
Conservativity of Nested Relational Calculi
with Internal Generic Functions

MS-CIS-93-60
LOGIC & COMPUTATION 69

Leonid Libkin
Limsoon Wong

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

June 1993

Conservativity of Nested Relational Calculi
with Internal Generic Functions

Leonid Libkin and Limsoon Wong

Department of Computer and Information Science,
University of Pennsylvania,

Philadelphia, PA 19104-6389, USA.
email: (libkin, limsoon)0saul.cis.upenn.ed~

Abs t r ac t

It is known that queries in nested relational calculus are independent of the depth of set nesting
in the intermediate da ta and this remains true in the presence of aggregate functions. We prove that
this continues to be true if the calculus is augmented with any internal generic family of functions.

1 Introduction

Paredaens and Van Gucht [7] proved that the nested relational calculus is no more expressive than
the traditional relational calculus when input and output are flat relations. That is, every query on
input and output whose depth of set nesting is at most 1 (or flat relations) can be expressed without
using any intermediate data whose depth of set nesting is greater than 1. This result was generalized
by Wong [lo] who showed that every query on input and output whose depth of set nesting is at most
k can be expressed without using any intermediate data whose depth of set nesting is greater than k.
Hence the expressive power of the nested relational calculus is independent of the depth of set nesting
allowed in the intermediate data. This property is called the conservative extension property. Libkin
and Wong [5] showed that when the nested relational calculus is endowed with aggregate functions, it
retains the conservative extension property.

The aim of this paper is to demonstrate that the nested relational calculus continues to retain the
conservative extension property even in the presence of any family of functions that are generic and
do not invent new values. The strategy is to combine the rewriting technique of Wong [lo] and the
effective lifting of linear orders of Libkin and Wong [5] to encode any such function into one whose
height is minimum.

2 Nested relational calculus

We use the nested relational calculus NRC as presented in Breazu-Tannen, Buneman, and Wong [3].
In this section, it is extended with natural numbers, simple arithmetics, and a summation operator.

Lambda Calculus and Products

e : t el : s - + t e 2 : s e : s x t e l : s e 2 : t
tS : S X x d . e : s - t el e2 : t () : unit q e : s n 2 e : t (e l , e 2) : s x t

Set Monad

e : s e l : { s) e 2 : { s) el : { t) ez : {s)

On : { s) 1.1 el u ez : {s) U { e l 12' E e 2) : (1)

Booleans

e l : B e 2 : t e 3 : t
. trve : B false : B i f el then ez else e3 : t

Types. A type in N R C is either a complex object type or is a function type s -+ t where s and t are
complex object types. The complex object types are given by the grammar:

s , t ::= b 1 B (unit I s x t I { s)

Objects of type 6 are the two boolean values true and false. The unique object of type unit is
denoted by (). Objects of type s x t are pairs whose first components are objects of type s and second
components are objects of type t. Objects of type { s) are finite sets of objects of type s . We also
included some uninterpreted base types b.

Expressions. Expressions of N R C are constructed using the rules in the figure. The language also
contains some uninterpreted constants c of base type Type(c) and uninterpreted functions p of function
type T Y P ~ (P) -

The type superscripts are omitted in the rest of the paper because they can be inferred [6]. The
semantics of N R C was described in [3]. We repeat the meaning of the set monad constructs here. {)
is the empty set. { e) is the singleton set containing e. el U e2 is the union of sets el and e2. The
construct U{e l I x E e 2) denotes the set obtained by first applying the function Xx.el to elements of
the set e2 and then taking their union. The shorthand (01, . . . -on) is used to denote (0 1) U . . . U { o n) ,
provided 01, ..., on are distinct objects.

As it stands, N'RC can merely express queries that are purely structural. It was shown in [3] that
endowing N R C with equality test =S: s x s -+ 6 at a l l types s elevates N R C to a fully fledged nested
relational language (in fact, equivalent to classical nested relational algebra of [8]). That is, operations
such as nest, membership test eS: s x { s) -+ 6, subset test cS: {s) x { s) + 6, set intersection, set
difference, etc. are expressible in NRC(=) (we write the additional primitive in brackets to distinguish
various extensions of the language).

Practical database query languages frequently have to deal with queries such as "select maximum of
column," "select count from column," etc. To handle this kind of queries, we add natural numbers
(whose type is denoted by N) and the following constructs:

e l : N e 2 : N e l : N e 2 : N e l : N e z : N el : N e2 : { s)
el + ez : N e l - e n : N el t- e2 : N C { e l I z S E ez) : N

where +, ., and L are respectively addition, multiplication, and modified subtraction on natural
numbers. (That is, if n 5 m, then n t- m = 0; if n > m, then n I. m = n - m.) The summation
construct C { e l I xS E e 2) denotes the number obtained by first applying the function Xx.el to every
item in the set e2 and then adding the results up. That is, C { e l I x E X) is f (o1) + . . . + f(o,) if f
is the function denoted by Xx.el and (01,. . .on) is the set denoted by X . It should be stressed that
in the construct C { e l I x E e2) , the {el I x E e2) part is not an expression; hence this construct is
stronger than just adding C : { N) + N .

The extended language N R C (N , +, ., L, C, =), where the additonal base types and primitives are ex-
plicitly listed between brackets, is capable of expressing many aggregate operations found in commer-
cial databases. Here are two examples: "count the number of records in Rn is count(R) A C{11 x E R)
and 'Ltotal up the first column of R" is total(R) A C { n l x I x E R) .

Now we formally define the conservative extension property. The set height ht (s) of a type s is defined
by induction on the structure of type: ht(unit) = ht(b) = 0, ht(s x t) = ht (s -+ t) = max(ht(s) , h t (t)) ,
and h t ({ s)) = 1 + ht (s) . Every expression of our language has a unique typing derivation. The
set height of expression e is defined as ht(e) = max{ht (s) I s occurs in the type derivation of e).
Let Li,o,h denote the class of functions whose input has set height a t most i, whose output has set
height a t most o, and which are definable in the language C using an expression whose set height is
a t most h 2 max(i, 0). L is said to have the conservative extension property with fixed constant k if
Li,o,h = Li,o,h+l for all i , 0, and h 2 max(i , o, k) .

It is known from Wong [lo] and Libkin and Wong [5] that

Theorem 2.1 N R C (N , +, .,A, C , =) has the conservative extension property with fixed constant 0.
Moreover, N ~ (N , +, -,A, C , =) endowed with any additional primitive p also has the conservative
extension property with fixed constant ht(p) .

3 Lifting of linear orders

In this section we present a technique to lift linear order from base types to a.ll types. This technique
plays the key role in the encoding used in the next section.

The following lemma is a folklore (see Wechler [9]):

Lemma 3.1 Given a partially ordered set (A , I), define an ordering 5 on its finite powerset P h (A)
as follows: X 5 Y i f lmax ((X - Y) U (Y - X)) Y , or, equivalently, if Vx E X - Y3y E Y -X : x I y.
Then 5 is a partial order. Moreover, if 5 is linear, then so is 5.

This way of lifting linear order can be easily expressed in NRC(N, +, -,A, C, =). Therefore, we have

Theorem 3.2 Suppose a linear order <b is given for each base type b. Then a linear order st is
computable by N R C (N , +. a , I, C, =) for each type t .

Proof. Define I t by induction on types. For a base type sb is given. For pairs it is defined lexicograph-
ically: x I t X 8 y A i f nl x I S nl y then (if n1 x y then nz x st nz y else true) else false. For set
types we use lemma 3.1: .Y Y kl if X ~ b , Y then (i f Y Lb, X then X sb, Y else true) else false,
where X Lb, Y 0 =' C { i f (C{i f x I S y then 1 else 0) y E Y)) =N 0 then 1 else 0 I x E X) and
X Ib, Y A (C { i f x E S Y then 0 else (if (C{i f y E' X then 0 else (i f x I 8 y then 1 else 0) I y E
Y)) =N 0 then 1 else 0) I x E X)) =N 0.

We denote N R C (N , +, .,I, C, =) endowed with linear orders at base types b y n / R C (~ , +, -,A, C, =, I) .
Notice that if 6 and N are the only base types, then this does not add expressive power since the
orderings on booleans and naturals are definable: false 5'' true and n I N m 4 (n - m =N 0) .

Corollary 3.3 A mnk assignment is a function sort : { s) -t {s x N) such that sort{at,. . .,a,) =
{ (a l , 1) , . . . , (a,, n)) where al zS . . . Z s a,. Rank assignment is expressible in N R C (N , +, -,.-, C, =, I).

Proof. Define sort(x) A U { (r , C{if c 5' T then 1 else 0 I c E x)) I r E x) .

Finally, we have the following

Corollary 3.4 If all orden'ngs on the base types are well-founded, then so are the lifted orden'ngs. In
particular, i f constant m inb : b and function succb : b + b (meaning minimal element and successor)
are given for each base type 6 , they can be defined for any type.

Proof. The first statement follows from the fact that X 5 Y implies X &b Y where X gb Y iff
V X E X 3 y E Y : x 5 y, and E~ is known to be well-founded if 5 is (21. Minimal elements are definable
as follows: mintX8 = (m i n t , min8) and min{ ') = {). It is clear how to define succ for pairs. To define
succ for set types, consider a set X : { t) . Let a be the minimal element of type t which is not in X ,
and let Xo = { x E X I x st a) and X I = { x E X I a st 2) . We claim X 1 U a = s u c c { ') (~) . Clearly,
X d t) X I U a. Let X <{'I Y. Let a E Y. Assume x E X I u a - Y = X I - Y . Then x E X - Y and
there exists y E Y - X such that x 5' y. Since y # a, we obtain y E Y - (X I U a) and X I U a I{'} Y .
If a $! Y and x E X I U a - Y , then Y - (X I U a) = Y - X I . Therefore, if x E X I - Y , there exists
y E Y - X1 such that x 5' y. Let ym = max(Y - X I) . If y, 5' a, then Y X which contradicts
our assumption. Then, since a $! Y, a st ym and therefore X1 U a Y . This proves our claim.
Therefore, S U C C { ~) (X) is { m i n t) U X if mint @ X and X1 u a if mint E X where a = succt(xo) and
xo = min{x E X I succt(x) $! X) and X l is defined as above. The expressibility of s u c ~ { ~ } follows
immediately.

4 The main result

We first define the notion of internal and generic family of functions. Then we show that the con-
servative extension property of N ~ (N , +, -,% C, =) endowed with well-founded linear orders can be
preserved in the presence of any such family of functions. Introduce type variables ai and consider
nonground complex object types

If a l , ..., a , occur in a . then a[sl/crl, . . .,s,/a,] stands for the type obtained by replacing every
occurrence of a; in a by s;. A complex object type s is an instance of a nonground complex object
type a if there are complex object types s l , ..., s, such that s = a [s l / a l , . . . ,sn/an] where a l , ...,
an are all the type variables in a. The minimal height mht (a) of type a is defined as the depth of
nesting of set brackets in a. That is, mht(a) is equivalent to ht(s) where s is obtained from a by
replacing all occurrences of type variables in a by unit. Let : a + T stand for the family of
functions psl*-.*sn : s + t where s = a [s l / a l , . . . , s,/an] and t = r [s l / a l , . . ., sn/crn]. (Note that for
each s l , ..., s,, there is exactly one p s l ~ - - - ~ S n in the family pal*...~an.) The minimal height mht(p) of
pal9--?"" : a --, T is defined as max(mht(a) , mh t (r)) .

Let s = a[sl/crl,. . . , sn/an, t/cr]. Let domi$(o) be the set of subobjects of type t in the object o : s
occurring at positions correponding the the type variabvle a. Formally, define dam:,', : s -r { t)
as follows: dom;;b(x) = {); dom2fa(z) = { x) ; dom:;,;:;,(x) = {), where a and a' are distinct type

variables; dom:t",$(x, y) = dom:;$(x) LJ dom?b(y); and dam{'}*' (X) = U{dom:i(x) I x E X) .
{u)*a

Definition 4.1 The family of functions pal*-.@n : a + T is internal (see [4]) in cr; if for all complex
object types s = a [s l / a l , . . . , sn /an] , t = r [s l / a l , . . . , sn /an] , and complex object o : s, it is the case
that domttJi (ps~~-...Sn 0

7,mi ()) domydi(o). 0

In other words, pal~-- .~an : a -. T is internal in a ; if it does not invent new values in positions
corresponding to the type variable a;.

Let s = o [s l / a l , . . . , sn/an, t lo j , r = o[s l /a l , . . . , sn/an, t ' /a] , and $J : t -t t'. Let mod date^,^$^)
be the object 0' : r obtained by replacing every subobject o : t in 0 : s occurring in positions
corresponding to type variable a by $(o) : t'. Formally, define modulate^,^^+ : s 3 r as follows:

s t t' moddate;;::(x) = x; modulate;,;,+(x) = $(x); m o d u l a t e ~ ~ ; ~ , + (x) = x , where a and a' are distinct
u x v t ti {a)rt*ti type variables; modulateux,;~,+(x, y) = (m o d u l a t e : ~ ~ (x) , m o d ~ l a t e { ~) , ~ , , (X) =

{ m o d u l a t e ~ f ~ ~ (x) I x E X) .

Definition 4.2 The family of functions pal*-..-an : a + T is generic in ai if for all complex object types
S = a [~ i / a l , . . . ,sn/an], t = r [s l /a l , . . . , sn /an] , complex object o : s, set R : { r) , and $J : S; --, T

such that $J is a bijection from dom:,",'.~) to R and $J-' : r + si is its inverse when restricted to
doms*s' (o) , it is the case that u,ai

the above diagram, where s: = sj for j # i and s: = r , commutes.

A family pal*...*an : a + T is called internal generic if it is internal and generic in all type variables.

Now we demonstrate that adding a internal and generic family to JVRC(N, +, .,A, x, =, I)
does not destroy its conservative extension property. We assume that sb: b x b - B is a well-
founded linear order for every base type b. Consider N R C (N , +, .,+ C, =, <, U) obtained by adding
the following construct t o N R C (N , +, . ,A, C, =, 5):

el : s ez : { t)
U{el I xt E en) : s

where U{el I xt E e2) is the greatest element in the set {el I st E e2) (it is manS when the set is
empty). Note that U{el 1 z E e 2) , where el : { s) , is already definable in N R C (N , +, -,&, C, =, I) and
can be treated as a syntactic sugar. It is clear that both dam$ and modulate^,^^ are definable in
N R C (N , +, . ,A, C, =, 5, U) whenever + is.

Proposition 4.3 Let pal?-.--an : u - T be a family of functions that is internal generic. Then
NRC(N, +, a , + C, =, 5 , U) endowed with the family of primitives pa'*...@" has precisely the expressive
power of N R C (N , +, .. C , =, 5 , U) endowed with just the primitive pN*...*N.

. . Proof. For each s = a [s l / a l , . ,sn/a,] and o : {s;), define

a $(o) Ax. U { i f z = nl y then 7r2 y else 0 (y E sort(o)) and

a +-'(0) Ax. U{ i f x = 7r2 y then nl y else minS (y E sort(o)),

where sort : { s ;) -t {s ; x N) is as defined in corollary 3.3. Clearly, +(o) when restricted to o is a
bijection whose inverse is +-'(0) .

..,, .. Let u; = a[N/a l , . N /a ; - l , s ; /a ; , . sn /an] and v; = a [N / a l , . N / a ; - l , s ; /a; , . sn /an] . Note
that s = u1 and t = vl . Define

Then the following diagram commutes by induction on n and by the assumption that the family
pal,...tan is internal and generic.

Hence v---.Sn = A X . ~ T ' (X) o ... o +i.!l(x) o p N ~ . . . y N o +n-l(x) o ... o +l(z) . The right hand side is
dearly expressible in N R C (N , +, ., -, +, C, =, 5, U,pN*...yN).

Next we sketch the proof of the conservativity of NRC(N, +, ., .-, C, =, 5 , U) .

Proposi t ion 4.4 NRC(N, +, .,I., C, =, <, U) has the conservative eztension property with fixed con-
stant 0. Moreover, when endowed with any additional primitive p, it retains the conservative extension
property with fixed constant ht (p) .

Proof sketch. Assume in this proof that the use of the construct U{el I x E e2) is restricted to the
situation when the type of el is not a set type (when el : {s), it is treated as a shorthand.) Add the
following rewrite rules to the system given in Libkin and Wong [S]:

U { e I x E if el then e:! else e3) .u if el then U{e I x E e2) else U { e I x E e3)

n; U{el I x E e 2) - U{i f C { i f el < e l [y / x] then 1 else 0 (y E e2) = 1 then Ri el else {) I E
e2) , when el : { s) .

R; U{el 1 x E e2) .u U{if C { i f el 5 e l [y / x] then 1 else 0 (y E e2) = 1 then R; el else {) I x E
e2) , when el is not of set type.

The extended collection of rewrite rules forms a weakly normalizing rewrite system. The theorem then
follows by induction on the induced normal forms along the lines of Wong [lo] .

Putting together the two previous propositions, the desired theorem follows straightforwardly.

Theorem 4.5 NRC(N, +, ., .-, C , =, 5, U) endowed with a internal generic family pal*...@" : U + T

has the conservative extension property with fixed constant mht (p) .

5 Some corollaries

As remarked earlier, U{el 1 z E e2) is already definable in N Z (N , +, -,.-, C, =, I) if el : (8) .
Therefore, if every type variable occurs in the scope of some set brackets in u and T , then the assump-
tion of well-foundedness on sb used in proposition 4.3 is not required and the proposition holds for
n/RC(N, +, -,+ C, =, 5). Thus, we have

Corollary 5.1 N Z (N , +, -, + C, =, I) endowed with a internal generic family palvm..pan : u + T ,
where each type variable is within the scope of some set bmckets, has the conservative eztension
property at all input and output heights with fized constant mht(p) . 0

In particular, any polymorphic function definable in the algebra of Abiteboul and Beeri [I], which is
equivalent to NRC(=, powerset), gives rise to a internal generic family of functions for all possible
instantiations of type variables. (Observe that this is not true for NRC(N, +, -, C, =, 5) because
succN is definable and therefore can be lifted to any type by corollary 3.4. This also indicates that the
notion of internal and generic family is more general than polymorphic functions.) Now we conclude
immediately that the following languages possess the conservative extension property (see also [5]):

a NRC(N, +, .,A, -,C, =, 5, tc) with fixed constant 1,

a NRC(N, +, . ,A, C , =, 5 , b f ix) with fixed constant 1, and

a NRC(N, +, ., 5 C , =, <, ~owerse t) with fixed constant 2.

where tcs : {s x s) + {s x s) is the transitive closure of binary relations; and b fixs(f,g) : {s), where
f : {s) + {s) and g : {s), is the bounded fixpoint of f with respect to g. Since the Abiteboul
and Beeri algebra has the power of a fixpoint logic, a great deal of polymorphic functions can be
added to NRC(N, +, -, .-, C, =, 5) without destroying its conservative extension property (but may be
increasing the fixed constant).

Acknowledgement. We thank Peter Buneman for useful discussions and Rick Hull for suggesting the
terminology. Leonid Libkin was supported in part by NSF Grant IRI-90-04137 and AT&T Doctoral
Fellowship and Limsoon Wong was supported in part by ARO Grant DAAL03-89-C-0031-PRIME.

References

[I] S. Abiteboul and C. Beeri. On the power of languages for the manipulation of complex objects.
In P m . International Workshop on Theory and Applications of Nested Relations and Complex
Objects, Darmstadt, 1988.

[2] G. Birkhoff. Lattice Theory. American Mathematical Society, 3rd edition, 1967.

[3] V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded query languages. In J. Biskup
and R. Hull, editors, LNCS 646: Pm. International Conference on Database Theory, Berlin,
Germany, October, 1992, pages 140-154. Springer-Verlag, October 1992.

[4] R. Hull. Relative information capacity of simple relational database schemata. SIAM Journal of
Computing, 15(3):865-886,1986.

[5] L. Libkin and L. Wong. Aggregate functions, conservative extension, and linear orders. To be
presented at DBPL'93. Full paper available as UPenn Technical Report MS-CIS-93-36.

[6] A. Ohori, P. Buneman, and V. Breazu-Tannen. Database programming in Machiavelli: A poly-
morphic language with static type inference. In J. Clifford, et al., editors, Pm. ACM-SIGMOD
International Conference on Management of Data, pages 46-57, Portland, Oregon, June 1989.

[7] J. Paredaens and D. Van Gucht. Converting nested relational algebra expressions into flat algebra
expressions. ACM Transaction on Database Systems, 17(1):65-93,1992.

[8] S. J . Thomas and P. C. Fischer. Nested relational structures. In P. C. Kanellakis, editor, Advances
in Computing Research: The Theory of Databases, pages 269-307. JAI Press, 1986.

[9] W. Wechler. Universal Algebra for Computer Scientists, Springer-Verlag, Berlin, 1992.

[lo] L. Wong. Normal forms and conservative properties for query languages over collection types. In
Proceedings of 12th ACM Symposium on Principles of Database Systems, pages 26-36, Washing-
ton, D. C., May 1993.

