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ABSTRACT

ESSAYS ON THE ROLE OF INFORMATION IN HEALTH ECONOMICS

Benjamin Chartock

Abby Alpert

This dissertation is comprised of essays on the role of information in health economics. In

the �rst chapter, I study quality ratings. Ratings provide consumers with useful quality

information, however, when ratings shift demand to highly-rated sellers, congestion might

occur at the top of the quality distribution. Congestion caused by disclosure may be observed

in the health care setting, where prices often cannot adjust to re�ect varying quality. I study

the trade-o� between providing quality information for consumers and congestion using a

star rating disclosure policy implemented at a large integrated health system in the United

States, which requires every physician to have star ratings posted online in a standardized

fashion. I identify the e�ects of physician star ratings on patient volume using a regression

discontinuity and di�erence-in-discontinuity design which leverages the rounding of ratings

to discrete values and the fact that I observe ratings before and after their public disclosure

online. I �nd that an increase in a physician's rating increases the number of new patients

seen by 2.96 visits per month on a baseline of 5.48 (54% increase). I show that star ratings

shift patients to physicians who more often provide medically recommended screenings,

counseling, and vaccinations. However, I also show that a higher rating causes patients

to wait longer for treatment. New patients wait 2.7 additional days (30.5% longer) for an

additional increment of the rating scale and existing patients wait longer as well. I use

these �ndings to compute a revealed-preference estimate of the �shadow price of a star�;

I �nd that patients are willing to wait 3 additional days in exchange for a one standard

deviation increase in physician ratings. In the absence of a price, wait times may serve as

an equilibrating factor to clear the market. In the second chapter, I study surprise medical

bills. I introduce a model of �nal-o�er arbitration over these bills between insurers and
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providers which highlights the tradeo�s for �rms and policymakers.
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CHAPTER 1

Quality Disclosure, Demand, and Congestion: Evidence from

Physician Ratings

Ratings provide consumers with useful quality information, however, when ratings shift

demand to highly-rated sellers, congestion might occur at the top of the quality distribution.

Congestion caused by disclosure may be observed in the health care setting, where prices

often cannot adjust to re�ect varying quality. I study the trade-o� between providing quality

information for consumers and congestion using a star rating disclosure policy implemented

at a large integrated health system in the United States, which requires every physician to

have star ratings posted online in a standardized fashion. I identify the e�ects of physician

star ratings on patient volume using a regression discontinuity and di�erence-in-discontinuity

design which leverages the rounding of ratings to discrete values and the fact that I observe

ratings before and after their public disclosure online. I �nd that an increase in a physician's

rating increases the number of new patients seen by 2.96 visits per month on a baseline of

5.48 (54% increase). I show that star ratings shift patients to physicians who more often

provide medically recommended screenings, counseling, and vaccinations. However, I also

show that a higher rating causes patients to wait longer for treatment. New patients wait 2.7

additional days (30.5% longer) for an additional increment of the rating scale and existing

patients wait longer as well. I use these �ndings to compute a revealed-preference estimate

of the �shadow price of a star�; I �nd that patients are willing to wait 3 additional days

in exchange for a one standard deviation increase in physician ratings. In the absence of a

price, wait times may serve as an equilibrating factor to clear the market.1

1This project is supported by an Institutional Development Award (IDeA) from the National Institute
of General Medical Sciences of the National Institutes of Health under grant number 5P20GM121341.
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1.1. Introduction

Quality disclosure can have a profound impact on market outcomes. On the one hand,

quality disclosure has been shown to enhance welfare by increasing demand for high-quality

products, stimulating competition, and ameliorating adverse selection (Jin and Leslie, 2003).

On the other hand, disclosure might lead to unintended consequences, such as causing

multitasking problems (Holmstrom and Milgrom 1991; Feng Lu 2012) or inducing ine�cient

e�ort on the part of suppliers (Dranove et al., 2003). Although the literature has numerous

studies about the e�ect of quality disclosure on market outcomes, one understudied domain

is the impact of quality disclosure on markets with potential congestion e�ects and wait

times. If quality ratings sort consumers to highly rated sellers whose supply is not perfectly

elastic, a glut of buyers may seek to purchase from these high-rated sellers if prices cannot

adjust to re�ect varying quality. One market where this might occur is in health care, where

patients often pay the same price for care from any in-network provider regardless of quality.

In the absence of a price, wait times may serve as an equilibrating factor to clear the market.

I study this phenomenon in the market for family medicine physicians. This market is

a setting where quality ratings are widespread (e.g., ZocDoc.com and Healthgrades.com)

and where many consumers search the internet for information before selecting a provider.

According to a 2019 University of Michigan National Poll on Healthy Aging, 43% of adults

aged 50-80 reported looking at doctor ratings online (Hanauer et al., 2020). While the

market for doctors and other medical providers is not the only setting where star ratings are

important (other examples are Amazon for retail products, Yelp for restaurants, or Centers

for Medicare and Medicaid Services [CMS] Compare for nursing homes), ratings may be

particularly relevant in the market for family medicine and primary care because patients

typically have a large number of potential providers to choose from and their insurance

bene�ts often force an active choice of a family doctor. This directly contrasts with the

choice of a specialist (e.g., cardiologist), where choice sets are often more limited and another

factor�referrals�might crowd out the role of consumer-facing quality information such as

2



star ratings.

In this paper, I focus on three primary economic outcomes: quantity demanded, sorting

over quality, and congestion spillovers. These three outcomes encompass a range of possible

e�ects of quality disclosure in equilibrium. I study these e�ects using a novel data set

comprised of a combination of electronic health records (EHRs) and the universe of online

doctor reviews that was collected and later disclosed by a large, integrated health system in

the United States with more than 40 hospitals and nearly 1,500 employed physicians.

I use a regression discontinuity design to estimate the causal e�ects of an increase in provider

rating on new patient visits which leverages the fact that actual provider quality ratings are

continuous but are rounded into discrete bins on the health system website. In the spirit

of Anderson and Magruder (2012), I exploit the rounding of online ratings, focusing on

doctors just above and just below the rounding thresholds�these physicians have nearly

identical underlying scores but di�erent displayed scores. Additionally, and uniquely among

papers in the literature that examine the demand response to ratings data, I exploit the

fact that the health system collected ratings long before it ever decided to disclose them

to the public. Using this distinctive pre- and post-disclosure variation in the information

available to consumers, I estimate a di�erence-in-discontinuities model to capture the e�ects

of quality disclosure.

This health system and the quality disclosure policy that I study have a number of unique

attributes that make the setting an ideal laboratory for exploring the impact of ratings.

First, the disclosed ratings are highly salient for consumers in this market. Prominent star

ratings for doctors are available in a standardized format and are centrally located on each

provider's website (an example is found in Appendix Figure A1). In addition, the manner

in which ratings are gathered from patients di�ers from other well-known online sources so

these ratings may be of higher �delity than other star ratings. Ratings disclosed by this

health system are calculated from randomly-sent, post-visit surveys that are designed and

implemented in consultation with the Agency for Healthcare Research and Quality (AHRQ).

3



In contrast to this standardized survey, any person (patient or not) is able to submit a review

of a provider on Yelp or other sites. The random sending of surveys to patients eliminates

much of the selection bias that arises due to which individuals are contributing to online

ratings. There is also relatively low availability of other sources of online quality data

about medical providers (e.g., from HealthGrades, Zocdoc, and Yelp) in the health system's

region, which suggests that this quality disclosure represents a major source of information

about providers. Lastly, unlike on other websites, these quality scores apply universally to

all providers; no provider can opt out of having their rating disclosed or pay for a more

prominent placement.

The unique data source is also an advantage of this setting because it allows me to focus

directly on the subset of the population most impacted by star ratings: new patients. Using

the EHR data, I can identify which patients in the health care system have never before

visited a given provider, allowing me to focus directly on the subset of shoppers who are

actively searching for physicians but have not yet received a signal via previous consump-

tion. I use the EHR data to construct a volume measure of new patients at the level of

a provider�month, which allows me to zoom in directly on the component of health care

shopping that might be most impacted by quality disclosure. These data also allow me to

explore heterogeneity in the e�ect of quality disclosure across di�erent provider specialties.

This approach is important due to the nature of insurance design. Plans such as health

maintenance organizations (HMOs) frequently force members to make active choices about

their family medicine providers. These chosen primary care doctors act as gatekeepers via

referrals to specialists. Accordingly, I focus on family medicine as the subset of providers

who might be most impacted by quality disclosure, but also analyze the e�ects separately

for di�erent types of specialists.

There are several interesting results. First, I �nd that consumer demand is highly responsive

to online digital disclosure of quality scores. In particular, I �nd that an increase of one

interval in the rating scale in a provider's online pro�le causes them to see 54% more new
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patients per month (2.96 new patients). This result is consistent with a number of other

studies about the demand response to online disclosure of ratings (Chevalier and Mayzlin

2006; Anderson and Magruder 2012; Hunter 2020). However, I obtain estimates that are

larger in magnitude. This can likely be explained by the standardized nature of quality

disclosure in this setting and potentially by the paucity of other reputable sources of physi-

cian quality information. Second, I �nd that the e�ect of quality disclosure is concentrated

among family medicine providers (as opposed to other specialties), highlighting the role of

referrals in consumer choice of specialist providers. Family medicine doctors are selected

from a large choice set relative to other specialists, and it is not surprising that the e�ects of

quality disclosure are large for these gatekeepers of patient health. I also �nd that the e�ect

of quality disclosure is greatest among the younger population (ages 18-34) as compared to

older individuals, potentially because this age group is more accustomed to searching on-

line about product quality more generally. Previous literature has been unable to examine

heterogeneity in ratings e�ect by age.

In addition to these �ndings about the demand response to quality disclosure, I provide

evidence on equilibrium e�ects. Speci�cally, I examine equilibrium consequences of disclo-

sure on supply and demand by studying three dimensions of sorting: (1) examining whether

information disclosure shifts patients to physicians who supply greater inputs to health,

(2) studying whether information disclosure results in market expansion (new patients to

the system) or switching (reallocation of existing patients), and (3) investigating whether

quality disclosure causes congestion at high-quality sellers.

I �rst examine whether information shifts patients to physicians who supply greater in-

puts to health. One common criticism of online disclosure of doctor quality ratings is that

stars do not re�ect actual provider quality but instead re�ect orthogonal concerns such as

the quality of the magazines in the waiting room lobby. In contrast to these concerns, I

show evidence that the online disclosure sorts patients to providers who more frequently

perform medically-recommended inputs to patient health such as vaccinations, screenings,
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and behavioral health services. Second, I study whether the quality disclosure has market

expansion e�ects or switches existing patients (or both). I �nd that the quality disclosure

largely switches current patients at the health system to higher-rated providers rather than

a�ecting choices of individuals who have never before visited the system, thus suggesting

the main margin of action is that disclosure e�ects established patients in the system.

Finally, I address a previously understudied question about congestion and wait time that

is relevant in markets such as health care where prices cannot easily adjust in response to

quality scores being released. In contrast to restaurants, for example, which can raise prices

in response to an increase in consumer demand, physicians employed by a health system

cannot immediately raise prices after receiving a high score (or cannot lower prices after

receiving a low score). In this health system, the patient pays the same out-of-pocket price

for family medicine irrespective of quality. If a signi�cant mass of new patients is shifted to-

wards the high-quality sellers after quality disclosure, those sellers will face congestion in the

absence of a monetary price which rations the scarce quality (Richards-Shubik et al., 2021).

I document that congestion is occurring at high-quality sellers, and that this congestion is

a�ecting both new patients (who wait 30.5% longer for an additional increment of quality

score) as well as established patients, who were previously seeing a high-quality provider

but now wait longer for appointments with the exact same provider due to congestion. This

�nding helps underscore the winners and losers of quality disclosure and provides the �rst

revealed preference evidence of a willingness-to-pay for provider stars. I calculate that pa-

tients are willing to wait 3 additional days for a one standard deviation increase in provider

quality, and this wait time serves as a shadow price for quality which rations demand at

high-quality sellers.

Taken as a whole, these results paint a multidimensional picture of the economic conse-

quences of online quality disclosure. As markets in health care and beyond increasingly

adopt star ratings and quality certi�cation as a means to ameliorate market woes caused

by imperfect information, they will face trade-o�s between increased ease of shopping for
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experience goods and congestion at high-quality sellers. The theoretical model which I in-

troduce along with the empirical evidence I uncover suggests that quality disclosure creates

a new market for quality even in the absence of di�erential prices, as wait times can serve as

an equilibrating force. This insight is useful for policymakers who are interested in design-

ing, implementing, and evaluating quality disclosure policies, such as those at the Centers

for Medicare and Medicaid Services (CMS), because it suggests that increased wait times

for highly rated physicians may re�ect a market-driven process in the absence of potential

capacity adjustments and price variation.

The rest of this paper proceeds as follows. Section 2 reviews the existing literature. Section 3

lays out a model of patient choice and waiting. Section 4 describes the data and institutional

setting and Section 5 presents the empirical strategy. Section 6 presents the results, discusses

heterogeneity, and institutes robustness checks. Section 7 concludes.

1.2. Related Literature

In this section, I broadly separate the literature about quality disclosure into two com-

ponents, the demand-side response and the supply-side response. Before summarizing the

literature, I o�er a brief introduction to the theory on how incomplete information can cause

market failures, a key problem that disclosure policies hope to remedy. A comprehensive

review of the economics of disclosure can be found in a survey article by Dranove and Jin

(2010).

1.2.1. Information, Market Failures, and Disclosure

Studies on the relationship between and market outcomes emerged shortly after the de-

velopment of general equilibrium theory. A �nding of general equilibrium theory, the �rst

fundamental welfare theorem, holds that under a certain standard set of assumptions, such as

well-behaved preferences and perfectly competitive markets, the competitive market equi-

librium will be Pareto e�cient in that it will exhaust all gains from trade. However, an
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important condition of the welfare theorem that must hold for the results to obtain is the

assumption of perfect information. Suggesting that the market for medical care falls short

on this dimension, Arrow (1963, p. 951) writes, �uncertainty as to the quality of the product

is perhaps more intense here [medical care] than in any other important commodity.�

Akerlof (1970) proves that in markets featuring asymmetric information, less-than-e�cient

levels of trade might occur if one side of the market sorts on quality and the other side cannot

readily observe quality ex ante but nonetheless knows that low-quality goods will be put on

the market �rst. This creates an adverse selection problem, with consumers who are wary of

poor quality products, or �lemons�. For disclosure to ameliorate adverse selection, disclosed

quality information must be (1) noticed by the market participants and (2) acted upon.

Nelson (1970) introduces a useful taxonomy of search goods versus experience goods, with

search goods allowing consumers to inspect products for quality prior to consumption while

experience goods requiring consumers to learn about quality after purchase. In addition to

search versus experience goods, a credence good is a product for which quality may not be

observable by the consumer until long after consumption, if ever. The market studied in

this paper, physician services, has elements of search, experience, as well as credence goods.

Broadly speaking, the more information that is available ex ante in a market with quality

heterogeneity, the more the product is similar to a search good than a credence or experience

good, and disclosure can be used as a lever to moderate if a good is search, experience, or

credence type.

The economics literature draws a distinction between voluntary and mandatory information

disclosure. With mandatory disclosure, all sellers must post or publish quality information.

With voluntary disclosure, it is ambiguous whether �rms will choose to disclose the quality of

their o�ering. The theory literature (Grossman and Hart 1980; Grossman 1981; Jovanovic

1982) �nds that when disclosure is costless and veri�ably truthful, all sellers should vol-

untarily disclose quality because consumers assume if a seller does not disclose, that seller

is low-quality. When disclosure is costly, only sellers with su�ciently high quality should
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choose to disclose (Jovanovic, 1982). In contrast, Bederson et al. (2018) �nd that voluntary

disclosure might not occur by high-quality sellers due to counter-signaling; in essence, high

quality sellers choose not to disclose their quality, sending a signal to buyers that they are

such high quality that they do not need to disclose. In the setting studied in this paper, dis-

closure is mandated throughout the health system, and questions about voluntary disclosure

are not applicable.

1.2.2. Demand-Side Responses to Disclosure

Until fairly recently, there was very little empirical evidence that consumers observe and

act upon disclosed quality information. A paper by Mathios (2000) �nds that when the

Nutrition Labeling and Education Act required disclosure of fat content on salad dressings,

high-fat dressings experienced a signi�cant reduction in sales. Chevalier and Mayzlin (2006),

focusing on online reviews, also �nd that consumers are responsive to disclosure. The authors

looked at the same book that sold on both Amazon.com and BarnesAndNoble.com and found

that books with a higher review score on one site had higher sales on that same site. By

focusing on the same exact book at two online retailers, they cleverly controlled for actual

quality of the product.

To measure the e�ect of information disclosure, most studies rely on panel data methods.

For example, in a wide variety of health care contexts, the literature shows that consumers

are responsive to disclosure in the form of report card ratings. Studying health plans,

Scanlon et al. (2002) show that people avoid health plans with many below-average ratings.

The authors controlled for �xed, unobserved plan traits by leveraging a natural experi-

ment when General Motors released plan report cards. Dafny and Dranove (2008) study

Medicare HMO report card disclosure and �nd that consumers switch to high-quality plans

independently of report cards (driven by word-of-mouth information), but also that dis-

closure induces a response to satisfaction scores. This e�ect is larger when there is large

variation in quality. Demand-side responses to quality report cards are shown to occur for
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hospitals (Dranove and Sfekas 2008; Pope 2009), fertility clinics (Bundorf et al., 2009), and

(in a stated preferences experiment) for joint replacement practices (Schwartz et al., 2021).

Identifying the e�ect of information disclosure on demand-side decisions is complicated by

the fact that in almost all settings, rating scores (which are observable to the researcher) are

correlated with other factors that are unobservable to the researcher, but observable to the

economic agents. One such example is word-of-mouth reputation. These unobserved factors

will cause biased estimates in the cross-section, and estimates of the ratings e�ect on demand

will be overstated if publicized ratings are positively correlated with unobservable factors. Of

course, the bias could run in the opposite direction, too (e.g., if provider panels are limited

in size and high quality providers are full, a form of capacity constraint). Jin and Sorensen

(2006) address the omitted variable bias by assessing the demand response to health plan

rating disclosure from the National Committee for Quality Assurance, exploiting a data

set that includes both disclosed ratings as well as non-public plan ratings. They �nd that

ratings have an e�ect on patient choice, particularly for �rst-time decisionmakers. Disclosed

information a�ects only a small number of individuals, but the welfare gains for those in-

dividuals are large. The similarities between the Jin and Sorensen study and my research

include the presence of both public and non-public ratings data as well as the importance of

�rst-time decisionmakers (in my context, new patients) versus established consumers. Jin

and Sorensen also develop a discrete choice framework for estimating the value of informa-

tion as a function of estimated parameters. Chernew, Gowrisankaran, and Scanlon (2008)

studied a similar setting of health plan report cards and found a small but signi�cant e�ect

of information on plan choices (average value of a report card to employees was about $20

per year). In contrast to Jin and Sorensen (2006), Chernew, Gowrisankaran, and Scanlon

(2008) speci�ed a Bayesian learning model to quantify the value of information. They as-

sume patients hold priors about the distribution of quality and update to form a posterior

proportional to the prior times the likelihood. They allowed for both continuous or discrete

priors and signals, with discreetness re�ecting real-world disclosure methods such as stars.
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Another approach to identifying the causal impact of ratings on demand is a regression

discontinuity design �rst initiated by Anderson and Magruder (2012) in a study looking

at the market for restaurant services in the context of Yelp.com. The authors �nd that

increasing a restaurant's Yelp score by a half-star (the smallest increment displayed on the

website) causes restaurants in their study sample to sell out 19 percentage points more

frequently compared to a restaurant without the bene�t of a higher rating. That paper not

only provides credible estimates of demand e�ects of ratings in the food service industry,

but is also notable for introducing a novel application of regression discontinuity design for

the purposes of identifying the e�ect of ratings on quantity demanded. The authors point

out that the underlying distribution of actual, raw ratings for restaurants is continuous, yet

the website displays ratings only in discrete, rounded bins. Leveraging this rounding, which

is widespread in internet-based rating systems, they used the mass of restaurants just below

and just above the rounding cuto� thresholds to identify the causal e�ect of an increased

score on volume, laying the groundwork for the identi�cation strategy used in this paper.

Anderson and Magruder's regression discontinuity design has been applied to a variety of

settings where credence and/or experience goods are bought and sold. Some of this has

been in the context of health care, where physician quality is heterogeneous and di�cult

to discern ex ante. For example, in an unpublished manuscript, Luca and Vats (2013)

collect ratings from a crowdsourced online doctor platform (ZocDoc) and �nd that a half-

star improvement in a doctor's rating boosts the likelihood that the doctor will have an

appointment booked through ZocDoc by 10%. A drawback to this study is that provider

participation on ZocDoc is voluntary as opposed to mandatory (in my paper, ratings are

required for all doctors in the system). Providers on ZocDoc can additionally choose to pay a

subscription to achieve a �veri�ed� status and optimal placement on the webpage, suggesting

that there may be unobserved selection into prominent disclosure. In another unpublished

manuscript, Brown, Gandhi, Hansman, and Veiga (2018) look at General Practice (GP)

clinics in the English National Health Service (NHS) and �nd that a half-star improvement

for a GP practice increases quarterly enrollment in the practice by 0.05% on a baseline
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yearly enrollment growth of 1.6%. The Brown et al. (2018) paper is the study most similar

to mine. Some important di�erences, however, relate to the setting. Brown et al. study

the causal impact of star ratings in the market for GP practices in England whereas this

paper studies the market for doctors and other providers in the United States. The English

NHS and the United States health systems di�er substantially with respect to autonomy

of patient choice at all levels of the health system. For example, GPs in England operate

according to geographic catchment areas and only since 2015 have patients who live outside

of a GP's practice area been allowed to register with that GP. And health care in Great

Britain is marked by long waiting times and failure to provide certain types of treatments

(Feldstein, 2007). Furthermore, the GP practices in the Brown et al. paper have an average

of 5.9 practitioners per practice, so ratings are not speci�c to individual providers, while my

study focuses on individual providers rather than practices.

The e�ect of ratings on demand is not limited to health care and restaurants. Hunter (2020)

�nds that demand for automotive repair services is responsive to online star ratings, and

Magnusson (2019) �nds that increasing a home furnishing product rating by a half star on

Wayfair.com leads to a 5% increase in demand for that item. Both papers use the regression

discontinuity from rounded ratings to identify the causal e�ect.

1.2.3. Supply-Side Responses to Disclosure

In addition to the demand-side response to quality disclosure, supply-side responses also

may have an e�ect on market performance. Jin and Leslie (2003) �nd that disclosure of

restaurant report cards causes �rms to improve product quality. The authors show that

restaurants obtaining an �A� relative to a �B� grade causes restaurants to have 5% greater

revenue, but also that grade cards cause a 20% decrease in foodborne illness hospitalizations,

a decrease not fully explained by consumers switching from low to high hygiene restaurants.

This implies that disclosure causes �rms to increase quality, a fact that they attribute to

reducing adverse selection via disclosure.
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However, Dranove, Kessler, McClellan, and Satterthwaite (2003) observe that disclosure can

have countervailing e�ects which may be welfare-reducing. Using a di�erence-in-di�erence

design in a study of heart attack patients and coronary artery bypass graft (CABG) surgeries,

the authors found that report cards improved matching of patients to hospitals, increased

the amount of CABG surgeries, and shifted this treatment from ex ante sicker to ex ante

healthier patients, who derive less of a bene�t from the more intense CABG procedure,

resulting in higher costs and worse outcomes. On net, the authors conclude that report card

disclosure caused doctors to change behavior in a welfare-reducing way. Similar unintended

consequences are highlighted by Werner and Asch (2005).

A major concern is that disclosing ratings might incentivize suboptimal behavior on the

part of sellers, particularly when quality is multidimensional. Building o� the multitask-

ing literature of Holmstrom and Milgrom (1991), Feng Lu (2012) �nds that an initiative

to report nursing home quality data that discloses some product attributes but not others

had the e�ect of realigning the relative returns across di�erent quality dimensions, leading

to improvement on reported quality dimensions but deterioration along other dimensions.

Given that patient demand was responsive to this disclosure, the reallocation of e�ort across

tasks might reduce welfare if there is large misalignment between the social planner's ob-

jectives and what can be measured (Baker 2002; Gibbons 2010). In the context of a health

system disclosing aggregate survey ratings for each doctor, if ratings re�ect di�erent quality

attributes than what patients actually desire, disclosure could be harmful. In the context

of credence goods, where the consumer might have di�culty assessing quality, this problem

might be particularly severe. For example, if a patient values medical care and amenities,

but faces challenges in observing the medical skill of a doctor, that patient might rate the

provider based on only amenities (such as the magazines in the waiting room) and be unable

to opine on other elements that enter into their utility. This situation creates a rating score

that is misaligned with provider quality. As observed by Baker (2002), the misalignment

between what can be measured by scores and what is valued by consumers may inhibit

success of a disclosure policy such as doctor ratings.
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Finally, Kolstad (2013) found that cardiologists, when faced with report card disclosure,

responded to both �nancial and non-�nancial (intrinsic motivation) incentives to increase

quality. Using the risk-adjustment model that underlies report cards, Kolstad identi�ed the

magnitude of the e�ect of new information by exploiting the fact that di�erent surgeons gain

more or less information about their relative performance compared to substitute surgeons.

He concluded that not only does pro�t motivate reductions in relative average mortality

risk, but intrinsic non-pecuniary motivations are relatively large. This result implies that in

a model with no immediate di�erentiation on prices, sellers may still respond to information

disclosure because of non-�nancial determinants of provider utility.

Richards-Shubik et al. (2021) point out that, in equilibrium, prices serve to ration quality

when quality is scarce, and in the absence of prices for quality (which may be the case in

health care), congestion serves the role of equilibrating the market. They discuss the bias

that can result from estimating models of consumer demand that include taste for quality

but do not account for disutility from congestion. Studying the market for heart surgery,

they found that this bias can be empirically large.

I next present a model about the equilibrium e�ects of disclosure and turn to the institutional

setting studied in this paper.

1.3. Rationing Demand by Wait List: A Theoretical Model

In this section, I introduce a theoretical model which ties together two related empirical

observations that I observe in the data (that demand is responsive to star ratings and that

a higher star rating causes a longer wait times, ceterus paribus). This model is inspired

by Lindsay and Feigenbaum (1984) and introduces a way in which wait times function very

much like a price and clear the market when prices are absent.2 A key feature of the

model is attacking the assumption that demand for care is unchanged throughout the wait
2This intuition of this model is used extensively in the study of the National Health Service in the United

Kingdom, where wait lists for elective surgeries are frequent. See Cullis, Jones, and Propper (2000) and
Propper (2000), for example.
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(Cullis and Jones, 1985) and I link wait time to demand by recognizing that the value of

care decays the longer care is postponed. For example, a high-quality doctor might refer a

patient with coronavirus symptoms to get monoclonal antibodies, which are helpful if given

early but which decay in e�ectiveness the longer the duration between illness and infusion,

whereas a low quality doctor might not refer a patient for monoclonal antibodies at all.

The insight of the model's equilibrium conditions derives from the idea that wait times

equilibrate a queue by rising or falling until the number of individuals who join the queue

is equal to the number of patients who get treatment in a given time period. I �rst start by

modeling the marginal joiner of a queue.

1.3.1. Marginal Joiner of a Queue

I assume that patients who are seeking care from a highly-rated family medicine physician

might not be able to see that physician right away. The fundamental economic decision

faced by the patient when they need care is whether to join the queue and wait to see the

highly-rated physician or not. The patient follows the following intuitive cost vs. bene�t

decision rule: if the present value of the care (when it is eventually delivered) exceeds the

cost of joining the wait list, they will schedule an appointment. The binary decision J for a

person to join the wait list to see the higher-rated physician is:

J =

1, if c < ve−dt

0, if c > ve−dt

The present value of care is determined by the product of the current value of the care, v,

which may include the value derived from a timely referral to a specialist, and an expo-

nential function of the decay rate of demand, d, and wait time, t. The model parameters

depend on the di�erential levels (of cost, value, and decay) between the low and high rated

providers. The costs of joining the queue for care are denoted by c (e.g., calling to schedule
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the appointment).3 For the ith individual, their value is

vi(d, t) = vie
−dt

Appendix Figure 2 shows the cost-to-bene�t tradeo� of a patient adding their name to a

wait list for given values of c, v, and d as a function of the wait time t. If the value of joining

the queue for care at the date of scheduling an appointment is v1 and the decay rate is d1

and costs to join the queue are c, then the critical length of time for joining the queue or

not is t̂1. If the wait time t is greater than t̂1, then costs exceed bene�ts: c > ve−dt. So the

patient would not add their name to the queue.

As v, c, di�er among demanders of care, the critical value t̂ will vary. For queue joiners, t̂

must be such that the net present value of the bene�t exceeds the cost. I next focus on the

marginal joiner, the individual whose t̂ = t. Accordingly, for the marginal joiner, expected

bene�ts must equal expected costs: ve−dt = c and we can observe the following �rst order

conditions which follow from di�erentiation and substitution:

∂v/∂d = vt > 0

∂v/∂t = vd > 0

An increase in the decay rate of the value of care will make someone previously on the

margin of joining the queue not join. This is seen in Figure A2 holding v1 �xed and moving

from the curve v1e
−d1t to v1e

−d2t. Furthermore, holding the decay rate constant at d2 while

increasing the expected wait time from t̂2 to t̂1 increases the marginal queue joiner's value

placed on the care from v1 to v2.
3Note that unlike earlier models of queuing, e.g., Barzel (1974), the costs of joining the wait list do not

involve physically standing in a line, but merely placing your name on a list.
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1.3.2. Rate of Joining the Queue

Next, given a �xed out-of-pocket price of the medical care (e.g., the patient pays only a

pre-set copay for all family medicine), what is the rate of joining the queue? The rate of

joining is determined by variation in t̂ driven by decay rate d and �xed consumer attributes.

As a �rst step, assume everyone in the population has the same rate d. Then, the only

factor that gives rise to variation in t̂ in the population is v, the valuation of care at the

moment of illness onset. Assume v is distributed in the population according to f(v), which

is continuous and has �nite range 0 ≤ v ≤ v̄. Someone at an expected wait of t1 must then

value the good at v1 or more to join the queue. The number of people who join the queue

per period, as a function of v and N , the population size, is given by

h(v) = N

∫ v̄

v
f(v)dv = N [1− F (v)]

and can be converted to t-space by substituting for v = ce−dt̂ to get

j(t̂) = N [1− F (ce−dt̂)]

Which is the number of people for whom the critical delay time (i.e., to join/not join queue)

is t̂ or greater. Accordingly,

j(t) = N [1− F (ce−dt)]

is the number of people who would queue at wait time t. Now, I point out the j-intercept:

j(0) = N [1− F (c)]

which is the number of people who value the care more than the cost of simply joining the

queue. This is also known as the �potential joiners�.
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The slope of the queue-joining function with respect to t is:

∂j

∂t
= −Nf(v)

∂v

∂t
= −Nf(v)dv

This slope is negative which implies as t goes up, the number of queue joiners goes down.

The slope of the joining function with respect to the decay rate, ∂j
∂d , does not change at the

intercept of the joining function because at t = 0, there is no change in j(t). However, for a

positive t queue time, as d goes up, the number of queue joiners goes down.

1.3.3. Supply of Family Medicine Rate Given Queue

Beyond whatever exogenous factors in�uence the quantity supplied (e.g., input cost shifters,

regulation, etc.), queues may also in�uence the rate of supply. Supply at any given time h

depends on those exogenous factors w̃ plus the wait time t and we assume that supply is

positively a�ected by wait time:

sh(w̃, t), such that ∂sh/∂t > 0

The queue size at any given moment h is written as Qh =
∑∞

k=0(jn−k − sn−k).4 And the

rate of change in the queue size at any point in time h is written as

Q̇h = jh(th)− sh(th)

The expected wait time in period h is th, the total number of people waiting in a given time

divided by the supply service rate:

th =
Qh

sh
4See Lindsay and Feibenbaum section I.B for exposition on normalizing the number of potential joiners

in each queue.
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1.3.4. Equilibrium and the Implications for the Empirical Setting

This system reaches an equilibrium at t∗ when th = th+1. This occurs (by de�nition) when

the rate of change in the queue length equals zero, Q̇h = 0.

The equilibrium of this supply and demand system is wait time t∗ and queue size Q∗ such

that j(t∗) = s(t∗); the number of people who would join the queue at wait time t∗ equals the

service rate (supply rate) at that t∗. And in this state, equilibrium queue size isQ∗ = j(t∗)·t∗.

This equilibrium is one in which wait times function very much like a price. In contrast to

markets with prices, where clearing the market occurs via an increase in the price of the

good and the demanders sort by willingness to pay, in this model, wait times clears the

market by making the medical care less valuable as time in the queue increases. Since there

is variation in the population according to initial value v of the care as well as d (the decay

rate), the patients seeking care who have high values v and low decay factors d will crowd

out those with lower v and higher d.

This model has testable implications. I expect to see longer wait times at higher rated

physicians (t∗ > 0). This also implies that at a given moment in time, the relative number

or people in the queue is higher at higher-rated physicians. In my empirical setting, star

ratings may causes an increase in demand at highly-rated physicians but at the same time,

those physicians do not have an ability to modify their prices in the short run as a response

to the disclosure. This model suggests market such as the one I study can be equilibrated by

wait times instead of prices. There is an important implication that follows from this model:

although an observer might at �rst believe that an empirical �nding of higher wait times

for higher quality re�ects an ine�cient backlog of health care services, instead that same

queue might actually be re�ective of a market clearing process. In the short run, before

high-quality providers can expand capacity or adjust prices, what does the disclosure do? It

might lead to the creation of a brand-new �market for quality� that is cleared via a queuing

mechanism rather than a price mechanism.
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I would expect, as well, that as the short run bleeds into the long run and capacity of

physician quality can adjust, the wait times may shrink back to zero. Accordingly, the

pair of twin empirical �ndings that (a) quality rating disclosure reallocates consumers to

high-quality sellers and (b) congestion increases at the highly-rated sellers in the absence of

prices, might not re�ect a market ine�ciency but instead re�ect a market process in which

wait time takes the role of prices in rationing scarce demand.5 In the following sections, I

show that these two empirical predictions do in fact occur. The theoretical model relates

these empirical �ndings to a single economic process.

1.4. Institutional Setting and Data

1.4.1. The Large Midwestern Health System

This paper uses data from a large Midwestern Health System (�the health system�), a non-

pro�t integrated health system located in the upper United States. The health system has

46 hospitals (a mix of larger urban hospitals, such as in Fargo, Sioux Falls, Bismarck, and

Bemidji, as well as smaller rural hospitals and an acute care children's hospital), more than

200 clinic locations, and nearly 1,500 providers. The health system is known for delivering

high quality care in the region: In recent years, U.S. News and World Report has ranked

the system's teaching hospital the top hospital in the state. The health system employs the

majority of their physicians, and for all of the major insurance providers in the region, if the

health system is in-network, patients would have equal access to all health system providers.

Importantly, this uniform insurance coverage largely shuts down the role of out-of-pocket

price in patient choices conditional on the insured choosing to receive care at the system.

The majority of the health system's doctors are compensated on a work relative value unit

(RVU) schedule.

5This implies that policymakers ought not to worry about an increase in short-run congestion when
quality ratings are disclosed because that could indicate an equilibrium sorting process.
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1.4.2. Rating Data

As part of the health system's ongoing e�orts to promote patient satisfaction, the system

has collected surveys using external consultants (�survey providers�). These national survey

providers, Press Ganey and NRC Health, administer post-visit questionnaires related to the

patients' subjective experience with their health care provider. The questionnaires are sent

out randomly and ask a series of standardized questions based on a survey developed by

AHRQ called the Clinician and Groups Consumer Assessment of Healthcare Providers and

Systems (CG-CAHPS). Based on dividing the total number of visits by the total number

of submitted surveys, about 5% of total outpatient visits are followed up with a completed

survey. Each provider is evaluated according to seven questions, including �Using any num-

ber from 0 to 10, where 0 is the worst provider possible and 10 is the best provider possible,

what number would you use to rate this provider?�6

The answers to each of these questions are linearly transformed to a 5-point scale, and then

the arithmetic mean across questions is taken to create a score for each provider for a survey

visit. Details of this scaling transformation performed by the health system and their survey

provider are available from me upon request.

Data from survey responses (and accompanying provider ratings) date back to 2016. How-

ever, until late 2018, rating data were never disclosed on the website, but instead held

internally by the health system. On November 2, 2018, the health system launched online

quality disclosure through a major overhaul of its website to include ratings and reviews for

each doctor. Prior to this date, quality ratings were not available to patients and after that

date, visitors to the health system's website see a prominently placed rating in large font

(on a scale of 1 to 5 in one-tenth intervals) with corresponding gold star symbols next to a

picture of each physician. The website also displays the number (raw count) of reviews. An

artistic rendition of what the star ratings look like to consumers is found in Appendix Figure

A1. According to the health system's disclosure policy, which is common across the health
6The full list of survey questions is found in Appendix A1.
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care industry, doctors with fewer than 30 ratings were not displayed until they reached the

30-rating minimum. For the November launch of rating, to â��seedâ�� the ratings with

enough data, the health system used a 2-year look-back window to late 2016. The health

system regularly updates the ratings for each provider as new survey data arrived, such that,

through July 2020, the rating displayed for each doctor re�ected the cumulative mean of all

ratings to that date, starting from the beginning of the look-back window. In my data, I

observe about 500,000 total surveys received by the health system between 2016 and 2020.

Although the values for each patient survey may range from 0 to 5, the vast majority of

providers score highly on average and the overall distribution of average provider ratings is

quite compressed near the top of the star range.7 The provider-level ratings have a mean

of 4.78, standard deviation of 0.13, and a slight negative skewness. A histogram of the

distribution of average ratings is in Figure 1.1.

For each provider, I have information on listed specialty from the system website, their pro-

fessional licensing credential (e.g., MD, registered nurse, physician assistant, etc.), provider

gender, and a provider identi�er (both the national provider identi�er [NPI] as well as an

internal health system provider identi�er). These data come from hospital human resources

data and the health system website. Using the entire history of individual patient surveys, I

reconstruct the average (mean) raw rating for each doctor at any given day; I then construct

what the website displayed historically and verify using the Internet Archive Wayback Ma-

chine and internal communication with the health system. This results in a panel at the

month level for each doctor containing the raw rating for each doctor on the 15th day of

each month (the middle). From the raw, unrounded ratings, I also construct the rounded

rating (to the nearest one-tenth), which is the score that is displayed on the health system

website. To account for the fact that ratings drift slightly as more surveys are returned, I

restrict the panel to include only providers whose rating is displayed at the same value for
7A top competitor in the region also posts star ratings and has a similar distribution of average provider

ratings. The competitor does not post star ratings for all providers (unlike the health system I study),
perhaps because it is not an employer of most providers.
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the duration of the month.8

1.4.3. Electronic Health Records Data

In addition to rating score data, I merge data that comes from a three-year extract of EHRs.

The EHR contains de-identi�ed visit data for all patient encounters across all locations in

the health system during the three year period from 2017 to 2019. The EHR data contains

International Classi�cation of Diseases (ICD), doctor and patient identi�ers, location and

date of the service performed, and select health and demographic information, such as patient

age, gender, zip code, body mass index (BMI), blood pressure, and smoking status at time of

visit. Critically for this analysis, from the beginning of this window through August 2019, I

have a variable that encodes whether the patient visit was a brand-new relationship between

the patient and the provider or an existing relationship. The �nal months (quarter four of

2019) do not have this new patient visit variable because the EHR system takes some time

to calculate and populate this �eld electronically. For my main analysis, I restrict providers

to those practicing the specialty of family medicine according to the health system website;

this is the most common specialty in the system (21% of providers) and is a specialty that

I hypothesize would permit comparison shopping or consumer search online. The analytic

data set comprises a panel of new patient visits at the doctor�month level and includes

average rating (the running variable) and displayed ratings for each provider in the system.

1.4.4. Summary Statistics

Table 1.1 displays summary statistics for the data used in this paper. The upper panel

describes the EHR data; there are more than 12 million total visits across 3 years and about

1 million unique patients. Demographic information available to me in the EHRs is limited.

The average patient is 38 years old with a BMI of 27.5, indicating overweight but not obese.

We expect patients who interact with the health system to be somewhat less healthy than
8Dropping provider-months that display more than one rounded rating per month allows for a sharp

regression discontinuity design but means that close to the discontinuity, there is a relatively smaller mass
of data compared to further away. Empirical robustness checks in subsequent sections address this issue.
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the average person in the general population, and nothing about this health system suggests

atypical patient composition.

The lower panel of the summary statistics table contains provider-month level summary

statistics for the family medicine providers, the baseline cohort for this analysis. These

providers have (on average) 178 visits per month and see about 7 brand-new patients per

month. These volume measures are skewed such that the mean is larger than the median,

meaning there are some providers who have considerably larger visit volume and new patient

volume. The average provider rating is a 4.78 and the standard deviation is 0.13. Half of

providers have a rating that is rounded up, and the other half have a rating that is rounded

down. At the instant quality disclosure was launched, the average count of reviews used to

determine the average score of a provider was 228. As more ratings were added as more

surveys came in, the average rating count increased to 298.9 On the website, patients are

shown the number of ratings a provider received, and a higher number of ratings could

potentially send a stronger signal of quality to patients, all else equal. In total, 55% of

family medicine providers are physicians (MDs and Doctors of Osteopathic Medicine [DOs],

with the vast majority of these MDs), and the remainder are mid-level practitioners (such as

advanced registered nurse practitioners, physician's assistants, etc.). There are 340 unique

family medicine providers and the provider-month panel has 2,730 observations.

In Table 1.2, I assess the correlation between new patient visit volume at a given provider

and that provider's online rating. I regress new patient visits per month on the provider's

displayed rating score, and I estimate alternative speci�cations with month-year �xed e�ects,

professional credential �xed e�ects (e.g., MD vs. PA vs. Nurse Practitioner) and both. In all

speci�cations, I �nd an inverse relationship between rating score and new patient demand.10

This negative relationship between rating score and new patient visit volume can also be
9The ratings were �seeded� with a 2-year lookback of historical ratings which explains an N larger than

1 on launch of ratings.
10I estimate the coe�cient on score to be about -16, so a one-star increase is associated with 16 fewer

new patients per month. Scaling this by a factor of 1/10, since ratings are displayed on the website in 0.1
intervals, a one-tenth rating increase, say from 4.7 to 4.8, is associated with 1.6 fewer new patients per
month.
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seen in the slope of the points in the binned scatterplot in Appendix Figure A3.

I hypothesize that one driver of this inverse and unexpected relationship arises because high-

quality doctors are also frequently near capacity (have full patient panels). If matching with

a high-quality family medicine doctor is an absorbing state, then one would expect higher-

rated doctors to also be willing to accept fewer new patients because they are already near

capacity. Despite the negative correlation I �nd in Table 1.2, it is reasonable to believe that

patients value quality and that there is not a structurally negative relationship between

quality and volume. As a consequence, I approach the question with a causal design in the

next section.

1.5. Empirical Strategy

1.5.1. Baseline Regression Discontinuity

I use regression discontinuity methods to compute the e�ect of an increased provider rat-

ing on demand for new patient visits (Thistlethwaite and Campbell 1960; Angrist and Lavy

1999; Hahn, Todd, and Van der Klaauw 2001; Almond, Doyle Jr, Kowalski, and Williams

2010). In particular, the primary empirical strategy is to estimate regression discontinuity

and di�erence-in-discontinuities models, which combines traditional regression-discontinuity

estimation with di�erence-in-di�erences models (Lalive 2008; Grembi, Nannicini, and Troiano

2016). This discontinuity approach to identi�cation is pursued because although providers'

actual ratings are continuous and smooth functions of the data, on the health system web-

site, displayed ratings are rounded to the nearest tenth. For example, a doctor with a 4.749

will be rounded down to 4.7 stars, while a doctor with 4.750 will be rounded up to 4.8 stars,

even though the underlying ratings are very close. Figure 1.2 outlines this identi�cation

strategy. I estimate the number of new patient visits per provider per month approaching

the cuto� from the left side as well as the right side. In the �gure, Doctor A and Doctor

B have similar unrounded survey scores, but because of the rounding, their star rating is

displayed di�erently on the website. The causal e�ect is the jump precisely at the cuto�;
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the assumption required for identi�cation is that the other variables that a�ect new patient

volume do not change discontinuously at the rounding cuto�. This is a sharp regression dis-

continuity design, since all providers with ratings above the rounding threshold are �treated�

by being rounded up.

After constructing a panel at the level of provider-month, I estimate two series of regressions.

The �rst series of regressions are based on the classical regression discontinuity estimator:

Yit = β0 + β11(R̃it > 0) + β2R̃it + β3R̃it1(R̃it > 0) + γc + εit (1.1)

where Yit is the number of new patient visits per provider i in month t, R̃it is the running

variable, the standardized raw rating, which runs from -.05 to +.05. I standardize each

observation by the distance between the actual rating and the nearest one-tenth cuto� point

because there are multiple di�erent rounding cuto�s (e.g., 4.75, 4.85, etc.). This is common

practice (Anderson and Magruder, 2012). Accordingly, β1 is the coe�cient on whether the

provider's rating was rounded up (the coe�cient of interest) and β2 is the coe�cient on the

distance to the rounding threshold. Lastly, β3 is the coe�cient on the interaction between the

running variable and being rounded up. This allows for alternative slopes to the regression

line on both sides of the discontinuity. Also included are cuto�-speci�c �xed e�ects, γc. I

estimate this as a global polynomial of orders 1, 2, and 3. In robustness checks, I estimate

the regressions using alternative bandwidths (distances from the cuto�) both by varying the

bandwidth size by .005 and use optimal bandwidth construction of Calonico et al. (2014). I

weight these regressions based on review count, as higher number of reviews might have an

outsized impact on behavior; this is consistent with more ratings leading to a more precise

signal (Magnusson, 2019). Robustness tests in a subsequent section address the economic

importance of this weighting.

My preferred speci�cation is a global linear (�rst-order) polynomial with alternative slopes

on both sides of the discontinuity, with cuto�-speci�c �xed e�ects and weighting by review
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count.11 The linear polynomial is preferred because a visual examination of the binned

scatterplot of the running variable and the outcome of interest showed no obvious nonlinear

trend, but I report variations by polynomial order and according to global and local linear

regression. Standard errors are clustered at the provider level to account for potential error

correlation within providers.

1.5.2. Di�erence-in-Discontinuities

The second series of estimators I construct are di�erence-in-discontinuities estimators (Grembi et al.,

2016). In addition to the previously mentioned variables, I construct a new variable, POSTit

that evaluates to 1 if the provider-month observation occurs while the ratings were publicly

disclosed online, and evaluates to 0 before they were disclosed.12 I am able to implement the

di�erence-in-discontinuities estimator because although the health system publicly disclosed

provider rating scores only from November 2018 onward, they had been collecting ratings

for many years beforehand. The di�erence-in-discontinuities regression takes the following

form:

Yit = β0 + β11(R̃it > 0) + β2R̃it + β3R̃it1(R̃it > 0) + β4POSTit1(R̃it > 0)+

β5POSTit + β6POSTitR̃it + β7POSTitR̃it1(R̃it > 0) + γc + εit

(1.2)

where just like above, Yit is the number of new patient visits per month. I recover separately

the parameters β1 and β4; β1 captures the causal e�ect of an increased rating on new patient

visit volume when information was not disclosed, and β4 captures the relative causal e�ect

of an increased rating score on new patient visit volume when the information was disclosed.

Again, I include cuto�-speci�c �xed e�ects, allow for alternative slopes on both sides of the
11I also estimate a model that does not include cuto� �xed e�ects. Although the literature on rating

response, e.g. Anderson and Magruder (2012) includes these cuto� speci�c �xed e�ects, I want to ensure
that the estimation is robust to not including this �xed e�ect. According to Cattaneo et al. (2016), the pooled
regression discontinuity estimator without cuto� �xed e�ects can be interpreted as a �double average�; the
weighted average across cuto�s of the local average treatment e�ect for all units facing each particular cuto�
value. The weighted average gives higher weights to the particular cuto�s that are most observed in the
data in terms of observations.

12In these speci�cations, I drop November 2018, a partially treated month. The disclosure began on
November 2, and results are robust to considering this to be a fully treated month.
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discontinuity, and weight by count of reviews. As in the previous regressions, standard errors

are clustered at the provider level.

1.6. Results

In this section, I show results on market responses to quality disclosure. I present two

sets of results about quantity demanded, a baseline regression discontinuity analysis, which

identi�es a causal e�ect based on the rounded star rating, and a di�erence-in-discontinuities

analysis that further leverages the time variation in patient exposure to online ratings.

Next I discuss heterogeneity in the demand response to rating disclosure along a number

of dimensions including provider specialization, patient age and health, and the density of

providers in a given geographic area. I then show the e�ects of an increased star rating

on wait times using a regression discontinuity identi�cation strategy similar to what is used

when analyzing the demand response but examining individual wait times. Finally, I test the

robustness of my results by implementing a number of standard checks from the regression

discontinuity literature.

1.6.1. Information Disclosure and Demand Response

Baseline Regression Discontinuity

In Figure 1.3, I begin by showing the relationship between the monthly new visits for a given

family medicine provider and the distance that the provider's rating is from being rounded

up (the running variable), with the distance normalized to zero. This binned scatterplot with

40 equally-sized bins provides a non-parametric way of visualizing the relationship between

the running variable and the outcome of interest and assists with evaluating the presence

of an e�ect at the discontinuity. Points to the left of the vertical dashed line represent the

conditional mean within a bin for providers with ratings that are rounded down; points to

the right of the vertical line correspond to the conditional mean of providers who have a

rating which is rounded up. Overlaid on this plot are linear regression lines �t separately
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for data on each side of the rounding cuto�.

I observe a large and economically meaningful jump in the quantity demanded of new patient

visits that takes place precisely at the discontinuity. In Figure 1.3, providers who have their

ratings rounded down see approximately 5.5 new patients per month, whereas precisely at

the cuto�, I observe a level increase in the number of additional new patients a doctor sees

of approximately 3 new patients.

In Table 1.3, I provide a regression-based estimate of the causal impact of an increased

provider rating on new patient visits. Columns 1-6 of Table 1.3 present various alternative

speci�cations of Equation 5: linear, quadratic, and cubic in the running variable and allowing

for vs. not allowing for alternative slopes on each side of the discontinuity. Based on the

absence of a non-linear relationship between the running variable and the outcome variable

in Figure 1.3, my preferred speci�cation is a linear �rst order polynomial with an interaction

between the running variable and the indicator for a provider's rating being rounded up;

this is shown in Column 4 of Table 1.3. The estimated jump persists regardless of whether I

assume the relationship between the running variable (distance to rounding) and the outcome

variable (new patient visits) is linear, quadratic, or cubic. I estimate that an increase in

a provider's rating causes 2.96 additional patients per month to visit that provider (on a

baseline of 5.475, this corresponds to a 54% increase). This causal estimate of the demand

response is robust to alternative functional form speci�cations.

Leveraging Time Variation in Disclosure via Di�erence-in-Discontinuities

In Figure 1.4, I show the results of exploiting the unique institutional setting in which the

health care system collected ratings for more than two years prior to ever disclosing provider

quality scores to patients. I plot two separate series in a single graph: the blue dots represent

the conditional mean of the outcome variable, breaking the data into 40 equally-sized bins,

for the period of time when the ratings were disclosed online and when I have data on new

patient visit volume (December 2018-August 2019). In contrast, the red triangles represent
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the conditional mean of the running variable, but for the �pre-disclosure� time period, from

January 2017 to October 2018, when ratings were not observed by patients.

The results of Figure 1.4 are striking. Before online information disclosure of quality scores

for providers, a provider whose score was rounded up was expected to see no additional

patients per month. This zero-magnitude e�ect is seen when looking at the red regression

line, which shows no meaningful jump in the outcome variable as the threshold is crossed

for the pre-disclosure data. However, after disclosure, I observe a large and statistically

signi�cant increase in the number of new patients per month for providers with ratings

rounded up. This can also be seen by noticing that to the left of the vertical dashed line

in Figure 4, the blue dots and red triangles are commingled; in contrast, to the right of the

rounding threshold, virtually all of the blue dots are above the red triangles.

I estimate the causal e�ects that are suggested by Figure 1.4 by using a di�erence-in-

discontinuities regression and report the results in Table 1.4. This regression corresponds

to Equation 6. The coe�cient Rounded Up corresponds to the causal e�ect of an increased

quality score in the pre-disclosure period, while the coe�cient Post X Rounded Up corre-

sponds to the causal e�ect of an increased quality score during the post-disclosure period.

As expected, this e�ect is estimated as not signi�cantly di�erent than zero when ratings are

not disclosed. However, when the ratings are disclosed online, I �nd an e�ect size of 4.496

new patients per month (an 88% increase o� a baseline of 5.100 new patients per month).

This di�erence-in-discontinuities model serves as a test to validate if other factors outside

of online disclosure that also occur precisely as a provider's rating crosses the rounding

threshold might causally a�ect new patient demand. For example, if the internally held but

not released ratings were causing patients to see highly rated doctors more, this might be a

threat to identi�cation. Regression results from Table 1.4 serve to bolster and con�rm the

�ndings of a large demand response to the disclosure of quality ratings for providers.
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1.6.2. Heterogeneity & Potential Mechanisms

I next explore the heterogeneity that underlies the large demand response to quality dis-

closure. These heterogeneity analyses will clarify which sub-populations bene�t from and

which are drivers of the demand response to quality. However, I caution the reader not to

make causal conclusions based on these heterogeneity analyses, as unobserved di�erences

across sub-populations inhibit one from making causal connections. Nonetheless, this se-

ries of heterogeneity analyses sheds light on some of the potential mechanisms behind the

demand-side response to quality disclosure.

Provider Specialization & the Role of Choice versus Referrals

In Table 1.5, I consider the impact of quality disclosure di�erentially across provider special-

ties. The search process by which patients choose providers may di�er considerably across

the specialty of the physicians. Up to this point, my central focus was on family medicine

because patients are frequently required to actively choose their primary care provider. In

fact, HMO plans require the active choice of a primary care doctor. Family medicine is also

the most common provider specialty in the data, comprising approximately 20% of all of

the health system's providers. I now consider the e�ect of quality disclosure on the quantity

of new patient visits at the top �ve specialties as listed for providers on the health system

website (family medicine, pediatrics, internal medicine, cancer, and OB/GYN).

Column 1 of Table 1.5 shows a 54% increase in the number of new patient visits per month

for family medicine doctors (also reported in Table 1.3). This e�ect is large and statistically

signi�cant. In contrast, however, in columns 2-5 of Table 1.5, I do not �nd statistically

signi�cant causal e�ects on the amount of new patient visits for providers with di�erent

specialties. None of the coe�cients are statistically signi�cantly di�erent from zero at the

5% level, regardless of specialty (pediatrics, internal medicine, cancer, and OB/GYN). This

con�rms the prior hypothesis that family medicine providers may be those whose demand

is most impacted by rating disclosure.

31



What might explain this heterogeneity across the specialties of providers? One possibility

is that at the health system, family medicine providers serve as care coordinators who may

create spillovers in terms of future health. If they can shape the trajectory of future patient

health, then it might be reasonable for demand to be most sensitive to quality disclosure

early on in the chain of care. Buttressing this theory is the fact that insurance design often

forces active choices of primary care providers. In contrast, specialists are often found via a

referral, in which the primary care doctor (rather than the patient) makes the decision about

which doctor to see. This logic is consistent with large rating e�ects for family medicine but

not for other specialties.

Another consideration that might drive the di�erences across specialties is the variation in

the breadth of a patient's choice set. For example, within the specialty of family medicine,

it is quite possible that all doctors listed within a geographic region could be chosen by a

patient. However, in the case of specialty care for cancer, for example, if a patient needs care

for a brain tumor, a doctor specializing in hematology/blood cancers might not be a valid

substitute. Thus, it does not surprise me that I recover a large e�ect for family medicine

but not for other specialties, which are more di�erentiated within the broad specialty class.

Working against these interpretations is the possibility that there simply is not a large

enough sample to identify a causal e�ect for the other specialties. The provider-month

panel for family medicine, the most common specialty, has approximately three times as

many observations as the next highest specialty, so the null e�ects might not be driven by

the referral versus active choice hypothesis, but instead driven by sample size limitations.

Older or Younger Patients? Healthy Patients or Sick Patients?

In Table 1.6, I show estimates of the causal e�ect of a higher rating on new patient visits

separately by the �ve age groups of adults used by the health system (ages 18-34, 35-49, 50-

64, 65-79, and 80+). I �nd the largest response to quality disclosure is driven by the 18-34

age group (75% more new patients in that age group per month in response to an increase in

32



provider rating). In older patients, the demand responsiveness to quality disclosure is lower

(although even the 65 to 79-year-old subsample shows a statistically signi�cant demand

response to ratings). Note as well that the base rate for new patient visits at a given

provider declines with patient age (older patients visit new family medicine doctors at a

much lower rate than younger patients).

The overall pattern that the young adults are most sensitive to quality disclosure is consistent

with primary care having characteristics of a credence good, where young individuals (with

many years ahead of them) are sensitive to quality scores because there may face di�cult-

to-observe (in the short run) returns to provider quality. The result in Table 1.6 is evidence

that younger patients are sensitive to quality disclosure for providers, potentially more than

older patients. Chen (2018) studies the impact of physician Yelp ratings on revenues and

patient volume using Medicare claims, but he �nds considerably smaller e�ects than I do.

My age heterogeneity analysis can partly explain that di�erence. Chen's paper uses data

on Medicare patients (the preponderance of bene�ciaries are age 65+) and combines that

data with ratings from Yelp (a website which might be easier for younger rather than older

individuals to navigate). One reason that the aggregate e�ect size I �nd (Table 1.3) is larger

than what Chen �nds in his paper is that I see evidence that a large portion of the e�ect

of disclosure on quantity demanded is driven by the younger population, which he does not

systematically study. Additionally, there are di�erences between the types of information

about physicians found on Yelp and found on the health system website (based on AHRQ

surveys). In prior studies of demand response to quality disclosure, the ratings are from

surveys in which everyone is eligible to participate. In contrast, my setting relies on quality

disclosure comprising of scores from a survey sent to a random subset of patients who received

care. The di�erences between my larger results and the smaller magnitude results seen in

Chen (2018), Brown, et al (working paper), and Luca and Vats (2013) might be due to the

standardized and random nature of the surveys; if this is viewed by patients as more credible,

it might induce a larger demand response. This is consistent with a conversation I had with

a health system CEO who said that he chose to publicly disclose quality scores based on
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AHRQ surveys (such as those studied in my paper) in order to control the information

environment in direct comparison to what patients might �nd if they were to go to Yelp

themselves.

In Table 1.7, I explore the relationship between patient health status and responsiveness to

quality score disclosure. First, I separate patients into healthy and unhealthy patients. I

do this three di�erent ways: (A) if they ever have a comorbidity diagnosis code that would

trigger a �ag in a Charlson Comorbidity Index score, then they are categorized as unhealthy,

e.g., a diagnosis of COPD, dementia, or cancer, for example, (B) I use obesity/BMI ≥30 to

separate patients into healthy vs. sick, and (C) if the patient is ever recorded as a smoker.13

Columns 1-3 of Table 1.7 show the responsiveness to quality scores for the healthy patients.

Providers whose ratings were rounded up saw 54%, 48%, and 55% more new healthy patients

per month (where health is de�ned as no comorbidities, non-obese, and non-smoker, respec-

tively). In contrast, columns 4-6 of Table 1.7 show the responsiveness to quality scores for

the sicker patients. The sicker patients are more responsive to new patient ratings. Providers

with ratings that are rounded up see 64%, 71%, and 54% (comorbidity, obese, and smoker,

respectively) more unhealthy patients per month relative to providers with ratings that are

rounded down.

The fact that sicker patients have a larger response to disclosed quality scores is consistent

with the Grossman model of demand for health (Grossman, 1972). As an individual's health

capital stock depreciates with illness, demand may be more sensitive to the quality of service

provided. I note that the demand responsiveness for one category of health (smoking status)

is not as stark as the other two (major comorbidities as well as obesity). Perhaps this is

because there exists young and healthy smokers, and major comborbidities are often present

later in an individual's life.
13Because my EHR data has only a primary diagnosis on a patient visit level (and not secondary diagnoses),

I compute a Charlson score across all episodes for that patient in the EHR.
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Do Provider Credentials Matter?

In the United States, family medicine is delivered by providers with numerous types of

educational backgrounds and professional credentials. For example, a primary care provider

might be an MD, DO, an advanced registered nurse practitioner, or a physician's assistant.

Each type of provider credential requires di�erent post-secondary education in order to

practice, and consumers may view providers with di�erent professional credentials in a

di�erent light.

In Table 1.8, I explore the impact of professional credentials on the response of patients

to increased quality scores. Half of provider-months in the sample are MDs, and the other

half are non-MDs. I �nd that the response to quality scores exclusively takes place among

MDs. MDs see a 102% increase in the number of new patients per month that is causally

attributed to an increase in a displayed provider score, whereas providers with other pro-

fessional credentials see only a 6.5% increase (not signi�cantly di�erent from zero). The

mechanism behind this di�erence is unclear. Perhaps patients select MDs when they need

a di�erent type of care than when they select non-MDs. Given that the MD credential is

typically the longest license to attain (in terms of years of formal schooling and residency),

it is possible that consumer demand is sensitive to this aspect of provider training.

Another possibility that I suspect is that MDs specialize at more complicated care within

family medicine whereas NPs might specialize in more routine care. If patients value high

quality ratings more for more complicated care, that could generate the patterns observed

in Table 1.8, with the majority of the causal e�ect driven by MDs.

Geographic Density of Physicians

I investigate the e�ect of provider density per capita on the demand responsiveness to

ratings. In a model of search for physicians, more information may lower search costs, and

provider density per capita may a�ect search costs, as well. I split the providers in the panel
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into groups which vary according to number of providers per capita in a given geographic

area. Although the actual market for primary care is hard to calculate, I form geographic

counts of providers at the county level. This does not, of course, proxy perfectly for actual

physician geographic markets. However, I use counties because I can acquire the number

of providers not just from the health system but from all physicians using the Area Health

Resource File. Both per capita levels of all providers and per capita levels of the health

system's providers are computed using 2017 county-level census data (from the Area Health

Resource File [AHRF]). I assign a provider to a particular county by taking the modal

county from which he or she draws patients, and then compute the number of primary care

physicians per capita in each county (according to the AHRF as well as using the health

system's physicians only). The distribution of primary care provider density is more or less

split into two groups, which I call �low� and �high�.

I �nd that providers working in above-median density counties see a much larger increase in

number of new patients per month attributable to ratings (72%, 84%, for the all-physicians

[AHRF] and the health system only cuts, respectively). See Table 1.9. In contrast to the

large demand response for providers who draw patients from areas with a large number of

family medicine doctors per capita, I do not �nd a statistically signi�cant causal impact

of ratings for providers in the below-median per capita density markets. An important

factor to consider is that substitute information about provider quality is not randomly

distributed across markets; for example, Yelp or HealthGrades may have substantial presence

in large urban environments, but not in smaller rural settings. The presence of endogenous

substitute information about quality is a di�cult challenge to overcome. I am also hesitant

to generalize the results from this heterogeneity analysis because within the health system's

geographic area of operation, there may be insu�cient variation in provider density across

geography. Perhaps the results might di�er if I included the nation's largest cities such as

New York, Chicago, and Los Angeles. As such, I believe that more research on this question

is warranted.
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I also test the model of increasing monopoly (Satterthwaite, 1979), which hypothesizes that

as physician supply in an area increases, the price of a reputation good may increase as

the number of sellers in a market rises (in contrast to the canonical model where prices

fall as number of sellers rise). The Satterthwaite increasing monopoly model hinges on

the hypothesis that consumer search is less e�cient in markets with many sellers. The

conclusion of that model follows from two propositions. First, as the number of physicians

in a market increases, the amount of consumer information about each physician decreases.

For example, in a small town, it is easy to ask around for information about the town

doctors, but in large cities, asking around about quality information for all doctors may be

prohibitively costly. The second proposition of the increasing monopoly model is that as

search becomes increasingly di�cult, consumers become less price sensitive. It follows from

these two propositions that as physician supply increases, fees for primary care rise.

The distribution of primary care providers in the area resource �le four the counties served

by the health system falls in three bins, which I call �low�, �medium�, and �high� density of

primary care providers. The distribution of health system physicians (by county) is more

or less split into two groups, which I call �low� and �high�. I �nd that the physicians from

the �high� number of physician counties do not have as large in magnitude an e�ect of

quality disclosure on quantity demanded as the physicians from lower-count communities

(Appendix Table A1). Although Pauly and Satterthwaite (1981) �nd evidence supporting

Satterthwaite (1979), one possible reason that I �nd a larger response to disclosure in less

physician-rich markets its because dense markets already have other unobserved (by the

econometrician) sources of information about quality. For example, in larger cities, there

may be better complements to the disclosed health system quality ratings (e.g., ratings from

Yelp or HealthGrades) compared to smaller counties. The complementarities between the

health system's quality disclosure and other sources of physician quality information make it

more di�cult to evaluate the e�ect of number of physicians within a geography on the e�ect

of quality disclosure. Without exogenous variation to exploit on the number of physicians in

an area, it is hard to tell the causal e�ects of the number of physicians on consumer search.
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1.6.3. Sorting

In the previous sections, I showed that patient demand is responsive to quality score disclo-

sure. In this section, I discuss the equilibrium consequences of this disclosure by studying

the impact of provider rating disclosure on patient sorting. I study three dimensions of

sorting: (1) Does the information disclosure shift patients to doctors who supply greater

inputs to health? (2) Does the quality disclosure have an e�ect on brand new patients to

the health system, on existing patients, or both? (3) Does the disclosure cause congestion at

high-quality sellers? I use this analysis of the e�ect of ratings on wait times to understand

who are the winners and losers of quality disclosure.

Inputs to Health

Many critics of disclosing doctor scores online claim that star ratings are uncorrelated with

true provider quality, or worse, that ratings or report cards cause doctors to shift e�ort

towards activity with low medical value but high rating value (such as putting �sh tanks in

a waiting room in order to receive favorable reviews). Doctors at the health system often

complain to their administration about having scores posted online. (The most frequent

critics are the low-rated providers.) The concern about providers reallocating e�ort towards

tasks based on alternative performance measures is detailed extensively by Feng Lu (2012)

in the framework of a multitasking agency problem. I assess whether this is occurring in my

setting by measuring whether highly rated doctors supply greater levels of inputs to health.

The health system uses nine metrics to assess primary care quality; I study whether the

highly scoring doctors in the online ratings also score highly on these nine internal quality

metrics. The metrics are known as process measures, which is one of three types of per-

formance metrics in the taxonomy created by Avedis Donabedian, the other types being

outcome metrics and input metricss (Dranove, 2011). Outcome metrics (e.g., mortality) are

challenging to use for evaluating primary care because the e�ects of primary care may be

di�cult to observe in the short run, and inputs (sta�ng ratios, hours of training) may be
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uncorrelated with actual desired results. Process measures, such as whether the providers

use accepted practices and follow guidelines, are certainly not perfect measures of quality,

but are nonetheless helpful tools to evaluate whether the providers are supplying commonly-

accepted inputs to health. I rely on such process measures.

The nine metrics the health system evaluates are: frequency of BMI counseling, cervical

cancer screenings, colorectal cancer screenings, diabetes management care, hypertension

management care, mammography, pneumococcal vaccination, and 6- and 12-month depres-

sion followups. Doctor performance on these metrics is measured only for clinically eligible

patients (e.g., the mammography denominator is based only on women withing the age

range of government mammography guidelines). I compare the propensity of a doctor to

undertake recommended medical care to their average star rating. The relationships are

plotted in Figure 1.5; the best �t line is plotted over a binned scatterplot of the data.

For all nine of the process metrics, higher-rated providers are also supplying greater inputs to

health. Note that the binned scatterplots are tighter and steeper for the cancer screenings

and vaccination relative to the BMI, hypertension, and diabetes counseling scatterplots.

This suggests a stronger relationship between process metrics and quality score in settings

where doctors alone have greater control over inputs to health relative to settings that are

more jointly determined by provider inputs as well as patient lifestyle and behavior such

as weight and blood pressure. The overall slopes are consistent with Perez and Freedman

(2018), who �nd that best-ranked hospitals had better clinical quality scores than worst

ranked hospitals.

In sum, I conclude based on these relationships that in addition to disclosure shifting patients

to higher-rated providers, disclosure is shifting patients to providers who supply greater

inputs to health, on average.
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Is Disclosure Causing Market Expansion or Switching?

Is the demand response to quality disclosure primarily having an e�ect on patients who

are brand-new to the health system, or is the e�ect concentrated among switchers, those

who choose new doctors but have already sought care from other providers within the health

system? I investigate this question to better understand whether quality disclosure primarily

causes a market expansion or a reallocation of established patients. It is possible that both

occur. To di�erentiate across this dimension, I use the EHR data to identify brand-new

patients to the health system (which I label de novo patients) versus established patients

(new patients to a particular doctor, but not to the health system). The EHR data extract

that I have does not have an indicator for de novo patients, but does have an indicator for

patients who are new to a particular provider. I use a three-pronged data-driven method

to identify de novo visits. The visits must be (1) the patients' �rst recorded visit in the

entire extract of the EHR I have access to (2017-2019); (2) �agged as a �new visit� for the

particular doctor, meaning even if it is the patient's earliest occurrence in the EHR �le, but

it is not a �new visit� with that particular provider, it does not count as de novo; and (3)

after November 2018, which creates a nearly 2-year window in which the patient did not

appear in the EHR at all before their �rst appearance. These rules are meant to prevent

as many patients who had already visited other health system doctors from inadvertently

getting classi�ed as de novo. A patient could have seen a health system doctor in 2015

(before my data window) and had a subsequent �rst visit with any provider after November

2018, but I think this gap would be unlikely.

The results of this market expansion versus market stealing breakdown are displayed in

Figure 1.6. This �gure shows that patients who already had previous contact with the

health system, but with di�erent providers, are driving the response to quality disclosure

rather than de novo patients. In Appendix Table A2, I estimate that the additional new

patients a provider sees per month who are switching from other health system providers

increases by 2.059 new patients per month (e.g., 60% increase on a baseline of 3.454 found
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in column 4). However, for de novo new patients (those who have never been to any doctor

at the health system, I do not observe a statistically signi�cant increase in the number of

new patients a provider sees if they have a higher rating due to rounding (Appendix Table

A3).

I view Figure 1.6 and Tables A2 and A3 as suggestive evidence that the response to demand

occurs mainly along the margin of switching, causing a reallocation of previously existing

patients towards physicians and other providers who are rated more highly in terms of

quality scores.

Wait Times and the �Price of a Star�

In this section, I explore the causal e�ects of quality disclosure on congestion. In doing so,

I link my empirical results to the theoretical model by examining wait times. Wait times

may play a role in rationing scarce quality because health care is di�erent from conventional

product markets in part due to the presence of third-party payors (insurers). Because

patients can often face the same price for care from any provider in their insurance network,

there is no direct out-of-pocket price that can easily vary in physician quality. This directly

contrasts with conventional products, where sellers can immediately raise (or lower) prices

in response to a high (or low) quality score when scores are disclosed.14

To motivate the possible role that wait times have in equilibrating supply and demand after

ratings disclosure, I �rst focus on conventional product markets as a benchmark. In the case

of conventional products, Wolinsky (1983) models an equilibrium where individual sellers set

prices in response to buyers' expectations of quality. In that model, Wolinsky establishes

a separating equilibrium where each price signals a unique level of quality. In contrast,

health care providers do not have any way to adjust prices paid by consumers in the short

run after disclosure. Conditional on service line (e.g., family medicine) and insurance plan

14For example, sellers can immediately raise or lower prices in response to changes in ratings on the online
tutoring platform www.wyzant.com, where sellers name their own prices and star ratings are a salient part
of product search.
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membership, patients at the integrated health system pay the same amount out-of-pocket

and have the same access to the same set of doctors. In sum, at the point-of-sale to a patient,

the patient e�ectively pays the same out-of-pocket price for any primary care provider they

see, regardless of the quality rating of a provider. High-quality providers cannot charge

patients more based on their high rating (or any other factor). Of course, physicians could

always leave the system, but in the short run, the patient does not face a higher price for

quality and capacity and entry are �xed.

Does the market have any way to �nd equilibrium in the absence of a monetary price for

di�erential quality? Richards-Shubik et al. (2021) suggests that congestion (or wait times)

play a similar role to prices in such markets. I evaluate this hypothesis by studying wait

times, measured in the number of days between when an appointment is booked and when

that appointment takes place.

For each outpatient visit with family medicine providers, I compute the total number of

days that the patient waited for care (using the EHR data to gather the number of days

between when an appointment is entered into the system and when it occurs). I make a

few sample restrictions. First, I exclude from the data all visits that occur more than 180

days after they are scheduled, as these represent visits for which patients do not likely care

about wait time to see a doctor (there is a small mass of visits that are scheduled exactly

one year out). Second, I drop visits that occurred at a walk-in clinic (as the patient might

not have a choice of a particular provider); individuals less than 18 years old; visits where

the �ag for the visit being new to a provider was not present (primarily post August 2019);

and visits when the wait time was coded in error as being less than 0 days.

To identify the causal e�ect of ratings on wait time, I exploit both the variation induced

by rounding ratings to the nearest tenth as well as the variation in timing of pre- vs. post-

disclosure of quality scores to estimate both a regression discontinuity model as well as a

di�erence-in-discontinuity model in the spirit of the identi�cation strategy laid out in Section

5. These models assess whether patients wait longer to see a provider with a higher rating.
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The regression is similar to the model estimated in Tables 3 and 4, but run at the individual

level rather than provider-month level, and I also include a diagnosis code �xed e�ect (using

the primary ICD9 code for the visit) because the patient's type of medical condition when

arriving at the doctor might dictate how quickly the provider moves them to the front of the

line. For the speci�cations presented in Table 10, I restrict the bandwidth to 0.025 on both

sides of the cuto� of the normalized running variable, and report robust standard errors.

The results in Table 1.10 show that a higher star rating causes new patients to wait longer to

receive care. Column 1 of Table 1.10 presents the pre-disclosure (placebo) regression discon-

tinuity speci�cation which �nds no increase in wait times (statistically indistinguishable from

zero). Column 2, the regression discontinuity speci�cation that relies only on post-disclosure

data, shows an e�ect of 2.105 additional days on a baseline of 8.765 (24.0%). Finally, the

di�erence-in-discontinuities (Column 3) shows that a higher star rating causes new patients

to wait 2.695 days longer to receive care relative to a baseline of 8.848 days (a 30.5% increase).

In Appendix Table A4, I perform a barrage of robustness tests regarding these speci�ca-

tions. First, in the spirit of Imbens and Lemieux (2008) and Eggers and Hainmueller (2009),

I test for jumps at non-discontinuity points. I construct two �false placebo� thresholds in

the running variable, at -0.025 and 0.025 instead of 0, and �nd no statistically signi�cant

increase in wait time at these placebo points (this is true both during the disclosure period

as well as prior to the disclosure period). For the �true� discontinuity (0.00 from the round-

ing threshold) during the period that the ratings were public online, I �nd a statistically

signi�cant increase in the wait time for new adult patients of 2.450 days; however, there is no

statistically signi�cant di�erence at the true discontinuity during the pre-disclosure period

(as expected). To further ensure that I am picking up a causal e�ect, these robustness test

regressions are estimated by �rst residualizing wait time on cuto� �xed e�ects and ICD-9

�xed e�ects and then estimating optimal bandwidth local linear regression (Calonico et al.,

2017).15 The optimal-bandwidth residualized binned scatterplots with local linear regression

best �t lines for the pre-disclosure period and post-disclosure period are found in Appendix
15I use the rdrobust and rdplot packages in Stata.
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Figures A4 and A5, respectively, and illustrate an increase in wait times at higher rated

physicians occurring when quality ratings are disclosed but not before.

I interpret this �nding to represent a �shadow price of a star.� That is, new patients are

willing to wait 30.5% longer to get care from a physician who has a one-increment increase

in their quality score (e.g., the e�ect of moving from a 4.7 to a 4.8). Furthermore, I can ex-

trapolate this estimate to calculate how much patients are willing to wait for a one standard

deviation increase in quality. If I make the assumption that the e�ect size scales linearly as

ratings increase, my estimate of a willingness-to-wait of 2.695 wait days for a 0.1 star increase

represents a 3.05-day willingness-to-wait for a standard deviation increase in star rating (st.

dev = 0.13). I argue that the wait time �shadow price of a star� operates similarly to a

traditional price by helping supply and demand clear in this market. This market-clearing

role of wait times, in which a higher-rated physician �costs more� in terms of number of days

a patient must wait, helps facilitate equilibrium because if patients are heterogenous in their

willingness-to-wait (just like patients may be heterogeneous in willingness-to-pay for conven-

tional products), an equilibrium queue may emerge in the spirit of Lindsay and Feigenbaum

(1984). Here, sorting occurs on the basis of underlying valuation of quality, and disclosure

creates a market for physician quality which did not exist in the absence of ratings.16

In addition to examining the e�ect of a quality score on new patients' willingness to wait for

care, I also investigate what happens to wait times for established patients when a provider's

quality score increases. I previously showed that an increase in a providers' rating causes

more new patients to see that provider. This creates congestion for established patients. In

Table 1.11, I show that established patients wait longer to receive care from a doctor with a

higher quality score. Columns 1 and 2 show pre- and post-disclosure regression discontinuity

estimates, and column 3 shows an e�ect of a 1.736 day increase in wait times on a baseline
16People willing to wait longer may have less acute needs and one possible implication is that quality

disclosure with wait times as shadow prices could lead to suboptimal allocation of resources. However,
disclosure without price adjustment may lead to more equitable allocation compared to disclosure where
prices can respond depending on the relative distributions of willingness-to-pay versus willingness-to-wait in
the population.
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of 12.8 days (12% increase). Because these patients are not shopping for a new provider, I

interpret this to be evidence of congestion spillovers: If capacity of family medicine providers

is restricted in the short run, since additional patients visit providers due to higher ratings,

the established patients face congestion. Clearly, these patients su�er as a result of the

quality disclosure. They were already seeing the higher-rated doctor, but disclosure causes

them to wait longer for care because newer patients are now sorting to that doctor, as well.

I also explore whether the congestion e�ects of star ratings di�ers by the urgency of the

patient's medical condition. From a high-level perspective, if patients wait longer to see

family doctors with higher star ratings, all else equal, and lower star rating doctors have

excess capacity (or �slack�) because of this additional volume at higher-rated doctors, it

could be ine�cient for patients to wait longer for conditions that might end them up in

the emergency department. Using the decomposition between productive and allocative

e�ciency (for example, see Baicker and Chandra (2011)), I note that it may be e�cient

from the perspective of the health system for patients to wait longer for a physician with

a higher star rating for non-urgent conditions like a checkup but not for urgent conditions.

Perhaps the preferences of the patient for a checkup from a higher-rated physician are such

that they are willing to wait longer, and there is little e�ciency cost to this additional

waiting which re�ects a revealed preference argument about patient choices. However, if

patients are waiting longer for care that is urgent in search of a higher star (such as care

that would wind them up in the emergency room if not treated quickly), then it might be

productively ine�cient for these patients to be reallocated or sorted to doctors with excess

availability.

I test this by restricting to a subset of cases where patients are seeking care from family

medicine doctors where ED care might be needed but is preventable or avoidable. I use a tax-

onomy of diagnosis codes developed from an algorithm developed by John Billings at NYU

Wagner.17 In Table 1.12, I show that patients are willing to wait longer for avoidable ED
17Available here: https://web.archive.org/web/20160313195339/https://wagner.nyu.edu/faculty/billings/nyued-

background
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care when star ratings are disclosed (but not before) using the same regression-discontinuity

design as before. When stars are disclosed (column 2), patients are willing to wait 2.37

additional days for a higher-rated physician when they are seeking care that the Billings, et.

al. algorithm would consider to be urgent where ED care may be needed but is preventable

or avoidable. If these patients were simply reallocated to doctors with lower stars who had

excess capacity, it may lead to an e�ciency improvement from the perspective of the health

system.

It is important to note that congestion in the absence of a price does not imply ine�ciency;

in fact, as I detail in my model section, congestion can serve a role to help clear the market,

allocating resources across various individuals who di�er by willingness-to-wait.

In conclusion, this congestion e�ect (and willingness-to-wait for quality) is informative in

explaining how quality disclosure operates in markets with limited ability to adjust prices.

How is equilibrium reached? Sorting patients based on willingness-to-wait for quality is one

way in which this market can reach equilibrium in the absence of a price. The ability of this

market to reach equilibrium may be dependent on sorting based on willingness to wait for

quality.

1.6.4. Robustness

In this section, I present a number of robustness checks. I address potential pitfalls relating

to the bandwidth used for the regression discontinuity estimates, to the functional form

of the running variable, and to the use of local linear regression. I also test for covariate

balance. I �nd that the results are robust to these tests; although my point estimates very

minimally across some speci�cations, the direction and magnitude of my estimates holds up

under the barrage of traditional regression discontinuity robustness tests.18

18In fact, the �rst robustness check is seen in the presentation of Table 1.3, where I show that the results of
the baseline regression discontinuity model are invariant to linear, quadratic, or cubic polynomial functional
form.
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Bandwidth

To check that the regression results above are not sensitive to proximity to the cuto� and

choices of the econometrician, I vary the bandwidth under which data is included in the

regression discontinuity. Because regression discontinuity models are identi�ed locally at

the jump in the conditional function of the running variable, data far from the discontinuity

can lead to biased estimates (Lee and Lemieux, 2010). However, the more I restrict to a

very narrow bandwidth around the discontinuity, the less data is available for estimation.

Accordingly, adjusting the bandwidth induces a bias-variance tradeo�.

The results hold as I increasingly restrict the bandwidth (see Table 1.13). I plot the coe�-

cients and standard errors for the baseline speci�cation causal e�ect as I vary the bandwidth

used in estimation from (-.05,.05) to (-.01,.01) in Figure 1.7. I �nd that the results are in-

sensitive to adjustment in bandwidth size. (As bandwidths decrease, there is less data on

which to estimate, so con�dence intervals widen slightly.) However, the overall results are

invariant to bandwidth variation. I also plot the optimal bandwidth selected by the routine

of Calonico, Cattaneo, and Titiunik (2014), denoted by the dashed line labeled �CCT.�

Manipulation, Density Tests and Alternative Sample De�nitions

A concern in regression discontinuity design studies is that there is precise manipulation

of the running variable by agents who want to be on a certain side of a cuto�. From a

high-level perspective, I do not think this is likely a problem in this setting, since a provider

would have considerable di�culty in manipulating their rating to be rounded up or down.

Why? Because provider surveys are sent randomly and submitted by only a small number of

patients, and a provider would have no way of knowing ex ante which patient would receive

and ultimately submit a survey. Accordingly, they would have to exert e�ort on every single

patient in order to be on a given side of the threshold (rounded up). Also, providers do not

know their own distance from the threshold during the time period I study. (After my study

window ended, providers were made known about their current raw underlying rating, but
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during my data availability, providers had no way of knowing if they were close to being

rounded up or far from the threshold.) Nonetheless, to test for manipulation of the running

variable, I plot the density of the running variable in discrete bins on both sides of the

threshold in the spirit of McCrary (2008).

Appendix Figures A6 and A7 show that there is no discontinuity in the density of the

running variable (quality rating on the 15th day of the month) that would suggest bunching

on one distinct side of the threshold. Figure A6 plots this histogram for all the providers

in the data, where Figure A7 plots the density for the subsample of providers who have

only a single disclosed score in a given month and do not have multiple scores in a given

month. Although the density is symmetric around the threshold in both settings, there is

a symmetric dip in the number of providers very close to the threshold in Figure A7. This

dip is explained by fact that providers with more than one rating a month (say, who show

both a 4.7 and 4.8) are likely to have a closer score to the rounding threshold given that

they crossed it.

As an additional robustness check to make sure that the baseline regression results are robust

to not dropping the provider-months which cross the rounding threshold in a given month, I

plot the regression discontinuity results and report regression tables for the sample where I

do not drop these observations (Appendix Figure A8 and Appendix Table A5). The results

are quantitatively and qualitatively similar to the baseline speci�cation.

As mentioned in footnote 10, as an additional robustness check, I estimate the main baseline

regression discontinuity model (number of new visits per month) without including cuto�

speci�c �xed e�ects, which results in a coe�cient which can be interpreted as a �double

average�, the weighted average across cuto�s of the local average treatment e�ect for all

units facing each particular cuto� value, giving higher weights to the particular cuto�s

that are most observed in the data set. Table A7 shows the estimates from the Rounded

Up coe�cient of interest for the same six baseline speci�cations as the cuto�-speci�c �xed

e�ects model found in Table 1.3. The estimates are comparable in both magnitude and
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direction across all speci�cations.

Covariate Balance

In Appendix Figure A9, I show that based on observable predetermined characteristics,

physicians with ratings that are rounded up display no di�erent qualities than those just

rounded down. I include these covariate balance tests for four predetermined attributes in

the provider�month panel (the probability a physician is male, the probability the provider

is an MD, the probability they are employed in a high density of provider market [using

the de�nitions from section 6.2.4] and the elapsed years since that provider started working

at the health system). Figure A9 shows covariate balance across each of these available

predetermined attributes. Appendix Table A6 shows the regression estimates from these

covariate balance tests. Physicians with ratings rounded up seem to be no di�erent than

physicians with ratings rounded down based on available predetermined observables.

Weighting & the Signi�cance of Number of Reviews

I also show my results are robust to whether or not I weight the observations by rating count

in addition to varying the bandwidths and global polynomials in Table 1.14. Following the

practice of Magnusson (2019), I estimate the baseline speci�cation unweighted, weighted

by count of ratings, and weighted by inverse rating count. Weighting by count allows the

providers with more precise information signals due to more scores reported on the website to

re�ect that precision, whereas weighting by inverse count allows providers with fewer ratings

(and less precision of signal) to count for more. I �nd that the results are as expected: count

ratings show a stronger causal e�ect, and inverse count ratings shrink the e�ect towards the

null. Unless otherwise indicated, throughout this paper, weighted estimates are shown, as a

higher count of reviews may re�ect a higher level of information available to consumers (in

the spirit of Bayesian updating).
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1.7. Discussion

1.7.1. Limitations

In this paper, I use a physician-level star rating disclosure policy at a large midwestern

health care system to study the e�ects of quality disclosure on economically meaningful

outcomes such as demand, sorting, and congestion. Using a regression discontinuity design,

I �nd that quality disclosure caused a response in the quantity demanded of highly rated

physicians, leading to a 2.96 new patient per month increase caused by an additional tenth

of a star. I also �nd that the demand response was heterogenous across provider specialty

and age, among other dimensions, as well as �nding that disclosure caused longer wait times

at higher rated physicians.

This study is not without limitations, however. First and foremost, I do not have data on

many dimensions of physician behavioral response to ratings disclosure that would allow

me to identify a supply response on the part of physicians. For example, I am not able

to ascertain if physicians substituted to providing di�erent services that patients might

demand. A common concern is that patients could reward physicians by leaving high ratings

for providing medically unnecessary services, such as prescribing antibiotics for ear infections

when antibiotics are not helpful or even harmful (Martinez et al., 2018). Because my data

set does not have granular procedure code data about what treatments physicians performed,

I am not able to test whether physicians responded to quality disclosure by altering the type

or quality of care they provide or by adjusting across di�erent dimensions of quality.

Another limitation to this paper is that I do not have longitudinal data on physician rates

of screenings, vaccinations, and counseling services. The analysis displayed in Figure 1.5

could be more informative about the causal e�ect of rating disclosure on these services

had I been able to construct a panel over time of physician propensity to supply inputs

to health. Because I only have a single snapshot of physician screening and vaccination

rates to provide these services but ratings �uctuate over time, I cannot estimate regression
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discontinuity models using these outcomes in the same sense as in other sections of the paper.

Furthermore, as is common in papers studying the impacts of family medicine, it is di�cult

to observe direct health outcomes as compared to specialties such as cardiac surgery, where

mortality and adverse events are far more common. Nonetheless, despite these limitations,

I show that ratings, which cause changes in demand, also shift patients to doctors who, on

average, perform more of these medically recommended services.

Lastly, these results may not generalize to other populations that may di�er demographi-

cally or in their propensity to use quality information to search for physicians. Although

generalizability is a possible concern (the large Midwestern health system cares for a popu-

lation that is more White and more rural than the United States as a whole), I nevertheless

note that this is an ideal population to study the questions posed in this paper. First, the

system covers a broad geographic and demographic area (four states with both rural and

urban areas). Second, the advantages to studying the impacts of quality disclosure in my

setting, where quality disclosure is mandatory, where patients face the same price for any

provider, and where there is unique pre- and post-disclosure data, suggests that my setting

is an ideal laboratory for this study.

1.7.2. Conclusion

In this paper, I provide new evidence on the causal e�ects of star rating disclosure on demand,

sorting, and congestion in markets where prices cannot readily adjust to new information

about quality. I leverage a unique institutional environment and a causal framework to show

that demand is responsive to medical provider star ratings and that ratings sort patients to

higher-quality providers.

I �nd a 54% increase in new patient visits caused by a provider having their rating rounded

up relative to rounded down. I explore the drivers of this demand response by addressing

heterogeneity, such as age, health status, and provider type. Younger patients are more

responsive than older patients (75% increase in new visit volume by 18- to 34-year-olds
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relative to 58% by 60- to 64-year-olds), perhaps because the younger patients are more

accustomed to seeking quality information on the internet, and sicker patients are more

responsive than healthy patients, perhaps due to sicker patients placing a greater value

on physician quality. I show that disclosure shifted volume to providers who on average

produce greater levels of medically recommended inputs to health (screenings, counseling,

and vaccinations), and I show that a higher online rating also causes increased wait times at a

provider. New patients wait 30.5% longer for a doctor with a higher rating and established

patients wait longer, too (12.6% longer). These results are consistent with my model of

congestion e�ects in which wait times serve as a shadow price for quality and equilibrate

the market.

Taking all the evidence together, quality disclosure appears to facilitate an equilibrium

outcome in which patients actively look for information about product quality, in which

they act on that information by substituting to higher-rated and higher-quality sellers, and

select an experience good based on their willingness to pay (wait) for quality. Using the

reduced form estimates and extrapolating to a one-standard deviation increase in quality, I

estimate the shadow price of a star is that consumers are willing to wait 3 additional days

for a one standard deviation increase in quality. I argue that this shadow price facilitates

equilibrium market clearing in a setting where price di�erences are unable to do so.

My results shed light on the complex role that quality disclosure plays in market outcomes,

particularly in the market for health care and other insured products where prices cannot

immediately vary after disclosure. Many health systems have adopted quality ratings in

the past decade, and business leaders (e.g., hospital management) along with policymakers

continue to focus on expanding the scope of physician ratings. Understanding the e�ects

of star rating disclosure on such markets is key to designing, implementing, and evaluating

policies meant to �x market imperfections by improving patient access to information about

quality. This paper contributes to the growing body of empirical literature on information

disclosure by providing novel evidence about information's e�ect on non-price markets and
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these results inform scholars as well as policymakers about the equilibrium e�ects of quality

disclosure.

1.8. Tables & Figures

Table 1.1: Summary Statistics

Patient Level

Mean Median SD

Age 38.76 36.86 24.49
BMI 27.51 26.98 8.26
B.P. (systolic) 118.87 119.45 13.83
B.P. (diastolic) 72.06 72.00 9.27

Race = White 0.89
N (Visits) 12,575,190
N (Patients) 998,244

Provider-Month Level

Mean Median SD

Monthly New Visits 7.34 4.00 10.08
Monthly Visits 178.48 172.00 94.34
Rating Score (continuous) 4.78 4.82 0.13
Rating Count (Dec '18) 228.55 206.50 127.30
Rating Count (Aug '19) 298.28 264.00 171.59

Physicians share (MD/DO) 0.55
Mid-level practitioner share 0.45
Distinct providers 340
N (Provider-Months) 2,730

7
Note: Patient level data comes from EHR and provider-month data comes from the EHR
merged with the ratings data. Provider�month level data is restricted to family medicine
providers only.
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Table 1.2: Outcome: Monthly New Visits (OLS)

(1) (2) (3) (4)
Displayed Rating Score

(...,4.5,4.6,4.7,...) -16.48∗∗∗ -16.52∗∗∗ -16.67∗∗∗ -16.71∗∗∗

(3.365) (3.369) (3.614) (3.619)
Controls:
Month-Year FE X X
Professional Credential FE X X

Observations 2,730 2,730 2,730 2,730

Note: Standard Errors clustered at the provider level and observations weighted by

review count. Restricted to Family Medicine providers. Professional Credential FEs

include MD, PA, CNP, APR, DO, and other professional credentials.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1.3: Monthly New Visits - Family Medicine

(1) (2) (3) (4) (5) (6)
Rounded Up 2.978∗∗ 2.958∗∗ 3.850∗∗ 2.956∗∗ 4.287∗∗ 5.550∗∗

(1.347) (1.336) (1.542) (1.332) (1.738) (2.352)
Functional Form: Linear Quad. Cubic Linear Quad. Cubic
Treatment Interaction No No No Yes Yes Yes
Cuto� FEs Yes Yes Yes Yes Yes Yes

Mean Below Threshold 5.475 5.475 5.475 5.475 5.475 5.475
% Change 54.4 54.0 70.3 54.0 78.3 101.4
Observations 2730 2730 2730 2730 2730 2730

Note: Standard Errors clustered at the provider level and observations weighted by review

count. Treatment Interaction refers to an indicator permitting di�erent slopes on each side

of the discontinuty.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.4: Di�erence-in-Discontinuities

New Visits per Month
Post x Rounded Up 4.496∗∗∗

(1.244)

Rounded Up -1.414
(0.899)

Distance to threshold 19.38
(20.37)

Dist x Rounded Up -36.53
(28.10)

Post -0.940
(0.713)

Post x Distance -46.15∗

(26.96)

Post x Dist x Rounded 0.689
(45.41)

Mean below threshold 5.100
% Change 88.2
Observations 7762

Standard errors clustered at the provider level.

and observations weighted by count. Restricted to

family medicine providers and speci�cation is

linear with interaction. See text for pre/post dates.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.5: Monthly New Visits - By Leading 5 Specialties

(1) (2) (3) (4) (5)
Family Med Pediatrics Internal Med Cancer OB/GYN

Rounded Up 2.956∗∗ 0.0532 -3.983∗ 2.055 -2.086
(1.332) (1.394) (2.271) (3.219) (2.231)

Distance to threshold -26.92 17.80 -22.07 -16.42 -50.78
(24.86) (28.06) (61.38) (94.48) (102.6)

Dist × Rounded -35.84 -94.96∗ 54.79 -113.9 134.4
(45.82) (51.64) (94.15) (141.2) (156.8)

Cuto� FEs Yes Yes Yes Yes Yes

Mean below threshold 5.475 4.805 5.914 14.664 14.060
% Change 54.0 1.1 -67.3 14.0 -14.8
Observations 2730 983 529 657 499

Standard errors clustered at the provider level & observations weighted by count.

Preferred speci�cation is linear trend plus interaction. Bandwidth (-.05,.05)
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.6: Monthly New Visits - By Patient Age Groups

(1) (2) (3) (4) (5)
Age 18-34 Age 35-49 Age 50-64 Age 65-79 Age 80+

Rounded Up 1.194∗∗ 0.688∗∗ 0.593∗∗ 0.291∗∗ 0.0881
(0.535) (0.321) (0.268) (0.134) (0.0616)

Distance to threshold -11.72 -4.922 -7.703 -4.601 -2.570∗∗

(7.630) (5.488) (5.002) (3.129) (1.293)

Dist × Rounded -16.02 -10.95 -5.895 1.034 1.549
(15.63) (11.11) (9.022) (4.837) (2.205)

Cuto� FEs Yes Yes Yes Yes Yes

Mean below threshold 1.576 1.105 1.020 0.479 0.165
% change 75.8 62.2 58.2 60.8 53.4
Observations 2529 2529 2529 2529 2529

Standard errors clustered at the provider level & observations weighted by count.

Preferred speci�cation is linear trend plus interaction.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

57



Table 1.7: Monthly New Visits - By Patient Health Status

Healthy Sick
(1) (2) (3) (4) (5) (6)

Zero Comorb. Non-Obese Nonmoker Comorbid Obese Smoker
Rounded Up 2.867∗∗ 1.952∗∗ 2.337∗∗ 0.357∗∗ 1.271∗∗∗ 0.887∗∗

(1.227) (0.974) (0.997) (0.160) (0.453) (0.414)

Distance to threshold -38.28 -25.32 -34.37∗ -4.022 -16.99∗∗ -7.933
(24.23) (19.34) (20.23) (3.352) (8.497) (8.244)

Dist × Rounded -15.29 -10.86 -7.786 -4.661 -9.095 -12.16
(42.99) (33.43) (36.13) (5.978) (16.31) (13.50)

Cuto� FEs Yes Yes Yes Yes Yes Yes

Mean below threshold 5.303 4.082 4.206 0.558 1.780 1.655
% Change 54.1 47.8 55.5 63.9 71.4 53.6
Observations 2529 2529 2529 2529 2529 2529

Standard errors clustered at the provider level & observations weighted by count.

Preferred speci�cation is linear trend plus interaction.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.8: Monthly New Visits - By Provider Credentials

(1) (2)
MDs Not MDs

Rounded Up 4.203∗∗ 0.506
(1.981) (1.838)

Distance to threshold -11.39 -20.86
(31.76) (40.00)

Dist × Rounded -75.87 -10.09
(62.48) (68.77)

Cuto� FEs Yes Yes

Mean below threshold 4.120 7.847
% Change 102.0 6.5
Observations 1363 1367

SEs clustered at the provider level

Weighted by rating count. Bandwidth (-.05,.05).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.9: Monlthy New Visits, by Geographic Density of Family Medicine Providers

(1) (2) (3) (4)
Low Density High Density Low Density High Density

Rounded Up 1.927 4.079∗ 2.166 4.769∗∗∗

(1.495) (2.393) (1.859) (1.692)

Distance to threshold -26.12 -35.75 -49.54 -52.51∗

(37.17) (36.38) (41.97) (30.23)

Dist × Rounded 0.241 -56.49 9.092 -21.20
(63.18) (70.21) (70.04) (58.62)

Cuto� FEs Yes Yes Yes Yes

Mean below threshold 5.864 5.705 5.864 5.705
% Change 32.9 71.5 36.9 83.6
Observations 1389 1186 1361 1214

Note: Standard Errors clustered at the provider level and observations weighted by review count.

Columns 1-2 compute physician density using all physicians included in the Area Health Resource

File, and columns 3-4 use only health system physicians. Density calculations explained in

section 6.2.4. Model includes cuto� FEs.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.10: Wait Days for Appointment, New Patients

(1) (2) (3)
Pre-info Post-info Di�-in-Disc

Post x Rounded Up 2.695∗∗∗

(0.886)

Rounded Up -0.850 2.105∗∗∗ -0.847
(0.612) (0.704) (0.593)

Distance to threshold 37.17 -3.134 42.11
(29.22) (35.38) (28.17)

Dist x Rounded Up -43.02 -71.44 -51.67
(40.93) (50.15) (39.47)

Post -1.224∗∗

(0.611)

Post x Distance -52.69
(42.68)

Post x Dist x Rounded 1.310
(60.77)

Cuto� FEs Yes Yes Yes
ICD Diagnosis Code FEs Yes Yes Yes

Mean below threshold 8.896 8.765 8.848
% Change -9.6 24.0 30.5
Observations 13300 8745 22045

Unit of observation is a patient visit. Restricted to Family Medicine

specialty, patients 18+, and dropping new visits scheduled greater

than 180 days out. Regression is unweighted and inference is done with

robust standard errors and bandwidth is [-.025,.025].
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.11: Wait Days for Appointment, Established Patients

(1) (2) (3)
Pre-info Post-info Di�-in-Disc

Post x Rounded Up 1.736∗∗∗

(0.240)

Rounded Up -0.549∗∗∗ 1.163∗∗∗ -0.547∗∗∗

(0.132) (0.203) (0.131)

Distance to threshold 42.34∗∗∗ -36.35∗∗∗ 45.23∗∗∗

(6.425) (10.01) (6.401)

Dist x Rounded Up -50.01∗∗∗ 43.14∗∗∗ -50.76∗∗∗

(9.055) (14.26) (9.025)

Post -0.858∗∗∗

(0.171)

Post x Distance -94.30∗∗∗

(11.76)

Post x Dist x Rounded 101.4∗∗∗

(16.73)
Cuto� FEs Yes Yes Yes
ICD Diagnosis Code FEs Yes Yes Yes

Mean below threshold 13.462 14.513 13.793
% Change -4.1 8.0 12.6
Observations 448285 205788 654073

Unit of observation is a patient visit. Restricted to Family Medicine

specialty, patients 18+, and dropping new visits scheduled greater

than 180 days out. Regression is unweighted and inference is done with

robust standard errors and bandwidth is [-.025,.025].
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.12: Wait Days for Urgent Conditions

(1) (2)
Pre-Disclosure Post-Disclosure

Rounded Up -0.771 2.374∗∗

(1.090) (1.096)

Distance to threshold 35.36 -165.9∗∗

(65.34) (82.94)

Distance X Rounded -40.76 132.2
(71.19) (99.88)

Cuto� FEs Yes Yes
ICD FEs Yes Yes

Observations 1124 650

Wait Time (residualized) for conditions indicated by

Billings, et al. (2000) to be ED Care Needed

but Preventable/Avoidable

Preferred speci�cation is linear trend plus interaction.

Bandwidth (-.05,.05) and robust SEs.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.13: Monthly New Visits - Observations Restriction to Speci�ed Distance from Cuto�

(1) (2) (3) (4) (5)
(-0.05,0.05) (-0.04,0.04) (-0.03,0.03) (-0.02,0.02) (-0.01,0.01)

Rounded Up 2.956∗∗ 2.810∗∗ 4.197∗∗∗ 4.603∗∗∗ 4.389∗∗

(1.332) (1.409) (1.450) (1.663) (1.699)

Distance to threshold -26.92 -30.79 -111.0 -83.52 -180.6
(24.86) (36.07) (75.10) (77.04) (126.0)

Dist × Rounded -35.84 -17.80 35.27 -50.41 210.0
(45.82) (62.75) (98.74) (137.0) (217.7)

Cuto� FEs Yes Yes Yes Yes Yes

Mean below threshold 5.475 5.457 5.901 5.427 5.052
% Change 54.0 51.5 71.1 84.8 86.9
Observations 2730 2204 1611 987 440

Standard errors clustered at the provider level & observations weighted

by rating count. Speci�cation is linear trend plus interaction.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.14: Monthly New Visits - Family Medicine: E�ect of Weighting by Rating Count

(1) No (2) Weight (3) Weight (4) No (5) Weight (6) Weight
Weighting by Count by Inv Count Weighting by Count by Inv Count

Rounded Up 2.978∗∗ 2.978∗∗ 5.704∗ 2.943∗∗ 2.956∗∗ 5.602∗

(1.468) (1.347) (3.150) (1.442) (1.332) (3.022)

Distance to threshold -40.21∗ -45.83∗∗ -58.90 -21.62 -26.92 -18.49
(21.85) (21.35) (36.37) (29.06) (24.86) (42.65)

Dist × Rounded -35.71 -35.84 -78.12
(57.89) (45.82) (99.89)

Cuto� FEs Yes Yes Yes Yes Yes Yes

Mean below threshold 10.856 6.652 8.826 10.856 6.652 8.826
% Change 27.4 44.8 64.6 27.1 44.4 63.5
Observations 2730 2730 2730 2730 2730 2730

SEs clustered at the provider level. Cols. 1-3 are linear trend, 4-6 linear plus interaction.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure 1.1: Distribution of Provider Average Ratings

Figure 1.2: Intuition of Identi�cation Strategy

Although physicians A & B have similar raw ratings, the discrete rounding rule causes
physician A to be displayed with 4.7 stars and physician B to be displayed with 4.8 stars.
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Figure 1.3: Demand Response to Quality Disclosure

Note: Figure presents a binned scatterplot of the new visits per month at a family medicine
provider, given the distance of that provider to the nearest star rating rounding threshold.
Distances to nearest thresholds are pooled across the cuto�s and normalized to the nearest
threshold and observations are weighted by count of reviews. Superimposed on the binned
scatterplot are best-�t linear regression lines on both sides of the cuto�.
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Figure 1.4: Demand Response to Quality Disclosure, Di�erence in Discontinuities

Note: Figure presents a binned scatterplot of the new visits per month at a family medicine
provider both before the online ratings were disclosed (red triangles) and after online ratings
were disclosed (blue dots), given the distance of that provider to the nearest star rating
rounding threshold. Distances to nearest rounding thresholds are pooled across the cuto�s
and normalized to the nearest threshold and observations are weighted by count of reviews.
Superimposed on the binned scatterplot are best-�t linear regression lines on both sides
of the cuto� for both pre-disclosure (January 2017 to October 2018) and post-disclosure
(December 2018 to August 2019) time windows.
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Figure 1.5: Relationship Between Star Ratings and Health Quality Metrics

(Vaccinations, Screenings, and Counseling)

Note: Six_mon_depr and Twelve_mon_depr correspond to 6- and 12-month depression
screenings. Fraction (x-axis) corresponds to fraction of the time the provider performs
these vaccinations, screenings, and counseling on patients who are indicated for them. For
example, the denominator for mammography is only women in the age range recommended
by the government for mammography. These quality metrics are used internally by the
health system to measure quality of family medicine. I only have one time period of these
provider quality metrics available, so I cannot exploit time variation in quality metrics to
estimate regression discontinuity models.
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Figure 1.6: Market Expansion vs. Switching

Binned scatterplot of new visits per month at family medicine providers, separately by
whether the patient is de novo at the health system or already had exisiting exposure to
other providers in the health system. Observations weighted by count. Data plots post-
disclosure period only.
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Figure 1.7: E�ects by Bandwidth

Note: Figure plots e�ect sizes from the baseline regression speci�cation. Standard errors are
clustered on the provider. The red dashed line denotes the mean-squared-error minimizing
bandwidth of Calonico, Cattaneo, and Titiunik (CCT).
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CHAPTER 2

Surprise, Out-of-Network Medical Bills and Arbitration:

An Economic Perspective

2.1. Introduction

A surprise medical bill is a bill that a patient receives from an out-of-network provider

who the patient did not know, or could not possibly have known, was out-of-network. One

such example may be if a radiologist reads an X-ray at an in-network hospital, but the

radiologist does not contract with the patient's insurance network. Previous work relying

on claims data suggests that these out-of-network surprise bills occur in approximately

20% of emergency visits (Cooper and Morton (2016); Garmon and Chartock (2017)). If

one purpose of an insurance network is to direct patients to relatively high-value, low-cost

providers, yet patients are unable to observe ex ante which providers are in-network, the

ability of an insurance network to achieve that goal is blunted. Accordingly, the lack of

consumer information about the network status of their providers could represent a market

failure where intervention may achieve desirable results.19

In 2015, New York instituted a state law to hold patients harmless in the event of a sur-

prise medical bill. The law created a mechanism for dispute resolution between insurers and

providers while holding the patient harmless. Procedurally, New York State implemented

��nal-o�er arbitration,� where two parties each submit a single, binding o�er to an indepen-

dent arbitrator and that arbitrator may select one or the other party's o�ers but cannot split
19One hypothesis is that the market could correct for this information problem via a repeated shopping

process by consumers. E.g., if a consumer has an adverse out-of-network billing experience at a particular
hospital, they may choose a di�erent hospital the next time or share that experience, and the competitive
pressure for in-network hospitals to avoid surprise billing situations could drive down the problem of surprise
bills without regulatory intervention. Chartock et al. (2019) examine this issue and �nd little evidence of
market correction of the surprise billing problem without regulatory intervention. They look at mothers who
give birth two times and the relative rates of switching between hospitals for the second birth conditional
on receiving a surprise bill in the initial birth. The likelihood of switching after a surprise bill in labor and
delivery is only slightly higher than the likelihood of switching in the absence of a surprise bill, suggesting
that a competitive, long-run market response to eliminate surprise bills is unlikely given the di�culty of
consumers to �shop with their feet�.
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the di�erence. This type of arbitration mechanism has been used to resolve labor disputes

(e.g., between police unions and local municipalities) as well as between Major League Base-

ball players and clubs (accordingly, �nal-o�er arbitration is also known as �baseball-style�

arbitration).

The New York law armed arbitrators with information about usual, customary, and reason-

able (UCR) rates for a given service (procedure code) in a given area (3-digit zip code) from

FAIR Health, a health care benchmarking organization. FAIR Health de�ned the UCR rate

as the 80th percentile of provider charges in New York.

Other states soon followed New York in implementing �nal-o�er arbitration to resolve sur-

prise medical bills. New Jersey, Washington, Texas, and other states have all instituted

a version of �nal-o�er arbitration to resolve these bills with slightly di�erent guidance to

arbitrators and slightly di�erent procedures. After a long political debate, the United States

Congress passed the No Surprises Act in 2020 which instituted a nationwide �nal-o�er ar-

bitration mechanism to resolve these surprise bills, extending the patient protections to a

much wider swath of America.

There are a number of reasons to study �nal-o�er arbitration over surprise medical bills using

a formal economic framework. First, the number of arbitration proceedings, as well as the

dollar amounts of disputed bills, are quite large. For example, Texas had 44,910 requests

for arbitration in 2020 under their surprise bill law.20 Second, beyond the magnitude of

the surprise billing disputes alone, studying arbitration is important because it impacts

beginning-of-the-year network formation between insurers and providers. In the Nash-in-

Nash model of insurance network formation (e.g., Gowrisankaran et al. (2015); Ho and Lee

(2017)), a critical component to network participation is the disagreement payo� � the

amount that the parties will earn if they do not form a network. Arbitration over surprise

bills a�ects this disagreement payo�, which can shift around the incentives for network

formation Prager and Tilipman (2020). Lastly, �nal-o�er arbitration as a dispute resolution

20https://www.tdi.texas.gov/reports/documents/SB1264-2021-midyear-update.pdf
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mechanism is worthwhile of study in its own right. Understanding how this mechanism is

employed in health care may shed light on the use or non-use of arbitration in other disputes,

both legal and business-related.

In the following section, I introduce a model of �nal-o�er arbitration over surprise medical

bills and derive the equilibrium o�ers.

2.2. Model

2.2.1. Model Primatives

The simplest model of the �nal-o�er arbitration game for surprise medical bills has three

actors: an insurer, a provider, and an arbitrator. In this paper, I adapt the model from

Farber (1980). Insurer i and provider p submit o�ers, wi and wp to the arbitrator, who

is characterized by an ideal wage, wa. The information structure is that the insurer and

provider know wa only up to a distribution. For example, it is the case that the No Surprises

Act gives the arbitrator authority to consider a number of factors including the median rates

for the disputed service along with information on certain additional circumstances about

the case. The uncertainty as to how the arbitrator may rule gives rise to the spread of

the distribution of the random variable wa. I assume that the insurer and provider have

symmetric information about the arbitrators ideal outcome of a dispute, which may vary for

a number of reasons unknown to the parties. The insurer and provider know wa only up to

a distribution with cumulative distribution function F (·).

The arbitrator, who is bound by the rules of the game to pick only among the two o�ers

wi and wp, cannot choose an amount in the middle. Denote what the arbitrator chooses as

y ∈ {wi, wa}. The arbitrator is assumed to have utility that takes the form:

va(y, wa) = −(y − wa)2

This implies that the arbitrator derives more utility the closer the selected o�er is to the
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arbitrator's notion of an ideal settlement.

This utility function gives way to a natural decision rule: the arbitrator chooses the insurer's

o�er, wi, if and only if it is closer to the ideal payment for the surprise bill than the provider's

o�er. The arbitrator chooses wi if and only if:

| wa − wi |≤| wp − wa |

In turn, this implies that the insurer's o�er is accepted if wa is less than the average of the

o�ers:

wa ≤ (wi + wp)/2

What is the probability that the insurer's o�er is chosen? Pr(Insurer Wins arbitration) =

Pr(wi) = Pr(wa ≤ (wi + wp)/2) = F ((wi + wp)/2) = F (w̄).

The expected payment in arbitration is accordingly:

wiP (wi) + wpP (wp) = wiF (w̄) + wp[1− F (w̄)]

2.2.2. Nash Equilibrium O�ers

The insurer seeks to minimize their payment to the provider, while the provider wants to

maximize their payment. De�ne the Nash equilibrium of this game to be the pair of o�ers

(w∗i , w
∗
p) such that w∗i solves:

min
wi

wi · F ((wi + w∗p)/2) + w∗p · [1− F ((wi + w∗p)/2)]

and w∗p solves:

max
wp

w∗i · F ((w∗i + wp)/2) + wp · [1− F ((w∗i + wp)/2)]
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Solving for these simultaneous equations, one �nds that F
(
w∗

i +w∗
p

2

)
= 1

2 as well as w
∗
p−w∗i =

1

f

(
w∗
i
+w∗

p
2

) . The average of the two equilibrium o�ers in the median of the arbitrator's

preferred settlement. Furthermore, the di�erence between the two equilibrium o�ers must

equal the value of the density function at the median of the arbitrator's preferred settlement.

Bids further apart in equilibrium signify greater uncertainty of the arbitrator's preferences

over ideal outcomes.

2.2.3. Implications

The above model implies a tradeo� for both insurer and provider when deciding what to

o�er. A more extreme bid (e.g., a very low bid from the insurer or a very high bid from the

provider) increases the amount of money the player gets if their o�er is selected, however

it reduces the probability of having the o�er selected. This is because the probability of

winning is a function of both the insurer's o�er as well as the provider's o�er. A more

extreme bids means more money if one prevails, but a lower probability of prevailing. In

this sense, the strategic tradeo�s are reminiscent of a sealed bid, �rst price auction.

In the stylized model, I show that when one assumes insurers and providers are equally

informed about the noisiness of arbitration, one can derive the structural distribution of

arbitrator preferences. Ashenfelter and Bloom (1984) show that when one assumes that

F (·) is a normal distribution, the parameters of this distribution µ and σ which govern the

arbitrator's preferences can be estimated from a series of �nal o�ers as well as indicators

for which of the two is chosen. A probit function can recover the two parameters. In a

number of non-health papers (e.g., Ashenfelter et al. (2013)), these structural parameters

are estimated using data from real-world arbitration cases. Although I have collected and

continue to collect data to allow me to estimate these structural parameters, in the interest of

policy as well as given constraints on my other research, I do not present structural estimates

of arbitrator preferences here. However, I have both published and in-progress descriptive

work presenting stylized facts from actual state-level surprise bill arbitration proceedings.
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In the following section, I introduce these stylized facts originating from state-level data on

surprise medical bill arbitration disputes.

2.3. Data

I collect data on �nal-o�er arbitration disputes from New York, New Jersey, Texas, and

Washington State to understand the real-world implications of �nal-o�er arbitration over

surprise medical bills. From these descriptive studies, I present three stylized facts: (A)

that the guidance provided to arbitrators which anchors the distribution of their idealized

settlements plays a major role in arbitration outcomes, (B) that arbitrator competition

(a hypothesis that dates to the early literature on FOA) is an important policy choice

that is correlated with outcomes which re�ect market forces, and (C) that uncertainty in

this setting is favorable as it drives incentives towards low-cost settlement as opposed to

high-cost arbitration with potential welfare transfers from patients and disputing parties to

arbitrators, who may nonetheless be providing a valuable service.

2.3.1. Stylized Fact 1: Information Given to Arbitrators Matters

In New York and New Jersey, arbitrators are presented with information to aide their de-

cisions which anchors their decisions to the 80th percentile of charges. My earlier work

(Chartock et al., 2021) shows that in New Jersey, where arbitrators are presented with

charges to aide in forming judgment (but not negotiated rates), the median decisions tracks

closely with the charges benchmark and is 5.7 times the prevailing in-network rate for the

same services at the median. Unpublished data from New York suggests similar conclusions.

In contrast, in Texas and Washington, where arbitrators are presented with median in-

network negotiated rates, I �nd that arbitration outcomes re�ect the negotiated rates (on-

going work with the same co-authors as above).

There are a number of reasons this stylized fact is important. Firstly, arbitration results tied

to charges may lead to perverse economic incentives. Because charges are unilaterally set by
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providers, if out-of-network providers have enough leverage, they could unilaterally manip-

ulate these charge benchmarks and adjust the disagreement payo� in network negotiations.

It is theoretically possible that charges-based arbitration rulings could lead to in�ationary

health care prices. In contrast, if the goal of the social planner is to �bring the market

into the dispute,� allowing the arbitrator to incorporate negotiated rates in their decisions,

such as Washington State and Texas does, may result in more optimal outcomes. The No

Surprises Act dictates this procedure.

2.3.2. Stylized Fact 2: Arbitrator Competition

The second stylized fact is that in Texas and Washington State, there is free entry into the

market for providing arbitration services. In these states, arbitrators simply must need to be

certi�ed by the state and pass con�icts, and they can post their service announcement and

name their own prices to resolve disputes. Ashenfelter and other early authors suggest that

competition among arbitrators to be selected creates a pressure for arbitrators to remain fair

and equal; in the long run, if an arbitrator is systematically favoring one party or another,

he or she will not be selected by both parties (who must agree) to resolve the dispute. This

notion is termed the �arbitrator exchangeablity hypothesis.� This does not hold in New

York and New Jersey, where the arbitrators are selected as entities by the state for long-

term contracts. My own ongoing work suggests that this creates a principal-agent problem in

which arbitrators who are on long-term contracts (and thus do not face an incentive to exert

high-e�ort in resolving thorny disputes) may substitute away from delivering high-e�ort

services towards low-e�ort services in resolving these disputes.

2.3.3. Stylized Fact 3: Uncertainty and Settlement

Finally, a lingering policy question as of the writing of this paper is the extent to which

adjudicated arbitration under the federal No Surprises Act will be relied upon: will insurers

and providers simply learn to expect what will result under arbitration or will there be many

cases? Since the law went into e�ect only January 1 of this year, there is no data available
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to examine longitudinal trends. However, theory can substitute for data here: Farber (1980)

introduces the notion that there is a contract zone of settlements that are equally as agreeable

to the parties as the arbitrated outcome. The more uncertain arbitration outcomes are, the

greater incentive for risk-averse parties to settle beforehand. The analogy is to courtroom

cases � uncertain jury outcomes are strong incentives to plainti� and defendant to settle.

Ongoing legal challenges to the No Surprises Act focus on a metric called the Qualifying

Payment Amount (QPA), which guidance from Health and Human Services suggests should

be the presumed starting point for arbitrators. The stronger this anchor, the more certain

arbitration outcomes will be, and the lower the incentive for the two parties to settle.

2.4. Conclusion

In this short paper, I introduced a formal model of �nal-o�er arbitration (developed by

Farber) and applied it to a setting where it has previously not been applied: disputes over

surprise medical bills. With the onset of the No Surprises Act, arbitration over these medical

bills may yet be a new frontier in health economics. Future work will expand on a number

of questions introduced and raised in this chapter and may rely on exploiting variation

across states with di�erent policies, across arbitrators through random assignment of sets of

arbitrators considered, or other strategies. However, the basic model of �nal-o�er arbitration

introduces the key tradeo� the two disputing parties face: a more extreme o�er results in

more pro�t if that o�er is selected, but lowers the probability of having that o�er selected.

When both parties play this game, the incentives are such that �nal-o�er arbitration may

have the intended e�ect of addressing the information problem of surprise, out-of-network

medical bills. More work in this area, both theoretical and empirical, is warranted.
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APPENDIX

Appendix

Example of Provider Quality Score Disclosure and Survey Questions

This �gure shows an artistic rendition of what a new patient would see when he or she visited

the health system's website to search for a new provider after November 2, 2018. Note the

4.6 out of 5 (ratings rounded to the nearest one-tenth) and N=418 ratings, along with the

gold stars. The regression discontinuity design captures the causal e�ect of increasing a

provider's score by exploiting the rounding of raw averages to discrete binned intervals.

Prior to disclosure, the website looked the same, but without the star ratings.

Figure A1: Sample Physician Rating Webpage

Survey Questions:

1. Did this provider explain things in a way that was easy to understand?
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2. Did this provider listen carefully to you?

3. Did this provider give you easy to understand instructions about taking care of these

health problems or concerns?

4. Did this provider seem to know the important information about your medical history?

5. Did this provider show respect for what you had to say?

6. Did this provider spend enough time with you?

7. Using any number from 0 to 10, where 0 is the worst provider possible and 10 is the

best provider possible, what number would you use to rate this provider?

Figure A2: Relationship Between Bene�ts and Costs of Waiting
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These �gures show the RD separately for each distinct rounding threshold in the rating scale

(See Table 1.3 for pooled regression with cuto� �xed e�ects), restricting to the majority of

providers with displayed ratings of 4.6 and up. Separate best �t lines are �tted for each

Panel (A) shows the relationship between rating and new visit volume before information

was disclosed, and Panel (B) shows the relationship after disclosure. Vertical lines indicate

rounding thresholds.

Figure A3:
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Figure A4:
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Figure A5:

Figure A6: Manipulation Testing Plot

Note: Density test of the running variable, keeping provider�month observations
with more than one displayed rating per month
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Figure A7: Manipulation Testing Plot

Note: Density test of the running variable, dropping provider�month observations
with more than one displayed rating per month
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Figure A8: Demand Response to Quality Disclosure

Binned scatterplot, data restricted to family medicine physicians, but not dropping obser-
vations with more than one displayed rating per month. Compare to Fig. 3 which drops
panel observations displaying more than one rating per month.
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Figure A9: Covariate Balance on Baseline Regression (Provider�Month Panel)
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Table A.1: Monlthy New Visits, by Count of Family Medicine Providers

(1) (2) (3) (4) (5)
Low Count Medium Count High Count Low Count High Count

Rounded Up 3.363∗∗ 4.788 0.877 2.651 2.330
(1.353) (4.742) (2.658) (1.981) (1.738)

Distance to threshold -57.36∗ -74.48 -3.390 -45.84 -10.62
(31.46) (72.15) (47.96) (39.25) (35.83)

Dist × Rounded 24.08 10.04 -119.7 48.59 -68.73
(56.52) (194.4) (77.13) (85.11) (60.16)

Cuto� FEs Yes Yes Yes Yes Yes

Mean below threshold 5.625 6.609 5.798 5.370 6.145
% Change 59.8 72.4 15.1 49.4 37.9
R-squared 0.140 0.375 0.204 0.137 0.143
Observations 1750 231 594 1365 1210

Note: Standard Errors clustered at the provider level and observations weighted by review count. Columns 1-3

compute physician counts using all physicians included in the Area Health Resource File, while columns 4-5

use only the health system's physicians. Model includes cuto� FEs
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.2: DeNovo = No, New Visits - Family Medicine

(1) (2) (3) (4) (5) (6)
Linear Quadratic Cubic Linear Quadratic Cubic

Rounded Up 2.070∗∗ 2.063∗∗ 3.418∗∗∗ 2.059∗∗ 3.954∗∗∗ 4.917∗∗∗

(0.880) (0.873) (1.112) (0.870) (1.269) (1.679)

Distance to threshold -35.72∗∗ -35.28∗∗ -92.27∗∗ -26.25 -108.6 -330.8∗∗

(14.99) (14.59) (40.46) (17.75) (96.48) (163.5)

Dist × Rounded -17.94 -64.90 186.0
(33.11) (136.2) (273.6)

Cuto� FEs Yes Yes Yes Yes Yes Yes

Mean below threshold 3.454 3.454 3.454 3.454 3.454 3.454
% Change 59.9 59.7 99.0 59.6 114.5 142.4
Observations 2730 2730 2730 2730 2730 2730

Note: Standard Errors clustered at the provider level and observations weighted by review count.

Columns 1-3 parameterize same slope on both sides of disconinuity, 4-6 do not.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.3: DeNovo = Yes, New Visits - Family Medicine

(1) (2) (3) (4) (5) (6)
Linear Quadratic Cubic Linear Quadratic Cubic

Rounded Up 0.908 0.895 0.432 0.896 0.333 0.633
(0.647) (0.641) (0.581) (0.641) (0.625) (1.000)

Distance to threshold -10.11 -9.399 10.10 -0.665 -20.15 -69.12
(8.905) (8.585) (21.78) (9.496) (45.84) (82.79)

Dist × Rounded -17.91 85.54 122.1
(17.81) (79.51) (220.3)

Cuto� FEs Yes Yes Yes Yes Yes Yes

Mean below threshold 2.021 2.021 2.021 2.021 2.021 2.021
% Change 44.9 44.3 21.4 44.4 16.5 31.3
Observations 2730 2730 2730 2730 2730 2730

Note: Standard Errors clustered at the provider level and observations weighted by review count.

Columns 1-3 parameterize same slope on both sides of disconinuity, 4-6 do not.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.4: Residualized new Patient Wait Days Local Linear Regression Optimal Bandwidths

False Discontinuity
0.025

Pre Post

False Discontinuity
-0.025

Pre Post

True Discontinuity
0.000

Pre Post
(1) (2) (3) (4) (5) (6)

RD_Estimate 2.006 1.941 0.225 -1.452 -0.906 2.450∗∗∗

(1.375) (1.376) (0.968) (1.168) (0.786) (0.859)

MSE-Optimal Bandwidth 0.007 0.007 0.006 0.008 0.018 0.019
Mean Below Threshold 7.499 7.319 7.426 6.890 9.203 8.703
% Change 26.8 26.5 3.0 -21.1 -9.8 28.1
Observations 25643 16760 25643 16760 25643 16760

Note: Regressions denoted Pre corresponds to before quality disclosure and Post corresponds to after

disclosure. This table reports the regression discontinuity estimate from optimal bandwidth local linear

regression using the rdrobust package in Stata (Colonico, et. al. 2017). Left hand side variable

RD_Estimate is a residualized wait time in days for a new patient visits for adults not going to walk-in

clinics. The outcome is residualized prior to estimation with an OLS regression with cutto�-speci�c

and presenting diagnosis speci�c �xed e�ects (e.g., Lee, 2010) and standard errors are HC0 robust.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.5: Monthly New Visits - Family Medicine

(1) (2) (3) (4) (5) (6)
Rounded Up 2.192∗∗ 2.163∗∗ 2.445∗∗ 2.157∗∗ 2.563∗ 2.861∗

(1.104) (1.093) (1.212) (1.089) (1.346) (1.647)
Functional Form: Linear Quad. Cubic Linear Quad. Cubic
Treatment Interaction No No No Yes Yes Yes
Cuto� FEs Yes Yes Yes Yes Yes Yes

Mean Below Threshold 5.725 5.725 5.725 5.725 5.725 5.725
% Change
Observations 2941 2941 2941 2941 2941 2941

Note: Standard Errors clustered at the provider level and observations weighted by review

count. Treatment Interaction refers to an indicator permitting di�erent slopes on each side

of the discontinuty. Sample does not exclude providers who display more than 1 rating/month.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.6: Covariate Balancing:

(1) (2) (3) (4)
MD Credential Male Provider High Density Elapsed Tenure

Rounded Up -0.134 -0.0577 -0.0930 -3.319
(0.104) (0.121) (0.117) (2.078)

Functional Form: Linear Linear Linear Linear
Treatment Interaction Yes Yes Yes Yes
Cuto� FEs Yes Yes Yes Yes

Mean Below Threshold 0.636 0.456 0.558 13.377
% Change -21.1 -12.6 -16.7 -24.8
Observations 2730 2637 2575 2730

Note: Standard Errors clustered at the provider level and observations weighted by review

count. Treatment Interaction refers to an indicator permitting di�erent slopes on each side

of the discontinuty.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.7: Monthly New Visits - Family Medicine

(1) (2) (3) (4) (5) (6)
Rounded Up 3.333∗∗ 3.306∗∗ 3.180∗∗ 3.306∗∗ 3.349∗ 4.982∗∗

(1.410) (1.406) (1.611) (1.404) (1.823) (2.514)
Functional Form: Linear Quad. Cubic Linear Quad. Cubic
Treatment Interaction No No No Yes Yes Yes
Cuto� FEs Yes Yes Yes Yes Yes Yes

Mean Below Threshold 5.475 5.475 5.475 5.475 5.475 5.475
% Change 60.9 60.4 58.1 60.4 61.2 91.0
Observations 2730 2730 2730 2730 2730 2730

Note: Standard Errors clustered at the provider level and observations weighted by review

count. Treatment Interaction refers to an indicator permitting di�erent slopes on each side

of the discontinuty.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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