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ABSTRACT

SPARSE SIMULTANEOUS SIGNAL DETECTION WITH APPLICATIONS IN GENOMICS

Julie Kobie

Hongzhe Li

Studying complex diseases, such as autoimmune diseases, can lead to the detection of pleiotropic

loci with otherwise small effects. Through the detection of pleiotropic loci the genetic architec-

ture of these complex diseases can be better defined, allowing for subsequent improvements in

their treatment and prevention efforts. Here, we investigate the genetic relatedness of complex

diseases through the detection and quantification of simultaneous disease-associated genetic vari-

ants using genome-wide association study (GWAS) data. We propose two max-type statistics, with

and without an added level of dependency on the directions of the genetic effects, that globally

test whether a pair of complex diseases shares at least one disease-associated genetic variant.

The proposed global tests are based on the simultaneity of complex disease-associated genetic

variants, allowing for the determination of exact p-values from a permutation distribution assum-

ing independence. While an independence assumption is often imposed on genetic variants, we

propose a perturbation procedure for evaluating the statistical significance of one of the proposed

global tests, preserving the inherent dependency structure among genetic variants. We extend that

global test beyond the detection of genetic relatedness at identical genetic variants to the detection

of genetic relatedness within dependency-defined windows across the genome. With the proposed

methods we identify pairs of pediatric autoimmune diseases (pAIDs) that exhibit evidence of genetic

sharing, such as Crohn’s disease and ulcerative colitis.

We then characterize the detected genetic sharing between a pair of complex diseases through

the quantification of shared disease-associated genetic variants using GWAS data. We develop

a quantification measure as a function of standardized variant effect sizes, adjusted for the total

number of genetic variants and varied GWAS sample size. The quantification measure acts as an

estimate of the genetic correlation among shared disease-associated genetic variants. We use a

bootstrapping procedure to estimate the properties of our quantification measure. In applying the

developed measure to pAID GWAS we observe similar trends in relatedness among pAIDs pairs.
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CHAPTER 1

INTRODUCTION

Understanding the shared genetic architecture of complex diseases is key for improving the ef-

ficiency and effectiveness of treatments by aiding in the detection and identification of common

therapeutic mechanisms. Complex diseases are multifactorial disorders with largely unknown eti-

ologies. Unlike Mendelian diseases caused by a single genetic mutation, complex diseases are

likely caused by a combination of genetic mutations, affecting multiple genes, coupled with various

lifestyle and environmental factors. The detection and identification of shared genetic risk factors

have become important strategies in the study of complex disease groups, such as autoimmune

diseases and psychiatric disorders.

Autoimmune diseases affect 8% of Americans and represent a leading cause of death and chronic

disability, further burdening our health care system (Li et al., 2015a). Their high rates of familial

clustering and comorbidities are evidence of a shared genetic architecture, underlying the disease

etiologies (Cooper, Bynum, and Somers, 2009; Li et al., 2015b). The shared genetic architecture

of autoimmune diseases is thought to be driven by both pleiotropic disease-associated single nu-

cleotide polymorphisms (SNPs), acting via shared mechanisms, and the inherent polygenic nature

of complex diseases (Chung et al., 2014). Pleiotropic SNPs are genetic mutations at a single locus

with the ability to contribute to multiple disease phenotypes, like the clinically-distinct disease sub-

types observed and classified as autoimmune diseases, while polygenicity is the influence of many

genes on the observed disease phenotype. Pleiotropic effects and the polygenic nature of complex

diseases present challenges in the detection and identification of disease-associated SNPs.

Genome-wide association studies (GWAS) have proven to be effective in identifying thousands of

complex disease-associated SNPs (Hindorff et al., 2009), though the identified SNPs only explain

a small proportion of complex disease heritability (Manolio et al., 2009). This phenomenon, dubbed

“the missing heritability” (Manolio et al., 2009), can be explained by the limited sample size of most

GWAS (Yang et al., 2010). Most GWAS are not powered to detect disease-associated SNPs of a

polygenic architecture, as these SNPs typically have small effects and, given the limited sample

size, are too weak to pass genome-wide significance (Chung et al., 2014; Yang et al., 2010). That
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being said, the value of GWAS in the study of complex diseases is not lost. With increased sample

size GWAS have the potential to detect and identify complex disease-associated SNPs that go on

to explain a larger proportion of complex disease heritability (Lee et al., 2012a; Yang et al., 2011b).

Pooling independent GWAS with standard approaches for meta-analysis increase sample size and

result in improved power, but the standard approaches are not optimal for the study of complex

disease sets whose GWAS are heterogeneous (Bhattacharjee et al., 2012).

In this dissertation we develop methods to investigate the genetic relatedness within complex dis-

ease sets through the detection and characterization of shared disease-associated SNPs among

pairs of clinically-distinct disease subtypes of the set. We take an integrative approach, combin-

ing complex disease GWAS pairwise and collapsing over variants spanning the entire genome. In

studying complex disease sets, rather than restricting our analyses to a single disease subtype, we

have the opportunity to discover how SNPs associate with more than one complex disease subtype

likely through pleiotropic effects and shared genetic architectures (Bhattacharjee et al., 2012). Our

methods are largely motivated by real GWAS data from the Center for Applied Genomics of the

Children’s Hospital of Philadelphia of ten clinically-distinct pediatric autoimmune diseases: thy-

roiditis (THY), spondyloarthropathy (SPA), psoriasis (PSOR), celiac disease (CEL), systemic lupus

erythematosus (SLE), common variable immunodeficiency (CVID), ulcerative colitis (UC), type I

diabetes (T1D), juvenile idiopathic arthritis (JIA) and Crohn’s disease (CD) (Li et al., 2015a,b).

Genome-wide data analyses of this dissertation exclude variants within the major histocompatibility

complex (MHC), already found to be shared among pAID pairs (Li et al., 2015b).

1.1. Background

Statisticians, geneticists and biologists alike have contributed to the development of methods for the

study of complex disease sets. Here we review methods in the detection, identification and quan-

tification of shared genetic variants across complex diseases and traits. Many of these methods

share a common goal, that is to gain a better understanding of complex disease genetic etiol-

ogy with real GWAS applications in autoimmune diseases, psychiatric disorders and other complex

traits. Psychiatric disorders affect more than 4% of American adults and, like autoimmune diseases,

their overlapping, nonspecific symptom patterns, leading to blurred boundaries of clinical diagno-

sis, point to the presence of pleiotropic effects (Cross-disorder Group of the Psychiatric Genomics
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Consortium, 2013). As we review existing methods in the detection, identification and quantification

of shared genetic SNPs across complex diseases we will also address the many unique features of

GWAS data including but not limited to genetic sparsity in a high dimension, a complex dependency

structure among genetic variants and differences in the direction of genetic association.

1.1.1. Detection

Methods in detection are often integrative, combining information to give a global assessment.

Problems in detection have close ties to methods in quantification, or estimation, explored in Sec-

tion 1.1.3 and Chapter 4. Here we review the simultaneous signal detection problem that underlies

the methods of Chapters 2 and 3.

The simultaneous signal detection problem is a generalization of the one-sample normal mixture

detection problem (Jin and Donoho, 2004)

H0 : Xi ∼ N(0, 1)

H1 : Xi ∼ (1− εn)N(0, 1) + (εn)N(µn, 1),

where Xi is, for example, GWAS Z-score for the ith SNP, εn is the proportion of disease-associated

SNPs on the high dimensional order of n and µn is some nonzero mean. Though detecting the

proportion of nonull SNPs, testing whether H0 : εn 6= 0, is difficult under GWAS data conditions

termed the “rare and weak” setting by Donoho and Jin, 2008. GWAS data is sparse, in that the

number of disease-associated SNPs make up a small proportion, εn, of the total number of SNPs,

n. And of that small proportion of disease-associated SNPs, most have small to moderate effects,

or magnitude of disease association, making the detection and estimation of εn challenging.

In the one-sample problem there are two integrative-like approaches to testing H0 : εn 6= 0, one be-

ing the sum of square-type test statistic,
∑
i = 1nX2

i , and the other being the max-type test statistic,

max|Xi|. Jin and Donoho, 2004 find these tests are suboptimal when compared to likelihood ratio

test alternatives, though they often require complete specification of the null and alternative dis-

tributions which contain difficult-to-estimate, unknown parameters in this setting. Jin and Donoho,

2004 discuss an alternative procedure called higher criticism that performs as well as the likelihood

ratio test, comparing the empirical distribution of Z-scores goodness-of-fit to the standard normal
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distribution.

Cai and Jeng, 2011 extended the above to heteroscedastic normal mixtures and mixtures of arbi-

trary distributions (Cai and Wu, 2014). We expand the one-sample normal mixture detection to a

two-sample mixture detection problem in the context of simultaneously detecting a shared genetic

architecture between a pair of complex diseases. Our method powerfully streamlines the commonly

used two-sample enrichment integration approach which relies on strict significance thresholds and

SNP identification steps.

1.1.2. Identification

Methods in the identification of shared disease-associated SNPs between a pair of complex dis-

eases provide a more specific account of a detected shared genetic architecture. In identifying

specific disease-associated SNPs shared between a pair of complex diseases, researchers can

better grasp the underlying biological systems of complex disease etiology (Cai and Tan, 2015),

pinpointing shared pathways with the potential for use as therapeutic targets (Li et al., 2015b).

Several methods have introduced meta-like statistics combining summary-level GWAS data of com-

plex disease sets to identify SNPs associated with a subset of the diseases (Bhattacharjee et al.,

2012; Cotsapas et al., 2011). Cotsapas et al., 2011 proposed CPMA, Cross Phenotype Meta-

Analysis, which detects the association of a SNP to a subset of heterogeneous GWAS. Specifically,

CPMA determines evidence for the hypothesis that each SNP has multiple disease-associations,

shown by deviations from an expected uniform p-value distribution. CPMA measures a deviation in

p-value behavior for one disease conditional on other diseases, instead of testing all possible sub-

sets of complex disease subtypes (Cotsapas et al., 2011). Though in doing so, the CPMA method

does not account for the direction of the disease association across complex disease sets. Cot-

sapas et al., 2011 finds evidence that 44% of immune-mediated disease risk SNPs are association

to multiple immune-mediated disease subtypes of the set. The CPMA method is performed at the

SNP level and is more practical in applications with a clearly defined set of candidate SNPs.

Similarly, Bhattacharjee et al., 2012 proposes ASSET, association analysis based on subsets, a

subset-based association-testing framework that pools the analyses of multiple heterogeneous

GWAS at a given SNP. ASSET explores all possible subsets of a complex disease set, or set

of traits, to identify the subset with the strongest association signal with a max-type statistic (Bhat-
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tacharjee et al., 2012). ASSET has clear advantages over standard meta-analysis approaches with

the ability to incorporate prior information and accommodate SNP effects in differing directions.

ASSET, like CPMA, is performed at the SNP level, and thus could be computationally intensive as

the number of possible subsets grows exponentially as the number of studies in a complex disease

set increases.

Evidence of a shared genetic architecture between pairs of complex diseases has prompted the de-

velopment of pleiotropy-informed, or pleiotropy-enriched, methods (Andreassen et al., 2013; Chung

et al., 2014). Pleiotropy-informed methods use GWAS data of one disease as leverage to improve

the power of detecting and identifying disease-associated SNPs in another, genetically related, dis-

ease. Andreassen et al., 2013 exploited evidence of genetic sharing between schizophrenia (SCZ)

and bipolar disorders (BPD) to improve the power of detecting SCZ-associated SNPs. Similarly,

Chung et al., 2014 proposed a pleiotropy-informed statistical framework, GPA, building off of a two-

group mixture model (Efron, 2008) while allowing for the incorporation of functional annotation, and

using the GPA framework, Chung et al., 2014 identified likely polygenic SNPs associated with atten-

tion deficit-hyperactivity disorder (ADHD), autism spectrum disorder (ASD), BPD, major depressive

disorder (MDD) and SCZ that were not identified in with standard, single-subtype analysis meth-

ods. Both pleiotropy-informed methods utilize conditional false discovery rates (cFDR) to prioritize

SNPs.

GWAS are subject to multiple testing and SNPs are often prioritized based on whether they exceed

a Bonferroni-corrected threshold, also known as genome-wide significance. This method of SNP

prioritization is highly conservative, and the false discovery rate (FDR), first introduced by Benjamini

and Hochberg, 1995, was introduced as a less conservative prioritization method while still adjust-

ing for multiple comparisons. FDR seeks to reduce the probability of the expected proportion of

false discoveries rather than seeking to reduce the probability of at least one false discovery, which

is true of making the Bonferroni-correction. The use of a cFDR, conditioning on additional, geneti-

cally related disease data, allows for a reduction in FDR and an enrichment in disease-associated

SNPs as a function of their association with the conditional disease (Andreassen et al., 2013).

Though these methods are not without limitations, they rely on strong distributional assumptions

and the performance of GPA is not well documented in a sparse setting (Chung et al., 2014). An-

dreassen et al., 2013 uses an ad hoc pleiotropy-informed approach to show an enrichment of SNPs
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associated with SCZ as a function of their association with cardiovascular-disease (CVD).

1.1.3. Quantification

After detecting a shared genetic architecture, the characterization of the shared disease-associated

SNPs follows naturally. In addition to obtaining a more specific account of the detected shared

disease-associated SNPs with identification methods of Section 1.1.2, methods in the quantification

of shared disease-associated SNPs give a more specific account of how much is shared relative to

other complex disease pairs. A standardized quantification measure allows for comparison across

pairs and subsequent treatment prioritization of complex diseases with a larger overlapping genetic

architecture.

The genetic correlation between a pair of complex diseases, or genome-wide aggregate of shared

disease-associated SNP effects without imposing thresholding restraints, quantifies a complex dis-

ease pair’s genetic relatedness. Coheritability is a commonly used estimate of the genetic correla-

tion, estimated using a restricted maximum likelihood approach (REML). Specifically, coheritability

is an estimate of the genetic covariance from a bivariate linear mixed model framework divided

by the product of the single-disease genetic standard deviation estimates (Lee et al., 2012a). The

concept of coheritability as an estimate of the genetic correlation is an extension of the concept of

single-disease heritability, or the proportion of variance in a disease phenotype explained by the ge-

netic variation in the population (Yang et al., 2010). Estimates of coheritability rely on individual-level

genotype data for the derivation of a genomic similarity relationship matrix (Lee et al., 2012a; Yang

et al., 2010). Individual-level genotype data are often difficult to obtain, making the implementation

of coheritability estimation challenging for a wide array of complex disease sets.

Polygenic risk scores, developed to predict the risk of complex disease (Wray, Goddard, and Viss-

cher, 2007), have also been used to estimate the genetic correlation between genetically related

complex diseases and traits (Dudbridge, 2013). Though like coheritability estimation, the estima-

tion of the genetic correlation in the polygenic risk score framework, too, relies on individual-level

genotype data. And while powerful in the presence of null SNPs, the polygenic risk score frame-

work requires some thresholding optimization for SNP inclusion in the risk score model (Dudbridge,

2013). Both the coheritiability and polygenic risk score methods accommodate binary disease out-

comes with a liability threshold model, which assumes all individuals have an unobserved, normally
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distributed liability trait and links that to the observed binary disease outcomes (Dempster and

Lerner, 1950; Dudbridge, 2013; Lee et al., 2012a).

More recently Bulik-Sullivan et al., 2015 proposed a method for estimating the genetic correlation

between a pair of complex diseases relying only on readily available summary-level GWAS data

rather than individual-level genotype data. Using the linear relationship between SNPs in high

linkage disequilibrium (LD) and their corresponding effect sizes, Bulik-Sullivan et al., 2015 models

the product of the marginal Z-scores for SNPs of a pair of complex diseases, or traits, as a linear

function of their corresponding SNP LD scores to estimate the genetic covariance. The genetic

correlation is then the estimated genetic covariance divided by the square root of the product of the

single-disease heritability estimates, mirroring the previously discussed estimate of coheritability

(Bulik-Sullivan et al., 2015). Coheritability and the estimate of genetic correlation by Bulik-Sullivan

et al., 2015 take the direction of the genetic effects into account. That is, both estimates of the

genetic correlation are bounded between −1 and 1, where a negative value represents the genetic

correlation in opposing directions.

Cai and Tan, 2015 link methods in quantification to methods in detection with the estimation and

testing of a quadratic functional under a two-sequence Gaussian model. While their method does

not estimate the genetic correlation, nor does it account for differing directions of genetic effects,

their estimated quadratic functional is directly motivated by the simultaneous signal detection prob-

lem discussed in Section 1.1.1 (Cai and Tan, 2015). Cai and Tan, 2015 devise optimal estimation

methods, estimating their quadratic functional assuming sparse mean vectors typical of GWAS

applications. In this dissertation we utilize their sparse estimation methods (Cai and Tan, 2015)

for estimating a statistic developed to represent the genetic correlation among shared complex

disease-associated SNPs.

1.2. Novel Developments

In this dissertation we develop methods for the analysis of complex diseases, specifically in the

detection and quantification of shared complex disease-associated SNPs between complex disease

pairs, indicative of an overlapping genetic architecture. The work consists of 3 parts, each part

returning to the pAID GWAS data (Li et al., 2015a,b) referenced at the beginning of this Chapter. In

Chapter 2, we propose a global detection test to combine GWAS results of complex disease pairs,
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testing whether a pair of complex diseases shares at least one disease-associated SNP. The test

can be posed as a simultaneous signal detection problem, equivalent to testing whether a pair of

complex diseases exhibits at least one simultaneous signal, or SNP with nonzero effect size across

the pair. We then extend the test to account for the direction of the shared genetic effects, only

detecting simultaneous signals existing in the same direction. Intuitively, if a pair of clinically-distinct

diseases, classified within the same complex disease set, shows evidence of a shared genetic

architecture or overlapping disease pathway through the detection of shared disease-associated

SNPs, the shared SNPs are expected to have effects in the same direction.

Unlike most tests requiring an arbitrary threshold to identify SNPs associated with disease, our

proposed test statistics are easy to implement without requiring the use of thresholds or tuning

parameters. The proposed test statistics take an integrative approach. First, combining the GWAS

data of a pair of complex diseases by taking the pairwise minimum of the absolute value of the

marginal Z-score for each SNP. Then, collapsing over SNPs genome-wide, taking the maximum

score across all SNPs. The proposed global detection tests are based on the simultaneity of sig-

nals, scanning aligned pairs of complex disease GWAS Z-scores for at least one shared signal.

The simultaneity of signals can be destroyed by permuting the locations of the Z-scores, emulating

the null distribution of no signals shared between the complex disease pair. We propose a proce-

dure for determining the exact p-value under permutation, assessing the statistical significance of

our global test statistics without making any distributional assumptions. With simulations we show

the power and type I error of our test of the simultaneous detection of disease-associated SNPs

is dependent on both the magnitude of the effect sizes and the sparsity of the signal. We go on

to apply these methods to GWAS data of ten clinically-distinct pAIDs, identifying a shared genetic

architecture, accounting for the directions of the shared associations, in disease pairs UC-CD and

CVID-JIA.

While no distributional assumptions are made in assessing the statistical significance of our global

tests under permutation, we must assume the location of SNPs is exchangeable, or that SNPs are

independent of one another. Most methods with applications in genetics and genomics assume

independence among genetic variants, ignoring the assumption’s lack of validity. The assumed

independence between SNPs is ‘achieved’ through a LD pruning procedure which selects SNPs

based on arbitrarily constructed LD blocks, unnecessarily throwing away potentially valuable data.

8



In Chapter 3 we address the assumption of independence among SNPs, building off of our pro-

posed methods in Chapter 2. We develop a method for assessing the statistical significance of the

global detection test presented in Chapter 2 while preserving the inherent dependency structure

across the genome. Specifically, we implement a perturbation procedure proposed by Lin and Zou,

2004, and expanded on by Zou et al., 2004, that exploits independent standard normal random vari-

ables to emulate the null distribution. The perturbation method (Lin, 2005; Lin and Zou, 2004; Zou

et al., 2004) utilizes the individual-level complex disease GWAS data rather than the summary-level

Z-scores used in Chapter 2. As such, we redefine the global detection test statistic with respect

to score statistics. By allowing for dependency among SNPs in the statistical evaluation of our

global detection test statistic, we alleviate data restrictions, enabling the use of multiple imputation

to create matching sets of SNPs across disease pairs for complete SNP alignment.

We extend the global detection test of Chapter 2 to detecting shared disease-associated variants at

identical SNPs to detecting disease-associated variants within a LD-defined window. In Chapter 2

we assume complex diseases with some shared genetic architecture will have disease-associated

genetic variants at identical SNPs. Though with the inherent dependency between genetic variants,

power for detecting a shared genetic architecture between a pair of diseases is likely lost in limiting

our analysis to the detection of shared disease-associated variants at identical SNPs. Eliminating

the need for an independence assumption is necessary for the extension of the global detection

test to detection within a window because SNPs within a window are dependent and the studied

windows overlap with one another in areas of the genome with high LD. With simulations we show

assessing the significance of our global test statistic assuming independence via permutation is

conservative, while assessing the significance conserving the inherent dependency structure within

the genome via perturbation controls the type I error. We also show an improvement in the power

of detecting a shared genetic architecture between a pair of complex diseases using the proposed

perturbation method. We go on to apply these methods to a subset of the pAID GWAS data, and

our results are consistent with those of Chapter 2 suggesting ignoring the dependency structure is

not an issue in this particular data set.

In Chapter 4, we move from the detection of genetic sharing (of Chapters 2 and 3) to the quantifica-

tion of genetic sharing between a pair of complex diseases. We propose a statistic to quantify the

genetic relatedness between a pair of complex diseases again using summary-level GWAS data.
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The statistic is a function of SNP effect sizes and acts as an estimate of the genetic correlation

among shared disease-associated variants. Our proposed statistic adjusts for both the number of

SNPs studied and the respective sample sizes of each of the GWAS pairs. The varied sample

size across different GWAS must be accounted for, as the magnitude of the observed effect size

is driven in part by the sample size. We utilize the estimation method in a sparse regime by Cai

and Tan, 2015 to estimate our proposed statistic and use a bootstrapping procedure to obtain an

estimate of the variability in our statistic. We then apply these methods to a subset of the pAID

GWAS data, comparing our estimate of the genetic correlation to naively taking the correlation of

the pair of marginal Z-scores for each SNP without accounting for the sparsity of the data.

Such improvements in the study of complex diseases, such as pAIDs, will better our understanding

of the genetic basis of these diseases, improving the efficiency and effectiveness of their treatment.
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CHAPTER 2

STATISTICAL TEST FOR THE DETECTION OF SHARED COMMON GENETIC

VARIANTS BETWEEN COMPLEX DISEASES BASED ON GWAS

2.1. Introduction

Genome-wide association studies (GWAS) have proven to be effective in identifying common (minor

allele frequency (MAF) > 5%) disease-associated single nucleotide polymorphisms (SNPs) with

moderate effects. Though GWAS are often underpowered, requiring larger sample sizes, and the

identified SNPs explain only a small proportion of disease heritability (Hindorff et al., 2009). Recent

studies reinforce the value of GWAS, specifically in the study of complex diseases, suggesting

with increased sample size, GWAS-identified SNPs capture a larger proportion of heritability for

complex diseases than previously reported (Lee et al., 2012b; Yang et al., 2011b). Meta-analyses

are powerful approaches commonly used for pooling the results of independent GWAS, increasing

the total sample size, but the use of standard meta-analysis approaches are not optimal when

studying complex diseases (Bhattacharjee et al., 2012). More specifically, standard meta-analysis

approaches are not optimal when potential disease-associated variants only have an effect in a

subset of the complex diseases of interest or when the direction of the effect differs among the

complex diseases (Bhattacharjee et al., 2012). Pooling inferences across a set of complex diseases

enables a gain in statistical power and allows for a stronger scientific statement (Benjamini and

Heller, 2008). In this paper complex diseases are related but clinically-distinct diseases. Studying

complex diseases can lead to the detection of pleiotropic effects while, when restricting analyses

to clinically-identical diseases, the opportunity to discover how variants associate with complex

diseases through pleiotropic effects is lost (Bhattacharjee et al., 2012).

Pleiotropy is the phenomenon of a single locus’ ability to influence multiple traits or diseases. For ex-

ample, a single disease-associated variant could cause a disease, or multiple related but clinically-

distinct diseases, with a wide range of symptoms. Thus, understanding pleiotropy would lead to a

better understanding of the genetic etiology and nosology of complex diseases, ultimately improv-

ing treatment and prevention efforts (Bhattacharjee et al., 2012; Cross-disorder Group of the Psy-

chiatric Genomics Consortium, 2013). Related but clinically-distinct diseases and disorders, such
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as autoimmune diseases and psychiatric disorders, are typically differentiated based on observed

symptom patterns, though symptom patterns among diseases often overlap making it difficult to

characterize the differences between these sets of complex diseases (Cross-disorder Group of the

Psychiatric Genomics Consortium, 2013). For example, the clinical boundaries of psychiatric dis-

orders are blurred, due largely in part to overlapping symptom patterns and relatively unknown

pathogenic mechanisms of diseases (Cross-disorder Group of the Psychiatric Genomics Consor-

tium, 2013). Similarly, autoimmune diseases present their own diagnostic challenges as their symp-

toms span many body organs and are typically nonspecific. Autoimmune diseases show evidence

of genetic overlap with more than half of all GWAS-identified autoimmune disease-associated vari-

ants shared by at least two other, clinically-distinct, autoimmune diseases (Cotsapas et al., 2011).

Thus, the susceptibility of disease is thought to be influenced by a strong genetic predisposition as

evidenced by high rates of familial clustering and co-occurrence of disease (Cooper, Bynum, and

Somers, 2009). Particularly, the diagnosis of early-onset autoimmune diseases in children may be

associated with a higher risk for those children to develop secondary or tertiary clinically-distinct

autoimmune diseases. Identifying genetic risk factors, especially those shared across multiple dis-

eases, has become an important strategy in assessing the genetic architecture of complex disease

sets and disorders (Cross-disorder Group of the Psychiatric Genomics Consortium, 2013).

The goal of this paper is to investigate the genetic relatedness of complex disease sets through

the detection of shared common genetic variants. This paper proposes a global test to combine

GWAS results of complex diseases, ultimately testing whether a pair of complex diseases shares at

least one common genetic variant. The test can be posed as a simultaneous signal detection prob-

lem, in that, the test is equivalent to testing whether two diseases exhibit at least one simultaneous

disease-associated variant, or signal. We further extend the test to account for the direction of the

shared variants’ disease association. Intuitively, if a pair of related but clinically-distinct diseases

shows evidence of genetic sharing through the detection of shared disease-associated variants, the

shared variants are expected to be associated with both diseases in the same direction. Whereas,

if the direction of the shared variant’s disease association differs across the pair (i.e., a disease-

associated variant is positively associated with, or detrimental to, one disease and negatively asso-

ciated with, or protective against, the other), that particular shared variant would not be indicative

of genetic sharing between the pair of complex diseases. Biologically relevant shared SNPs have

been shown to confer risk in type I diabetes (T1D), while protecting against Crohns disease (CD)
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(Wang et al., 2010), thus understanding the direction of shared SNPs is important in understanding

the shared genetic etiology of disease. The simultaneous detection of disease-associated variants

is dependent on both the strength (magnitude) and sparsity of the associated variants.

The chapter is organized as follows. We first formulate the problem of detecting shared, disease-

associated genetic variants between a pair of diseases as a simultaneous signal detection problem.

We then propose a global test in the setting of combining pairs of heterogeneous disease GWAS

and extend the test to take the directions of the genetic effects into account. We evaluate the

power and type I error of the proposed tests through simulation studies. We apply these two tests

to GWAS data of a set of 10 clinically-distinct, pediatric autoimmune diseases (pAIDs), thyroiditis

(THY), spondyloarthropathy (SPA), psoriasis (PSOR), celiac disease (CEL), systemic lupus erythe-

matosus (SLE), common variable immunodeficiency (CVID), ulcerative colitis (UC), type I diabetes

(T1D), juvenile idiopathic arthritis (JIA) and Crohn’s disease (CD), with shared controls, in order to

investigate the genetic sharing among these diseases. We utilize the global detection tests in a

sequential procedure to identify the shared genetic variants detected between a given pAID pair.

We conclude the paper with a discussion of the methods.

2.2. Statistical Formulation and Tests for Detection of Shared Genetic Variants

Assume GWAS data for all pairs of complex diseases, under question of the existence of genetic

sharing, are readily available. Let Ui be the Z-score of the marginal association between disease

A and the ith SNP (i = 1, · · · , n) and let Vi be the Z-score of the marginal association between

disease B and the ith SNP, where disease A and disease B are a pair of complex diseases. Under

the null hypothesis of no association between disease A and the ith SNP Ui ∼ N(0, 1), while under

the alternative hypothesis Ui ∼ N(µi, σ
2
i ) in the presence of an association. Similarly, for disease

B, under the null Vi ∼ N(0, 1), while under the alternative Vi ∼ N(νi, τ
2
i ). Ui are assumed to be

independent, as is assumed of Vi, which is achieved by selecting SNPs that are not in linkage

disequilibrium (LD) with one another, or through LD-pruning. Ideally, Ui is assumed to be indepen-

dent of Vi, which is achieved if Ui and Vi are calculated from different, non-overlapping datasets.

For GWAS with shared controls, when the sample size of the controls is large, these statistics are

nearly independent.
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2.2.1. Test of simultaneous signal detection

As previously mentioned, the question of whether two diseases share at least one common, disease-

associated genetic variant can be posed as a simultaneous signal detection problem testing

H0 : |µi| ∧ |νi| = 0, i = 1, 2, · · · , n

HA : there is at least one i such that |µi| ∧ |νi| 6= 0, (2.1)

the ‘signal’ being the mean value of Z-score(s) Ui, or Vi. Testing this set of hypotheses is also

known as testing the global null hypothesis, or the conjunction of the null (Benjamini and Heller,

2008). When H0 is rejected, the pair of complex diseases, A and B, are concluded to have some

degree of genetic sharing. In order to develop a test for hypothesis (2.1), Ui and Vi can be summa-

rized into a single statistic, Ti = |Ui| ∧ |Vi|, which is always positive because Ti depends only on

the magnitude of each Z-score.

Under a random effects framework, the distribution of Ti can be written as a mixture of two compo-

nents,

Ti ∼ εG+ (1− ε)F,

where ε ∈ [0, 1] is the mixture proportion and distribution functions G and F can be written as

G ∼|N(µ, σ2)| ∧ |N(ν, τ2)|,

F ∼p1n|N(0, 1)| ∧ |N(0, 1)|+

p2n|N(µ, σ2)| ∧ |N(0, 1)|+ p3n|N(0, 1)| ∧ |N(ν, τ2)|,

where p1n + p2n + p3n = 1. Here, in the setting of combining pairs of clinically-distinct GWAS, p1n

is the proportion of SNPs not associated with either disease A or disease B, while p2n and p3n are

the proportions of SNPs associated with either disease A or disease B, respectively. Therefore,

of the distribution functions considered above, F represents the null distribution and G represents

the alternative distribution of the simultaneous signal detection problem. In this random effects
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framework, the simultaneous signal detection problem (2.1) above becomes the test of

H0 : ε = 0

HA : ε > 0,

which is a generalization of the normal mixture detection problem testing

H0 : ε = 0 vs. HA : ε > 0

for Xi ∼ (1 − ε)N(0, 1) + εN(µ, 1) (Jin and Donoho, 2004). Unlike the normal mixture distribution

of Xi, the null distribution of Ti, F , contains unknown parameters. We consider a max test statistic

collapsing over all genetic variants, genome-wide

Mn = max
i=1,··· ,n

Ti.

If Mn is greater than a predefined critical value, H0 will be rejected by the max test suggesting

diseases A and B share at least one common genetic variant.

With finite samples it is useful to calculate p-values for the max test statistic, Mn, but obtaining

accurate p-values can be difficult because the null distribution, F , contains unknown parameters.

Instead, we formulated an analytical p-value based on the distribution of the permutation of the

location of the Z-scores, Ui and Vi, relative to each other. Recall the basis of the global max test

is to detect simultaneous disease-association signals between a pair of complex diseases so, by

destroying the simultaneity between disease association signals, the null distribution, F , can be

mimicked. In utilizing the permutation distribution, the distributions of the individual Z-scores are

preserved and the calculation of the p-value itself is independent of correlation between Ui and Vi.

The exact p-value is defined to be the proportion of permuted test statistics exceeding the observed

test statistic, Mn, and can be easily derived as

P (M ≥Mn) = 1−
(
m
0

)(
n−m
k

)(
n
k

) ,
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where

m =

n∑
i

I(|Ui| ≥Mn),

k =

n∑
i

I(|Vi| ≥Mn).

This provides an exact p-value determination without actually performing any permutations.

2.2.2. Test of simultaneous signal detection with effects in the same direction

The null hypothesis (2.1) and the global test reviewed in the previous Section do not take the

directions of the genetic effects into account. In real applications, it is also of interest to test whether

two diseases share the same genetic variants with effects in the same direction, i.e., whether the

shared disease-associated genetic variants are detrimental to or protective against both diseases.

To accommodate differing directional effects of SNPs among pairs of complex diseases, the null

hypothesis is given by

H0 : |µi| ∧ |νi| = 0, i = 1, 2, · · · , n

or |µi| ∧ |νi| 6= 0 and sg(µi) 6= sg(νi) (2.2)

HA : there is at least one i such that |µi| ∧ |νi| 6= 0 and sg(µi) = sg(νi), (2.3)

where sg(x) is the direction of the signal of x. More specifically, sg(x) is 1 if the sign of x is positive

and -1 if the sign of x is negative. When H0 is rejected, the pair of complex diseases, A and B,

are still concluded to have some degree of genetic sharing. Though, in using the proposed test, an

added level of complexity can be inferred from the test’s conclusions that cannot be inferred from

the test formulated in (2.1). That is, when rejecting H0, disease A and disease B’s shared signals

are guaranteed to have effects in the same direction. In order develop a test for hypothesis (2.2),

Ui and Vi can be summarized into a single statistic Wi = |Ui| ∧ |Vi|sg(Ui)sg(Vi), which, again, is

similar to the summary statistic in previous section, but adapted to depend on the direction of the

associations in addition to their magnitudes. Wi can take both positive and negative values, and

Wi is only positive when Ui and Vi have associations in the same direction, sg(Ui) = sg(Vi).

Using a random effects framework similar to that of the previous Section, consider the following
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distribution functions

J ∼p1n|N(µ, σ2)| ∧ |N(ν, τ2)|(1)(1) + p2n|N(µ, σ2)| ∧ |N(ν, τ2)|(−1)(−1),

H ∼p3n|N(0, 1)| ∧ |N(0, 1)|+

p4n|N(µ, σ2)| ∧ |N(0, 1)|(1) + p5n|N(µ, σ2)| ∧ |N(0, 1)|(−1)+

p6n|N(0, 1)| ∧ |N(ν, τ2)|(1) + p7n|N(0, 1)| ∧ |N(ν, τ2)|(−1)+

p8n|N(µ, σ2)| ∧ |N(ν, τ2)|(−1)(1) + p9n|N(µ, σ2)| ∧ |N(ν, τ2)|(1)(−1),

where p1n+p2n = 1 and p3n+· · ·+p9n = 1. Here, p1n is the proportion of SNPs positively associated

with both disease A and disease B and similarly, p2n is the proportion of SNPs negatively associated

with both disease A and disease B. A nonzero value of the proportions p1n or p2n is representative

of the alternative hypothesis introduced previously and suggests some degree of genetic sharing

between diseases A and B. p3n is the proportion of SNPs not associated with either disease A

or disease B. p4n and p5n are the proportions of SNPs positively or negatively associated with

only disease A, while p6n and p7n are the proportions of SNPs positively or negatively associated

with only disease B. p8n and p9n are the proportions of SNPs associated with both disease A

and disease B but in differing directions. H represents the null distribution and J represents the

alternative. The distribution of the summary statistic, Wi = |Ui| ∧ |Vi|sg(Ui)sg(Vi), is given as

Wi ∼ εJ + (1− ε)H,

where ε ∈ [0, 1] is the mixture proportion. The simultaneous signal detection problem again be-

comes the test of H0 : ε = 0 vs. HA : ε > 0. To test the null hypothesis (2.2), we define the test

statistic

Mn = max
i=1,··· ,n

Wi.

Again, if Mn is greater than a predefined critical value, H0 will be rejected by the max test suggest-

ing diseases A and B share at least one common genetic variant.

Now, the analytical p-value, still formulated based on the permutation distribution, must account for

the direction of a particular SNP’s association in addition to its magnitude. The analytical p-value

is defined to be the probability at least one Ui, with a magnitude of at least Mn, is permuted such
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that it aligns with at least one Vi, also with a magnitude of at least Mn, and sg(Ui) = sg(Vi). This

probability can be written out explicitly as

P (M ≥Mn) = 1−

∑min(a+, b−)
m=0

(
b−

m

)(
n−b−−b+
a+−m

)(
n−a+−b−+m

a−

)(
n
a+

)(
n−a+
a−

)
 ,

where

a+ =

n∑
i

I(|Ui| ≥Mn)I(sg(Ui) > 0),

a− =

n∑
i

I(|Ui| ≥Mn)I(sg(Ui) < 0),

b+ =

n∑
i

I(|Vi| ≥Mn)I(sg(Vi) > 0),

b− =

n∑
i

I(|Vi| ≥Mn)I(sg(Vi) < 0).

Again, providing a simplified determination of the exact p-value for the proposed test. In practice,

Stirling’s approximation is used to approximate the exact probability above (see Section 2.3).

2.3. Simulation Studies

Simulations were carried out to verify the accuracy of the approximated analytical p-value when

considering the direction of effects with respect to the p-value obtained from actually carrying out

the permutations. Similarly, simulations were used to compare the power and type I error of the

direction-dependent test under various conditions.

The permuted and analytical p-values were compared in two datasets: one generated under the

null and the other generated under the alternative distribution. In each dataset n = 500000 pairs of

Z-scores, Ui and Vi, were generated such that
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(
Ui

Vi

)
∼ p1N2


µi

µi

 ,

1 0

0 1


+ p2N2


−µi

−µi

 ,

1 0

0 1


+ p3N2


0

0

 ,

1 0

0 1


+

p4N2


µi

0

 ,

1 0

0 1


+ p5N2


−µi

0

 ,

1 0

0 1


+ p6N2


 0

µi

 ,

1 0

0 1


+

p7N2


 0

−µi

 ,

1 0

0 1


+ p8N2


−µi

µi

 ,

1 0

0 1


+ p9N2


 µi

−µi

 ,

1 0

0 1


 ,

where µi, the Z-score mean, and p1, · · · , p9, the proportions of SNPs, were varied as detailed

below. N2 indicates that the pairs of Z-scores were generated from a mixture of bivariate normal

distributions with correlation equal to zero. Without loss of generality, it is assumed that |µi| = |νi|

and σ2
i , τ

2
i ≥ 1.

The Z-score means, µi, represent the strength of a particular SNP’s association, or signal. µi were

varied at 2, 3, 4 and 4.5, which correspond to p-values of 0.02, 0.001, 3× 10−5 and 3× 10−6, respec-

tively. The proportions, p1, · · · , p9, were varied to change the approximate number of association

signals, µi 6= 0, while still allowing the number of signals to remain sparse. Table 2.1 presents

the sparsity simulation settings of varied proportions and uses the following notation to indicate the

approximate number of signals present in the respective dataset: X(x), where X is the approx-

imate number of shared signals, or disease-associated variants, generated from the alternative

distribution, J , and x is the approximate number of signals generated from the null distribution, H.

Thus, approximately x total signals exist in the dataset when generated under the null distribution

and approximately (X + x) total signals exist in the dataset when generated under the alternative

distribution. Without loss of generality p1n = p2n and p4n = p5n = p6n = p7n = p8n = p9n. Notice,

the proportions of SNPs differ depending on whether the data was generated under the null or al-

ternative distribution. Recall, under the null distribution the proportions p1n and p2n are equal to 0

indicating no simultaneous signals or genetic sharing between the pair of heterogeneous diseases,

and thus X = 0 of the X(x) notation previously described.

After generating a dataset of n = 500000 pairs of Z-scores, Ui and Vi, the observed test statistic,

Mn, was calculated. To determine the permuted p-value, the magnitudes of the n = 500000 gener-

ated Ui were permuted 2500 times while fixing the locations of the signs of Ui and fixing the locations
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Table 2.1: Three sparsity simulation settings considered. Each setting is represented by the two
numbers X(x), where X is the approximate number of shared signals generated from the alterna-
tive distribution, J , and x is the approximate number of signals generated from the null distribution,
H

I: 75 (600) II: 40 (300) III: 40 (150)
Probability Alternative Null Alternative Null Alternative Null

p1 0.000075 0 0.0000375 0 0.0000375 0
p2 0.000075 0 0.0000375 0 0.0000375 0
p3 0.99865 0.9988 0.999325 0.9994 0.999625 0.9997
p4 0.0002 0.0002 0.0001 0.0001 0.00005 0.00005
p5 0.0002 0.0002 0.0001 0.0001 0.00005 0.00005
p6 0.0002 0.0002 0.0001 0.0001 0.00005 0.00005
p7 0.0002 0.0002 0.0001 0.0001 0.00005 0.00005
p8 0.0002 0.0002 0.0001 0.0001 0.00005 0.00005
p9 0.0002 0.0002 0.0001 0.0001 0.00005 0.00005

of both the signs and magnitudes of Vi, with respect to each other. In permuting one of the two gen-

erated Z-scores, the simultaneity of the generated association signals, and corresponding direction

of the signal, is lost. Intuitively, as the generated signals become less sparse, the ability to emulate

the null distribution through permutation diminishes because, in increasing the number of signals,

the chances that a signal will align with another signal of the same sign after permutation increase.

With each permutation, the permuted test statistic is compared to the observed test statistic, Mn,

and the permuted p-value is equal to the proportion of permuted test statistics exceeding Mn. To

then determine the analytical p-value, a+, a−, b+, b− are computed as indicated above using the

observed test statistic, Mn. Note, Stirling’s approximation, log(n!) ≈ nlog(n)−n+O(log(n)) where

O(log(n)) = 0.5log(2πn), was used in the calculation of the analytical p-value. In this case, n can

be small and thus for the most accurate results the O(log(n)) term cannot be ignored.

2.3.1. Comparison of permuted and analytical p-values

Table 2.2 compares the permuted (based on 2500 permutations) and analytical p-values for datasets

generated under varying strengths of association and the three sparsity simulation settings (Ta-

ble 2.1). The permuted p-value is well emulated by the analytical p-value, and the use of the analyt-

ical p-value is a computationally efficient alternative to carrying out the permutations to obtain the

permuted p-value.
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Table 2.2: Comparison of permuted (based on 2500 permutations) and analytical permutation p-
values for direction-dependent max test calculated from datasets generated under the alternative
and null distributions for different association strengths and sparsity settings

Alternative Null
µ Setting Permuted Analytical Permuted Analytical
2 I 0.3056 0.2893 0.1828 0.1621

II 0.3784 0.3615 0.2036 0.1872
III 0.7916 0.8110 0.7020 0.6973

3 I 0.0164 0.0192 0.3484 0.3544
II 0.0012 0.0014 0.3676 0.3743
III 0.0008 0.0010 0.8880 0.8959

4 I 0.0036 0.0022 0.5012 0.4981
II 0.0048 0.0033 0.9072 0.9089
III 0.0004 0.0015 0.2720 0.3103

4.5 I 0 0 0.3208 0.3258
II 0.0024 0.0028 0.7488 0.7654
III 0.0008 0.0015 0.1424 0.1894

2.3.2. Power and type I error

In comparing the power and type I error of the proposed test across various conditions, 1000

datasets were generated, as described above. That is, 1000 replications were generated under

the null distribution to determine the type I error and 1000 replications were generated under the

alternative distribution to determine the power. Z-score means, µi, varied from 2 to 4.5 as before

and the proportions of SNPs varied by sparsity simulation settings, indicated in Table 2.1. Analytical

p-values were computed for each of the 1000 datasets and the power (or type I error) is equal to the

number of datasets with an analytical p-value less than the corresponding nominal level, α = 0.05

or 0.01, divided by the total number of datasets.

Table 2.3 shows the type I error and power of the proposed test for datasets generated under

varying strengths of association and three sparsity simulation settings. At both the nominal α = 0.05

level and α = 0.01, we observe that the type I error is well controlled under various simulation

settings. When signal strengths are high, but not shared between two diseases (under the null), the

analytical approximation of the adaptive test is slightly conservative, especially when the signals

are sparse.

We also observe that the power increases as the strength of the association and sparsity of the

signals increase (Table 2.3). The power of the test is consistently greater than 90% when µi > 2 for

α = 0.05 and when µi > 3 for α = 0.01 (Table 2.3).
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Table 2.3: Power and type I error of direction-dependent max test estimated from 1000 replica-
tions at α = 0.05 or 0.01 of datasets generated under different association strengths and sparsity
simulation settings

α = 0.05 α = 0.01
µ Setting ‘Power’ ‘Type I Error’ ‘Power’ ‘Type I Error’
2 I 0.170 0.053 0.079 0.010

II 0.163 0.048 0.061 0.011
III 0.273 0.050 0.113 0.009

3 I 0.956 0.050 0.819 0.015
II 0.946 0.039 0.752 0.003
III 0.990 0.026 0.846 0.001

4 I 1 0.047 1 0.006
II 1 0.026 0.996 0.003
III 1 0.008 0.964 0.000

4.5 I 1 0.034 1 0.005
II 1 0.016 0.999 0.000
III 1 0.004 0.977 0.001

2.4. Analysis of Genetic Sharing of 10 Pediatric Autoimmune Diseases

Autoimmune diseases affect approximately 8% of all Americans and are a leading cause of death in

women up to age 64 (Cooper, Bynum, and Somers, 2009). Medical professionals are still learning

about autoimmune diseases, now with over 80 clinically-distinct autoimmune diseases identified.

Little is known of the relationships between different autoimmune diseases, and the degree to

which genetic variants associated with one autoimmune disease influence the risk of developing

a second, clinically-distinct autoimmune disease has not been well characterized. The methods

described above are applied to GWAS data for all possible pairs of 10 pediatric autoimmune dis-

eases (pAIDs) to determine whether pairs of diseases exhibit some evidence of genetic sharing.

pAIDs are particularly good candidates for studying the existence of genetic sharing between any

two diseases because genetic risk factors are thought to have a stronger contribution in early-onset

disease.

Over 5200 pediatric cases across 10 pAIDs: THY, SPA, PSOR, CEL, SLE, CVID, US, T1D, JIA

and CD, and over 11000 population-based controls without known autoimmune, inflammatory or

immunodeficiency disorders were genotyped at Children’s Hospital of Philadelphia (CHOP) on two

comparable GWAS platforms. The effects due to artifacts introduced by use of multiple genotyp-

ing platforms or multiple study sites are likely small because all the samples were genotyped on

comparable genotyping platforms at a single site.
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2.4.1. Detection of Shared Genetic Variants

Analytical p-values were calculated for all possible pairs of the 10 pAIDs, using both proposed

tests: with and without accounting for the direction of SNPs’ effects. Z-scores for each SNP were

calculated marginally for each disease. Each of the 10 autoimmune diseases had a varying number

of cases: 99 (THY), 111 (SPA), 113 (PSOR), 183 (CEL), 256 (SLE), 309 (CVID), 895 (UC), 1139

(T1D), 1165 (JIA) and 2039 (CD). It is important to note, only autosomal SNPs were included in

the analytical p-value calculation. That is, mitochondrial SNPs and SNPs found on the X or Y

chromosomes were excluded. Similarly, SNPs within the major histocompatibility complex (MHC)

region, defined as 25, 500, 000−34, 000, 000 base pairs (bp) of chromosome 6, were excluded as they

are already known to be highly associated with autoimmune diseases. Each pairwise p-value was

calculated in a ‘complete’ sense, that is only complete pairs of autoimmune diseases contributed to

the calculation of their respective p-value. Thus, each pairwise p-value was calculated based on a

different number of SNPs. For any given pair of autoimmune diseases, the percentage of missing

data was no more than 5% with the number of complete-case SNPs in each pair totaling just over

480, 000.

Table 2.4 presents the pairwise analytical p-values calculated using the max tests with and without

accounting for the direction of SNP effects (second and first row, respectively, for each pair). It is

important to note, the p-values presented in Table 2.4 have not been adjusted for multiple testing.

There are many differences in the p-values obtained from the two tests, suggesting accounting for

the direction of the effect tells a different story than not accounting for it at all. Notably, the pairwise

p-value between diseases JIA and UC is no longer highly significant at the nominal α = 0.05 level

when accounting for the direction of the simultaneous associations. This observation also holds

true for the following disease pairs: CD and JIA, T1D and JIA and CEL and PSOR.

Figure 2.1 demonstrates the observed differences noted above when accounting for the direction

of the association. Disease pairs CD and JIA, T1D and JIA and UC and JIA exhibit relatively strong

simultaneous signal(s) (SNP association p-value(s) ≤ 10−5), of which, exist in opposing directions.

That is, the simultaneous SNP (indicated by a blue star in Figure 2.1) is positively associated with

one disease (indicated by a black vertical line) and negatively associated with the other disease of

the pair (indicated by a red vertical line). The max test ignoring the direction of effects identifies
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Table 2.4: Pairwise analytical p-values using max tests with (second rows) and without (first rows)
accouting for the direction of effects for the 10 studied pAIDs

SPA PSOR CEL SLE CVID UC T1D JIA CD
THY 0.5666 0.5119 0.0567 0.0181 0.4886 0.4941 0.0646 0.0555 0.1497

0.4059 0.3553 0.0414 0.0117 0.325 0.3035 0.0358 0.0302 0.7848
SPA 0.0365 0.9405 0.6382 0.2134 0.7246 0.9915 0.2617 0.4733

0.0262 0.7998 0.7148 0.1306 0.4853 0.9164 0.1474 0.2686
PSOR 0.0290 0.1259 0.0848 0.9706 0.5193 0.5815 0.7004

0.9091 0.0754 0.0532 0.9525 0.3253 0.3653 0.4450
CEL 0.3363 0.5241 0.3803 0.6817 0.5667 0.9375

0.2064 0.3485 0.2261 0.4610 0.3616 0.7402
SLE 0.9927 0.0528 0.1188 0.8816 0.2862

0.9493 0.0290 0.0631 0.6627 0.3545
CVID 0.0549 0.0527 3.7e-05 0.1238

0.0300 0.2263 2.9e-05 0.9782
UC 0.0003 5.0e-05 2.7e-05

0.0001 0.1261 8.3e-06
T1D 0.0015 0.0032

0.6105 0.0014
JIA 0.0003

0.1021

disease pairs CD and JIA, T1D and JIA and UC and JIA as exhibiting genetic sharing with p-values

below the nominal α = 0.05 level (first rows, Table 2.4), but the modified max test, requiring shared

disease-associated effects to be in the same direction, does not identify these pairs (second rows,

Table 2.4) because their simultaneous signals exit in opposite directions (opposing colored lines at

the blue star in Figure 2.1). The plot of the disease pair CEL and PSOR (lower right of Figure 2.1)

is less intuitive. While the test ignoring the direction of effects also identifies this pair as exhibiting

genetic sharing at the nominal α = 0.05 level (first rows, Table 2.4), this is likely an artifact of

multiple testing. Recall
(
10
2

)
tests are being done and, in accounting for this, disease pairs UC

and JIA, CD and JIA and T1D and JIA are still identified as exhibiting genetic sharing using the

direction-independent test but the disease pair CEL and PSOR is no longer identified.

Figure 2.2 further demonstrates the differences between the proposed tests. Figure 2.2 presents

complete-case, pairwise scatter-plots of marginal SNP Z-scores for a subset of the 10 pAIDs stud-

ied, specifically CVID, UC, T1D, JIA and CD of which have a larger number of cases in comparison

to the remaining studied pAIDs. Large Z-scores for disease pairs UC and JIA, CD and JIA and

T1D and JIA are discordant, or their Z-scores are of opposing signs. Disease pairs CVID and JIA

and UC and CD are still identified as exhibiting genetic sharing after accounting for the direction of
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Figure 2.1: Complete-case, paired Manhattan-like plots of marginal SNP association p-values less
than 10−4 from GWAS for the following disease pairs: CD and JIA, T1D and JIA, UC and JIA and
CEL and PSOR. Each vertical line is −log10(p-value), where black indicates that particular SNP
was positively associated with disease and red indicates that SNP was negatively associated with
disease. The blue star(s) indicate the maximum p-value(s) of simultaneous association signal(s)
within the pair of diseases equaling less than 10−5

the association (Table 2.4). The complete-case Z-score scatterplot of these two pairs shows large

Z-scores are concordant, or of the same signs (Figure 2.2), further demonstrating the abilities of

the direction modified test in detecting the shared genetic variants with the same effect directions.

2.4.2. Sequential Identification Procedure of Shared Genetic Variants

We utilize the global detection tests in a sequential procedure to identify the shared genetic variants

detected between pAID disease pairs in Section 2.4.1. The procedure starts with a ‘complete’

set of SNPs from the corresponding GWAS of a disease pair. In applying the global detection
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Figure 2.2: Histograms and complete-case, pairwise scatterplots with coordinate axes in red of
marginal SNP Z-scores for a subset of the 10 pAIDs studied
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test proposed in Section 2.2.1 to the ‘complete’ SNP set, an exact permutation-based p-value is

calculated as in Section 2.4.1. Then the top signal, or SNP with largest pairwise minimum of the

absolute value of corresponding Z-scores, max(|Ui| ∧ |Vi|), is removed and the permutation-based

p-value is recalculated. This removal procedure is continued, sequentially, until the recalculated

permutation-based p-value falls outside a specified significance threshold.

Figure 2.3 graphically displays the implementation of the sequential identification procedure for

disease pairs JIA-CVID and CD-UC, plotting -log of recalculated permutation-based p-values by

the respective number of SNPs removed from the set. As SNPs are removed, the global detection

permutation-based p-values become less significant. Eventually all drivers of genetic sharing are

removed from the tested SNP set causing the permutation p-values to level off as additional SNPs,

with no shared relationship, are removed (Figure 2.3). The rightmost plots of Figure 2.3 show

the chromosomal locations of the top shared SNPs between disease pairs JIA-CVID (Figure 2.3,

top) and CD-UC (Figure 2.3, bottom). Note, few of the top drivers of genetic sharing are on the

same chromosome within a disease pair, suggesting, in this dataset, SNPs are likely independent.

Without loss of generality, the p-values of Figure 2.3 are calculated without considering the direction

of effects.

Table 2.5 provides the chromosomal location (CHR), SNP rsID, base pair position (BP) and associ-

ated gene, if documented (Sherry et al., 2001), for the sequentially-identified top drivers of genetic

sharing between disease pairs JIA-CVID and CD-UC (Figure 2.3). Many of the top SNPs driving

genetic sharing between CD-UC map to protein-edcoding genes (Table 2.5).

Table 2.5: Chromosomal location (CHR), SNP rsID, base pair position (BP) and associated gene
(Sherry et al., 2001) for the sequentially-identified top drivers of genetic sharing highlighted in Fig-
ure 2.3 for disease pairs JIA-CVID and CD-UC

JIA-CVID CD-UC
CHR SNP BP gene CHR SNP BP gene

8 rs3019885 118025645 SLC30A8 1 rs12039194 164537228 PBX1
4 rs4862110 183751029 - 16 rs2221705 79362411 MAF
6 rs6928830 84219312 - 5 rs10045431 158814533 -
1 rs2066363 82237577 ADGRL2 3 rs4625 49572140 DAG1

10 rs7100025 37592538 - 3 rs9858280 49597737 BSN

27



α = 0.05

0

1

2

3

4

0 10 20 30 40 50
# Removed SNPs

−
lo

g(
p−

va
lu

e)

JIA and CVID

α = 0.05

CHR 8 CHR 4 CHR 6 CHR 1

CHR 10
CHR 1 CHR 13

CHR 12

CHR 3 CHR 3

0

1

2

3

4

5

1 2 3 4 5

0

1

2

3

4

0 10 20 30 40 50
# Removed SNPs

−
lo

g(
p−

va
lu

e)

JIA and CVID

α = 0.05

0

1

2

3

4

0 10 20 30 40 50
# Removed SNPs

−
lo

g(
p−

va
lu

e)

CD and UC

α = 0.05

CHR 1
CHR 16 CHR 5

CHR 3 CHR 3
CHR 1 CHR 1 CHR 1

CHR 1
CHR 3

0

1

2

3

4

5

1 2 3 4 5

0

1

2

3

4

0 10 20 30 40 50
# Removed SNPs

−
lo

g(
p−

va
lu

e)

CD and UC

Figure 2.3: Plot of sequential identification procedure: −log10(permutation-based p-value) by the
number of top SNPs removed for disease pairs JIA-CVID (top) and CD-UC (bottom) with respec-
tive zoomed-in plots with chromosomal location of top shared SNPs (rightmost, green box), with
nominal significance threshold (α = 0.05)
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2.5. Conclusion

This chapter introduces two tests for the detection of simultaneous signals based on GWAS data

of two genetically related diseases. The first test tests for the sharing of common genetic variants

between two diseases without considering the directions of the effects. Specifically, the statistical

test detects the absolute value of simultaneous signals, allowing the simultaneous signals to exist in

opposite directions. The second test, an extension, includes an added dependency on the direction

of the association signal and only detects simultaneous signals existing in the same direction.

This new test is biologically relevant in the context of how two complex diseases are genetically

related, as shared SNPs have been identified to confer risk in type I diabetes (T1D) while protecting

against Crohns disease (CD) (Wang et al., 2010). Both the test statistics are of a max-type, in

that they take the maximum score across all SNPs. By destroying the simultaneity of the signals

through permutation, the null distribution can be mimicked. A procedure for obtaining the analytical

permutation p-value was developed for these two global tests and was shown to be close to the

permuted p-value (Table 2.2). The simulations show the proposed analytical p-value has a well-

defined power and type I error for various simulation settings. The power increases and the type

I error is reduced as the strength and sparsity of the signals increase (Table 2.3). Because the

tests are based on the simultaneity of disease association signals, as signals become less sparse

the likelihood of destroying their simultaneity with permutations decreases. Thus, the global tests

discussed here are suitable for sparse data, as is typical of genome-wide association studies.

The proposed tests were applied to GWAS for a set of 10 clinically-distinct, pediatric autoimmune

diseases (pAIDs) with shared controls. When accounting for the directions of the diseases asso-

ciation signals, a different set of results were obtained in comparison to the results obtained using

the max test that ignores the effect directions. Thus, in assessing the genetic relatedness between

pairs of complex diseases, using the adaptation presented in this paper will provide a more specific

account as to what those genetic similarities represent. That is, if the null hypothesis is rejected

between any pair of complex diseases, it is concluded that the pair of complex diseases has at least

one simultaneous association signal with effects in the same direction. A major advantage of the

adaptation presented in this paper is its ease of implementation on readily available summary-level

data.
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Our analysis of the pAID data has clearly indicated sharing of common variants among these pAIDs.

The logical next step is to develop methods that effectively utilize such a sharing in identifying

additional SNPs that are associated with such autoimmune diseases. We propose a sequential

identification procedure utilizing the proposed global detection tests. The sequential identification

procedure identifies the top drivers of genetic sharing between disease pairs and gives us reason

to believe SNPs of the applied pAID GWAS are independent. Thus, the dependency among SNPs

genome-wide has no effect on our results in this pAID application. Another approach is to apply

the conditional false discovery rate procedure to improve detection of common variants associated

with these diseases, as shown to be quite effective in joint analysis of Schizophrenia and bipolar

disorder (Andreassen et al., 2013).
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CHAPTER 3

DETECTION OF SHARED GENETIC VARIANTS BETWEEN COMPLEX DISEASES

WHILE PRESERVING DEPENDENCY STRUCTURE

3.1. Introduction

Genome-wide association studies (GWAS) have identified thousands of complex disease-

associated single nucleotide polymorphisms (SNPs) (Hindorff et al., 2009). Although, these iden-

tified SNPs only explain a small proportion of complex disease heritability (Manolio et al., 2009).

Unlike Mendelian diseases, the genetic architecture of complex diseases is largely unknown. Com-

plex disease groups, such as autoimmune diseases, are hypothesized to have overlapping genetic

etiologies driven by pleiotropic disease-associated SNPs, or SNPs with the ability to contribute to

multiple disease phenotypes. Complex diseases are also thought to be polygenic in nature, in that

many genetic variants with small effect sizes influence the observed disease phenotype rather than

fewer genetic variants with large effect sizes, as is typical of Mendelian traits and diseases (Chung

et al., 2014). The polygenicity of complex diseases has been supported by recent GWAS (Morris,

Voight, and Teslovich, 2012), and it is the polygenic nature of these complex diseases that makes

detection and identification of disease-associated SNPs particularly difficult (Manolio et al., 2009).

Improving methods for the detection and identification of genetic risk factors, whether pleiotropic or

polygenic, shared across complex diseases is key for bettering our understanding of complex dis-

ease genetic architecture (Cross-disorder Group of the Psychiatric Genomics Consortium, 2013).

A diverse set of methods have been developed for studying the genetic relatedness of complex dis-

eases. Several methods have introduced meta-like statistics combining summary-level GWAS data

of clinically-distinct complex diseases to identify SNPs associated with a subset of the diseases

(Bhattacharjee et al., 2012; Cotsapas et al., 2011). More recently, methods have focused on the

detection and quantification of genetic sharing between pairs of complex diseases (Bulik-Sullivan

et al., 2015; Kobie et al., 2015). In Chapter 2 we proposed a global test as a means of combining

GWAS summary-level Z-scores across complex diseases to detect whether a pair of complex dis-

eases exhibited evidence of genetic sharing. Specifically, the proposed global test scans aligned

pairs of complex disease GWAS Z-scores in search of at least one genetic variant, or identical SNP,
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associated with both diseases of the pair. The test proposed by Kobie et al., 2015 detected, with

strong statistical evidence, two pairs of pediatric autoimmune diseases (pAIDs): common variable

immunodeficiency (CVID) - juvenile idiopathic arthritis (JIA) and ulcerative colitis (UC) - Crohn’s dis-

ease (CD), to have at least one identical disease-associated SNP in both diseases. These results

are consistent with those of Bhattacharjee et al., 2012 and Cotsapas et al., 2011, also showing

evidence of genetic sharing among immune-mediated diseases.

Bulik-Sullivan et al., 2015, too, utilized GWAS summary-level Z-scores to identify pairs of complex

traits and diseases that exhibited evidence of genetic sharing. Though, rather than testing for the

existence of genetic sharing as Kobie et al., 2015, Bulik-Sullivan et al., 2015 quantified genetic

sharing by estimating pairwise genetic correlations. While each of the aforementioned methods

provide us with some information about the genetic relatedness of complex disease pairs, each

method relies on different sets of biological assumptions and has varied data restrictions.

The test proposed by Kobie et al., 2015 assumes sparsity, in that the power of the test improves

as the number of disease-associated variants becomes sparser. And, of particular interest, the test

proposed by Kobie et al., 2015 assumes independence, and thus, the statistical significance can

be evaluated using permutation. A majority of genetic tests assume SNPs are independent of one

another, and while the validity of this assumption is often ignored, we know SNPs are not indepen-

dent when in linkage disequilibrium (LD) (Lin, 2006). The assumed independence between SNPs

is typically ‘achieved’ through a LD pruning procedure which selects SNPs based on arbitrarily

constructed LD blocks, unnecessarily throwing away potentially valuable data. Bulik-Sullivan et al.,

2015 may escape the independence assumption, modeling the product of the marginal Z-scores

for a pair of diseases by a previously defined LD score in their pairwise estimation of the genetic

correlation. Though Bulik-Sullivan et al., 2015 does make some SNP independence assumptions

in their simulations, suggesting their method is not robust to highly dependent SNPs.

In this chapter we aim to evaluate the statistical significance of the global detection test proposed by

Kobie et al., 2015 while preserving the inherent dependency structure across the genome. Specif-

ically, we implement a perturbation method proposed by Lin and Zou, 2004, and expanded on

by Zou et al., 2004, that exploits independent standard normal random variables to emulate the

null distribution, as the standard normal random variables are independent of the observed SNP

data. The perturbation method (Lin, 2005; Lin and Zou, 2004; Zou et al., 2004) utilizes the raw,
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individual-level GWAS data of multiple complex diseases, rather than the summary-level GWAS

Z-scores used in the global detection tests proposed by Kobie et al., 2015. Thus, we redefine the

global detection statistics of Kobie et al., 2015. Unless genotyped on the same platform, GWAS of

multiple diseases have differing sets of SNPs presenting an analysis challenge, in that SNP sets

across complex disease pairs cannot be perfectly aligned. Allowing for dependency among SNPs

in the statistical evaluation alleviates such data restrictions, enabling the use of multiple imputation

to create matching sets of SNPs across disease pairs for complete SNP alignment.

In using the perturbation method, we eliminate the need for an independence assumption for valid

statistical evaluation of the test statistics proposed by Kobie et al., 2015. With such, we can alter

the global tests proposed by Kobie et al., 2015 to address an additional limitation: Kobie et al.,

2015 assumes diseases with some shared genetic architecture will have disease-associated ge-

netic variants at identical SNPs. Though with the inherent dependency between genetic variants,

as previously discussed with respect to LD, and the thought that only one causal variant exists

within independent blocks (Pickrell, 2014; Veyrieras et al., 2008), power for detecting a shared ge-

netic architecture between a pair of diseases is likely lost by limiting our analysis to the detection

of simultaneous disease-associated variants at identical SNPs. To increase the power of detect-

ing a shared genetic architecture, we extended the simultaneous detection of disease-associated

variants at identical SNPs to the detection of disease-associated variants within a conservative,

LD-defined window.

This paper is organized as follows: We first briefly review the global detection test statistic pro-

posed by Kobie et al., 2015 and redefine the statistic such that, the correlated nature of SNPs is

incorporated into the evaluation of its statistical significance. We then extend the test statistic from

detecting shared genetic variants at identical SNPs to detecting shared genetic variants within a

LD-defined window. With simulations we evaluate the power and type I error of the global detection

test statistic, and its extension to detection within a LD-defined window, using the perturbation pro-

cedure. We then apply the perturbation procedure in the reevaluation of the global detection test

statistic proposed by Kobie et al., 2015, and evaluation of its extension, for GWAS data of 4 pedi-

atric autoimmune diseases (pAIDs): common variable immunodeficiency (CVID), ulcerative colitis

(UC), type I diabetes (T1D) and Crohn’s disease (CD), with shared controls, in order to investigate

the genetic relatedness among these diseases without assuming independence. We conclude the
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paper with a discussion of the methods and the results.

3.2. Statistical Evaluation of Simultaneous Detection via Perturbation Procedure

Assume individual-level genotype GWAS data are readily available for a pair of complex diseases,

disease A and disease B, of which are hypothesized to have some shared genetic architecture. Let

Yj be a binary indicator of whether the jth individual (j = 1, · · · , NA) has disease A, and let Zk

be a binary indicator of whether the kth individual (k = 1, · · · , NB) has disease B. Let Xji be the

genotype for the ith SNP (i = 1, · · · , n) of the jth individual from the GWAS of disease A. Similarly,

let Wki be the genotype for the ith SNP (i = 1, · · · , n) of the kth individual from the GWAS of disease

B. Here, the genotypes, Xji and Wki, are coded under an assumed additive model. Also notice,

the number of individuals across studies, NA and NB , can vary while the number, n, and identity of

SNPs across studies should be identical.

The global detection test proposed by Kobie et al., 2015 was formulated utilizing GWAS summary-

level marginal Z-scores rather than individual-level genotype GWAS data. Summary-level Z-scores

can be obtained directly from the individual-level genotype data. As in Kobie et al., 2015, let Ui be

the Z-score of the marginal association between disease A and the ith SNP and, similarly, let

Vi be the Z-score of the marginal association between disease B and the ith SNP. Specifically,

Ui = β̂/SE(β̂), where β and SE(β) are estimated from the marginal logistic regression model,

logit(P (Yj = 1)) = γ + βXji, and where P (Yj = 1) is the probability of the jth individual having

disease A. Similarly, Vi = α̂/SE(α̂), estimated from logit(P (Zk = 1)) = δ + αWki, where P (Zk = 1)

is the probability of the kth individual having disease B. Under the null hypothesis of no association

between the ith SNP and disease A, or disease B, Ui and Vi are approximately normal with mean

0 and variance 1. Whereas, in the presence of an association, Ui ∼ N(µi, σ
2
i ) and Vi ∼ N(νi, τ

2
i ).

Kobie et al., 2015 proposed the max test statistic summarizing across both diseases of the pair and

over all SNPs,

Mn = max
i=1,··· ,n

Ti,

where Ti = |Ui| ∧ |Vi|, to test the following set of hypotheses

H0 : for all i, |µi| ∧ |νi| = 0

HA : there is at least one i such that, |µi| ∧ |νi| 6= 0.
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That is, under the null hypothesis SNP i is not simultaneously associated with both diseases, or

for all n SNPs, at least one Z-score of the pair for SNP i, Ui and Vi, has a mean of 0. Under the

alternative hypothesis at least one SNP i has a pair of Z-scores, Ui and Vi, with nonzero means,

µi and νi. When H0 is rejected, disease A and disease B are concluded to have some degree of

overlapping genetic architecture. Kobie et al., 2015 evaluated the statistical significance of Mn with

a formula derived utilizing a permutation distribution assuming independence between SNPs.

3.2.1. Redefine Ui and Vi for Evaluation of Mn with Perturbation Method

To evaluate the statistical significance of Mn while preserving the inherent dependency structure

across the genome, or evaluate the significance of Mn without assuming independence, we apply

the perturbation method by Lin and Zou, 2004, Zou et al., 2004 and Lin, 2005. The perturbation

method is formulated using the efficient score function, thus requiring individual-level data (Lin,

2005; Lin and Zou, 2004; Zou et al., 2004). We redefine Ui and Vi as score statistics for the ith SNP

Ui = RTi Q
−1
i Ri

Vi = PTi S
−1
i Pi,

where Ri and Pi are score functions,

Ri =

NA∑
j=1

Rji

Pi =

NB∑
k=1

Pki,

and where Qi and Si are the respective covariance matrices of Ri and Pi,

Qi =

NA∑
j=1

RjiR
T
ji

Si =

NB∑
k=1

PkiP
T
ki.
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Rji and Pki are efficient score functions and represent the data contributions from the jth and kth

individuals of disease A and disease B, respectively. Here,

Rji = (Yj − γy)(Xji − πi)

Pki = (Zk − δz)(Wki − ωi),

where γy and δz are the proportion of diseased A and diseased B and πi and ωi are the population

means of Xji and Wki, respectively. Rji
iid∼ N(0, RjiR

T
ji) and Pki

iid∼ N(0, PkiP
T
ki), thus under the

null hypothesis of no association between the ith SNP and disease A, or disease B respectively,

Ri ∼ N(0, Qi) and Pi ∼ N(0, Si). Since the j individuals of disease A GWAS are independent,

var(Ri) = var(
∑NA

j=1Rji) =
∑NA

j=1 var(Rji). The same holds for var(Pi) of disease B. Additionally,

(R1, · · · , Rn) and (P1, · · · , Pn) are approximately multivariate normal with mean zero and covari-

ance matrices cov(Ri, Rf ) =
∑NA

j=1RjiR
T
jf and cov(Pi, Pf ) =

∑NB

k=1 PkiP
T
kf , where f 6= i. That

is,


R1

...

Rn

 ∼ Nn



0

...

0

 ,


Q1 · · · cov(R1, Rn)

...
. . .

...

cov(Rn, R1) · · · Qn





P1

...

Pn

 ∼ Nn



0

...

0

 ,


S1 · · · cov(P1, Pn)

...
. . .

...

cov(Pn, P1) · · · Sn


 .

Note, here, cov(Ri, Rf ) and cov(Pi, Pf ) can be nonzero because SNPs are not assumed to be

independent. With Ui and Vi redefined, we can let Mn = max
i=1,··· ,n

Ti, where Ti = Ui ∧ Vi, as

previously defined, to test whether a pair of complex diseases, disease A and disease B, exhibit

some evidence of genetic sharing. Note because Ui and Vi are redefined as score statistics, and

are thus always positive, Ti is no longer defined wtih the absolute value of Ui and Vi as in Kobie

et al., 2015. The null distribution of Mn cannot be explicitly defined as SNPs, and thus Ui (and

Vi), are not independent of one another. As Lin and Zou, 2004, Zou et al., 2004 and Lin, 2005,

we regard the large sample distributions of Ui and Vi as stochastic processes in n SNPs, and we
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aim to approximate the null distributions of Ui and Vi with a Monte Carlo approach. We generate

perturbed replicates under the null defined as

Ũi = R̃Ti Q
−1
i R̃i

Ṽi = P̃Ti S
−1
i P̃i,

where

R̃i =

NA∑
j=1

RjiGj

P̃i =

NB∑
k=1

PkiGk,

where Gj , Gk are independent standard normal random variables, N(0, 1). Because Gj and Gk

are independent of Rji and Pki, perturbations have no effect on the variance or covariance of Ri

and Pi, 
R̃1

...

R̃n

 ∼ Nn



0

...

0

 ,


Q1 · · · cov(R1, Rn)

...
. . .

...

cov(Rn, R1) · · · Qn





P̃1

...

P̃n

 ∼ Nn



0

...

0

 ,


S1 · · · cov(P1, Pn)

...
. . .

...

cov(Pn, P1) · · · Sn


 .

From the above, we can compute a perturbed M̃n under the null distribution such that

M̃n = max
i=1,··· ,n

T̃i,
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where

T̃i = max


Ũi ∧ Ṽi

Ui ∧ Ṽi

Ũi ∧ Vi

.

The null hypothesis is composed of three possible scenarios: (1) SNP i is not associated with

either disease A or disease B, (2) SNP i is associated with disease A and not associated with dis-

ease B and (3) SNP i is associated with disease B and not disease A. Perturbations are carried out

to emulate all possible null scenarios, though taking the maximum over all three is a conservative

approach. The intuition for emulating the null distribution is reminiscent of He et al., 2013 and Liu

et al., 2010, where they use a multivariate normal random vector to approximate the null distribu-

tion of swapping cases and controls. To evaluate the statistical significance of Mn, we compute

several perturbations, 1000 to 100000, M̃n and let the p-value be the proportion of perturbed M̃n

greater than the observed Mn. Unlike permutation, the perturbation method involves only the sim-

ulation of standard normal random variables and does not require shuffling of the data, allowing its

implementation in a variety of data structures (Lin, 2005).

3.2.2. Extension of Simultaneous Detection to LD-defined Window

With the ability to evaluate the statistical significance of Mn without making an independence as-

sumption, we extend Kobie et al., 2015 from detecting simultaneous disease-associated variants at

identical SNPs to detecting simultaneous disease-associated variants within a LD-defined window.

For the ith SNP we define a LD window of size Ci, such that the lth SNP within the window, l ∈ Ci,

and the ith SNP have a r2 ≥ 0.5, where r2 is the coefficient of determination, or square of the cor-

relation coefficient. The exact specification of the LD window is arbitrary, though it is worth noting

all r2 were derived from the control population void of known autoimmunity or immunodeficiency

diagnoses. Also note, LD windows for various SNPs will be overlapping, reinforcing the need for

a method of evaluating the statistical significance in the absence of an independence assumption.

The potential problems posed by the overlapping of windows, and varying of window sizes, from
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SNP-to-SNP are discussed in the sections that follow. Now consider, for the ith SNP,

Oi = max
l=1,··· ,Ci

Ul

Vi = PTi S
−1
i Pi,

where Ul and Vi are defined identically to Ui and Vi in section 3.2.1, and Mn = max
i=1,··· ,n

Ti, where

now

Ti = Oi ∧ Vi.

We can evaluate the statistical significance of Mn for detecting at least one simultaneous disease-

associated variant within a LD-defined window with the perturbation method described previously,

in section 3.2.1. We again generate perturbed replicates M̃n under the null, where M̃n = max
i=1,··· ,n

T̃i,

and

T̃i = max


Õi ∧ Ṽi

Oi ∧ Ṽi

Õi ∧ Vi

.

The p-value is again the proportion of perturbed M̃n greater than the observed Mn. It is important

to note when perturbing Oi, we are actually perturbing a window of Ci efficient score functions.

Recall, each SNP i has a corresponding window of size Ci, which varies from SNP to SNP. SNPs

in high LD with surrounding SNPs will have a larger corresponding window size. Thus, the size

of the window likely impacts the effectiveness of the perturbation procedure in emulating the null

distribution of no disease-associated genetic variants.

3.3. Simulation Studies by Resampling

Datasets were generated under the null and alternative hypotheses to investigate the type I error

and power of the proposed perturbation evaluation method and its extension from simultaneous

detection at identical SNPs to detection within a LD-defined window. To maintain the inherent

dependency structure observed among genetic variants in the human genome, a prediction-based

resampling procedure was used to simulate case-control status and generate datasets of genotypes

for one chromosome. The prediction-based resampling procedure implemented here used control
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data from the described real data application (Section 3.4) to independently generate datasets for

a pair of diseases. Specifically, genotypes of 36760 typed SNPs on chromosome 1 from 10718

pediatric controls were used.

To simulate case-control status, first, 20 uncorrelated, common (minor allele frequency (MAF) >

0.05) causal variants were selected from the 36760 SNPs of chromosome 1. The number of causal

variants selected, 20, mirrors the sparsity of causal variants in the entire genome. The sparse set

of causal variants was then used in an additive, multivariable logistic regression prediction model

to obtain predicted probabilities of disease for each of the 10718 pediatric controls. Causal variant

effect sizes (eβ), used in the prediction model, were randomly generated between 1.2− 1.5 and the

prevalence of disease was assumed to be approximately 15%. Case-control status was assigned to

each of the 10718 pediatric controls using binomial random variables generated from the predicted

probabilities. To generate a disease dataset, the genotypes of a sample of 3000 individuals, of the

10718, were selected with 2 controls for every case.

The resampling procedure detailed above was then completed again for the second disease of

the pair, with a new set of causal variants, causal effect sizes and resulting predicted probabilities.

Of the 20 causal variants, a proportion were allowed to overlap between the 2 diseases of the

pair. In particular, we are interested in the null scenario with no overlap (0%) of causal variants

between the 2 diseases and the alternative scenario with 100% overlap of causal variants between

the 2 diseases. Under the null the generated pair of diseases has no shared disease-associated

genetic variants, indicating the diseases are not genetically related. While under the alternative the

generated pair of diseases shares all disease-associated genetic variants, indicating the diseases

are genetically related.

We simulated pairs of disease datasets 1000 times, and for each pair of datasets, calculated p-

values based on 1000 perturbations. The QQ-plot in Figure 3.1 shows the permutation method

is conservative, while the perturbation method appears to control the type I error at α = 0.05 for

small p-values, becoming more conservative for larger p-values. Figure 3.2 shows both ‘no window’

(detection at identical SNPs) and ‘window’ (detection within a LD-defined window) perturbation

methods have a slightly inflated type I error at 0% shared causal SNPs. The permutation method,

assuming independence, appears to be conservative with type I errors lower than the set α-levels

indicated in Figure 3.2. Note, the ‘no window’ perturbation analysis and the permutation analysis
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are detecting exactly the same thing, disease-associated variants at identical SNPs, but with differ-

ent assumptions, while the ‘window’ perturbation analysis is an extension of detection at identical

SNPs.

Figure 3.2 compares the power of the perturbation method, and its extension, to the power of the

permutation method assuming independence for 5 − 25% causal SNP overlap between the pair of

diseases. As the proportion of shared variants between a pair of diseases exceeds 25%, the power

gains among the 3 methods (permutation, ‘no window’ perturbation and ‘window’ perturbation)

are indistinguishable. While the perturbation and permutation methods appear to have compara-

ble power for the detection of shared genetic variants, Figure 3.2 demonstrates the perturbation

methods to be more powerful in identifying genetic relatedness when the proportion of shared

disease-associated variants is less than 25%. At both α = 0.05 (Figure 3.2, leftmost) and α = 0.10

(Figure 3.2, rightmost), the ‘no window’ and ‘window’ perturbation methods perform similarly, ‘no

window’ showing some increased power over the ‘window’ perturbation method.

Figure 3.3 considers an alternative overlap scenario that defines SNP overlap as SNPs shared

within a dependency-defined window rather than shared identically. This alternative scenario can

be generated similarly to that described above, but rather than allowing the percentage of shared

SNPs to match identically across the pair of diseases, a shared SNP is a randomly chosen SNP

within the corresponding causal SNP’s LD-defined window. LD-defined windows include SNPs with

r2 ≥ 0.5 within a 1MB block (500kB upstream and 500kB downstream) of the SNP in question.

Under the alternative definition of genetic overlap, the ‘window’ perturbation method outperforms

the ‘no window’ perturbation method, thus there is a potential for improved power of detection with

the ‘window’ perturbation method (Figure 3.3). One could consider increasing the number of causal

SNPs to better observe separation between the ‘no window’ and ‘window’ perturbation methods.

3.4. Analysis of Genetic Sharing of 4 Pediatric Autoimmune Diseases

Following the analyses of Kobie et al., 2015, we aim to evaluate whether particular pairs of pedi-

atric autoimmune diseases (pAIDs) exhibit evidence of genetic sharing without making any inde-

pendence assumptions. Our analyses focus on pairs of the previously investigated pAIDs: common

variable immunodeficiency (CVID), ulcerative colitis (UC), type I diabetes (T1D) and Crohn’s dis-

ease (CD) (Kobie et al., 2015; Li et al., 2015b). Genotypes of 473228 SNPs genome-wide were
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Figure 3.1: QQ-plot for the perturbation method (based on 1000 perturbations) in the detection
of shared genetic variants at an identical SNP (‘no window’) and the detection of shared genetic
variants within a LD-defined window (‘window’) compared to the permutation method estimated
from 1000 replications at α = 0.05 for 0% causal SNP overlap

obtained for 308 CVID cases, 865 UC cases, 1086 T1D cases, 1922 CD cases and 10718 shared

controls (Li et al., 2015b). With individual-level genotype data, perturbation-based p-values can

be calculated, assessing the statistical significance of the max statistic, Mn, detecting shared

disease-associated variants at identical SNPs and within a LD-defined window, as described in

Sections 3.2.1 and 3.2.2 respectively. It is important to note, only autosomal SNPs were included

in the analyses to follow, excluding mitochondrial SNPs and SNPs found on either of the two sex

chromosomes, X and Y. SNPs within the major histocompatibility complex (MHC) region were also

excluded (Kobie et al., 2015).

Table 3.1 presents pAIDs pairwise perturbation p-values, based on 10000 perturbations, for detect-
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ing at least one simultaneous disease-associated variant at identical SNPs and for detecting at

least one simultaneous disease-associated variant within a LD-defined window. LD-defined win-

dows include SNPs with r2 ≥ 0.5 within a 1MB block (500kB upstream and 500kB downstream)

of the SNP in question. Table 3.1 also includes all possible pAIDs pairwise permutation-based p-

values, assuming independence, for detecting at least one simultaneous disease-associated variant

at identical SNPs (Kobie et al., 2015) for comparison.

Note similar conclusions are drawn of disease pairs when evaluating the significance of the max

test statistic, Mn, with permutation or perturbation methods. For example, disease pairs CVID-UC,

CVID-T1D and CVID-CD were not found to exhibit evidence of genetic sharing by Kobie et al., 2015

at the nominal α = 0.05 level, and the same conclusions are drawn using perturbation methods,

‘no window’ and ‘window’, with comparable ‘no window’ p-values of 0.2582, 0.6924 and 0.5575,

respectively (Table 3.1). Similarly, the disease pair UC-CD still shows strong evidence of genetic

sharing after adjusting for multiple testing. The precision of the perturbation p-value is dependent on

the number of perturbations performed. This is not true of the permutation method implemented for

evaluation by Kobie et al., 2015, as an analytical approximation of the exact permutation p-value was

proposed. And, while similar conclusions are drawn using both the permutation and perturbation

evaluation methods for this particular dataset, the same may not hold in other datasets, especially

those with a large proportion of SNPs in high LD with one another.

Table 3.1: Perturbation p-values (based on 10000 perturbations) for the detection of shared disease-
associated variants at identical SNPs and within a LD-defined window compared to permutation-
based p-values by Kobie et al., 2015

Disease Pair Kobie et al., 2015 Identical SNP Detection LD Window Detection
CVID-UC 0.8168 0.2582 0.3956

CVID-T1D 0.0337 0.6924 0.8417
CVID-CD 0.0391 0.5575 0.2194
UC-T1D 0.4277 0.0612 0.1049
UC-CD 3.76e-04 <10e-04 <10e-04

3.5. Conclusion

This chapter implements a perturbation method (Lin, 2005; Lin and Zou, 2004; Zou et al., 2004)

to evaluate the statistical significance of a max test statistic, Mn, for the detection of sharing be-

tween pairs of diseases. The perturbation method, unlike the commonly used permutation method,

does not make any independence assumptions, allowing the inherent dependency structure among
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SNPs to remain. Specifically, the perturbation method mimics the null distribution of Mn, exploit-

ing standard normal random variables to preserve the covariance between score functions at the

SNP-level. In accounting for the inherent dependency among genetic variants in the evaluation of

our max test statistic, Mn, our test can be applied to varied data structures, such as large imputed

datasets, and scenarios, including extending the max test to detect shared genetic variants within a

LD-defined window. In extending the max test to detect shared genetic variants within a LD-defined

window, the number and identity of SNPs are not required to be identical across the pair of GWAS.

By accounting for the dependency structure of the genome, we can improve the power of detecting

whether a pair of complex diseases shares sparse disease-associated genetic variants. In simula-

tions, using the proposed ‘no window’ perturbation method is more powerful for detecting identical

shared SNPs than the permutation method and ‘window’ perturbation method when the proportion

of sharing is low. When altering our definition of genetic sharing from identical SNPs to SNPs within

a dependency-defined window, ‘no window’ and ‘window’ perturbation methods perform more sim-

ilarly, while still outperforming the permutation method when the proportion of sharing is low. In

defining sharing within a window rather than at identical SNPs in simulation, the ‘window’ perturba-

tion method has the potential to perform better than ‘no window’ perturbation method. The lack of

separation is likely due to the complexity of the window analysis, in that window sizes vary SNP-

to-SNP and windows are highly dependent, overlapping with one another. Thus, the perturbation

method may not be the most accurate representation of the null distribution of the window exten-

sion (Section 3.2.2). To further investigate the separation between the ‘no window’ and ‘window’

perturbation methods, we can consider increasing the number of causal SNPs.

The ‘no window’ and ‘window’ perturbation methods were applied to all possible pairs of 4 clinically-

distinct pediatric autoimmune diseases (pAIDs) and compared the results to the results obtained

from permutation methods. The perturbation results are consistent with the permutation-based

results. Unlike the permutation method which has an analytical expression for determining the exact

p-value (Kobie et al., 2015), the accuracy of perturbation p-values is dependent on the number of

perturbations. With 10000 perturbations we observe perturbation p-values of 0 for genetically related

disease pair UC-CD.
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CHAPTER 4

STATISTIC QUANTIFYING SHARED GENETIC VARIANTS BETWEEN COMPLEX

DISEASES

4.1. Introduction

Understanding the shared genetic architecture of complex diseases has important epidemiological

implications, including improved treatment and prevention efforts. While genome-wide associa-

tion studies (GWAS) have effectively identified thousands of complex disease-associated genetic

variants (Hindorff et al., 2009; Manolio et al., 2009), pooling inferences across clinically-distinct

complex disease GWAS enables statistical and scientific gains (Benjamini and Heller, 2008). By

integrating clinically-distinct complex disease GWAS, the power of detecting a shared genetic ar-

chitecture is improved while also providing a united view of the underlying biological systems (Cai

and Tan, 2015). Several methods have made strides in the detection (Cai and Tan, 2015; Kobie

et al., 2015) and identification (Andreassen et al., 2013; Bhattacharjee et al., 2012; Chung et al.,

2014; Cotsapas et al., 2011) of shared disease-associated genetic variants between pairs of com-

plex diseases and sets of complex traits, though the degree to which these pairs of diseases, or

sets of traits, have an overlapping genetic architecture in comparison to other pairs and sets is not

well defined.

Improving methods in the detection, identification and quantification of shared genetic variants

across complex diseases is vital for bettering our understanding of complex disease genetic etiol-

ogy. A standardized quantification of complex disease pairs’ genetic relatedness, for subsequent

comparison to other disease pairs, is of particular interest in treatment prioritization. Because

GWAS allow for the determination of variant-specific effect sizes, an overlapping genetic archi-

tecture can be tested through the detection of shared disease-associated genetic variants and

characterized through the quantification of correlated effect sizes across complex diseases (Bulik-

Sullivan et al., 2015). A common approach in characterizing the level of genetic relatedness, or

quantifying genetic sharing, between a pair of complex diseases or traits is to estimate the genetic

correlation. Genetic correlation is the genome-wide aggregate of shared disease-associated vari-

ant effect sizes without imposing any thresholding restraints, thus, including variants that do not
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reach genome-wide significance. The existing methods for estimating the genetic correlation with

GWAS data face limitations in wide applicability.

Coheritability is a commonly used estimate of the genetic correlation between a pair of binary

complex diseases, or pair of quantitative traits. The concept of coheritability as an estimate of the

genetic correlation is an extension of the concept of single-disease heritability, or the proportion of

variance in a disease phenotype explained by the genetic variation in the population (Yang et al.,

2010). Coheritability is estimated using a restricted maximum likelihood (REML) approach and is,

specifically, an estimate of the genetic covariance in a linear mixed model framework divided by

the product of the estimates of the respective single-disease genetic standard deviations (Lee et

al., 2012a). Estimating the genetic correlation using the REML approach relies on individual-level

genotype data, which is often difficult to obtain (Lee et al., 2012a).

More recently Bulik-Sullivan et al., 2015 proposed a method for estimating pairwise genetic cor-

relations, relying only on readily available summary-level GWAS data rather than individual-level

genotype data. Bulik-Sullivan et al., 2015 exploit the documented relationship between single nu-

cleotide polymorphisms (SNPs) in high LD and their corresponding effect sizes to estimate the

genetic correlation, specifically by modeling the product of the marginal Z-scores for SNPs of a pair

of diseases, or traits, with respect to those SNPs’ LD scores (Bulik-Sullivan et al., 2015). The es-

timation technique proposed by Bulik-Sullivan et al., 2015 is dependent on prior information of the

diseases’, or traits’, underlying genetic architecture, as represented by single-disease heritability

estimates.

In this chapter we propose a statistic to quantify the genetic relatedness between a pair of complex

diseases using summary-level GWAS data. The statistic acts as an estimate of the genetic correla-

tion among shared disease-associated genetic variants and was largely motivated by the quadratic

functional proposed by Cai and Tan, 2015. Cai and Tan, 2015 propose a quadratic functional un-

der a two-sequence Gaussian model for the detection and quantification of simultaneous signals,

or, in our application, shared disease-associated variants. In addition, Cai and Tan, 2015 devise

an optimal estimation method of the quadratic functional assuming both normal mean vectors are

sparse, as is typical of genomics applications. They standardize their estimator by the number

of SNPs studied (Cai and Tan, 2015), while our proposed quantity adjusts for both the number of

SNPs studied and the respective sample sizes of GWAS pairs. Because our quantity is a function
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of SNP effect sizes, the varied sample size across studies must be accounted for, as the magnitude

of the observed effect size is driven in part by the sample size.

In addition to quantifying the genetic relatedness of complex disease pairs, we consider weighting

that quantification with respect to the functional annotations of genetic variants. That is, giving a

higher quantification of genetic relatedness to disease pairs with shared disease-associated vari-

ants of a larger functional importance. Often SNPs are assumed to be exchangeable with one

another, but that is certainly not the case when working with genome-wide data, especially with

respect to a SNP’s functional annotation. We use a transformed Eigen score as a functional weight

of our quantification of genetic relatedness. Ionita-Laza et al., 2015 proposed the Eigen score

as a meta-score integrating various functional annotations into one. The Eigen score is an all-

encompassing functional score that outperforms any single individual functional annotation, thus

eliminating the need to choose a particular annotation a priori (Ionita-Laza et al., 2015).

This chapter is organized as follows. We first propose a standardized quantification measure uti-

lizing summary-level GWAS data to characterize the genetic relatedness between a pair of com-

plex diseases, adjusting for varied GWAS sample sizes. We then apply a functional weight to

the quantification measure in the form of an Eigen score. We obtain the proposed quantification

measures for all possible pairs of GWAS data of 4 clinically-distinct, pediatric autoimmune disease

(pAIDs): common variable immunodeficiency (CVID), ulcerative colitis (UC), type I diabetes (T1D)

and Crohn’s disease (CD), and compare the results to previously reported detection p-values.

4.2. Statistical Formulation of Genetic Sharing Quantification Measure

Assume GWAS data are readily available for a pair of complex diseases, disease A and disease B,

from which summary-level marginal Z-scores are obtained. Let Ui be the Z-score of the marginal

association between disease A and the ith SNP (i = 1, · · · , n) and, similarly, let Vi be the Z-score

of the marginal association between disease B and the ith SNP. Specifically,

Ui = β̂i/SE(β̂i)

Vi = α̂i/SE(α̂i),
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where βi, SE(βi), αi and SE(αi) are estimated from their corresponding marginal logistic regression

models

logit(P (Yj = 1)) = β0 + βXji

logit(P (Zk = 1)) = α0 + αWki,

where P(Yj = 1) is the probability the jth individual (j = 1, · · · , NA) has disease A, P(Zk = 1) is the

probability the kth individual (k = 1, · · · , NB) has disease B and Xji and Wki are the respective

genotypes for the ith SNP. Note, each study’s sample size, NA and NB , can vary while the number,

n, and identity of the SNPs should be identical.

4.2.1. A New Quantification Measure

The varied sample size across studies must be accounted for when quantifying the genetic related-

ness between any given pair of diseases. The standard error (SE) includes a factor of the square

root of the corresponding sample size, that is SE(βi) =
√

var(βi)
NA

(or SE(αi) =
√

var(αi)
NB

), which im-

pacts the significance of the respective effect size. For a given effect size, the significance level,

and the magnitude of the effect size itself, increases with an increasing sample size.

Under the alternative hypothesis, in the presence of an association, Ui and Vi are approximately

normally distributed

Ui ∼ N(
√
NAµi, 1)

Vi ∼ N(
√
NBνi, 1),

where µi and νi are the standardized effect sizes for the ith SNP of disease A and disease B

respectively, independent of corresponding study sample sizes. To quantify the genetic relatedness

between disease A and disease B, consider the quantity

Q(µ, ν) =

∑n
i=1 |µiνi|√∑n

i=1 µ
2
i

∑n
i=1 ν

2
i

,

where Q(µ, ν) ∈ (0, 1) by the Cauchy-Schwarz inequality. The quantity Q(µ, ν) is a function of the
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true effect sizes for the ith SNP’s association with disease A or disease B, µi and νi respectively, so

the resulting magnitude of Q(µ, ν) is independent of study sample size. More specifically, Q(µ, ν)

represents the correlation among SNPs associated with both diseases of the pair (|µi| ∧ |νi| 6= 0)

while adjusting for the varied study sample sizes for diseases A and B. When Q(µ, ν) = 0, disease

A and disease B bear no genetic relationship. That is, Q(µ, ν) = 0 when for all i |µi| ∧ |νi| = 0, or

not one of the n SNPs studied is associated with both disease A and disease B. Q(µ, ν) = 1 when

for all i |µi| ∧ |νi| 6= 0 and |µi| = |νi|.

To estimate Q(µ, ν) we consider the estimation method by Cai and Tan, 2015, which optimally

estimates a quadratic functional in a “sparse regime”. A “sparse regime” is defined such that the

proportion of nonzero signals (SNPs associated with disease) is bounded by 1√
n

(Cai and Jeng,

2011; Cai and Tan, 2015; Jin and Donoho, 2004), as is typical of GWAS. Specifically, the numerator

of Q(µ, ν) is estimated by

n∑
i=1

|µiνi| =
n∑
i=1

[
(|Ui| −

√
log n)+ − µ0

] [
(|Vi| −

√
log n)+ − ν0

]
,

where µ0 = E0(|Ui| −
√
log n)+ and ν0 = E0(|Vi| −

√
log n)+, and the denominator of Q(µ, ν) is

estimated by

n∑
i=1

µ2
i =

n∑
i=1

[
(U2

i − 2 log n)+ − µ02
]

n∑
i=1

ν2i =

n∑
i=1

[
(V 2
i − 2 log n)+ − ν02

]
,

where µ02 = E0(U
2
i −2 log n)+ and ν02 = E0(V

2
i −2 log n)+. µ0, ν0, µ02 and ν02 can be approximated

with integration and because Ui and Vi have the same distribution under the null, µ0 = ν0 and µ02 =

ν02 .

µ0 = E0(|Ui| −
√
log n)+

=

∫ ∞
0

(|Ui| −
√

log n)2f(|Ui| −
√
log 2n)dUi
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µ02 = E0(U
2
i − 2 log n)+

=

∫ ∞
0

(U2
i − 2 log n)g(U2

i − 2 log n)dU2
i ,

where f(·) is the probability density function (pdf ) of the standard normal distribution and g(·) is the

pdf of the central chi-squared distribution. Recall, the variance of Ui and Vi is assumed to be 1.

The sparsity of the data cannot be ignored, especially when estimating the magnitudes of SNP-

specific effect sizes. The number of nonzero effect sizes is too small to be noticed in any sum of

order n (Jin and Donoho, 2004). Cai and Tan, 2015 utilize a soft thresholding procedure to shrink

effect sizes of a small magnitude toward the null, or 0. This allows the estimate of the genetic

correlation, Q̂(µ, ν), to be driven by the sparse nonzero effect sizes, rather than the null effect

sizes, which make up the majority. Their estimation procedure relies on the optimal effect size soft

threshold for denoising: logn, in the two-sequence simultaneous signal detection case between a

piar of diseases, and 2 log n, in the one-sequence signal detection case. Cai and Tan, 2015 have

an additional thresholding step, subtracting µ0 or ν0, was used for debiasing estimates of zero

coordinates of µ and ν. Notice, the estimator Q̂(µ, ν) is a function of U and V rather than the

unknown, true effect sizes µ and ν, thus the variability in our estimator is dependent on the sample

size of each study.

4.2.2. Functional Weighting

Consider the functionally weighted quantity

Qw(µ, ν) =

∑n
i=1 wi|µiνi|√∑n
i=1 µ

2
i

∑n
i=1 ν

2
i

,

where wi =
nEi∑n
i=1 Ei

, and Ei is a transformed Eigen score for the alternative allele of the ith SNP.

Ionita-Laza et al., 2015 provides allele-specific Eigen scores, from which an Eigen score for the

alternative allele of the ith SNP was transformed from the original scale (−∞,∞) to [0, 1] scale.
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4.3. Quantification of Genetic Sharing of 4 Pediatric Autoimmune Diseases

Our analyses follow from Chapter 2. Kobie et al., 2015 detects genetic sharing among pediatric au-

toimmune disease (pAID) pairs. Here we quantify the shared genetic variants for all possible pairs

of the previously investigated pAIDs: common variable immunodeficiency (CVID), ulcerative colitis

(UC), type I diabetes (T1D) and Crohn’s disease (CD) (Kobie et al., 2015; Li et al., 2015b), with

the standardized quantification measure Q(µ, ν). Q(µ, ν) was estimated for all possible pAID pairs

using Z-scores for each SNP, Ui and Vi. Z-scores for each SNP were calculated marginally from

individual-level pAID GWAS data. Only autosomal SNPs were included in the analyses, excluding

mitochondrial SNPs and SNPs found on either of the two sex chromosomes. SNPs within the major

histocompatibility complex (MHC) region of chromosome 6 were also excluded (Kobie et al., 2015).

GWAS for each pAID GWAS has an identical set of 473, 220 SNPs.

While the estimation of Q(µ, ν) relies on summary-level GWAS data, we used individual-level

GWAS data to aid in the estimation of the standard error (SE) of Q(µ, ν). The SE of Q(µ, ν) was

estimated with a bootstrapping procedure: selecting individuals and their corresponding genome-

wide genotypes from each pAID GWAS with replacement, re-calculating SNP Z-scores and re-

calculating Q(µ, ν) for 100 replications. Table 4.1 shows pairwise estimates of Q(µ, ν) with corre-

sponding SE estimates. Table 4.1 compares our quantification measure to published genetic cor-

relation estimates (Li et al., 2015a) for specified disease pairs. The published estimates of genetic

correlation, or coheritability (REML − coh2), are calculated using restricted maximum likelihood

(REML) estimation methods in a bivariate linear mixed effect model framework (Lee et al., 2012a;

Lee et al., 2011; Li et al., 2015a; Yang et al., 2011a,b). REML − coh2 estimates account for the

direction of effects while estimates of Q(µ, ν) do not. Table 4.1 also compares estimates of Q(µ, ν)

with permutation-based p-values for the detection of genetic sharing among pAID pairs (Kobie et

al., 2015) and with naive estimates of the genetic correlation, r, without accounting for the sparsity

of the data. Naive estimates of the genetic correlation, r, are calculated using the summary-level

SNP Z-scores of the disease pair and, like REML− coh2, account for the direction of SNP effects.

Table 4.1 presents the Spearman correlation, which is robust to non-linear relationships between

the set of Z-scores.

Table 4.1 also presents the functionally weighted quantification measure, Qw(µ, ν). QE(µ, ν) gives
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Z-scores a higher weight if their corresponding SNP is more functionally relevant.

Table 4.1: Pairwise estimates of the genetic correlation Q(µ, ν), and weighted genetic correlation
Qw(µ, ν), with standard error (SE) compared to pairwise permutation-based p-values, coheritability
estimates REML− coh2 (Li et al., 2015a) and Spearman correlation estimates, r

Disease Pair Permutation Q(µ, ν) (SE) Qw(µ, ν) (SE) REML− coh2 (SE) r

CVID-UC 0.8168 0.0012 (0.0056) 0.0012 (0.0058) 0.134 (0.170) 0.10
CVID-T1D 0.0337 0.0079 (0.0068) 0.0072 (0.0067) 0.207 (0.167) 0.03
CVID-CD 0.0391 0.0030 (0.0051) 0.0027 (0.0049) 0.115 (0.116) 0.16
UC-T1D 0.4277 0.0065 (0.0068) 0.0068 (0.0070) -0.095 (0.086) 0.09
UC-CD 3.8e-04 0.3786 (0.0148) 0.3960 (0.0147) 0.674 (0.072) 0.30

T1D-CD 0.0262 0.0126 (0.0069) 0.0105 (0.0070) 0.142 (0.064) 0.11

Estimates of Q(µ, ν) are consistent with permutation-based p-values detecting genetic sharing.

Genetically related disease pair UC-CD has an estimated Q(µ, ν) closest to 1, 0.3786 (0.0148),

while CVID-UC, CVID-T1D, CVID-CD, UC-T1D, T1D-CD disease pairs with little to no evidence

of genetic sharing have Q(µ, ν) estimates much closer to 0 (Table 4.1). For disease pairs CVID-

UC, CVID-T1D, CVID-CD, UC-T1D with little to no evidence of genetic sharing, Q(µ, ν) estimates

appear more comparable than the permutation-based method with p-values ranging from 0.0337

to 0.8168 (Table 4.1). Similar conclusions are drawn from REML − coh2 and Spearman r, with

estimates closest to 1 for the genetically related disease pair UC-CD (Table 4.1). Note, REML −

coh2 estimates have much larger SE estimates, and conclusions drawn from Spearman r estimates

are less consistent across disease pairs with no evidence of genetic sharing (Table 4.1).

Weighted genetic correlation estimates, Qw(µ, ν), are comparable to the unweighted estimates

(Table 4.1). In this case, integrating annotation information has little to no effect on the quantification

measure across the studied disease pairs.

4.4. Conclusion

This chapter proposes a quantification measure acting as an estimate of the genetic correlation

among shared genetic variants between a pair of complex diseases. The quantification measure,

Q(µ, ν), is a function of SNP effect sizes, independent of the varied sample size across disease

GWAS. We utilize an estimation procedure by Cai and Tan, 2015 for the estimation of Q(µ, ν),

which is optimal under sparse conditions typical of GWAS.

In applying our quantification measure to all possible pairs of 4 pediatric autoimmune diseases
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(pAIDs), the conclusions drawn from estimates of Q(µ, ν) are consistent with permutation-based

p-values and coheritability estimates, REML − coh2. Our quantification measure only relies on

the summary-level GWAS data rather than the individual-level data required by coheritability esti-

mates under the random effects linear mixed model framework. Our quantification measure also

adjusts for the varied sample size across GWAS. Q(µ, ν) estimates appear more uniform across

disease pairs with no evidence of genetic sharing than the permutation-based method with diverse

p-values. Naive Spearman correlation estimates, r, tend to overestimate the genetic correlation of

disease pairs that show no evidence of genetic sharing. r is calculated using the summary-level

SNP Z-scores without adjusting for the varied sample size across GWAS. Non-zero SNP Z-scores

from disease GWAS with larger samples sizes are likely inflated in magnitude with respect to the

corresponding Z-scores of disease GWAS of smaller sample sizes. Also, estimates of r do not take

into account the sparisty of GWAS data.

We also consider adding a functional weight to our estimate of the genetic correlation, Qw(µ, ν).

Intuitively, disease pairs that share variants with larger functional importance are more likely to have

a shared genetic etiology, or overlapping genetic pathways causing disease. Though in this case,

integration of annotation information with the transformed Eigen score has little effect on Q(µ, ν)

across disease pairs.
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CHAPTER 5

DISCUSSION

In this dissertation we develop methods to investigate the genetic relatedness within complex dis-

ease sets through the detection and quantification of shared disease-associated single nucleotide

polymorphisms (SNPs). In Chapter 2, we developed a global test to integrate complex disease

genome-wide association studies (GWAS) and detect whether a pair of diseases exhibits evidence

of genetic sharing through the detection of shared SNPs. We then added a level of dependency

on the direction of SNP association to the global test, allowing for a more specific account of what

the detected genetic similarities represent. We also proposed a sequential identification procedure,

utilizing our global test of detection, to identify the top drivers of genetic sharing.

In Chapter 3, we implemented a perturbation method to evaluate the statistical significance of the

global detection test proposed in Chapter 2 without assuming independence among SNPs. The

perturbation method exploits independent standard normal random variables to emulate the null

distribution of while preserving the inherent dependency among SNPs. We then extended the test

of detection from detecting SNPs at identical SNPs to detecting SNPs within a dependency-defined

window. In Chapter 4 we propose a quantification measure to quantify the detected genetic sharing

between complex disease pairs using summary-level GWAS data. We consider a functional weight,

giving more weight to SNPs with more functional relevance.

In Chapters 2-4 we apply our methods to a set of clinically-distinct pediatric autoimmune disease

(pAID) GWAS. With the proposed detection methods we were able to identify pAID disease pairs

that show evidence of genetic sharing. Our quantification measure identified the disease pair ulcer-

ative colitis (UC)-Crohn’s disease (CD) as exhibiting the most genetic sharing of all studied pAID

pairs, which is consistent with our detection results. While incorporating the functional annotation

information in our quantification measure of Chapter 4 does not alter our conclusions in its absence,

the development of integrative methods is crucial for epidemiological advances.
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