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ABSTRACT

ONLINE CLUSTERING AND CITATION ANALYSIS USING STREEMER

Vasileios Kandylas

Lyle Ungar

Clustering algorithms can be viewed as following an algorithmic or a probabilistic

approach. Algorithmic methods such as k-means or streaming clustering are fast and

simple but tend to be ad hoc and hence hard to customize to particular problems,

whereas the probabilistic methods are more flexible, but slower. In this work we

propose online algorithms which combine the advantages of the two classes of ap-

proaches giving fast, scalable clustering, while allowing more flexible models of the

data, such as foreground clusters interspersed within a diffuse background. These

clusters are shown to be useful in modeling scientific citations.

We start the thesis by giving a non-probabilistic, few-pass algorithm, called

Streemer. Streemer uses thresholds on similarities between points to find a large

number of clusters on the first pass over the data. It then merges them to find larger

and more cohesive clusters. In a final pass it assigns points to the clusters or to a

diffuse background. Streemer avoids the standard k-means assumptions that clus-

ters are of similar sizes. We also discuss the nature of the objective function that

Streemer optimizes through its several steps and heuristics. At a cursory glance,

Streemer appears to be an ad hoc algorithm, but in a subsequent chapter we develop

a principled algorithm that emulates Streemer’s steps and we make the connection

between Streemer and online Dirichlet Process Mixture Models.

We use Streemer to cluster documents based on the documents they cite and find

“knowledge communities” of authors that build on each other’s work. The evolution

over time of these clusters gives us insight into their growth or shrinkage. We also

build predictive models with features based on the citation structure, the vocabulary

of the papers, and the affiliations and prestige of the authors and use these models

to study the drivers of community growth and the predictors of how widely a paper
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will be cited. The analysis shows that scientific knowledge communities tend to

grow more rapidly if their publications build on diverse information and use narrow

vocabulary and that papers that lie on the periphery of a community have the highest

impact, while those not in any community have the lowest impact.

We also present a probabilistic mixture model with a Dirichlet Process prior and

Gaussian component distributions. This model allows for variable cluster numbers

and sizes. We show how to use this model for clustering in an online fashion and also

propose a two-pass algorithm, where the first pass clusters points in many clusters

and the second pass clusters the output of the first pass. With the exception of fore-

ground/background clustering, the model with the two-pass algorithm corresponds

closely to Streemer.

Finally, we present an EM-based clustering method that can simultaneously clus-

ter two or more variables using one or more tables of co-occurrence data. One ap-

plication of this multi-way clustering algorithm is for constructing or augmenting

ontologies. We test our algorithm by simultaneously clustering verbs and nouns

using both verb-noun and noun-noun co-occurrence pairs. This strategy provides

greater coverage of words than using either set of pairs alone, since not all words

appear in both datasets. We demonstrate it on data extracted from Medline and

evaluate the results using MeSH and Wordnet.
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Chapter 1

Introduction

Clustering is perhaps the data mining technique most widely used on large data

sets. Bayesian unsupervised learning methods are also the subject of vast amounts

of research in recent years. The absence of a requirement to have observed response

variables makes clustering attractive, but also creates difficulties. The proper choice

of a similarity or a loss function is problem-dependent and there are not specific

rules other than mostly empirical observations. Nevertheless, the great usefulness of

clustering is evidenced by the many uses it has found in fields as diverse as language,

marketing, information retrieval and bioinformatics [59, 6, 97, 102, 23, 67, 81].

This thesis focuses on clustering for large datasets, which are becoming increas-

ingly common. Most current methods are either fast but simple (e.g., streaming

methods), or sophisticated but slow (e.g., Bayesian models estimated with Gibbs

sampling). We examine ways to combine the advantages of both by leveraging the

power of a probabilistic model and the speed of a streaming algorithm. We show

that using a Dirichlet Process Mixture Model (DPMM) and a 2-pass streaming

approach we can achieve fast clustering, comparable to online distance-based ap-

proaches [48, 129], but with performance close to a much more expensive multi-pass

algorithm like EM, or Gibbs sampling. We develop an algorithm called Streemer
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that is very similar to a 2-pass DPMM with the addition of filtering out “back-

ground observations” and apply it in the identification and analysis of the evolution

of knowledge communities. Finally, we develop a probabilistic clustering method for

simultaneously clustering several variables. This multi-way clustering model uses

as input more than one data table, which has the advantageous effect of allowing

the incorporation of datasets for greater coverage over the range of values of the

clustered variables.

1.1 Clustering approaches

Our approach to clustering draws from both distance-based and probabilistic clus-

tering algorithms, which we now describe.

We call “distance-based clustering” algorithms those that operate using distance

or similarity functions rather than probabilistic models. The typical example of

such an algorithm would be k-means [24]. These algorithms tend to be simple and

very fast, even though there are others (e.g. agglomerative and spectral clustering

[44, 109]) that can be much slower. The main characteristic however is the use of a

distance function and the lack of an explicit probabilistic model.

The second approach that we look at is “probabilistic clustering”. These algo-

rithms are based on probabilistic models and use probabilities instead of distances.

Examples of this type would be mixture models (MM) and latent Dirichlet alloca-

tion (LDA) [9]. The use of a model gives a much greater power and freedom in

choosing the structure or parameters, but also makes estimation and learning more

complicated.

One thing worthy of note is that the two approaches are not unrelated. Any

probability density function from the exponential family corresponds to a Bregman

divergence and vice versa [3]. A mixture model with homoscedastic Gaussians (and

equal mixture weights) corresponds to k-means with Euclidean distances. Other
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densities give rise to other distances or divergences.

Despite this connection, the probabilistic methods have more degrees of freedom

than the distance-based ones. For example, for the case of mixture models, one

can have flexible priors on the distribution of cluster sizes and can use different

probability densities (even for different mixture components in the same model).

Moreover, even the model structure is unrestricted. One is not required to use a

mixture model; any kind of hierarchical model is possible. This power means that

the model has the ability to capture clusters with complicated boundaries, such as

clusters within clusters. Distance-based algorithms are usually much simpler. For

instance, k-means can only partition the space in convex shapes with piecewise linear

boundaries. The advantage of their simplicity is that the algorithms can be extremely

fast and have lower memory requirements. On the other end of the spectrum, the

probabilistic clustering methods are in general more powerful and accurate but also

slower than the distance-based methods.

Both approaches therefore have their advantages and disadvantages. The disad-

vantages become more significant as the datasets become more complex and larger.

For example, in some kinds of large datasets, such as web-derived collections of ar-

ticles or images, not every point fits well into a cluster. Instead, it is necessary to

discard some points as noisy or spurious and cluster the rest. This distinction of

points as belonging in a cluster (foreground) or not (background) is another capabil-

ity that is lacking from the simpler distance-based algorithms. In general, current

methods that are fast are too simple to capture the complexity of the data. And

more sophisticated methods are not fast enough for practical purposes. Until re-

cently, most clustering algorithms were applied to small or medium-sized datasets,

but as larger and larger datasets are being used, these restrictions become more

apparent.

There are two main avenues for dealing with large datasets that both compute a

fast but approximate clustering. The first is to use approximation algorithms that
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iterate over all data and the second to use streaming algorithms that only process

the data once (or a small number of times).

An example of an approximate clustering algorithm is to select and cluster a

random subset of the data and then use the clusters to assign the rest of the data.

In essence, the speedup comes from fitting a model to a small subset of the data

and then using that model to approximately cluster the large dataset [49]. A dif-

ferent approach is to use all the data points, but speed up the steps that are slow.

An example of this case is Classification EM (CEM) [14], where the E-step of EM

is simplified to find only the highest probability component. CEM makes hard as-

signments of clusters to points and so avoids computing the normalization constant

for the assignment probabilities and also storing the fractional assignment value of

each observation to every cluster. The benefits of less computation and memory are

however counterbalanced by lower accuracy. The hard assignments produce biased

estimates [68] and are also sensitive to the initialization.

In streaming clustering algorithms, on the other hand, the data are processed

without approximating any step, i.e. as usual in a batch algorithm. The time savings

come from not iterating over the points repeatedly, so in some sense the clustering

stops before the algorithm has reached convergence. Most proposed streaming clus-

tering algorithms are of the distance-based variety and carry restrictions similar to

k-means [49]. Streaming algorithms for probabilistic models are less common and

most are ad hoc and lack solid theoretical analysis regarding their performance. This

thesis focuses on streaming algorithms for probabilistic models. Additionally, it uses

two-pass streaming algorithms with an important difference: the two passes are not

the same as two iterations of a batch algorithm. There are differences between the

two passes (for example the number of clusters found) that help improve the final

clusters.

A variety of other approaches have been used for clustering. For example, spectral
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clustering uses the graph of point to point distances and computes the eigendecom-

position of its Laplacian [94]. Even though the shapes of clusters that it finds can

be complex, it is in fact a distance-based method and it does not find a probabilistic

model of the data. Additionally, the decomposition becomes prohibitive for very

large datasets.

The issues of clustering become compounded when the data reside in a high-

dimensional space. A common approach is to project them to lower dimensions,

either by a principled dimensionality reduction (e.g. PCA [61], LLE [104]), or do-

ing random projections and taking advantage of the Johnson-Lindenstraus lemma

[34]. Other more ad-hoc approaches follow regions of high density of points to find

and expand clusters (e.g. BIRCH [128]). We do not investigate the problems and

solutions of high dimensionality in this thesis.

1.2 Streaming probabilistic clustering

In this thesis we are investigating ways to combine the advantages of the distance-

based and the probabilistic clustering approach. In order to take advantage of the

power of probabilistic methods, we use probabilistic models as the underlying struc-

ture of our algorithms. And in order to speed up learning, we draw inspiration from

the streaming clustering field of distance-based clustering. Probabilistic models are

usually estimated using EM or Gibbs sampling, both slow enough that are impracti-

cal for large datasets. We therefore explore streaming alternatives, as more efficient

ways to cluster large datasets using a probabilistic model and suffering just a small

decline in the quality of the clusters.

We propose ways to combine two main components of the clustering approaches

described previously. The first component is the Dirichlet Process Mixture Model

(DPMM). The mixture model is more powerful than simple distance measurements

and the Dirichlet Process (DP) deals with the unknown number of clusters which
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is especially important for online methods. The second component is the online

computation, which is faster than Gibbs sampling or variational methods. The goal is

to get algorithms that are fast and have reduced memory requirements (like distance-

based algorithms), but are also more powerful (like probabilistic algorithms). The

next sections give more details of the contributions of this thesis.

1.2.1 Thesis contributions

The Streemer algorithm

We develop an algorithm, Streemer, that performs foreground/background filtering.

Streemer is a more principled version of CBC [77], but is formulated to not require the

setting of arbitrary parameters that CBC requires. We will also show that Streemer

can be viewed as a variation of a two-pass DPMM and will give a probabilistic

interpretation of Streemer.

A key aspect of Streemer is that points that cannot be assigned with high like-

lihood to a cluster are delegated to the background. Thus Streemer finds tight

foreground clusters embedded in a diffuse background [50]. The removal of points of

low fit (low quality) makes the fit of the rest of the points better and the resulting

(foreground) cluster more cohesive. This can facilitate interpretation of the clusters.

We apply the Streemer algorithm to the discovery of knowledge communities. We

use a dataset of published papers described by the papers they cite and cluster them

in groups of papers that tend to cite each other. We can thus identify knowledge

communities as foreground clusters of papers which share similar citation patterns.

Subsequently, we cluster the papers in overlapping time periods and analyze the

evolution of the communities over time and the factors that predict their growth or

shrinkage. We also analyze the features that make a paper successful in terms of its

vocabulary and its location in the community.
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Online mixture model

We develop an online DPMM with Gaussian component distributions. Batch (i.e.

non online) DPMMs have been the topic of prior work [103], but we are only aware

of online DPMMs with multinomial distributions [127].

We investigate the operation of two-pass streaming clustering. One-pass stream-

ing clustering is sensitive to the order that the points are processed and empirically

does not give very good results. We apply the algorithm twice, with different param-

eters in each pass. In the first pass, we find a large number of clusters. In the second

pass we treat these clusters as weighted points and merge them into fewer clusters if

that increases the log likelihood [17]. Two-pass clustering gives significantly better

results than one-pass clustering.

We compare the two-pass DPMM with Streemer and show the similarities be-

tween the two passes of the DPMM algorithm and the first and second step of

Streemer. We also discuss the equivalence between the thresholds used in Streemer

and the log likelihood value in the mixture model, as well as the relation between

the Dirichlet process and the creation of new clusters based on a similarity threshold

in standard streaming clustering.

Multi-way clustering

The last contribution is not about streaming clustering, but rather an algorithm for

simultaneously clustering several variables. Simultaneous clustering is mostly known

for the case of two variables, where it is called two-way clustering, co-clustering or

biclustering [67, 19]. The advantage of simultaneous clustering is that the clustering

of the one variable informs about the clustering of the other. Simultaneous clustering

therefore shows the local structure of the data, which can not be revealed with

traditional, 1-way clustering.

Our proposed method for multi-way clustering is based on a probabilistic model,
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similar in that sense to the DPMM described previously. It extends the simple mix-

ture model by introducing more variables and creating dependencies between them

using a belief network (BN)1. Because of the underlying model, it solves many similar

problems over competitive multi-way clustering algorithms, similar to the probabilis-

tic one-way clustering algorithms that are more powerful than the distance-based

ones. So for example, our model allows clusters of different sizes and makes it easier

to define probabilistic dependencies between variables. An important improvement

is that it allows the combined use of two or more data sets, each describing the

clustered variables using different features. This can be used to gather data for more

instances of the variables and thus increase the coverage of these instances.

We test our model by simultaneously clustering verbs and nouns using both verb-

noun and noun-noun co-occurrence pairs, which we extract from Medline abstracts,

and we evaluate the results by mapping them to MeSH and Wordnet. Potential

applications of the algorithm include information or relation extraction. For example,

it can be used to extend MeSH [92], or to create an alternate ontology to MeSH, for

instance one where the relations are of different types.

1.3 Structure of the thesis

The rest of the thesis is structured in the sequence that the contributions were pre-

sented in the previous section. Specifically, in chapter 2 we present Streemer and

also apply it to the discovery and analysis of knowledge communities. In chap-

ter 3 we examine the online DPMM and its variations with two passes and fore-

ground/background. Chapter 4 is devoted to our multi-way clustering algorithm

and we conclude with a discussion in chapter 5.

1The model we present is used in a batch setting and thus does not use the Dirichlet process
prior. It is possible to introduce that prior and perform simultaneous clustering in a streaming
fashion
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Chapter 2

Streemer

2.1 Introduction

Our goal is to discover and analyze knowledge communities, groups of researchers

that are working on similar problems and are interested in the same research areas.

We ask questions such as, “What features predict when a knowledge community

will grow or shrink?” and “What kind of papers are usually more or less widely

cited?” To answer these questions, we first cluster documents by their citations to

find the knowledge communities and hence their authors. We use a new clustering

algorithm, Streemer, which, doing only a few passes over the data, finds cohesive

foreground communities whose members cite the same references, embedded in a

more diffuse background [63]. We find a set of clusters which evolve over time, fit

supervised models and find which features of the clusters are statistically significant

in predicting their future growth or the level of citations of the papers the contain.

The location of individual papers in foreground and background is also used to

predict how widely they will be cited.
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2.1.1 Analyzing knowledge communities

A knowledge community [15] is a set of people doing research on the same or closely

related fields who build on each other’s ideas and share similar interests. They are

also known as intellectual communities, or schools of thought [112]. Belonging to

a knowledge community has the advantage for a researcher of making it easier to

disseminate and gather new knowledge, but as we will show below, drawing too

narrowly from within a single community can be disadvantageous, both for the re-

searcher and for the community. Since new research builds on previous work, which

is often in the same field, papers often cite other papers in the same community, and

knowledge communities can be identified by clustering documents based on their

citations.

We aim to discover knowledge communities and to understand what drives their

success, both in terms of recruiting more researchers and garnering more citations.

To support this analysis, we cluster papers based on the papers that they cite.

As explained below, only roughly half the documents are assigned to communities;

the remainder are placed in a “background” cluster. We find clusters at multiple

time periods and using only historical data. Once the knowledge communities are

discovered, we fit supervised models and find which features of the clusters are

statistically significant in predicting their growth. Features we look at include the

citation patterns, (e.g., how many of the citations are to papers within or external

to the community), vocabulary usage (e.g. how unique the words used are to the

cluster) and exogenous measures such as the fraction of authors who have industrial

or academic affiliations. Citation levels of individual papers are also predicted, using

features such as whether the document is close to the center of a community, on its

periphery, or does not belong in a community [95].

We characterize knowledge communities along a number of dimensions, including

their use of knowledge, measured by what papers they cite, and rhetoric, measured

by what vocabulary they use, and how knowledge and rhetoric change over time and
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across communities. We discovered that successful communities exhibit flexible use of

broad knowledge. Instead of concentrating on a narrow area of interest, they expand

to new areas and draw knowledge from other domains. On the other hand, the

vocabulary they use is restricted, tends to remain unchanged and it is common across

communities. Trying to explain novel work using new terms can be confusing to the

readers; a common vocabulary can facilitate the presentation of new knowledge.

Similarly, the impact which a paper will have can be predicted based on its

centrality to a knowledge community. We find that a paper will have more impact

(as measured by citation level, i.e. the number of citations that a paper has received)

if it is within a knowledge community (in a cluster) and if it is toward the intellectual

periphery of a community (edge of the cluster). Papers which draw on multiple areas

are the most widely cited, as they can become the starting point for a new direction

in research. In a related result, creators of new knowledge have greater impact if

they actively engage in multiple communities over time, but only if they focus on

one or two communities at a single time.

2.1.2 Foreground/background clustering for text mining

For our analyses we clustered papers into foreground clusters or into a diffuse back-

ground. The idea of foreground and background was taken from vision, where in

image segmentation there are often cohesive foreground objects in front of a more

diffuse background [57, 107]. In document mining, as in this work, the foreground

clusters represent cohesive communities and mostly contain documents from specific

scientific areas that tend to cite the same papers. The background consists of lower

density regions, containing documents that cover several different areas or that focus

on topics that are not highly cited. By clustering papers into knowledge communi-

ties, we can study how the communities grow, shrink, drift, split, merge or die out.

Cluster membership can also be used to predict the citation levels of papers.

There is a long tradition of finding communities in small groups of people [10,
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26, 29, 11, 37]. We address a problem of much greater scale, clustering millions

of papers as opposed to a few tens or hundreds. The use of co-citation analysis

also goes back many years. For example it has been used to map and examine

the network structures of papers or patents [46] and to isolate and identify the

structure of scientific disciplines [115]. Many other methods have been developed to

cluster documents based on citations; these include k-means [59], co-clustering [22]

and EM methods [18]. However, these co-citation-based methods make no use of a

background. Below, we describe a new algorithm, Streemer, which was designed to

operate on large, high-dimensional datasets and efficiently find foreground clusters

of varying sizes embedded in a background. We combine Streemer with a “rolling

clustering” procedure to allow clusters to evolve over time.

Another difference of our work compared to previous papers is in the way we use

the clusters we find. Common applications of document clustering use the clusters

as an aid for information retrieval, for looking at the growth of communities over

time [101], or for profiling researchers and finding those with a given expertise [69].

In contrast, we use them to build predictive models of community growth and paper

impact. We use the properties of the clusters, such as their vocabulary and knowledge

cohesiveness, as features and train supervised learning models in order to predict the

change in the cluster sizes and the number of citations of papers.

2.1.3 Analysis framework

This chapter is organized as follows. First, we describe the Streemer algorithm in

section 2.2. In section 2.3, we evaluate the clusters by seeing how they divide up

journals under the assumption that, in a good clustering, articles in a single journal

would usually end up in the same cluster. Section 2.4 explains how we analyzed

the evolution of the clusters with time. Examples of clusters are presented from

the field of Computer Science, exhibiting growth, shrinkage, splitting and merging

over time. We then use supervised learning in section 2.5 to predict the growth of
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Figure 2.1: Two Gaussian distributions with means µ1 = 0 and µ2 = 2 and very
different variances. Cluster 1 is surrounded by cluster 2. K-means would assign
the point x = −3 to cluster 1, even though the posterior probability of cluster 2 is
higher.

the communities that were found. We do a similar analysis for individual papers,

studying how their position in a cluster affects their future citation counts in section

2.6. The chapter concludes with a discussion in section 2.7.

2.2 Clustering

2.2.1 Foreground and background

We intend to cluster papers so that they that are either assigned to a foreground

cluster or to a diffuse background. The foreground clusters will be surrounded by

the background, like islands in an ocean. For this to happen the background cluster

cannot be compact – the foreground clusters will punch “holes” through the back-

ground. Some widely used methods cannot find clusters with these properties. For

instance, k-means finds a tessellation of the space where every tile has piecewise

linear boundaries.

Consider, for example, the case where the data are generated from a mixture of

two 1-D Gaussians with similar means, but different variances (figure 2.1). In this

example the component means are close and the variance of one is much higher than

the other. In this specific example, we would prefer the cluster with center µ1 = 0 to
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be surrounded by the other cluster, in accordance with the posterior probabilities.

What we can expect from k-means however is to pick a decision boundary between

the means of the two distributions. This effectively assigns all negative points to the

left cluster, even though for some of them the probability of belonging to the right

cluster is higher.

K-means also makes an implicit assumption about a prior belief of equal cluster

sizes, which discourages finding clusters that are very small or very big. This follows

from the view of k-means as a limiting case of a Gaussian mixture model with equal

priors and equal cluster variances, from which k-means emerges in the limit of the

variances going to zero [66]1. However, knowledge communities will not have similar

sizes in general, making k-means a less appropriate algorithm for identifying them.

This is an additional argument for using an alternative clustering method, instead

of k-means or a k-means variant.

A natural generalization of k-means for foreground/background clustering would

be a mixture of Gaussians with unknown variances. The ability of the components to

acquire different variances and weights would allow the existence of clusters within

clusters and one could use the surrounding cluster as background. However, such a

model is more complicated and, for high-dimensional data, the number of parameters

to fit would be prohibitive. For D dimensions, k-means requires the fitting of O(D)

parameters, but the Gaussian mixture would require O(D2). Additionally, the right

choice of component distribution depends on the application and the Gaussian distri-

bution is not the most appropriate for clustering documents. For other distributions

there might be problems with defining a background. For example, for the Inverse

Binomial distribution the notion of background is not well defined because the dis-

tribution is discrete and for the Poisson distribution it is mathematically impossible

to create clusters within clusters by varying the cluster prior probabilities.

1This is in agreement with our empirical observations. In the experiments described in section
2.3 the cluster sizes we found using k-means and its variant algorithm, background k-means, were
very similar; the size ratio of the largest to the smallest cluster was just 2.
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2.2.2 Streemer

The clustering algorithm we use is Streemer [63]. Streemer2 is designed to efficiently

maximize the coherence of the clusters that it finds, making it suitable for large,

high-dimensional data sets. We define coherence in terms of the size of the clus-

ter, its separation (distance) from neighboring clusters and its density. The input

to Streemer consists of the data to be clustered, the background fraction b and a

parameter minsize that affects the minimum cluster size. (There are also two other

parameters, which are mentioned in section 2.2.3, but we found that the clusters

are not sensitive in their values, so they can be preset to some recommended values

when using Streemer.)

In order to deal with a large number of examples, Streemer operates in a near-

streaming fashion (figure 2.2), making only two passes over the data. It uses a

three-step algorithm that gives better results than simple streaming at minimal extra

computational cost. Streemer initially finds a large number of candidate, or seed,

clusters using streaming clustering (step 2). Examining each point in sequence, it

either adds it to an existing seed cluster, or it creates a new cluster and assigns the

point to it. It thus finds seeds by collapsing close points into clusters. This typically

gives a large number of seed clusters (a few thousand in our experiments). Then it

selects from them those that are dense and not similar to each other; i.e., they have

high inter-group similarity and low intra-group similarity (step 3). Finally, in steps

4 and 5, the points are assigned to the selected clusters, if they are sufficiently close,

or to the background, if they are far enough from every cluster. Streemer chooses

the appropriate threshold for distance from the cluster to give the desired fraction

of points in the background.

One could envision re-clustering after the background points were removed. We

do not do that for two reasons. First, re-clustering would make Streemer an iterative

2StreEMer is named for its similarity to streaming EM, but this chapter does not describe the
EM interpretation.
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Input: A point set X = {x1, . . . , xN}, the number of clusters k, the fraction of points
b in the background, threshold θ, candidate cluster minimum size minsize, a similarity
function sim(x, µc) between a point x and the centroid µc of a cluster c.
Output: A partition of the points X in foreground clusters {c1, . . . , ck} and a background
cluster cb, with size |cb| = bN .

1. Initialize the set S of candidate clusters to be empty.

2. For i = 1 . . . N do:

• If maxs∈S sim(xi, µs) < θ, add a new cluster to S containing xi,

• else add xi to s′ = argmaxs∈S sim(xi, µs) and update its centroid µs′ .

3. Initialize the set of final clusters C to be empty. For j = 1 . . . |S|, let sj be the j-th
candidate cluster in S with centroid µsj

.
If |sj| > minsize (i.e. sj contains more than minsize points), do:

• If maxsl
sim(µsj

, µsl
) < θ for all sl 6= sj, then add sj to C,

• else compute the cluster cohesiveness:
Dsl

=
∑

x∈sl
sim(x, µsl

)/|sl| for all sl with sim(µsj
, µsl

) > θ and add the most
cohesive cluster s′ = argmaxsl

Dsl
to C.

4. For each xi, i = 1 . . . N , find the most similar cluster γi = argmaxc∈C sim(xi, µc).

5. Set the similarity threshold θs such that sim(xi, µγi
) ≤ θs for fraction b of the points.

Assign each point xi with sim(xi, µγi
) > θs to cluster γi; assign the remaining points

to the background cluster cb.

Figure 2.2: The Streemer algorithm.

algorithm and we want to go over the data as few times as possible. Second, the

previous steps have selected as cluster centroids points from dense areas, so the

background is generally sparsely populated. Therefore, if we re-cluster, we do not

expect to find clusters that are significantly different from those found in the first

pass.

The inspiration for Streemer was Clustering by Committee (CBC) [96]. A big

difference is that CBC uses many parameters and there is no principled way of setting

them. This requires from the user to perform a grid search in the parameter space,

which is time-consuming. Streemer on the other hand has only the minimum number
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of parameters required and all the parameters have an intuitive interpretation, which

makes setting them easier.

A significant advantage of Streemer is that it is scalable. For its first pass over the

data it performs streaming clustering, requiring time on the order of |S|N operations

(|S| is the number of candidate clusters found and N the number of data points).

When it performs filtering of the candidate clusters it makes pairwise comparisons

between themselves and this part is repeated approximately log(|S|) times. Finally,

the last step makes one more pass over the data making kN comparisons. Overall,

the complexity of Streemer is dominated by the first pass, which is that of streaming

clustering [48]. An iterative algorithm like k-means, on the other hand, performs

order kN operations per iteration and, depending on the data, can require hundreds

of iterations.

In summary, Streemer differs from k-means in several respects. It is able to give

clusters that can have different sizes and variances, and it can also find a background

cluster that can surround the foreground clusters. This background cluster is op-

tional, in that it is possible to configure Streemer so that all the observations will

be assigned to foreground clusters. Streemer also compares favorably to standard

clustering methods. It is significantly faster and more efficient than EM. Streemer

is similar in speed to k-means3 and it returns better clusters with fewer structural

restrictions. It also requires fewer, more meaningful, parameters than CBC.

2.2.3 Setting parameters

Most streaming algorithms use an implicit or explicit similarity threshold [48]. While

examining each observation, the algorithm decides whether to add this observation

to an existing cluster, or to start a new cluster and put it there, based on that

3It is hard to compare different implementations of the algorithms. Streemer and k-means take
approximately the same amount of time to execute on our dataset – 4-8 hours for non-optimized
matlab code. Vectorization greatly reduces this, but still requires an hour while the gmeans [25]
implementation of k-means in C runs in 2-3 minutes.

17



θ # of candidate clusters
0.1 6492
0.01 4502
0.001 4426
0.0001 4426

Table 2.1: Examination of the effect of the threshold θ on the number of candidate
clusters found by Streemer for the Computer Science dataset. Even when varying θ
by several orders of magnitude, the candidate clusters found are roughly the same.

threshold. Therefore in all streaming algorithms the question arises how to specify

that threshold. Streemer also requires a threshold on the similarity of items to cluster

centroids. In our experiments we found that the final clustering result is not sensitive

to the value of the threshold, θ. Table 2.1 shows some values of θ and the resulting

number of candidate clusters that are found in step 2. The number of candidate

clusters differs substantially across datasets, but, for a given dataset, θ has little

effect. Small differences in the number of seeds generated in step 2 have no effect

on the final result, as steps 4 and 5 filter them out. We used θ = 0.001 in all of our

experiments.

In the last step, Streemer assigns all points to the nearest cluster or, if no cluster

is close enough, to the background. The algorithm selects the N(1 − b)-th greatest

distance and uses that as a threshold to assign points to their nearest foreground

cluster or the background. Equivalently, the user could specify this threshold instead

of b. In this case, our choice to specify b was motivated by some intuition on the

structure and size of communities and the intention to understand the effect of

belonging more closely to a community vs. being more dispersed.

One can compare Streemer with a streaming clustering algorithm augmented

with a final step for generating a background cluster by trimming far points from

the clusters. Streemer looks very much like such an algorithm, except for the fact

that it finds a number of candidate clusters larger than k in step 1, and uses a second
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step to select k of those candidates as clusters. This makes Streemer less greedy than

a streaming algorithm, which improves cluster quality.

2.2.4 Objective function

Given the heuristics employed in Streemer when selecting the final clusters, it is not

obvious what objective function Streemer attempts to optimize. In this section we

obtain this objective function and compare it with other similar functions that are

used in clustering problems.

To help with notation we define the following indicator functions:

δik =











1 if xi is in candidate cluster k

0 otherwise

(2.1)

γk =











1 if candidate centroid µk is a foreground cluster centroid

0 otherwise

(2.2)

βi =











1 if xi is assigned to the background

0 otherwise

(2.3)

The indicator function δik is needed for the first step of Streemer where candidate

clusters are formed. γk is defined for the second step of Streemer when the centroids

of the final foreground clusters are selected from the candidates found in the first

step. Finally, βi is used to define which points are assigned to the background in the

last step of Streemer.

For the case of clustering where the number of clusters, K, is fixed and there is

no background, such as in k-means, the objective function that is being optimized

is the sum of the within cluster squared distances with constraints that force every
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observation to belong to one and only one cluster. It takes the simple form

min
δ,µ

K
∑

k=1

N
∑

i=1

‖xi − µk‖
2δik

s. t.
K
∑

k=1

δik = 1

δik(1 − δik) = 0

(2.4)

The minimization over δ affects the assignments of the observations to clusters,

whereas the minimization over µ affects the estimates of the cluster centroids. It

should be noted that the simultaneous minimization over both the assignments and

the centroids gives a natural description of the optimization problem and is amenable

to the iterative minimization procedure used by algorithms such as k-means, but it is

not absolutely necessary for the formulation of the problem. In fact, we can dispense

with µ if we rewrite the squared differences to be between points in the same cluster.

Equation (2.4) then becomes

min
δ

K
∑

k=1

1

2Nk

N
∑

i=1

N
∑

j=1

‖xi − xj‖
2δikδjk

s. t.
K
∑

k=1

δik = 1

δik(1 − δik) = 0

(2.5)

where Nk =
∑N

i=1 δik is the number of points in cluster k. This transformation is

possible for all the objective functions given below, but we will not make it explicit.

If we introduce a background cluster of fixed size b into the problem and maintain
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a fixed K, the objective function becomes

min
δ,µ,β

K
∑

k=1

N
∑

i=1

‖xi − µk‖
2δik(1 − βi)

s. t.
N
∑

i=1

βi = b

βi(1 − βi) = 0

N
∑

k=1

δik(1 − βi) = 1(1 − βi)

δik(1 − δik)(1 − βi) = 0

(2.6)

In the above equation the first constraint sets the size of the background to b and

the second ensures that points belong fully either to foreground or the background.

The last two constraints make the foreground points belong to one and only one

foreground cluster. Using the method of Lagrange multipliers we can move the

constraint for the βi in the function to be minimized, which then becomes

min
δ,µ,β,λ

K
∑

k=1

N
∑

i=1

‖xi − µk‖
2δik(1 − βi) + λ

(

N
∑

i=1

βi − b

)

s. t. βi(1 − βi) = 0

N
∑

k=1

δik(1 − βi) = 1(1 − βi)

δik(1 − δik)(1 − βi) = 0

(2.7)

This minimization will give a solution with a fixed background size b, similar to

what the background k-means algorithm finds. If we do not want to specify the exact

background size but instead give a parameter that signifies the importance of the

background, or in other words the cost of placing an observation in the background,
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then we can drop the size b and make λ user-defined:

min
δ,µ,β

K
∑

k=1

N
∑

i=1

‖xi − µk‖
2δik(1 − βi) + λ

N
∑

i=1

βi

s. t. βi(1 − βi) = 0

N
∑

k=1

δik(1 − βi) = 1(1 − βi)

δik(1 − δik)(1 − βi) = 0

(2.8)

This modification exploits the duality between a threshold λ and a fixed background

size b, similar to the duality between the threshold θ of streaming clustering and the

number of clusters k in k-means.

We now look at the case of no background and variable number of clusters. We

introduce a cost α of starting a new cluster, which is similar to but not exactly the

same as the α parameter of the Dirichlet process.

min
δ,µ

N
∑

k=1

N
∑

i=1

‖xi − µk‖
2δik + α

∥

∥

∥

∥

∥

N
∑

i=1

δi·

∥

∥

∥

∥

∥

0

s. t.

N
∑

k=1

δik = 1

δik(1 − δik) = 0

(2.9)

Since the number of points that are clustered is N , the number of clusters K selected

by the model will lie between 1 and N . Thus, we set the summation boundaries for

k to be these values and use the indicator δ to ignore values for k > K. In the

equation above we used the L0 norm to compute the number of clusters from δ.
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Finally, if we introduce the background again, the above equation becomes

min
δ,µ,β

N
∑

k=1

N
∑

i=1

‖xi − µk‖
2δik(1 − βi) + α

∥

∥

∥

∥

∥

N
∑

i=1

δi·

∥

∥

∥

∥

∥

0

+ λ

N
∑

i=1

βi

s. t. βi(1 − βi) = 0

N
∑

k=1

δik(1 − βi) = 1(1 − βi)

δik(1 − δik)(1 − βi) = 0

(2.10)

There is one important difference between equations (2.9) – (2.10) and a simple

streaming clustering algorithm that uses a threshold θ. The streaming clustering

algorithm uses K inequality constraints of the form ‖xi − µk‖
2 ≤ θ and when the

existing constraints cannot be satisfied a new cluster is created and a new constraint

is introduced. The above objective functions, on the other hand, use a single penalty

α and the creation of new clusters is determined by the trade-off between the cost

α of a new cluster if an observation is assigned to a new cluster versus the increase

in the sum of squared distances if the observation is assigned to an existing cluster.

This allows some of the clusters to have a radius smaller than θ and others greater

than θ (for some value of θ that is determined by α), depending on how cohesive

they are and therefore how large their sums of squared differences are.

Recall how Streemer deals with clusters in its second pass. As it processes a

cluster found in the first pass, it either keeps it as a cluster, merges it with another

existing cluster, or assigns it to the background. If a new cluster is formed, this incurs

cost α plus whatever the sum of squared distances is for the points in that cluster.

If the points are merged with an existing cluster, then there is no cost α, but there

is an increase in the sum of squared distances of the cluster that they merge with.

If they are assigned to the background then there is a cost of λ per point. All these

choices of Streemer can be modeled by equation (2.10), which corresponds to a clean

objective for what Streemer attempts to optimize. Streemer itself, however, is not as

clean and the many comparisons employed by the algorithm, such as comparing the
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cohesiveness of the candidate clusters or their distances to each other, are heuristics

whose aim is to avoid local minima. Next we attempt to gradually introduce these

heuristics in the final objective function for Streemer.

In order to arrive at the final objective function being optimized by Streemer, we

start by first defining separate objective functions for each of the three steps. Each

function uses the optimized parameters of the previous step as fixed parameters.

Once all the individual objective functions are defined, we will combine them to get

a final objective function for Streemer.

The objective function for the first step is trying to maximize the within cluster

similarity while keeping the number of clusters as small as possible:

max
δ,µ

N
∑

i=1

N
∑

k=1

sim(xi,µk)δik − α

∥

∥

∥

∥

∥

N
∑

i=1

δi·

∥

∥

∥

∥

∥

0

s. t. sim(xi,µk) ≥ θ

N
∑

k=1

δik = 1

δik(1 − δik) = 0

(2.11)

The first constraint forces the candidate clusters to have a minimum within cluster

similarity of θ. The other two constraints make sure every point belongs to one and

only one cluster.

At the beginning of the second step δ and µ are fixed to the values found in the

previous optimization. Let ck be the cohesiveness of candidate cluster k:

ck =

∑N
i=1 sim(xi,µk)δik
∑N

i=1 δik

The second step then selects those centroids of the candidate clusters that are the
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most cohesive and thus maximize the overall cohesiveness:

max
γ

N
∑

k=1

ckγk

s. t.

N
∑

i=1

δikγk ≥ minsize

γk(1 − γk) = 0

(γk + γj)I[sim(µk,µj) ≥ θ] ≤ 1

ckγk ≥ cjI[sim(µk,µj) ≥ θ](1 − γj)

(2.12)

The first constraint above forces the selected clusters to have at least minsize points

and the second makes a candidate cluster to be either selected or not. The third

constraint makes sure that at most one centroid is chosen between two neighbors and

by extension at most one centroid is chosen in the whole neighborhood. The last

constraint ensures that the most cohesive candidate in the neighborhood is chosen

(or, if the candidate cluster is isolated then it is the only cluster in its neighborhood

and is thus also the most cohesive). Suppose µk and µj are two centroids in the

same neighborhood. If ck ≥ cj, the last constraint is satisfied if µk is chosen and µj

is not. If neither are chosen the constraint is violated because cluster cohesiveness is

always positive. If µj is chosen but µk is not, then the specific constraint is satisfied,

but the corresponding constraint with the indices j and k swapped is violated.

For the last step of Streemer the values of γ and µ are considered known and

fixed. That step then reassigns points to foreground clusters or the background so

as to maximize the within cluster similarity of the foreground clusters while placing
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b points to the background:

max
δ,β

N
∑

i=1

N
∑

k=1

sim(xi,µk)δik(1 − βi)

s. t.

N
∑

i=1

βi = b

βi(1 − βi) = 0

N
∑

k=1

δik(1 − βi) = 1(1 − βi)

δik(1 − δik)(1 − βi) = 0

(2.13)

The first constraint forces b points to the background, the second makes every point

belong either to a foreground cluster or the background and the last two make the

foreground points belong to one and only one foreground cluster.

Note that the last objective function re-optimizes δ, which is also a variable being

optimized in the first function. Therefore, if we combine it with the first function,

there will be a conflict in the way the δ values are set by Streemer. We could

make δ a new variable (say δ′), make the third step objective independent of that of

the first step and combine all three optimizations into one (albeit a complex one).

Instead, below we combine the first two objective functions into one (since they do

not optimize the same variables) and leave the last function separate for ease of

presentation. This is not a serious problem because the last step of Streemer that

finds the background is optional and not integral to the algorithm. In addition,

the last step only performs a reassignment of points without affecting the cluster

centroids.

By combining the first two functions, we thus get the following objective function

26



for the first two steps of Streemer:

max
δ,µ,γ

N
∑

i=1

N
∑

k=1

sim(xi,µk)δik − α

∥

∥

∥

∥

∥

N
∑

i=1

δi·

∥

∥

∥

∥

∥

0

+
N
∑

k=1

ckγk

s. t. sim(xi,µk) ≥ θ

N
∑

k=1

δik = 1

δik(1 − δik) = 0

N
∑

i=1

δikγk ≥ minsize

γk(1 − γk) = 0

(γk + γj)I[sim(µk,µj) ≥ θ] ≤ 1

ckγk ≥ cjI[sim(µk,µj) ≥ θ](1 − γj)

(2.14)

In the first step of Streemer, γk = 0, making the
∑N

k=1 ckγk term zero and trivially

satisfying the last four constraints. In the second step, Streemer holds δ and µ

constant and only optimizes γ.

2.3 Validation of Streemer

2.3.1 Data used

In our experiments we used a dataset consisting of papers from computer science

fields. The data were drawn from CiteSeer [42], a digital library of papers from

conferences and journals in computer science. CiteSeer collects computer science

papers posted on the Internet as well as by linking directly to publishers, conference

sites and journals, and then parses these articles to find the citations and descriptive

information in each paper. It has over 700,000 indexed papers in its database. We

cross-referenced these papers with the DBLP Computer Science Bibliography [75],
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a European database with over 600,000 papers that indexes a similar group of com-

puter science papers, in order to verify existing information and gather supplemental

information on journals and conferences. The majority of papers in the version of

these databases that we used are from between 1992 and 2003.

The documents in our dataset were represented as sparse Boolean vectors, i.e.

vectors with elements 0 or 1. The j-th element of vector i is 1 if document i cited

document j and 0 otherwise. The vectors were L2 normalized before clustering to give

documents with different number of citations equal weight. The dataset consisted of

341,458 documents, represented as Boolean vectors of 197,163 dimensions4. We also

extracted the text of the paper titles and keywords.

2.3.2 Validation method

In order to see how well Streemer finds clusters, we compared it to k-means as a

baseline. For the comparison to be meaningful, the algorithms should both find the

same number of clusters. We therefore modified Streemer to perform in step 3 a

binary search for the value of minsize that gives k clusters. However, k-means does

not find a background cluster, therefore we developed a simple algorithm, based on k-

means, that does find one. This algorithm, which we call background k-means, takes

two parameters: the percent background b and the number of clusters k and returns

k − 1 foreground clusters and a single background cluster. It differs from standard

k-means in that at each iteration only the nearest (1 − b)N points are assigned to

clusters; the rest belong to the background. Only these (1 − b)N points are used

for estimating the cluster centroids. As in k-means, all the foreground clusters are

convex, have piecewise linear boundaries and equal prior probabilities.

We compared the three algorithms by clustering the Computer Science data set

and evaluating the clusters by measuring how homogeneous the documents in the

4The number of dimensions is less than the number of documents because some papers in our
dataset are not cited by the others. We removed these columns of all zeros from our sparse matrix.
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clusters were in terms of the journals and conference proceedings where they were

published. The mapping between journals/conferences and knowledge communities

is, of course, not one-to-one, but they are highly correlated. For example, most

researchers in computer architecture, graphics, and machine learning publish in dif-

ferent venues. CiteSeer provides publication information, but because it is automat-

ically extracted, it contains many errors. To get more reliable publication data we

mapped a sample of the papers to DBLP, which is of higher data quality. We found

that the annotated documents belonged to 1,495 journals/proceedings.

For our evaluations we used weighted average entropy (WAE) [34] as a measure

of cluster purity:

WAE =

C
∑

i=1

ni

N
Ei (2.15)

where ni is the number of points in cluster i, N is the total number of points and Ei

is the entropy of the distribution of labels (i.e., conferences and journals) for points

in cluster i. The lower the WAE, the better the clustering matches the given data

labels.

We also computed the normalized mutual information (NMI) [118] and found

results consistent with the WAE results, so we do not report them.

2.3.3 Validation results and discussion

In the results presented below, the cosine measure was used as the similarity function

in all three methods. We used θ = 0.001 for Streamer. For k-means, which does

not explicitly find a background cluster, we found the k clusters and as a final post-

processing step we assigned to the background the bN points that were most distant

from their cluster centroids.

We tested each algorithm for k = 10, 20, 40 and b = 0, 0.33, 0.5, 0.67, 0.9. For

each value of k and b we ran the algorithms ten times starting from a random

initialization. Figure 2.3 shows detailed results for one choice of parameter values,
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Figure 2.3: Average WAE over 10 runs evaluated on all or only on the foreground
clusters (k = 20, b = 0.67). The error bars are plus or minus one standard deviation.
Lower WAE is better.

k = 20 and b = 0.67. The bar chart shows the average WAE and one standard

deviation error bars for the ten runs (lower WAE is better). The bar for k-means

(all clusters) is before the post-processing step of creating the background cluster,

whereas the bar for k-kmeans (foreground only) is computed after generating the

background and excluding the points in it. We note that the WAE for all the clusters,

including background, is much better for k-means than for Streemer and background

k-means. This is not surprising, as the background cluster is of low cohesiveness by

construction, therefore its entropy is quite high and it negatively affects the overall

weighted entropy. On the other hand, the WAE for the foreground clusters only is

lower for every algorithm. Searching for a background cluster has the effect of finding

better foreground clusters. All the results of the sensitivity analysis are shown in

table 2.2.

Our robustness analysis for different values of k and b found that k-means always

performs the best in terms of all clusters (including background). This is expected,

since the background is by construction of low quality. However, in this work we are
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k = 10 k = 20 k = 40
b bgkm Strm bgkm Strm bgkm Strm

0 7.69 8.39 7.17 7.95 6.71 7.45
0.33 7.46 7.79 6.91 7.28 6.44 6.77
0.5 7.30 7.72 6.75 7.09 6.28 6.42
0.67 7.11 7.35 6.54 6.63 6.07 5.99
0.9 6.39 6.13 5.75 5.67 5.22 5.16

Table 2.2: Sensitivity analysis. Reported is the mean of the WAE over 10 runs for
the foreground clusters (points in the background are ignored). bgkm is background
k-means, Strm is Streemer.

not interested in clustering every point, so we do not report these results in table 2.2.

Also, when finding a background, the foreground clusters for k-means were always

worse than background k-means and so we omit these results as well. Streemer is

slightly worse than background k-means for small b and k. As the background size

or the number of clusters increases, both Streemer and background k-means perform

better, but Streemer improves faster. At b = 0.67 they are not significantly different,

except for k = 40, where Streemer is significantly better than background k-means.

Even though background k-means performed better than Streemer for some pa-

rameter settings, we still chose to use Streemer for our analyses in the rest of the

paper for several reasons:

• Streemer only makes two passes over the data, whereas background k-means

iterates over them until convergence. In our experiments Streemer was approx-

imately an order of magnitude faster, so it is preferred for large datasets. Of

course, Streemer suffers a penalty because of this, but, as we saw, the penalty

is relatively small.

• Streemer is agnostic about the size distribution of clusters, unlike background

k-means which assumes an equal size prior. In our tests the foreground clusters

found by Streemer had very different sizes. The ratio of the biggest to the

smallest cluster was about 20, while for background k-means the same ratio was
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only 2. For the application area we examine, we expect that some knowledge

communities are small and others are big. The clusters returned by Streemer

match better this size variability.

• Our goal is to examine the evolution of clusters over time, so we want clusters

to be created or destroyed. Algorithms that use a fixed k are not amenable to

this, because they will always find the same number of clusters in every time

period. Streemer uses a threshold, so if we keep the threshold value fixed over

all time periods, we can get different numbers of clusters and the results will

be comparable.

There is vast literature on clustering using both iterative and streaming algo-

rithms. Iterative methods, such as spectral [19, 109, 21], or information theoretic

clustering [111, 20, 4] are generally too slow for large datasets. A faster alternative

is to use methods which make either a single-pass (a streaming algorithm) or a small

number of passes over the data.

Streaming clustering, which is used in the first step of Streemer, has many at-

tractive theoretical properties [48]. However, first finding a large number of clusters

which are then reduced to the requested number k, as is done in Streemer’s second

step, gives significantly higher quality clusters than single pass algorithms [17]. The

idea of cluster cohesiveness in Streemer was inspired by the Clustering By Commit-

tee (CBC) algorithm [96]. CBC finds a set of cohesive clusters, called committees,

that are well separated and which initially include only a subset of the points. The

algorithm proceeds by assigning points to their most similar committee.

Streemer falls into the category of distance-based methods, as defined in [128]. By

making two passes over the points and finding a background cluster, Streemer avoids

the problems mentioned there of frequently scanning the points and of treating them

all equally. Much like the well-known BIRCH algorithm for clustering large datasets

[128], Streemer first finds a large number of clusters which it later reduces. BIRCH

differs in that it first builds a tree whose nodes keep statistics about subsets of the
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data and then uses a clustering algorithm (in the paper agglomerative) to cluster the

tree leaves. Because BIRCH only keeps clustering feature (CF) vectors about subsets

of the data and not the actual data, in order to reduce memory requirements, not

everything can be computed from the data that was possible originally. Therefore,

unlike Streemer, BIRCH can only use certain distance functions.

DBSCAN is another algorithm with many similarities to Streemer [28]. It finds

clusters by repeatedly adding points that are close together and have a large number

of neighbors. DBSCAN can find clusters of arbitrary shapes, but it requires the

specification by the user of the parameters Eps and MinPts and is very sensitive to

their values [49]. Streemer also requires similar parameters, but we found that it is

not sensitive to them. Furthermore, DBSCAN can suffer from robustness problems,

because it operates on the whole set of points and does not do any preliminary

clustering. If two distant clusters are connected by a string of points, then DBSCAN

will merge the clusters. Streemer on the other hand first finds candidate clusters

and then only merges them if the resulting cluster is highly cohesive.

Our work can be viewed as following in the tradition of citation analysis, but

differs from the historically more descriptive work using unsupervised learning in

that we also use supervised learning models on top of our unsupervised clustering.

Citation (and co-citation) analysis is quite old [119, 113, 114, 12], but has seen a

revival with newer clustering algorithms, such as Latent Dirichlet Allocation (LDA)

[9, 47] and its variants [7]. Other papers deal with the similar problem of clustering

web pages, where the links take the role of citations. [36, 41] find web communities

by using the connections between the observations. [84] use co-citation structure

between web pages to discover new topics.

The Streemer algorithm was introduced in [63], where it was compared in de-

tail to k-means and background k-means. Some results regarding the evolution of

knowledge communities were also presented there. In the present paper we provide

extended descriptions of the features used for community growth prediction and
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give specific examples and in-depth analysis of the results. We also look at emerg-

ing, splitting, joining and dying clusters that were found. Additionally, we apply

Streemer to the new problem of predicting citations of papers and analyzing when

new knowledge has greater impact.

2.3.4 Another application - finding stop words

The ability of the Streemer algorithm to cluster the observations into foreground or

background opens the possibilities of other uses besides finding knowledge commu-

nities. The defining characteristic of the background cluster is that it contains those

observations that don’t fit well with any of the foreground cluster. When we apply

Streemer to community analysis in this chapter, we are interested in the foreground

clusters, while the background is only used to improve the foreground quality. How-

ever, in other cases, one may be interested in the observations that actually get

assigned to the background.

Consider, for example, the automatic identification of stop words. Stop words

are words that are usually filtered out before processing text because they are con-

sidered common and not conveying any useful information. Lists of stop words are

usually manually created, so it is desirable to generate them automatically for other

languages. A defining characteristic of stop words is that they tend to appear equally

randomly in most documents. Content words on the other hand convey most of the

information of a document and are thus related to the topic of document. For ex-

ample, sports articles will contain many words related to sports and financial news

stories will contain many terms that have to do with finance and economics. Every

document however will contain articles, pronouns, modal verbs and other stop words.

One might propose to use Streemer to cluster the words in a collection of doc-

uments according to the documents they appear in with the expectation that each

foreground cluster will contain words about a specific topic, whereas the background

cluster will have all the stop words since they don’t fit well to any specific topic.
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This turns out not to be the case.

We tested Streemer on a collection of words extracted from 50,000 Medline ab-

stracts. The words were represented by vectors whose elements were the number of

times the word appeared in a document. The number of vector features was equal to

the number of documents. To eliminate spurious results we stemmed the words and

removed those with fewer than 10 overall occurrences, leaving approximately 4,700

words. Table 2.3 shows some foreground clusters that were found. The identified

topics seem quite good, however the goal is to find stop words in the background.

The background is given in table 2.4 and, surprisingly, it does not contain any stop

words. Instead the words in the background are mostly specialized medical terms

that do not seem to have any apparent connection. As to what happened to the stop

words, the majority of them appear in a foreground cluster (table 2.5).

Why did we get such unexpected results? The words were clustered according to

the documents they appear in, so words whose distributions of document appearances

are similar were assigned to the same clusters (for example the words embryo and egg

that appear in abstracts about reproduction were in the same cluster). Stop words

also have similar distributions; they appear in most documents almost uniformly!

Because of their strong distributional similarity, they are all assigned to a foreground

cluster. The question that remains is “What are the words in the background?” We

hypothesize that they are words that either did not appear enough times to be

tied strongly to an existing cluster, or they occur in documents from two (or more)

topics. They are therefore somewhat similar to both topics (i.e. clusters) but not

very similar to either. Also, Streemer has a preference for larger clusters, so many

small clusters are just thrown to the background.

This example shows that one should be careful when applying Streemer (and in

general any algorithm) to a problem. What at first glance might seem plausible, it

may fact lead to unexpected outcomes. A deep understanding of the problem at hand

and the inner workings of the algorithm is important for a successful application.
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retrospect prospect thromboembol studi incid risk who pill user review survei hospit
oc out predispos data associ complic epidemiolog etiolog pregnanc mere statist evalu
assess match colombia morbid surveil admiss complaint perform hemorrhag 1972 peri-
nat outcom diagnos embol criteria consecut pariti done remark diagnost select british
49 ectop hip cardiovascular prognosi woman advers trait categori physician comment
comput tabul random 1968 62 reflux neurolog defin resum uncertain literatur elsewher
deliveri methodolog atresia accuraci labour 71 smoke anticoagul illiter causal evacu ac-
cid quit exclud 46 obstetr acquir colleg fatal meaning roentgenograph submit chart
roentgenogram
speech intellig db hear leader acoust palat languag tape auditori judgment sound cleft
word instruct score invest discrimin tone hemispher rehabilit comprehens prophylact
inadequ tendenc flap nois set hysterectomi 96 judg item psycholog speak parkinson
laryng wider esophag mask heroin sibl scale thought development adjust expenditur
confus skill dph placement regim emot bia verbal gather confid tongu hyperact freedom
dystrophi muscular polyribosom muscl motor ribosom atrophi neuromuscular proportion
intim sharp weak belong abnorm notabl elast thicken isometr patholog disord granular
recess anomali eros hereditari pelvi
noradrenalin adrenalin catecholamin adrenoceptor phentolamin isoprenalin ap sympa-
thet dopamin anaesthet infus inotrop potenc acetylcholin strip action shorten prolong
output morphin propranolol medulla contract hz content guinea transmitt agonist biphas
na injur contractil puls arous ca 300 diminish plateau plexu accompani longitudin hy-
poglycemia unlik da

Table 2.3: Examples of foreground clusters from the stop word identification exper-
iment.
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color domin duoden avian summer advic lytic academ canadian union neglect elig un-
expect brazil gallbladd postmenopaus wish attenu alpha1 cisterna lysat circuit ribonucl
encount dmso alkaloid amphetamin resin discov glaucoma facial oocyt assur hexos sent
epilepsi cyst ligament viabil leav ileum polynucleotid check phe pilot disrupt preserv
inde correctli retinol infanc endonucleas bile bill referr benefici recruit opinion ester-
ifi iodin briefli lumbar easili mycobacterium carefulli infer virul bud ru sudden rup-
tur notic distress uncompl degen lidocain clinician voltag medicin pouch karyotyp nurs
specul hl naproxen congest oligonucleotid fatigu dissect habit furosemid galactosidas
ly vii phenylalanin hemodialysi book hard methadon max hybrid calcitonin uret calibr
glomerulonephr 1956 decompress lose vena unless primer fate salivari tempor smoker
cytogenet ward crystal hdl devis contraind prosthet thaw ethanolamin ch dysfunct ex-
act me haemorrhag cea chlorophyl progeni anxieti scheme favour bp cranial secretin tyr
exhaust search micro endotheli mention intercours leu practition eighti porcin math-
emat polymorph dissolut shorter stand father abstin diazepam gtp dermal unsuccess
wast met streptomycin parenchyma charact 94 press felt jaundic sle brown methotrex
sphere safeti subtyp plasmid mesenchym undergon tubulin z dt chemotact dy simplex
millilit lymphoblast specialist periodont finger uninfect quantifi thiamin understood rrna
unrespons sclerosi oblig elucid indigen mul prl classic miss fish dba sterol enamel au-
tolog let lend supervis usag pathogenesi tm tool drosophila nonpregn cerebrospin egypt
artifici coverag perceiv breed sea satisfact illumin distort inabl york postcoit weigh
profound gc handl illustr handicap parenchym territori glycol attract trh tent unclear
transcrib curettag vacuum antitrypsin olfactori genotyp heterolog peer ic mastectomi
lactic midwiv caution bactericid heavili seros suspend centr mononuclear know scientist
genu english vesicular phosphatidylethanolamin mellitu la estriol leukaemia pellet unde-
sir cadmium hyperparathyroid menarch lengthen apart propag laser transloc arachidon
mens pup goiter ti ppd foci nineti prescrib addict enumer moment ethic influenza hla
radioiodin seizur suit mission student meat f1 amend recal therapist gentamicin insemin
helper tropic thyrotropin formal virus televis allograft satellit calcif psychiatrist specifi
antihypertens intravascular sporul radionuclid rhythmic adenoviru b6 csf multipar bsa
99mtc fundu stai sheet ria umbil leaflet criterion granulocyt faculti glc pathophysiolog
nicotin diuret quench autosom c3 verifi hematoma headach twin 110 instabl eeg yr ra-
dio crimin spring counselor angiotensin rs defens rodent rubella juvenil aggress measl cs
stepwis schizophren altitud peculiar empti fibrinolyt intent copi le modal disk ambient
ldh herd shoulder genom client imped b12 stillbirth mi c4 gynecologist dental twitch
blast oscil pepsin rheumat intercellular gastrin britain duodenum ultrason bilirubin titl
sr paramed gangliosid file a1 q detach vi trigger convuls sv40 pentagastrin pra disintegr
cattl sheath streptococci tendon ala spermicid antenat birthweight splanchnic hsv suicid
club camera ser bradykinin gly choroid pharmacist mlc librari

Table 2.4: The background cluster from the stop word identification experiment.
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nor prior conserv few seven lesion 26 enhanc regimen cure respond side usual peripher
phenobarbit srbc influenc thyroid whom frequent exposur disappear 37 capac 27 35 salin
return maintain 70 32 except impair durat sensit cold 29 melanoma good experiment
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Table 2.5: A foreground cluster that actually contains mostly stop words.
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2.4 Clustering over time

For the validation experiments in the previous sections, we applied the clustering

algorithms to the whole dataset. Documents published in early and later years were

all clustered together. This is acceptable when evaluating the clustering algorithms,

but not when the intention is to analyze the evolution of knowledge communities.

Such communities change over time, they can grow or shrink as more or less papers

are published about their topics of interest. They can even disappear, either because

of waning interest, or because they split in smaller, more specialized communities.

Other communities may merge into one and new communities may be formed about

topics that did not exist in earlier years.

In such cases, where the data come from a dynamic environment, the clustering

method must allow the clusters to evolve in the ways described previously. A simple

clustering of all the data would incorrectly assume that the clusters are static over

time, which we know is not the case for knowledge communities. Since we could not

perform a straightforward clustering of all of our data, we had to develop an iterative

clustering scheme (which we call “rolling clustering”) that successfully addresses the

requirements of the dynamic environment.

We divided the papers by publication date into 5-year groups and clustered the

papers of each group separately. The 5-year periods were shifted by 1 year and

consecutive groups were partially overlapping for 4 years. For example, we clustered

the documents published from 1985 to 1990 based on what they cite. Then we

clustered the documents published between 1986 and 1991, then those between 1987

and 1992 and so on. We then manually matched up clusters from consecutive groups

using the common documents in the groups. For example, the clusters found for

1985-1990 were matched to the clusters for 1986-1991, by looking at the common

papers in 1986-1990. A cluster from 1986-1991 that contained mostly the same

papers as a cluster from 1985-1990 was considered to represent the same community.

The temporal overlap ensures some consistency in cluster composition, while allowing
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Figure 2.4: Illustration of rolling clustering with cluster B disappearing and cluster
C forming in the 1993-1997 time period. By using the common documents from the
overlapping time periods we can match the clusters and track their evolution.

new clusters to be created and existing clusters to merge or wither away.

A hypothetical example of rolling clustering is shown in figure 2.4. The three

rectangles represent three consecutive 5-year periods. The round shapes are com-

munities found by clustering the documents in each time period. In this example,

clusters A and C are present throughout the three time periods. Cluster B disap-

pears in the third time period and cluster D appears in the second. Throughout the

time periods one can observe the dynamic movement of the clusters as they evolve

over time. Essentially, what we did was to chain together a series of overlapping clus-

terings so that we can create continuity while allowing for an evolving population of

communities.

We used Streemer to perform rolling clustering, without the modification in the

previous section, that is we used a threshold and the number of clusters found was

not fixed. The threshold value was the one found in section 2.3 using binary search

which gave 20 clusters; the background fraction was b = 0.67. Both these values

were selected by examining the clusters we found in section 2.3 and getting experts’

opinions about the cluster numbers and their sizes.
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Clustering based on words or citations has been used extensively for text mining

(for example [72, 116]). Trying to identify communities or clusters and how they

evolve over time has also been studied in the past. For example, [120] use an algo-

rithm with no user-defined parameters to cluster dynamic networks of interactions

and track their evolution. [74] explore and model the properties of graphs evolv-

ing over time. Their findings can provide inspiration for improving in the future

the simple “rolling clustering” methodology that we used. There is some work on

dealing with evolving topics over time (see for example [7, 124]), but the reasons

we used the “rolling clustering” methodology were two-fold. First, it is much sim-

pler, and second, it is necessary for our later analysis that the clusters formed at

a given time depend only on older data, since we will be using the clusters to pre-

dict the future. Our methodology requires all cluster assignments in each year to

be backward-looking only. At the same time, we find very high continuity between

clusters, since the knowledge landscape we created changes gradually. Additionally,

we can easily use our measures of “centrality” at the paper and cluster levels that

refer to the appropriate time frame.

In sections 2.5 and 2.6 we use the “rolling clusters” to predict the success of

knowledge communities and of papers. For our predictions to be valid we need

to use only clusters (and cluster features) based on earlier data. Because of the

procedure we follow, clusters at a given time only depend on prior history. We only

use the information available at that time; no knowledge of the future is used.

2.4.1 Analysis of clusters

In this section we look at the “rolling clusters” we found. These evolving clusters give

an interesting view of the field of computer science and the changes in the knowledge

communities within it.

According to the literature on search and positioning for knowledge development,

the evolution of clusters over time is the result of the choices agents make as they
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position themselves on this landscape [52, 51]. The period from 1992 to 2003 marked

a dramatic growth of computer science and a radical evolution of its scope of use.

To test the validity of our method we look at the knowledge communities we found

and see if they accurately reflect the changes in computer science during this period.

Figure 2.5 and table 2.6 give details on the 22 knowledge communities we identified.

Figure 2.5 shows the evolution of the sizes of the knowledge communities with time,

as well as a timeline of when each community appeared and disappeared. Table 2.6

gives for each cluster the number of documents assigned to it, a name given manually

based on inspection of the papers assigned to the cluster and using our expertise and

the 5 most common words in the abstracts of the papers in the cluster together with

a count of the word occurrences.

There is no ground truth in the data we are clustering. As authors research

and publish, their areas of interest can drift, or the topic of their work may require

citing quite different papers than their prior or subsequent publications. In the end,

what we are trying to cluster is a cloud of diffuse communities that are formed by

complex interactions. We do not believe that the 22 clusters we found are in any way

definitive. The hypothesis we are exploring is that a clustering which is meaningful,

in the sense that it captures some of the community structure, will prove useful.

The verification that the specific clusters we found are reasonable is that in the next

two sections they are used to build models that make good predictions about the

community growth and the impact of papers. Our goal in this section therefore is

not to present clusters of papers and claim that we have found the existing scientific

knowledge communities, but to illustrate how our analysis can uncover structure in

the citations. The plots are useful examples in exploring the citation connections

in our dataset and an informal verification that what we have found is at least

reasonable.

One thing to note is that the clusters represent knowledge communities and not

subjects. For example, computer architecture is a subject that is very wide and
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encompasses several communities. Computer architecture is not cohesive enough to

be represented as a single cluster. It is instead split in several clusters in our results.

Other subjects that do not appear in the 22 clusters we found may be too small, or

too diffuse to show up, or they may be a part of a larger community.

Our findings give a sense as to how such an analysis can help us explore the

collection. For example, notice that in 1992 we discovered 14 knowledge communities.

Between 1992 and 1999 we observed seven new knowledge communities forming and

none disappearing. From 1999 to 2001 we found that five knowledge communities

disappeared and none were created. This finding is in keeping with the dramatic

growth of computer science in the Internet boom and the subsequent collapse of the

Internet bubble. The movement and rates of change of clusters also reflect these

changes, with more activity during times of shake-up in 2000-2001 as knowledge

communities collectively struggle to readjust to and survive in a period of dramatic

correction in the sector.

We were also able to identify cases of paradigm shifts. For example, clusters 5 and

21 are both on very similar topics – “machine vision/graphics” and “image analy-

sis/tracking”, respectively – but are very distinct communities. In the mid 1990s the

first experienced a steep decline as a research community while the latter emerged

from nowhere and became quite significant. Clusters 4 and 20 on “design of cryp-

tographic systems” and “cryptography”, respectively, experience the same pattern,

with cluster 20 seeming to emerge and grab cluster 4’s intellectual space. During

the mid 1990s as the Internet grew exponentially and broadband allowed video to

be more easily transferred and stored, we also saw the emergence of two clusters on

“congestion control” and “image analysis/tracking”. At the same time we saw the

decline of “distributed computing” and “shared memory/parallel processing”.

Besides birth and death of communities, we also observe merging and splitting.

For example, in 1996 cluster 9, representing the knowledge community researching

“Internet traffic management,” shattered to form several smaller clusters (figure 2.6).
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(a) Machine Learning/
Neural Networks

(b) Object-Oriented
Languages

(c) Model Verification (d) Design of Crypto-
graphic Systems

(e) Machine Vision/
Graphics

(f) Constraint Satisfac-
tion

(g) Real Time Networks (h) Programming Lan-
guages

(i) Internet Traffic
Management

(j) Database Mining (k) Network Routing (l) Parallel Computing

(m) Machine Learn-
ing/SVM, Boosting

(n) Shared Memory/
Parallel Processing

(o) Optimization (p) Congestion Control

(q) Distributed Com-
puting

(r) Dataming/Web (s) Rewrite Systems (t) Cryptography

(u) Image Analysis/
Tracking

(v) No Cluster

Figure 2.5: Cluster evolution by year from 1993-2003 for clusters 1-22 (as % of
in-cluster papers).
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Cl. Size Proposed cluster name Five most common words (and counts)

1 7892 Machine Learning/ Learn (1390), Network (691), Robot (649),
Neural Networks Neural (606), Model (506)

2 9368 Object Oriented Type (835), Object (821), Program (800),
Languages System (709), Language (624)

3 7022 Model Verification System (1267), Time (826), Model (783),
Verification (435), Specification (434)

4 4144 Design of Crypto- System (557), Distribute (524),
graphic Systems Protocol (279), Base (222), Fault (220)

5 6053 Machine Vision/ Image (717), Model (506), Base(483),
Graphics Recognition (350), Motion (327)

6 6070 Constraint Model (471), Constraint (425), System (398),
Satisfaction Base (389), Algorithm (380)

7 3968 Real Time Time (1146), Real (908), System (731),
Networks Schedule (638), Network (302)

8 7743 Programming Logic (756), Program (700), System (595),
Languages Proof (485), Type (445)

9 9002 Internet Traffic System (1253), Distribute (743),
Management Network (651), Mobil (474), Perform (461)

10 10180 Database Mining Data (887), Queries (886), System (777),
Base (767), Database (762)

11 5890 Network Routing Network (1060), Multicast (750),
Service (444), Base (407), Protocol (404)

12 5990 Parallel Computing Parallel (1212), Perform (553), Distribute (533),
Computing (524), System (458)

13 9566 Machine Learning/ Learn (1226), Model (911), Network (664),
SVM, Boosting Base (597), Data (543)

14 3818 Shared Memory/ Parallel (479), Memory (466), Cache (297),
Parallel Processing Perform (281), Share (255)

15 950 Optimization Algorithm (134), Genet (104), Problem (64),
Optimization (57), Network (56)

16 2297 Congestion Control Network (514), Tcp (347), Control (324),
Service (273), Congest (194)

17 2743 Distributed Network (379), Web (352), Traffic (253),
Computing Cache (213), Service (196)

18 2428 Datamining/ Mine (366), Data (342), Web (229),
Web Base (206), Algorithm (197)

19 472 Rewrite Systems Rewrite (44), System (43), Program (42),
Constraint (36), Logic (31)

20 3289 Cryptography Secure (413), Key (238), Protocol (200),
Computing (195), Scheme (184)

21 3043 Image Analysis/ Base (304), Image (298), Model (290),
Tracking Recognition (245), Track (216)

Table 2.6: Cluster descriptions.
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Figure 2.6: How clusters merge or split. Cluster 6 was labeled “Constrained Satisfac-
tion” and cluster 15 “Optimization”. Cluster 9 was “Internet Traffic Management”
and 17 “Distributed Computing”.

Most fragments were below the threshold of size and cohesiveness to be knowledge

communities, consisting of a few loosely related papers, but there do remain rem-

nants of the original cluster 9, and a new cluster, 17, which represents “distributed

computing”. Both are significantly smaller – 38% and 16%, respectively, of the

size of the original cluster 9. In 2000 there was also a merger between clusters 6

and 15 (figure 2.6), representing the knowledge communities researching “constraint

satisfaction” and “optimization”, respectively. These fields are clearly related, and

both clusters were approximately the same size. Cluster 15 was on the tail end of a

gradual decline, and cluster 6 was recently formed and consistently growing, so we

labeled the resulting knowledge community as cluster 6.

We also see the emergence of a number of clusters that were not present at the

start of our study. In 1996 a new cluster emerged on “Datamining/Web”. One of its

top three most cited papers is by Larry Page and Sergey Brin, the founders of Google.

In 1996 the knowledge community representing “Datamining/Web” comprised only

0.23% of our computer science papers – in 2003 it represents 7.20%.
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2.5 Predicting the growth of knowledge commu-

nities

Our goal, however, is not to gain insight into what happened historically (even

though that is also interesting), but to predict what will happen going forward

in a knowledge community and to define the attributes of successful communities.

We will use the clusters we found in the previous section to analyze the growth of

knowledge communities. We ask how the knowledge content, as measured by their

citations, and rhetorical content, as measured by the vocabulary they used, affect

the differential success of these communities [99, 112]. We also examine the effect of

community characteristics of cohesion [91], uniqueness [53] and adaptability [82], as

described below.

2.5.1 Model for community growth

We wish to find out how effectively the growth of knowledge communities can be pre-

dicted using attributes such as the cohesiveness and uniqueness of their vocabulary

and the knowledge they draw on. Our dependent (predicted) variable is a measure

of the vigor or performance of a cluster at a given time, as measured by the number

of papers presented at conferences or published in computer science journals in a

cluster each year.

We estimated our models using Generalized Least Squares (GLS), including ro-

bust standard errors for determining statistical significance [86]. This approach

allows us to investigate the time trends within our data while also adjusting our

standard errors for intra-group correlations. This is necessary because we believe

the performance measures of any cluster will be correlated over time. Since the

knowledge communities were clustered based on their similarity of citations, larger

communities will tend to contain more diverse citations. We included a 1-year lag in

the regression as well, thus controlling for the size of the cluster the previous year;

47



this means that the results presented below are not due to community size.

The empirical goal of our model is to explore the extent to which we can measure

community attributes and use them to predict performance. The central question

we face is how the community uses vocabulary and draws on knowledge, both of

which are unrelated to the explanatory power of the community, to enable it to be

successful. Specifically, we consider how the community draws on past knowledge

and generates persuasive rhetoric by measuring the cohesiveness and uniqueness of

both. More formally, we estimate our model as follows:

yit = βxit + bizit + eit (2.16)

where i indexes the clusters, t indexes years (time), yit denotes the number of papers

in a cluster presented or published each year, xit is the vector of features with

corresponding coefficients β capturing effects that are the same across all clusters

(the fixed effects), zit the features with coefficients bi which capture the variation

across clusters (the random effects), and eit represents the error term.

Below we describe the features that we used: cohesiveness, uniqueness, rate of

change, leadership/coordination controls, prestige controls and industry/academia

controls. The feature values were normalized by their standard deviations.

Cohesiveness : We use this feature to measure how the intellectual “cohesive-

ness” of both the shared knowledge (papers cited) and shared rhetoric (words) of

the knowledge community are significant for predicting its performance. For the

Knowledge Cohesiveness variable we represent how widely the cluster as a whole

searched for knowledge during that year in the intellectual landscape vs. how fo-

cused (coordinated) that search was. Knowledge Cohesiveness was computed as the

average similarity between the citations of each paper and the overall citations of

the cluster. More formally, it is

nC
∑

i=1

sim(ei, cenC)

nC

(2.17)
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where C represents a cluster for a given year; i indexes papers in cluster C; nC is the

number of papers in cluster C and sim() is the measure of similarity as previously

defined in the clustering methodology. This represents how widely (or narrowly)

authors in the cluster searched for knowledge during that year. (Since clusters vary

year to year, cohesiveness is for a given year.) Rhetorical Cohesiveness, which mea-

sures how similarly people in a cluster use vocabulary, was computed in the same

way. In this case, the similarity of the stemmed words in the title and keywords of

each paper to the average for its cluster was computed. As is common, stop words

were also removed.

Uniqueness : We are also interested in how different an intellectual community

is from other communities, either in the knowledge it generates or in the rhetoric

(vocabulary) it uses. Uniqueness of rhetoric represents how different the vocabulary

of a knowledge community is at a given point in time compared to other clusters.

Similarly, Uniqueness of Knowledge measures how different the sources of knowledge

of a school of thought are at a given point in time. The variable is computed in

the same way as Uniqueness of Rhetoric, but using citation structure rather than

words. For this feature we compare the average citations or vocabulary for a cluster

to the average citations or vocabulary of all other clusters. For example, if a clus-

ter generally uses the same keywords or cites the same papers, it will have a low

“uniqueness.”

Flexibility : Flexibility or adaptability for a cluster is an important measure of

how much a cluster changes over time. We are interested in the tendencies of a cluster

to change or remain stable. We assume that over time in a changing environment,

flexible clusters move more than less flexible clusters. Since knowledge changes as

a function of other knowledge, we use a relative measure of change in constructing

this variable. Given our averages or centroids for citation structure and language

per cluster, we construct a cosine similarity between each cluster and itself in the

previous year. The difference between the cluster average from year t to t+1 is a
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measure of the “rate of change” of a cluster over time. We computed the 3-year

running average (smoothings over 1, 2 and 5 gave comparable results). The change

in rhetoric represents how much the words that a cluster uses change from one year

to the next; the change in knowledge represents how much a cluster’s average use of

citations changes from one year to the next.

Leadership/Coordination Controls: A common way to explain differential perfor-

mance in firms is to look at the level of leadership or coordination. To attempt to

measure leadership in knowledge communities, we test for the effects of leadership

(or coordination) on three levels – from members of the community, for concentration

of the institutions the members identify with and for concentration in the venues the

community publishes in. A knowledge community may have very influential mem-

bers who can act as intellectual leaders, coordinating the knowledge community’s

chief concerns, methodologies and areas of research. We identify influence ties be-

tween authors of papers and the authors of those papers that they cite and thereby

construct an influence network for each cluster. We then run centrality measures on

these networks to measure the clusters’ eigenvector, degree, and in-degree centrality.

We found eigenvectors to be the most useful measure of centrality, since it measures

both direct and indirect influence, though all measures led to similar results.

We also wish to control for the potential coordinating influence of institutions.

For example, a school such as MIT or a company such as Google might be home

to a significant number of members of a knowledge community and thus the formal

control, social network, institutional norms and institutional organization these insti-

tutions exhibit may contribute to the de facto coordination of the school of thought.

To construct a variable to measure this we first identified the institutions that the

authors in the database identified with in their papers. We then found the percent

of papers for each cluster that came from the most common 10 schools, research

institutions, or companies, in order to see if a cluster had concentrated influences by

a few institutions (concentration of the top 1, 2, 3, and 5 institutions gave similar
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results). We assume that a higher concentration of control by a few players in a

knowledge cluster increases the potential for cluster coordination.

Lastly, we believe a coordinating or leadership role might be played if an intellec-

tual community is dominated by a powerful venue that controls distribution for that

cluster – such as a journal or conference that acts as a gate-keeper for the commu-

nity. Such knowledge gate-keepers can implicitly or explicitly influence the level of

homogeneity and coordination of a school of thought by both lending legitimacy to

work (by certifying it has passed a rigorous review process) and making it available

to an interested audience. In this case we look at the percent of articles published

in the 10 most common venues of the authors (either journals or conferences).

Prestige Controls: Prestige is a powerful factor in explaining differential perfor-

mance in organizations; we wish to test whether this also holds true of knowledge

communities. As with leadership, we therefore control for prestige on the member,

journal/conference, and employer/university levels of analysis. For members, we wish

to control for the prestige that would result from the “top” members of a field pre-

ferring to publish in some intellectual communities leading to superior performance.

We constructed this variable by finding the authors who had been nominated to the

prestigious post of fellow by three top societies in computer science – the Institute

for Electrical and Electronics Engineers, the Association of Computing Machinery,

and the National Academy of Engineering – from 1975 to 2005 and counting the

number of these fellows who published in any of our intellectual communities by

cluster and year. Next we constructed a variable that counted the number of papers

coming from the most prestigious 20 universities in computer science as ranked by

the US News and World Report graduate school rankings of academic programs.

By doing this we help control for the tendency for some intellectual communities to

be associated with prestigious institutions. Lastly, we constructed a variable that

counted the number of papers published in the top 10 most prestigious journals as

ranked by impact factor in Thomson ISI’s Impact Factors, which ranks the influence
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of journals, and the top 10 most prestigious conferences, as ranked by citation im-

pact by DBLP. We ranked these counts within year by cluster. This rank-ordered

list of clusters by year indicated the relative prestige of knowledge communities on

multiple levels.

Industry/Academia Controls: We encode each author of every paper as being

affiliated with a firm or academic/research institution. We then encode each paper

as “academic” if all of its authors are affiliated with academic/research institutions,

“industry” if all of its authors have firm affiliations, and “mixed” if some of its

authors are affiliated with firms and some with academic/research institutions. We

entered this information into the regression by including the two categorical variables

“mixed” and “industry”.

2.5.2 Community prediction results

The parameter values of our trained model are shown in table 2.7. Looking at the

magnitude, sign and significance of the parameters we find that cohesive rhetoric

(low variance of vocabulary within a cluster) and a broad use of knowledge (high

variance of citations within a cluster) are associated with improved performance.

Also, a knowledge community maximizes performance when it uses vocabulary that

is similar to that of other clusters and knowledge, as represented by citations, that is

gathered from diverse sources. Community flexibility in citations predicts community

growth, while changing vocabulary has the opposite effect (significant at p < 0.05).

We did not find significant effect of concentration (leadership) in publications on

community growth, either by source (school or institution) or by venue.

The variable for mixed industry/academy affiliation becomes statistically signif-

icant at the p < 0.1 level in this model. Examining the coefficients of industry

affiliation, we see that community performance is enhanced by a high percentage of

purely industry-affiliated papers. On the other hand, a higher percentage of mixed
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Cohesiveness
Knowledge -1.032 **
Rhetoric 1.169 **
Uniqueness
Knowledge -4.040 *
Rhetoric 1.494 ***
Flexibility
Knowledge 0.293 *
Rhetoric -0.272 *

Control Variables

Lagged Response
One Year 0.557 ***
Leadership Controls
Journal Leadership -3.240
School Leadership -0.394
Member Leadership (eigenvector) -0.004 *
Prestige Controls
Journal Prestige -0.002
School Prestige -0.019 ***
Member Prestige 0.011 **
Industry/Academy
Affiliation Controls
Pure Industry Affiliation 0.599 *
Mixed Industry/Academy Affiliation -0.858 *

Constant 0.108

N 231,000
χ2 2,213.746
R2 0.835

Table 2.7: Time Series GLS Estimation. The dependent variable is the number of
papers published by a community in a given year. (*** p < 0.001; ** p < 0.01; *
p < 0.05.)
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industry-affiliated papers indicated a slightly negative, though statistically insignif-

icant, impact on community performance. This suggests that the effect of higher

proportions of purely academic-affiliated papers is indistinguishable from that of

mixed-affiliation papers. Clusters with higher proportions of purely industry-affil-

iated papers were associated with higher performance than clusters with elevated

proportions of either purely academic or mixed-affiliation clusters, but the direction

of causality is unclear.

Since our hypotheses examine use of citations and rhetoric for the same three

measures, we also examined the correlation between rhetoric and citation structures

for each pair of similar variables. There was a significant, positive relationship be-

tween citation and rhetoric measures for all three knowledge community measures.

For knowledge community cohesiveness, regressing the similar measures for rhetoric

on citations yielded an R2 of 0.846, indicating that approximately 85% of the vari-

ation in rhetorical cohesiveness is attributable to changes in citation cohesiveness.

Similarly, for knowledge community uniqueness the R2 was 0.401, so approximately

40% of the variation in rhetorical uniqueness is explained by changes in citation

uniqueness. Lastly, an R2 of 0.9 for knowledge community flexibility indicates that

about 90% of the changes in rhetorical flexibility are explained by corresponding

changes in citation flexibility.

It is important to note that the trends identified by these measures are consistent

throughout the dataset; the extremely high correlations are chiefly due to extreme

values. When examining the same regression for knowledge community cohesiveness

as above, but including only the central 80% of points, we found that a more reason-

able 50% of the total variation in rhetorical cohesiveness is attributable to changes

in citation cohesiveness. To ensure that these results retain their significance when

controlling for the other previously identified covariates in our full model, we refit

this model and saw that our relationships remained large, positive and statistically

significant.
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We also evaluated a variety of plausible model estimation methods, chiefly a Gen-

eralized Estimating Equations (GEE) approach, an explicit panel-data GLS model,

and a Random Effects specification estimated via maximum likelihood, which con-

firm the robustness of our model [122].

Summarizing the results, we found that successful intellectual communities have

systematic characteristics. They use knowledge and rhetoric, which are linked, in

diametrically opposite ways:

• Successful use of knowledge means using broad, rapidly repositioned and com-

munity-specific knowledge.

• Successful use of rhetoric means using narrow, unchanging language, which is

common to many communities.

To provide an intuitive example of how this analysis might be understood in a

given environment we identified two clusters with similar recent growth histories,

one of which is on the verge of growth while the other is on the verge of shrinking.

We identified cluster 4, which focuses on the design of cryptographic systems, and

cluster 13, which focuses on machine learning. For 1996 both clusters have similar

numbers of papers and have remained stable from the prior years. Underlying this

apparent similarity we observe that cluster 13 has sharply increased in its rhetorical

cohesiveness and stability while becoming less rhetorically unique. It has also become

more diverse in its use of knowledge while remaining stable in knowledge uniqueness

and flexibility. Cluster 4 on the other hand has become much more rhetorically

diverse, and grown more focused in its knowledge cohesiveness and decreased in

knowledge flexibility. Overall, our analysis predicts that cluster 13 is primed for

growth while cluster 4 is not. The performance of these clusters over the next 3

years bears this out, as cluster 13 grows approximately 79% from 1996 to 1999

while cluster 4 shrinks by about 12%. While this is a relatively extreme case, and

our findings in this paper speak of average tendencies not necessarily applicable to
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every case, this example illustrates how our methods might be used practically to

understand a cluster’s performance.

2.5.3 Discussion

Knowledge communities, as defined by our clusters, produce a disproportionate

amount of the knowledge in computer science. In our dataset of computer science

publications in technical journals, 57% of citations are received by papers in clusters

when only 44% of papers are in clusters. 76% of citations of papers in a cluster go

to another paper in a cluster. On the other hand, papers not in a cluster cite almost

proportionately to the ratio of papers in and out of clusters, with 41% of citations

going to the 44% papers in a cluster and 59% of citations going to the 56% papers

not in a cluster.

We looked at how knowledge communities use knowledge and rhetoric to help

explain why some of these knowledge communities flourish and grow and found that

the patterns for knowledge and rhetoric use are very different. A broad-searching,

far-ranging, and flexible use of knowledge maximizes community performance, while

a shared, common, and stable rhetoric is most beneficial to community performance.

We did not find support for the proposition that the use of unique knowledge benefits

knowledge communities. Increased work by authors associated with firms had an

overall positive effect on knowledge community performance, but an increase in work

done jointly by researchers from firms and academic institutions led to an overall

negative effect on knowledge community performance.

There is a question as to how these characteristics lead to the functioning of

knowledge communities. We speculate that, in situations of large-scale collabora-

tion and low coordination, a shared technical language helps minimize the cost and

complexity of communication. Using a unified and consistent vocabulary allows re-

searchers to exchange ideas and collaborate more efficiently. Using terms that other

communities know makes it easier to be understood by these communities, too.
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Research in the field of Search/Positioning for knowledge development suggests

that there is a tradeoff between exploration (searching for new ideas as measured by

citing papers in diverse communities) and exploitation (making contributions based

on papers central to your own community) [87]. We found that this tradeoff must

also take into account the differences between the use of language and knowledge.

The data indicate that knowledge communities which search broadly and remain

intellectually nimble perform best. Particularly in the face of very diverse ideas,

expressing these innovations in a unified rhetorical and intellectual framework allows

many ideas to be absorbed by a successful school and translated into a unified,

explanatory, efficient and shared rhetorical framework.

Patterns of success and failure in science have explanatory consequences for the

way science as a whole develops. For example, we were able to note the rise of

the knowledge community for search technology in 1996 that preceded the growing

importance of this technology in the evolution of computer science – a community

that from its founding exhibited extremely focused rhetoric and very wide patterns

of knowledge exploration. Further research into the differential success of knowledge

communities can give us a better understanding of what guides the development and

direction of innovation. Most importantly, continued understanding of the under-

lying causes of differential innovation in large-scale network structures should make

it easier to encourage successful collaboration between researchers and improve the

functioning of such communities and lead as well to an increase in the overall velocity

of research and innovation.

This paper is unique in using clusters to build predictive models of how commu-

nities evolve and how position in a cluster or in the background predicts how widely

cited a paper will become. Agglomerative clustering has been used in [56] and [55] to

find co-citation communities that are strong and others that are essentially random,

but the authors do not specifically use the notion of background in their cluster-

ing, and do not use their clusters in predictive models. Similarly, [101] searched
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for temporal trends in hyper-linked document databases using clustering and [121]

found communities that change with time in the setting of social networks, but

neither build predictive models of community growth. [88] identify research commu-

nities (and make paper acceptance predictions) from the citation patterns and text

of papers, using relational learning techniques, but do not study the communities

themselves. [60] use both text mining and citation analysis to find communities in

bioinformatics and track their evolution through time, again without making any

future predictions.

2.6 Predicting the impact of individual papers

A second major question we look at regards modeling paper impact. How much will

a paper be cited? To answer this, we again used a supervised learning model, this

time to predict the number of citations a paper will receive from characteristics of

the paper and its position in the cluster.

2.6.1 Model for paper impact

The data used for our analyses are non-negative counts of the number of citations

received in future years. As with previous measures of publication citation counts,

the data exhibit a variance in the number of citations larger than would be expected

from a Poisson distribution. We considered using a simple negative binomial (NB)

model to account for the excess variance [54, 1, 38]; however, the high number of

papers that have received zero citations in our data further indicates that a zero-

inflated negative binomial regression (ZINBR) model would be preferred [45, 123].

The use of two-stage ZINBR models is helpful when there may be a distinct process

influencing the occurrence of a proportion of data points with the value of zero.
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Our model was the following:

Pr(y = 0) = p+ (1 − p)(1 +
λ

α
)−α (2.18)

Pr(y > 0) = (1 − p)
Γ(y + α)

y!Γ(α)
(1 +

λ

α
)−α(1 +

a

λ
)−y (2.19)

where p (the probability of a structural zero count i.e. no citations) and λ are

modeled as

ln(
p

1 − p
) = cp +

I
∑

i=1

aivi (2.20)

ln(λ) = cλ +

I
∑

i=1

biwi (2.21)

v and w are the independent variables (the features in our model), a and b are the

corresponding regression coefficients and cp, cλ are the regression constants (inter-

cepts). Here v and w are labeled differently, though they coincide in our models.

The over-dispersion parameter α is determined by the iterative maximum-likelihood

procedure used to fit the model. Thus, the predicted mean number of citations for

a paper, given its features, is λ(1 − p). Note this is independent of α.

Unfortunately, only some of the articles had journal or conference information

because of limitations in our data source – despite our attempt to make this variable

more reliable by getting additional data from the DBLP Computer Science Bibliogra-

phy. For the analysis in the previous section, aggregating the information on journals

to see “journal coordination” and “journal prestige”, a partial random sample was

sufficient to differentiate between knowledge communities. But for a paper-by-paper

level of analysis, since the majority of these data lack explicit journal or conference

assignments and the rest were highly dispersed among a large number of journals

and conferences, they would not have contributed meaningfully to the model. We

therefore excluded this control variable from our regression. Other necessary data

such as authors, years of publication, and bibliographies were available and suffi-

ciently complete to use in the model. All other variables were generated using these

component variables.
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Our unit of analysis here is individual papers. The dependent variable measures

the total impact of a paper as the number of citations it has received subsequent to

its publication through 2003. Our features describe characteristics of papers, both

descriptions of them and also how they relate to other papers published at that time.

The features we used, which were normalized by their standard deviations, were the

following:

Bibliography Size: The average bibliography size increased steadily over the time

spanned by our data. To control for the increasing number of citations made in

papers, we controlled for the number of entries in a paper’s bibliography.

Year of Publication: We created dummy variables for each year from 1992 to

2003.

Coauthorship (Binary): We included a binary variable for whether a paper has

more than one author (1 if coauthored, 0 if single author). This helps control for the

differences in the process of joint and individual knowledge production.

Cluster (Binary): This binary variable was coded 1 if the paper was in a cluster

of other similar papers (representing a knowledge community) when it was published

and 0 if the paper was not in a cluster when it was published.

Distance: A paper is central to its cluster when its citation structure is very

similar to the mean of the citation structure of all papers in its cluster (the centroid).

Papers that are typical of their clusters will have small distances. Papers that differ

from the rest of the group by citing outside sources or by citing uncommonly cited

papers will have larger distances. We measured distance as the angle of the vector

representations between the citation structure of a paper and the centroid of its

cluster. Papers not in a cluster were not assigned a distance.

Because clusters are generated with data from the year of the paper and the 4

previous years, distance represents the centrality of the paper to its cluster histor-

ically at the time of publication, not the centrality of the paper after publication.

We also included a second-order effect for distance.
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Diversity of Publications : In order to find a proxy for an author’s more general

tendency to seek a diversity of knowledge and viewpoints, we counted the number of

clusters in which an author has published throughout our dataset. We believe this

gives an estimate of an author’s tendency to stay in a school of thought or move

between schools of thought. For papers with multiple authors we averaged their

diversity measures.

Total Number of Papers Published : We counted an author’s total number of pub-

lications, which is potentially correlated with the Diversity of Publications measure.

For papers with multiple authors we summed their publication counts.

We tested the following three hypotheses:

• Hypothesis 1: New knowledge has more impact if it is within a knowledge

community than if it is not.

• Hypothesis 2: A position toward the intellectual periphery of a knowledge

community results in greater new knowledge impact.

• Hypothesis 3: Creators of new knowledge who actively engage in multiple/few

schools of thought, over time, have greater impact.

To this end, we built three models, using a different set of features for each one.

To capture as much of the variance in paper citations as possible before testing our

hypotheses, we also created a Base Model that predicts a paper’s total citations based

on external paper and field characteristics without including any cluster-specific in-

formation. For the Base Model we constructed a ZINBR model and included bibli-

ography size, coauthorship and year effects as our explanatory variables. The year

effect is necessary because papers that are published earlier tend to have accumulated

a greater number of citations. We therefore control for publication year with dummy

variables. In predicting the inflated zero counts we utilized the same explanatory

variables.
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For Model 1 we built upon the Base Model to explore Hypothesis 1, which asks

whether a paper benefits from membership in a cluster. To this end we augmented

our Base Model with the binary cluster membership variable identifying whether or

not a paper belongs to a cluster.

Model 2 investigates Hypothesis 2, which argues that a paper at the semi-

periphery of its cluster is more likely to be highly cited. We included in the analysis,

in addition to the Base Model, the variable’s distance from center and the squared

term of distance from center. Papers that are not in a cluster were excluded from

consideration when fitting this model since they have no meaningful measure for

distance. Consequently, the binary cluster membership variable used in Model 1 was

not included in this model.

For Model 3 we adjusted Model 1 to account for the extent to which an author has

benefited or has been harmed by publishing in many schools of thought (represented

by clusters) throughout his or her career. We aimed to determine whether individual

papers receive more citations if the author has a diverse experience with multiple or

within few knowledge communities in our data – a proxy for an author’s more general

exploratory tendencies. To do this we included in the analysis a diversity measure

to capture author publication diversity in addition to the independent variables

included in Model 1.

2.6.2 Paper impact results

Table 2.8 shows the coefficients for the negative binomial component of the three

models. The zero-inflated part (not shown) is qualitatively similar.

Our Model 1 reveals that we have constructed a sound basis for modeling the

number of citations received by papers. The coefficients for all included independent

variables were significant (p < 0.001) in both the zero-inflation and NB portions of

the model (zero-inflated part not shown). Model 1 includes significant coefficients

for cluster membership in both portions, fully supporting Hypothesis 1. Cluster
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Model: Base 1 2 3

Cluster (binary) 0.537 * 0.234 *

Distance 3.080 *

Distance Squared -3.527 *

Diversity of Sources 0.526 *

Diversity of Sources -0.253 *
Squared

Year of Publication sig. * sig. * sig. * sig. *
Dummies

Bibliography size 0.003 * 0.045 * 0.040 * 0.033 *

Coauthorship 0.103 * 0.149 * 0.143 * -0.096 *
(binary)

Pure Industry 0.132 * 0.099 * 0.131 * 0.153 *
Affiliation

Mixed Industry/ 0.122 * 0.111 * 0.125 * 0.080 *
Academy Affiliation

Cluster Sum 0.007 *

Constant 1.020 * 0.853 * 1.169 * 0.956 *

log(alpha) 1.307 * 1.348 * 1.353 * 1.339 *

Log-likelihood -403,615 -429,260 -388,102 -347,678

# Observations 190,982 190,982 164,980 144,909

Table 2.8: Coefficients and significance values for the negative binomial models.
(* p < 0.001, sig. = significant)

membership, on average, is associated with receiving 4.27 more citations, holding

all other variables unchanged. Furthermore, there is a strong relationship between

membership in a cluster and receiving zero citations.

When computing Model 2, we excluded from consideration all papers that were

not assigned to a cluster, since they have no meaningful distance measure, and used

a normalized measure of distance for papers that were within a cluster such that

they range from 0.0 (very central) to 1.0 (extreme periphery). Model 2 includes

our variable representing distance, allowing us to test Hypothesis 2. Within the NB

portion of the model, the significant coefficients for distance squared and for distance

indicate a potentially curvilinear relationship between distance and total citations.

Within the zero-inflation portion of the model we found that both distance and
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distance squared were non-significant. Increasing distance from the core of a cluster

is initially beneficial and beyond a certain point a further increase in distance is

associated with relatively fewer expected citations. Based on Model 2, moving away

from the optimal point in the semi-periphery by two standard deviations towards

either the core or the periphery and holding other variables constant, the number of

expected citations decreases by 1.33. The variables held over from Model 1 retain

significance in the same direction, leaving their interpretations unchanged.

Model 3 allows us to examine diversity of publications as a predictor of total ci-

tations. The initial results support the hypothesis that a diverse publication pattern

does indeed lead to higher citations. Results are significant for both the NB and zero-

inflation portions of Model 3. The positive coefficient in the NB portion indicates

that increased diversity in an author’s publication pattern, which is associated with

the author’s interaction with very diverse knowledge and perspectives, is associated

with higher citation counts. Similarly, in the zero-inflation portion we found that

the more diverse an author’s citation pattern, the less likely he or she is to receive

zero citations. On average, an increase in diversity by two standard deviations is

associated with 0.86 fewer citations, holding all other variables constant.

2.6.3 Discussion

Functionally, knowledge communities provide “small world” advantages to the pro-

cess of knowledge development. Communities provide the local dense connection net-

works that lend themselves to learning and reputation. At the same time, the incen-

tives toward semi-periphery positioning encourage community boundary-spanning.

Our findings nicely reinforce the small world findings in the arena of knowledge cre-

ation and provide a new perspective and additional explanatory analysis of the social

and intellectual underpinnings of this process in the knowledge creation context.

By applying performance measures to positioning in and around knowledge com-

munities, we reveal that where knowledge is positioned has a significant impact on its
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performance. We found that new knowledge which is positioned within a community

can expect to get a higher number of citations on average. Knowledge positioned

in the semi-periphery of a community (representing knowledge that builds on a mix

of knowledge common and unusual in that community) rather than at its center or

periphery results also in additional citations. It appears that new knowledge was

positioned by its creators under the stress of two search tensions – being a part of

an identifiable community and simultaneously reaching beyond that community to

draw on outside knowledge.

We believe that this sort of knowledge creation, where new knowledge developers

share knowledge and coalesce into cohesive and distinct intellectual and social groups,

is crucial in new knowledge development. We created a quantitative framework for

analyzing a paper’s positioning incentive structure that, when aggregated across all

papers, shapes how knowledge develops. We speculate that the robust incentive

structures we found in clusters are maintained through selection forces within the

knowledge environment; clusters that encourage too much exploration lose their

integrity and fail to develop strong internal paradigms, while clusters that are too

internally focused may not attract sufficient attention or become too stagnant to

gain momentum. Clusters that balance these two extremes in the way we describe

seem to have survived to populate our dataset.

Our results agree with the broader research which argues that knowledge creation

occurs through a moderated combination of exploration and exploitation [82]. While

we support the basic premises of positioning theory, we take into consideration pre-

viously ignored key social dimensions of intellectual positioning. By looking at new

knowledge creation from the author-level positioning perspective, we quantitatively

test the actual benefits of membership and position with a knowledge community at

time of publication for a creator of new knowledge.
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2.7 Conclusions

Viewing communities as tight foreground clusters embedded into a diffuse back-

ground facilitates community analysis, since the future levels of citation of papers

within communities are significantly higher than for those in the background. We

used a new algorithm, Streemer, for this clustering, which has several useful char-

acteristics. Streemer works by first finding a large number of potential or candidate

clusters. Then it filters those and chooses the best in terms of their size, separation

from neighboring clusters and density of points. Finally it assigns all the points to

their nearest cluster or the background. Streemer finds dense foreground clusters

embedded in a more diffuse background cluster. It compares favorably in speed to

standard clustering methods such as k-means, while offering the advantage of not

forcing items to be in a foreground cluster. When many items (e.g. papers) do not

fit cleanly into a cluster, it is preferable not to distort the clusters by adding these

“outliers” to them. A common alternative algorithm with a similar property is a

Gaussian mixture model with non-uniform variances. Estimating such a mixture

model provides soft assignments of items to clusters, but is significantly more com-

putationally demanding than Streemer. Streemer is useful for clustering documents

into scientific communities. Using a model in which many papers are not part of

clusters (but rather fall in a background cluster) gives cleaner foreground clusters

and allows important insights to be made.

We also compared Streemer to a simple modification to k-means, called back-

ground k-means, which also produces foreground and background clusters. Back-

ground k-means is as fast as k-means and shares most of its characteristics. It often

performs as well as Streemer or even slightly better, but it is iterative and thus

slower. Streemer has lower computational complexity because it requires only two

passes over the data, one to find candidate clusters and one to assign the points

to foreground/background. It also does not make as many restrictive assumptions

about the cluster, like their size or number, as background k-means does.
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In the second half of the chapter, we fitted supervised models, based on the

knowledge communities that were found from clustering. A number of authors (e.g.,

[98, 73, 40]) have used models to predict the citation rates of papers as a function of

various features, such as keywords or number of publications of the authors. Unlike

this paper, they do not perform any clustering and they do not examine the effect of

membership or position in a knowledge community. Using a variety of features we

predicted the evolution of the communities and the number of citations a paper will

receive. The coefficients of the features for the fitted models describe the properties

of successful knowledge communities and of widely cited papers. We found that in

order for a community to grow, its members should use broad, flexible and unique

information in their publications. At the same time, the vocabulary they use should

be narrow, unchanging and common. Regarding individual papers, we found that for

a paper to be cited it must draw on work from multiple fields, but use the language

of the field where it is published. Papers which are within knowledge communities

have significantly more impact than those that are in the background.

For both knowledge communities and individual papers, these two properties,

broad content and standard vocabulary, are related to success. Combined, they allow

a paper to present new knowledge and extend the bounds of current research while

explaining it using familiar vocabulary. This is perhaps not surprising; introducing

new terms and definitions at the same time as novel ideas can make it hard for the

readers to absorb such a large amount of information at once. New jargon obfuscates

the content and limits its spreading. It is thus striking that knowledge communities

vary significantly in how variable their use of vocabulary is, in how broadly they cite

outside their field and in how rapidly they grow.
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Chapter 3

Online Dirichlet Process Mixture

Model for citation analysis

3.1 Introduction

Most clustering methods fall in one of two categories: they are either simple and

fast or powerful and slow. For example, k-means is a simple algorithm and due

to its simplicity is very fast. Latent Dirichlet Allocation (LDA [9]) on the other

hand uses a complicated model, but its power comes with a cost because inference

requires the use of variational methods with the respective computational burden.

It would be beneficial then to have a clustering algorithm that falls in between these

two categories, one that is fast enough to be used with large datasets and powerful

enough to find clusters with few restrictive properties. In this chapter we present such

a method. It processes the data online and uses a mixture model with a Dirichlet

process (DP) prior. The online approach makes it fast and the DP mixture model

allows the removal of certain assumptions about the clusters, such as their number

and sizes.

Dirichlet Processes have been proposed and used in several kinds of models, in-

cluding mixtures of distributions [103]. However, they have rarely been used with
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online algorithms, even though they are amenable to that setting. Zhang et. al. [127]

analyze a model with multinomial distributions for the mixture components. Other

online methods that have been proposed are based on variational Bayes [106, 43],

or particle filtering [31]. In this chapter we present an online DPMM that uses

Gaussian component distributions and give an algorithm for the online learning of

the component and DP parameters. In order to improve the quality of the found

clusters, we also investigate two-pass clustering. Prior work gives a theoretical justi-

fication for employing a second pass for clustering and shows that subsequent passes

offer only small improvement in the cluster quality [17]. This is in agreement with

our empirical observations with Streemer and with one- vs. two-pass clustering on

synthetic datasets, that a single-pass algorithm makes several wrong decisions for

the early points it processes, due to unreliable estimates of the model parameters.

These estimates affect the assignment decisions for the later points and the overall

clustering can be poor. We propose the use of a second pass for improvement. In the

first pass, the algorithm finds a large number of small clusters; in the second pass,

these clusters are treated as weighted points which are clustered into fewer clusters.

When clustering documents it is customary to use cosine similarities instead of

Euclidean distances [117]. The main reason is that the cosine similarity, due to be-

ing scale invariant, allows comparisons between documents with different counts of

words or citations – what is important is the angle the vector representing the doc-

ument forms, which depends only on the document composition and not the total

counts. The probability distribution that corresponds to the cosine similarity is the

von Mises-Fisher (vMF) distribution [83], which is used to model directional dis-

similarities between vectors. However, there are difficulties in computing analytical

estimates of the vMF concentration parameter [2], which make the use of vMF less

attractive. For the algorithm presented in this chapter we use Gaussian distributions

in our mixture model which simplify the computations for the updates.

The approach we propose has many similarities with Streemer (chapter 2) in
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that it is a few-pass algorithm, it uses a mixture model of Gaussian distributions,

which corresponds to a distance function and it can find variable cluster numbers

and cluster sizes due to the DP prior. The similarities between this algorithm and

Streemer are also highlighted in this chapter. The original description of Streemer in

chapter 2 is based on the use of thresholds on distances. In order to emphasize the

similarities, we will replace the distances with probability calculations and model the

clusters with a mixture model. Under these assumptions we will give a probabilistic

interpretation of the Streemer algorithm.

In the next sections we describe the model, the online algorithm and the parame-

ter updates. We give a probabilistic interpretation for Streemer and conclude with a

discussion on foreground/background clustering in online settings and other possible

priors besides Dirichlet Processes that one can use.

3.2 The DP mixture model

The major components that define our approach are the Dirichlet process, the mix-

ture components and their prior distributions.

3.2.1 Dirichlet process

The Dirichlet Process (DP) [33] is a distribution over distributions. It is parameter-

ized by a base distribution G0 and a concentration parameter α. A random distribu-

tion G is distributed according to DP(α,G0) if for any finite partition (A1, . . . , Ar),

the random vector (G(A1), . . . , G(Ar) is distributed as a Dirichlet distribution:

(G(A1), . . . , G(Ar) ∼ Dir(α0G0(A1), . . . , α0G0(Ar)) (3.1)

Draws from the DP exhibit a clustering effect, because previously observed values

have a non-zero probability of occurring again. The probability of the n-th draw,
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conditioned on the previous n− 1 draws is

p(θn|θ1, . . . , θn−1, α,G0) ∝
n−1
∑

i=1

δθi
(·) + α0G0(·) (3.2)

This means that θn has a positive probability of being equal to one of the previous

draws. Additionally, the more frequently a point is drawn, the higher the probability

is that it will be drawn again in the future.

We can rewrite the previous equation using the number of times the draws take

certain values. This gives rise to the view of the DP known as the Chinese Restaurant

Process (CRP) [8]. Consider a Chinese restaurant with an infinite number of tables.

Each draw θn corresponds to a customer. The first customer sits at the first table,

whereas the n-th customer sits at a table drawn from this distribution:

p(θn = j|θ1, . . . , θn−1) =







nj

α+n−1
if table j is occupied

α
α+n−1

if the table is empty
(3.3)

where nj is the number of previous customers sitting at table j.

3.2.2 The DP mixture model

The DP mixture model (DPMM) [79] can be thought of as a standard mixture model,

with uncertainty about the prior distribution G. For observations n = 1, . . . , N :

xn ∼ f(xn|θn) (3.4)

θn ∼ G (3.5)

G ∼ DP (α,G0) (3.6)

In our case, θ = (µ,Σ) and f(·|θ) is the multivariate Gaussian density function

with parameters θ:

f(x|µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(

−
1

2
(x − µ)TΣ−1(x − µ)

)

. (3.7)

The index n ranges over the observations and θn corresponds to the parameters

of the component that generated xn.
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We will use a diagonal covariance matrix Σ with possibly unequal variances in

different dimensions (heteroscedastic). The reason is that in high dimensions there

is a problem in fitting all the parameters of a full covariance matrix due to lack

of enough data. By restricting ourselves to diagonal Σ we reduce the number of

parameters we must fit from O(d2) to O(d).

The conjugate prior for the Gaussian distribution is a multivariate Gaussian -

inverse Wishart [35]. The priors for µ and Σ are conditionally independent. Specif-

ically, given Σ, the prior for µ is a multivariate Gaussian with parameters (µ0,Σ0).

The prior for Σ is an inverse Wishart distribution with parameters (Ψ,M0):

Σ ∼W−1(Ψ,M0) (3.8)

The probability density function is

|Ψ|M0/2 |Σ|−(M0+d+1)/2 e−trace(ΨΣ−1)/2

2(M0d)/2Γd(M0/2)
(3.9)

where d is the dimensionality of Σ.

There are no hard rules for setting the values of µ0,Σ0,Ψ,M0. Usually µ0 is set

equal to 0 or the mean of the observations in the data set x̄ (effectively centering

the data). Σ0 and Ψ are set to large values (either in the absolute sense, or for

example five times the sample covariance), so that the covariance prior is sufficiently

non-informative. For similar reasons M0 is usually chosen to be small [58].

Given a sample X = {x1, . . . ,xN}, the posterior distribution of Σ is again an

inverse Wishart with updated parameters:

Σ|X ∼W−1(A + Ψ, N +M0) (3.10)

where A = (X − X̄)(X − X̄)T is N times the sample covariance matrix of X. The

posterior distribution of µ is a Gaussian with parameters (N0µ0+NX̄

N0+N
, Ψ+A

N0+N
).

The graphical representation of the DPMM is shown in figure 3.1. The base

measure G0 is our Gaussian - inverse Wishart prior and α is the concentration

parameter of the DP that affects the probability of sampling a new value or one of
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Figure 3.1: The Dirichlet process mixture model.

the previously sampled values. The distribution G consists of an infinite number of

Dirac’s delta functions from the base measure G0, weighted by the DP according to

the number of times each value appeared if we imagine infinite samples drawn. For

each of the actual observations xn we draw a parameter θn from the sum of infinite

delta functions that is G.

3.3 Online clustering algorithm

In the Chinese Restaurant Process interpretation of the Dirichlet Process, each arriv-

ing customer can be viewed as an incoming observation and each restaurant table as

a mixture component. Under this view it is straightforward to develop an algorithm

for online clustering that uses a DP as a prior. We first describe a 1-pass algorithm

that clusters individual points and later add a second pass that clusters collections

of points taken from the output of the first pass.

3.3.1 One-pass clustering

In the 1-pass algorithm (figure 3.2) the observations arrive one at a time and are

assigned either to an existing or to a new cluster. The decision for the best assignment
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is made based on which assignment improves the most the log likelihood of the data

seen so far. After the observation is assigned, the cluster parameters are updated

and the next observation is processed.

Let K be the number of clusters found so far, when observation xi is about to

be processed. The point xi is potentially assigned to an existing cluster cj (j =

1, . . . , K), or a new cluster cK+1. If xi is assigned to cj then the log likelihood of

the data seen so far will change both because of the inclusion of the new observation

and also because of the change in the model parameters due to the new observation.

If xi were to be assigned to cj which already contains |cj| observations, the mean µ′
j

of cj would become

µ′
j =

N0µ0 +
∑

xl∈cj
xl + xl

N0 + |cj| + 1
(3.11)

and the covariance

Σ′
j =

Ψ +
∑

xl∈cj
(xl − µ′

j)(xl − µ′
j)

T + (xi − µ′
j)(xi − µ′

j)
T

M0 + |cj| + 1
(3.12)

The probability of cluster cj after the assignment of xi becomes

P ′(cj) ∝ α|cj|! (3.13)

The denominator can be omitted because, due to the exchangeability of the DP, it

is always the same regardless of the cluster to which xi is assigned.

The log likelihood then is:

ll′ =
K
∑

j=1







α +

|cj|−1
∑

l=1

l



+
∑

xl∈cj

log f(xl|µ
′
j,Σ

′
j)



+ const (3.14)

The first term is due to the cluster probability, the second due to the points assigned

the cluster and the constant comes from the normalizing constants.

If, on the other hand, xi starts a new cluster cK+1, then that cluster will have
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Input: A point set X = {x1, . . . ,xN}, priors N0,µ0,Ψ,M0 and DP parameter α.

For i = 1 . . . N do:

1. For every possible assignment of xi to an existing or new cluster, compute (and
store temporarily) the new cluster parameters:

• If xi was assigned to an existing cluster, use equations (3.11) - (3.12).

• If xi was assigned to a new cluster cK+1, use equations (3.15) - (3.16).

2. For each potential assignment to a cluster, compute the new log likelihood ll′, using
equations (3.14) or (3.18).

3. Assign xi to the cluster that will yield the highest log likelihood:
c(xi) = argmaxkll

′
k.

4. Update the parameters for the selected cluster according to the computations in
step 1.

Figure 3.2: One-pass online clustering.

parameters

µ′
K+1 =

N0µ0 + xl

N0 + 1
(3.15)

Σ′
K+1 =

Ψ + (xi − µ′
j)(xi − µ′

j)
T

M0 + 1
(3.16)

and

P ′(cK+1) ∝ α (3.17)

In this case the log likelihood would become:

ll′ =
K+1
∑

j=1







α +

|cj |−1
∑

l=1

l



 +
∑

xl∈cj

log f(xl|µ
′
j,Σ

′
j)



+ const (3.18)

The observation xi will be assigned to the cluster that gives the highest new log

likelihood ll′ and the parameters will be updated as per the appropriate equations

above.

Even though we have priors on the cluster parameters, we do not try to estimate
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them. Prior work has dealt with these parameters by either introducing hyper-

priors for them and estimating their hyper-parameters [103], or using empirical Bayes

methods to find nonparametric point estimates [85]. Such techniques can be used in

our case, too and we refer the reader to the cited works. We choose instead to treat

the prior parameters α,µ0, N0,Ψ,M0 as user-specified, both for simplicity and also

for better correspondence to the Streemer algorithm. For example, the threshold in

the first step of Streemer is equivalent to the DP parameter α. That threshold is set

by the user (but could have been estimated from the data) and similarly α is also

pre-set.

3.3.2 Two-pass clustering

Theoretical work [48, 17] and our empirical observations, both with Streemer as well

as with the algorithms in this chapter applied to synthetic datasets, suggest that

a single-pass algorithm makes several wrong decisions for the early points, due to

unreliable estimates of the cluster parameters. These decisions affect the assignment

decisions for the subsequent points and the overall clustering can be poor. A way to

improve the quality of 1-pass online clustering is to execute two clustering passes over

the data. In the first pass the algorithm finds a large number of small clusters; in

the second pass, these clusters are treated as weighted points which are grouped into

fewer clusters. Experiments show a significant improvement in the cluster quality

when using the two-pass approach.

The second pass of our 2-pass clustering algorithm operates similarly to the first

pass, so the algorithm given in figure 3.2 is fundamentally the same. The difference

is that in the second pass, instead of processing individual points, the algorithm

processes groups of points, where each group is a cluster found in the first pass.

The parameter estimation equations (3.11) - (3.16) are modified to use in place of

the single point xi the sum of the points
∑

xl∈cj
xl in the first-pass cluster cj . The

cluster probabilities use the number of points in the first-pass cluster as if all the
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points from the first-pass cluster were assigned individually to the same second-pass

cluster. Under these changes, the groups of points found in the first-pass are assigned

to the (second-pass) cluster that will maximize the complete log likelihood.

3.4 Analysis

3.4.1 Probabilistic interpretation of Streemer

The operation of the Streemer algorithm is very similar to a two-pass online DPMM

followed by a third pass to find the background. The original description of Streemer

is based on the use of thresholds on distances, however the correspondence between

distances and probabilities allows us to describe Streemer with respect to thresholds

on probabilities arising from an appropriately defined model.

The first pass of Streemer (steps 1 and 2 in figure 2.2) finds a large number of

candidate clusters. Each incoming observation is assigned to an existing cluster de-

pending on its similarity to the cluster centroids. If the similarity is below a threshold

then the observation forms a new cluster. This procedure is very similar to the sin-

gle pass algorithm of figure 3.2. Instead of a similarity function of Streemer, this

algorithm uses the log likelihood values from equation (3.14). Potential assignment

to an existing cluster versus a new one is compared relative to the improvement in

the log likelihood. A low similarity of an observation to current cluster centroids

corresponds to a small improvement in the log likelihood.

The output of the first pass of Streemer is a set of candidate clusters. These

clusters are then processed in the second step in sequence and are either kept and

become the centroids of the final clusters, or they are dropped. The decision to

keep them or not is based on a complicated heuristic that takes into account the

size of the candidate cluster, its isolation from nearby candidate clusters and the

cohesiveness of itself and the neighboring candidates. Once the final cluster centroids

have been selected, the points are assigned to the most similar clusters. One thing
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to note is that there is no re-estimation of the cluster centroids. The centroids

of the final clusters are the centroids of the candidates that were selected in the

second step. So, the second step of Streemer performs some sort of selection over the

candidate clusters and the goal of the heuristic process is to pick the best centroids

but avoid being overly greedy and risking getting trapped in local minima. This step

of Streemer is emulated by the second pass of the DPMM clustering algorithm. The

first pass returns a large number of candidate clusters, like Streemer does. These

candidates are then treated as undivided collections of points clustered in the second

pass. The final centroids are estimated by averaging all the points in the candidate

clusters which were clustered together. The process by which the final centroids

are computed is therefore different from Streemer. The overall goal however is the

same, to examine a large number of candidates and use them to compute good final

centroids. The DPMM algorithm attempts to avoid local minima not by cluster

selection, but by pre-clustering the data in the first pass and reducing the number

of clusters in the second.

After the final clusters have been found, Streemer executes the final step which

generates a background cluster. The approach is quite simple and involves finding

the points that are most dissimilar to their cluster centroids, removing them from

their respective clusters and placing them in the background. The DPMM algorithm

does not find a background as described, however a similar step as the last step of

Streemer could be used to generate one without any substantial differences. If one

wishes to avoid using dissimilarities for the background step it is possible to use the

log likelihood instead. For example, we could compute the improvement in the log

likelihood for the foreground clusters that would be achieved by assigning a point

to the background. Then actually assign to the background the points that improve

the log likelihood the most.

One final difference is the type of similarity used in Streemer. While the similar-

ity function is not defined in Streemer, for all our experiments it was effectively the
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cosine measure. Taking into account the equivalence between Bregman divergences

(and consequently of the cosine) and exponential family distributions [3], the co-

sine similarity would correspond to a DP mixture model of von Mises-Fisher (vMF)

distributions. The model presented in this chapter uses Gaussian distributions, be-

cause of the the analytical difficulties of computing estimates for the vMF and would

therefore correspond to Streemer with a Mahalanobis or Euclidean distance.

3.4.2 Relation to Gibbs sampling and particle filtering

Our single-pass clustering algorithm presented earlier in this chapter has several

similarities with both Gibbs sampling and particle filtering. These methods are

commonly used for probabilistic inference and are easily applicable for models with

conjugate priors such as the Gaussian mixture model of this chapter.

Gibbs sampling (as well as other Monte Carlo methods) can be used to estimate

expectations from the posterior distribution of a DPMM. By sampling T points θ(t),

t = 1, . . . , T from the posterior distribution of θ, we can estimate the predictive

distribution of a new observation xn+1 as (1/T )
∑T

t=1 f(θ
(t)
n+1), where θ

(t)
n+1 is drawn

from the posterior distribution G. There are several variations of Gibbs sampling in

the context of DPMMs. The reader is referred to the excellent paper by Neal [93]

and the references therein.

Here we will only look at one of them, where the cluster parameters are integrated

out, eliminating them from the algorithm and leaving only the assignments of the

observations to clusters c = (c1, . . . , cn). This is possible because of the conjugate

prior and desirable because it simplifies the algorithm. The state of the Markov

chain in that case is just the ci. Let φc be the distinct values that the θi take. The

index c ranges from 1 to the number of clusters in the model at any given time.

With Gibbs sampling, every point is assigned randomly to a cluster in turn, keeping

the assignments of the other points fixed to their previously sampled values. The

assignments of points to clusters are made according to the following probabilities:

79



P (ci = cj for some j 6= i|c−i, xi) = b
n−i,c

n− 1 + α

∫

f(xi,φ)dG−i,c (3.19)

P (ci 6= cj for all j 6= i|c−i, xi) = b
α

n− 1 + α

∫

f(xi,φ)dG0 (3.20)

Here, b is a normalizing constant, c−i denotes every cj except j = i, n−i,c is the

number of cj excluding ci that are equal to c and G−i,c is the posterior distribution

G of φ based on G0 and all the observations xj in cluster c excluding observation xi.

The above conditional probabilities are easily derived by multiplying the likeli-

hood f(xi,φ) with the conditional prior (treating observation i as the last obser-

vation, which is possible due to the exchangeability of the Dirichlet process) and

integrating out the φ. The Gibbs sampling algorithm works by repeatedly sampling,

for i = 1, . . . , n, new values for ci given c−i and xi according to equations 3.19.

Both Gibbs sampling and the the probabilistic version of Streemer which was

proposed in this chapter assign the points to clusters one at a time. However, Gibbs

sampling is a batch algorithm and uses all the points except the one under consid-

eration, whereas our algorithm uses only the points seen so far.

The assignments in Gibbs sampling use the conditional probabilities for ci given

the other assignments and observations and the actual assignment is decided prob-

abilistically. Every potential assignment has a probability of being selected in the

current or a subsequent sampling and thus the space of assignments will be eventu-

ally visited completely, given enough iterations. Our algorithm, on the other hand,

makes the assignment decisions based on the change in the log likelihood after the

assignment and the algorithm’s decisions, even though they are based on probabil-

ities, are deterministic. The algorithm behaves greedily, looking for the mode in

the log likelihood, which makes it much faster but also likely to get stuck in a local

maximum. Also, once the assignments are made they are never revisited, regardless

of what the new data arriving afterwards would dictate. This is necessary because

of the online nature of our algorithm; the second pass was introduced to ameliorate
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the negative effects of not revisiting the cluster assignments.

Another disadvantage of Gibbs sampling and other Markov chain Monte Carlo

(MCMC) methods is that they are not well-suited to online settings. As each new

observation arrives, the posterior distribution changes and the MCMC algorithm

should be run again to obtain representative samples from it. However MCMC

methods require several iterations, which makes their continuous execution after

every point computationally costly. As a result of this problem, sequential Monte

Carlo methods have been developed, which are known as particle filters [31].

A particle filter uses a set of weighted particles to approximate the posterior

distribution. The particles and their weights are updated sequentially as each new

observation arrives. In the DPMM setting with conjugate priors, it is again possible

to integrate out the cluster parameters. In this case every particle is just a specific

assignment of the observations to clusters. The number of particles P is kept constant

during the execution of the algorithm. Assume that there are K clusters when a new

observation is considered. This observation can be assigned to one of the existing or

a new cluster, giving rise to K + 1 possibilities. Each particle then generates up to

K + 1 potential particles. In order to keep the number of particles from increasing

exponentially a resampling step follows which reduces the number of particles to P

and updates their weights so that the approximation of the posterior remains close.

Specifically, after seeing observation xn, the particle filter approximates the pos-

terior distribution p(cn|x1, . . . ,xn) by a set of P particles {c
(i)
n }, i = 1, . . . , P , with

respective weights w
(i)
n normalized to sum to 1. The posterior p(cn|x1, . . . ,xn) is ap-

proximated by a discrete distribution that takes as values the particles with probabil-

ities proportional to the particle weights. With this approximation, the expectation

of any function g(cn) can be computed as

E[g(cn)|x1, . . . ,xn] ≈

P
∑

i=1

w(i)
n g(c(i)

n ) (3.21)

For example, the posterior is estimated as follows:
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p(c1, . . . , cn|x1, . . . ,xn) ≈

P
∑

i=1

w(i)
n p(c1, . . . , cn|c

(i)
n ,x1, . . . ,xn) (3.22)

When the next observation xn+1 arrives, for every particle c
(i)
n with Ki distinct

clusters there areKi+1 potential assignments for the new observation. Thus the pos-

terior p(c1, . . . , cn, cn+1|x1, . . . ,xn,xn+1) is approximated by a discrete distribution

that can take as values the new particles {c
(i)
n , j}, j = 1, . . . , Ki+1 with probabilities

respectively proportional to

w(i)
n

p({c
(i)
n , j}|x1, . . . ,xn+1)

p({c
(i)
n }|x1, . . . ,xn)

(3.23)

This approximation is basically based on
∑N

i=1(Ki +1) new particles. These new

particles are resampled to reduce their number to P . There are several proposed

methods to perform the resampling. The simplest is the keep the P particles with

the largest weights. Another possibility is to sample from them according to their

weights. More information about resampling algorithms are given by Fearnhead [31]

and the papers he references.

Particle filters were developed for analyzing dynamic problems where the state

changes over time and they are appropriate for online clustering with a DPMM. They

process the observations sequentially and the updates are not prohibitively expensive

as in the case of MCMC. A particle filter maintains P assignments of all the points

so far, which constitute the particles and uses them to approximate the posterior as

a weighted sum. In comparison, the first pass of our algorithm, as was described

earlier in this chapter, only keeps one assignment, the final assignment of points to

clusters with an implicit weight of 1. It is thus similar to a particle filter with a

single particle. As in the case of MCMC, the P particles permit the computation of

approximations of the posterior or functions thereof, while our online algorithm is

mode-seeking and cannot be used for similar computations.

Both particle filters and our algorithm do not change the assignments of previous
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points when new points are considered. Of course this is only true for the parti-

cles and the posterior p(c1, . . . , cn|x1, . . . ,xn) can change drastically as the particle

weights are being updated. MCMC algorithms on the other hand will theoretically

visit every potential assignment given enough time.

Finally, the assignments of points to clusters in the particles are made according

to the sampling step. While this can be deterministic for the simplest algorithm,

in most cases the assignments are decided stochastically using importance sampling

or some variation. This may help avoid the problem of local extrema that our

algorithm faces, at the expense of having to keep a large enough number of particles.

Our algorithm on the other hand makes the assignment that will improve the log

likelihood the most in a deterministic fashion.

3.5 Discussion

Unlike other methods for citation analysis [80, 90], ours is, to our knowledge, the

first principled probabilistic online approach. We combine a mixture model and a

DP prior with an online, few-pass algorithm to achieve fast clustering with fewer

structural restrictions than k-means. The model we present makes use of Gaussian

distributions with full covariance matrices. While this is fine for the purpose of

exposition, it may cause problems when used in practice. The reason is that many

real datasets are high-dimensional. For example, our citation dataset lies in a space

with more than 100,000 dimensions. For a D-dimensional dataset, the covariance

matrix Σ of the components would be d × d and the clustering algorithm would

be attempting to fit O(d2) parameters. For our citation dataset that would mean

fitting hundreds of billions of parameters, something impossible to achieve with a few

million data points without severe overfitting. When the dimensionality of the data is

a problem, one solution is to use a simplified Σ. One simplification is to assume that

the features are independent and use a diagonal covariance matrix, thus reducing
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the number of parameters to O(d). If one wants to use even fewer parameters, Σ

can be modeled with a single parameter as σ2I, making all the clusters spherical.

Another potential implementation issue has to do with the probability distri-

butions used and how well they match the actual data. Our citation data consist

of Boolean vectors whose coordinates are non-negative and the cosine similarities

between them (and the computed cluster centroids) range between 0 and 1. All

the vectors therefore (as well as the cluster centroids) lie on the surface of the unit

hypersphere and specifically in the first orthant. Under these conditions, a mixture

model of von Mises-Fisher distributions would be the most appropriate [16, 2]. Of

course one could use the given model with Gaussian instead of vMF components,

but would incur some penalty in the modeling accuracy.1.

An issue with online clustering algorithms is that a single pass cannot distinguish

whether a point that differs from the rest belongs to a new foreground cluster or the

background. An algorithm must execute at least two passes in order to cluster points

as belonging to the foreground or the background. The first pass can accumulate

statistics about the distribution of points and the second pass, given that informa-

tion, can decide whether a point falls near a component or not. In our work we

have treated the foreground/background filtering as an add-on step and thus both

the algorithm in this chapter augmented with a background filtering post-processing

step, as well as Streemer, would perform three passes over the data. As future work,

it may be possible to execute a first pass that will find a large number of potential

clusters and also learn the distribution of the data. The second pass then will have

all the information required to both cluster the results of the first pass as well as

filter ill-fitting points to the background.

1It would be beneficial in the Gaussian case to normalize the data vectors to have norm one and
thus lie on the unit hypersphere. Then the estimates for the mean in both the Gaussian and the vMF
distributions are the same, except for the lack of normalization in the Gaussian. If normalization is
applied every time the centroid vectors are estimated, then the two distribution estimates will be
identical. The estimates for the variance in the Gaussian and the related concentration parameter
in the vMF will be different, however.
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Other directions for future work lie in prior choices other than the Dirichlet

process. If we forget for a moment its requirement for a fixed number of clusters,

k-means tends to find clusters of equal sizes. DPs on the other hand find clusters

with a distribution similar to a power-law and other types of processes, such as

the Pittman-Yor process [100], find different size distributions. Depending on the

problem at hand and the expected cluster sizes for that problem, one could modify

our algorithm to use a different prior that “best” matches the data.
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Chapter 4

Multi-way clustering

4.1 Introduction

Word clustering can be used to automate, or partially automate tasks such as gen-

erating semantic classes, term-sets, or ontologies such as MeSH [92]. These sets of

related terms are then used to index documents (e.g., in Medline), as features for

entity tagging [105], or for relation extraction [13]. There has been extensive work in

automating the process of generating term-sets, both in general natural language pro-

cessing [77] and specifically for biomedical and bioinformatic uses [30, 126]. These

methods typically cluster words under the “distributional similarity” assumption

that words that occur in the the same contexts are semantically related [125, 76, 108].

In this chapter, we present a method for word clustering that combines information

from different types of relations in which words occur (e.g., co-occurrence with verbs,

and with other nouns) and achieves greater coverage of words and qualitatively dif-

ferent clusters. The resulting word clusters can be used for relation extraction [27],

term identification [71], or for creating a new ontology from scratch in a new field

(or subfield) [65, 110]. The clusters we obtain are broader than the usual MeSH

categories and may be more useful for tasks such as relationship extraction.
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Common clustering methods, such as k-means, agglomerative clustering or spec-

tral methods are procedures designed for clustering a single variable. Methods that

can cluster two variables simultaneously are known as biclustering and co-clustering

algorithms [81, 22]. These cluster, for instance, nouns by verbs and verbs by nouns.

Because clusters of the first variable depend on clusters of the other and vice versa,

biclustering can reveal more information by showing the association structure be-

tween the two types of clusters. For cases where we want to cluster based on data

from multiple sources, we need multi-clustering algorithms, such as [5, 39], that can

cluster multiple variables.

Our contribution is a mixture model-based approach for finding word clusters

by integrating information from different data sources. Specifically, we concentrate

on integrating the co-occurrence information of word pairs extracted using different

patterns, such as noun-noun and verb-noun co-occurrences. Since not all words

appear in every type of pattern, taking advantage of side information helps both

to improve (or as discussed below, at least alter) the quality of the clusters and

also to expand the coverage of clustered words. Additionally, the different sources

of information introduce new relationships between terms and the resulting clusters

capture concepts that are different from those found only from one type or co-

occurrence pattern.

The usefulness of using side information for extended coverage, is exhibited in

the dataset shown in Table 4.1. The dataset was constructed by extracting two kinds

of pairs: one of the form (verb, noun) and another of the form (noun, noun). Even

though the two datasets are very different, each kind of relationship expands the

coverage of nouns for both datasets. The nouns that appear in both types of pairs

can be used to provide the common “ground” used to combine the information for

the uniquely appearing nouns. If one attempts to cluster the nouns using only the

verb-noun, or only the noun-noun pairs, a large number of them will be missed. This

is because not all nouns appear in a single type of co-occurrence relationships. For
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Dataset Nouns in Nouns in Nouns in
verb-noun set both sets noun-noun set

Medline 549 7602 1357

Table 4.1: Coverage of nouns by the two types of pairs.

example, if we use the verb-noun pairs to cluster nouns, we will miss 1,357 nouns.

If we use the noun-noun pairs, we will miss 549 nouns. By using both kinds of pairs

we can find clusters with extended noun coverage.

Our algorithm is based on a combined hierarchical model consisting of two simple

models, similar to belief nets (BNs). In order to make simultaneous use of the two

tables of data that are available, the two models are fused, by forcing them to have

the same parameters for certain conditional probabilities, according to the problem-

specific representation. The difference from other multi-clustering algorithms is that

our proposed method is based on likelihood maximization of a hierarchical model and

is thus simple, principled and quite fast. In contrast, the method of [5] maximizes

the mutual information between pairs of variables by using a user-defined clustering

schedule to perform agglomerative and divisive clustering for different subsets of

the variables. The multivariate information bottleneck [39] is more similar to our

method, as it is based on Bayesian networks, but it relies on maximizing mutual

information under constraints defined by a second network. Both networks have to

be specified by the user.

The rest of the chapter is structured as follows: the next section presents the

model used in the experiments and derives the EM algorithm with the introduction

of the tied parameters. Section 4.3 describes the data we used and how the results

were evaluated. Section 4.4 describes the experiments we ran and compares the

results of clustering with different amounts of extra information, as well as with

k-means.
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(a) The V-N part of the full
model. Also the standard V-
N model

(b) The N-N part of the full
model. Also the standard N-
N model.

Figure 4.1: The full model.

4.2 Method

4.2.1 Data format

Our model is designed for data that are in the form of instances of co-occurrence

pairs. For the experiments presented later we use two kinds of pairs: a set of verb-

noun pairs and a set of noun-noun pairs. How these were extracted from text is

described in section 4.3. The model we describe next is therefore tailored to them,

but is easily generalized to other datasets.

The dataset can be viewed as two sparse tables, the first having verbs corre-

sponding to rows and nouns to columns and the second having nouns as both rows

and columns. An element (i, j) of either table is the number of times nij that the

words corresponding to row i and column j co-occur. In section 4.3 we describe the

methodology we used to extract our pairs. The data tables contain I instances of

verb-noun pairs and J instances of noun-noun pairs.
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4.2.2 Model and notation

The idea behind our method is to use standard generative models to encode the infor-

mation derived from the dataset. The number and structure of these models depends

on the number and type of data tables that are available. Each data table corre-

sponds to a submodel, whose structure is defined by the actual variables that appear

in the dataset. For example, in our case, the first data table contains co-occurrence

counts of a verb and its direct object, so we created a hierarchical submodel with a

dependence of the noun cluster on the verb cluster (figure 4.1(a)). Our second data

table contains co-occurrences of nouns in appositions, conjunctions and disjunctions,

so we put a single noun cluster generating both nouns in the pair (figure 4.1(b)).

Once the submodels have been chosen, the parameters that correspond to the same

variables in the data tables are tied, thus achieving the combining of the information

contained in the data tables. The probabilities of generating a noun given a noun

cluster are constrained to be the same in both submodels. The compound model we

used for our experiments is shown in figure 4.1. This “full model” consists of the

two separate submodels described previously, one for the verb-noun pairs, which we

call the “standard V-N model”, and another for the noun-noun pairs, which we call

the “standard N-N model”.

The random variables we use are defined as follows: V takes values from the set

of verb clusters, N1 and N2 take values from the set of noun clusters, V from the

set of verbs and N , N1, N2 from the set of nouns. We use bold font for variables

associated with clusters and regular font for variables associated with observations.
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The parameters of the model corresponding to the conditional probabilities are:

P (V = v) = αv (4.1)

P (N1 = n|V = v) = βvn (4.2)

P (V = v|V = v) = θvv (4.3)

P (N = n|N1 = n) = ψnn (4.4)

P (N2 = n) = γn (4.5)

P (N1 = n1|N2 = n) = ψnn1
(4.6)

P (N2 = n2|N2 = n) = ψnn2
(4.7)

The parameter ψ, representing the conditional probability of a noun given a noun

cluster, is the same in both parts of the model, thus achieving the desired coupling.

To generate a verb-noun pair from this model, we pick a verb cluster v according

to probabilities α, a noun cluster n given v according to βv and then generate a verb

from v with probability θv and a noun from n with probability ψn. To generate a

noun-noun pair, we pick a noun cluster n according to probabilities γ and then pick

two nouns from n with probabilities ψn. Thus, the nouns in both parts of the model

are generated using the same probability distribution.

4.2.3 The EM algorithm

The model is estimated using the EM algorithm, which we now derive. The im-

plementations for the separate V-N and N-N models are not shown, as they follow

trivially. The variables V,N,N1, N2 are observed and V,N1,N2 are treated as unob-

served. The most interesting part is the update for the parameter ψ. It includes the

counts of co-occurrences from both datasets (verb-noun and noun-noun) which are

summed together. The result therefore uses an equivalent weighting proportional to

the sizes of the two datasets.

Given observations of pairs {(vi, ni), i = 1 . . . I} and {(n1j , n2j), j = 1 . . . J} the
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log-likelihood function for the complete data is

l =
I
∑

i=1

logP (vi, ni,vi,n1i) +
J
∑

j=1

logP (n1j, n2j ,n2j)

=

I
∑

i=1

(logαvi
+ log βvin1i

+ log θvivi
+ logψn1ini

)

+
J
∑

j=1

(log γn2j
+ logψn2jn1j

+ logψn2jn2j
).

(4.8)

It is convenient to rewrite the log-likelihood using the number of times #x that

a random variable x takes a specific value. Let NV C and NNC denote the number of

verb and noun clusters respectively and NV and NN denote the numbers of distinct

verbs and nouns respectively that appear in the co-occurrence pairs. Computing the

E-step is now straightforward; we use o to denote the set of observations:

E[l|o] =

NV C
∑

v=1

E[#v|o] logαv+

NV C
∑

v=1

NNC
∑

n1=1

E[#vn1
|o] log βvn1

+

NV C
∑

v=1

NV
∑

v=1

E[#vv|o] log θvv+

3

NNC
∑

n1=1

NN
∑

n=1

E[#n1n|o] logψn1n+

NNC
∑

n2=1

E[#n2
|o] log γn2

.

(4.9)

The expected counts are computed by summing (over all observations) the prob-

abilities of the corresponding variables given the observations. The exact compu-

tations are omitted as trivial. The only noteworthy calculation is for the expected

number of times E[#n1n|o] that the variables N1 and N take some specific values
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n1k and nk, which involves summing over both datasets:

E[#n1n|o] =
I
∑

i=1

P (N1 = n1k, N = nk|vi, ni)

+
J
∑

j=1

P (N2 = n2k, N = nk|n1j, n2j). (4.10)

Given the expected counts, the M-step updates are then straightforward.

αa =
E[#a|o]

I
(4.11)

βab =
E[#ab|o]
∑

bE[#ab|o]
(4.12)

θav =
E[#av|o]

∑

v E[#av|o]
(4.13)

γc =
E[#c|o]

J
(4.14)

ψcn =
E[#cn|o]

∑

nE[#cn|o]
(4.15)

4.2.4 Properties

Using two separate submodels with tied parameters allows side information to be of

arbitrary size and dimension and to reside in a different feature space. This makes

it easy to incorporate extra information (in the form of extra tables), by adding

separate submodels. The user only needs to decide on the model structure and what

parameters should be tied and then use existing methods, such as the EM algorithm,

to fit the parameters.

The second advantage of the combined submodels is that they trivially allow the

data tables to contain different subsets of items (i.e. words) that are clustered. As

long as there are common items between pairs of tables, the algorithm will be able

to use them as connections between the data tables and combine the information

contained in them. The end result will be a clustering of the union of items contained

in the given tables, giving greater coverage.

93



4.3 Experimental setup

4.3.1 Dataset

We generated our dataset (“MEDLINE”) by parsing 1,800,547 abstracts from the

MEDLINE database, ranging from years 1995 to 2000, with the MINIPAR parser

[78]. MINIPAR can be configured to output a sequence of “dependency triples”

that represent shallow syntactic configurations between words. A dependency triple

has the form (w1, relr, w2) where w1 and w2 are words in a sentence that engage

in some syntactic relation relr. We extracted two types of relations. The first was

verb-direct object, giving us the set of verb-noun pairs. The second was noun-

TYPE-noun, where TYPE could be apposition, conjunction or disjunction, giving

the set of noun-noun pairs. From the extracted verbs and nouns we selected the 1000

most common verbs and 1000 most common nouns as our vocabulary and randomly

chose 500,000 pairs of verbs and nouns and an equal number of noun-noun pairs.

To simulate the situation shown in table 4.1 in a systematic and easily quantifiable

way, we also constructed a reduced noun-noun table by randomly removing 250 of

the 1000 nouns as well as all the noun-noun co-occurrence instances where one or

both nouns were in the removed subset of 250 nouns. We thus artificially created a

reduced noun-noun dataset, which does not cover all the nouns and used it to test

how extra information about the missing 250 nouns (in the form of the verb-noun

table) can help.

4.3.2 Evaluation

The clusters were evaluated using class labels. We labeled the verbs and nouns by

mapping them to WORDNET [32] and using the hypernyms of the synsets they

mapped to as labels. The nouns were also mapped to MeSH [92] and labeled by

their grandparent node. The mappings gave us multiple labels per word for most

words. Each cluster was represented by a distribution of labels, found by creating a
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histogram of label occurrences for the (labeled) words in the cluster.

These label distributions were in turn used by the evaluation measure, which was

the weighted average entropy (WAE), defined as the average of the label distribution

entropies for the clusters weighted by the cluster sizes [34]:

WAE =
C
∑

i=1

ni

N
Ei (4.16)

where ni is the number of items in cluster i, N is the total number of items clustered

and Ei is the entropy of the distribution of labels Y for cluster i. The lower the

value of WAE, the better the clustering matches the given labels of the data.

We also used the label log likelihood (LLL) as a second measure of quality. For

LLL, each labeled word is treated as an instance generated from a multinomial

distribution, i.e. the label distribution of the cluster where the word was assigned

to. We compute the LLL by summing the log likelihoods for every such instance. We

also hand-labeled the words in the largest clusters (those containing more than 3% of

the words) as either belonging or not in the clusters. To avoid any selection bias this

labeling was done without knowledge of which algorithm generated which cluster.

This gave us a Bernoulli distribution of “good” and “bad” words in each cluster and

we computed the WAE of these distributions. Because the “bad” words were always

less than half of the words in every cluster, a low entropy value corresponds to mostly

“good” words in the cluster. Therefore clusterings with low WAE are preferred. The

results for both the LLL and the manual labeling were in agreement to the WAE

results and are thus not shown.

4.4 Results

We performed a number of different experiments and used k-means as a standard

measure of comparison. In all experiments we used 25 verb clusters and 50 noun

clusters, as we found these numbers to give a reasonable tradeoff between cluster
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coherence and diversity. The EM algorithm was initialized with the output of k-

means applied to the verb-noun data table only. Because EM gives soft clusters, we

performed a hardening procedure at the end of the clustering, so that every word

was assigned to one and only one cluster. According to this procedure, each word

was assigned to the cluster with the highest posterior probability P (cluster|word),

computed from the model parameters using Bayes rule:

P (cluster|word) ∝ P (word|cluster)P (cluster) (4.17)

We examine the performance of our method in finding verb and noun clusters in

three general cases. In sections 4.4.2 to 4.4.4 we find and evaluate clusters for all

1,000 nouns, for the reduced set of 750 nouns, and for all verbs.

4.4.1 Nature of clusters found

Before comparing the effects of combining noun-noun and verb-noun data, we briefly

describe the nature of the clusters we found. The clusters we obtained included

many words not in MeSH, or words that are only part of largely unrelated terms,

for example C., J., one, part, constant, intermediate. We also found clusters whose

terms were not in MeSH, for instance the cluster {I, ii, iii, iv, v}. Most of the clusters

were broader than MeSH categories (e.g., one cluster contained terms such as protein,

receptor, peptide, antibody). Thus, the entropies of the clusters are artificially high.

Nevertheless, the quality of the clusters (as subjectively assessed) corresponded with

their entropies, as measured using MeSH or Wordnet.

4.4.2 Clustering 1,000 nouns

For the first set of experiments we compared the noun clusters found by EM and

using:

1. only the verb-noun data and the V-N model (results denoted as VN),
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Figure 4.2: Weighted average entropy of the noun clusters for 1000 nouns.

2. only the complete noun-noun data and the N-N model (denoted as NN-1000),

3. the noun-noun data for 750 nouns and augmented with side information about

all 1000 nouns in the form of the verb-noun table and using the full model

(denoted as VNNN-750),

4. the complete noun-noun data for all 1000 nouns augmented with the verb-noun

data and the full model (denoted as VNNN-1000).

For comparison with k-means we used information as similar as possible. For

case 1 above, we used the verb-noun pairs, treating the verbs as features. For case

2, we used the noun-noun pairs and clustered the nouns using nouns as features.

For case 4, the verb-noun and noun-noun tables were combined by concatenating

them and k-means found noun clusters using both verb and noun co-occurrences as

features for the nouns. We did not compare k-means with VNNN-750 of case 3,

because combining the two data tables as before would give vectors with missing

features and using k-means with missing features would require special treatment.

The results of these experiments are shown in figure 4.2. The results were similar

when mapping the nouns in either MeSH or Wordnet. In every case, EM on the

BN model gave better results than k-means. We now examine two scenarios. In the

first one, the noun-noun pairs provide information for all 1000 nouns. In this case,
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the VN results (using only verb-noun data) perform worst, while the NN and the

combined VNNN-1000 results were better in terms of WAE.

For the second scenario, we assume we only have noun-noun information for 750

nouns. Without any other information, the only way to cluster more nouns (in this

experiment the extra 250 ones) is to assign them randomly to clusters. The WAE

in this case is much worse (statistically significant). The alternative is to use the

verb-noun data. By combining the two tables we get the VNNN-750 results which

are better than the VN ones, even though they do not give information for the 250

nouns. We can thus achieve coverage of 1,000 nouns with our clusters with better

quality than if we had simply used the verb-noun data, which in this scenario are

the only available data covering 1,000 nouns.

According to figure 4.2, NN-1000 is better than VN. The reason lies in the nature

of the noun-noun data (pairs of nouns extracted from conjunctions and appositions),

which makes them of high quality, because two nouns that appear together in a con-

junction, disjunction or apposition are usually very similar. These pairs therefore

give very good clusters. The verb-noun data on the other hand contain less infor-

mation on nouns, because in verb-direct object pairs the same verb can be observed

with a wider variety of nouns as direct objects.

Looking at the actual clusters it is obvious that the VN clusters are of lower

quality than the other results. This is not the case for the NN-1000 and the VNNN-

1000 clusters. In table 4.2 we give representative examples of clusters from these

methods. The clusters were manually selected to correspond to the same high-level

notions. Both the NN-1000 and VNNN-1000 clusters in that table look of good

quality, better than VN-1000, which contains several spurious words. Comparing

the NN-1000 and VNNN-1000 clusters in the same table, we note that they capture

different types of concepts. The NN-1000 cluster contains words related to knowl-

edge and behavior/performance, whereas the VNNN-1000 cluster is a combination of

knowledge and institutions. Both of them can be considered correct in some setting;
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VN

control, use, therapy, development, procedure, diagnosis, process, that,
surgery, strategy, measure, essential, management, care, ability, edu-
cation, detection, knowledge, practice, safety, chemotherapy, course,
identification, prevention, support, service, modification, step, regimen,
screening, operation, repair, resection, selection, transplantation, task,
now, graft, technology, environment, transfer, medication, recognition,
means, radiotherapy, maintenance, limitation, energy, availability, con-
cept, understanding, trend, modality, introduction, implant, protection,
resource, ventilation, flap, dissection

NN-1000

system, research, strategy, information, program, application, care,
work, behavior, education, experience, health, knowledge, practice, hos-
pital, performance, need, issue, support, preparation, service, unit, train-
ing, technology, standard, environment, effort, way, laboratory, attitude,
guideline, setting, network, availability, behaviour, theory, center, un-
derstanding, skill, perception, policy, concern, decision, access, medicine,
community, database, formulation, clinic, resource, planning, life, coun-
try, communication, project, barrier, goal

VNNN-1000

system, author, trial, research, strategy, information, program, applica-
tion, care, work, education, source, experience, health, knowledge, prac-
tice, hospital, need, issue, survey, support, service, unit, training, litera-
ture, technology, standard, environment, effort, question, laboratory, at-
titude, challenge, guideline, network, availability, concept, theory, center,
advance, understanding, skill, perception, policy, concern, decision, ac-
cess, medicine, attempt, community, contact, interest, search, database,
record, recommendation, basis, situation, clinic, resource, methodology,
life, country, communication, project, barrier, discussion, consideration

VN

mice, type, tumor, tissue, line, material, strain, mutant, liver, carci-
noma, culture, virus, human, specie, muscle, some, heart, clone, variant,
bacteria, nucleus, derivative, tumour, cortex, spleen, fibroblast, fiber,
organ, vessel, nuclei, mouse, artery, neutrophil, neck, platelet, nerve,
embryo, particle, monocyte, chromosome, lymph node, organism, ade-
nocarcinoma, adenoma, axon, intestine, astrocyte, leukocyte, CD4

NN-1000
cell, line, neuron, source, macrophage, majority, lymphocyte, clone, fi-
broblast, neutrophil, platelet, epithelial cell, monocyte, precursor, sub-
set, astrocyte, leukocyte, CD4

NN-1000
model, rat, mice, animal, normal, human, dog, mouse, plant, embryo,
rabbit, cat, pig

VNNN-1000

cell, rat, mice, line, that, strain, animal, mutant, neuron, normal, hu-
man, specie, macrophage, majority, lymphocyte, clone, bacteria, vector,
dog, fibroblast, mouse, neutrophil, platelet, plant, epithelial cell, embryo,
monocyte, precursor, organism, rabbit, cat, wild-type, subset, pathogen,
pig, astrocyte, leukocyte, CD4

Table 4.2: Examples of corresponding noun clusters found with three of the methods.
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Figure 4.3: Evaluation of the noun clusters for the 750 randomly selected nouns.

the best choice would be dependent on the application. Similarly, in the second set

of clusters, the VNNN-1000 cluster is about biological substrates, whereas NN-1000

found two separate clusters, one for animals and one for micro-organisms.

The VN-1000 clusters are broader, whereas the NN-1000 and VNNN-1000 ones

correspond better to MeSH. The way the noun-noun pairs were extracted from the

text produces highly-correlated co-occurrences that in turn yield highly specific clus-

ters. On the other hand, the nouns that appear in verb-noun pairs are considered

similar if similar actions are done to them (i.e. similar verbs apply to similar direct

objects). The use of the verb-noun pairs in the full model introduces new relations

between words that are not present in the noun-noun data. This causes the found

clusters to be broader.

4.4.3 Clustering 750 nouns

For the second set of experiments we tested how well the 750 randomly chosen

nouns were clustered. We therefore ignored the 250 missing nouns when computing

the WAE. Specifically, we compared the clusters found by:

1. VNNN-750 (defined in the previous subsection),

2. the N-N model, operating on the reduced noun-noun data (NN-750).
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Figure 4.4: Evaluation of the verb clusters.

The results show that for both mappings, k-means is again worse than EM (figure

4.3). We see more pronounced what we noticed in the previous experiment, i.e.

that the extra information helped improve the cluster quality. The full model for

this case performs better than the N-N model in terms of WAE. The verb-noun

data containing information for all 1000 nouns help improve the clusters for the 750

nouns, making a greater contribution than in the previous set of experiments.

4.4.4 Clustering verbs

Most ontologies cover nouns, but verbs are also of potential interest. For example,

when extracting relationships between e.g. proteins, it is useful to have term-sets of

verbs of protein interaction such as bind, ubiquinate, or phosphorylate. For our last

set of experiments we looked at finding verb clusters. Since there is no straightfor-

ward way to find verb clusters with k-means using both the verb-noun and noun-

noun information, we did not compute verb clusters for the VNNN cases. We found

the best results when using the standard V-N model and not the full model (figure

4.4). It seems that the introduction of the noun-noun co-occurrence information

pulls the verb clusters apart in order to achieve better noun clusters. However, even

though the extra information hurts the precision of the verb clusters, it introduces

new relations between verbs. Similar to the case of noun clusters, the outcome is a
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different clustering result, which, depending on the application, may be preferable.

To support this point, we give examples of verb clusters in table 4.3.

4.5 Discussion

Our algorithm can be used in any application that requires clustering, such as in-

formation or relation extraction. For example, it can be used to extend MeSH [92],

or to create an alternate ontology to MeSH, for instance one where the relations are

of different type. We have not examined issues like the best number of clusters, or

what and how many co-occurrence types to use to generate the data. The choice

of the co-occurrence types will depend on the application domain and the kind of

clusters we want to find, whereas the number of clusters can be found through other

methods (see for example [89, 70])

Our focus, instead, was to show that using EM on BNs with tied parameters is a

useful method for incorporating information from several different sources to achieve

greater coverage and cluster quality. One advantage we found was the potential to

increase the coverage of clustered words. By using different syntactic patterns one

can easily gather information about extra words from a relatively small corpus of

text and combine it with the proposed method, acquiring clusters of a large number

of words. So, nouns which do not show up in any noun-noun collocations can still be

clustered if verb-noun pairs are available. The alternative would be to use a single

syntactic pattern on a larger corpus, which may not always be available.

The second “advantage” is more subtle, and may sometimes be a disadvantage;

Supplementing noun-noun co-occurrence data with verb-noun data changes the na-

ture of the clusters that are found. Nouns that are the targets of the same action (and

thus appear with the same verb) often constitute a different, and broader, set than

nouns that are mentioned together only in noun-noun collocations. For example,

different types of tissues and of animal were clustered together when the verb-noun
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VN

increase, decrease, differ, change, correlate, vary, range, reach, tend, de-
cline, exceed, rise, return to, average, approach, fall, peak, adjust, dou-
ble, parallel, drop, fell, compensate for, index, amount to, approximate,
fraction, equal, decay, fall to, fluctuate, profile, stratify, leak, plot

VNNN-750

increase, decrease, differ, change, correlate, vary, range, reach, tend,
decline, exceed, rise, return to, total, average, approach, fall, peak, ad-
just, double, divide, drop, free, near, fell, bypass, curve, index, weight,
amount to, pressure, approximate, fraction, equal, balance, fall to, fluc-
tuate, overload, profile, stratify, leak, deviate, beat, lag, wound, plot

VNNN-1000

increase, decrease, differ, change, correlate, vary, range, reach, decline,
exceed, rise, return to, gain, total, average, approach, fall, peak, ad-
just, rest, value, double, drop, free, moderate, fell, weight, amount to,
pressure, approximate, water, fraction, equal, balance, fall to, fluctuate,
spike, profile, leak, power, beat, lag

VN

express, exhibit, display, lack, carry, grow, differentiate, accumulate,
bear, surface, stain, derive from, retain, originate, surround, count, se-
crete, acquire, synthesize, infect, proliferate, migrate, overexpress, har-
bor, spread, divide, behave, cluster, kill, project, cycle, supply, penetrate,
infiltrate, line, invade, adhere to, fire, regenerate, size, escape, attach to,
harbour, pulse, swell, mature, cut, mount, resist, pass through, attach,
immobilize, enlarge, layer, metastasize, take up, preexist, degenerate,
roll, sense, colonize, adhere, develop into, branch, internalize

VNNN-750
express, differentiate, surface, stain, surround, count, secrete, proliferate,
overexpress, infiltrate, line, fire, ionize, swell, mature, layer, take up, roll,
sense, aggregate, exit

VNNN-1000

express, grow, differentiate, bear, surface, feed, stain, count, secrete,
transform, synthesize, proliferate, overexpress, spread, divide, kill,
project, cycle, infiltrate, line, invade, adhere to, fire, incubate, regen-
erate, skin, ionize, swell, mature, mount, resist, subject to, layer, swim,
take up, roll, sense, colonize, aggregate, adhere

Table 4.3: Examples of corresponding verb clusters from the three models.
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information was used, since they are all similar experimental substrates. Finding

clusters of different type can be helpful for building ontologies that organize infor-

mation in alternative ways, for example for use in extracting relationships between

entities, where broader classes would be useful.
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Chapter 5

Discussion

We have presented Streemer [63, 64], a few-pass online algorithm that clusters obser-

vations into foreground clusters and a background. Unlike k-means, Streemer does

not require a predetermined number of clusters and does not make strong assump-

tions about cluster sizes and variances. Streemer’s performance was evaluated on a

dataset of scientific papers citing other papers, where the conference or journal in

which the paper appeared was treated as a class label. It was compared to k-means

as well as a variation of k-means that we developed and which distinguishes fore-

ground from background. We found that by filtering some points as background we

can improve the quality of the foreground clusters.

We used Streemer on a dataset of scientific papers to discover scientific knowledge

communities and study their properties and their evolution over time. For this we

used a “rolling clustering” scheme, in which we divided and clustered the papers

into overlapping time periods, and used the overlap to track the continuity of the

clusters. Based on these findings, we built models predicting the growth of scientific

communities and the citation impact of papers using features such as the citation

structure, the vocabulary of the papers, and the affiliations and prestige of the

authors. Analysis of the statistical significance of the model features gave insight

into the characteristics of successful knowledge communities and high impact papers.
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We have also given a mixture model that is based on log likelihood and uses a

Dirichlet process prior and described how it can be used in an streaming clustering

setting. The Dirichlet process provides the mechanism for generating new clusters as

the observations are processed sequentially and the Gaussian components constitute

the resulting clusters. Because a single pass makes many wrong decisions, especially

in the beginning, we have proposed the use of two passes for clustering the data. In

the first pass we find a much higher number of clusters than desired, so as to avoid

undesirable local minima, and in the second pass we treat the first-pass clusters

as weighted points to be clustered. This exposition corresponds in large degree

to the way Streemer operates and therefore Streemer can be viewed as a DPMM

with additional heuristics for avoiding local minima and an extra step for finding a

background.

On multiway clustering, we have developed a probabilistic model for simultane-

ous clustering on multiple dimensions and used it to simultaneously cluster verbs and

nouns using tables of verb-noun and noun-noun co-occurrence data [62]. The ad-

vantage of simultaneous clustering is that the clustering of each variable informs the

clustering of the others. Additionally, the use of two different co-occurrence tables

provides greater coverage of words than either set of co-occurrence pairs alone. It

makes it thus possible to combine data from multiple sources and achieve clustering

even if the amount of data from each source is very limited. We applied our model on

data extracted from Medline abstracts and evaluated the results by mapping them

to MeSH [92] and Wordnet [32].

5.1 Future work

The foreground/background aspect of Streemer has been used for the identifica-

tion of knowledge communities. Documents that don’t fall cleanly in an established

106



community, such as review papers, are assigned to the background making the fore-

ground clusters “cleaner”. This split between foreground groups that are unique

and dissimilar from each other and a background group with observations that don’t

fit in any foreground cluster can be used for any dataset where we expect to have

some data points that constitute noise. Furthermore, the foreground/background

distinction can also be usefull when the background is the group of interest. For

example, the points in the background could be considered as outliers and fore-

ground/background clustering could potentially be used for anomaly detection. One

must be careful however when applying the methodology, since the results may be

different from the expected. We provided an illustrative example for finding stop

words where this happened.

Chapter 4 addresses multiway clustering in a batch setting and with a predeter-

mined number of clusters. A number of possible improvements could be made, when

viewed in combination with the previous chapters. One improvement would be to

introduce a DP to the model, so that the number of clusters does not have to be

specified by the user. This would also allow the use of a streaming algorithm with

the model instead of EM for the case of very large datasets. In that case, a two-pass

clustering approach similar to chapter 3 is a possibility. Secondly, the existence of

two clustered variables creates four possibilities for assignment to new or existing

clusters. Further work would be to examine how to choose one of the four possibili-

ties for each observation. Once the DP has been added to the model, one can then

develop an online algorithm, preferably utilizing two passes for better performance.

Such work, however, falls outside the scope of this thesis.

107



Bibliography

[1] P.D. Allison and R.P. Waterman. Fixed-Effects Negative Binomial Regression

Models. Sociological Methodology, 32(1):247–265, 2002.

[2] A. Banerjee, I.S. Dhillon, J. Ghosh, and S. Sra. Clustering on the Unit Hy-

persphere using von Mises-Fisher Distributions. Journal of Machine Learning

Research, 6(2):1345, 2006.

[3] A. Banerjee, S. Merugu, I.S. Dhillon, and J. Ghosh. Clustering with Bregman

divergences. The Journal of Machine Learning Research, 6:1705–1749, 2005.

[4] Arindam Banerjee, Inderjit Dhillon, Joydeep Ghosh, Srujana Merugu, and

Dharmendra S. Modha. A generalized maximum entropy approach to Breg-

man co-clustering and matrix approximation. In KDD ’04: Proceedings of the

tenth ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 509–514, New York, NY, USA, 2004. ACM.

[5] R. Bekkerman, R. El-Yaniv, and A. McCallum. Multi-way distributional clus-

tering via pairwise interactions. Proceedings of ICML, 22:41–48, 2005.

[6] Pavel Berkhin. Survey of clustering data mining techniques. Technical report,

Accrue Software, San Jose, CA, 2002.

[7] David M. Blei and John D. Lafferty. Dynamic topic models. In ICML ’06:

Proceedings of the 23rd international conference on Machine Learning, pages

113–120, New York, NY, USA, 2006. ACM.

108



[8] D.M. Blei, T.L. Griffiths, M.I. Jordan, and J.B. Tenenbaum. Hierarchical Topic

Models and the Nested Chinese Restaurant Process. In Advances in Neural

Information Processing Systems 16: Proceedings of the 2003 Conference. Brad-

ford Book, 2004.

[9] D.M. Blei, A.Y. Ng, and M.I. Jordan. Latent Dirichlet allocation. Journal of

Machine Learning Research, 3:993–1022, 2003.

[10] P. Bonacich. Using Boolean algebra to analyze overlapping memberships. So-

ciological Methodology, pages 101–115, 1978.

[11] S.P. Borgatti and M.G. Everett. Network analysis of 2-mode data. Social

Networks, 19(3):243–269, 1997.

[12] Robert R. Braam, Henk F. Moed, and Anthony F. J. van Raan. Mapping

of science by combined co-citation and word analysis. ii: Dynamical aspects.

Journal of the American Society for Information Science, 42(4):252–266, 1991.

[13] M. Bundschus, M. Dejori, M. Stetter, V. Tresp, and H.P. Kriegel. Extraction of

semantic biomedical relations from text using conditional random fields. BMC

Bioinformatics, 9:207, 2008.

[14] Gilles Celeux and Gerard Govaert. A classification EM algorithm for clustering

and two stochastic versions. Comput. Stat. Data Anal., 14(3):315–332, 1992.

[15] D. Crane. Invisible Colleges: Diffusion of Knowledge in Scientific Communi-

ties. University of Chicago Press, Chicago, 1972.

[16] P. Damien and S. Walker. A full Bayesian analysis of circular data using the

von Mises distribution. The Canadian Journal of Statistics, 27(2):291–298,

1999.

109



[17] S. Dasgupta and L. Schulman. A two-round variant of EM for Gaussian mix-

tures. In Proceedings of the 16th Conference on Uncertainty in Artificial In-

telligence, pages 143–151, 2000.

[18] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incom-

plete data via the EM algorithm. Journal of Royal Statistical Society, 39:1–38,

1977.

[19] Inderjit S. Dhillon. Co-clustering documents and words using bipartite spectral

graph partitioning. In KDD ’01: Proceedings of the seventh ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 269–

274, New York, NY, USA, 2001. ACM Press.

[20] Inderjit S. Dhillon and Yuqiang Guan. Information theoretic clustering of

sparse co-occurrence data. In ICDM ’03: Proceedings of the Third IEEE In-

ternational Conference on Data Mining, page 517, Washington, DC, USA,

2003. IEEE Computer Society.

[21] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral

clustering and normalized cuts. In KDD ’04: Proceedings of the tenth ACM

SIGKDD international conference on Knowledge discovery and data mining,

pages 551–556, New York, NY, USA, 2004. ACM.

[22] Inderjit S. Dhillon, Subramanyam Mallela, and Dharmendra S. Modha.

Information-theoretic co-clustering. In KDD ’03: Proceedings of the ninth

ACM SIGKDD international conference on Knowledge discovery and data min-

ing, pages 89–98, New York, NY, USA, 2003. ACM Press.

[23] I.S. Dhillon, J. Fan, and Y. Guan. Efficient clustering of very large document

collections. Data Mining for Scientific and Engineering Applications, pages

357–381, 2001.

110



[24] I.S. Dhillon, J. Fan, and Y. Guan. Efficient clustering of very large document

collections. Data Mining for Scientific and Engineering Applications, pages

357–381, 2001.

[25] I.S. Dhillon and D.S. Modha. Concept decompositions for large sparse text

data using clustering. Machine Learning, 42(1):143–175, Jan 2001.

[26] P. Doreian. On the delineation of small group structure. Classifying Social

Data. Jossey-Bass, San Francisco, CA, 1979.

[27] D. Downey, S. Schoenmackers, and O. Etzioni. Sparse Information Extraction:

Unsupervised Language Models to the Rescue. Proceedings of the 45th Annual

Meeting of the Association of Computational Linguistics, pages 696–703, 2007.

[28] M. Ester, H.P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise. In Proc. 2nd Int.

Conf. on Knowledge Discovery and Data Mining, pages 226–231, Portland,

OR, 1996. AAAI Press.

[29] M.G. Everett and S.P. Borgatti. An extension of regular colouring of graphs

to digraphs, networks and hypergraphs. Social Networks, 15(23):7–254, 1993.

[30] J.W. Fan and C. Friedman. Semantic Classification of Biomedical Concepts

Using Distributional Similarity. Journal of the American Medical Informatics

Association, 14(4):467–477, 2007.

[31] P. Fearnhead. Particle filters for mixture models with an unknown number of

components. Statistics and Computing, 14(1):11–21, 2004.

[32] C. Fellbaum. Wordnet: An Electronic Lexical Database. MIT Press, 1998.

[33] T.S. Ferguson. A Bayesian analysis of some nonparametric problems. Ann.

Statist, 1(2):209–230, 1973.

111



[34] Xiaoli Zhang Fern and Carla E. Brodley. Random projection for high di-

mensional data clustering: A cluster ensemble approach. In Proceedings of

the Twentieth International Conference of Machine Learning, pages 186–193,

Washington, DC, USA, 2003. AAAI Press.

[35] Daniel Fink. A compendium of conjugate priors. Technical report, Cornell

University, 1995.

[36] Gary William Flake, Steve Lawrence, and C. Lee Giles. Efficient identification

of Web communities. In KDD ’00: Proceedings of the sixth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 150–

160, New York, NY, USA, 2000. ACM.

[37] L.C. Freeman. Finding social groups: A meta-analysis of the southern women

data. In Dynamic Social Network Modeling and Analysis: Workshop Summary

and Papers, page 39. National Academy Press, 2003.

[38] K. Frenken, W. Hölzl, and F. Vor. The citation impact of research collabora-

tions: the case of European biotechnology and applied microbiology (1988–

2002). Journal of Engineering and Technology Management, 22(1-2):9–30,

2005.

[39] N. Friedman, O. Mosenzon, N. Slonim, and N. Tishby. Multivariate infor-

mation bottleneck. Uncertainty in Artificial Intelligence: Proceedings of the

Seventeenth Conference (UAI-2001), pages 152–161, 2001.

[40] Lise Getoor, Nir Friedman, Daphne Koller, and Benjamin Taskar. Learning

probabilistic models of relational structure. In ICML ’01: Proceedings of the

Eighteenth International Conference on Machine Learning, pages 170–177, San

Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[41] David Gibson, Jon Kleinberg, and Prabhakar Raghavan. Inferring Web com-

munities from link topology. ACM, New York, NY, USA, 1998.

112



[42] C. Lee Giles, Kurt Bollacker, and Steve Lawrence. CiteSeer: An automatic

citation indexing system. In Ian Witten, Rob Akscyn, and Frank M. Ship-

man III, editors, Digital Libraries 98 - The Third ACM Conference on Digital

Libraries, pages 89–98, Pittsburgh, PA, June 23–26 1998. ACM Press.

[43] R. Gomes, M. Welling, and P. Perona. Incremental learning of nonparamet-

ric Bayesian mixture models. In IEEE Conference on Computer Vision and

Pattern Recognition, 2008. CVPR 2008, pages 1–8, 2008.

[44] K.C. Gowda and G. Krishna. Agglomerative Clustering Using the Concept of

Mutual Nearest Neighbourhood. Nearest Neighbor (Nn) Norms: Nn Pattern

Classification Techniques, 1991.

[45] William H. Greene. Accounting for excess zeros and sample selection in Poisson

and negative binomial regression models. Working Papers 94-10, New York

University, Leonard N. Stern School of Business, Department of Economics,

1994.

[46] B.C. Griffith, H.G. Small, J.A. Stonehill, and S. Dey. The Structure of Scien-

tific Literatures II: Toward a Macro-and Microstructure for Science. Science

Studies, 4(4):339–365, 1974.

[47] T.L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the

National Academy of Sciences of the United States of America, 101:5228–5235,

2004.

[48] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering

Data Streams: Theory and Practice. IEEE Transactions on Knowledge and

Data Engineering, 15(3):515–528, 2003.

[49] S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm for

large databases. Information Systems, 26(1):35–58, 2001.

113



[50] G. Gupta and J. Ghosh. Bregman Bubble Clustering: A Robust, Scalable

Framework for Locating Multiple, Dense Regions in Data. In Proc. ICDM:

The 2006 IEEE International Conference on Data Mining, 2006.

[51] J. Hage and M.T.H. Meeus. Innovation, Science, and Institutional Change.

Oxford University Press, USA, 2006.

[52] JT Hage. Organizational Innovation And Organizational Change. Annual

Reviews in Sociology, 25(1):597–622, 1999.

[53] M.T. Hannan and J. Freeman. The Population Ecology of Organizations.

American Journal of Sociology, 82(5):929, 1977.

[54] J. Hausman, B.H. Hall, and Z. Griliches. Econometric Models for Count

Data with an Application to the Patents-R & D Relationship. Econometrica,

52(4):909–938, 1984.

[55] Yulan He and Siu Cheung Hui. Mining a web citation database for author

co-citation analysis. Inf. Process. Manage., 38(4):491–508, 2002.

[56] John Hopcroft, Omar Khan, Brian Kulis, and Bart Selman. Natural commu-

nities in large linked networks. In KDD ’03: Proceedings of the ninth ACM

SIGKDD international conference on Knowledge discovery and data mining,

pages 541–546, New York, NY, USA, 2003. ACM Press.

[57] Q. Huang, B. Dom, D. Steele, J. Ashley, and W. Niblack. Fore-

ground/background segmentation of color images by integration of multiple

cues. IEEE Int. Conf. on Image Processing, 1:246–249, 1995.

[58] H. Ishwaran and M. Zarepour. Markov chain Monte Carlo in approximate

Dirichlet and beta two-parameter process hierarchical models. Biometrika,

87(2):371–390, 2000.

114



[59] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM

Comput. Surv., 31(3):264–323, 1999.

[60] Frizo Janssens, Wolfgang Glänzel, and Bart De Moor. Dynamic hybrid clus-

tering of bioinformatics by incorporating text mining and citation analysis. In

KDD ’07: Proceedings of the 13th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 360–369, New York, NY, USA,

2007. ACM Press.

[61] I.T. Jolliffe. Principal Component Analysis. Springer, 2002.

[62] V. Kandylas, L. Ungar, T. Sandler, and S. Jensen. Multiway Clustering for

Creating Biomedical Term Sets. In Bioinformatics and Biomedicine, 2008.

BIBM’08. IEEE International Conference on, pages 449–452, 2008.

[63] V. Kandylas, S.P. Upham, and L.H. Ungar. Finding cohesive clusters for

analyzing knowledge communities. Data Mining, 2007. ICDM 2007. Seventh

IEEE International Conference on, pages 203–212, Oct. 2007.

[64] Vasileios Kandylas, S. Phineas Upham, and Lyle H. Ungar. Finding cohesive

clusters for analyzing knowledge communities. Knowledge and Information

Systems, 17(3):335–354, 2008.

[65] V. Kashyap, C. Ramakrishnan, and T.C. Rindflesch. Towards (Semi-

)automatic Generation of Bio-medical ontologies. AMIA. Annual Symposium

proceedings [electronic resource], 2003:886, 2003.

[66] Michael J. Kearns, Yishay Mansour, and Andrew Y. Ng. An information-

theoretic analysis of hard and soft assignment methods for clustering. Proceed-

ings of UAI, pages 282–293, 1997.

115



[67] Yuval Kluger, Ronen Basri, Joseph T. Chang, and Mark Gerstein. Spectral

Biclustering of Microarray Data: Coclustering Genes and Conditions. Genome

Res., 13(4):703–716, 2003.
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