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Abstract— We solve the problem of counting the total number
of observable targets (e.g., persons, vehicles, etc.) in a region
based on local counts performed by sensors which measure only
the number of targets nearby and neither their identities nor any
positional information. This theory is robust and accommodates
ad hoc sensor networks and mobile robot sensors alike.

I. I NTRODUCTION: TARGET COUNTING

The prospect of small-scale sensor devices comes with the
promise of sensor networks which can survey a region with
dense coverage [5]. With this promise, however, comes many
challenges, including power consumption, heat dissipation,
and communication complexity. One strategy for remedying
the situation is to focus onminimal sensing, engineering the
individual sensors to be as simple as possible to accomplish
the task and yet consume a minimum of resources.

We consider how to solve a simple data aggregation problem
— counting unidentified targets — with a network of local
minimal sensors. Specifically, we show that one can solve
enumeration problems with sensors that can count nearby
targets but cannot determine target identities, cannot estimate
target range or bearing, and cannot record a time when a
(moving) target came into view. Because the local sensors we
envisage cannot discriminate targets, it is not obvious howto
merge redundant counting by neighboring nodes.

It may seem surprising that a redundant array of simplistic
sensors can solve the global enumeration problem. More
surprising still is the fact that there are very few requirements
on the sensors’ detection specifications. We do not require that
target visibility is purely a function of distance (cf. the typical
use of theunit discassumption in coverage problems). There
are no hidden assumptions about convexity of the targets’
detection zones, nor that the sensors or targets are uniform:
some targets may have more ‘impact’ than others.

The reason for this combination of extreme robustness
and simplicity of the sensor capabilities is the nature of our
solution methods. We use a topological invariant — theEuler
characteristic— molded into an integration theory.

A. Related work

There are few similar approaches to problems in target
estimation or tracking, the literature on which almost al-
ways assumes the ability to identify different targets (along
with other high-level functions, including distance estimation,

bearing estimation, and sensor localization). For example,
the large-scale wireless system implemented in [10] assumes
an aggregation phase based on strict spatial separation of
targets. Jung and Sukhatme [11] implement a multi-target
robotic tracking system where the targets are labeled with
colored lights. The survey paper of Guibas [8] pointing to
the broader literature on geometric range-searching assumes
the ability to aggregate target identities and concerns itself
with computational complexity issues. The paper by Liet al.
[13] on multi-target tracking via sensor networks notes that,
“target classification is arguably the most challenging signal
processing task in the context of sensor networks.”

We are aware of two notable exceptions. One significant
solution to a target enumeration problem is found in the work
of Fang, Zhao, and Guibas [6], which gives a distributed algo-
rithm for target enumeration without any target-identification
capabilities on the part of the sensors. Their work assumes
that all target supports are round balls inR

2; that each sensor
reads aR-valued signal proportional to the inverse square of
distance-to-target; and that target impacts are additive.Their
algorithm counts the number of local maxima in the sensor
signal field and therefore gives an accurate count so long as
the target supports overlap minimally or not at all. Our work
is complementary to this in that the theory we introduce is
designed to handle very complex target support overlaps.

The other example of target counting without identification
or localization arises in work of Singhet al., who consider a
network of sensors which return a value in{0, 1} depending
on target proximity [18]. Their technique involves using time-
series data in the case of moving targets/sensors, since a target
count in the stationary case is too difficult, even if all target
supports are convex, round, fixed, etc.

We have ignored for the moment many of the important
technical issues associated with network implementation of
our methods. Much of the work in aggregation of data by
a network concerns network protocols for signal processing
[13], managing constraints on bandwidth and energy [4], and
dealing with errors or node failures [20]. This introductory
paper does not treat these important issues. We also assume
noise-free sensor readings. This paper assumes an idealized
setting to develop and highlight the formal tools.



B. Outline

The main results of this note consist of: (1) a theorem on
target enumeration for continuum ‘sensor fields’ based on a
topological integration theory; (2) bounds on the integrals for
planar domains with holes; (3) a refinement theorem applicable
to network discretizations; (4) a duality theorem for planar
networks which provides a fast, distributed algorithm for ad
hoc networks; (5) methods for computing expected target
counts in the case of incomplete information; and (6) an
outline of applications to time-dependent systems such as
mobile robot sensing modalities. This note tersely summarizes
ideas from [1], [2] in the restricted context of a planar network.

Our results follow from the classical and elegant theory
of integration with respect to Euler characteristic [19], [16].
After surveying a simplified version of these methods in§II,
we prove the fundamental enumeration theorem in§III. To
solve the problem of sparse network discretization, we provide
bounds in§V on integrals over planar domains with a hole.
This yields a simple refinement theorem in§VI, and extensions
in §VII. We prove a duality result for planar networks in§VIII
that leads to fast numerical implementation, outlined in§XI.

II. TOPOLOGICAL INTEGRATION

We present a simple, self-contained introduction to a topo-
logical integration theory. For simplicity, we work in the
simplicial category. LetX denote a simplicial complex: a topo-
logical space built from a collection of closed simplices glued
together along faces (see,e.g., [9] for elementary definitions).

Definition 1: The EULER CHARACTERISTIC of a compact
simplicial complexX has two equivalent definitions:

1) combinatorial:

χ(X) =

∞∑

k=0

(−1)k#{k-simplices inX}. (1)

2) homological:

χ(X) =

∞∑

k=0

(−1)k dim(Hk(X)). (2)

Here, Hk(X) denotes thekth (simplicial) homology ofX
(in R coefficients), a vector space that measures the number
of ‘holes’ in X that ak-dimensional subcomplex can detect
[9]. As homology depends only on the homotopy type ofX ,
the Euler characteristicχ is a topological invariant of a space,
independent of how it is triangulated into a simplicial complex.

Example 2: The following examples are illustrative:

1) Euler characteristic is a generalization of cardinality:
for a discrete setX , χ(X) = |X |.

2) If X is a compact contractible set — if it can be
deformed continuously within itself to a single point —
thenχ(X) = 1.

3) For a finite graphΓ, the Euler characteristic isχ(Γ) =
#V (Γ) − #E(Γ).

4) For X ⊂ R
2 a connected set withN holes,χ(X) =

1 − N .

The Euler characteristic satisfies an inclusion-exclusion
principle (a consequence of the Mayer-Vietoris sequence on
homology [9]): forA andB compact subcomplexes ofX ,

χ(A ∪ B) = χ(A) + χ(B) − χ(A ∩ B). (3)

This equation evokes the definition of a measure and allows
one to interpretχ as a generalized signed measure (general-
ized, as it is only finitely additive). As many authors have
observed [15], [16], [19], this measure behaves as any con-
ventional measure when restricted to the appropriate classes
of integrands and domains. In the setting ofZ-valued functions
over simplicial complexes, this measure theory is completely
tame.

Definition 3: Let X denote a simplicial complex and
CF (X) the abelian group of functions fromX to Z with
generators1σ, whereσ is a closed simplex ofX . Given such
a φ =

∑

α cα1σα
in CF (X), the INTEGRAL of φ with respect

to Euler characteristic is defined to be
∫

X

φdχ :=
∑

α

cα. (4)

This integral is well-defined.
Lemma 4 ([19], [16]): The integral

∫

X
φdχ depends only

on the functionφ and not on its decomposition. Specifically,
if φ =

∑

α cα1Uα
, whereUα is a subcomplex ofX , then
∫

X

φdχ =
∑

α

cαχ(Uα). (5)

Proof: Given two subcomplexesA and B, the relation
1A∪B = 1A + 1B − 1A∩B is mirrored by Equation (3). It
follows that

∫

X
1Uα

dχ = χ(Uα). By definition,
∫

X
·dχ is a

homomorphism fromCF (X) to Z; the lemma follows.
Remark 5: It is by no means necessary to restrict to simpli-

cial complexes. For a large class of topological spaces without
an explicit cell structure,χ is well-defined using Eqn. (2) with
singular (or, better still, Borel-Moore) homology. Likewise, the
class of integrable functionsCF (X) above generalizes to the
sheaf ofCONSTRUCTIBLE functions onX [16]. This level of
generality is not required for this paper.

III. E NUMERATION VIA INTEGRATION

We turn now to target-counting problems. The following
mathematical formulation leads naturally to the integration
theory of the previous section.

Consider a setting where the sensors are parameterized by
a (reasonably nice) topological spaceX . One imagines a
‘continuum field’ setting in which a counting sensor residesat
every point ofX . It is helpful to keep in mind two cases: (1)
X = R

2 and is ‘filled’ with sensors; (2)X is a simplicial
complex, where the counting sensors at the vertices ofX

‘pass’ counting data to all other simplices ofX . Assume a
finite set of stationary targets are present and detectable by
the sensor field. We do not specify detection ranges, etc., in
terms of geometric constraints, but rather in terms of sets.For
each targetα, define itsTARGET SUPPORT, Uα ⊂ X , to be the
subset of those sensors to which the target is ‘visible’ (rather,



sensed: the actual sensor modality is irrelevant). The sensor
field on X returns a counting functionh : X → N, where

h(x) = #{α : x ∈ Uα}.

Assuming knowledge of the target supports’ topology, one has
a simple means of enumerating the targets without localization
or identification.

Theorem 6:If each target has a compact contractible sup-
port Uα ⊂ X , then the integral of the impact functionh(x) =
#{α : x ∈ Uα} with respect todχ is the target count:

#α =

∫

X

h dχ. (6)

Proof: By definition, h =
∑

α 1Uα
. As Uα is compact

and contractible,χ(Uα) = 1 and
∫

X
h dχ =

∑

α 1 = #α.
The remarkable aspect of this result is that there are no

constraints on the target supports other than the topological:
each target has support withχ = 1. In particular, targets can
have different ‘impact’ on the sensor field, and there is no
need for convexity or fixed-radius assumptions.

Theorem 6 does, however, assume that there is a well-
defined counting functionh over all of X — e.g., given by
a sensor at every point in the spaceX . In a less idealized
setting, one has a finite number of nodes which, under the
best circumstances, triangulates a region of the plane. The
integrand ‘counting function’h is known only on the vertex
set of this triangulationT . The target supportsUα ⊂ R

2 need
not be well-placed with respect toT at all.

We resolve this discretization problem by extending the
integration theory toR-valued integrands. By taking the usual
step-function upper semi-continuous approximation to a limit,
one can define

∫
h dχ for real-valued functionsh : X →

[0,∞) which are reasonably behaved (e.g., which have a finite
number of critical points). This extension of the theory is
not without complications (e.g., the integration operator is
no longer linear), but it allows one to import perspectives
from numerical analysis. In particular, given a sampling ofan
integrandh over a discrete set, the integral of the piecewise-
linear (PL) interpolation ofh, denotedhPL, should be a good
approximation if the sampling is of sufficient fidelity. This
holds for integration with respect todχ.

Theorem 7:Fix a collection{Uα} of compact target sup-
ports inR

n in general position. For a triangulationT of R
n,

let hPL denote the piecewise-linear extension of the restriction
of h =

∑

α 1Uα
to the vertices ofT . Then, forT sufficiently

fine and regular,
∫

T

hPL dχ =

∫

Rn

h dχ = #α. (7)

Proof: See§VI.

IV. COMPUTATION

Theorems 6 and 7 are useless without effective means of
computing integrals with respect todχ. Fortunately, there are
several means of doing so.

Theorem 8:Given a compactly supported impact function
h : X → N, the integral ofh with respect todχ may be

computed as:
∫

X

h dχ =

∞∑

s=0

χ ({h > s}) (8)

=

∫ ∞

s=0

χ ({h ≥ s}) ds (9)

=
∑

p∈C(h)

(−1)n−µ(p)h(p) (10)

Eqns. (8) and (9) apply toN-valued and[0,∞)-valued impact
functions respectively, and the notation{h > s} represents the
seth−1((s,∞)). Eqn. (10) applies to a[0,∞)-valued Morse
function on ann-dimensional manifold, whereC(h) is the set
of critical points ofh, andµ(p) is its Morse index ofp ∈ C(h)
[14].

Proof: Eqns. (8) and (9) are elementary and follow
directly from the definitions. For Eqn. (10), one hash Morse.
Thus, the Euler characteristic of upper excursion sets is
piecewise-constant, changing only at critical values. Forp ∈
C(h), s = h(p), and ε � 1, elementary Morse theory [14]
says that{h ≥ s + ε} differs from {h ≥ s − ε} by the
addition of a product of discsDµ(p) × Dn−µ(p) glued along
Dµ(p)×∂Dn−µ(p). The change in Euler characteristic resulting
from this handle addition is(−1)n−µ(p). This, applied to Eqn.
(8) yields Eqn. (10).

This theorem means, roughly speaking, that one can trade
between Euler characteristic counts, integrals with respect to
Lebesgue measure, and Morse theory at will.

Fig. 1(a) gives an example of a collection of target supports
{Uα} with height function, which is sampled on a uniform
hexagonal grid in (b). The upper excursion sets ofh are easily
computed and the integral with respect to Euler characteristic
is thus:

#α =

∫

h dχ =

s=2
︷︸︸︷

1 +

s=1
︷︸︸︷

3 +

s=0
︷︸︸︷

0 = 4. (11)

Smoothingh to a function h̃ with nondegenerate critical
points yields three maxima and three saddles, with minima (at
height zero), see Fig. 1(c). Formula (10) implies

∫

h dχ =

µ=2
︷ ︸︸ ︷

(3 + 2 + 2) −

µ=1
︷ ︸︸ ︷

(1 + 1 + 1) +

µ=0
︷︸︸︷

0 = 4. (12)

Taking the PL extensionhPL yields upper excursion sets as
illustrated in Fig. 1(d): Eqn. (9) yields a computation similar
to that of (11).

V. HOLES IN THE NETWORK

It is common in sensor networks to encounter ‘holes’ within
the network, through incomplete coverage or node failures.In
this case, one wants to estimate the number of targets relative
to the missing information. This translates to the following
relative problem: if one knowsh : X → N only on some
subsetA ⊂ X , how well can one estimate

∫

X
h dχ from the

restrictionh|A? We give bounds for the planar case.
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Fig. 1. The height function of a collection of target supports (a) is sampled
on a regular triangulation (b). This can be smoothed to a Morse function
with maxima/saddles/minima (c) or extended over the triangulation via PL
interpolation (d).

Theorem 9:Assumeh : R
2 → N is the sum of indicator

functions over a collection of compact contractible sets inR
2,

none of which is contained entirely withinD, a fixed open
contractible disc. Then

∫

R2

ĥ dχ ≤

∫

R2

h dχ ≤

∫

R2

ȟ dχ, (13)

where

ĥ(y) =

{
max∂D h : y ∈ D

h : else

ȟ(y) =

{
min∂D h : y ∈ D

h : else
Proof: Via additivity of χ over domains, Eqn. (13)

follows from the corresponding inequalities over the compact
domainD. Explicitly, if h = h on R

2 − D, then
∫

R2

h dχ =

∫

R2−D

h dχ −

∫

∂D

h dχ +

∫

D

h dχ.

Denote byV = {Vβ} the collection of nonempty connected
components of intersections of all target supportsUα with
D. Since we work inR

2, eachVβ is a compact contractible
set which intersects∂D. By Theorem 6,

∫

D
h dχ equals the

number of components|V|. There are at leastmax∂D h such
pieces; hence ∫

D

ĥ dχ ≤

∫

D

h dχ.

Considermin∂D h and remove from the collectionV this
number of elements, including all suchVβ equal toD (which
is possible since we removemin∂D h such elements). Each
remainingVβ ∈ V is not equal toD and thus intersects∂D

in a set with strictly positive Euler characteristic. Thus,
∫

D

h dχ ≤

∫

D

ȟ dχ.
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Fig. 2. An example for which the upper and lower bounds of Eqn.(13) are
sharp.

Example 10:Consider the example illustrated in Fig. 2. The
upper and lower estimates for the number of targets are2 and
4 respectively. For this example, the estimates are sharp in
that one can have collections of target supports over compact
contractible sets which agree withh outside ofD and realize
the bounds.

Remark 11:The lower bound̂h can fail in several ways.
For example, a target support can intersectD in multiple
components, causinĝh to not have a decomposition as a sum
of characteristic functions over contractible sets (but rather
with annuli). One can even find examples for which each
target support intersectsD in a contractible set but for which
∫

ĥ dχ is negative. The fact that the lower bound
∫

ĥ can be
so defective follows from the difficulty associated with annuli
in the plane — these are ‘large sets of measure zero’ indχ.

VI. T HE REFINEMENT THEOREM

The bounds of§V allow one to conclude when a hole is
‘inessential’ and no ambiguity about the integral exists.

Corollary 12: Under the hypotheses of Theorem 9, the
upper and lower bounds are equal when there is a unique
connected local maximum ofh on ∂D.

Proof: In the case whereh is constant on∂D, ȟ = ĥ and
the result is trivial. Otherwise, botȟh and ĥ have connected



(and thus contractible) upper excursion sets. Applying Eqn.
(8) yields

∫

R2

ȟ dχ −

∫

R2

ĥ dχ =
∑

s

χ({ȟ ≥ s}) − χ({ĥ ≥ s})

=
∑

s

1 − 1 = 0.

This permits an easy proof of Theorem 7 that, in accor-
dance with one’s intuition about integration, refinement ofthe
network leads to convergence of the integrals.

Proof: (of Theorem 7)Since integration is local, we
may compare

∫
h dχ and

∫
hPL dχ over a single closed 2-

simplex of the triangulationT : if these are always equal, then
the theorem follows. One observes that for theUα in general
position andT sufficiently fine and regular, the unique local
maxima ofh and hPL on the boundary of any 2-simplex of
T are equal and both level sets are connected. Corollary 12
completes the proof.

It is easy to extend this proof toRn by proving the
appropriate extension of Corollary 12.

VII. H ARMONIC EXTENSION AND EXPECTED TARGET

COUNTS

We continue the results of the previous section, considering
the case of a planar domain with a contractible hole on which
the integrand is unknown. As shown, upper and lower bounds
are realized by extending the integrand across the hole via
minimal and maximal values on the boundary of the hole.
Inspired by the result that the PL-extension of a discretely
sampled integrand yields correct integrals with respect to
Euler characteristic, we consider extensions over holes via
continuousfunctions.

The following result says that there is a principled in-
terpolant between the upper and lower extensions. Roughly
speaking, an extension to a harmonic function (discrete or
continuous, solved over the hole with Dirichlet boundary
conditions) provides an approximate integrand whose integral
lies between the bounds given by upper and lower convex
extensions. There is nothing magical about harmonic func-
tions: any form of weighted averaging will lead to an extension
which respects the bounds. A specific criterion follows.

Theorem 13:Given h : R
2 − D → N satisfying the

assumptions of Theorem 9, leth be any extension ofh which
has no strict local maxima or minima onD. Then

∫

R2

ĥ dχ ≤

∫

R2

h dχ ≤

∫

R2

ȟ dχ, (14)

Proof: Consider an open neighborhood ofD in R
2 and

modify h so that it preserves critical values, is Morse, and
falls off to zero quickly outside ofD. This perturbed function,
denotedh̃, has isolated maxima on∂D, isolated saddles in
the interior ofD (since there are no local extrema inD by
hypothesis) and no other critical points outside ofD. Since
h̃ is a small perturbation ofh, the integral of̃h with respect

to dχ is equal to
∫

D
hdχ. Via the Morse-theoretic formula of

Eqn. (10),
∫

h̃ dχ =
∑

p∈C(h̃)

(−1)2−µ(p)h̃(p).

The integral thus equals the sum ofh over the maxima on∂D

minus the sum ofh over the saddle points in the interior of
D, since saddles have Morse indexµ = 1.

Denote by {pi}M
1 the maxima of h̃, ordered by their

(increasing)h̃ values. Denote by{qi}N
1 the saddles of̃h,

ordered by their (increasing)̃h values. By the Poincaré index
theorem,

1 = χ(D) = #maxima(h̃) − #saddles(h̃),

hence,N = M−1. Note that, since there are no local minima,
h̃(qi) < h̃(pi) for all i = 1 . . .M − 1. Thus,

∫

D

h dχ =

∫

D

h̃ dχ

= h̃(pM ) +

M−1∑

i=1

h̃(pi) − h̃(qi)

≥ h̃(pM ) = max
∂D

h =

∫

D

ĥ dχ.

For the other bound,
∫

D

h dχ = h̃(pM ) +
M−1∑

i=1

h̃(pi) − h̃(qi)

≤
M∑

i=1

h̃(pi) =

∫

D

ȟ dχ.

A harmonic or harmonic-like functioñh will often lead to
an integral with non-integer value. Such an integral is best
interpreted as anexpectedtarget count.

Example 14:Consider a holeD and a functionh which is
known only on∂D and which has two maxima with value1
and two minima with value0. Without knowing more about the
possible size and shape of the target supports which make up
h, it is not clear whether this is more likely to come from one
target support (which crosses the hole) or from two separate
target supports. Computing a harmonic extension of thish

over the interior ofD yields a functioñh with one saddle-type
critical point in D. The value of the saddle isc and satisfies
0 < c < 1, depending on the geometry ofh on ∂D. This
yields

∫
h̄ dχ = 2− c, reflecting the uncertainty of either one

or two targets. In the perfectly symmetric case of Fig. 3[left],
c = 1

2 and the expected target count is, naturally,3
2 . In Fig.

3[right], the harmonic extension hasc < 1
2 , meaning that it is

more likely that there are two target supports.
In the network setting, holes often arise due to node failure

or lack of sufficient node density. In these scenarios, one
may reasonably employ any weighted local averaging scheme
across dead nodes to recover a function which will respect
the bounds of Theorem 9. Different weighting schemes may
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Fig. 3. An integrand with a hole has two minima at height0 and two maxima
at height+1. Filling in by a harmonic functioñh has an interior saddle at
height 0 < c < 1, depending on the geometry ofh on ∂D: [left] c =

1

2
;

[right] c <
1

2
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be more appropriate for different systems. For example, node
readings can be assigned a “confidence” measure, which, when
used as a weighting for the averaging over the dead zone,
returns an expected value of the integral which reflects the
fidelity of the data.

VIII. H OLES VIA DUALITY

We augment Theorem 8 with a specialized formula for the
plane which aids greatly with implementation. The strategy
of this formula is to exploit the duality between holes and
connected components of the complement. This duality has a
formal expression in terms of algebraic topology.

Theorem 15:For h : R
2 → N

∫

R2

h dχ =
∞∑

s=0

(β0{h > s} − β0{h ≤ s} + 1) , (15)

whereβ0 is the number of connected components of the set.
Proof: Let A be a compact nonempty subset ofR

2. Since
A ⊂ R

2, Hs(A) = 0 for all s ≥ 2. Thus, via Eqn. 2, it suffices
to compute

χ(A) = dimH0(A) − dimH1(A).

Note: dimH0 equals the number of connected components
of A. The quantitydimH1(A), the number of holes inA,
is, by Alexander duality [9], equal todimH0(R

2 − A) −
1, the number of (bounded) connected components of the
complement. The proof is completed by Eqn. (8), substituting
in A = {h > s} andR

2 − A = {h ≤ s}.
Example 16:The duality formula (15) applied to the inte-

grand of Fig. 1 yields

∫

R2

h dχ =

s=0
︷ ︸︸ ︷

1 − 2 + 1 +

s=1
︷ ︸︸ ︷

3 − 1 + 1 +

s=2
︷ ︸︸ ︷

1 − 1 + 1= 4.

The formula in Theorem 15 is extremely applicable. We
note that the determination of the number of connected com-
ponents of the upper and lower excursion sets is a simple
clustering problem, computable in logspace with respect to
the number of network nodes.

IX. A D HOC NETWORKS

We note that the strategy of converting the sampling of the
true impact functionh over N to a PL interpolationh does
not necessarily require knowing the coordinates of the nodes.
Indeed, the evaluation of

∫

Y
· dχ is conspicuous in its freedom

from coordinate geometry: it is a topological integral. If one
is given a triangulation, the extension of the counting function
h on vertices over the domain is automatic. However, if no
geometry associated toN is known, it may not be possible to
determine a canonical extensionhPL over the domain. Such a
situation is not uncommon in sensor networks based onad hoc
wireless communications, an increasingly common protocol
for distributed sensor networks and robotics.

Assume that one is given a network in the form of an
abstract graphG = (N , E). By “abstract” we mean that the
projection of the 1-d cell complexG to the workspace is
unknown. Edges should possess some proximity data. For
example, one could assume thatG is a UNIT DISC GRAPH,
in which edges exist between nodes if and only if they are
within unit distance in the workspace. A more realistic model
is the QUASI unit disc graph, in which edges definitely exist
below a certain distance, definitely do not exist above a certain
distance, and may exist (say, according to some probability
distribution) for nodes within a critical interval of distance.
At any rate, the duality results of§VIII allow us to compute
integrals based on ad hoc networks.

Corollary 17: Assume an integrandh : R
2 → N, and

let G be a network graph with nodesN ⊂ R
2, where the

only thing known is the restriction ofh to N (in particular,
the coordinates ofN in R

2 are unknown). If the network
G correctly samples the connectivity of the upper and lower
excursion sets ofh, then Eqn. (15) returns the exact number
of targets.

An example appears in Fig. 4. Note that in this example, the
topology of the excursion sets ofh arenot sampled correctly:
sparsity leads to holes in the network. Nevertheless, sincethe
connectivity of the upper and lower excursion sets is sampled
faithfully, the integral is correct. Although the example drawn
is a unit disc graph, this is by no means necessary for the
result.

X. M OBILE AGENTS

The setting of this work has assumed stationary targets
with fixed target supports, being sensed by a fixed network
of stationary counting sensors. It is desirable to violate both
assumptions, especially in the robotics context. We indicate
how the results of this note are applicable to both settings in
a sequence of remarks.

Remark 18:Consider the following scenario: a collection
of fixed target supports{Uα} lie in the plane. One or more
mobile robotsRi can maneuver in the plane along chosen
paths xi(t), returning sensed counting functionshi(t) =
#{α : xi(t) ∈ Uα}. How should the pathsxi be chosen so
as to effectively determine the correct target count? If target
supports are extremely convoluted, no guarantees are possible:
therefore, assume that some additional structure is known (e.g.,



Fig. 4. A sparse sampling over anad hocnetwork retains enough connectivity
data to evaluate the integral exactly.

an injectivity radius) giving a lower bound on how “thin” the
target supports may be.

Assume that the robots initially explore the planar domain
along a rectilinear graphΓ that tiles the domain into rectangles.
If desired, one can make these rectangles have either width
or height in order to guarantee that all theUα intersectΓ.
Consider the sensor functionh : Γ → N. The integral

∫

Γ
h dχ

is likely to give the wrong answer, even (especially!) for a
denseΓ. Two means of getting a decent approximation are
(1) use the duality formula of Eqn. (15); or (2) perform a
harmonic extension over the holes ofΓ as per§VII.

However, neither is guaranteed to give a gooda priori
approximation to the target count. How can one tell ifΓ
should be filled in more? The simplest criterion follows from
Corollary 12. Consider a basic cycleΓ′ ⊂ Γ in the tiling
induced byΓ. If there is a single connected local maximum
on Γ′, then (assuming that no smallUα lies entirely within
the hole) the harmonic extension overΓ′ gives an accurate
contribution to the integral.

If, on the other hand, there are multiple maximal sets on
Γ′, then one must refineΓ into smaller cycles for which the
criterion holds. The obvious approach is to guide the mobile
sensors so as to try and connect disjoint maxima and/or disjoint
minima. Fig. 5 gives the sense of the technique. We leave for
future work detailing a complete algorithm and its analysis:
the crucial observation is that Corollary 12 provides a stopping
criterion.

Remark 19:One can imagine a much more complicated
scenario. Consider the case where the target supports also vary
(continuously) as a function of time:Uα(t) ⊂ R

2. However,
the supports are unknown to the robotsRi, which can measure
only a sampled counthi(t).

The problem is clearly unsolvable if there is a single, slow
robot: such a sensor may never detect any (evasive) targets
at all. On the other hand, if one assumes a dense network
of sensors, the problem is trivial: at any fixed time, take a
triangulation of the domain based on the robot positions, and
compute the integral of the sensor function as per Theorem 7.

Where the problem is critically difficult is when the swarm

Fig. 5. Mobile agents determine target counts over a graphΓ. Holes with
multiple maxima require further refinement (dashed lines).

of sensors is not dense enough to cover the plane, but does
form a connected network with holes. These holes will change
temporally, emerging, bifurcating, disappearing: all thewhile,
mobile targets can slip in and out.

In this dynamic setting, the work in§V-VII suggests a
natural strategy of computing an expected value of the integral
as a function of time and keeping a running average of these
approximants. More sophisticated tracking of targets within
holes can be accomplished by examining localized temporal
discontinuities of these integrals. This is the subject of a
separate report.

Our discussion of mobile agents is necessarily brief: there
are many more results possible about counting mobile targets
without the need of clocks at all [1]. We leave these and
implementation issues for a more detailed future treatment.

XI. N UMERICAL ISSUES

Space constraints forbid a comprehensive treatment of the
topic of numerical integration with respect to Euler character-
istic, a topic which seems to have been explored only in [12],
and here from an integral-geometry perspective: there is much
to be done. We present a few significant remarks, and leave
the details for an archival work.

Remark 20: Implementation.We have implemented the in-
tegration formula of§VIII, Eqn. (15), for ad hoc planar
networks based on a random unit disc graph: see Fig. 6. The
code (written in Java and publicly available at [hidden for
review]) allows the user to specify target support by drawing
with the mouse. By using the obvious clustering algorithm, the
code returns the quantity specified in Eqn. (15) in negligible
time (∼ 1s for a network of∼ 100, 000 nodes).

Remark 21: Numerical errors.Of course, the guarantee that
Eqn. (15) computes the correct value of the integral depends
on having sampled the connectivity of the upper and lower
excursion sets correctly. No a priori knowledge of this can
be assured without knowing more about the network or the
target support. Unfortunately, the duality formula computes
a Z-valued sum, any error in the computation is quantized.
From the point of view of numerical errors, it is preferable to



work with the ‘expected’R-valued integrals as in Eqn. (10)
and§VII.

Fig. 6. Screenshot of a Java applet implementation [writtenby D. Lipsky],
cf. Remark 20.

Remark 22: Distributed computation.Since our methods
are based on an integration theory, the enumeration of targets
detailed in this paper is a local computation. ForA, B

compact,
∫

A∪B

h dχ =

∫

A

h dχ +

∫

B

h dχ −

∫

A∩B

h dχ.

Thus, enumeration can be performed in a distributed manner
easily. This is particularly easy when the network is a lattice, as
one can employ standard distributed protocols for localization
and merging of target counts.

XII. C ONCLUDING REMARKS

The core message of this paper is that thinking of target
enumeration in terms of atopological integration theoryis
much better than a raw combinatorial approach. One can
import intuition, techniques, and perspectives from numerical
analysis, algebraic topology, differential topology, andcombi-
natorics at will.

This short paper has left many natural questions unan-
swered. We give a brief list of questions and remarks, to be
expanded on in future papers.

Remark 23: Do these results extend to higher dimensions?
Yes, and to reasonable topological spaces as well. The results
on bounds for holes and the duality formula, unfortunately,do
not generalize, being dependent on planar topology.

Remark 24: What about noise?This integration theory is
robust to dead sensors: an empty node creates a ‘hole’ which
the techniques of this paper resolve. However, as this integra-
tion theory counts the number and heights of critical points, it
is very sensitive to integer-valued noise. A smoothing filter is
required to preprocess noisy data in order to obtain accurate
results.

Remark 25: How do you know if you’ve sampled the do-
main finely enough?As in the case of trying to approximate
the Riemann integral of an unknown function from a finite
point sample, one does not know without more data.

Remark 26: What about sensors which do not count but
rather measure[0,∞)-valued intensity?This integration the-
ory is not immediately applicable, since the operator

∫
· dχ is

not linear on continuous integrands. However, one can obtain
lower bounds using methods akin to Lusternik-Schnirelmann
category [3].

We hope the reader finds that the increase in formalism for
this integration theory more than pays for itself in terms of
potential applications.

ACKNOWLEDGEMENTS

This work is funded by DARPA # HR0011-05-1-0008.

REFERENCES

[1] Y. Baryshnikov and R. Ghrist, “Target enumeration via Euler character-
istic integrals I: sensor fields,” to appear,SIAM J. Appl. Math.

[2] Y. Baryshnikov and R. Ghrist, “Target enumeration via Euler character-
istic integrals II: sensor networks,” in preparation.

[3] Y. Baryshnikov and R. Ghrist, “Unimodal category and thetopological
decomposition of distributions,” in preparation.

[4] A. Boulis, S. Ganeriwal, and M. Srivastava, “Aggregation in sensor
networks: an energy - accuracy tradeoff,”J. Ad-hoc Networks, 1, 2003,
317–331.

[5] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the
Physical World with Pervasive Networks,”IEEE Pervasive Computing
1:1, 2002, 59–69.

[6] Q. Feng, F. Zhao, And L. Guibas, “Lightweight Sensing andCom-
munication Protocols for Target Enumeration and Aggregation” in
proceedingsMobiHoc, 2003.

[7] H. Groemer, “Minkowski addition and mixed volumes,”Geom. Dedicata
6, 1977, 141–163.

[8] L. Guibas. “Sensing, Tracking and Reasoning with Relations,” IEEE
Signal Processing Magazine, 19(2), Mar 2002, .

[9] A. Hatcher,Algebraic Topology, Cambridge University Press, 2002.
[10] T. He, P. Vicaire, T. Yan, L. Luo, L. Gu, G. Zhou, R. Stoleru, Q.

Cao, J. Stankovic, T. Abdelzaher, “Achieving Real-Time Target Tracking
Using Wireless Sensor Networks,” in proceedings ofIEEE Real Time
Technology and Applications Symposium, 2006, 37–48.

[11] B. Jung and G. Sukhatme, “A Region-Based Approach for Cooperative
Multi-Target Tracking in a Structured Environment,” in proceedings of
IEEE/RSJ Conference on Intelligent Robots and Systems, 2002.

[12] D. Klain, K. Rybnikov, K. Daniels, B. Jones, C. Neacsu, “Estimation of
Euler Characteristic from Point Data,” preprint 2006.

[13] D. Li, K. Wong, Y. Hu, and A. Sayeed, “Detection, classification, and
tracking of targets,”IEEE Signal Processing Magazine, 19(2), 2002,
17–30.

[14] J. Milnor, Morse Theory, Princeton University Press, 1963.
[15] G.-C. Rota, “On the combinatorics of the Euler characteristic,” Studies

in Pure Mathematics, Academic Press, London, 1971, 221–233.
[16] P. Schapira, “Operations on constructible functions,” J. Pure Appl.

Algebra 72, 1991, 83–93.
[17] P. Schapira, “Tomography of constructible functions,” in proceedings of

11th Intl. Symp. on Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, 1995, 427-435.

[18] J. Singh, U. Madhow, R. Kumar, S. Suri, and R. Cagley, “Tracking
multiple targets using binary proximity sensors.” InProceedings of
the 6th international Conference on Information Processing in Sensor
Networks, 2007, 529-538.

[19] O. Viro, “Some integral calculus based on Euler characteristic,” Lecture
Notes in Math., vol. 1346, Springer-Verlag, 1988, 127–138.

[20] J. Zhao, R. Govindan and D. Estrin, “Computing Aggregates for
Monitoring Wireless Sensor Networks,” in proceedings ofIEEE Intl.
Workshop on Sensor Network Protocols and Applications (SNPA), 2003.


