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Abstract— We present a methodology for characterizing and
synthesizing swarm behaviors using both a macroscopic model
that represents a swarm as a continuum and a microscopic
model that represents individual robots. We develop a system-
atic approach for synthesizing behaviors at the macroscopic
level that can be realized on individual robots at the microscopic
level. Our methodology is inspired by a dynamical model of
ant house hunting [1], a decentralized process in which a
colony attempts to emigrate to the best site among several
alternatives. The model is hybrid because the colony switches
between different sets of behaviors, or modes, during this
process. At the macroscopic level, we are able to synthesize
controllers that result in the deployment of a robotic swarm in
a predefined ratio between distinct sites. We then derive hybrid
controllers for individual robots using only local interactions
and no communication that respect the specifications of the
global continuous behavior. Our simulations demonstrate that
our synthesis procedure yields a correct microscopic model from
the macroscopic description with guarantees on performance at
both levels.

I. INTRODUCTION
There are many examples of self-organized processes of

natural aggregation that achieve global objectives such as
nest construction, foraging, brood sorting, hunting, navi-
gation, and emigration, involving only local interactions
between individuals and between individuals and their envi-
ronment. We address the so-called inverse problem for group
behaviors, the design of individual behaviors to achieve
a desired macroscopic goal. In this paper, we develop a
synthesis methodology for autonomous robot behaviors that
similarly rely on local interactions without communication
but result in provably correct group behaviors. We apply
this methodology to a multi-site deployment task, which has
applications to the distribution of robots and mobile sensors
for search-and-rescue and surveillance.

We are inspired by studies of the process through which
an ant colony selects a new home from several sites and
emigrates through quorum-dependent recruitment mecha-
nisms [1]. This “house hunting” phenomenon exhibits several
desirable features for our task. Although the ants rely only
on physical contact and do not employ any communication,
simple individual ant behaviors result in group behaviors
that are thought to be optimal for the colony. A quorum
sensing mechanism speeds up emigration to a site when
it is sufficiently populated, a reflection of many individual
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decisions on the site’s quality. The resulting group behavior
is robust to environmental noise and to changes in numbers
of agents. These features suggest that a deployment model
with quorum-dependent recruitment will produce an effective
distribution of resources more quickly and robustly than
other approaches.

This work is related in spirit to the work of [2], which
presents a systematic approach to translate group behaviors,
modeled as vector fields on a low-dimensional abstract
manifold, into agent behaviors in a high-dimensional man-
ifold derived from copies of an agent’s state space. As
in recent work on modeling and analyzing swarm robotic
systems [3] [4] [5], we employ a multi-level representation
of swarm activity. The highest level consists of a macro-
continuous model, also called the Rate Equation model [6],
characterized by differential equations in which the state
variables represent population fractions engaged in different
roles or tasks. We distinguish the macro-discrete level, which
models a discrete number of agents in each role according to
the Stochastic Master Equation [7], as an intermediate level.
The lowest level is a microscopic model [6] of agents in a
physical setting, incorporating the geometry and dynamics of
individual agents and possibly modeling heterogeneity. Ap-
plications such as collaborative manipulation [3], object clus-
tering [4], and adaptive multi-foraging [5] can be modeled
at the macro-continuous level by averaging performances
of multiple individual robot controllers at the microscopic
level. In contrast to this bottom-up analysis procedure, our
methodology is based on a top-down design approach.

In our previous work [11], we employed this three-level
representation to synthesize ant-inspired robot behaviors for
the task of identifying a single best site. The novel contri-
bution of our work here is a synthesis procedure to alter the
group behavior at the macro-continuous level, allowing in
turn the synthesis of microscopic level behaviors to achieve
the desired group behavior. We apply our methodology to a
macro-continuous model of ant house hunting [1]. We alter
the house hunting model by adding controls that are designed
to meet the requirements of a multi-site deployment task. We
realize the specifications of the controlled macro-continuous
level behaviors at the macro-discrete level and then at the
microscopic level. The resulting agent closed-loop control
laws cause the population to behave in the prescribed manner.

II. METHODOLOGY
We consider a population of N agents moving in the con-

tinuous state space Xa ⊂ R
2. At any given time, an agent’s

actions are determined by one of a set La of la controllers or
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Fig. 1. Levels of abstraction of a swarm

behaviors. We can describe the agent as a hybrid automaton,
Ha = {Xa, La}, to indicate that its activity is governed
by both continuous and discrete dynamics. Fig. 1 shows
how this high-dimensional microscopic level can be mapped
to lower-dimensional representations, the macro-discrete and
macro-continuous levels, through the abstractions Fd and Fc.

Representing the swarm as a continuous quantity, the
macro-continuous level models its dynamics with a set of
differential equations whose variables, xi (i = 1, ..., b), are
the population fractions associated with different roles. Each
role is defined by a collection of agent controllers. It is
assumed that the population is conserved, so one variable
may be removed through the conservation constraint. The
variables therefore comprise a continuous state space Xp ⊂
R

b−1. If the model is a hybrid system, then the state space
is divided into a set Lp of lp regions, called population
modes, each of which is associated with different continuous
dynamics. The system may then be described by a hybrid
automaton Hp = {Xp, Lp}. The macro-discrete level, which
considers a swarm as a collection of discrete agents rather
than a continuum, maintains a count of the number of agents
in each of the b different roles.

III. MACRO-CONTINUOUS LEVEL MODEL

Our starting point is the model of ant house hunting
behavior presented in [1]. This model, constructed from
experimental observations of Temnothorax albipennis ants,
predicts the behavior of a colony of N ants that is faced
with a choice between two new nest sites, labeled 1 and 2,
following the destruction of its original nest, site 0. Site 2 is
a higher quality nest than site 1. A fraction p of the colony
is actively involved in house hunting, and the remainder
consists of brood items and other “passive” ants that must
be carried to a new nest. The active ant fraction is divided
among the following state variables: naive ants, X; assessors
of site i ∈ {1, 2}, Zi; and recruiters to site i, Yi. The passive
ant fraction is divided among the variables Bi, i ∈ {0, 1, 2},
the passive ants at site i.

A salient feature of ant house hunting behavior is the
phenomenon of recruitment. Recruiters to site i bring ants
from site 0 to i, and both their method of recruitment and
their target recruitee depend on whether their population has

reached a quorum T . If Yi < T , then the recruiters limit
themselves to using tandem runs to lead naive ants, X , to
assess site i. If Yi ≥ T , the recruiters use the faster method
of transports to carry the passive ants at site 0, B0, to site i.

The model equations are as follows [1]:

Ẋ = −(µ1 + µ2)X − λ1Y1θ(X)θ(T − Y1)

−λ2Y2θ(X)θ(T − Y2)

Ẏ1 = k1Z1 − ρ12Y1

Ẏ2 = k2Z2 + ρ12Y1

Ż1 = µ1X + λ1Y1θ(X)θ(T − Y1) − ρ12Z1 − k1Z1

Ż2 = µ2X + λ2Y2θ(X)θ(T − Y2) + ρ12Z1 − k2Z2

Ḃ0 = −φ1Y1θ(B0)θ(Y1 − T ) − φ2Y2θ(B0)θ(Y2 − T )

Ḃ1 = φ1Y1θ(B0)θ(Y1 − T )

Ḃ2 = φ2Y2θ(B0)θ(Y2 − T ) (1)

In these equations, θa(X) = 1 when X > 0 and 0 otherwise.
Naive ants discover site i at per capita rate µi. Assessors
become recruiters to site i at per capita rate ki, which is
directly related to the quality of the site. λi and φi are the
per capita rates at which recruiters perform tandem runs and
transports to site i, respectively. ρij is the per capita rate at
which assessors and recruiters of site i encounter site j and
switch their allegiance by becoming assessors and recruiters,
respectively, of that site.

In a robotics context, the active ants are analogous to
robots that organize the distribution of resources or other
robots, the “passive” agents, among multiple sites. In the
most general case, we may imagine a scenario in which
there are M sites and N >> M robots located at an initial
site 0. One may specify a connectivity graph that describes
how robots can move between sites; this graph need not be
complete, but all sites must be connected. The goal is to
deploy the robots so that the robot fraction at each site is as
close as possible to a predetermined fraction. This balanced
deployment paradigm may be used for tasks such as the
allocation of resources proportionally to local necessities or
the surveillance of several sites of similar importance.

We consider the special case of the house hunting model,
in which M = 2 and both sites are connected to site 0.
Fig. 2 (left) shows a typical environment with sites 0, 1,
and 2 and obstacles. We only consider environments that
lend themselves to the construction of navigation functions
[12] and the abstraction of a circular boundary with circular
obstacles (right).
IV. MACRO-CONTINUOUS LEVEL BEHAVIOR SYNTHESIS

A. Specification for balanced deployment of robots
We extend the ant house hunting model to allow the

swarm to split between two available sites at a predetermined
occupancy ratio α ≥ 1. We focus on the active robots only
and require that the system has one equilibrium at:

X = Z1 = Z2 = 0 , Y1 =
p

1 + α
, Y2 =

αp

1 + α
, (2)

Due to the switching functions that control the tandem
run and transport terms, model (1) is a hybrid system Hp.
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Fig. 2. A three-site environment with obstacles (left) and the model with the
contours of a navigation function (right) [◦ = naive robot, ♦ = assessor].

The five active robot state variables {X,Y1, Y2, Z1, Z2}
are decoupled from the three passive robot state variables
{B0, B1, B2}. Since the active robot fraction p is constant,
X can be eliminated through the conservation constraint:

X + Y1 + Y2 + Z1 + Z2 = p . (3)

The system therefore evolves on the four-dimensional state
space {Y1, Y2, Z1, Z2 ≥ 0, Y1 + Y2 + Z1 + Z2 ≤ p}. The
state space is divided into four modes by the hyperplanes
Y1 = T and Y2 = T , the quorum switches. The modes are
labeled by combinations of Q and N , where Q stands for
“quorum reached” and N stands for “no quorum”:

NN : Y1 < T , Y2 < T QN : Y1 ≥ T , Y2 < T

NQ : Y1 < T , Y2 ≥ T QQ : Y1 ≥ T , Y2 ≥ T .

We require that the equilibrium (2) is inside mode QQ;
that is, (1 + α)T ≤ p ≤ αp.

B. Synthesis of new behaviors
We first add controls to the dynamics of mode QQ so

that it contains steady state (2) and no trajectories leave the
mode. Mode QQ consists of an affine dynamical system ẋ =
Ax + a evolving on a four-dimensional simplex. Here x =
[Y1 Y2 Z1 Z2]

T , and the offset a is obtained by replacing
X with p − Y1 − Y2 − Z1 − Z2 in model (1), according to
equation (3). We redefine the dynamics of QQ as the control
system ẋ = Ax + Bu + a, where u = Fx + g is an affine
feedback law. The controlled dynamics are thus:

ẋ = (A + BF )x + (a + Bg) . (4)

To enforce the conservation law (3), we dictate that
the controls must result in a balance of terms among the
differential equations. We only add controls to the recruiter
dynamics, since the recruiter fractions alone determine the
current mode and the steady state:

Ẏ1 = k1Z1 − ρ12cY1 + ρ21cY2 + d

Ẏ2 = k2Z2 + ρ12cY1 − ρ21cY2 − d (5)

Y2 robots can now switch allegiance to Y1 at rate ρ21c. ρ12c

may differ from ρ12 in the original model, and d is a constant.

To ensure the desired steady state, we set Ẏ1 = 0, Ẏ2 = 0
and substitute the values in equation (2) for the variables.
This results in the equation:

(αρ21c − ρ12c)
p

1 + α
+ d = 0 . (6)

To prevent trajectories from escaping mode QQ, we apply
conditions (1b) and (2a) of Proposition 3.1 from [9] at
the facets F1 = {x ∈ R

4 | nT
1
x = −T} and F2 =

{x ∈ R
4 | nT

2
x = −T}, where n1 = [−1 0 0 0]T and

n2 = [0 − 1 0 0]T are the normal vectors of F1 and F2,
respectively. The conditions reflect the fact that for a point x
of a simplex, an affine function f(x) is a convex combination
of the values of f at the simplex vertices. The vertices of
the simplex corresponding to mode QQ are:

v1 = [T T 0 0]T v4 = [T (pN − T ) 0 0]T

v2 = [T T (pN − 2T ) 0]T v5 = [(pN − T ) T 0 0]T

v3 = [T T 0 (pN − 2T )]T (7)

Setting f(x) = ẋ from equation (4) and noting that ẋ =
[Ẏ1 Ẏ2 Ż1 Ż2]

T , the conditions to be satisfied are:

nT
1
f(vi) ≤ 0, i ∈ {1, 2, 3, 4} ⇒ Ẏ1 ≥ 0 (8)

nT
2
f(vj) ≤ 0, j ∈ {1, 2, 3, 5} ⇒ Ẏ2 ≥ 0 , (9)

where Ẏ1 and Ẏ2 are evaluated at the designated vertices
using the equations in (5). The resulting set of inequalities is
satisfied if conditions (8) and (9) are satisfied when evaluated
only at vertex v1:

Ẏ1 = −ρ12cT + ρ21cT + d ≥ 0 (10)
Ẏ2 = ρ12cT − ρ21cT − d ≥ 0 (11)

⇒ d = (ρ12c − ρ21c)T . (12)

The relationship between ρ12c and ρ21c may be derived
by substituting the expression for d from equation (12) into
equation (6):

ρ12c

ρ21c

=
αp − T (1 + α)

p − T (1 + α)
. (13)

We now modify the dynamics of the other three modes
so that they contain no attractors and trajectories starting
inside these modes follow the pattern: NN → NQ or QN ,
QN → QQ, NQ → QQ. We do this by replacing the
recruiter dynamics in these modes with the equations in (5)
with switches that prevent states from flowing in the −Y1

direction in modes NN , NQ and in the −Y2 direction in
modes NN , QN .

The controlled system is thus defined by the equations:

Ẋ, Ż1, Ż2 from model (1)
Ẏ1 = k1Z1 − ρ12cY1θ(Y1 − T ) + (ρ21cY2 + d)θ(Y2 − T )

Ẏ2 = k2Z2 + ρ12cY1θ(Y1 − T ) − (ρ21cY2 + d)θ(Y2 − T )

(14)

We replace ρ12 in the Ż1, Ż2 equations with ρ12c.
Fig. 3 displays trajectories of the systems (1) and (14) on

a 2-D projection of the state space. The thick solid line is
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Fig. 3. Trajectories of the original and modified macro-continuous models
with p = 0.25, T = 0.0481, µ1 = µ2 = 0.013, λ1 = λ2 = 0.033, k1 =
0.019, k2 = 0.020 (values are from [1] [10]); α = 1.25, ρ12c = 0.01,
ρ21c = 0.0069, d = 0.000147. The dashed lines are trajectories beginning
at (a) [0 0 0 0]T , (b) [0.1 0 0.1 0]T , (c) [0 0.1 0 0.1]T , (d) [0.2 0 0 0]T ,
and (e) [0 0.2 0 0]T .

the trajectory of system (1) beginning at x = [0 0 0 0]T ;
all other initial conditions produce the same steady state.
The dashed lines are sample trajectories of system (14) for
p = 0.25, α = 1.25. The figure shows that the original
system converges to the equilibrium [0 0.25 0 0]T , whereas
the controlled system converges to the equilibrium (2).

Time delays corresponding to the travel time between sites
were ignored in our synthesis procedure. However, they were
included in the macro-continuous simulations in Section VI
by modifying the controlled model to be a set of delay
differential equations in which the variables represent robots
that are physically at a site. Time delays do not influence the
location of steady states, but they may induce limit cycles,
although none arise in this model. The effect of time delays
on behavior synthesis will be addressed in future work.

V. DESIGN OF INDIVIDUAL ROBOT BEHAVIORS

The following sections describe how to translate the
macro-continuous model into a macro-discrete model that
accounts for an integer number of robots and then into a
microscopic model of individual robots.

A. Macro-Discrete Level
Gillespie’s Direct Method [7] was used to perform a

stochastic simulation of the system that is represented de-
terministically by the macro-continuous controlled model.
The method replaces the continuous rate equations with
a sequence of individual robot state transitions and their
times. In our model, transition times for switching roles are
governed by a Poisson distribution. As N → ∞, the Poisson
transition probabilities per unit time become transition rates,
and the macro-discrete level predictions approach the macro-
continuous level solution.

Each transition s between roles is associated with a
propensity as, which is is defined such that asdt is the

probability that transition s will occur in the next time
interval dt. We describe how to compute the propensities
in [11]. The next state transition is selected according to a
uniform probability distribution over the propensities, and
the time until its occurrence, ∆τ , is computed from an
exponential distribution with

∑
s as as its parameter. The

time is advanced by ∆τ and the transition between two roles
is simulated by decrementing the number of robots in one
role and incrementing the number in the second. Depending
on the transition, the increment may occur immediately or
at a deterministic time in the future that represents the
completion of the robot’s navigation between sites. A tran-
sition associated with a tandem run or transport is initiated
independently of the current availability of recruitees at site
0, since a recruiter at a new site would not know this
information. Such a transition causes a decrement in the
recruitee population only if a recruitee is available at the
time when the recruiter is expected to arrive at site 0.

B. Modeling Individual Robots
A robot is represented as an entity that stores knowledge

of its role, site 0, another site, position, speed, and whether
it is navigating to a site. The stochastic simulation method
described in Section V-A is used to generate state transitions
and their times. The simulation is run in time steps ∆t to
implement the robots’ incremental navigation through their
environment, so a transition at time τ is initiated when t ≤
τ < t + ∆t. Each transition is assigned to a random robot
in the appropriate role that is not already en route to a site.

Navigation functions [12] are used to generate robot
trajectories between sites. A navigation function provides
a form for a feedback controller that guides an agent to a
goal, the unique minimum of the function, while preventing
collisions with obstacles. The position r of a robot, which
is represented as a point, is updated at each time step by
numerically integrating the equation

ṙ = −v∇ϕκ(r, rd)/ ‖ ∇ϕκ(r, rd) ‖ , (15)

where v is the robot’s speed and ϕκ(r, rd) is the naviga-
tion function with the ant’s current point destination rd.
The parameter κ, which was selected empirically, must be
high enough to make ϕ a valid navigation function and to
eliminate local minima. Various combinations of v and rd

are used to produce different agent controllers; for example,
one l ∈ La would be navigating from site 0 to site 1 at the
tandem-running speed.

Comment: Although our microscopic level simulation uses
a “global planner” to initiate transitions, it has an equivalent
formulation that can be implemented on a decentralized
swarm. The advantage of the Gillespie method is its speed;
unlike the decentralized approach, it does not require looping
through all agents at each time step. We also note that
although our model still requires more detail, including quo-
rum estimation, recruiter-recruitee communication, and inter-
robot collision avoidance, the quorum dependency does not
pose a theoretical impediment to synthesizing an executable
robot controller. See [11] for more details on these topics.
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VI. RESULTS

We implemented macro-continuous, macro-discrete, and
microscopic level simulations in Matlab of the controlled
model (14) for an occupancy ratio α = 1.25. We used the
three-site, three-obstacle environment shown on the right side
of Fig. 2; the robots are modeled at the scale of ants. The sites
are 65 cm apart, the inter-site distance used in experiments
to derive the site discovery and recruitment rates [10]. Each
site is represented as a circle of radius 0.02 m; a robot is
considered inside the site once it enters the circle.

All robots begin as naive at site 0. Robots performing
tandem runs move at 1.5 mm/sec, while all other robots
move at 4.6 mm/sec, the transport speed [1]. The rate
units are min−1. In the macro-continuous and macro-discrete
simulations, the time delays τij due to navigation from
site i to site j were measured from the microscopic level
simulation. The delays due to tandem runs are τ01 = τ02 = 6
min; delays from all other journeys are τ01 = τ02 = 2.2 min,
τ10 = τ20 = 2.5 min, and τ12 = τ21 = 2.48 min. The time
step ∆t is 0.05 min.

Fig. 4 displays the recruiter fractions at sites 1 and 2 from
simulations at all three levels with an active robot population
of pN = 208. The macro-discrete and microscopic level
simulations match the macro-continuous model fairly well.
Although not shown, it has been verified that the macro-
discrete simulation approaches the macro-continuous model
as pN increases. At 700 min in the macro-continuous model,
Y1 = 0.1089 and Y2 = 0.1357, which fall short of the
steady-state values in (2) by the fraction of recruiters that are
traveling between sites 1 and 2. These robots may be thought
of as patrolling the inter-site area. The final values of Y1 and
Y2 in the other two simulations are close to these fractions.
Thus, the steady-state occupancy ratio in the macro-discrete
and microscopic models approximates α = 1.25.

To investigate the effect of robot population on the steady-
state recruiter fractions, macro-discrete simulations were run
for active robot populations of 52, 208, and 832. For each
run, Y1 and Y2 were sampled at intervals as close as possible
to 2 min from 1000 to 5000 min. Fig. 5 shows the resulting
frequency distributions of Y1 and Y2. The vertical lines near
the centers of the distributions mark the macro-continuous
steady-state values. The mean and standard deviation of
each variable are also recorded in the figure. The standard
deviations decrease as the number of robots increases, which
is consistent with the fact that the macro-continuous model
is obtained as the limit of the macro-discrete model. The
standard deviation is less than 15% of the mean for a
relatively modest population of 52 active robots and less than
4% for a larger but still realistic population of 832.
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208 (dark gray), and 832 (black), where p = 0.25. Bar width is 1/N for
each value of N . Vertical lines mark Y1 = 0.1089 and Y2 = 0.1357.

VII. DISCUSSION

We have described abstractions of a robotic swarm at
three levels and presented a methodology for synthesizing
individual robot behaviors. Our main contribution is the
top-down approach to designing robot behaviors. We have
illustrated this methodology with the control and simulation
of site population growth in a model of ant house hunting
adapted to a robotic setting where robots must be deployed
to multiple sites in a specified ratio.

An interesting question is whether the features of ant house
hunting actually provide an advantage in fulfilling the task
of balanced deployment. For example, consider the simpler
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linear feedback law, which does not rely on quorum sensing
or switching between controllers but has the desired steady
state fractions of X , Y1, and Y2 from (2):

Ẋ = −(µ1 + µ2)X

Ẏ1 = µ1X − ρ12cY1 + ρ21cY2 + d

Ẏ2 = µ2X + ρ12cY1 − ρ21cY2 − d , (16)

where ρ12c, ρ21c and d satisfy equation (6). It would be
possible to use (16) as our macro-continuous model and
synthesize robot behaviors from it using our methodology.
Indeed, for the particular set of parameters used in our
simulations, the difference between models (14) and (16)
is not substantial. However, if the discovery rates µ1 and
µ2 in both models are reduced by a factor of 10, the
importance of tandem runs becomes apparent. Fig. 6 shows
simulation results1 of (Zi + Yi) (i = 1, 2) for model (14)
and Yi (i = 1, 2) for model (16) in this situation. The
quorum-based model presented here converges significantly
faster to the desired steady state. This illustrates a possible
advantage of the strategy employed by ants over the more
obvious linear feedback law (16). The recruitment rates,
which are controllable parameters, can significantly speed up
the deployment process to compensate for a low discovery
rate arising from environmental constraints. The recruitment
paradigm can be shown to increase robustness to perturba-
tions in the environment and robot population and to noise
in sensing and control of individual agents.

1Both models were simulated as delay differential equations with the
previously defined time delays to include the effect of navigation.

In future work, we would like to extend our synthesis
methodology to systems for which the macro-discrete level is
characterized by multi-modal distributions, which may not be
well-represented by macro-continuous abstractions [7]. This
is almost always the case in relatively small populations,
in which the dynamics are best described by stochastic
transitions between multiple stable steady states [8]. Finally,
we note that the methodology in this paper extends to higher-
dimensional state spaces at the macro-continuous level [9],
such as the more detailed house hunting model in [11].
Acknowledgements: We gratefully acknowledge the support
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