in Kim et al(Kim et al. (2013)) and Kopka

et al(Kopka et al. (1985)).

Numerical simulations (Drsata et al. (2014)) have been used to propose mechanical

models for DNA allostery. These papers describe DNA using three sets of coordinates:

intra-basepair coordinates buckle, propeller, opening, shear, stretch and stagger, inter-

basepair coordinates tilt, roll, twist, shift, slide and rise, and major and minor groove

widths. The DNA binding protein fixes some (or all) of the degrees of freedom at the site

of binding resulting in deformations away from it. The energy of binding can therefore

be computed. The approach is comprehensive, but computationally expensive. Drawing

upon the know-how from Dršata et al. (Drsata et al. (2014)), we allow for the bending,

twisitng, stretching and shearing of the basepairs. Furthermore, we go beyond their nu-

merical models by considering the mechanics of the outer strands, which as pointed out

later, is crucial to getting the correct twist-stretch coupling for double-stranded DNA.

3.2 Theory

DNA comprises of two helical strands held together via complementary base-pairing.

When a ligand, such as a protein or a drug, binds to DNA it exerts forces and moments

on the double helix (Wiggins et al. (2009)) causing deformations at the base-pair level.

We use the theory of birods (Moakher & Maddocks (2005)) to investigate these defor-

mations. A birod consists of two elastic strands which interact through an elastic web.

This construction makes it suitable for investigating the deformations at the base-pair

level in a DNA molecule which a homogeneous rod model cannot capture (Drsata et al.

(2014)). The latter ignores the double helical structure and the elasticity of the base

pairs, both of which are crucial to the problem under consideration. In the following (·)x
denotes ∂(·)

∂x . Lower case letters such as a, r, β± are scalars, bold lower case letters such

as t+, b− are vectors while bold upper case letters such as R−,R+
0 ,Z are 3× 3 tensors.
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Figure 3.1: Birod model of DNA. The angle between the tangent t+ and e3 is k. A
base pair in reference and deformed state is shown. The director frames attached to
± ends of the base pair change from Q0 to Q±, respectively. The rigid rotation of the

strand Q = (Q+Q−T )
1
2 Q− and micro-rotation P = (Q+Q−T )

1
2 .

We assume the phosphate backbones comprising of phosphodiester bonds to be inex-

tensible and unshearable elastic strands. Since these backbones consist of consecutive

single bonds which allow for free rotation about the bond, we assume that they can not

resist twisting moments. The base pairing is represented by the elastic web which is

capable of extending, shearing, bending and twisting. In addition to the elastic energy,

we consider contributions from the stacking energy which is associated with the change

in orientations of the successive base pairs.

We denote the helical strands as ±; their positions in the reference state are denoted by

r±0 . We use arclength parameter x to parametrize the double helix (fig. (3.1)). Thus,

r+
0 = a(cosωx e1 + sinωx e2) + x e3,

r−0 = a(cos(ωx+ α) e1 + sin(ωx+ α) e2) + x e3,
(3.1)

where a = 1 nm is the radius of the DNA helix, p = 3.4 nm is the pitch, ω = 2π
p

and α is the phase difference between the helices. Here we assume α = π to make the

computations analytically tractable. We consider a deformed configuration where the

double helix extends and twists about e3, and its radius and phase angle also change

due to binding of ligands. The deformed state of the ± strands is denoted by r±(x),

where

r+(x) = (a+ r)
(

cos(ωx+ β+) d1 + sin(ωx+ β+) d2

)
+ (x+

∫ x

−∞
aξ+dx) e3,

r−(x) = −(a+ r)
(

cos(ωx+ β−) d1 + sin(ωx+ β−) d2

)
+ (x+

∫ x

−∞
aξ−dx) e3,

(3.2)

such that d1x = k3 d2 and d2x = −k3 d1. To gain a better physical insight, we give a

visual representation of the deformation described in the above equation in fig.(3.2). We

only show the deformation for the + strand for clarity and indicate the strain variables
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r (change in radius), β (change in phase angle) and ξ (stretch of the center-line). We

assume all the displacement and strain parameters r, β± and ξ± vanish at x = ±∞ be-

cause the deformations caused by the proteins are local. The change in radius r, change

in the phase angle β±, stretches ξ±, and the twist k3 are assumed to be small (∼ O(ε))

such that second order terms such as r2 and ξβ− are negligible. However, there could

be finite rotations resulting from k3.

Figure 3.2: Distortions to the helical geometry of the + strand. We assume that the
DNA remains straight after the binding of proteins. Therefore, the axis e3 remains
undisturbed. The radius of the helix a changes to a + r, the phase angle ωx changes
to ωx + β, and the length of the infinitesimal element dx, shown in black, changes to

(1 + ξ)dx.

As shown in fig.3.3, the birod consists of two elastic strands joined by an elastic web.

We show a straight elastic ladder for easy visualization of the key forces and moments.

The + strand exerts a body force l and a body moment c on the - strand via the elastic

web. The balance laws for the two outer strands constitute the governing equations for

the birod(Moakher & Maddocks (2005)). The deformation of the elastic web can be

calculated once the deformation of the outer strands is known. We need to solve the

following balance equations for a helical birod,

n±x ∓ f + l = 0,

m±x + r±x × n± +
1

2
(r+ − r−)× f ∓ c+ h = 0,

(3.3)

where m± and n± are the contact moment and contact force respectively in ± strands.

f and c are the distributed force and distributed moment exerted by the + strand on

the − strand. l and h are the body force and body moment exerted by the base pairs
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onto both ± strands. In what follows, we use the position vectors for the deformed helix

r±(x) (eqn. 3.2) to compute these quantities. The constitutive relations for the forces

n±, moments m±, and the force l and moment c transferred by the web, are discussed

in the relevant subsections.

Figure 3.3: Free-body diagrams which establish the connection between an elastic
rod and an elastic birod. We deliberately show a straight ladder instead of helical
birod to illustrate the mechanics. An elastic birod comprises two elastic rods + and −.
The + strand exerts a moment c and force f on the − strand hrough an elastic web.
This transfer of moment and force leads to deformation of the web. In the figure r±

denotes the position vector for ± strands, and n± and m± denote the contact forces
and contact moments in ± strands, respectively. The force and moment balance for +
and − strand constitute the governing equations (eqn. (3.3)) for the elastic birod. For

further discussion see Moakher and Maddocks (Moakher & Maddocks (2005)).

3.2.1 Contact forces in the outer strands (n±)

The outer strands are inextensible, which means |r±x | = |r±0x| yielding,

ω2r + aω(k3 + β±x ) + ξ± = 0. (3.4)

We use the above equation to eliminate ξ± from eqn. 3.2. Due to the constraint in eqn.

3.4, the contact forces n± enter as Lagrange multipliers.

3.2.2 Contact moments in the outer strands (m±)

We attach a director frame R± = [n±0 b±0 t±0 ] to each cross-section of the ± strands,

where n±0 , b±0 , and t±0 are the normal, binormal, and tangent in the reference state to

± strand, respectively. n±,b±0 , t
±
0 and the curvature in the reference configuration Ω±0
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are computed using eqn. 3.1 as follows,

t±0 =
r±0x
|r±0x|

= ± sin k(− sinωx e1 + cosωx e2) + cos k e3,

n±0 =
t±x
|t±x |

= ∓(cosωx e1 + sinωx e2),

b±0 = t±0 × n±0 = ∓ cos k(− sinωx e1 + cosωx e2) + sin k e3,

Ω±0 = Ω0 = (t±0 .t
±
0 )

1
2 = ω sin k.

(3.5)

Similarly, we use eqn. 3.2 to compute the Frenet-Serret frame R± = [n± b± t±] and

curvature Ω± in the deformed state. We neglect terms higher than first order, such as

rβ+, ξ−r ∼ O(ε2), and get

R± = [n± b± t±] = ZR±0 (1 + Θ±),

Z = d1 ⊗ e1 + d2 ⊗ e2 + e3 ⊗ e3,

Θ± =


0 −θ±3 θ±2

θ±3 0 −θ±1
−θ±2 θ±1 0


θ±1 = rω + a(β±x + k3), θ±2 = −rx cos k + β± sin k,

θ±3 =
−ωrx − a(β±xx + k3x)

ω sin k
− (rx cos k − β± sin k) cos k

sin k
.

(3.6)

The bending moment in the outer strands m± is proportional to the change in curvature

κ± = Ω± − Ω±0 and is directed along the binormal b± such that m± = EIκ±b± where

EI is the bending modulus of the strand. Note that the twisting moment is zero since

the phosphate backbone consists of single bonds which permit free rotations.

3.2.3 Force and moment transferred by the web (f , c)

Now, we compute the bending and twisting of the web which represents base-pairing.

We attach a director frame Q0 to both + and − end of the base pair (fig.3.1).

Q0 = [ er eθ e3], (3.7)

where er = cosωx e1+sinωx e2 and eθ = − sinωx e1+cosωx e2. As the birod deforms,

these frames respectively get mapped to Q±. We compute Q± using the deformation

of R± from eqn. (3.6) keeping in mind that the angles between the columns of R±0 and
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Q±0 should remain constant during deformation implying (R±T0 Q0 = R±TQ), thus,

Q± = ZR±0 (I + Θ±)R±T0 Q0, Θ± ∼ O(ε). (3.8)

Now, we can compute the rigid rotation Q and micro-rotation P for each base pair.

The micro-rotation contains information about the ‘difference’ between the rotations

Q± (Moakher & Maddocks (2005)). This is related to the moment transferred by the

base pair c via an elastic constitutive relation for the web,

P = (Q+Q−T )
1
2 = Z(I + Φc)ZT . (3.9)

Here, Φc = R+Θ+R+T−R−Θ−R−T

2 is a skew symmetric tensor. The moment transferred

by the base pair is directly proportional to the Gibbs vector of P. ηηη = tan λ
2 k̂ is a Gibbs

rotation vector for a rotation matrix T if Tk̂ = k̂ and 1+2 cosλ = trT. In our case, the

Gibbs vector of P is 2ηηη = 2Zη̄ηη = Zφcφcφc, where φc is the axial vector of skew symmetric

tensor Φc. Note that in the reference state, ηηη0 = 0 since P0 = (Q0Q
T
0 )1/2 = I. The

rigid rotation of the base pair Q = PQ−. Here

Q = Z(1 + Φ)Q0, (3.10)

and Φ = R+Θ+R+T +R−Θ−R−T

2 is a skew symmetric matrix. The moment exerted by

+ strand on the − strand by means of the elastic web, c, is computed using c =

QHQTηηη where H = diag[H1, H2, H3] are the elastic moduli (Moakher & Maddocks

(2005)). Now, we shift our focus to the extension and shear of the web. In the reference

configuration, the displacement between the two strands w0 =
r+0 −r

−
0

2 = a er which, in

deformed configuration changes to w = r+−r−
2 . The force f exerted by + strand on the

− strand is computed using f = QL(QTw −QT
0 w0) where L = diag[L1, L2, L3] are

the elastic moduli, β = β++β−

2 and βc = β+−β−

2 ..

c = QHQTηηη

= H1(−ak3 − ωrx − aβx) f1 +H2
(−ak3x − ωrxx − aβxx)

ω
f2 +H3(βc − a cot k

ω
βcxx) e3,

f = QL(QTw −QT
0 w0)

= L1r f1 + aL2 cot k
ak3x + 2ωrx + aβxx

ω
f2 − a2L3

ω2βc + βcxx
ω

e3,

(3.11)
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3.2.4 Contributions from the stacking energy (l,h)

We now consider the contributions from the stacking energy. The center line of the

double helix e3 undergoes both twist k3 and extension ξ = ξ++ξ−

2 . We associate

a quadratic stacking energy Es = Kck
2
3 + Ke(

ξ++ξ−

2 )2 to penalize this change in the

orientation of successive base pairs. Due to this energy, the base pairs exert a body

force l and a body moment h on both ± strands which are given by

l = Ke(
ξ+ + ξ−

2
) e3, h = Kck3 e3. (3.12)

3.3 Results

Now we have all the ingredients for solving the governing differential equations of a

birod. Substituting these quantities in the balance laws (eqn.3.3) gives us a set of 12

differential equations. The complete procedure for solving those equations is in the

supplement, however we highlight crucial points here. It follows from the governing

equations that β+ = β−(= β, say), nc3 = n1 = n2 = 0. β+ = β− implies ξ+ = ξ−(= ξ,

say) thereby reducing 12 equations to 6 equations in 6 unknowns r, β, k3, n
c
1,2, n3. We

look for solutions of the form,

r(x) = r0e
−λx, β(x) = β0e

−λx, ξ(x) = ξ0e
−λx,

nc1(x) = nc10e
−λx, nc2(x) = nc20e

−λx, n3(x) = n30e
−λx.

(3.13)

We substitute this form into the governing equations (eqn. 3.3) and obtain an eigenvalue

problem in λ. In order to make further progress, we need the values of the elastic

constants. We use Kc = 80 pNnm2, Ke = 600 pN, L1 = L2 = L3 = H1 = H2 = H3 = 10

pN. In the supplement, we show that these values yield the correct twist, stretch and

twist-stretch coupling moduli for double stranded B-DNA (Singh & Purohit (2017)).

Solving for the eigenvalues λ we get

λ = ±ζ ± iω, ζ = 0.32nm−1, (3.14)

and the solution for the strain parameters y1 = r, y2 = k3 and y3 = β is of the form:

yi(x) =A1V1(i)e(−ζ−iω)x +A2V2(i)e(−ζ+iω)x +B1V3(i)e(ζ−iω)x +B2V4(i)e(ζ+iω)x.

(3.15)

where Vj(i) is the ith component of the eigenvector corresponding to the eigenvalue j in

the exponent. Clearly, the decay length ζ is only a function of the elastic parameters of
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dsDNA, in agreement with the conclusion of Kim et al (Kim et al. (2013)). Note that

the strain parameters are exponentially decaying while oscillating with the period ω of

the double helix. We impose the boundary conditions on r and β remembering that the

displacements of the strands must be continuous. For a protein binding at x = p,

as x→ ±∞ r(x), β(x)→ 0,

at x = p r(0) = r0, β(0) = β0.
(3.16)

We present the variation of r, k3 and β for a protein binding at x = 0 for two different

sets of boundary conditions in fig. 4.2. Notice the sinusoidal correlation between the

local deformation of base-pairs which is in agreement with earlier work which used Monte

Carlo simulations(Gu et al. (2015)).

Figure 3.4: Variation of r, k3, ξ and β+ = β− = β for a single protein. The red curve
corresponds to the boundary conditions β0 = 0, r0 = 0.05 nm and the green curve
to r0 = 0, β0 = 0.05. The decay length is ld = ζ−1 ≈ 10 bp which is close to that

documented in literature (Kim et al. (2013); Gu et al. (2015)).

We show the deformed shapes of the helices in fig. 3.5 for three cases: first when one

protein binds at x = 0, second when two proteins bind at x = ±1.5 nm, and third

when two proteins bind at x = ±3.5 nm. The boundary condition for each protein is

r0 = 0.2 nm, β0 = 0. We deliberately choose large values for r0 and β0 to distinguish the

deformed shape from the reference shape. The large configuration changes near the site

of protein binding (x = 0) decay exponentially with distance. Note the strong overlap

in the deformation fields when the distance between two proteins is 3 nm compared to

7 nm. This overlap results in an interaction energy between the two proteins which we
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subsequently quantify using eqn. (4.40).

Figure 3.5: We show the deformed configuration of the double helix, red and green
colors correspond to + and − strand, respectively. In the first figure, one protein binds
at x = 0 with r0 = 0.2 nm and β0 = 0. In the second figure, two proteins bind at
x = ±1.5 nm. In the third figure, two proteins bind at x = ±3.5 nm. Notice the
overlap of deformations in the second figure which is absent in the third one. This
overlap is manifests itself as interaction energy between the two proteins. The dotted

lines denote the corresponding undeformed configuration.

We now compute the interaction energy ∆G for two proteins. The energy functional of

the double helical rod is

E[r, β, k3] =
1

2
EI(κ+)2 +

1

2
EI(κ−)2 +

3∑
i=1

1

2
(Li∆w2

i +Hiη̂
2
i ) +Kck

2
3 +Keξ

2, (3.17)

where η̂ = QT η and ∆w = QTw−QT
0 w0. Consider two proteins, P1 and P2 binding at

x = 0 and x = p. The interaction energy ∆G is defined as,

∆G(p) = E
{0,p}
12 − E0

1 − E
p
2 , (3.18)

where E
{0,p}
12 = E[r12, β12, (k3)12] is the energy of two proteins binding onto DNA at

x = 0 and x = p, while E0
1 = E[r1, β1, (k3)1] and Ep2 = E[r2, β2, (k3)2] are the energies

of a single protein binding at x = 0 and x = p, respectively. We linearly superimpose

the strain fields from each protein (r1 and r2, etc) to get the resultant strain field (r12,

etc.) caused by two proteins simultaneously binding to DNA.

r12(x) = r1(x) + r2(x− p). (3.19)

We obtain β12 and (k3)12 similarly. We compute the interaction energy ∆G(p) as a

function of the distance between two proteins p and plot it in fig.3.6 together with
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experimental data from Kim et al. (Kim et al. (2013)). In excellent agreement with

experiment (Kim et al. (2013)) and numerical simulations (Gu et al. (2015)), ∆G decays

exponentially while oscillating with the period of the double helix (∼ 10 bp).

Figure 3.6: The first figure shows the variation of interaction energy ∆G with distance
p between the two proteins P1 and P2. The boundary conditions r1 = 0.001 nm,
β1 = 0.0045 for P1 and r2 = 0.001 nm, β2 = −0.0045 for P2 give the best fit to
the experimental data for ∆G(Kim et al. (2013)). In the second figure, we show the
variation of change in groove width ρ(x) = g(x) − p

2 when a protein with boundary
conditions r0, β0 binds at x = 0. The decaying sinusoidal character is documented in
previous work (Kim et al. (2013))(Gu et al. (2015)). The magnitude of the change in

groove width (∼ 3 A) is consistent with estimates in (Kopka et al. (1985)).

We justify this variation of interaction energy for a simple case as follows. Consider a

strain parameter δ(x) and the associated quadratic energy potential E [δ(x)] =
∫∞
−∞

δ2(x)
2 dx.

Similar to our strain paramters in eqn. 3.15 let us assume δ(x) = Ae−bx cos(µx), then

E [δ(x)] =

∫ ∞
−∞

δ2(x)

2
dx =

A2(2b2 + µ2)

4b(b2 + µ2)
(3.20)

E [δ(x − p)] = E [δ(x)]. Now the strain obtained by superposing two strain sources a

distance p apart are δ2(x) = δ(x) + δ(x − p). The energy functional corresponding to

δ2(x) is

E [δ2(x)] =
A2(2b2 + µ2)

2b(b2 + µ2)
+A2c1e

−bp sin(µp) +A2c2e
−bp cos(µp)

=E [δ(x)] + E [δ(x− p)] + ∆G

where c1 = b3

2bµ(b2+µ2)
and c2 = µ(µ2+2b2+pb3+pbµ2)

2bµ(b2+µ2)
. It is notable how the decaying sinu-

soidal behavior of the interaction energy ∆G follows naturally from the functional form

of the strain parameters and their eventual superposition. A cartoon illustrating this

key point is presented in fig. 3.7
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Figure 3.7: Eqn. 3.15 shows that the strain parameters r, β, and ξ decay exponentially
while oscillating with the periodicity of the double helix. Let us assume that the protein
binding at x = 0 increases the radius of the double helix from a to a+ r0. This change
in radius at x = 0 decays exponentially while oscillating with the periodicity of the
double helix, away from the binding site. Similar behavior is observed for other strain
parameters, β and ξ. Due to this sinusoidal modulation of the geometry, the binding
of the second protein is facilitated at some locations, while inhibited at others; this
manifests as an exponentially decaying oscillatory behavior observed in the allosteric

interaction energy (∆G).

Next, we focus on the width of the groove since many proteins are known to change

the width of the major/minor groove of DNA (Kopka et al. (1985); Kim et al. (2013);

Hancock et al. (2013)). We define the width of the groove, g(x), as follows (we do not

have a major/minor groove because α = π, for simplicity):

g(x) = r−. e3(x+
π

2ω
)− r+. e3(x− π

2ω
). (3.21)

Note that in the reference configuration the groove width g0 = π
ω = p

2 . We consider a

protein binding at x = 0 and compute the change in groove width ρ(x) = g(x)− g0 for

two sets of boundary conditions, r0 = 0, β0 = 0.02 and r0 = 0.02 nm, β0 = 0 (see fig.3.6).

The groove width ρ decays exponentially with increasing distance from the binding site

while oscillating with the periodicity of the double helix. This characteristic decaying

sinusoidal oscillation is documented in (Gu et al. (2015)) and is also observed experi-

mentally (Kim et al. (2013)). It has been proposed that this change in groove width

could explain the sinusoidally decaying interaction energy (notice the similarity of the

two panels in fig.3.6) between two proteins bound to DNA because the binding energy

of a protein binding to DNA could potentially depend on the groove width. However,

we have arrived at the decaying sinusoidal variation of the interaction energy by com-

puting the elastic energy stored in the birod without assuming any connection to the

groove width. Thus, we argue that the characteristic variation in groove width and the

characteristic variation of the interaction energy have the same underlying cause – the

geometry and elasticity of helical DNA at the base-pair level.

To make the above point more concrete we give another analytical argument. Consider

two proteins P1 and P2 binding at x = 0 and x = p, respectively. Kim et al(Kim et al.

(2013)) argue that when a protein binds to DNA it alters the groove width, which leads



Chapter 3. Elasticity as the basis of allostery in DNA 40

to ∆G ∝ ρ1
0ρ

2
0 + ρ1

pρ
2
p, where ρ1

p is the change in the groove width caused by protein P1

at x = p, and so on. On the other hand, we assume that the protein binds to DNA

by fixing the radius r and phase angle β at the binding site. Let us examine whether

∆G ∝ α1r12(p) + α2β12(p), where r12(p) = r1
0r

2
0 + r1

pr
2
p, β12(p) = β1

0β
2
0 + β1

pβ
2
p , for some

constants α1 and α2. Here, r1
0 is the change in radius caused by protein P1 at x = 0.

Other quantities (r2
0, r

1
p, r

2
p, β

1
0 , β

2
0 , β

1
p , β

2
p) are defined similarly. For simplicity, assume

α1 = α2 and define q(p) = r12(p) + β12(p). We plot ∆Gn = ∆G
|∆G|max

and qn = q(p)
|q(p)|max

versus the distance between the two proteins p in fig. 3.8(a). We observe that while

the location of peaks and valleys for ∆Gn and q(p)n coincides, the magnitudes are not

identical.

Our next step is to relate the magnitudes of two quatities ∆Gn and qn. Assume an empir-

ical relation ∆Gn = y(qn). We plot ∆Gn versus qn in fig.3.8 and find that the resultant

profile looks akin to y(x) = tanh(ax), a ≈ 3.0 gives the best fit. Thus, ∆Gn ≈ tanh(3qn).

Note that for large values of p (p > 10 nm), the correlation function qn is small, thence

tanh(3qn) ≈ 3qn, and we recover the form similar to that used in Kim et al(Kim et al.

(2013)) (but with different strain variables) ∆Gn ∝ qn. Note that we used a particular

set of boundary conditions to extract the relation ∆Gn ≈ tanh(3qn). Now, we test this

relation to compute interaction energies for other sets of proteins which apply different

boundary conditions in fig. 3.8(b). We observe a remarkable agreement with the free

energies computed using eqn. 4.40. Thus, we have shown that the correlation function

q(p) can be used as a surrogate for the interaction energy as Kim et al. (Kim et al.

(2013)) did. Evaluating the correlation function q(p) involves measuring displacement

variables at two binding sites which can in turn be related to the free energy using the

above scheme.
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Figure 3.8: Consider two proteins P1 and P2 binding at x = 0 and x = p, respectively.
The first figure shows the variation of normalized free energy ∆G(p)n = ∆G

|∆G|max
and

correlation function q(p)n = q(p)
|q|max

with the distance between the two proteins p. The

correlation function q(p) = (r1
0r

2
0 + r1

pr
2
p) + (β1

0β
2
0 + β1

pβ
2
p) where r1

p is the change in
radius caused by protein P1 at x = p. The boundary conditions for the two proteins
are given in the figure. We find that the peaks and valleys of ∆Gn and qn coincide,
however the magnitudes are not identical. We find that the magnitudes are related
as ∆Gn ≈ tanh(3qn), as shown in the inset. We test this empirical relation for two
different sets of boundary conditions and find a remarkable match. The diamonds
denote the free energies computed using eqn. 4.40 and the solid line denotes the free
energy computed using the normalized correlation function q(p)n. This exercise shows

that the correlation functions can be used as a surrogate for free energies.

To conclude, the analysis presented in this chapter ties together the continuum theory

(Moakher & Maddocks (2005)), experiments (Kim et al. (2013)) and numerical sim-

ulations (Drsata et al. (2014); Gu et al. (2015)) and provides useful insights into the

allosteric interactions between two proteins binding to a DNA molecule. The results

from the model predict that the interaction energy (eqn. (4.40)) for two proteins bound

to DNA decays exponentially while oscillating with the period of the DNA double-helix.

The decay length depends only on the elastic characteristics of the web while the oscil-

latory behavior is inherited from the underlying double-helical geometry. It has been

shown that the strong correlation of interaction energy with the changes in groove widths

caused by the proteins is rooted in elasticity and geometry of DNA. However, the model

suffers from some shortcomings. Existing models such as (Drsata et al. (2014)) relying

on numerical simulations can account for the stacking energy in a more comprehensive

way compared to our approach which assumes it is quadratic in the twist and stretch of

the centerline. Also, these models (Drsata et al. (2014)) can account for a wider variety

of boundary conditions applied by a protein, owing to more variables describing the

DNA structure. While the results from our model agree with the experimental observa-

tions, the outcomes from existing models in literature such as (Gu et al. (2015)) agree as

well. The main strength of the birod model compared to the existing models is twofold:

i) it accounts for the mechanics of the outer strands, and ii) computationally efficient.

The elastic helical birod based techniques developed in this chapter could potentially be
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applied to other molecules which have a double helical geometry such as dsRNA, and

coiled-coil intermediate filaments.



Chapter 4

Allosteric interactions in a birod

model of DNA

In this chapter, the allosteric interactions between two proteins on DNA are studied

using an elastic birod (Moakher & Maddocks (2005)). The objective is to compute the

allosteric interactions energy ∆G given by,

∆G(a) = E12
a − E1 − E2, (4.1)

where E12
a is the free energy of two proteins P1 and P2, separated by distance a, and

E1 and E2 is the free energy when P1 and P2 respectively, bind to DNA individually.

Experimental measurements by Kim et al(Kim et al. (2013)) show that the interac-

tion energy ∆G decays exponentially with the separation between the proteins a while

oscillating with the periodicity of double helix. The characteristic length of the afore-

mentioned exponential is referred to as decay length. The elastic birod model is used

to compute the interaction energy and results are shown to quantitatively match with

the experimental data by Kim et al(Kim et al. (2013)) after fitting certain parameters.

Furthermore, we compute the dependence of the decay length on the GC content of the

DNA molecule.

4.1 Strategy to compute interaction energy

In this section, we give a concise blueprint of our strategy to compute the interaction

energy for two proteins binding to DNA. We assume elastic deformations throughout.

When a protein binds to DNA it causes local bending and twisting. We assume that

the resulting twist and curvatures are small. These curvatures could possibly add up

43
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to produce large displacements and rotations. The two phosphate backbones of DNA

constitute the helical outer strands which are out of phase by a phase angle α = 2.1

radians. We assume these backbones to be inextensible. These outer strands consist

of sugar phosphate single bonds. Thus, we assume that they can not support twisting

moments. The inextensibility of the outer strands is a strong geometrical constraint

which induces a change in the radius and phase angle between the two helices when a

protein causes local deformations. We assume that these changes are small and of the

same order as the curvatures.

We give a stepwise procedure to do the calculation and in the following sections we label

each step. We give a pictorial representation for this procedure in fig. B.1 (in Appendix

B).

1. We begin by assuming a form of displacement for each of the outer strands which

are assumed to be inextensible and unshearable.

2. This displacement is used to calculate the tangent, normal and binormal to the

deformed configuration of the outer strands thereby obtaining the rotation matrix

attached to the deformed configuration of the outer strands.

3. Then, the deformation and rotation of the outer strands are used to calculate the

extension, shear and rotation of the web.

4. At this point, these quantities are substituted into the balance laws for the birod.

We, then, seek non-zero solutions to the resulting system of differential equations.

This leads to an eigenvalue problem.

5. In the next step, the boundary conditions are applied to evaluate the constants in

the solution to the eigenvalue problem.

6. This process is carried out to compute the energy of a one-protein-DNA complex.

The displacement fields for two proteins can be computed using superpositions,

which are then used to compute the energy for a two-protein-DNA complex.

7. Finally, we subtract the two energies obtained in the previous step to get the inter-

action energy. We find that it takes the form of a decaying exponential oscillating

with the periodicity of the underlying DNA helix.
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We demonstrate the above procedure for a straight non-helical birod (called a ladder)

in sec. 1 of the appendix. Our calculations show that interaction energy for two defects

on a ladder decays exponentially with the distance between them. In the next section,

we focus on how the geometry of the DNA helix leads to an interaction energy which

decays exponentially while oscillating with the periodicity of the helix.

4.2 Interaction energy for two DNA binding proteins

4.2.1 Step 1: Deformation of the outer strands

DNA consists of two helical strands with radius b = 1 nm and pitch p = 3.4 nm, out

of phase by α = 2.1 radians, wrapped around a common axis as shown in fig. 4.1. We

follow the notation used by Moakher and Maddocks (Moakher & Maddocks (2005)) and

refer to the two strands as ±. The undeformed state of the outer strands denoted by

r±0 (x) is a helix with a constant radius and pitch. We choose to parametrize both the

curves by arclength parameter x. Here, ω = 2π
p and k is the characteristic angle of the

helix such that tan k = 2πb
p = ωb.

r+
0 = b

(
cosωx e1 + sinωx e2

)
+ x e3,

r−0 = b
(

cos(ωx+ α) e1 + sin(ωx+ α) e2

)
+ x e3.

Let us now focus on the two strands separately. The calculations for the + strand are

given in this section while the results for the− strand are given in the appendix. We posit

a form of displacement wherein the radius of the helix changes and its axis is allowed to

take arbitrary shapes within the ambit of the assumptions specified in section 4.1. Here

[ e1, e2, e3] denotes the standard spatial reference frame and e3 is along the common

axis of the two helices ± in the reference configuration. This common axis in the de-

formed configuration is defined by the set of orthogonal directors [ d1(x), d2(x), d3(x)].

The displacement fields which define the undeformed and deformed configuration are,

r+
0 = b

(
cosωx e1 + sinωx e2

)
+ x e3,

r+(x) = (b+ r)
(

cos(ωx+ β+) d1 + sin(ωx+ β+) d2

)
+

∫ x

0
dx(1 + bξ) d3.

(4.2)

where

r = r(x), β+ = β+(x), ξ = ξ(x).

Here r is the change in the radius of the helix, β+ is the change in the phase of the +

strand, and ξ can be considered as a stretching of the axis of the helix.
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Figure 4.1: A DNA molecule as a double helical elastic birod is shown on the left.
The phosphate backbones are represented by outer strands while the complimentary
base-pairing is represented by the elastic web. The phase angle between the two helices
is α = 2.1 radians. Here R+ = [n+

0 b+
0 t+0 ] and R− = [n−0 b−0 t−0 ] are the

Frenet-Serret frames attached to the + and − strands, respectively. Base-pairs in
reference and current configuration are shown to the right. Q+

0 = Q−0 = Q0 in the
referenece configuration. In the current configuration, the rigid rotation of the base-
pair is quantified by Q = Z(1 + Φ)Q0 (eqn. 4.23) and the elastic moment c is related

to the Gibbs rotation vector of P = (Q+Q−T )
1
2 (eqn. 4.19).

Let Z be a second order orthogonal tensor which relates the directors of the deformed

centerline di to those of the undeformed one ei, i = 1, 2, 3. As stated in section 2, the

curvatures (k1, k2, k3) associated with the deformation of the centerline are assumed to

be small, nonetheless these could aggregate to potentially produce large rotations. The

orthogonal tensor Z operates as follows.

di = Z ei, Z =
3∑
i=1

di ⊗ ei, i = 1, 2, 3 (4.3)

and

dix = κ× di, where κκκ = k1 d1 + k2 d2 + k3 d3.

d1x = k3 d2 − k2 d3, d2x = k1 d3 − k3 d2, d3x = k2 d1 − k1 d2.
(4.4)

In the above equations, we assume that

r+(x), k1(x), k2(x), k3(x), ζ(x), β+(x) ∼ O(ε).

Thus, in the treatment henceforth, any product terms such as r2 or ξk3 are O(ε2) and

are neglected.
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4.2.2 Step 2: Rotation of strands

A Frenet-Serret director frame consisting of normal, binormal and tangent is attached

to each cross-section of the strand as shown in fig. 4.1. We denote it by R+
0 (x) in the

reference configuration.

R+
0 = [n+

0 b+
0 t+],

n+
0 = − cosωx e1 − sinωx e2,

b+
0 = − cos k(− sinωx e1 + cosωx e2) + sin k e3,

t+0 = sin k(− sinωx e1 + cosωx e2) + cos k e3,

(4.5)

For the sake of brevity, we use

(cosωx d1 + sinωx d2) = f+
1 , (− sinωx d1 + cosωx d2) = f+

2 , d3 = f+
3 .

As the strand deforms, the frame R+
0 evolves into R+(x) which consists of normal,

binormal and tangent to the deformed configuration of the strand. Our next step is to

calculate the tangent vector to the deformed configuration. We differentiate eqn. (4.2)

to obtain,

r+
x = (rx − bωβ+)(cosωx d1 + sinωx d2) + (bω + ωr + bβ+

x + bk3)(− sinωx d1 + cosωx d2)+

(1 + bξ − bk2 cosωx+ bk1 sinωx) d3.

(4.6)

The strand is assumed to be inextensible and unshearable. This means,

|r+
x |2 = 1+ω2b2+2b(ω2r+bωβ+

x +bωk3+ξ−k2 cosωx+k1 sinωx)+O(ε2) = |r+
0x|

2 = 1+b2ω2,

which leads us to the inextensibility condition:

ξ − k2 cosωx+ k1 sinωx = −ω2r − bω(k3 + β+
x ). (4.7)

This equation will be used in the following sections to impose boundary conditions.

Substituting eqn. (4.7) into eqn. (4.6) to get,

r+
x = (rx − bωβ+) f+

1 + (bω + ωr + bβ+
x + bk3) f+

2 + (1− bω2r − b2ω(k3 + β+
x )) f+

3 .

(4.8)
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The director frame in the deformed configuration can be computed as follows. The

tangent vector t+ is,

t+ =
r+
x

|r+
0x|

=(rx cos k − β+ sin k) f+
1 + (sin k + ωr cos k + b(β+

x + k3) cos k) f+
2

+ (cos k − ωr sin k − b(β+
x + k3) sin k) f+

3

=Z(t+0 − (rx cos k − β+ sin k)n+
0 − (ωr + b(β+

x + k3))b+
0 ).

(4.9)

The tangent vector is differentiated to calculate the normal vector in the deformed

configuration

t+x =(−ω sin k + (rxx + ξ) cos k − (βx + k3) sin k) f+
1

+ (2ω cos krx +−ωβ+ sin k + b cos k(β+
xx + k3x)− f cos k) f+

2

+ (f − ωrx − b(β+
xx + k3x)) sin k f+

3 +O(ε2).

(4.10)

The above expression is used to calculate the curvature Ω+ for the strand. This curva-

ture is equal to the sum of the original curvature (ω sin k) and the one induced by the

deformation (κ+). Hence,

Ω+ =(t+x .t
+
x )1/2 = ω sin k − (rxx + ξ) cos k + (β+

x + k3) sin k,

κ+ =Ω+ − ω sin k = −(rxx + ξ) cos k + (β+
x + k3) sin k.

(4.11)

The bending moment m+ in the strand is proportional to κ+.

m+ = EIκ+ b+ = EIκ+(− cos k f+
2 + sin k f+

3 ). (4.12)

Also, the normal is

n+ =
1

Ω+
t+ = − f+

1 +
1

sin k
(rx sin k − β+ sin k) f+

2 +
f − ωrx − b(β+

xx + k3x)

ω sin k
(− cos k f2 + sin k f+

3 ),

= Z
(
n+

0 + (rx cos k − β+ sin k)t+0 + (−(rx cos k − β+ sin k) cos k

sin k
+

g

ω sin k
)b+

0

)
.

(4.13)

where

g(x) = f(x)− ωrx − b(β+
xx + k3x), f(x) = k1 cosωx+ k2 sinωx.

Using the above deformed orthogonal frame attached to each cross section

R+ = [n+ b+ t+] = ZR+
0 (1 + Θ+), (4.14)
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where Θ+ is a skew symmetric tensor and Z =
∑3

i=1 di × ei as defined in eqn. 4.3,

Θ+ =


0 −θ+

3 θ+
2

θ+
3 0 −θ+

1

−θ+
2 θ+

1 0

 ,
in which θ+

1 = rω + b(β+
x + k3), θ+

2 = −rx cos k + β+ sin k,

θ+
3 =

g

ω sin k
− (rx cos k − β+ sin k) cos k

sin k
.

(4.15)

The above quantities r−,R− and κ− etc. can be derived for the − strand too; the

relevant expressions are given in appendix B.

4.2.3 Step 3: Mechanics of base-pairing

The sugar-phosphate backbones of the DNA molecule are tied together by means of

complimentary base-pairing. The base-pairing is modeled by elastic rods capable of

extension, shear, bending and twisting. An orthogonal frame Q0 = [ f01 f02 f03] is

attached to the strands such that f01 is a unit vector pointing from the − strand to the

+ strand in the reference configuration as shown in fig. 4.1. Thus,

Q0 = [f01 f02 f03],

f01 = sin(ωx+
α

2
) e1 − cos(ωx+

α

2
) e2,

f02 = cos(ωx+
α

2
) e1 + sin(ωx+

α

2
) e2,

f03 = e3.

(4.16)

The two ends of the rod in the web are denoted as ± such that the + end lies on

the + strand and the − end lies on the − strand. The deformation of the web is

completely determined by the displacement (r+(x), r−(x)) and rotation (R+(x),R−(x))

of its ends. As the outer strands undergo the deformation prescribed by eqn. (4.2),

the web themselves undergo various kinds of deformation. We describe the rotation of

the web via a rigid rotation and a micro-rotation (Moakher & Maddocks (2005)). The

micro-rotation encapsulates the information about the difference in rotation of the two

ends of the web. We calculate the mechanical quantities associated with the extension

and bending of the web in two separate sections below.
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4.2.3.1 Bending and twisting of the web

Our objective in this section is to calculate the micro-rotation tensor P. A copy of Q0

say Q±0 is attached on the + and - end of every spoke in the reference configuration.

Q±0 change to Q± in the current configuration. The ’difference’ between Q+
0 and Q−0

gives the bending and torsion of the web while the ’average’ of Q+
0 and Q−0 gives the

rigid rotation of the web. Q± can be computed from R(x)±–already known. The angles

between the columns of Q+
0 and R+

0 should remain same during the deformation which

translates into the following condition.

R+T
0 Q0 = R+TQ+,

Q+ = R+R+T
0 Q0 = ZR+

0 (1 + Θ+)R+T
0 Q0,

Q− = ZR−0 (1 + Θ−)R−T0 Q0.

(4.17)

Let the micro-rotation tensor in the reference configuration be P0 which changes to P

during deformation. We use an expression for P/P0 given in Moakher and Maddocks

(Moakher & Maddocks (2005)).

P2
0 =Q+

0 Q−T0 = I,

P2 = Q+Q−T =ZR+
0 (1 + Θ+)R+T

0 Q0Q
T
0 R−(1−Θ−)R−T0 ZT ,

=Z(1 + R+Θ+R+T −R−Θ−R−T )ZT .

(4.18)

This gives

P0 = I, P ≈ Z(1 +
R+Θ+R+T −R−Θ−R−T

2
)ZT = Z(1 + Φc)ZT . (4.19)

Note that Φc is a skew symmetric tensor. The next step is to calculate the Gibbs

rotation vector of P (Moakher & Maddocks (2005)). The Gibbs rotation vector t̄ of a

rotation matrix T is defined as t̄ = tan θ
2k such that trP = 1 + 2 cos θ and k is a unit

vector such that Tk = k. Consider P̄ = 1 + Φc where Φc ∼ O(ε). The axis of the

infinitesimal rotation P̄ is the axial vector of Φc. Hence,

P̄φcφcφc = (1 + Φc)φcφcφc = φcφcφc, which gives k =
φcφcφc

|φcφcφc|
. (4.20)

The magnitude of the rotation can not be calculated by taking trP̄, since it gives 1 +

2 cos θ = 3 which implies θ = 0. We consider the following limit.

1 + Φc = lim
φc1→0

lim
φc2→0

lim
φc3→0

R1(φc1)R2(φc2)R3(φc3). (4.21)
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Now we take the trace of the RHS and get θ = |φcφcφc|. Hence, the Gibbs rotation vector

of P̄, η̄̄η̄η is given as

2η̄̄η̄η = 2 tan
θ

2
k ≈ |φcφcφc| φ

cφcφc

|φcφcφc|
= φcφcφc. (4.22)

The Gibbs rotation vector of P is simply ηηη = Zη̄̄η̄η. Note that in the undeformed state

ηηη0 = η̄̄η̄η0 = 0. We now proceed to calculate the rigid rotation of the spoke Q.

Q = PQ− = Z(1+
R+Θ+R+T + R−Θ−R−T

2
)Q0 = Z(1+Φ)Q0 = Z(1+Φ)Q0. (4.23)

Here ηηη ∼ O(ε). Now, the micro-moment c is related linearly to the ηηη via an elastic

tensor H.

c =QH̄[QTηηη −QT
0 ηηη0] +O(ε2) ≈ ZQ0H̄QT

0 η̄̄η̄η. (4.24)

For further reference, let

ζ̂ζζ = QT
0 η̄. (4.25)

4.2.3.2 Extension of the web

The distance between the two strands isw = r+−r−
2 and in the undeformed configuration

w0 =
r+0 −r

−
0

2 . By direct calculation we observe

w0 =b sin
α

2

(
sin(ωx+

α

2
) e1 − cos(ωx+

α

2
) e2

)
,

w =(b sin
α

2
+ w1)

(
sin(ωx+

α

2
) d1 − cos(ωx+

α

2
) d2

)
+

w2

(
cos(ωx+

α

2
) d1 + sin(ωx+

α

2
) d2

)
,

(4.26)

where

w1 =
r + r−

2
sin

α

2
− b β

+ − β−

2
cos

α

2
, and w2 =

r − r−

2
cos

α

2
+ b

β+ + β−

2
sin

α

2
.

The force exerted by the + strand on the − strand f is given by,

f =QL̄[QTw −QT
0w0], (4.27)

where L̄ is a tensor of mechanical properties of the web. This force f causes the web to

extend and shear. For further reference let,

ŵ = QTw −QT
0w0 (4.28)
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4.2.3.3 Stacking energy

DNA consists of consecutive base-pairs stacked on top of each other in a regular fashion.

The resistance to external forces and moments not only comes from the elastic defor-

mation of the strands and the webbing but also from the change in alignment of the

base-pairs. We call the energy associated with this change in bases’ position and spatial

orientation ‘stacking energy’. Stacking energy plays a critical role in various phenomena

such as melting of DNA (Dauxois et al. (1993); Peyrard & Bishop (1989)). We prescribe

a form of free energy which is quadratic in the twist k3 and stretch ξ.

Fint = Kck
2
3 +Keξ

2. (4.29)

There are other sophisticated expressions for the stacking energy (Dauxois et al. (1993)),

but we use the quadratic form for two reasons: one, the non-quadratic terms in the

energy of (Dauxois et al. (1993)) account for effects such as base-pair severing which are

crucial to DNA melting which does not occur in our problem, two, a quadratic energy

keeps our problem linear. This interaction energy results in a distributed body force l

and distributed body moment h on the strands.

h = Kck3x d3, l = Keξx d3. (4.30)

4.2.4 Step 4: Governing equations

We are now in a position to solve the governing equations for the mechanics of our helical

birod. These equations consist of balance of linear momentum and angular momentum

for both the strands. In the balance equations eqn. (4.31) and eqn. (4.32):

• m± = EIκ± (eqn. 4.12) denotes the elastic moment in the ± strand. n± are the

contact forces for which there is no constitutive relation since the outer strands

are assumed to be inextensible and unshearable.

• f and c are the distributed force and moment, respectively, exerted by the +

strand on the − strand.

• l and h are the distributed force and moment exerted by base-pairs on the + and

− strand.

The balance equations are:

n+
x − f + l = 0, (4.31a)

n−x + f + l = 0, (4.31b)
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m+
x + r+

x × n+ +
1

2
(r+ − r−)× f − c+ h = 0, (4.32a)

m−x + r−x × n− +
1

2
(r+ − r−)× f + c+ h = 0, (4.32b)

Let [ f1 f2 f3] = ZQ0. This gives

f1 =
(

sin(ωx+
α

2
) d1 − cos(ωx+

α

2
) d2

)
,

f2 =
(

cos(ωx+
α

2
) d1 + sin(ωx+

α

2
) d2

)
,

f3 = d3.

(4.33)

We decompose the forces, n+ = (n + nc) ∼ O(ε) and n− = (n − nc) ∼ O(ε). n =

n1 f1 + n2 f2 + n3 f3 and nc = nc1 f1 + nc2 f2 + nc3 f3. Now, nx = (n1x − ωn2) f1 +

(n2x + ωn1) f2 + n3x f3 + O(ε2). Similarly for ncx. We use c = c1 f1 + c2 f2 + c3 f3 and

f = f1 f1 + f2 f2 + f3 f3 from eqn. (4.27) and eqn. (4.24). Then, the balance equations

become:

n1x − ωn2 = 0,

n2x + ωn1 = 0,

n3x +Keξx = 0,

nc1x − ωnc2 − f1 = 0,

nc2x + ωnc1 − f2 = 0,

nc3x − f3 = 0,

EI cos k[(κ+
x + κ−x ) cos

α

2
+ (κ+ − κ−)ω sin

α

2
]− 2n2 + 2aωnc3 sin

α

2
= 0,

EI cos k[(κ−x − κ+
x ) sin

α

2
+ (κ− + κ+)ω cos

α

2
] + 2n1 + 2aωn3 cos

α

2
− 2af3 sin

α

2
= 0,

EI sin k(κ+
x + κ−x ) + 2af2 sin

α

2
− 2sn2 cos

α

2
− 2aωnc1 sin

α

2
+ 2Kck3x = 0,

EI cos k[(κ+
x − κ−x ) cos

α

2
+ (κ+ + κ−)ω sin

α

2
] + 2aωn3 sin

α

2
− 2nc2 − 2c1 = 0,

EI cos k[−(κ−x + κ+
x ) sin

α

2
+ (κ+ − κ−)ω cos

α

2
] + 2ωnc3 cos

α

2
+ 2nc1 − 2c2 = 0,

EI sin k(κ+
x − κ−x )− 2aωnc2 cos

α

2
− 2aωn1 sin

α

2
− 2c3 = 0,

(4.34)

We have 12 differential equations in the 12 unknowns (r, f, ξ, k3, β
+, β−, nc1, n

c
2, n

c
3, n1, n2, n3).

We substitute the following ansatz into the equations.

y = y0e
−λx where y could be r(x), f(x), ξ(x), k3(x), β+(x), β−(x), nc1, n

c
1, n

c
3, n1, n2, n3.

(4.35)
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This results in an eigenvalue problem. We find 23 eigenvalues, but retain only 6 for

reasons explained in the appendix. Let those 6 eigenvalues be ±λ,±µ,±δ and the

corresponding eigenvectors v±λ and v±µ. Let

v(x) = [r(x) f(x) ξ(x) k3(x) β+(x) β−(x)

nc1(x) nc2(x) nc3(x) n3(x) n1(x) n2(x)]T .

Hence,

v(x) = p1e
−λxvλ + p2e

λxv−λ + p3e
−µxvµ + p4e

µxv−µ + p5e
−δxvδ + p6e

δxv−δ. (4.36)

Here, p1, p2, p3, p4, p5 and p6 are the constants which are determined using boundary

conditions.

4.2.5 Step 5: Boundary conditions

We assume that the impact of a protein binding to DNA is two fold: a) the protein fixes

the curvatures at the binding site as in (Liang & Purohit (2018a)), and b) the protein

causes a change in the radius of the DNA helix (Kim et al. (2013)) as shown in the inset

of fig. 4.5 (b). Thus, we apply boundary conditions on the curvatures k1, k2 and the

change in radius r of the DNA helix. We discuss two cases, first, when one protein binds

to the DNA, and second, when two proteins bind to it.

1. One protein: Let us assume that the protein binds at x = 0. The boundary

conditions for this case are:

At x = 0, k1(x) = k10, k2(x) = k20, r(x) = r0.

As x→ ±∞, k1(x), k2(x), r(x)→ 0.
(4.37)

The second boundary condition says that the DNA is straight far away from the

protein and that the perturbation in DNA radius occurs only in the vicinity of the

bound protein.

2. Two proteins: Let us assume that the two proteins bind at x = 0 and x = a,

respectively. We divide our domain into three parts −∞ < x < 0, 0 < x < a and
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a < x <∞ each of which has different boundary conditions attached to it.

Region 1 : x ∈ (−∞, 0)

as x→ −∞, k1(x), k2(x), r(x)→ 0, at x = 0, k1(x) = k11, k2(x) = k12, r(x) = r1.

Region 2 : x ∈ (0, a)

at x = 0, k1(x) = k11, k2(x) = k12, r(x) = r1,

at x = a, k1(x) = k21, k2(x) = k22, r(x) = r2.

Region 3 : x ∈ (a,∞)

at x = a, k1(x) = k21, k2(x) = k22, r(x) = r2, as x→∞, k1(x), k2(x), r(x)→ 0.

(4.38)

4.2.6 Step 6: Energy of the birod

We assume small elastic deformations throughout, hence the resulting energy is quadratic

in the strain variables. The elastic energy has contributions from the bending of the

outer strands eqn. (4.12), the extension, bending and twisting of the web eqn. (4.25),

(4.26) and the stacking energy eqn. (4.30).

E =

∫ ∞
−∞

[
1

2
EIκ+2 +

1

2
EIκ−2 +

1

2
ŵ.Lŵ +

1

2
ζ̂ζζ.Hζ̂ζζ +Keξ

2 +Kck
2
3]dx. (4.39)

We are especially interested in the interaction energy ∆G which is the elastic energy of

interactions between the two proteins.

∆G = E2
a − E1

0 − E1
a, (4.40)

where E2
a is the energy of two proteins bound to DNA, one at x = 0 and other at x = a,

and E1
a and E1

0 are the elastic energies corresponding to a single protein binding at x = a

and x = 0, respectively.

4.3 Elastic constants

Our model has 9 elastic constants L1, L2, L3, H1, H2, H3,Kc,Ke, EI. The experimental

values for these constants are not known. In order to get some idea about the magnitude

of the elastic constants we calculate the extensional modulus, torsional modulus and

twist-stretch coupling modulus for a double-stranded DNA within our birod model.
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The explicit calculation is presented in the appendix. We choose

Kc = 80pNnm2, Ke = 600pN, H1 = 15pN, H2 = 10pN, H3 = 20pN,

L1 = 50pN nm−1, L2 = 250pN nm−1, L3 = 30pN nm−1, EI = 65pN nm2.

(4.41)

This choice of elastic constants gives the extensional modulus S ≈ 1245 pN, torsional

modulus C ≈ 490 pNnm2 and twist-stretch coupling modulus g ≈ −90 pNnm which are

close to actual values for ds-DNA (Singh & Purohit (2017)) measured in experiments.

We point out that this choice of elastic constants is not unique, nonetheless we use them

to make further calculations.

When we substitute these constants into the governing equations (eqn. (4.34)) and solve

the eigenvalue problem involving λ, we get the following eigenvalues

λ1 = −0.68, λ2 = −0.42, λ3 = −0.36, λ4 = 0.36, λ5 = 0.42, λ6 = 0.68. Units: nm−1

(4.42)

Other eigenvalues are either very large (→ ±∞), very small (∼ 0) or purely imaginary.

Purely imaginary and zero eigenvalues when substituted in eλx give a sinusoidal and a

constant function, respectively, which do not decay to zero as x → ±∞. As mentioned

in section 4.2.5, the curvatures k1, k2 and change in radius r must go to zero at ±∞.

Thus, zero or purely imaginary eigenvalues cannot satisfy our boundary conditions, and

are, therefore, not useful. We refer the reader to the appendix for further discussion on

the choice of eigenvalues.

Consider a situation in which two proteins bind DNA, one at x = 0 and the other at x =

a. In the region a < x <∞ the solution eqn. (4.36) consists of only negative eigenvalues.

There are three negative eigenvalues λ2,3,4 and consequently three unknown constants.

We have three boundary conditions on k1, k2 and r at x = a to determine those constants.

Similarly in the region −∞ < x < 0, the solution consists of only positive eigenvalues

λ7,8,9, so the constants can again be evaluated from three boundary conditions. We use

this scheme to evaluate the strain parameters which we substitute into the expression

for the elastic energy functional eqn. (4.39). Notice that the dominant eigenvalue ±0.36

nm−1 corresponds to a decay length of 2.8 nm (≈ 10 bp) which is what Kim et al.(Kim

et al. (2013)) report in their experiments.
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4.4 Results

The experimental evidence for allosteric interactions when two proteins bind to DNA is

documented in Kim et al. (Kim et al. (2013)). Many earlier papers have also described

allostery in DNA, but Kim et al. present exquisite quantitative details which call for a

quantitative explanation.

To unravel the physics behind these allosteric interactions, we begin by examining the

case when one protein binds to DNA. As discussed in section 4.2.4, the strain variables

(r, ζ, β±, k1,2,3) are linear combinations of decaying exponentials. For instance, consider

k3(x) for a protein binding at x = 0:

k3(x) = p1v−λ(4)eλx + p2v−µ(4)eµx + p3v−δ(4)eδx x < 0,

k3(x) = q1vλ(4)e−λx + q2vµ(4)e−µx + q3vδ(4)e−δx x > 0,
(4.43)

where λ = 0.36 nm−1, µ = 0.42 nm−1, and δ = 0.68 nm−1. v±λ, v±µ, and v±δ are the

eigenvectors associated with eigenvalues ±λ, ±µ, and ±δ, respectively. The constants pi

and qi (i = 1, 2, 3) are evaluated using the boundary conditions at x = 0. It is not difficult

to see that the strain variables decay to zero as x→ ±∞. We can replace k3 in the above

equation by other strain variables (r, ξ, β±) and recover similar behavior. We discuss

a few characteristics of the variation of the strain parameters as functions of position.

The results are plotted in fig. 4.2 and fig. 4.3. The strain parameters (r, k3, β
±) decay

exponentially with distance from the site of protein binding. The curvatures exhibit

an exponentially decaying sinusoidal character with a period of 11 bp. This periodic

decay of the curvatures manifests itself as sinusoidal variations in the interaction energy.

We find that these plots are slightly asymmetric about x = 0. We attribute this to

the structural asymmetry in the right-handed double-helix with phase angle α = 2.1

radians. If we choose the phase angle α = π radians instead, we find that the plots are

exactly symmetric about the site of protein binding as shown in the appendix. We

now consider the case when two proteins bind to DNA, one at x = 0 and the other at

x = a. We proceed in a similar manner as above and express the strain profiles as linear

combinations of exponentials:

Case 1 k3(x) =p1v−λ(4)eλx + p2v−µ(4)eµx + p3v−δ(4)eδx x < 0,

Case 2 k3(x) =m1vλ(4)e−λx +m2vµ(4)e−µx +m3v−λ(4)eλx+

m4v−µ(4)eµx +m5vδ(4)e−δx +m6v−δ(4)eδx 0 < x < a,

Case 3 k3(x) =q1vλ(4)(3)e−λx + q2vµ(4)e−µx + q3vδ(4)e−δx x > a.

(4.44)

The constants pi and qi (i = 1, 2, 3) are determined by three boundary conditions (on

k1, k2 and r) at x = 0 and x = a, respectively. The constants mj , (j = 1, 2, 3, 4, 5, 6)
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Figure 4.2: Variation of strain variables for a single protein. We plot the change in
radius r, twist k3. stretch of centerline ξ and change in phase angle ∆β = β+ − β− for
the double-helix. The red curve correponds to the boundary conditions k10 = r0 = 0
and k20 = 0.1 nm−1 at x = 0 and the green curve corresponds to k10 = k20 = 0 and
r0 = 0.05 nm at x = 0. The asymmetry of the double-helix (there is a major and minor
groove in DNA) arising from the phase angle α = 2.1 radian gives the curves a slight
asymmetry about the site of protein binding. The curves are exactly symmetric about
the site of protein binding if we choose phase angle α = π radians (which results in no

major and minor groove) as shown in the appendix.

Figure 4.3: Variation of curvatures k1 and k2 for a single protein. The red curve
correponds to the boundary conditions k10 = r0 = 0 and k20 = 0.1 nm−1 at x = 0 and
the green curve corresponds to k10 = k20 = 0 and r0 = 0.05 nm at x = 0. We find that

the curvature decays exponentially and oscillates with a period ≈ 11 bp.

are determined by six boundary conditions at x = 0 and x = a. The behavior of the

strain variables for two proteins is similar to that for one protein as shown in fig. 4.4.

When two proteins are separated by a large distance a > 10×3.4 nm (i.e., more than 10

helical turns of DNA), the strain profile looks like a concatenation of the profiles of two

proteins binding separately. Their strain fields do not interact at such distances, thus

there is little interaction energy. When the distance decreases, the strain fields of the two

proteins overlap, and this is responsible for the interaction energy. As discussed in the

appendix, two defects on a straight ladder interact via an interaction energy that decays

exponentially with the distance between them. Now, we focus on the double-helical
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Figure 4.4: Variation of r, k3 and ∆β for two proteins. Here a is the distance between
the sites of protein binding. The strain variables decay exponentially away from the
site of protein binding. When the distance between the proteins is large 10 × 3.4 nm,

the profile looks like a concatenation of two solutions for a single protein.

birod and examine the behavior of different boundary conditions on the interaction

energy ∆G in fig. 4.5. We assume for simplicity that both proteins apply the same

boundary conditions on the DNA, the exact numerical values are given in the figure. If

we choose the change in radius r0 = 0 and apply the boundary conditions only on the two

curvatures k1, k2, the interaction energy decays exponentially while varying sinusoidally

with a period of 5.5 ≈ 11/2 bp. This case corresponds to proteins that bend DNA as

shown in the inset of fig. 4.5(b). On the other hand, if the curvatures k1, k2 are zero

while the change the change in radius r0 is non-zero, we get an exponentially decaying

profile devoid of any oscillatory character, which is similar to the results for the ladder.

The exponentially decaying component originates from the elasticity of the web, and the

sinusoidal behavior comes from the double-helical structure of DNA. From this exercise

we conclude that in order to get a sinusoidally varying interaction energy a protein must

change the local curvature in the DNA, a mere change in radius of the DNA is not

sufficient to give rise to the interaction energy profiles observed in experiments.

In our model the magnitude of the interaction energy increases monotonically with in-

crease in the magnitude of the changes in curvatures or radius caused by the two proteins.

Thus, by systematically varying the boundary conditions imposed by the proteins we

can establish agreement of our theoretical results for ∆G with the experimental values

documented by Kim et al.(Kim et al. (2013)). This is done in fig. 4.5(b). The values

of the curvatures that give the best fit to the experimental data are k11 = k21 = 0.02
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(a) (b)

P1
P2

R

a=1nm

Figure 4.5: We plot the interaction energy between two proteins eqn. (4.40). In (a) we
plot the behavior of ∆G for various boundary conditions. If the boundary conditions are
specified on the curvatures we get an exponentially decaying profile oscillating with 5−6
bp (≈ 11/2 bp). The oscillatory behavior arises from the periodic geometry of DNA.
In (b) the experimental data reproduced for comparison are from Kim et al (Kim et al.
(2013)). We use k11 = k21 ≈ 0.02 nm−1, k12 = k22 = 0.05 nm−1, r1 = −r2 = 0.02 nm.
The inset in (a) shows a protein DNA complex in which the proteins locally bend DNA.
The inset in (b) shows that bending a DNA oligomer leads to widening of the groove on
one side while narrowing it on the other. We find that the change in the groove width
is approximately ≈ 2 A which is close to the values reported by Kopka et al (Kopka et

al. (1985)) (0.5− 2 A)

(a) (b)

a

x=2 nm
P2

P1

Figure 4.6: The inset in (b) shows a two protein complex. The boundary conditions
are identical for both the proteins k11 = k21 = k10, k12 = k22 = k20, r1 = r2 = r0; the
legend in (a) contains the exact numerical values. For (b) the legend is the same as
in (a). We examine behavior of ŵ3(x = 2 nm, a) (eqn. 4.39) as a function of distance
between the two proteins a for these boundary conditions. The strain variables oscillate
with a period of 11 bp. We observe that in case of r0 = 0, the strain parameter ŵ3(x = 2
nm, a) decays as e−Γaψ(ωa) where ψ(ωa) is a sinusoidal function, hence the combined
energy of a two protein complex which is proportional to (e−Γaψ(ωa))2 oscillates with
a period of 5.5 bp (period of sin2 x is half that of sinx). If k10 = k20 = 0 the decay is
exponential. If r0 6= 0 and k10 or k20 6= 0, ŵ3(x = 2 nm, a) ∼ (e−Γ1aψ(ωa)+e−Γ2a) and
the energy of the two protein complex, which is proportional (e−Γ1aψ(ωa) + e−Γ2a)2,
oscillates with a period of 11 bp. The behavior of the other strain variables in eqn (4.39)
is similar. We plot the interaction energy ∆G(a) in (b) for the boundary conditions
indicated in the legend of (a) and use it to verify the period we predict using this

argument.



Chapter 4. Allosteric interactions in a birod model of DNA 61

nm−1, k12 = k22 = 0.05 nm−1 and r1 = −r2 = 0.02 nm. The magnitude of the cur-

vature |k| =
√
k2

1 + k2
2 ≈ 0.055 nm−1 which gives a radius of curvature in fig. (4.5)b

(inset) R = 1/k ≈ 18 nm. Assuming the centerline does not extend and the pitch

of the DNA helix is 3.4 nm, we get θ = 3.4/18 ≈ 0.18 rad. The radius of the DNA

molecule is a = 1 nm, thus the change in the groove width is approximately given by

∆ = (R + a)θ − Rθ = 1 × 0.18 nm ≈ 2 A. This value is close to the one reported by

Kopka et al (Kopka et al. (1985)) (0.5− 2 A). Hence, our choice of curvature boundary

conditions is reasonable; it is, however, not unique and it is coupled with the choice of

stiffnesses of the webbing in our birod model. Be that as it may, our exercise above

demonstrates that a birod model can capture the dependence of interaction enery on

the distance between proteins bound to DNA. Calibration of the model and faithfully

connecting it to experiment will require deeper analysis, and perhaps also, computa-

tion. It is important to note here that an elastic model of DNA allostery, consistently

parametrized from atomic-resolution molecular dynamics simulations, has already been

proposed by Dršata et al, (Drsata et al. (2014)) which was later extended to describe

the experiment of Kim et al. (Dršata et al (Drsata et al. (2016))). Our model is similar

to the one presented by Dršata et al. in certain aspects:

1. Quadratic energy: Dršata et al (Drsata et al. (2014)) use a quadratic energy to

penalize deformations which is similar to our approach. This is appropriate for

small deformations as assumed in our work and that of Dršata et al. The expression

for the interaction energy in Dršata et al (Drsata et al. (2016)) (eqn. (14) in their

appendixal information) is identical to our’s (eqn. 4.40).

2. Boundary conditions: Here a protein interacts with the DNA helix by imposing

boundary conditions on the curvatures and the radius of the double helix at the

binding site. In Dršata et al, a protein interacts with DNA by changing the

width of the minor groove. These approaches are equivalent since extending the

minor/major groove at the binding site causes bending of DNA.

Our model differs from Dršata et al. (Drsata et al. (2014)) on the following key points:

1. Effect of outer strands: The base-pair centric model of Dršata et al. (Drsata et

al. (2014)) ignores the effect of the mechanics of the phosphate backbones. We

model the backbones as inextensible rods (or worm-like chains of polymer elas-

ticity (J. F. Marko & Siggia (1995))) capable of bending. Elasticity of the outer

strands is crucial for twist-stretch coupling observed in DNA (refer sec. 3 in the

appendix).

2. Stacking energy: We use a stacking energy quadratic in the twist and stretch of

the centerline to account for the change in the orientations of successive base pairs
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relative to each other. Our approach is simplistic compared to the holistic ap-

proach of Dršata et al. (Drsata et al. (2014)) where stacking energy has quadratic

contributions from the six inter-basepair degrees of freedom.

3. Boundary conditions: One of the drawbacks of our model is its inability to account

for the nature of protein-DNA contacts. Dršata et al. (Drsata et al. (2016)) point

out that while some proteins such as BamHI show tight protein-DNA contacts

thereby constraining all inter- and intra-basepair degrees of freedom, others such

as GRDBD interact rather loosely by altering only the major groove width. This

flexibility is absent from our current model.

The period the interaction energy in fig. 4.5(a) is approximately 5.5 bp while that in

fig. 4.5(b) is 11 bp as in the experiment. Why? Note that the strain variables in a

two protein complex shown in fig. 4.6 (b) are a function of both the parameter x and

the distance between the two proteins a. We fix x (= 2 nm from protein P1) and focus

on the dependence on a. We assume that both the proteins apply identical boundary

conditions. If the proteins do not cause any change in the radius such that r0 = 0, then

the strain parameters involved in the elastic energy (eqn. (4.39)) ∝ e−Γxψ(ωa), where

ψ(ωa) is a sinusoidal function oscillating with a period 11 bp, and the elastic energy of

the two protein complex ∝ (e−Γxψ(ωa))2 oscillates with a period 5.5 bp. On the other

hand, when the protein causes both a change in radius r0 and a change in curvature

k20, the strain variables are ∝ (e−Γ1aψ(ωa) + e−Γ2x) and the elastic energy of the two

protein complex∝ (e−Γ1aψ(ωa)+e−Γ2a)2 oscillates with a period of 11 bp due to the cross

term e−(Γ1+Γ2)aψ(ωa). We plot the interaction energy ∆G(a) between the two proteins

constituting the protein complex in fig. 4.6(b) and verify the periods for respective

boundary conditions which resolves the apparent discrepancy in the periods in fig.4.5 (a)

and (b). As a final application of our birod model we examine the sequence dependence of

the allosteric interaction energy ∆G. While there is overwhelming qualitative evidence,

both experimental (Kim et al. (2013)) and numerical (Gu et al. (2015)), showing that

AT-rich sequences exhibit stronger allosteric interactions compared to GC-rich ones, a

theoretical explanation is still lacking. Stronger interactions are associated with longer

decay lengths. Using our theory we can find the dependence of the decay length on the

elastic constants of the web. Since, AT base-pairs consist of two hydrogen bonds, the

corresponding elastic constants for the web are expected to be lower than GC base-pairs

which comprise of three hydrogen bonds. In an attempt to simulate such a scenario we

replace the elastic constants for the web (Kc,Ke, Li, Hi i = 1, 2, 3) in eqn. (4.41) with

(χKc, χKe, χLi, χHi i = 1, 2, 3) while keeping EI fixed, and vary the parameter χ in the

range 0.5 ≤ χ ≤ 1. We define a measure of the decay length ld to be the inverse of the

eigenvalue having the least non-zero magnitude, obtained in eqn. (4.42). For instance,
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if χ = 1, decay length ld = 1/0.34 nm≈ 10 bp. We plot the variation of ld with χ in

fig. 4.7. We find that the decay length increases with the decrease in elastic constants

of the web. We plot log ld versus logχ and deduce that ld ∼ 1
χ2/3 .
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Figure 4.7: Decay length ld is defined as the inverse of the eigenvalue with the least
non-zero magnitude, for χ = 1, ld = 1/|λ|min = 1/0.34 ≈ 9 bp. χ is meant to account
for the reduction in the elastic constants for AT base-pairs compared to GC base-pairs.
The elastic constants for the web are (χKc, χKe, χH1, χH2, χH3, χL1, χL2, χL3), eqn.
(4.41) gives the numerical values for χ = 1. We find that the decay length increases with
a decrease in elastic constants for the web, thus AT-rich DNA sequences are expected to
have higher decay lengths. Qualitative experimental and numerical evidence in support
of the above conclusion is documented in (Kim et al. (2013)) and (Gu et al. (2015)),

respectively. The inset shows how we extracted the the power law ld ∼ χ−2/3.

4.5 Conclusion

Kim et al. (Kim et al. (2013)) have presented compelling quantitative evidence for al-

losteric interactions between two proteins bound to DNA at distant locations. They

showed that the interaction energy for two proteins separated by distance a on DNA

is a decaying exponential oscillating with period of 11 bp. We approach the problem

from a purely mechanical standpoint and conjecture that the local deformation field in

DNA caused by a bound protein is similar to that produced by a defect in an elastic

solid. First, the interaction energy for two defects on a ladder is computed; it decays

exponentially with the distance between them. Then, the same calculation is replicated

for DNA by modelling it as a double-helical birod (Moakher & Maddocks (2005)). In

the birod model for DNA, the outer phosphate backbones are represented by ± strands

and are assumed to be inextensible and unshearable; while the base-pairs are capable

of elastic extension, shear, bending and, twisting. A general form of displacement for

these strands (eqn. 4.2) is assumed which is used to calculate the micro-displacement

and micro-rotation for the base-pairs. These expressions are then substituted into the

balance laws. A crucial factor in our treatment is the boundary conditions. We follow

Kwiecinski et al. (Kwiecinski et al. (2017)), Kim et al. (Kim et al. (2013)) and Liang
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and Purohit (Liang & Purohit (2018b)) and impose boundary conditions on the curva-

tures and the radius of the DNA double-helix. The question, “what kind of boundary

conditions a protein could possibly apply”, is not yet comprehensively addressed in the

literature and is not the central issue of this study either. Rather the message of this

chapter is that after solving the governing equations and plugging in boundary con-

ditions, we recover the exponentially decaying profile that oscillates with a period of

11 bp. The last result of the chapter involves examining the sequence dependence of

allosteric interactions–the model predicts that AT-rich sequences exhibit stronger inter-

actions than GC-rich sequences.

Even though the birod model developed here does surprisingly well by capturing the

dependence of interaction energy on distance there are many important caveats that we

must point out. First, the birod model is not accurate near the site of protein binding.

The deformations near the binding site could be large enough that a linear elastic theory

may not be applicable. The assumptions that the outer strands are inextensible and the

web is elastic could also break down in the vicinity of the binding site. Second, we have

little knowledge of the elastic constants of the web. We have assumed some stiffness

parameters for the web that gave the right experimentally verified moduli for the DNA,

but there could have been another set of parameters that would have given similar

results. One may have to appeal to molecular simulations (Lankaš et al. (2009); Olson

(1996); Petkeviciute (2012); Drsata et al. (2014)) to get these parameters. Third, the

boundary conditions applied by the proteins on the DNA are not clear. One may have

to look for guidance from molecular simulations or protein-DNA co-crystal structures

to get a clearer picture (Drsata et al. (2016)). Finally, we have not accounted for

fluctuations or entropic interactions in our model. This is partly justifiable because

the length of DNA between two protein binding sites for which significant allosteric

interactions are observed is often much smaller than the persistence length of the DNA.

However, a rigorous calculation should be done to verify this assumption. In spite

of these shortcomings, the birod model could provide a starting point for analyzing

allosteric interactions in DNA within the broad framework of configurational forces in

elastic solids.



Chapter 5

Statistical mechanics of an elastic

birod

5.1 Introduction

We combine ideas from statistical mechanics and continuum mechanics to study the

temperature driven strand separation in DNA and explore the effect of tensile loads

on the melting temperature as well. From the continuum mechanics side, we closely

follow the birod framework presented in Moakher and Maddocks (Moakher & Maddocks

(2005)). We import ideas from statistical mechanics to show that the average distance

between the two strands in a birod increases steeply in an unbounded fashion as the

temperature reaches the melting point. A non-quadratic interaction between the strands

is essential to achieve this effect. This is nontrivial because for a quadratic interaction

used hitherto in the thesis, the average change in the distance between the two strands is

zero even as the temperature increases. We improve upon the previous work ((Dauxois

et al. (1993)),(Peyrard & Bishop (1989))) by including the elasticity of the outer strands

and shearing and bending rigidity of basepairs. Our work suggests that the elasticity of

the outer strands is responsible for the cooperativity observed in the melting transition

(Gibbs-Davis et al. (2007); Nishigaki et al. (1984)).

5.1.1 Kinematics

For studying the melting of DNA, we envision the following scenario, both strands are

acted upon by identical force F . We assume small displacements throughout and confine

ourselves to deformations in a plane.

65
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Figure 5.1: The cartoon of a straight birod acted upon by identical forces on both
the strands. The two strands are referred to as ± strands.

We begin by discussing the kinematics. The planar birod consists of two outer strands

held together by a web resembling a ladder like shape. Both the outer strands and the

web are elastic. The birod lies in e1−e2 plane as shown in fig.5.1. The axial coordinate

x is along e1: x ∈ [0, L] where L is the contour length. The reference configuration of

the ± outer strands denoted by r± is

r+
0 = xe1 + ae2,

r+
0 = xe1 − ae2.

(5.1)

For a general 2-D deformation in the e1 − e2 plane, the deformed configuration of the

strands is denoted by:

r+ =

∫ x

0
(1 + ζ)d1 dx+ (a+ v)d2 + ud1,

r− =

∫ x

0
(1 + ζ)d1 dx− (a+ v)d2 − ud1.

(5.2)

where, d1 = cos θe1 + sin θe2, and d2 = − sin θe1 + cos θe2. Note that r = r++r−

2 =∫ x
0 (1 + ζ)d1 dx denotes the deformed centerline (global/macro displacement), while

u and v denote the displacements of the ± strands w.r.t. to the centerline (micro-

displacements). Heretofore, ()x denotes derivative w.r.t x. Hence, d1x = θxd2 and

d2x = −θxd1. Now, r±x = (1+ζ±ux∓aθx)d1±vxd2. We assume that the outer strands

are inextensible which implies |r±x | = 1. Hence ζ ± ux ∓ aθx = 0, which gives ζ = 0,

and ux = aθx. Hence u = aθ. The tangent to the ± strands is t± = d1 ± vxd2. The

curvature for ± strands κ± = |t±x | = θx ± vxx.

We now focus on the stretching, shearing, twisting and bending of the base pairs. The

tangent vectors for the ± strands are t± = d1± vxd2, and the respective normal vectors

are n± = ∓vxd1 + d2. The rotation matrices Q± = [t±,n±] can be decomposed as,

Q± =

[
cos θ − sin θ

sin θ cos θ

][
1 ∓vx
±vx 1

]
. (5.3)
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Z =

[
cos θ − sin θ

sin θ cos θ

]
depends on the deformation of the center-line, while

[
1 ∓vx
±vx 1

]
depends only on the displacements of the strands about the center-line. Q± can be used

to compute the the micro-rotation tensor P and macro-rotation tensor Q (for details

see (Moakher & Maddocks (2005))).

P2 = Q+Q−T = Z
(
I2×2 +

[
0 −2vx

2vx 0

])
ZT , (5.4)

where I2×2 is the identity tensor. Hence,

P =

[
1 −vx
vx 1

]
. (5.5)

Also,

Q = PQ− = Z = d1 ⊗ e1 + d2 ⊗ e2 (5.6)

The stretching and shearing of the base-pairs are proportional to ξ = QTw − w0

(Moakher & Maddocks (2005)), where w = r+−r−
2 , w0 =

r+0 −r
−
0

2 , and ξ = aθd1 + vd2.

Similarly the bending and twisting of the base pairs is equal to the difference between

the rotations on the + and − strand. In fact, the moment transferred by the web is

proportional to the Gibbs vector of the micro-rotation tensor P (Moakher & Maddocks

(2005)). In a 2D-setting, this moment can be easily computed; since the directions of

the rotations are fixed, there is no twisting, and the bending is proportional to vx.

We now discuss the energy associated with each kinematic deviation from the reference

configuration. The outer strands are inextensible and unshearable. The bending energy

per unit length for the outer ± strands is Es = EI
2 (κ+2 + κ−2) = EI(θ2

x + v2
xx). The

energy associated with shearing the base-pairs is Esh = L1(u0 + aθ)2, where L1 is the

associated elastic constant. To account for the stretching of the base pairs, we ascribe an

energy which penalizes the steric hindrance between the two strands using an assymetric

energy profile of the form f(x) = (e−λx − 1)2 instead of the symmetric x2 (Peyrard &

Bishop (1989); Dauxois et al. (1993)). Note that for small x, both are identical. Hence,

the energy per unit length required to stretch the base-pairs Est = L2(e−λv − 1)2. The

energy associated with the bending of the base-pairs is Ebb = H1v
2
x. Altogether, the
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energy of the birod is,

Ee =

∫ L

0
dx
(
Eb + Esh + Est + Ebb

)
=

∫ L

0
dx
(
EI(θ2

x + v2
xx) + L1a

2θ2 + L2(e−λv − 1)2 +H1v
2
x

)
,

(5.7)

where both v and θ are functions of x. This energy will enter the statistical mechanical

model for the birod.

5.2 Force-displacement curve for birod

We start by discussing the force-displacement curve for the ladder-like birod. We already

have the elastic energy of the birod given by Eq. 5.7. Next we need to compute the work

done by external force F distributed equally on both the strands. For the + strand the

displacement at the free end is,

∆+ =

∫ L

0
(t+.e1 − 1) dx =

∫ L

0
(cos θ − sin θ vx − 1) dx =

∫ L

0
(−θ

2

2
− θvx) dx. (5.8)

Similarly, for the − strand, ∆− =
∫ L

0 t
−.e1 dx − L, which upon simplification yields

∆− =
∫ L

0 (− θ2

2 + θvx) dx. Summing up the individual contributions from the strands

yields,

We =
F

2
(∆+ + ∆−) = F

∫ L

0
−θ

2

2
dx. (5.9)

Hence, the potential energy of the birod is,

E = Ee −We =

∫ L

0
dx
(
EI(θ2

x + v2
xx) + L1a

2θ2 + L2(e−λv − 1)2 +H1v
2
x +

F

2
θ2
)

= E(θ(x), v(x)).

(5.10)

The average end-to-end extension is,

y =

∫ L

0
cos θ dx ≈

∫ L

0

(
1− θ2

2

)
dx, (5.11)

where we assumed that θ is small. To compute the average end-to-end distance 〈y〉,

〈y〉 = L− 〈
∫ L

0

θ2

2
dx〉, (5.12)
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where 〈〉 denotes the ensemble average. We need to evaluate the partition function to

compute the above average. The partition function Z is a path-integral given as follows,

Z =

∫
Dθ(x)

∫
Dv(x) exp(−E(θ(x), v(x))

kBT
). (5.13)

The above partition function Z can be multiplicatively decomposed: Z = ZvZθ, where

Zv comprises the path-integral over the function v(x), while Zθ over θ(x).

Zθ =

∫
Dθ(x) exp(− Eθ

kBT
), and Zv =

∫
Dv(x) exp(− Ev

kBT
), (5.14)

where,

Eθ =

∫ L

0
dx
(
EIθ2

x + L1a
2θ2 +

F

2
θ2
)
, and

Ev =

∫ L

0
dx
(
EIv2

xx + L2(e−λv − 1)2 +H1v
2
x

)
,

(5.15)

Now,

〈
∫ L

0

θ2

2
dx〉 =

1

Z

∫
Dθ(x)

∫
Dv(x)

(∫ L

0

θ2

2
dx
)

exp(−E(θ(x), v(x))

kBT
). (5.16)

Summing over all the admissible functions v(x) and canceling the common factor Zv

yields,

〈
∫ L

0

θ2

2
dx〉 =

1

Zθ

∫
Dθ(x)

(∫ L

0

θ2

2
dx
)

exp(−Eθ(θ(x))

kBT
), (5.17)

The above expression can be evaluated by differentiating the logarithm of the partition

function.

〈
∫ L

0

θ2

2
dx〉 = −kBT

∂ lnZθ
∂F

, (5.18)

which gives,

〈y〉 = L+ kBT
∂ lnZθ
∂F

. (5.19)

Notice that the remaining functional is only a function of θ(x). To evalulate the partition

function Zθ, we discretize the domain x ∈ [0, L] into n−segments (xi, xi+1], where 0 ≤
i ≤ n, such that θx = θi−θi−1

δ where δ = L
n . For the energy functional Eθ, the integral
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over the domain can be expressed as a quadratic expression in terms of θi’s:

Enθ =
n∑
i=0

δ
[
EI
(θi − θi−1

δ

)2
+ L1a

2θ2
i +

F

2
θ2
i

]
= θ.

[EI
δ

A + δ(L1a
2 +

F

2
I)
]
θ = θ.Kθθ,

(5.20)

where θ = [θ0, θ2, ...θn]T , I is an identity matrix, and A is another matrix as follows:

A5×5 =



1 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1


.

Notice that Kθ is a constant depending only on the elastic properties of the birod. This

enables us to transform the path integral Zθ into a n−dimensional integral as follows:

Znθ =

∫
Dθ(x) exp(− Eθ

kBT
) =

n∏
i=0

(∫ π

−π
dθi

)
exp(−

Enθ
kBT

) =

∫
dθ exp(−θ.Kθθ

kBT
).

(5.21)

To evaluate the above integral conveniently, we change the limits from −π, π to −∞,∞,

which transforms the above expression into a n−dimensional Gaussian integral which

can be computed analytically as follows,

Znθ =

∫
(−∞,∞)n+1

dθ exp(−θ.Kθθ

kBT
) = πn/2

(kBT )n/2√
det Kθ

. (5.22)

Substituting it in Eq. 5.19 gives,

〈y〉 = L+ kBT
∂ lnZθ
∂F

= L− kBT

2

∂ log det Kθ

∂F
. (5.23)

We can now plot the force-extension curve for the birod. The results are documented in

Fig.5.2(a). As is characteristic of entropic elasticity, the tensile force increases sharply as

the end-to-end distance 〈y〉 reaches close to the contour length of the molecule (J. Marko

& Siggia (1995)). The next step is to determine the persistence length lp of the birod

model. We do so by fitting the data to the expression for the worm-like-chain picked

from (Petrosyan (2017)):

Flp
kBT

= 0.25
(

1− 〈y〉
L

)−2
− 0.25 +

〈y〉
L
− 0.8

(〈y〉
L

)2.15
(5.24)
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where F is the applied force and L is the contour length. The best fit to the data

shown in Fig.5.2(a) gives lp = 36 nm, which is close to the value for ds-DNA (lp = 50

nm). This ensures that the values of the elastic constants used to obtain the above data

(EI = 0.8 pNnm2, L1 = 80 pN/nm2, L2 = 1280 pN/nm2, H = 0.33 pN , a = 1 nm, and

λ = 0.5Å
−1

) are biologically relevant. We observe a decrease in the end-to-end distance

〈y〉 as the temperature increases as shown in Fig.5.2(c) which is a characteristic of

entropic elasticity. The detailed microscopic description provided by the model enables

us to examine the effect of various parameters therein. For instance, the force-extension

exhibits higher stiffness as the stretch moduli of web L1 increases (see Fig.5.2(b)). This

observation agrees with the qualitative experimental observation that the oligomer’s

stiffness increases as the GC content increases (X. Zhang et al. (2012)). This is because

the GC base pair consists of three H bonds and is consequently stiffer compared to

the AT base pair which consists of two H bonds. Similar stiffening can be achieved by

increasing the stiffness of the outer strands (see Fig.5.2(d)).

5.3 Application to DNA melting

At room temperature under zero tensile loads, the DNA molecule exhibits a double he-

lical helical structure. However, as the temperature increases and reaches the melting

temperature, the complimentary base-pairing is disrupted and the two strands sponta-

neously disintegrate into two single strands. This transition is highly cooperative, and

is known as the melting transition (Rouzina & Bloomfield (1999)), and the temperature

at which it occurs is referred to as the melting temperature. Aside from the sequence

dependence, the melting temperature is also highly sensitive to the tensile loads and the

ionic concentration of the solution (Rouzina & Bloomfield (2001a,b)). The experimental

evidence suggests that the melting temperature increases with the increase in ionic con-

centration and drops with the increase in tensile loads on the molecule. Thermodynamics

based studies relying on Clausius-Clayperon equation have led to various empirical re-

lations among these quantities (Rouzina & Bloomfield (2001a,b, 1999)). For the Na+

concentration of 0.075 M, the melting temperature is approximately 75◦C (Blake &

Delcourt (1998)) (The melting temperature is highly sensitive to the base-pair sequence

comprising the DNA oligomer, see Blake & Delcourt (1998) for the exact sequence.). In

this section, the birod model developed above is used to study DNA melting. We seek

a relation between the average inter-strand distance 〈v〉 and the temperature T . We

assume no tensile forces on the molecule, hence the elastic potential energy E is,

E =

∫ L

0
dx
(
EI(θ2

x + v2
xx) + L1a

2θ2 + L2(e−λv − 1)2 +H1v
2
x

)
. (5.25)
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(a) (b)

(c) (d)

Figure 5.2: (a) Force-extension curve for the birod. The parameter values are EI =
0.8 pNnm2, L1 = 80 pN/nm2, L2 = 1280 pN/nm2, H = 0.33 pN , a = 1 nm, and

λ = 0.5Å
−1

. The unit for the force values shown in the graph are eV/Å (1 eV/Å =
1600 pN). Using the WLC chain formula (Grosberg et al. (1995)), the best fit to the
data yields a persistence length of lp = 36 nm, which is close to the persistence length
of of ds-DNA–50 nm (). (b) Effect of increase in L1. The force-displacement curve is
independent of stretch modulus L2 and the bending rigidity H of the web. (c) Effect of
increase in temperature (d) Effect of increase in the stiffness of the outer strands. (d)
〈w2〉 vs x for various values of tensile force F with hinged-hinged boundary conditions.

The values of the constants are given in the previous section. The average distance

between the strands can be computed as follows:

〈v〉 =
1

Z

∫
Dθ(x)

∫
Dv(x)

( 1

L

∫ L

0
v(x)dx

)
exp(−E(θ(x), v(x))

kBT
), (5.26)

where the expression for the energy E and the partition function Z can be found in Eq.

5.7 and Eq.5.13, respectively. As done in the previous section, we discretize the domain

into n-elements which transforms the integrals into sums and the path integrals into
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n-dimensional integrals:

En =

n∑
i=0

δ
[
EI
((θi − θi−1)2

δ2
+

(vi+1 − 2vi + vi−1)2

δ2

)
+ L1a

2θ2
i + L2(e−λvi − 1)2 +H

(vi − vi−1)2

δ2

]
,

Zn =
n∏
i=0

(∫
(−∞,∞)2

dθidvi

)
exp(− En

kBT
),

〈v〉 =
1

Zn

n∏
i=0

(∫
(−∞,∞)2

dθidvi

)( 1

n

∑
vi

)
exp(− En

kBT
).

(5.27)

In contrast to the previous section where the discretization together with quadratic

energy functional enabled us to analytically evaluate the partition function, the partition

function above can not be evaluated analytically because of the non-quadratic term

(e−λvi − 1)2. Hence, we use Monte-Carlo simulations to compute 〈v〉 as a function of

the bath temperature T . We use the Metropolis algorithm (Pathria (1984)) to perform

the MC simulations, the details are available in the appendix. The results are recorded

in Fig. 5.3. Each individual × is one simulation. We find that as the temperature

increases the average inter-strand distance increases. The increase is nonlinear, hence

can not be alluded to a mere thermal expansion. The nonlinear interaction ((e−λv−1)2)

and the cooperativity terms (v2
xx) are crucial for achieving this effect. For instance, if

only quadratic interaction is used the average inter-strand distance is zero even as the

temperature increases.

Figure 5.3: The average distance between the two strands 〉v〈 as a function of the
temperature T .
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To model the above data, we fit a continuous curve of the form y = a0e
a1(x−a2). In

the reference configuration, the average inter-strand distance is 10 Å. We assume that

the melting occurs at 50% strain, i.e. when the inter-strand distance reaches 15Å or

when 〈v〉 = 5Å. Based upon the above criteria, the melting temperature can be read off

from the graph: Tm ≈ 354K, which is quite close to the results for dsDNA documented

in literature (Rouzina & Bloomfield (2001a,b); Blake & Delcourt (1998)) for dsDNA.

Although, the melting criterion 〈v〉 = 5Å was deliberately chosen so that the results

from the model agree with the experimental data, our main message is that the birod

model has the essential ingredients–the non-quadratic interaction and the cooperativity

arising from the elasticity of the outer strands–to account for the cooperative melting

transition. The novelty of this work lies in the fact that these crucial factors emerge

naturally from the kinematic description of the birod.

5.4 Effect of tensile force on the melting temperature

In this section, the effect of tensile force on the melting temperature is explored. We

consider the birod shown in Fig.5.4. Similar geometries have been used earlier to study

related problems (de Gennes (2001)). As before, we need to compute the potential

energy of the birod shown here.

Figure 5.4: The birod cartoon for studying DNA melting. Note that the force is
applied only on one strand.

The elastic energy of the birod is available in Eq.5.7. The work done by external force

F is,

We = F

∫ L

0
dx (t−.e1 − 1). (5.28)

Now, t− = d1 − vxd2, hence t−.e1 = cos θ + vx sin θ ≈ 1− θ2/2 + vxθ. This implies,

We = F

∫ L

0
dx (−θ

2

2
+ vxθ). (5.29)
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The elastic potential energy E is,

E = Ee −We =

∫ L

0
dx
(
EI(θ2

x + v2
xx) + (L1a

2 +
F

2
)θ2 + L2(e−λv − 1)2 +H1v

2
x − Fvxθ

)
.

(5.30)

The term Fvxθ is responsible for coupling the force F and the inter-strand distance v.

Now for a given θ, the probability of observing a configuration with interstand distance

v at force F is eFvxθ/kBT times the probability of observing the same configuration at

F = 0. As the force F increases the birod straightens out and θ decreases as can be

inferred from Fig.5.2(b). However, for high forces (> 15 pN), the DNA molecule with a

persistence length 50 nm is mostly straight. In other words, the θ(x) should not change

much as the force increases from 15 pN to 40 pN, however this makes the higher values

of v(x) much more likely. Based upon this qualitative argument we expect that the

melting temperature should decrease with the increase in the tensile force.

The 〈v〉 vs T curves are presented in Fig.5.5(a) for various tensile forces F , and we

indeed observe that for a given temperature, the inter-strand separation increases with

increasing tensile loads. We use the same criteria for computing the melting temperature

Tm as in the previous section: the temperature at which increase in the average inter-

strand distance 〈v〉 becomes 5Å. We plot the dependence of melting temperature on

the tensile force in Fig.5.5(b). The experimental data for DNA melting is taken from

Zhang et al (X. Zhang et al. (2012)). Although our model overestimates the drop

in melting temperature with force, the trend is correct nonetheless. We made several

assumptions such as modeling the DNA using a straight birod instead of a double helical

one. Also, we restricted ourselves to deformations on a plane. These assumptions could

be responsible for the observed deviation from the experimental data. However, our

primary contribution here is to demonstrate that the elastic birod formulation is capable

of qualitatively accounting for the effect of force on the melting temperature.

5.5 Conclusion

We have applied the theory of elastic birods to study DNA melting and explore the ef-

fect of tensile force on melting temperature. We began by discussing the force-extension

curve of a birod, which resembles that of a typical WLC model with a persistence length

of approximately 36 nm. Also, the model predicts a decrease in persistence length as

the temperature increases. The microscopic insights provided by the birod model helped

us explain why the DNA molecules with higher GC content are stiffer. Next, we used
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(a) (b)

Figure 5.5: (a) The effect of force on the the 〉v〈 vs T curves (b) The effect of the
tensile force on the melting temperature. The experimental data is from X. Zhang et

al. (2012).

our model to study DNA-melting. We computed the inter-strand distance as a function

of temperature and found that it increases monotonically with increasing temperature.

The sudden sharp increase distinguishes it from thermal expansion. We note that the

nonlinear asymmetric interactions between the strands is crucial to get the melting

transition; for a linear interaction, leading to a quadratic energy functional, the average

increase in the inter-strand distance is zero–independent of changes in temperature. The

elasticity of the outer strands makes this melting transition highly cooperative. Next,

we explored the effect of tensile forces on the melting temperature. Our model pre-

dicts that the melting temperature decreases with increasing tensile force. Although,

we correctly captured the qualitative trends to some extent, the results from our model

showed deviations from the experimental data. Various assumptions such as using a

straight birod to model double helical DNA and restricting to deformations on a plane

could be responsible for the deviations. The work is novel for two reasons: i) we find

that the cooperativity in the melting transition, well documented in literature (Dauxois

et al. (1993); Peyrard & Bishop (1989); Rouzina & Bloomfield (2001b); X. Zhang et al.

(2012)), emerges naturally from the elasticity of the outer strands, and ii) we demon-

strated how the birod model can successfully account for the effect of tensile force on

the melting temperature.

However, using a straight ladder like birod to model double helical DNA is at best a

first order approximation. It can not account for crucial features of DNA arising out of

double-helical topology such as twist stretch coupling. Although, it can explain melting

transition, it can not explain well documented (X. Zhang et al. (2012); Sarkar et al.

(2001)) transitions among various DNA phases such B-DNA → S-DNA and B-DNA
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→ P-DNA. Hence, a natural extension of the work is to do the statistical mechanics

in a double-helical birod. Next, these structural transitions are highly sensitive to ion

concentration of the solution (X. Zhang et al. (2012)). A birod model can potentially

provide useful insights into microscopic understanding of electrostatic interactions.



Chapter 6

Conclusion

This thesis is devoted to studying various mechanical aspects of DNA using a combina-

tion of techniques from elasticity, geometry, thermodynamics, and statistical mechanics.

The motivation behind developing these models is to provide a mechanics-based under-

standing for several biologically relevant phenomena across various length scales. Our

studies highlight mechanical deformations and configurational forces as causal agents in

allosteric interactions on DNA restricted to tens of nm to structural transitions where

the length of DNA oligomer could be as large as a few mm.

In chapter 2, a homogeneous elastic rod model J. F. Marko & Neukirch (2013); Argudo &

Purohit (2014b) of DNA is used to probe the structural transitions in DNA. We confine

ourselves to 3-phases of DNA: B-DNA (ground state), S-DNA (over-stretched state),

and P-DNA (over-twisted state). The energy functional, quadratic in force and torque,

combined with Zimm-Bragg helix-coil transition theory resulted in a partition function

that could be summed up using the transfer matrix approach. The model was applied to

study the over-stretching transition in a torsionally constrained DNA molecule, through

the triple point of B-, S-, and P-DNA. The resulting force-extension curve resembles a

plateau like sigmoidal transition where majority of the extension that takes place at a

constant force goes into changing the phase of DNA. The model incorporated the effect

of electrostatic interactions between the negatively charged backbone and the dissolved

ions in the solution. The results from the model not only quantitatively matched with the

experimental observations, they provided valuable insights into possible causes behind

some unconventional experimental observations such as the non-monotonic variation of

the over-stretching force with an increase in the ion-concentration.
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In chapter 3 and 4, we discuss a mechanical model of DNA that uses the theory of an

elastic birod Moakher & Maddocks (2005) to investigate the allosteric interactions be-

tween two ligands bound to DNA. These interactions are quantified using an interaction

energy. Experimental measurements show that the interaction energy decays exponen-

tially with the distance between the two ligands while oscillating with the periodicity

of the DNA double helix. The birod formalism explains this dependence by accounting

for two crucial features of DNA: the elasticity of the base-pairs responsible for the expo-

nential decay and the double helical geometry responsible for the sinusoidal oscillations.

The detailed microscopic understanding provided by the model distinguish it from the

existing literature on allosteric interactions Koslover & Spakowitz (2009). Following

Kim et alKim et al. (2013), the DNA binding proteins are subsumed into two categories

ones that bind to straight DNA (dealt with in chapter 3) and others that bend DNA

(dealt with in chapter 4). In the addition to the elastic energy of a birod arising from

the mechanical distortions of the outer-strands and the base pairs, we also account for

the stacking energy of the base-pairs arising out of the local changes in their orientation.

The interaction energy computations from the model, after fitting certain parameters,

quantitatively match with the experimental data. Additionally, we compute biologically

relevant quantities such as changes in the minor/major groove width of DNA which also

matched with the data available from the MD simulations.

In chapter 5, we combine the elastic birod model with statistical mechanics and apply

it to various problems such as the force-extension curve of dsDNA, temperature driven

strand separation in dsDNA, and the effect of tensile loads on the melting tempera-

ture. Here, for analytical tractability, we model DNA as a straight ladder-like birod

restricted to deformations on a plane. The force-extension curve of the birod shows

typical characteristics of entropic elasticity–a sharp increase in force as the end-to-end

distance becomes close to the contour length. The response can be approximated by a

worm-like-chain model with a persistence length of a few tens of nm which is close to

the persistence length of DNA (50 nm). The model captures the stiffening of the DNA

oligomers as the GC content increases. We note that to model DNA melting the steric

hindrance between the two strands needs to be accounted for. To do so, we penalize

the deformations of the web using an asymmetric non-quadratic potential because for

a quadratic potential the average distance between the strands is zero even as the tem-

perature increases. Our model exhibits a sudden increase in the inter-strand separation

as the temperature increases. Also, we demonstrate how cooperativity in the melting

transition emerges from the elasticity of the outer strands. The model predicts that the

melting temperature decreases with an increase in the tensile load in agreement with
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the experimental observations.

It is clear that DNA elasticity governs the behavior of the molecule at various length

scales. The simplifying assumptions made in the models naturally pave the way forward.

The electrostatic interactions between the negatively charged phosphate backbone and

the solution ions are poorly understood especially in the presence of divalent ions. This is

important because experimental evidence King et al. (2016) suggests that the stabilizing

effect of divalent ions such as Mg+2 and Ca+2 is stronger compared to the monovalent

ions such Na+ and K+. We already used the birod model to study the temperature

driven cooperative transition from dsDNA to ssDNA. The next step would be to use a

double helical birod to model DNA and apply it to other cooperative transitions such

as B-DNA→ S-DNA and B-DNA→ P-DNA. The mechanics-based understanding from

the model can potentially provide useful insights into building artificial molecular motors

Bryant et al. (2003).



Appendix A

Supplement to Chapter 2

A.1 Dependence of Gibbs free energy on GC content

In order to incorporate sequence dependence into the physics of structural transitions

in DNA we assume that its Gibbs free energy depends on the fraction of GC base-pairs

rGC (in addition to force f , moment M and temperature T ), i.e. G = G(f,M, T, rGC).

Consider a torsionally unconstrained DNA where M = 0 and c0 = 150 mM (the ex-

perimental data we use is at 150 mM), hence G = G(f, T, rGC). We will obtain the

functional dependence of the G(f, T, rGC) on rGC by examining the dependence of over-

stretching force fov and melting temperature Tm on rGC .

Consider the transition B-DNA→ ss-DNA at constant temperature T = T0. Define

∆G(f, T0, rGC) = GB(f, T0, rGC) − Gss(f, T0). We assume that the free energy for

ss-DNA does not depend upon rGC since base-pairing is ripped apart. For such an

equilibrium transition

∆G(fov, T0, rGC) = 0,

d∆G(fov, T0, rGC) = 0.
(A.1)

Hence, at the transition point,

∂∆G

∂rGC

∣∣∣∣
T=T0

+
∂∆G

∂f

∣∣∣∣
T=T0

∂fov
∂rGC

∣∣∣∣
T=T0

= 0. (A.2)

Now it is known from experiment that the overstretching force fov is related linearly to

rGC i.e. fov = a1(T0) + b1rGC , in such a manner that b1 (=40pN) is independent of

temperature X. Zhang et al. (2012). The plots used for extracting this relation involving

fov and rGC at constant T0 are not shown here for the sake of brevity, but can be

obtained from the phase diagram given in the figure 4 in X. Zhang et al. (2012). Also,
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∂∆G
∂f

∣∣∣
T=T0

= −∆b, where ∆b = 0.22 nm is the average extension per bp at the transition

point which is also independent of temperature. This enables us to conveniently integrate

the resulting first order partial differential equation eqn. (A.2) to get

∆G = rGCb1∆b+A(T0, f), (A.3)

where we know A(T0, f) = GB(f, T0) − Gss(f, T0) (from Raj & Purohit (2011)) and

the expressions for GB(f, T ) and Gss(f, T ) are available in the literature Raj & Purohit

(2011); Rouzina & Bloomfield (2001a,b); Argudo & Purohit (2014b).

We verify our assertion A.3 by obtaining the dependence of melting temperature of DNA

on rGC and then cross checking it with the data given in X. Zhang et al. (2012). We

consider a temperature driven phase transition from B-DNA to ss-DNA while keeping

the force fixed at f0. Define ∆G(f0, T, rGC) = GB(f0, T, rGC) − Gss(f, T0). Following

exactly the same train of thought, d∆G(f0, T, rGC) = 0. Hence, at the transition point

∂∆G

∂rGC

∣∣∣∣
f=f0

+
∂∆G

∂T

∣∣∣∣
f=f0

∂Tm
∂rGC

∣∣∣∣
f=f0

= 0 (A.4)

Now ∂∆G
∂rGC

= b1∆b from eqn. (A.3) and −∂∆G
∂T = ∆S is the entropy change per base

during the melting transition Rouzina & Bloomfield (2001b); King et al. (2013). This

value is known to be 25 cal/K per mole Rouzina & Bloomfield (2001b) which is equal

to 0.17 pNnm/K per bp. Thus,

∂Tm
∂rGC

∣∣∣∣
f=f0

=
b1∆b

∆S
=

40× 0.22

0.17
= 51.76K. (A.5)

Hence,

Tm = 51.76rGC + c(f0) (A.6)

where c(f0) is a constant of integration that depends on force. This exactly matches

with the result we obtain from the phase diagram presented by Zhang et alX. Zhang et

al. (2012).

A.2 Poisson-Boltzmann Equation

The objective of this section is to show how the Poisson-Boltzmann equation for solution

electrostatics gives the logarithmic dependence of the overstretching force on the ion con-

centration. The negatively charged infinite cylinder in a monovalent solution naturally

leads to a cylindrically symmetrical potential distribution. Let us examine the boundary
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value problem posed in eqn. (2.11) when |u(y)| << 1, which implies sinhu ∼ u.

u′′(y) + r−1u′(y) = χ2u(y),

u′(a) = 2q/a, u(R) = 0, R→∞.
(A.7)

Due the above simplification the BVP admits a closed form analytical solution

u(y) = −2q
K0(χy)

χaK1(χa)
, (A.8)

where Kn is a modified Bessel function. We employ the asymptotic expansions of the

Bessel functions given in Abramowitz & Stegun (1948) to gain further insights into the

solution. In the limiting case, wherein χa = a/rD << 1, which represents the situation

when Debye length rD is large compared to the radius of the idealized rod, we get

For small z K0(z) ∼ − ln z and K1(z) ∼ 1/z

u(y)|y=a = 2q ln
a

rD

(A.9)

We can integrate the above expression for the potential to get the electrostatic free

energy, so that

F el = −2kBTq ln
a

rD
= −2kBTq ln(

√
8πlBc0a) = −kBTq ln c0 + k. (A.10)

The dependence of free energy on logarithm of concentration is reported in Rouzina &

Bloomfield (2001a), Rouzina & Bloomfield (2001b) and X. Zhang et al. (2012). Note

that the electrostatic energy calculated above is per base pair. The constant, k, is

independent of force and concentration, but it is different for various phases of DNA.

Note that the concentration, c0, is number of ions per nm3 for Debye length rD to be

in nm.

c0 mol/L =
c0(mol/L)× 6.022× 1023(ions/mol)× 103(L/m3)

1027(nm3/m3)
= 0.6c0 ions/nm3

1mol/L = 0.6 ions/nm3

1

χ
= rD =

1√
8πlBc0

=
1√

8× 3.14× 0.71× 0.6c0
=

1

3.27
√
c0

(A.11)

Substituting c0 in mol/L gives rD in nm.

A.3 List of symbols used in the text

We present a list of symbols in table A.1.
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Symbol Quantity

T temperature

β 1/kBT

f force

M torque

G Gibbs free energy per unit contour length in reference state

g Gibbs free energy per bp (g = 0.34G)

gij difference in free energy per bp between i and j phase

Ge elastic Gibbs free energy

Gf entropic Gibbs free energy

Gel Gibbs free energy

S Entropy

λ stretch (λ = −∂G/∂f)

λext external displacement per unit contour length in reference state

κ twist (κ = −∂G/∂M)

lB Bjerrum length

aj radius of DNA for j phase

bj distance between successive bp for j phase

qj dimensionless charge (qj = lB/(bj/2))

c0 ion concentration

fov overstretching force

si e−βGi i =B,S or P-DNA

∆γij interfacial energy between i and j phase

σij e−β∆γij , here ∆γij is the interfacial energy

ri fraction of DNA in ith phase

u non-dimensional potential

Aj bending modulus for jth phase

Sj stretch modulus for jth phase

Cj twist modulus for jth phase

gj twist stretch coupling for jth phase

λ0
j stretch of jth phase at f,M = 0

κ0
j twist of jth phase at f,M = 0

y radial distance

L contour length in reference configuration

rD Debye length

Table A.1: Symbols used in the text.
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Supplement to Chapter 4

Several calculations have been omitted from the main text for the sake of brevity. They

are given in this supplement in detail.

B.1 Exponential decay of interaction energy in a ‘ladder’

The calculation of interaction energies in a helical birod is considerably involved, so

we first illustrate the main concepts in a simpler birod model which we call a ‘ladder’

because it is not helical. We mimic the binding of a protein by force pairs that tend to

widen the ladder as shown in fig. B.1. Our goal in this section is to demonstrate the

utility of the apparatus in section 2 and 3 of the main text by computing the interaction

energy for two force pairs separated by a distance a as shown in fig. B.1. We work

with a planar 2D birod in this section and assume small elastic deformations in the

outer strands and web to keep the calculations tractable. We, ultimately, find that the

interaction energy between the force pairs decays exponentially with distance a.
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Figure B.1: A straight birod, referred to as a ladder, being pulled by two force pairs
separated by a distance a. We show that the interaction energy between the two force

pairs given by ∆G = E2
a − E1

0 − E1
a decreases exponentially with a.

B.1.1 Step 1: Kinematic description of the two strands

We use the arclength parameter x to describe the mechanics of the birod. In the reference

configuration, both the strands ± are straight, r±0 = x e1± d
2 e2, separated by distance d.

Here e1 is a unit vector along the length of the birod, e2 is a unit vector perpendicular

to each birod bridging the gap between them and e3 is normal to the plane of the birod

as shown in fig. B.1. We begin by assuming a general displacement in e1 − e2 plane.

For the geometry shown in fig. B.1 we expect a mirror symmetry for deformation profiles

along e1 such that

r+ = x e1 +
d

2
e2 + u e1 + w e2,

r− = x e1 −
d

2
e2 + u e1 − w e2,

(B.1)

where u = u(x) and w = w(x) are displacements along the e1 and e2 directions,

respectively.

B.1.2 Step 2: Rotation of the two strands

At each point x on the ± strands we attach an orthogonal rotation frame which is simply

R±0 = [ e1 e2 e3] = 13×3 (the identity matrix) in the reference configuration. The

vectors e1 and e2 map onto d+
1,2 and d−1,2 in the deformed configuration for the positive
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and negative strand, respectively. The di, i = 1, 2, 3 are again unit vectors.

d±1 = cos θ e1 ± sin θ e2 ≈ e1 ± θ e,

d±2 = ∓ sin θ e1 + cos θ e2 ≈ ±θ e1 + e2,

R± =


cos θ ∓ sin θ 0

± sin θ cos θ 0

0 0 1

 ≈


1 ∓θ 0

±θ 1 0

0 0 1

 .
(B.2)

We assume small θ to keep the calculations tractable.

B.1.3 Step 3: Extension and rotation of the web

We decompose the kinematics of the web into a macroscopic deformation and a mi-

croscopic deformation Moakher & Maddocks (2005). The former describes the rigid

displacement and rotation, while the latter is related to the force and moment trans-

ferred by the web. The macro- displacement vector r is defined as r = r++r−

2 =

x e1 + u e1 Moakher & Maddocks (2005). The macro- rotation tensor is R defined

as R = (R+R−T )1/2R− Moakher & Maddocks (2005), which in our case is

R = (R+R−T )1/2R− = I3×3. (B.3)

We define another tensor P relating R+ and R− to R. An elastic constitutive relation

discussed in further sections connects the micro- rotation tensor P = (R+R−T )1/2 to

the moment transferred by the web.

P = (R+R−T )1/2 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 ≈


1 −θ 0

θ 1 0

0 0 1

 . (B.4)

We need to calculate the Gibbs rotation vector ηηη = tan λ
2 k̂, where λ is obtained from

1+2 cosλ = tr(P) and k̂ is the eigenvector of P i.e. Pk̂ = k̂. We need ηηη in the subsequent

section to compute the moment transferred by the web Moakher & Maddocks (2005).

By direct observations, λ = θ and k̂ = e3, so that ηηη = tan θ
2 e3. The Gibbs rotation

vector in the reference configuration ηηη0 = 0.

The micro- displacement of the web is defined by w = r+−r−
2 , which is w0 = d

2 e2 in

the reference configuration and w = (d2 + w) e2 in the current configuration. We need

w and w0 to compute the force transferred by the web.
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B.1.4 Step 4: Governing differential equations

We calculate various strains and curvatures associated with the deformation and relate

them to the contact force and moment, respectively, which go into the governing equa-

tions. For detailed discussion on the relations used in this section we refer the reader to

Moakher and Maddocks Moakher & Maddocks (2005). The governing equations of the

birod consist of three kinetic components: the contact forces in the two strands n±, the

contact moments m±, and the force f and moment c transferred by the − strand onto

the + strand. We compute each of these components as follows:

1. n±: We need strains in the current configuration v± and in the reference config-

uration v±0 , in the strands to compute n±. These strains are:

v±0 =
∂r±0
∂x

= e1,

v± =
∂r±

∂x
= (1 + ux) e1 ± wx e2.

(B.5)

The contact forces n± = R±CR±Tv± where C is a second order tensor such that

C11 = EA, C22 = GA and C12 = C21 = 0. Here E is the stretch modulus, G

shear modulus and A is the cross-sectional area of the strands. Upon performing

the calculation and taking account of the fact that u,w and θ are small and upon

ignoring higher order terms we get,

n± = EAux e1 ±GA(wx − θ) e2. (B.6)

2. m±: For calculating the contact moments m± in the respective strands we need

the curvature vector κκκ± for the two strands, which can, in turn, be obtained by

computing the axial vector of the skew-symmetric matrices U± = ∂R±

∂x R±T .

U± =
∂R±

∂x
R±T =


0 ∓θx 0

±θx 0 0

0 0 0

 ,
κκκ± = ±θx e3.

(B.7)

The contact moment m± is related to the curvature via a bending rigidity EI

such that

m± = ±EIθx e3. (B.8)

Here, I is the moment of inertia of the cross-section of the outer strands.
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3. f and c: The force transferred by the web f is proportional to the change in the

dimensions of the web quantified by w and w0 in the previous sections such that,

2f =RHRT [w −Rw̌0] ≈ Lw e2, (B.9)

where H is a diagonal second order elasticity tensor such that H22 = L. Similarly,

the moment transferred by the web c is elastically related to ηηη and ηηη0 calculated

in the previous sections:

2c =
1

α
RGRT (ηηη −Rη̌ηη)− ηηη × (w × f) ≈ Kθ e3, (B.10)

where α = 2
1+||ηηη||2 , G is a second order diagonal elasticity tensor and K = G33

2 .

The governing equations from box 4 in Moakher & Maddocks (2005) are given by,

nx = 0,

mx + rx × n = 0.
(B.11a)

ncx − 2f = 0,

mc
x + rx × nc − c = 0.

(B.11b)

In the above equations, n = n+ + n− = 2EAux e1, nc = n+ − n− = 2GA(wx − θ) e2,

m = m+ +m−+w×nc = 0 and mc = m+−m−+w×n = 2EIθx e3 +(d/2+w) e2×
2EAux e1 ≈ 2[EIθx − d

2EAux] e3. Upon substituting these values into the governing

equations we get,

EAuxx = 0,

2GA(wxx − θx)− Lw = 0,

2(EIθxx − d/2EAuxx) + (1 + ux) e1 × 2GA(wx − θ) e2 −Kθ e3 = 0.

(B.12)

We use θx = wxx − L
2GAw and uxx = 0 and get,

EIwxxxx − (
EIL

2GA
+
K

2
)wxx + (

L

2
+

KL

4GA
)w = 0. (B.13)

If we further assume that the outer strands are unshearable (GA→∞ and θ = wx), the

above equation reduces to a simpler equation.

EIwxxxx −
K

2
wxx +

L

2
w = 0. (B.14)
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B.1.5 Step 5,6 and 7: Interaction Energy

We substitute w = ems, and get eigenvalues m = ±λ,±µ. For illustration purposes, we

assume λ and µ are real numbers (i.e., K2− 32L > 0) and the ladder extends from −∞
in the negative e1 direction to +∞ in the positive e1 direction with w = wx = 0 at

x = ±∞. Hence, for a force pair at x = 0

w(x) = Aeλx +Beµx when x < 0,

w(x) = Ae−λx +Be−µx when x > 0,
(B.15)

for some constants A and B which could be determined using boundary conditions in

step 5. For two force pairs separated by a distance a, the displacement profile w2(x) =

w(x) + w(x− a). The elastic energy in the deformed configuration is computed in step

6 and is given by,

E[w] = EIw2
xx +

1

2
Kw2

x +
1

2
Lw2. (B.16)

Finally, we compute the interaction energy defined by ∆G = E[w2] − 2E[w] in step 7

and find that it decreases exponentially with the distance a.

∆G =
L

2

(e−λa (A2λ2µ−A2µ3 +A2λ3µa−A2λµ3a− 4ABλµ2
)

λµ(λ2 − µ2)
+

e−µa
(
4ABλ2µ+B2λ3 −B2λµ2 +B2λ3µa−B2λµ3a

)
λµ(λ2 − µ2)

)
+

K

2

(e−λa (A2λ3 −A2λµ2 −A2λ4a+A2λ2µ2a+ 4ABλ2µ
)

(λ2 − µ2)
+

e−µa
(
−4ABλµ2 +B2λ2µ−B2µ3 −B2λ2µ2a+B2µ4a

)
(λ2 − µ2)

)
+

EI
(e−λa (A2λ5 −A2λ3µ2 +A2λ6a−A2λ4µ2a− 4ABλ2µ3

)
(λ2 − µ2)

+

e−µa
(
4ABλ3µ2 +B2λ2µ3 −B2µ5 +B2λ2µ4a−B2µ6a

)
(λ2 − µ2)

)
.

(B.17)

We follow these steps for a helical birod model of DNA in the main text.

B.2 Kinematics of the − strand

In the main text we gave detailed derivations for the strains, curvatures, etc., for the +

strand in our birod. We now shift our attention to the complimentary − strand. The
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reference configuration of this strand is denoted by position vector r−0 .

r−0 = b(cos(ωx+ α) e1 + sin(ωx+ α) e2) + x e3. (B.18)

Along the same lines as the + strand, we conceive the deformed configuration to be

a helix wrapped around a curved axis defined by curvatures k1, k2 and k3 along the

directors d1, d2 and d3, respectively.

r−(x) = (b+ r−)(cos(ωx+ α+ β−) d1 + sin(ωx+ α+ β−) d2) +

∫ x

0
(1 + bξ) d3dx.

(B.19)

We use the same apparatus mutatis mutandis described for the + strand to calculate

various quantities of interest. The results are:

R− = [n− b− t−] = ZR−0 (1 + Θ−). (B.20)

where Θ− is a skew symmetric tensor.

Θ− =


0 −θ−3 θ2

θ−3 0 −θ−1
−θ−2 θ−1 0

 ,
where θ−1 = (r−ω + b(β−x + k3)), θ−2 = −r−x cos k + β− sin k,

θ−3 =
g−

ω sin k
− (r−x cos k − β− sin k) cos k

ω sin k
.

(B.21)

We compute curvature κ− as follows,

Ω− =(t−x .t
−
x )1/2 = ω sin k − (r−xx + ξ) cos k + (β−x + k3) sin k,

κ− =Ω− − ω sin k = −(r−xx + ξ) cos k + (β−x + k3) sin k.
(B.22)

We obtain the moment m− as follows,

m− = EIκ−(cos k cos
α

2
f1 + cos k sin

α

2
f2 + sin k f3), (B.23)

where f1, f2, f3 are given as follows.

f1 =
(

sin(ωx+
α

2
) d1 − cos(ωx+

α

2
) d2

)
, f2 =

(
cos(ωx+

α

2
) d1 + sin(ωx+

α

2
) d2

)
, f3 = d3.

(B.24)
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B.3 Evaluation of material properties of the web

In this section, we consider a deformation of the double-helical structure induced by

a stretching force F and torque T on one end. We assume that the helix retains its

helical configuration, but with changed geometrical parameters. Thus, r, β and e are

independent of x. Our goal is to compute the strains and curvatures, then evaluate the

energy, and then identify the stretch modulus, twist modulus and twist-stretch coupling

modulus of the double-helical structure from this energy expression. The computation

of strains, curvatures, etc., of the helix proceeds as in the main text.

r+ = (a+ r)(cosωx(1 + β) e1 + sinωx(1 + β) e2) + x(1 + e),

r+ = −(a+ r)(cosωx(1 + β) e1 + sinωx(1 + β) e2) + x(1 + e),
(B.25)

We assume r, β, e ∼ O(ε), hence

r+ = (a+ r)(cosωx e1 + sinωx e2) + aωβx(− sinωx e1 + cosωx e2) + x(1 + e) e3,

r+
x = (a+ r)ω(− sinωx e1 + cosωx e2) + aωβ(− sinωx e1 + cosωx e2)− aω2,

βx(cosωx e1 + sinωx e2) + (1 + (ex)x) e3,

= −aω2βx(cosωx e1 + sinωx e2) + ω(a+ r + aβ)(− sinωx e1 + cosωx e2) + (1 + (ex)x) e3.

(B.26)

The inextensibility condition gives,

|r+
x | = |r+

0x|,

(ex)x + ω2a(r + β) = 0,
(B.27)

t+0 , n+
0 and b+

0 are the tangent, normal and binormal to the + strand in the reference

configuration. We calculate tangent t+ to the deformed configuration.

t+ =− sin kβx(cosωx e1 + sinωx e2) + (sin k + ωr cos k + β sin k)

(− sinωx e1 + cosωx e2) + (cos k − ω sin k(r + aβ)) e3,

=t+0 + ωβx sin k nnn+
0 + (ωr + β tan k)b+

0 ,

(B.28)

Next, we calculate the curvature κ+.

t+x =− (ω sin k2ωβ sin k + ω2r cos k)(cosωx e1 + sinωx e2)

− ω2 sin kβx(− sinωx e1 + cosωx e2).

K2 =ω sin k + 2ωβ sin k + ω2r cos k.

κ+ =K − ω sin k = 2ωβ sin k + ω2r cos k.

(B.29)
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We go on to calculate the normal in the deformed configuration n+.

n+ =− (cosωx e1 + sinωx e2)− ωβx(− sinωx e1 + cosωx e2),

=n+
0 − ωβx sin kt+0 + ωβx cos kb+

0 .
(B.30)

We are now in a position to calculate the deformed Frenet-Serret frame R+.

R+ = [n+ b+ t+] = R+
0 (1 + Θ+). (B.31)

where Θ+ is a skew symmetric tensor.

Θ+ =


0 −θ+

3 θ+
2

θ+
3 0 −θ+

1

−θ+
2 θ+

1 0

 ,
where θ+

1 = ωr + β tan k, θ+
2 = ωβx sin k, θ+

3 = ωβx cos k.

(B.32)

For the negative strand we follow the same procedure.

R− = [n− b− t−] = R−0 (1 + Θ−),

Θ− = Θ+,

κ− = κ+.

(B.33)

After performing all the calculations

E =

∫ L

0
(EI(2ωβ sin k + ω2r cos k)2 +

1

2
H1ω

2(r + aβ)2 +
1

2
L1r

2)−Mθ − F∆x,

∆x = eL, θ = βL.

(B.34)

We substitute r = − e
ω2a
− aβ from eqn. (B.27) and compute the elastic constants as

follows.

∂E

∂β
= 0,

∂E

∂e
= 0.

S =
∂2E

∂e2
, g =

∂2E

∂e∂β
, C =

∂2E

∂β2
.

(B.35)

Then, by trial and error we pick values of L1, L2, L3, H1, H2, H3,Kc,Ke, EI to match

the S, g, C known from experiments. Our choice of the material parameters L1, H2,Kc,

etc., is not unique.
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B.4 Choice of eigenvalues obtained in section 5

In section 5, we solve the governing differential equation eqn. 3.33 by substituting

y(x) = y0e
−λx where y = (r, f, ξ, k3, β

±, nci , ni) i = 1, 2, 3. We look for the values of

λ corresponding to a non-trivial solution of the governing equations. For this we need

to solve the eigenvalue problem A(λ)v0 = 0, where A is a function of λ and elastic

constants (eqn. 4.1) and v0 = [r0, f0, ξ0, k30, β
+
0 , β

−
0 , n

c
i0, ni0]T i = 1, 2, 3. We set

detA(λ) = 0 and get following solutions for λ.

x1 = −1.5× 104(1 + i), x2 = −1.5× 104(−1 + i), x3 = −4× 103,

x4 = 1.2× 103(−1− 3.2i), x5 = 1.2× 103(−1 + 3.2i), x6 = −0.68,

x7 = −0.42, x8 = −0.36, x9 = −5.2× 10−10,

x10 = −1.9i, x11 = 1.9i, x12 = −3.8i, x13 = 3.8i, x14 = −6.2i, x15 = 6.2i,

x16 = 5.2× 10−10, x17 = 0.36, x18 = 0.42, x19 = 0.68, x20 = 2.3× 103(1.4− i),

x21 = 2.3× 103(1.4 + i), x22 = 1.5× 104(1− i), x23 = 1.5× 104(1 + i).

(B.36)

Among these 23 eigenvalues we neglect the eigenvalues x1,2,3,4,5,20,21,22,23 whose mag-

nitude is > 103 because the corresponding decay length is tiny which leads to large

numerical errors given that we need to compute third derivatives. Then, there are small

eigenvalues x9,16 whose magnitude is close to zero (< 10−3) and purely imaginary eigen-

values x10,11,12,13,14,15 which when substituted in e−λx result in a constant or a sinusoidal

function, respectively, that do not decay to 0 as x→ ±∞. Hence, we must neglect these

too. This leaves us with x6,7,8,17,18,19, which are used in section 5.
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B.5 Results for α = π radians
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Figure B.2: Variation of strain variables for α = π radians. Notice that the curves
are symmetric about the site of protein binding. As mentioned in section 6, the curves

are not symmetric if we choose α = 2.1 radians.



Appendix C

Dependence of interaction energy

on boundary conditions and

elastic constants.

The elastic constants and the boundary conditions used in chapter 3 and chapter 4

have been chosen in a way that we get sinusoidal dependence of the interaction energy

(shown in fig. 3.6 (a) and fig. 4.5(b)) while recovering the stretch, twist and twist-

stretch coupling moduli of dsDNA (shown in Appendix B). The aim in this appendix is

to examine the robustness of the sinusoidal behavior to the choice of these constants and

boundary conditions, and to shed slight on the approach to fit the data. Succintly, the

amplitude of the interaction energy depends only the amount of the distortion caused by

the protein at the binding site encoded in the magnitude of the boundary conditions (see

fig. 3.8) while the decay length of the exponential depends only on the elastic constants

(see fig. 4.7). Let us examine them in more detail:

• Elastic constants: In chapter 3, we choose the elastic constants in a way such

that the eigenvalue λ obtained in eqn. 3.14 leads to the correct behavior observed

in simulations and experiments. Here we examine the effect of the choice of the

elastic constants on the real and imaginary parts of the eigenvalue λ. Let

λ = − 1

ld
+ iν (C.1)

We parametrize the elasticity of the web by a single parameter A such that L1 =

L2 = L3 = A pN/nm2 and H1 = H2 = H3 = A pN ., and examine the effect

of A on decay length ld and period ν. The results are given in fig.C.1. We find

that the decay length decreases as the elasticity of the web increases which is

96
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Figure C.1: Effect of elastic constants on the decay length ld (nm) and period ν.
ω and P are the period and pitch, respectively for dsDNA. The elasticity of the web
is parametrized by a single parameter A such that L1 = L2 = L3 = A pN/nm2 and
H1 = H2 = H3 = A pN . We choose A = 10 since it gives decay length in the right

ballpark Kim et al. (2013).

what is expected since the base-pairs with higher GC content are known to have

lower decay lengths (for more details see fig. 4.7). Also, change in the period ν

is minimal even after a two order of magnitude increase in the parameter A. We

choose A ≈ 10 since it gives correct decay length.

• Boundary conditions: As pointed out in the chapters 3 and 4, the mechanical

distortions caused by the protein at the binding site are not well understood in

literature. Within the scope of the birod model discussed here, the protein applies

a set of boundary conditions. The number of the boundary conditions required to

solve the problem depend on the number of unknown constants in the solution to

the governing differential equations (See eqn. 3.16 and eqn. 4.37).

In chapter 3, we imposed boundary conditions on the change in radius (r) and

change in phase-angle (β). We could have imposed boundary conditions on any

two of the strain parameters (r, β, k3, ξ). The magnitude of the strain parameters

at the binding site (r0 and β0) determines the amplitude of the interaction energy.

In chapter 4, we imposed boundary conditions on the change in radius r and the

curvatures k1 and k2. We note here that if the magnitude of the curvatures at the

binding site is zero k10 = k20 = 0, the interaction energy lacks the sinusoidal char-

acter (see fig. 4.5(a)). Here also, we deliberately choose the boundary conditions

which give us the sinusoidal character to match the experimental data.
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Supplement to Chapter 5

We used the Metropolis algorithm Pathria (1984) to perform the MC simulations in the

text. Here is a stepwise procedure for the algorithm:

1. The discretized birod is kinematically described by a vector y = [θ,v], where θ

describes the macroscopic deformation of the centerline and v is the inter-strands

distance. Randomly initialize the vector y. Let call this configuration C1.

2. Randomly perturb the configuration C1 to a nearby configuration C2.

3. Compute the difference in the energy of the two states ∆E = E(C2)− E(C1).

4. If ∆E < 0, then accept the new configuration.

5. If ∆E > 0, then choose a random number r ∈ (0, 1). Accept the new configuration

if r < e−∆E/kBT . Reject otherwise.

This code for this algorithm is given below (Due to formatting issues the indentation

might be wrong.):

import numpy as np

import random

class birod ( ) :

# BIROD SYSTEM INITIALIZATION

def i n i t ( s e l f , EI , L1 , L2 ,H,F , a , lam , Lcont , kB T ) :

s e l f . EI = EI

s e l f . L1 = L1

s e l f . L2 = L2

s e l f .H = H

s e l f .F = F

s e l f . a = a

98
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s e l f . lam = lam

s e l f . Lcont = Lcont

s e l f . kB T = kB T

def compute mean ( s e l f , n ) :

#DISCRETIZATION OF BIROD

l =s e l f . Lcont/n

#ENERGY FUNCTIONAL (Wrong Inden ta t i on )

ener = lambda yvec : \
( s e l f . EI/ l )∗np .sum(np . square ( yvec [ 1 : n]−yvec [ : n−1])) \

+ (4 . 0∗ s e l f . L1∗ s e l f . a ∗∗2 .0∗ l )∗ np .sum(np . square ( yvec [ : n ] ) ) \
+ ( s e l f . EI/ l ∗∗3 .0 )\
∗ np .sum(np . square ( yvec [ n+2:]−2∗yvec [ n+1:−1]+yvec [ n : −2 ] ) ) \
+ ( s e l f . L2∗ l )∗np .sum(np . square (np . exp(− s e l f . lam∗yvec [ n : ] ) −1) ) \
+ ( s e l f .H/ l )∗np .sum(np . square ( yvec [ n+1:]−yvec [ n : −1 ] ) ) \

# DOF LIST AVAILABLE FOR PERTURBATION

# 0:n ARE THETA’S AND n :2n ARE V’S .

l 1 = [ i for i in range (1 , n ) ] + [ i + n for i in range (1 , n ) ]

# INITIALIZATION

yvec = np . z e r o s ( (2∗n , ) )

# NUMBER OF MC ITERATIONS

n i t e r = 1000000

# REGISTERS FOR VARIOUS QUANTITIES

Ereg = np . z e r o s ( ( n i t e r , ) )

qtyreg = np . z e r o s ( ( n i t e r , ) )

Ereg [ 0 ] = ener ( yvec )

a c c ep s t a t e s = 0

# Seeding the random process , h e l p s debug the code

np . random . seed (20)

random . seed (20)

for i in range (1 , n i t e r ) :

e1 = Ereg [ i −1]

#CHOOSE THE DOF TO PERTURB

j = random . cho i c e ( l 1 )

# STATE PETURBATION.

# CHOOSE CAREFULLY. YOU SHOULD REALISTICALLY ACCEPT 20−40%
# OF YOUR STATES. YOU COULD IN PRINCIPAL USE ANY PERTURBATION
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# AND THE CODE WILL CONVERGE ev en t u a l l y . TO PERTURB YOU COULD

# USE ANY DISTRIBUTION SYMMETRIC ABOUT ZERO. NORMAL N(0 ,1)

# WORKS WHILE UNIFORM DISTRIBUTION U(0 ,1) DOES NOT SINCE

# IT NOT SYMMETRIC. AS LONG YOU ARE NOT BIASING, YOU

# SHOULD BE OKAY HERE.

de ly = np . random . normal ( 0 , 1 . 5 )

yvec [ j ] += dely

e2 = ener ( yvec )

# COMPUTING \Del ta E

de l e = e2 − e1

i f de l e > 0 :

r1 = np . random . uniform (0 , 1 )

i f r1 < np . exp(−de l e / s e l f . kB T ) :

# ACCEPTED STATES FOR \Del ta E > 0

Ereg [ i ] = e2

a c c ep s t a t e s += 1

else :

# REJECTED STATES FOR \Del ta E > 0

yvec [ j ] −= dely

Ereg [ i ] = Ereg [ i −1]
else :

# ACCEPTED STATES FOR \Del ta E < 0

Ereg [ i ] = e2

a c c ep s t a t e s += 1

# REGISTER FOR QTY OF INTEREST.

# IN OUR CASE THE INTERSTRAND DISTANCE

qtyreg [ i ] = np .mean( yvec [ n : ] )

# COMPUTE THE AVERAGE OVER LAST N/2 STATES

# THEREBY MAKING SURE THAT THE PROCESS HAS STABILIZED

return ( 2 . 0 / ( n i t e r −1))∗np .sum( qtyreg [ int ( n i t e r / 2 ) : ] ) , a c c e p s t a t e s

Listing D.1: Code for MC simulations
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