Target enumeration via integration over planar
sensor networks

Yuliy Baryshnikov Robert Ghrist
Mathematical and Algorithmic Sciences Department of Mathematics and
Bell Laboratories Coordinated Sciences Laboratory
Murray Hill NJ, USA University of lllinois

Urbana IL, USA

Abstract— We solve the problem of counting the total number bearing estimation, and sensor localization). For example
of observable targets €g. persons, vehicles, etc.) in a region the large-scale wireless system implemented in [10] assume
based on local counts performed by sensors which measure gnl an aggregation phase based on strict spatial separation of

the number of targets nearby and neither their identities na any . .
positional information. This theory is robust and accommodtes targets. Jung and Sukhatme [11] implement a multi-target

ad hoc sensor networks and mobile robot sensors alike. robotic tracking system where the targets are labeled with
colored lights. The survey paper of Guibas [8] pointing to
|. INTRODUCTION: TARGET COUNTING the broader literature on geometric range-searching assum

The prospect of small-scale sensor devices comes with the ability to aggregate target identities and concerrelfits
promise of sensor networks which can survey a region withith computational complexity issues. The paper byetil.
dense coverage [5]. With this promise, however, comes mady] on multi-target tracking via sensor networks noted,tha
challenges, including power consumption, heat dissipatig'target classification is arguably the most challenging rsid
and communication complexity. One strategy for remedyirgjocessing task in the context of sensor networks.

the situation is to focus ominimal sensing, engineering the Wi ‘1 tabl " o anificant
individual sensors to be as simple as possible to accomplisf] ¢ are aware of two notable exceptions. ne signiican
olution to a target enumeration problem is found in the work

the task and yet consume a minimum of resources. S . ) . o
We consider how to solve a simple data aggregation problé)rw:ang' Zhao, and Guibas [6], which gives a distributed algo

— counting unidentified targets — with a network of Ioca[Ithm f_o_r_ target enumeration without any targ_et-identilﬁina
minimal sensors. Specifically, we show that one can solygPabiliies on the part of the sensors. Their work assumes

enumeration problems with sensors that can count neamﬁtda”aﬁgrgelt sgpportslare rou?d b?lisﬁtlj]; that each sensor f
targets but cannot determine target identities, cannohat réads as-valued signal proportional to the inverse square o

target range or bearing, and cannot record a time Whendlgtance—to-target; and that target impacts are additieir

(moving) target came into view. Because the local sensors \Z{gggltr;irgl dcc;i]r(ljtsthtzr?efr(])l:erznbi(\a/regfalr?cicrgilemfoijnntﬂ; TS:SOE;S
envisage cannot discriminate targets, it is not obvious tow 9 9 9

merge redundant counting by neighboring nodes. Fhe target supports overlap minimally or not at aI.I. Our wor_k
It may seem surprising that a redundant array of simplisﬁ cpmplementary to this in that the theory we introduce is
sensors can solve the global enumeration problem. Mo 85|gned to handle very complex target support overlaps.

surprising still is the fact that there are very few requieens  The other example of target counting without identification
on the sensors’ detection specifications. We do not regiéte tor |gcalization arises in work of Singét al, who consider a
target visibility is purely a function of distance (cf. theptcal  network of sensors which return a value{if, 1} depending
use of theunit discassumption in coverage problems). Thergy target proximity [18]. Their technique involves usingé-
are no hidden assumptions about convexity of the targeigries data in the case of moving targets/sensors, sincged ta

detection zones, nor that the sensors or targets are unifopgunt in the stationary case is too difficult, even if all tirg
some targets may have more ‘impact’ than others. supports are convex, round, fixed, etc.

The reason for this combination of extreme robustness
and simplicity of the sensor capabilities is the nature af ou We have ignored for the moment many of the important
solution methods. We use a topological invariant —Ehaer technical issues associated with network implementation o

characteristic— molded into an integration theory. our methods. Much of the work in aggregation of data by
a network concerns network protocols for signal processing
A. Related work [13], managing constraints on bandwidth and energy [4], and

There are few similar approaches to problems in targd¢aling with errors or node failures [20]. This introdugtor
estimation or tracking, the literature on which almost apaper does not treat these important issues. We also assume
ways assumes the ability to identify different targets riglo noise-free sensor readings. This paper assumes an idkalize
with other high-level functions, including distance estion, setting to develop and highlight the formal tools.



B. Outline The Euler characteristic satisfies an inclusion-exclusion
The main results of this note consist of: (1) a theorem dHINCiPle (a consequence of the Mayer-Vietoris sequence on

target enumeration for continuum ‘sensor fields' based on'@Mology [9]): for A and B compact subcomplexes df,

topological |r_1tegrf_;1t|0n the.ory, (2) b_ounds on the mtegrfa_r Y(AU B) = x(A) + x(B) — x(AN B). 3)

planar domains with holes; (3) a refinement theorem apgécab

to network discretizations; (4) a duality theorem for planalhis equation evokes the definition of a measure and allows

networks which provides a fast, distributed algorithm fdr aone to interprety as a generalized signed measure (general-

hoc networks; (5) methods for computing expected targieed, as it is only finitely additive). As many authors have

counts in the case of incomplete information; and (6) awbserved [15], [16], [19], this measure behaves as any con-

outline of applications to time-dependent systems such antional measure when restricted to the appropriate edass

mobile robot sensing modalities. This note tersely summaari of integrands and domains. In the settin@Zevalued functions

ideas from [1], [2] in the restricted context of a planar netkv  over simplicial complexes, this measure theory is complete
Our results follow from the classical and elegant theorame.

of integration with respect to Euler characteristic [196]. Definition 3: Let X denote a simplicial complex and

After surveying a simplified version of these methodsjih CF(X) the abelian group of functions frorX to Z with

we prove the fundamental enumeration theorenglih To generatord,, whereo is a closed simplex of . Given such

solve the problem of sparse network discretization, weigev a¢ = > c,1,, in CF(X), theINTEGRAL of ¢ with respect

bounds in§V on integrals over planar domains with a holeto Euler characteristic is defined to be

This yields a simple refinement theorentMl, and extensions

in §VII. We prove a duality result for planar networksgn1il /X Ppdx = Z Ca- (4)

that leads to fast numerical implementation, outlinedXt. This integral is well-defined.

Lemma 4 ([19], [16]): The integraIfX ¢ dx depends only
on the functiony and not on its decomposition. Specifically,
We present a simple, self-contained introduction to a topg- — S ¢aly,, WhereU, is a subcomplex off, then
logical integration theory. For simplicity, we work in the
simplicial category. LeX denote a simplicial complex: a topo- / bdy = Z cax(Ua). (5)
logical space built from a collection of closed simpliceaay X -
together along faces (seeg, [9] for elementary definitions). Proof: Given two subcomplexed and B, the relation
Definition 1: The EULER CHARACTERISTIC of a compact 1aup = 14 + 1p — 1anp is mirrored by Equation (3). It
simplicial complexX has two equivalent definitions: follows that [ 1y, dx = x(U.). By definition, [, -dx is a
1) combinatorial: homomorphlsm fromCF(X) to Z; the lemma foIIc_)ws. -
Remark 5:1t is by no means necessary to restrict to simpli-
cial complexes. For a large class of topological spacesoutth
an explicit cell structurey is well-defined using Eqn. (2) with

Il. TOPOLOGICAL INTEGRATION

X(X) = i(—l)’“#{k—simplices inX}. (1)

. h=0 singular (or, better still, Borel-Moore) homology. Likes®, the
2) homological: class of integrable function§ F(X) above generalizes to the
0o sheaf ofcONSTRUCTIBLE functions onX [16]. This level of
X(X) = Z(_1)k dim(H(X)). (2) generality is not required for this paper.
k=0
Here, Hy(X) denotes thek!” (simplicial) homology of X [Il. ENUMERATION VIA INTEGRATION

(in R coefficients), a vector space that measures the numbe{ye tyrn now to target-counting problems. The following
of *holes’ in X that ak-dimensional subcomplex can detect,athematical formulation leads naturally to the integrati
[9]. As homology depends only on the homotopy typeXof theory of the previous section.

the Euler characteristig is a topological invariant of a space, cgnsider a setting where the sensors are parameterized by
independent of how it is triangulated into a simplicial cdexp 5 (reasonably nice) topological spadé. One imagines a

Example 2: The following examples are illustrative: ‘continuum field’ setting in which a counting sensor resides

1) Euler characteristic is a generalization of cardinality:every point ofX. It is helpful to keep in mind two cases: (1)
for a discrete setX, x(X) = |X|. X = R? and is ‘filled’ with sensors; (2)X is a simplicial

2) If X is a compact contractible set — if it can becomplex, where the counting sensors at the verticesXof
deformed continuously within itself to a single point —pass’ counting data to all other simplices &f. Assume a
theny(X) = 1. finite set of stationary targets are present and detectaple b

3) For a finite graphl’, the Euler characteristic ix(I') = the sensor field. We do not specify detection ranges, etc., in
#V () — #E(T). terms of geometric constraints, but rather in terms of $eis.

4) For X C R? a connected set wittV' holes, x(X) = each target, define itSTARGET SUPPORTU,, C X, to be the

1—N. subset of those sensors to which the target is ‘visibleh@at



sensed: the actual sensor modality is irrelevant). Theosensomputed as:
field on X returns a counting functioh : X — N, where

) = oo € UL, Jorax = x> s ®
Assuming knowledge of the target supports’ topology, ore ha _ > S
a simple means of enumerating the targets without locéizat ) X ({h = s}) ds ©)
or |dent|f|cat|(?n. . _ Z (_1)n—;t(p)h(p) (10)
Theorem 6:If each target has a compact contractible sup- pecih)
portU, C X, then the integral of the impact functidriz) =
#{a:x € U,} with respect tady is the target count: Eqgns. (8) and (9) apply tdi-valued and0, oo)-valued impact
functions respectively, and the notatidh > s} represents the
#a = [ hdy. (6) seth™!((s,00)). Eqn. (10) applies to &, co)-valued Morse

function on ann-dimensional manifold, wheré(h) is the set

i X .
Proof. By definition, h = 32, Lu. . AS Ux is compact of critical points ofh, andu(p) is its Morse index op € C(h)

and contractiblex(U,) =1 and [, hdxy =, 1 =#a. R 14]
The remarkable aspect of this result is that there are [10 '

constraints on the target supports other than the topoibglcdirectly from the definitions. For Eqn. (10), one Haorse.

each target has support with= 1. In particular, targets can - . .
9 PP in b 9 Bhus, the Euler characteristic of upper excursion sets is

have different ‘impact’ on the sensor field, and there is n ) . o
need for convexity or fixed-radius assumptions. piecewise-constant, changing only at critical values. far

Theorem 6 does, however, assume that there is a Wéié—hi’ fh; Z(p>)’ ande <§.f1férili:2i?ta];y >Morse thetc)) rytkE:(La4]
defined counting functior over all of X — e.g, given by > {h 2 s+ ¢} di {h = s — ¢} by

o . .2 addition of a product of disc®*®) x D*~#P) glued along

a sensor at every point in the spa&e In a less idealized ) —u(p) . o .

: _ ; #p)x 9 D"~ MP) The change in Euler characteristic resulting
setting, one has a finite number of nodes which, under the

best circumstances, triangulates a region of the plane. [éom this handle addition ig—1)"~+*. This, applied to Eqn.

integrand ‘counting functionh is known only on the vertex ?yl_elds Eqn. (10). . n
set of this triangulatior”. The target supports,,  R? need This theorem means, roughly speaking, that one can trade
not be well-placed with respect @ at all ¢ between Euler characteristic counts, integrals with retsfe

Ieebesgue measure, and Morse theory at will.

We resolve this discretization problem by extending th Fig 1 ) le of lect ft i ¢
integration theory tdR-valued integrands. By taking the usual 'g. 1(a) gives an example of a collection of target supports

step-function upper semi-continuous approximation torat/i (Ua} with he_lg_ht function, which is sampled on a umf_orm
one can definef i dy for real-valued functions: : X — hexagonal grid in (b). The upper excursion set# @fre easily

[0, 00) which are reasonably behavegld, which have a finite f:omputed and the integral with respect to Euler charatiteris

Proof: Eqgns. (8) and (9) are elementary and follow

number of critical points). This extension of the theory i thus:
. . . . . : s=2 s=1 s=0
not Wlthout_ comphcathnse(.g, the mtegraﬂon operator is
no longer linear), but it allows one to import perspectives H#Ha = /th: 1 + 3 + 0 =4. (12)

from numerical analysis. In particular, given a samplingof

integrandh. over a discrete set, the integral of the piecewise- smoothing to a function’ with nondegenerate critical
linear (PL) interpolation of., denoted: 1, should be a good points yields three maxima and three saddles, with minirha (a

approximation if the sampling is of sufficient fidelity. Thisheight zero), see Fig. 1(c). Formula (10) implies
holds for integration with respect dy.

Theorem 7:Fix a collection{U,} of compact target sup- o~
ports inR™ in general position. For a triangulatiah of R”, /hdx =B+2+2)—-(1+1+1)+ 0 =4. (12)
let hp;, denote the piecewise-linear extension of the restriction
of h =) 1y, to the vertices off . Then, for7 sufficiently Taking the PL extensiohpy, yields upper excursion sets as
fine and regular, illustrated in Fig. 1(d): Eqgn. (9) yields a computation dami
to that of (11).

=2 pn=1 n=0

hppdy = / hx = #a. %

T V. HOLES IN THE NETWORK
Proof: See§VlI. [ ]

It is common in sensor networks to encounter ‘holes’ within
IV. COMPUTATION the network, through incomplete coverage or node failures.

Theorems 6 and 7 are useless without effective meansti case, one wants to estimate the number of targetsveelati
computing integrals with respect tby. Fortunately, there are t0 the missing information. This translates to the follogvin
several means of doing so. relative problem: if one know# : X — N only on some

Theorem 8:Given a compactly supported impact functiorfubsetd C X, how well can one estimaté, / dx from the
h : X — N, the integral ofh with respect tody may be restrictionh|A? We give bounds for the planar case.
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Fig. 1. The height function of a collection of target suppd#) is sampled
on a regular triangulation (b). This can be smoothed to a Blduction
with maxima/saddles/minima (c) or extended over the trdetgpn via PL
interpolation (d).

Theorem 9:Assumeh : R?2 — N is the sum of indicator
functions over a collection of compact contractible set®&7n
none of which is contained entirely withi, a fixed open
contractible disc. Then

[ i< [ navs [ R
R2 R2 R2

(13)

where
- _ maxgph :y €D
hy) = { h : else
. _ mingph :y €D
hiy) = h : else
Proof: Via additivity of xy over domains, Eqn. (13)

follows from the corresponding inequalities over the contpa

domainD. Explicitly, if » = h onR? — D, then

/ dez/ hdx—/ hdx+/ﬁdx.
R2 R2—D oD D

Denote byV = {V3} the collection of nonempty connected
components of intersections of all target suppdrts with
D. Since we work inR?, eachVj is a compact contractible
set which intersect®D. By Theorem 6, /5 hdy equals the
number of componentd’|. There are at leashaxyp h such
pieces; hence

hdx.

o<
D D

Considermingp h and remove from the collectioW this
number of elements, including all su¢fy equal toD (which
is possible since we remowvaingp h such elements). Each
remainingV; € V is not equal toD and thus intersect8 D
in a set with strictly positive Euler characteristic. Thus,

/hdxg/ hdy.
D D

Fig. 2. An example for which the upper and lower bounds of E#8) are
sharp.

Example 10:Consider the example illustrated in Fig. 2. The
upper and lower estimates for the number of targetaed
4 respectively. For this example, the estimates are sharp in
that one can have collections of target supports over cotmpac
contractible sets which agree withoutside of D and realize
the bounds.

Remark 11:The lower bound: can fail in several ways.
For example, a target support can interséctin multiple
components, causinl to not have a decomposition as a sum
of characteristic functions over contractible sets (buhern
with annuli). One can even find examples for which each
target support interseci® in a contractible set but for which
[ hdy is negative. The fact that the lower bouifid can be
so defective follows from the difficulty associated with afin
in the plane — these are ‘large sets of measure zerdyin

VI. THE REFINEMENT THEOREM

The bounds ofyV allow one to conclude when a hole is
‘inessential’ and no ambiguity about the integral exists.
Corollary 12: Under the hypotheses of Theorem 9, the
upper and lower bounds are equal when there is a unique
connected local maximum df on 9D.
Proof: In the case wher is constant o@D, i = h and
the result is trivial. Otherwise, both and & have connected



(and thus contractible) upper excursion sets. Applying.Eqio dy is equal tofﬁﬁd x. Via the Morse-theoretic formula of

(8) yields Eqn. (10),
[ b= [ b = Sahzsh - x({hz sh [rax= 3 o).
R? R2 s peC(h)
= Y 1-1=0. The integral thus equals the sum/obver the maxima odD

minus the sum of. over the saddle points in the interior of
m D, since saddles have Morse index= 1.
This permits an easy proof of Theorem 7 that, in accor- Denote by {p;}’ the maxima ofh, ordered by their
dance with one’s intuition about integration, refinementhef (increasing)h values. Denote by{¢;}{' the saddles of,

network leads to convergence of the integrals. ordered by their (increasing) values. By the Poincaré index
Proof: (of Theorem 7)Since integration is local, we theorem,
may comparef hdx and [ hpr dx over a single closed 2- 1= (D) = #maxime(ﬁ) B #saddle(;ﬁ),

simplex of the triangulatiof: if these are always equal, then

the theorem follows. One observes that for thgin general hence,N = M — 1. Note that, since there are no local minima,

position andZ sufficiently fine and regular, the unique locah(g;) < h(p;) forall i = 1...M — 1. Thus,

maxima ofh and hpy on the boundary of any 2-simplex of

T are equal and both level sets are connected. Corollary 12 / hdy = / hdy

completes the proof. [ D
It is easy to extend this proof t®R™ by proving the

appropriate extension of Corollary 12.

VII. HARMONIC EXTENSION AND EXPECTED TARGET > h(pm) =maxh = / hdy.
COUNTS ? D

. . ) ~ For the other bound,
We continue the results of the previous section, considerin

the case of a planar domain with a contractible hole on which —
. : hdyx
the integrand is unknown. As shown, upper and lower bounds 5
are realized by extending the integrand across the hole via
minimal and maximal values on the boundary of the hole.
Inspired by the result that the PL-extension of a discretely
sampled integrand yields correct integrals with respect to
Euler characteristic, we consider extensions over holas vi . L N
- ; A harmonic or harmonic-like functioh will often lead to
continuousfunctions. . . . . .
. . I ._an integral with non-integer value. Such an integral is best
The following result says that there is a principled in:
. mterpreted as amxpectedarget count.
terpolant between the upper and lower extensions. Roughly

speaking, an extension to a harmonic function (discrete OrExampIe 14:Consider a hole) and a function which is
P 9 Known only on9D and which has two maxima with value

continuous, solved over the hole with Dirichlet boundar 7 . . )
conditions) provides an approximate integrand whose iateggnd t.WO m!mmawnh value. Without knowing more "’?b"“t the
ossible size and shape of the target supports which make up

lies between the bounds given by upper and lower conv%x

: . ; i . , it is not clear whether this is more likely to come from one
extensions. There is nothing magical about harmonic funct ;
S : ; , . target support (which crosses the hole) or from two separate
tions: any form of weighted averaging will lead to an extensi

which respects the bounds. A specific criterion follows. :)a:/rgftthzuigfec;irésr.ocf[:;)nzglljjténg fﬁnzfi‘cr)r:]ﬁo\r/‘\/li?heoxrinssézgIg-ft th('es
Theorem 13:Given h : R? — D — N satisfying the Y yP

i — : : critical point in D. The value of the saddle isand satisfies
assumptions of Theorem 9, Iktbe any extension af which . :
. : . 0 < ¢ < 1, depending on the geometry @f on 9D. This
has no strict local maxima or minima dp. Then

yields [ hdy = 2 — ¢, reflecting the uncertainty of either one

2 - ; or two targets. In the perfectly symmetric case of Fig. 3Jef

/Rz hdx < /Rz hdx < /Rz hodx (14) c = 1 and the expected target count is, naturafly,In Fig.
Proof: Consider an open neighborhood bfin R? and 3[right], the harmonic extension has< % meaning that it is

modify h so that it preserves critical values, is Morse, anohore likely that there are two target supports.
falls off to zero quickly outside ob. This perturbed function, In the network setting, holes often arise due to node failure
denotedh, has isolated maxima 08D, isolated saddles in or lack of sufficient node density. In these scenarios, one
the interior of D (since there are no local extrema In by may reasonably employ any weighted local averaging scheme
hypothesis) and no other critical points outside/of Since across dead nodes to recover a function which will respect
h is a small perturbation of, the integral ofh with respect the bounds of Theorem 9. Different weighting schemes may
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1 0 IX. AD HOC NETWORKS

We note that the strategy of converting the sampling of the
true impact functiom over NV to a PL interpolation, does
0 0 0 not necessarily require knowing the coordinates of the sode
Indeed, the evaluation g‘fy -dx 1s conspicuous in its freedom
from coordinate geometry: it is a topological integral. Heo
is given a triangulation, the extension of the counting fiorc
h on vertices over the domain is automatic. However, if no
geometry associated 1 is known, it may not be possible to
Fig. 3. Anintegrand with a hole has two minima at heigtgnd two maxima  qetermine a canonical extensibp; over the domain. Such a

at height++1. Filling in by a harmonic functionh has an interior saddle at . . . R
gnt-+ g y 1. situation is not uncommon in sensor networks baseddhoc

height0 < ¢ < 1, depending on the geometry &fon 9D: [left] ¢ = 3 ) - . -
[right] ¢ < 1. wireless communications, an increasingly common protocol
for distributed sensor networks and robatics.
Assume that one is given a network in the form of an
abstract graplg = (N, &). By “abstract” we mean that the
be more appropriate for different systems. For exampleenogyojection of the 1-d cell comple to the workspace is
readings can be assigned a “confidence” measure, which, Wi@iknown. Edges should possess some proximity data. For
used as a weighting for the averaging over the dead zoBQample, one could assume thatis a UNIT DISC GRAPH

fidelity of the data. within unit distance in the workspace. A more realistic mode
is the QuUAsI unit disc graph, in which edges definitely exist
VIIl. HOLES VIA DUALITY below a certain distance, definitely do not exist above auert

_ o distance, and may exist (say, according to some probability
We augment Theorem 8 with a specialized formula for thgsyribytion) for nodes within a critical interval of distee.

plane which aids greatly with implementation. The strategy; any rate, the duality results ¢\VIIl allow us to compute
of this formula is to exploit the duality between holes anﬁ"ntegrals based on ad hoc networks.

connected components of the complement. This duality has &orollary 17: Assume an integrand : R?> — N, and

formal expression in terms of algebraic topology. let G be a network graph with node§” ¢ RZ, where the
Theorem 15:For h: R? — N only thing known is the restriction of to A/ (in particular,
0o the coordinates of\" in R? are unknown). If the network
/ hdy = Z (Bo{h > s} — Bo{h < s} +1), (15) G correctly samples the connectivity of the upper and lower
R2 s=0 excursion sets of,, then Eqgn. (15) returns the exact number
of targets.

where 3, is the number of connected components of the set.

Proof: Let A be a compact nonempty subseffst. Since to
A CR? H,(A) =0forall s > 2. Thus, via Eqn. 2, it suffices
to compute

An example appears in Fig. 4. Note that in this example, the
pology of the excursion sets dfare not sampled correctly:
sparsity leads to holes in the network. Nevertheless, gimee
connectivity of the upper and lower excursion sets is sathple
faithfully, the integral is correct. Although the exampledn

x(A) = dim Ho(A) — dim H; (4). is a unit disc graph, this is by no means necessary for the

Note: dim H, equals the number of connected componen':tgsun'
of A. The quantitydim H;(A), the number of holes i, X. MOBILE AGENTS

is, by Alexander duality [9], equal telim Ho(R? — A) — The setting of this work has assumed stationary targets
1, the number of (bounded) connected components of g, fixed target supports, being sensed by a fixed network
complement. The pr020f is completed by Eqn. (8), substiguting stationary counting sensors. It is desirable to violashb
in A={h>s}tandR* —A={h<s}. _ W assumptions, especially in the robotics context. We indica
Example 16:The duality formula (15) applied to the inte-pow the results of this note are applicable to both settings i
grand of Fig. 1 yields a sequence of remarks.
50 a1 a2 Remark 18:Consider the following scenario: a collection
—— —— —— of fixed target support$U,} lie in the plane. One or more
R2 hdy=1-2+1+3-1+1+1-1+1=4. mobile robotsR; can maneuver in the plane along chosen
The formula in Theorem 15 is extremely applicable. Wpaths z;(t), returning sensed counting functiorg(t) =
note that the determination of the number of connected cos#{«a : z;(t) € U,}. How should the paths; be chosen so
ponents of the upper and lower excursion sets is a simple to effectively determine the correct target count? ifear
clustering problem, computable in logspace with respect sopports are extremely convoluted, no guarantees arebpessi
the number of network nodes. therefore, assume that some additional structure is knewgn (



Fig. 5. Mobile agents determine target counts over a giapholes with

ig. 4. ling over ad hocnetwork retains enough connectivi . . . ) .
Fig. 4. A sparse sampling 9 ty multiple maxima require further refinement (dashed lines).

data to evaluate the integral exactly.

an injectivity radius) giving a lower bound on how “thin” the®f Sensors is not dense enough to cover the plane, but does
target supports may be form a connected network with holes. These holes will change

Assume that the robots initially explore the planar domafffmpPorally, emerging, bifurcating, disappearing: all isle,

along a rectilinear graph that tiles the domain into rectangles MoPile targets can slip in and out.

If desired, one can make these rectangles have either widti? this dynamic setting, the work i§V-VIl suggests a

or height in order to guarantee that all the, intersectl’, natural strategy of computing an expected value of the fateg
Consider the sensor functign: T' — N. The integralfr hdy @@ fu_nctlon of time and I_<e_ep|ng a running average o_f t_hese
is likely to give the wrong answer, even (especially!) for &PProximants. More sophisticated tracking of targets with
densel’. Two means of getting a decent approximation alJ?e_oles c.an.lt.)e accomphsh_ed by examining Iocahzed. temporal
(1) use the duality formula of Eqn. (15); or (2) perform discontinuities of these integrals. This is the subject of a
harmonic extension over the holes Bfas per§Vil. separate report.

However, neither is guaranteed to give a gamdoriori Our discussion of mobile agents is necessarily brief: there
approximation to the target count. How can one telllif are many more results possible about counting mobile target
should be filled in more? The simplest criterion follows fronwithout the need of clocks at all [1]. We leave these and
Corollary 12. Consider a basic cycl¢ c T in the tiling implementation issues for a more detailed future treatment
induced byT". If there is a single connected local maximum
on I, then (assuming that no smdll, lies entirely within
the hole) the harmonic extension ovef gives an accurate Space constraints forbid a comprehensive treatment of the
contribution to the integral. topic of numerical integration with respect to Euler chéeac

If, on the other hand, there are multiple maximal sets astic, a topic which seems to have been explored only in [12],
I, then one must refin€ into smaller cycles for which the and here from an integral-geometry perspective: there ishmu
criterion holds. The obvious approach is to guide the mobite be done. We present a few significant remarks, and leave
sensors so as to try and connect disjoint maxima and/oridisjathe details for an archival work.
minima. Fig. 5 gives the sense of the technique. We leave forRemark 20: ImplementatioiVe have implemented the in-
future work detailing a complete algorithm and its analysisegration formula of§VIll, Egn. (15), for ad hoc planar
the crucial observation is that Corollary 12 provides agiogp networks based on a random unit disc graph: see Fig. 6. The
criterion. code (written in Java and publicly available bt dden f or

Remark 19:0ne can imagine a much more complicatedevi ewj) allows the user to specify target support by drawing
scenario. Consider the case where the target supportsatgo with the mouse. By using the obvious clustering algorithme, t
(continuously) as a function of timé7,(t) C R?. However, code returns the quantity specified in Eqn. (15) in neglaibl
the supports are unknown to the rob&s which can measure time (~ 1s for a network of~ 100,000 nodes).
only a sampled cour;(t). Remark 21: Numerical error©f course, the guarantee that

The problem is clearly unsolvable if there is a single, slo&qgn. (15) computes the correct value of the integral depends
robot: such a sensor may never detect any (evasive) targaishaving sampled the connectivity of the upper and lower
at all. On the other hand, if one assumes a dense netwescursion sets correctly. No a priori knowledge of this can
of sensors, the problem is trivial: at any fixed time, take lse assured without knowing more about the network or the
triangulation of the domain based on the robot positiond, atarget support. Unfortunately, the duality formula congsut
compute the integral of the sensor function as per Theorema/Z-valued sum, any error in the computation is quantized.

Where the problem is critically difficult is when the swarnfrom the point of view of numerical errors, it is preferalde t

XI. NUMERICAL ISSUES



work with the ‘expectedR-valued integrals as in Eqn. (10) Remark 25: How do you know if you've sampled the do-
andgVll.

main finely enough?@s in the case of trying to approximate

the Riemann integral of an unknown function from a finite

point sample, one does not know without more data.
Remark 26: What about sensors which do not count but

Average valence:
Number of nodes: 13714
New Network Clear
Intruders
Intruder Radius:
Intruder Hyster esis:
Num intruders: &

Clear

Curent Levet: -
Upper Components: -
Lower Components: -

Show Components [/

Next Prev Clear
Computation
Computed Num Intruders: -

Animation Speed | 47

Run Clear

(1]
(2]
(31
(4]

Fig. 6. Screenshot of a Java applet implementation [writherD. Lipsky],
cf. Remark 20.

Remark 22: Distributed computatiorsince our methods
are based on an integration theory, the enumeration ofttargés]
detailed in this paper is a local computation. Fdr B
compact,

/ hdxz/hdx—i—/ hdx—/ hdx.
AUB A B ANB [7]

Thus, enumeration can be performed in a distributed manng;
easily. This is particularly easy when the network is adattas
one can employ standard distributed protocols for loctitina
and merging of target counts.

(6]

[9]
[20]

XIl. CONCLUDING REMARKS

The core message of this paper is that thinking of tardéi”
enumeration in terms of #opological integration theonyjs
much better than a raw combinatorial approach. One cHal
import intuition, techniques, and perspectives from nuoadr
analysis, algebraic topology, differential topology, amnbi-
natorics at will.

This short paper has left many natural questions un g%
swered. We give a brief list of questions and remarks, to be
expanded on in future papers. [16]

Remark 23: Do these results extend to higher dimensiorﬁ?]
Yes, and to reasonable topological spaces as well. Thetsesul
on bounds for holes and the duality formula, unfortunaiedy,
not generalize, being dependent on planar topology.

Remark 24: What about noiserhis integration theory is
robust to dead sensors: an empty node creates a ‘hole’ which
the techniques of this paper resolve. However, as this n'a{eg[lg]
tion theory counts the number and heights of critical poiitits 20
is very sensitive to integer-valued noise. A smoothingrfiise
required to preprocess noisy data in order to obtain aceurat
results.

(23]

(18]

rather measurg0, co)-valued intensity?This integration the-
ory is not immediately applicable, since the operaforly is
not linear on continuous integrands. However, one can obtai
lower bounds using methods akin to Lusternik-Schnirelmann
category [3].
We hope the reader finds that the increase in formalism for
this integration theory more than pays for itself in terms of
potential applications.
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