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ABSTRACT

CONDENSATION AND MOBILITY STUDIES OF FLUID INTERFACES

Paul L. Barclay

Jennifer R. Lukes

Condensation is of central importance in a broad range of areas in nature and in-

dustry. Aerosol-cloud interactions, a currently a significant open question in climate

modeling, and water harvesting mechanisms on organisms such as cacti, beetles, and

spiders, are natural processes that are rely on condensation. Condensation is an ef-

fective method for transferring heat due to the latent heat required for a fluid to

change phase from a gas to a liquid. Improvements in condensation processes would

have an impact in a variety of industrial areas such as thermal management, envi-

ronmental control, microelectronics, desalination, and power generation. Dropwise

condensation is preferable over filmwise condensation because it has a significantly

higher heat transfer coefficient. Nanopatterned surfaces are of interest because they

have experimentally demonstrated higher heat transfer than their smooth counter-

parts, but recent heat transfer measurements on individual droplets have revealed

discrepancies between theoretical predictions and experimental measurements for the

smallest droplets. Interfacial properties on small length scales are often difficult to

measure experimentally and are often used as fitting parameters in condensation

models. The common assumptions used when modeling dropwise condensation are

that (1) the condensing droplets are thermodynamically quasi-static and that (2) the

heat and mass transport are uncoupled, that is, droplet motion and heat transfer

are modeled independently of one another. In this dissertation, several continuum

properties including the mass accommodation coefficient and interfacial mobility are
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computed allowing for the physical parameters to be known a priori for continuum

scale models such as the Navier-Stokes-Cahn-Hilliard equations or interfacial resis-

tances in condensation models. Furthermore, the two fundamental assumptions used

in condensation models are examined in an attempt to resolve the theoretical and

experimental discrepancies. This will be done by leveraging microscopic and non-

equilibrium thermodynamic approaches to determine the validity of the condensation

assumptions for planar and highly curved systems.
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1 Introduction

Much work has been performed over the past several years investigating fluid

flow and heat transfer at the micro- and nano-scale. Improvements due to these

studies have touched a variety of fields ranging from robotics to biotechnology, mainly

due to the impact of fluid flow and heat transfer in devices and processes ranging from

nanosensors to desalination [5–19]. Consequently the decreasing sizes of these devices

further increases the importance of heat transfer due to the higher heat fluxes in

modern devices. Heat fluxes in these devices reach almost 107W/m2 [20] and are

expected to exceed these values in the near future [21]. Effective methods to remove

this heat are needed, and phase change heat transfer offers an alternative to standard

conduction or convective heat transfer as phase change heat transfer may be capable

of meeting the predicted demand. Latent heat is the key to unlocking the higher

heat transfer coefficients of phase change methods due to the energy required for a

fluid to transition between the liquid and vapor phases [22]. Engineering and further

improving these devices and processes will require having a complete understanding

of the heat and mass transfer as well as the fluid motion in order to allow for better

thermal management to meet the expected thermal demands [5, 6, 21].

Many industrial processes utilize condensation such as thermal management

[23, 24] where a condenser is used to reject heat, desalination [19, 25] where conden-

sation is used to produce purified water, environmental control [26, 27] where con-

densation removes excess or unwanted water vapor from surrounding air, and power

generation [28–30] where heat is rejected at low temperature causing the working

fluid to condense. Knowing and having complete understanding about condensation

is crucial in heating and air conditioning systems, which account for approximately

one fifth of the energy consumption in developed nations [23]. If unwanted condensa-
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tion occurs in turbines it can cause mechanical damage [30], and condensation within

buildings can lead to dampness and mold if humidity is not properly controlled which

negatively effect the health of occupants [27]. Main avenues for condensation are

filmwise condensation where a liquid layer condenses across the entire condensing

surface and dropwise condensation where condensation occurs at individual locations

forming drops of various sizes on the condensing surface. In dropwise condensation

the heat transfer coefficient is significantly higher (often more than 10 times greater)

than filmwise condensation due to the thermal barrier created by the condensed film

in filmwise condensation [22]. Still most practical applications assume or use filmwise

condensation because it is difficult to maintain hydrophobic (nonwetting conditions)

for an extended period of time because drops are not able to efficiently be removed

from the condensing surface and eventually flood the surface causing a transition to

filmwise condensation.

A recent study by Miljkovic et al. [31] has shown a six fold increase in the

heat transfer coefficient due to nano- and micro-patterned surfaces sparking interest

in modeling condensation on these surfaces [31–34]. With surface patterning the

heat transfer is enhanced because it makes the surfaces superhydrophobic, enabling

dropwise condensation instead of filmwise condensation, and enables reduced droplet

sizes relative to those found on flat surfaces causing increased fluxes because small

droplets have higher heat transfer compared with larger droplets [35]. Even more

exciting is the possibility that these surfaces may be designed to prevent the onset of

surface flooding allowing for the more effective dropwise condensation to potentially

be used in industrial applications. Several experimental and theoretical studies have

been performed examining dropwise condensation [31, 32, 34–41], but the theoretical

and experimental results only agree for droplets with radii larger than roughly 10µm
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[31, 32]. On these small length scales, the surface features further complicate the

studies of the early stages of droplet growth [31–35,41] due to the frequent switching

between constant contact angle (CCA) growth and constant base (CB) area growth.

Most commonly CCA growth is assumed for droplet growth where the contact angle

of the drops remains constant as the droplet grows while CB growth occurs when

the triple line, the location where the liquid-vapor interface meets the surface, is

pinned due to a surface feature such as a pillar edge or defect. Effective use of surface

patterning to prevent the transition from dropwise to filmwise condensation has the

potential to obtain the expected heat fluxes of future devices but will require a robust

understanding of dropwise condensation and droplet motion on small length scales.
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2 Literature Review and Modeling Approaches

2.1 Modeling Overview

When modeling dropwise condensation two main avenues exist; one for cap-

turing heat transfer and the other for capturing motion, growth, transition (constant

contact angle to constant base area or vice versa), and coalescence. Quasi-static mod-

els are employed for capturing heat transfer while multiphase Navier-Stokes equations

are solved to study fluid motion. The majority of work in this area decouples the

heat transfer and droplet motion [31,33–69] ignoring any transient effects from growth,

transition, or internal fluid motion on thermal transport. This may be valid for large

slowly growing drops but may not hold for small rapidly growing drops. The theoret-

ical predictions and experimental measurements differ at radii below 10 µm [31, 32],

bringing into question the validity of these models at small length scales. The aim of

this chapter is to explain the commonly used models and highlight some of the key

assumptions made.

2.2 Quasi-static Heat Transfer Models

A first approach to model condensed droplet heat transfer can be done with a

thermal resistor network for an individual droplet as shown in Fig. 2.1. The heat

transfer through an individual droplet, Q̇D, is given by

Q̇D =
∆T

Rtotal

(2.1)

where ∆T is the temperature drop from the surrounding vapor to the surface and

Rtotal is the equivalent resistance from the resistor network. A very simple resistor
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network is shown in Fig. 2.1, where the individual resistances depend on both physical

properties and the geometry of the system. These networks can be modified to include

geometric effect due to nano- or micro-pillars, hydrophobic coatings, and/or curvature

effects [31–33,36–38,41] and have been able to reasonably match experimental results

for large droplets (> 10 µm) [31,32].

The energy flowing through an individual droplet is then combined with the

droplet size distribution on the surface, N(r), and integrated over a range of radii, r,

in order to find the heat flux, q̇′′, for a surface,

q̇′′ =

rmax∫
rmin

Q̇D(r)N(r)dr, (2.2)

where either the classical Rose model [70], which stems from geometric arguments

for spherical droplet growth, the Kim and Kim model [35], which stems from a pop-

ulation balance of direct condensation for small (nano- to micro-scale) droplets, or a

combination of the two [31, 33, 35] is used for the distribution. In these models it is

typically assumed that the energy transfer to the droplet comes solely from conden-

sation (mass transport) onto the liquid, ignoring any thermal energy transport (due

to a temperature gradient) resulting in

Ė ≈ q̇′′A = HLV ṁ (2.3)

where Ė, ṁ, and HLV are the total energy transfer, mass transfer, and latent heat.

Derivations for the equations used for the individual resistances can be found

in the literature [31–33,36–38,41] and depend on both the physical properties of the

system as well as the geometry and state of the droplet (Cassie-Baxter or Wenzel).
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Fig. 2.1: Cartoon and resistor network for droplet condensation.

One commonly used result [32–35,37, 71] for the resistance network is the interfacial

heat transfer coefficient, hi, given by

hi =
2α

2− α

√
mp

2πkB

ρVH
2
LV

TV
(2.4)

where mp and kB are the mass of a condensing molecule and Boltzmann constant,

ρV and TV are the vapor density and temperature at the interface, and α is the

accommodation coefficient. The above result is derived from Schrage’s classical [72]

result for the mass flux across a planar interface which was derived using kinetic theory

[40] along with the Clausius-Claperyon equation. The accommodation coefficient is

defined as the probability that a vapor particle will condense onto the liquid if it comes

in contact with the liquid interface. Marek [73] adapted hi by reworking the kinetic

theory for a curved surface, r = const instead of the planar z = const, but the droplet

curvature (or radius) does not appear until the heat transfer coefficient is integrated

over the droplet surface area. This detracts from Marek’s correction because it is

common to use α as a tuning parameter which make Schrage’s and Marek’s results
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identical with just altered values for α. Furthermore, Eq. 2.4 does not depend on any

liquid properties, such as temperature or pressure, which goes against experimental

results by Fang and Ward [74–76] where a temperature jump across a liquid-vapor

interface was seen and confirmed in molecular simulations by Røsjorde [77, 78] and

Wilhelmsen [79, 80]. The temperature jump was also not insignificant, being on the

order of 10◦C, which is of the same order of magnitude as typical subcooling ranges

and could have a significant impact on condensation heat transfer.

2.3 Continuum Motion Models

The following section will layout the continuum foundation for the remainder

of this work. First conservation equations for a single phase system will be derived in

section 2.3.1, then conservation equations for a two phase system will be derived in

section 2.3.2. Derivation of these results are by no means original and can be found

elsewhere [81–84] but are included for completeness.

2.3.1 Single Phase System

From the first law of thermodynamics, the total energy of a single phase system,

E = U +K, is conserved therefore

dE

dt
=
dU

dt
+
dK

dt
=
dQ

dt
+
dW

dt
(2.5)

where t, U , K, Q, and W are time, total internal energy, total kinetic energy, total

heat exchanged with the external environment, and work done on the system by both
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body and traction forces. E, U , and K can be written as

E =

∫
V (t)

ρe dV (2.6a)

U =

∫
V (t)

ρu dV (2.6b)

K =

∫
V (t)

ρke dV =
1

2

∫
V (t)

ρv · v dV (2.6c)

where ρ, e, u, ke, v, V are the mass density, specific energy, specific internal energy,

specific kinetic energy, velocity, and volume of the system. The derivatives of heat

and work can be written as

dQ

dt
= −

∫
A(t)

q · n̂dA (2.7a)

dW

dt
=

∫
A(t)

T · vdA+

∫
V (t)

ρF · vdV (2.7b)

where q, n̂, A, T , and F are the total heat flux vector, surface normal, surface

area, surface traction, and body force. Due to the small size of the systems being

considered in this dissertation, gravitational body forces are assumed to be negligible.

Furthermore, it will be assumed that the system is not in the presence of an external

electric, magnetic, or any other type of field, and F will be assumed to be negligible

for the remainder of this derivation. Utilizing Cauchy relations the traction can be

related to the pressure tensor P by T = −P · n̂. Combining Eqs. 2.5, 2.6, and 2.7

and using the divergence theorem to convert the surface integral to a volume integral,

the local energy equation becomes

ρė = ρ(u̇+ v · v̇) + (u+
1

2
v · v)(ρ̇+ ρ∇ · v) = −∇ · q − v · (∇ · P )− P : ∇v (2.8)
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where ȧ = ∂a/∂t + v · ∇a and noting that the Cauchy pressure tensor is symmetry,

P = P T . From the Galilean invariant principle, Eq. 2.8 should still hold in a

transformation v→ v0 + v where v0 is a constant, therefore

ρ(u̇+ (v0 + v) · v̇) + (u+
1

2
(v0 + v) · (v0 + v))(ρ̇+ ρ∇ · v) =

−∇ · q − (v0 + v) · (∇ · P )− P : ∇v.

(2.9)

Subtracting Eq. 2.8 from Eq. 2.9 and rearranging results in

1

2
v0 · v0(ρ̇+ ρ∇v) + v0 · (v(ρ̇+ ρ∇v) + ρv̇ +∇ · P ) = 0. (2.10)

Since v0 is arbitrary this implies that

ρ̇+ ρ∇ · v = 0 (2.11a)

ρv = −∇ ·P, (2.11b)

which can be used to simplify the local conservation of energy equation (Eq. 2.8) to

ρė = ρ(u̇+ v · v̇) = −∇ · q − v · (∇ · P )− P : ∇v. (2.12)

If v· is taken on both sides of the conservation of momentum equation (Eq. 2.11b)

and compared with the simplified energy equation, the local internal energy equation

becomes apparent,

ρu̇ = −∇ · q − P : ∇v. (2.13)

Now that the Lagrangian forms of the conservation of mass, momentum, and energy

equations have been derived, the equivalent Euler form of the conservation equations
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are

Dρ

Dt
= 0 (2.14a)

D(ρv)

Dt
= −∇ · P (2.14b)

D(ρe)

Dt
= −∇ · q − v · (∇ · P )− P : ∇v (2.14c)

D(ρu)

Dt
= −∇ · q − P : ∇v (2.14d)

where Da/Dt = ∂a/∂t+∇ · (av).

2.3.2 Two Phase System

With the derivation for a single phase complete, conservation equations will be

derived for a binary system consisting of fluids A and B. These fluids are as general

as possible where A and B could be either liquid or gas phases of different fluids.

These results also include the simpler system of interest in this work which is a single

fluid in both the liquid and vapor phase. Following a similar derivation to the single

phase system, two-phase equations can be derived

Dkρk
Dkt

= σρk (2.15a)

Dk(ρkvk)

Dkt
= −∇ · Pk + σv

k (2.15b)

Dk(ρkek)

Dkt
= −∇ · qk − vk · (∇ · Pk)− Pk : ∇vk + σek (2.15c)

with Dka/Dkt = ∂a/∂t + ∇ · (avk). Here a k subscript denotes a particular fluid

phase A or B, the σ’s represents source terms due to conversion of mass, momentum,

or energy between A and B with σρA = −σρB, σv
A = −σv

B, σeA = −σeB in order to

maintain global conservation. The total density ρ and velocity of the center of mass
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v are defined as

ρ = ρA + ρB (2.16a)

ρv = ρAvA + ρBvB. (2.16b)

It would be convenient to form similar conservation equations to the single phase

system, Eqs. 2.14. This allows for general conclusions to be made relating quantities

between a single component and multi-component system. Before that is done, it will

be helpful to define the mass fraction ck, the diffusive velocity wk, and diffusive flux

Jρk as

ck =
ρk
ρ

(2.17a)

wk = vk − v (2.17b)

Jρk = ρkwk. (2.17c)

Combining the density equations for species A and B, Eq. 2.15a, results in the exact

density conservation equation for a single phase system, Eq. 2.14a, with the updated

definitions of ρ and v, Eqs. 2.16a and 2.16b. Combining the momentum equations of

species A and B yields

DA(ρAvA)

DAt
+
DB(ρBvB)

DBt
= −∇ · (PA + PB). (2.18)

In order for the left hand side of the equation to be of the single phase form,

∇ · (ρAwAwA + ρBwBwB) needs to be added to both sides of the equation. Defining

P ∗k = Pk + ρkwkwk and P ∗ = P ∗A + P ∗B, where ab represent the dyadic product of
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two vectors, results in

D(ρv)

Dt
= −∇ · P ∗, (2.19)

which mirrors the forms of the single phase equation, Eq. 2.14b.

Previously, the velocity was combined with the momentum equation and com-

pared with the energy equation to obtain the internal energy equation. However,

ek = uk + kek where kek is the kinetic energy associated with the center of mass of

species k. Therefore, it is convenient to partition the energy by

ek = uk +
1

2
vk · vk = uk +

1

2
(wk − v) · (wk − v) = u∗k + ke∗k −wk · v (2.20)

where u∗k takes the kinetic energy associated with wk and ke∗k is the kinetic energy

associated with the center of mass motion of the system. The total energy of the

system is can now be written as

ρe = ρu∗ + ρke∗ (2.21)

because the extra terms wk · v sum to 0. Combining the energy equations results in

D(ρAeA)

DAt
+

(DρBeB)

DBt
= −∇ · (qA + qB)− vA · (∇ · PA)− vB · (∇ · PB)

−PA : ∇vA − PB : ∇vB.

(2.22)

Similar to the momentum equation, the left hand side of the combined energy equation

differs from D(ρe)/Dt by ∇ · (ρAeAwA + ρBeBwB); therefore

D(ρe)

Dt
= −∇ · (qA + qB)−∇ · (PAvA + PBvB)−∇ · (ρAu∗AwA + ρBu

∗
BwB)

−∇ · (ρA(v ·wA)wA + ρB(v ·wB)wB)

(2.23)
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noting that the ke∗k terms vanish due to JρA + JρB = 0. In order to form a single

internal energy equation, v· is applied to the momentum equation and compared

with the total energy equation. However the two-phase momentum equation has P ∗,

noting that PAvA + PBvB = P ∗v + PAwA + PBwB − (ρAwAwA + ρBwBwB)v, the

total energy equation becomes

D(ρe)

Dt
= −∇ · (qA + qB)− v · (∇ · P ∗)− P ∗ : v−∇ · (ρAu∗AwA + ρBu

∗
BwB)

−∇ · (PAwA + PBwB)

(2.24)

which when compared with v· of the momentum equation results in

D(ρu∗)

Dt
= −∇ · q∗ − P ∗ : ∇v (2.25)

where q∗ absorbed all extra terms, similar to P ∗ in the momentum equation.

In addition to the mass, momentum, and internal energy equations, an addi-

tional equation needs to be formed in order to completely define the system. Either

A or B’s individual mass equation could be used, but often concentration equations

using the definition of the diffusive flux, Jk are formed such that

D(ρck)

Dt
= −∇ · Jρk + σρk. (2.26)

It does not matter which equation is solved, and it is common to write the equations

as phase fractions with α = cB or φ = cB − cA causing α ∈ [0, 1] or φ ∈ [−1, 1] and
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transforming the phase equations to

D(ρα)

Dt
= −∇ · Jρα + σρα. (2.27a)

D(ρφ)

Dt
= −∇ · Jρφ + σρφ. (2.27b)

with Jρα = JρB, Jρφ = JρB − J
ρ
A, σρα = σρB, and σρφ = σρB − σ

ρ
A.

General conservation equations for a binary system have be derived that mirror

the single phase system with slightly modified definitions of the heat flux vector and

pressure tensor. In summary, the conservation equations for a binary system are

Dρ

Dt
= 0 (2.28a)

D(ρv)

Dt
= −∇ · P ∗ (2.28b)

D(ρu∗)

Dt
= −∇ · q∗ − P ∗ : ∇v (2.28c)

D(ρα)

Dt
= −∇ · Jρα + σρα or

D(ρφ)

Dt
= −∇ · Jρφ + σρφ (2.28d)

or in Lagrangian form

ρ̇ = −ρ∇ · v (2.29a)

ρv̇ = −∇ · P ∗ (2.29b)

ρu̇∗ = −∇ · q∗ − P ∗ : ∇v (2.29c)

ρα̇ = −∇ · Jρα + σρα or ρφ̇ = −∇ · Jρφ + σρφ (2.29d)
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with

P ∗ = PA + PB + ρwAwA + ρwBwB (2.30a)

q∗ = qA + qB + ρAu
∗
AwA + ρBu

∗
BwB + PAwA + PBwB. (2.30b)

This concludes the section of governing equations due to global conservation laws of

mass, momentum, and energy.

2.4 Non-equilibrium Thermodynamics

The following section will discuss the thermodynamic background for this work.

Similar derivations to this section can also be found in [81–84]. A key assumption

of non-equilibrium thermodynamics is the local equilibrium hypothesis. The local

equilibrium hypothesis states that a non-equilibrium system can be decomposed into

small domains such that the instantaneous thermodynamic and mechanical properties

of the domains are the same as a system that is in uniform equilibrium. These small

domains still contain a large number of molecules in the classical sense such that each

sub domain can still be treated as a continuum.

As with energy, Eq 2.6, the total entropy S of a system can be written in specific

form as

S =

∫
V (t)

ρs dV. (2.31)

The time derivate of S can be decomposed into an external and internal portion

dS

dt
=
dSe
dt

+
dSi
dt
. (2.32)
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with

dSe
dt

= −
∫
A(t)

Js · n̂ dA = −
∫
V (t)

∇ · Js dV (2.33a)

dSi
dt

=

∫
V (t)

σs dV (2.33b)

where Js and σs represent the entropy flowing through the boundaries of the system

and the entropy generation within the system. Taking the time derivative of Eq. 2.31

and using Eq. 2.33, the local form of the entropy equation is

ρṡ = −∇ · Js + σs. (2.34)

From the thermodynamic postulate, the internal energy u of a binary system

is a function of the entropy density s, specific volume ν = ρ−1, and concentrations

cA and cB, u = f(s(r, t), ν(r, t), cA(r, t), cB(r, t)), where r and t denote the spatial

vector with respect to a global reference frame and time. The total derivative of the

internal energy is given by

du =
∂u

∂s
ds+

∂u

∂ν
dν +

∂u

∂cA
dcA +

∂u

∂cB
dcB (2.35)

where the partial derivatives are taken at constant values of the remaining three

variables. Using the standard definition for temperature T = ∂u/∂s, pressure P =

−∂u/∂ν, and chemical potential µk = ∂u/∂ck yields

du = Tds− Pdν + µAdcA + µBdcB. (2.36)

Noting that cA + cB = 1→ dcA = −dcB (see Sec. 2.3.2 α ≡ cB), and defining excess
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chemical potential µ ≡ µB − µA, Eq. 2.36 can be rearranged to

du = Tds− Pdν + µdα. (2.37)

Converting the total derivatives to time derivatives and rearranging the equation to

solve for ṡ yields

ṡ =
u̇

T
+
P ν̇

T
− µα̇

T
. (2.38)

Replacing u̇, ν̇, and α̇ with the results from Eq. 2.29 and rearranging to a form

similar to Eq. 2.34, results in

ρṡ = −∇ ·
(
q∗

T
− µJρα

T

)
+ q∗ · ∇ 1

T
− 1

T
τ ∗ : ∇v− Jρα · ∇

(µ
T

)
+ σρα

µ

T
(2.39)

with τ ∗ = P ∗ − PI where I is the identity tensor, and q∗ and Jρα are the modified

total heat flux and diffusive phase flux defined by Eqs. 2.17c and 2.30b. Comparing

with Eq. 2.34, it can readily be seen that

Js =
q∗

T
− µJρα

T
(2.40a)

σs = q∗ · ∇ 1

T
− 1

T
τ ∗ : ∇v− Jρα · ∇

(µ
T

)
+ σρα

µ

T
, (2.40b)

and if φ ∈ [−1, 1] is used instead of α ∈ [0, 1] then

Js =
q∗

T
−
µφJ

ρ
φ

T
(2.41a)

σs = q∗ · ∇ 1

T
− 1

T
τ ∗ : ∇v− Jρφ · ∇

(µφ
T

)
+ σρφ

µφ
T

(2.41b)

with µφ = (µB − µA)/2. The entropy generation, σs, presents itself as the sum of
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Table 2.1: Forces Xi and fluxes Ji for entropy generation.

α
Xi ∇(1/T ) -∇(µ/T ) -∇v/T µ/T

Ji q∗ Jρα τ ∗ σρα

φ
Xi ∇(1/T ) -∇(µφ/T ) -∇v/T µφ/T

Ji q∗ Jρφ τ ∗ σρφ

forces Xi multiplied by fluxes Ji,

σs =
∑
i

JiXi. (2.42)

The breakdown of what is a force and what constitutes a flux is somewhat arbitrary,

but for this work, the breakdown is shown in Table 2.1.

The forces are known functions of the state variables and potentially their gra-

dients, T , P , and α (or φ). Experimentally the fluxes and forces have been show to

have dependent relations such that Ji = f(X1, ..., Xn;T, P, α) with both vanishing

when the system is in equilibrium. The relationships between the forces and fluxes

are often known as constitutive equations. If a linear expansion is made about the

fluxes then

Ji =
∑
j

LijXj (2.43)

where Lij = (∂Ji/∂Xj) are expected to be physical scalar coefficients such as thermal

conductivity, shear viscosity, or the diffusion coefficients. Onsager postulated the

symmetry of these coefficients such that Lij = Lji, and Lij are often called the

Onsager coefficients.
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2.5 Molecular Dynamics

The following section will give a brief overview of molecular dynamics simula-

tions in Sec 2.5.1, however, more detailed discussions on molecular dynamics can be

found elsewhere [85–88]. Connections linking molecular dynamics to the continuum

models of Secs. 2.3 and 2.4 will be made in section 2.5.2. Section 2.5.3 will discuss

the calculation of some physical quantities using molecular dynamics while section

2.5.4 will discuss controlling the temperature and chemical potential in molecular

dynamics.

2.5.1 Overview of Molecular Dynamics

Molecular dynamics (MD) is a simulation method used which models the be-

havior of a system by modeling every molecule or atom in a system explicitly. It

assumes that the particles interact in the classical sense, ignoring any quantum ef-

fects. Newton’s equation of motion can be written for each individual particle as

d2ri
dt2

=
Fi
mi

(2.44)

where mi, ri, and Fi, denote particle i’s mass, position, and net force while t denotes

time. The force on each particle is related to the potential energy of the particle, Vi,

by

Fi = ∇Vi(r1, ..., rN) (2.45)

where N is the number of particles consider in the system. This result couples the N

equations of motion for the system. Due to the large number of equations the system

is often solved numerically with a time integration scheme such as the velocity-Verlet

algorithm.
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In order to integrate Eq. 2.44, an interaction potential between particles is

needed. A commonly used interaction potential between particles is the two-body

Lennard-Jones potential given by

VLJ(r) = 4ε

(
σ12

r12
− σ6

r6

)
(2.46)

where ε and σ are energetic well depth and zero potential distance between particles

i and j while r = |rij| = |ri − rj| is the distance between particles i and j. The

Lennard-Jones potential has shown excellent correlation with the experiment results

for argon in both the liquid and vapor phase. The parameters ε, σ, and m for argon

are 0.3405 nm, 0.01032 eV, and 39.948 amu respectively [85].

2.5.2 Connection to Continuum Models

In order for MD to be meaningful in a continuum sense properties such as

velocity, mass, temperature, energy, and pressure must be calculated in the system.

The energy of an MD system E is defined as

E = U +Kcom = V +Kmic +Kcom. (2.47)

where U , Kcom, V , and Kmic is the internal energy, kinetic energy related to bulk

or center of mass motion, potential energy due to atomic interactions, and kinetic

energy due to thermal motion. However in sections 2.3 and 2.4 the internal energy

for a two phase system was decomposed as

E = UA +Kcom
A + UB +Kcom

B = VA +Kmic
A +Kcom

A + VB +Kmic
B +Kcom

B . (2.48)
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In order for the MD simulations to be meaningful both of these energy definitions

should be the same which is not readily apparent. Since the potential energy is due

solely to particle positions

V =
N∑
i=1

Vi =

NA∑
i=1

Vi +

NB∑
i=1

Vi = VA + VB (2.49)

where N = NA+NB is the total number of particles while NA and NB are the number

of particles in species A and B. What remains to be shown is that the kinetic energy

terms in Eqs. 2.47 and 2.48 are equal with each term being defined as

Kcom
k =

1

2
mkv

2
k, Kcom =

1

2
mv2 (2.50a)

Kmic
k =

Nk∑
i=1

mi

2
(vi − vk)

2, Kmic =
N∑
i=1

mi

2
(vi − v)2 (2.50b)

where k denotes phase A or B. The masses and velocities are defined as

mk =

Nk∑
i=1

mi, m =
N∑
i=1

mi = mA +mB (2.51a)

vk =

Nk∑
i=1

mi

mk

vi, v =
N∑
i=1

mi

m
vi =

mAvA +mBvB
m

. (2.51b)

If the quadratic terms in Eq. 2.50b are expanded and combined with the center of

mass terms in Eq. 2.50a along with the definitions of velocity, it can be shown that

Kmic
k +Kcom

k =

Nk∑
i=1

mi

2
v2
i = Kpart

k (2.52a)

Kmic +Kcom =
N∑
i=1

mi

2
v2
i = Kpart. (2.52b)
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Now it can be readily seen that the kinetic energy terms in Eqs. 2.47 and 2.48 are

indeed equal because

Kmic +Kcom = Kpart = Kpart
A +Kpart

B = Kmic
A +Kcom

A +Kmic
B +Kcom

B . (2.53)

Equation 2.47 and Eq. 2.48 representing the same total energy E allows for a connec-

tion between the continuum models of sections 2.3-2.4 and MD. It should be noted

that the averages of the molecular simulations should contain a sufficient number

of particle in order to accurately represent a continuum fluid. This can be done by

spatial and/or time averaging to increase the number of particles sampled.

The microscopic energies in Eq. 2.50b define the thermal energy of a partic-

ular system which allows for a microscopic definition of temperature T using the

equipartition of energy as

dkBT = 2Kmic (2.54)

where d is the dimensionality of the system. This definition allows for only variations

in the motion of the fluid to be captured because the bulk velocity of the system is

not contained in Kmic. The pressure P for a system is defined as

P = −ρkBT −
1

3V

N∑
i=1

N∑
j 6=i

rij · Fij (2.55)

while the pressure tensor P is defined as

P = −m
V

N∑
i=1

vivi −
1

2V

N∑
i=1

N∑
j 6=i

rijFij. (2.56)

The second term in P and P is often called the viral (or excess) pressure as it is

the contribution from molecular interactions while the first term is the ideal gas
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contribution. The total heat flux for a molecular region is

q =
1

V

N∑
i=1

[
(Ki + Vi)vi − Pivi

]
(2.57)

where Ki and V are the kinetic and potential energies of particle i. With these

molecular definitions of P and q it is now possible to calculate the quantities in

section 2.3.

2.5.3 Additional Physical Properties

Viscosity: The dynamic viscosity η can be calculated from the Green-Kubo formula

is [85]

η =
V

kBT

∫ ∞
0

〈Pαβ(0)Pαβ(t)〉dt (2.58)

where Pαβ are the off diagonal elements of P and α and β refer to the x, y, or z

coordinates with the condition that α 6= β.

Planar Surface Tension: The planar surface tension σST between two fluids is

related to the normal pressure PN and transverse pressure PT spanning the interface

of the fluids and is given by [85]

σST =

∫
PN(x)− PT (x)dx. (2.59)

Here the interface is assumed to be in the yz plane, and the integral is evaluated

sufficiently far into the bulk regions of the two distinct fluids.
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Chemical Potential: Formally the chemical potential µ is the derivative of the

Helmholtz free energy F at constant volume and temperature [85,86]. From a statis-

tical mechanics perspective F = −kBT lnQ(N, V, T ) where Q(N, V, T ) is the classical

partition function for a system of N molecules in a volume V at temperature T . It

is common to separate, F = Fid + Fex, where Fid and Fex are the contributions from

an ideal gas and the excess contribution resulting in

µ = µid + µex (2.60a)

µid = kBT ln(ρΛ3) (2.60b)

µex = −kBT ln

[∫
〈exp(−∆V/kBT )〉drN+1

]
(2.60c)

where ρ is the number density, Λ is the de Broglie wavelength, and ∆V ≡ V(rN+1)−

V(rN) is the energetic difference by adding one molecule to the system. The ideal gas

contribution is readily calculable if the density is known, and in molecular simulations,

the excess portion can be sampled by placing test particles and calculating the energy

change in the system. This is commonly referred to as the test particle method or

Widom sampling [85, 86, 89]. Furthermore the chemical potential in Sec. 2.4 is the

difference between species A and B, µBA = µB − µA, therefore µBA = µBid
+ µBex −

µAid
− µAex . Utilizing the phase fraction α and assuming that the excess chemical

potential is split between the two species based on α the excess chemical potential

µBAex is

µBAex = (2α− 1)µex. (2.61)

Dimensionless Units: The three primary units for MD simulations are the ener-

getic well depth between particles ε, the zero potential distance σ, and the particle

mass m. Due to the small values of ε, σ, and m in SI units for physical systems it
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Table 2.2: Dimensionless parameters for MD simulations.

Quantity Dimensionless Relation

Length L∗ =
L

σ

Energy E∗ =
E

ε

Mass M∗ =
M

m

Number Density ρ∗ =
N

V/σ3
= ρσ3

Mass Density ρ∗ =
mN

V/σ3
= ρσ3

Temperature T ∗ =
kBT

ε

Pressure P ∗ =
P

ε/σ3

Time t∗ =
t√

mσ2/ε

Surface Tension γ∗ =
γ

ε/σ2

Viscosity η∗ =
η√
mε/σ4

is often convenient to run simulations using dimensionless parameters where physical

properties have been appropriately scaled so that they are dimensionless using ε, σ,

m, and other physical constants namely the Boltzmann constant kB. Table 2.2 shows

the dimensionless properties denoted with a “∗” and how they are scaled. Unless oth-

erwise noted MD simulations throughout the remainder of this dissertation are run

in dimensionless units and can be converted to real units for argon using σ = 3.405

Å, ε/kB = 120.96 K, and m = 39.948 amu [85], and m is the mass of one particle.
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2.5.4 Controlling Temperature and Chemical Potential

It is often desirable to control certain physical properties in MD simulations

to mirror experimental conditions. In this dissertation the two parameters that are

controlled during the simulations are the temperature T and chemical potential µ.

Based upon Eq. 2.54, the temperature is computed through the particle velocities

in the system. There are several thermostatting methods in MD simulations known

as rescaling [85], Berendsen [90], Langevin [91], and Nosé-Hoover [92] thermostats.

These thermostats each have various benefits and drawbacks both physically and

computationally which can be found in the literature. The thermostats used in this

dissertation are the rescaling, Berendsen, and Langevin thermostats. Briefly, rescal-

ing thermostats alter the particle velocities at the end of the time integration stage of

MD such that the temperature is the desired value from Eq. 2.54, while the Berend-

sen and Langevin thermostats apply forces (often small in magnitude compared to

other forces) to the particles in the system such that T will return to its desired

value in a time τT . Rescaling thermostats abruptly change the particle trajectories

and lack physical justification but are computationally efficient while the remaining

thermostats have various levels of physical justification based on how the restoring

forces are applied but are computationally more expensive.

In order to control the chemical potential in MD simulations, molecular dynam-

ics is coupled to grand canonical Monte Carlo (GCMC) [93–100] and is often referred

to as grand canonical molecular dynamics (GCMD). Briefly GCMD has a control vol-

ume (or volumes) within the simulation domain where GCMC is performed between

the MD timesteps. GCMC attempts individual particle translations (and rotations

in molecular systems), insertions, and deletions all with an acceptance criteria based

on the desired value of µ. The insertion and deletion of particles is based on the idea
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of connecting the GCMC region to a large bath at chemical potential µ. The particle

insertion and deletion idea is similar to the idea of calculating the excess chemical

potential via the test particle method, but rather than calculate the chemical poten-

tial the particles are inserted or removed to control the chemical potential. A more

detailed discussion of GCMC can be found in the literature [85].
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3 Curvature Dependence of the Mass Accommo-

dation Coefficient

3.1 Introduction

Condensation is of central importance in a broad range of areas in both na-

ture [101–109] and industry [19, 25, 28–30, 110–115]. Aerosol-cloud interactions, cur-

rently a significant open question in climate modeling, are driven by the condensation

of atmospheric water vapor onto cloud condensation nuclei [101–104]. Water harvest-

ing which occurs in living organisms including cacti [106,109], beetles [107,108], and

spiders [105], and in engineered systems for irrigation [111], supplementation of do-

mestic water supply [111–113], and power plant cooling tower steam recovery [112],

relies heavily on droplet condensation from the surrounding air or fog. Vapor cham-

bers [114], useful for cooling microelectronics, are a practical application where drop-

wise condensation is pertinent, and experimental results have shown that adding

nano-scale topographical [116–120] or surface energy [121–123] patterning to the con-

densing surfaces can greatly improve the overall heat transfer coefficient. Power

generation [28–30] and desalination [19, 25, 30, 115] both rely heavily on condensers

within the plant cycles that can have significant inefficiencies [28], offering a viable

avenue where improvement to condensation processes can have a significant impact

on the energetic requirements of these facilities.

Theoretical models are often used to predict the rates of liquid water and latent

heat production during condensation processes [116–120,124,125]. A key component

in many condensation models is the liquid-vapor interfacial thermal resistance. This

resistance depends upon the mass accommodation coefficient, α, which represents the
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likelihood that a vapor molecule that impinges upon a liquid-gas interface condenses

into the bulk liquid. This interfacial resistance increases as droplet radius decreases,

and dominates the condensation heat and mass transfer for droplets with radii below

1 µm [118,119]. In these models, the value for α is often assumed or estimated from

computer simulations as it is difficult to obtain experimentally [116,117,124–129].

Molecular dynamics (MD) simulations, which track condensation and evapora-

tion processes at the molecular level, are well suited for mass accommodation studies

and have been used to calculate α for a wide range of simple fluids and for more

complex systems including binary liquid mixtures, non-condensable gases, and sur-

face monolayer coatings [1–4, 130–140]. All but one of the previous studies in the

literature focused on planar liquid-gas interfaces. The applicability of planar ac-

commodation coefficients to the high-curvature interfaces of very small droplets, for

example the submicron droplets produced on advanced condenser surfaces [117–120]

and the critical water nuclei responsible for cloud formation [134], is unclear. Curva-

ture effects are known to be important for other interfacial properties such as surface

tension [141–147], and may also be relevant for mass accommodation. Julin et al. [134]

performed the only previous study of the effect of curvature on α. For water droplets

with radii of approximately 2 nm and 4 nm at 273.15 K, they found that α slightly

increased with radius, but that it did not significantly deviate from its planar value.

In the present work, a systematic MD study of the mass accommodation coefficient at

equilibrium liquid-vapor interfaces is presented for a variety of pure fluids at a range of

temperatures. In contrast to previous work, this work shows that α is size-dependent,

varying from the bulk value for larger droplets down to zero for the smallest droplets,

and that its bulk value is not generally equal to one. In addition, scaling reveals a

universal curvature dependence for all fluids and temperatures considered.
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3.2 Molecular Dynamics Simulations

To compute α, stable spherical equilibrium droplets of varying sizes were first

prepared in MD using cubic domains with periodic boundary conditions. Lennard-

Jones, Buckingham, benzene, n-butane, methane, methanol, and water droplets were

simulated at multiple temperatures (Table 3.9). Lennard-Jones fluids with repulsive

forces proportional to r−k, where k = {12, 9}, and Buckingham fluids with repulsive

forces proportional to e6k(1−r), where k = {3, 2}, were studied. Benzene, butane,

methane, and methanol were modeled using transferable potentials for phase equilib-

ria [148–151] while water was modeled using the TIP4P/2005 potential [152]. Figure

3.1 shows a continuum representation of the entire liquid-vapor simulation domain

and a zoomed-in atomistic snapshot of a stable Lennard-Jones droplet. The radius of

each droplet, indicated by the blue line in Fig. 3.1, is defined as the location where the

fluid density is the average of the bulk liquid and vapor densities, ρ(R) = (ρL+ρV )/2.

At temperatures for which the coexisting phases are well described as incompressible

liquid and ideal gas, the MD-obtained droplet radii were found to agree well with

Kelvin equation predictions.

3.2.1 Interaction Potentials

This section briefly describes the energetic potentials used in this work. The

numerical values for all parameters can be found in Tables 3.1, 3.2, 3.3, 3.4, and 3.5.
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Fig. 3.1: Continuum (left) and atomistic (right) representations of a Lennard-Jones
droplet. Ninc, Nacc, and Nref refer to the number of incident, accommodated, and
reflected molecules. The solid green line indicates the incident surface. The blue
line indicates the liquid-vapor interface, defined as the location where the density is
midway between the bulk liquid and vapor densities.

Lennard-Jones and Buckingham Potentials: Molecular dynamics simulations

were first performed with a simple particle potentials. The Lennard-Jones,

ULJ
k,6 (rij) = 4εij

((
σij
rij

)k
−
(
σij
rij

)6
)
, (3.1)

and Buckingham potentials,

UB
k,6(rij) = 4εij

(
e6k(1−rij/σij)

k
−
(
σij
rij

)6
)
, (3.2)

were used where rij, εij, and σij denote the distance, potential well depth, and zero

potential distance between particles i and j, while k denotes the strength of the

repulsive force. For the Lennard-Jones potentials values of k = 12 and k = 9 were

used while values of k = 3 and k = 2 were used for the Buckingham potential. The
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above potentials were truncated and shifted at a cutoff radius of rc. Dimensionless

values were used for all Lennard-Jones and Buckingham simulations, and parameters

can be converted to real units for argon using σ = 3.405 Å, ε/kB = 120.96 K, and

m = 39.948 amu [85], where kB is the Boltzmann constant and m is the mass of one

particle.

Water, TIP4P/2005: Water simulations were performed using the TIP4P/2005

potential [152]. The TIP4P/2005 model was chosen because it is a commonly used

water model that has coexistence densities that agree well with experimental values

[153,154]. TIP4P/2005 models the intermolecular interactions with a Lennard-Jones

potential along with a Coulombic interactions

UW (rij) = ULJ
12,6(rij) +

qiqj
4πε0rij

(3.3)

where qi and qj denotes the charge of particles i and j and ε0 is the electric con-

stant. In the TIP4P/2005 model, only the O-O interactions have non-zero εij. In the

TIP4P/2005 model, the charge for the O atom is placed at a massless location 0.1546

Å from the O atom along the bisecting angle between the H atoms. The Lennard

Jones portion of the potential has a cutoff of rc while the long range Coulombic in-

teractions were handled with a particle-particle particle-mesh solver (PPPM) [85].

The O-H bond length and H-O-H bond angle were constrained with the SHAKE

algorithm [155]. Further details of the TIP4P/2005 model can be found in the liter-

ature [152].

Methane and Butane, TraPPE: Simulations modeling alkanes, methane (CH4)

and butane (n-butane, C4H10), were simulated using the transferable potentials for
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phase equilibria (TraPPE) [148,149]. Methane was modeled using the explicit hydro-

gen model (TraPPE-EH) [149]. The carbon and hydrogen from different molecules

interact through a smoothed Lennard Jones potential

UALK(rij) =


ULJ
12,6(rij) if rij ≤ rin

US(rij) if rin < rij ≤ rc

0 else

(3.4)

where rin is the inner cutoff radius and US(rij) is a quartic polynomial such that

UALK(rij) and ∇UALK(rij) vary smoothly to zero between the inner and outer cutoff

radii. The motivation for using a smoothed potential as opposed to a simple truncated

potential for alkanes can be found in the literature [156,157]. Non-bonded interactions

between the carbon and hydrogen atoms were computed with the Lorentz-Berthelot

mixing rules [158,159],

εij =
√
εiiεjj σij =

σii + σjj
2

. (3.5)

The C-H bond energy UBo and H-C-H angle energy Uθ within a molecule were modeled

with harmonic potentials,

UBo(rij) =
k0
2

(rij − r0)2 (3.6a)

Uθ(θijk) =
kθ
2

(θijk − θ0)2, (3.6b)

where k0 and kθ are the strengths of the bonds, r0 and θ0 are the equilibrium bond

values, and θijk is the angle between atoms i, j, and k. Note that TraPPE-EH places

the hydrogen atoms at a distance of half the realistic bond length. Further details of
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the methane model can be found in the literature [149].

Butane was modeled using the united atom TraPPE (TraPPE-UA) poten-

tial [149] which is a four particle model with two CH3 pseudo particles at the edges

of the hydrocarbon chain and two CH2 pseudo particles in the center of the hydro-

carbon chain. The CH3 and CH2 particles from different molecules interact through

a smoothed Lennard Jones potential, Eq. 3.4, with Lorenz-Berthlot mixing rules,

Eq. 3.5. The bond lengths and bending angles between the CHj particles are also

modeled with harmonic potentials, Eq. 3.6. The dihedral angle energy Udi in butane

is modeled with the OPLS potential [160],

Udi(φ) = c1(1 + cos(φ))− c2(1− cos(2φ)) + c3(1 + cos(3φ)), (3.7)

where φ is the dihedral angle and c1, c2, and c3 are energetic coefficients. Further

details of the butane model can be found in the literature [148].

Methanol, TraPPE Methanol (CH3OH) was simulated using TraPPE-UA poten-

tial [151]. This is a three particle model which explicitly models the O and H in

the hydroxyl group and models the methyl group as a pseudo atom. The atoms and

pseudo atoms from different molecules interact through a Lennard Jones potential

and Coulombic potential

UALC(rij) = ULJ
12,6(rij) +

qiqj
4πε0rij

(3.8)

with Lorentz-Berthelot mixing rules, Eq. 3.5. Both the bond lengths and angles

are modeled with harmonic potentials, Eq. 3.6. The Lennard-Jones portion of the

potential is truncated and shifted at rc, and the long range Coulumbic interactions
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are handled with the PPPM method. A more detailed discussion of the methanol

model can be found in the literature [151].

Benzene, TraPPE Benzene (C6H6) modeled using TraPPE-EH potential [150].

The carbon and hydrogen from different molecules interact through a Lennard Jones

potential and Coulombic potential

UB(rij) = ULJ
12,6(rij) +

qiqj
4πε0rij

(3.9)

with Lorentz Berlthot mixing rules. The bond lengths and bond angles for benzene

are harmonic, Eq. 3.6. The Lennard-Jones portion of the potential is truncated

and shifted at rc, and long range Coulumbic interactions are handled with a PPPM

method. A more detailed discussion of the benzene model can be found in the liter-

ature [150].

3.2.2 Simulation Initialization

In order to verify the method to calculate α, planar simulations were run for

each fluid and temperature simulated, but the overall initializing procedure for the

planar liquid-vapor interfaces and the droplet liquid-vapor interfaces was similar. For

all systems N molecules where placed in a simulation box of size L×W ×W for the

planar interfaces simulations and L×L×L for spherical interface simulations. Domain

sizes for simulations are found in Tables 3.10 - 3.24. The number of molecules N and

the domain sizes L and W were chosen based on the bulk densities of the fluids [148–

150,154,154,162,163] such that a liquid region would be stable in the simulations (note

that this method required some trial and error). A portion of the particles were placed

in a simple lattice corresponding to the bulk liquid density ρL in the center of the
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Table 3.1: Parameters used for inter-molecular potentials. Values for the Lennard
Jones (LJ) and Buckingham (B) potentials are dimensionless.

Fluid ε/kB σ rc – – –

LJ k = 12 1 1 3 – – –

LJ k = 9 1.6875 1 3 – – –

B k = 3 0.375 1 3 – – –

B k = 2 0.5 1 3 – – –

Fluid ε/kB [K] σ [Å] rc [Å] rin [Å] q [e] Model

Benzene, C 30.7 3.60 14 – -0.095
TraPPE-EH [150]

Benzene, H 25.5 2.36 14 – 0.095
Butane, CH3 98.0 3.75 15 14 –

TraPPE-UA [148]
Butane, CH2 46.0 3.95 15 14 –

Methane, C 0.01 3.31 15 9 –
TRaPPE-EH [149]

Methane, H 15.3 3.31 15 9 –

Methanol, CH3 98.0 3.75 14 – 0.265
TraPPE-UA [151]Methanol, O 46.0 3.95 14 – -0.700

Methanol, H 0 0 – – 0.435

Water, O 93.2 3.1589 10 – -1.1128
TIP4P/2005 [152]

Water, H 0 0 – – 0.5564

domain while the remaining molecules were placed in a simple lattice corresponding

to the bulk vapor density ρV throughout the remainder of the domain. The system

was then run, melting the lattices and forming distinct liquid and vapor regions.

Note that during the first portion of initialization a smaller ∆t was used due to the

highly unfavorable initial configuration. The simulations continued equilibration at

a normal time step ∆t until the interface stabilized such that the interface position

was not changing with time. The number of time steps needed for the interface to

stabilize depended on the droplet size and fluid being modeled. In order to ensure

the droplet were at an equilibrium position, the radius was monitored during the

initialization. Figure 3.2 shows the stable interfaces for a select few systems. Once

36



Table 3.2: Bond length and bond stiffness for intra-molecular energies. The bond
stretching energy is modeled with a harmonic potential, UBo(rij) = k0(rij − r0)2/2.

Fluid Bond r0 [Å] Source k0/kB [K/Å2] Source

Benzene C-C 1.392 [150] 236010 [161]

Benzene C-H 1.08 [150] 184681 [161]

Butane CH3-CH2 1.54 [148] 155998 [148]

Methane C-H 0.55 [149] 171094 [161]

Methanol CH3-O 1.43 [151] 226449 [161]

Methanol O-H 0.945 [151] 278280 [161]

Water O-H 0.9572 [152] rigid (∞) [152]

Table 3.3: Bond angles and bond angle stiffness for intra-molecular energies. The
bond angle energy is modeled with a harmonic potential, Uθ(θijk) = kθ(θijk − θ0)2/2.

Fluid Bond θ0 [◦] Source kθ/kB [K/rad2] Source

Benzene C-C-C 120 [150] 17613 [161]

Benzene C-C-H 120 [150] 31703 [161]

Butane CH3-CH2-CH2 114.0 [148] 62500 [148]

Methane H-C-H 109.47 [149] 17613 [161]

Methanol CH3-O-H 108.5 [151] 55400 [161]

Water H-O-H 104.52 [152] rigid (∞) [152]

Table 3.4: Dihedral angle coefficients for butane. The dihedral angle is modeled
using Udi(φ) = c1(1 + cos(φ)) − c2(1 − cos(2φ)) + c3(1 + cos(3φ)). Units for each
coefficient are in [K].

c1/kB c2/kB c3/kB Source

355.03 68.19 791.32 [148]
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Table 3.5: Time step ∆t, total run time after equilibration ttotal, number of parti-
cles/molecules in thermostatted regions NT , damping constant for Langevin thermo-
stat τT , PPPM tolerance, and SHAKE tolerance. Values for the Lennard Jones (LJ)
and Buckingham (B) potentials are in dimensionless units.

∆t ttotal NT – – –

LJ k = 12 0.005 25000 100 – – –

LJ k = 9 0.005 25000 100 – – –

B k = 3 0.005 8500† 100 – – –

B k = 2 0.005 12500† 100 – – –

∆t [fs] ttotal [ns] NT τT [ns] PPPM Tol. SHAKE Tol.

Benzene 2 1.9† 100 0.1 10−5 –

Butane 2 9.0† 100 0.1 – –

Methane 2 4.2† 100 0.1 – –

Methanol 2 3.0† 100 0.1 10−5 –

Water 2 3.4† 100 0.1 10−5 10−4

† Minimum run time, several simulations were run longer.

the average radius fluctuated about a constant value, calculations for α began. The

interface position is defined as the location where the density is the average of the

bulk liquid and vapor density, ρ(xint) = (ρL + ρV )/2.
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Velocity rescaling thermostats were used to maintain the temperature T of the

domain for the Lennard-Jones and Buckingham fluids while Langevin thermostats [91]

with damping constant τT were used for the remaining systems. Local thermostats

were used to control the temperature far from the interface (center of the liquid

film/droplet and edges of the vapor region) such that the thermostats would have

minimal impact on interfacial dynamics. The size of the local thermostats were such

that roughly NT molecules were being thermostatted. To prevent the liquid from

slowly translating throughout the domain the position of every particle was shifted

at the end of every time step such that the center-of-mass of the liquid was at the

origin. If a molecule’s instantaneous pairwise potential energy Ui(t) was less than

(UL +UV )/2 it was tagged as a liquid particle otherwise it was tagged as vapor. Here

UL and UV are the average potential energy per molecule of the bulk liquid and vapor.

Thermostat information, time step, and run time information can be found in Table

4.2 while bulk liquid and bulk vapor densities can be found in Tables 3.6 and 3.7.
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Table 3.6: Bulk liquid and vapor densities for the Lennard Jones and Buckingham
potentials. Values are in dimensionless units.

Fluid T ρL ρV

LJ k = 12 0.6 0.8601± 0.0152 0.0010± 0.0002

LJ k = 12 0.7 0.8150± 0.0151 0.0039± 0.0004

LJ k = 12 0.8 0.7669± 0.0151 0.0112± 0.0007

LJ k = 12 0.9 0.7132± 0.0150 0.0257± 0.0011

LJ k = 12 1.0 0.6500± 0.0151 0.0528± 0.0021

LJ k = 9 0.9 0.7606± 0.0152 0.0092± 0.0006

LJ k = 9 1.2 0.6178± 0.0151 0.0612± 0.0023

B k = 3 0.7 1.0768± 0.0167 0.0131± 0.0007

B k = 3 0.8 0.9897± 0.0168 0.0395± 0.0240

B k = 2 0.9 1.1099± 0.0170 0.0237± 0.0280

B k = 2 1.1 0.9596± 0.0173 0.0883± 0.0537

To further confirm that the droplets are in an expected equilibrium state, the

droplet radius can be calculated as a function of the actual vapor density ρV by [164]

R =
2σ∞
kBT

(
ρ∞L ln

(
ρV
ρ∞V

)
− (ρV − ρ∞V )

)−1
(3.10)

where σ∞, ρ∞L , and ρ∞V are the surface tension and saturation bulk densities for the

liquid and vapor phases. Equation 3.10 is derived from the Gibbs-Duhem equation

at constant temperature, ρdµ = dP where µ and P are the chemical potential and

pressure, with the assumptions that the fluid is incompressible and the gas is ideal.

Furthermore the Kelvin equation can be recovered from Eq. 3.10 under the assump-

tion ρ∞L � ρ∞V . Figure 3.3 compares Eq. 3.10 with the MD data for the Lennard

Jones and Buckingham fluids while Fig. 3.4 compares the real fluids. Note that the

lower temperatures tend to agree with the analytical equation. This is expected be-

cause as the system approaches the critical point the liquid density decreases and the
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Table 3.7: Bulk liquid and vapor densities for the benzene, butane, methane,
methanol, and water.

Fluid T [K] ρL [g/cm3] ρV [g/cm3]

Benzene 365 0.7538± 0.0296 0.0109± 0.0036

Benzene 415 0.6716± 0.0358 0.0395± 0.0182

Butane 295 0.5560± 0.0254 0.0122± 0.0021

Butane 325 0.5117± 0.0286 0.0265± 0.0060

Butane 360 0.4457± 0.0351 0.0604± 0.0157

Methane 120 0.3850± 0.0128 0.0089± 0.0009

Methane 135 0.3510± 0.0146 0.0212± 0.0026

Methane 150 0.3029± 0.0176 0.0497± 0.0087

Methanol 325 0.6612± 0.0269 0.0012± 0.0001

Methanol 375 0.5996± 0.0296 0.0089± 0.0023

Water 500 0.7952± 0.0365 0.0092± 0.0020

Water 525 0.7562± 0.0389 0.0156± 0.0040

Water 550 0.7087± 0.0423 0.0262± 0.0077

Water 575 0.6507± 0.0476 0.0460± 0.0170
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values are given in dimensionless units.

vapor density increases, making the liquid more compressible and the gas less ideal,

violating the assumptions in Eq. 3.10.
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3.2.3 Mass Accommodation Coefficient Calculation Method

After establishing stable droplets, canonical ensemble MD simulations were then

run to calculate α. Formally α is the ratio of the number of accommodated molecules

Nacc to the number of incident molecules Ninc,

α =
Nacc

Ninc

=
1−Nref

Ninc

(3.11)

where Nref is the number of reflected molecules. Here, Ninc was determined by calcu-

lating the number of molecules moving toward the droplet that crossed a hypotheti-

cal surface denoted the ‘incident surface’. As in previous accommodation coefficient

studies [4, 130, 131], the incident surface was placed at a distance δ = rc beyond the

liquid-vapor interface, where rc is the MD cutoff radius (Table 3.9). The cutoff radius

was chosen for δ because that is when the liquid begins to have an energetic impact

on the vapor molecule and the when the “collision” between the vapor molecule and

liquid droplet begins. After the center of mass of a molecule crossed the incident

surface it was monitored until it recrossed the incident surface or was accommodated

by the liquid. If the center of mass of the incident molecule remained inside the liquid

region, defined as the interior of the droplet radius (inside blue circle in Fig. 3.1), for

a time τacc it was marked as accommodated. Similar to the method of Liang et al. [4],

τacc is the time it would take a molecule of mass m to travel 2δ if it were traveling at

the thermal speed vth =
√
kBT/2πm [72]. The values for τacc are in Table 3.9.
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3.2.4 Interface Width Calculation

A common interface profile for molecular fluids is [165]

ρ(x) =
ρL + ρV

2
− ρL − ρV

2
tanh

(
2(x− x0)√

2Lint

)
(3.12)

where ρL and ρV are the bulk liquid and vapor density, Lint is a measure of the

interface width, and x0 is the interface location. The values for Lint were found by

fitting Eq. 4.6 to the planar liquid-vapor interfaces.

3.2.5 Calculation of the Critical Temperatures

The most common method to extract the critical temperature Tc from molecular

simulations is to use the rectilinear diameter equation [166–168]

ρL − ρV = kT

(
1− T

Tc

)b
(3.13)

where ρL and ρV are the liquid and vapor densities of the fluids for a planar interface,

kT is a fitting parameter, and b = 0.32 is the critical exponent. Similarly the the

critical density ρc can be found using

ρL + ρV = 2ρc + kρ

(
1− T

Tc

)
(3.14)

where kρ is a fitting parameter. Table 3.8 shows the calculated critical properties

using Eqs. 3.13 and 3.14 where the values are fit to the data in the least squares

sense [169]. Figure 3.5 shows the coexistence curves calculated by combining Eq.

3.13 and Eq. 3.14 (lines) along with the MD data (markers).
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Fig. 3.5: (Left) Coexistence curves for the Lennard Jones k = 12 (red), Lennard
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(red), butane (blue), methane (green), methanol (purple), and water (magenta).

Table 3.8: Critical parameters for fluids from Eqs. 3.13 and 3.14. Note that the
values for Lennard-Jones (LJ) and Buckingham (B) potentials are dimensionless. No
errors are estimated for several fluids because the number of free parameters was the
same as the number of data points.

Fluid Tc ρc kT kρ

LJ k = 12 1.190± 0.003 0.312± 0.001 1.078± 0.002 0.473± 0.008
LJ k = 9 1.393 0.310 1.048 0.422
B k = 3 1.302 0.481 1.583 0.558
B k = 2 1.037 0.443 1.525 0.630

Fluid Tc [K] ρc [g/cm3] kT [g/cm3] kρ [g/cm3]

Benzene 491.2 0.315 1.148 0.526
Butane 393.6± 0.5 0.236± 0.001 0.847± 0.002 0.380± 0.010

Methane 162.4± 0.8 0.167± 0.001 0.579± 0.005 0.226± 0.006
Methanol 485.3 0.261 0.949 0.383

Water 635.1± 2.9 0.307± 0.002 1.294± 0.010 0.905± 0.024
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3.2.6 Surface Tension and Tolman Length Calculations

It is a well known phenomena that the surface tension for small droplets differs

from the bulk planar value and can be corrected by the Tolman length δT [141–147].

The size dependence surface tension becomes

σ(R) = σ∞

(
1− 2δT

R

)
(3.15)

where σ∞ is the surface tension for a planar interface. The Young-Laplace equation

becomes

∆P ≡ PL − PV =
2σ∞
R

(
1− δT

R

)
(3.16)

where PL and PV are the bulk liquid and vapor pressures. Figure 3.6 plots Eq.

3.16 where δT was fit in the least squares senses [169] and shows excellent agreement

between Eq. 3.16 and the MD data. The fitted values of δT compared well with

values found in the literature [142–144, 146, 147]. The surface tension σ∞ was found

by integrating the pressure profiles on the planar interfaces [85],

σ∞ =

∫
PN(x)− PT (x)dx (3.17)

where PN and PT are the normal and transverse pressures, and the limits of the

integral are taken far into the bulk regions.
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Fig. 3.6: Pressure difference ∆P versus droplet radius for the (left) Lennard-Jones
potential with k = 12 and (right) the Lennard-Jones potential with k = 9 and the
Buckingham potentials. Markers are MD data, while solid lines are Eq. 3.16 with
the fitted value of δT . All values are in dimensionless units and the value for σ∞ is
taken from planar simulations.

3.3 Results

3.3.1 Planar Validation

In order to verify the viability of the method used to calculate α, it was first

applied to planar liquid-vapor interfaces to calculate αpla. Molecules not tagged as

accommodated molecules as described previously are tagged as reflected. A typical

ratio of Nacc/Ninc and Nref/Ninc as a function of time are shown in Fig. 3.7(left).

The probability of a molecule accommodating or reflecting as of function of time,

Pacc and Pref , can be found by integrating Nacc/Ninc and Nref/Ninc respectively, Fig.

3.7(right). The method of marking accommodated molecules allows for the number

of reflected molecules as a function to time to reach zero even with a finite sized liquid

region. This removes the need for the somewhat arbitrary integration time seen in
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Liang et al. [4]. The probabilities were integrated in order to calculate α and the

results agree well with previous literature [1–4] as seen in Fig. 3.8. Note that using

Nref as opposed to Nacc in Eq. 3.11 yields similar results.

3.3.2 Curvature Results

With the validity of the method established, it was then applied to calculate α

for spherical droplets. Figure 3.9(a) shows α as a function of droplet radius for the

Lennard-Jones k = 12 potential at T = 96.8 K, which clearly shows that α decreases

as droplet radius decreases. This decreasing trend is due to several effects both

physical and geometric in nature. Physically vapor density increases as the droplet

size decreases, in agreement with the Kelvin equation for incompressible liquid and

ideal gas, resulting in an increased number of incident particles since Ninc ∼ ρV

[1, 4, 134]. Figure 3.9(b) shows that the inverse of the normalized vapor density,

ρ∗V = ρV /ρ
∞
V where ρ∞V is the vapor density for a planar interface, decreases with

droplet size contributing to the decrease in α. The vapor density in Fig. 3.9(b)
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agrees well with the Kelvin equation prediction (solid line), but this was not the case

for all fluids simulated.

Furthermore, the number of accommodated molecules Nacc is expected to scale

with the energetic attraction between an incident vapor molecule and the liquid drop

UD which was found by averaging the effective vapor-droplet interaction energy from

Yasuoka et al. [170] within the incident region. Assuming the attractive portion of

the Lennard-Jones potential with k = 12, the interaction Ud of a liquid droplet of

radius R at uniform density ρL and a vapor molecule at a distance r from the center

of the drop is [170]

Ud(r, R) = −16πρL
3

R3

(R2 − r2)3
. (3.18)

Integrating this equation from the incident surface to the molecular separation be-

tween the vapor molecule and the liquid droplet is how the average energetic potential

UD was found,

UD(R) =
1

δ − σ

∫ R+δ

R+σ

Ud(r, R)dr. (3.19)
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Fig. 3.9: (a) Inverse of normalized vapor density ρ∗V , (b) normalized droplet attraction
energy U∗, and (c) mass accommodation coefficient α versus droplet radius for the
Lennard-Jones potential with k = 12 and T = 96.8 K. Dashed horizontal lines are
limiting values for a planar interface. Error bars that are not shown are similar to
marker size.

This result was then normalized by the value for a planar interface in order to calculate

U∗ with

U∗(R) =
UD(R)

UD(∞)
. (3.20)

Note that using this above approach for the realistic fluids would be more challenging

due to the multiple inverse sixth power potentials for a given molecule [171]. Figure

3.9(c) shows that the normalized attraction U∗ decreases with droplet size further

contributing to the diminishing value for α with decreasing droplet radius.

The trend of the MD data based on the combined physical and geometric effects
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in Fig. 3.9(a), suggests a functional form for α as follows,

α(R) = α∞

(
1− R0

R

)
(3.21)

where α∞ is the accommodation coefficient for an infinitely large drop and R0 is a

normalizing radius. This functional form was seen for all fluids and temperatures

simulated in this study and the MD data collapses onto a master curve in Fig. 3.10.

Note that the data in Fig. 3.10 is normalized for each fluid and temperature, and the

normalizing values for α∞ and R0 can be found in Table 3.9. The physical meaning

of α∞ is simple to understand as it is the accommodation coefficient for a planar

interface, which was confirmed in planar simulations. For an infinitely large droplet

(a planar interface) the Eq. 3.21 reduces to α∞ implying that the fitted α∞ and

calculated value αpla should be consistent. Figure 3.11 confirms that within error

the fitted value of α∞ and the calculated value of αpla are indeed consistent. Similar

to the decreasing temperature trend seen in Fig. 3.9(a), a decreasing trend with

temperature was seen for α∞ which is consistent with the literature [1–4,136–138].

The physical intuition for R0, however, is harder to grasp. From Eq. 3.21,

R0 is the droplet radius at which no particles will accommodate onto the droplet.

Figure 3.12(a) shows that R0 increases as the temperature approaches the critical

temperature Tc. This indicates that R0 increases as thermal fluctuations cause larger

deformations of the interface causing an effective increase in the droplet radius, mak-

ing droplets appear larger than they actually are. Figure 3.12(b) shows that R0

increases fairly linearly with interfacial width Lint which supports that R0 is a mea-

sure of the effective “shadow” that a droplet of a particle fluid at a given temperature

casts.
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Table 3.9: Parameters for curved droplet simulations. Value in (.) indicates uncer-
tainty in the preceding digit(s), i.e. 1.23(4) = 1.23± 0.04.

Fluid T [K] δ [nm] τacc [ps] α∞ [-] R0 [nm]

Lennard-Jones k = 12 72.6 1.02 41.67 1.019(7) 0.82(3)

Lennard-Jones k = 12 84.7 1.02 38.58 0.919(1) 0.843(6)

Lennard-Jones k = 12 96.8 1.02 36.09 0.782(1) 1.045(5)

Lennard-Jones k = 12 108.9 1.02 34.02 0.595(1) 1.242(6)

Lennard-Jones k = 12 121.0 1.02 32.28 0.418(2) 1.62(2)

Lennard-Jones k = 9 108.9 1.02 34.02 0.848(2) 0.977(8)

Lennard-Jones k = 9 145.1 1.02 29.46 0.395(2) 1.68(1)

Buckingham k = 3 84.7 1.02 38.58 0.801(1) 0.98(5)

Buckingham k = 3 96.8 1.02 36.09 0.593(3) 1.18(1)

Buckingham k = 2 108.9 1.02 34.02 0.783(1) 1.012(4)

Buckingham k = 2 133.1 1.02 30.77 0.453(3) 1.42(1)

Benzene 365 1.40 35.61 0.756(7) 1.49(2)

Benzene 415 1.40 33.39 0.43(2) 2.15(7)

n-Butane 295 1.50 36.61 0.395(7) 1.82(4)

n-Butane 325 1.50 34.88 0.327(9) 2.2(6)

n-Butane 360 1.50 33.14 0.152(5) 2.79(7)

Methane 120 1.50 30.15 0.621(8) 1.53(2)

Methane 135 1.50 28.43 0.37(1) 1.63(5)

Methane 150 1.50 26.97 0.166(4) 2.29(4)

Methanol 375 1.40 22.50 0.631(5) 0.81(2)

Methanol 425 1.40 21.13 0.408(6) 1.15(3)

Water 500 1.00 10.44 0.278(5) 1.04(3)

Water 525 1.00 10.18 0.228(3) 1.04(2)

Water 550 1.00 9.95 0.169(4) 1.24(3)

Water 575 1.00 9.73 0.101(2) 1.28(3)
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Fig. 3.10: Normalized radius versus normalized mass accommodation coefficient.
Data is normalized by α∞ and R0, Table 3.9. Error bars not shown are similar to
marker size.

The size dependent surface tension equation, Eq. 3.15, and the accommoda-

tion coefficient equation, Eq. 3.21, have similar forms. Therefore, there could be a

potential link between δT and R0. Figure 3.13 shows the R0 as a function of δT for

the Lennard-Jones and Buckingham fluids, and no clear relationship exists between

δT and R0. With no clear relation between δT and R0, correlation between with the

surface tension were examined and are shown in Fig. 3.14 for all fluids modeled.

A lose decreasing trend in R0 is seen with increasing surface tension and is similar

to the trend seen for with T/Tc because surface tension decreases with increasing

temperature [2, 148–154,157,162,163].
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From Eq. 3.21 the accommodation coefficient for large droplets approaches

the planar value α∞. Defining R∗ as the droplet radius where the accommodation

coefficient is 95% of its planar value allows conclusions to be made about when the

curvature dependence of α can be safely neglected. Values for R0 range from 0.82

nm to 2.79 nm for the fluids in this work, resulting in values of R∗ = 16.4 nm and

R∗ = 55.8 nm respectively. Therefore for droplets of the fluids modeled in this work

with radii larger than ∼ 55 nm, the curvature effect on α can be safely ignored.

Furthermore this offers an explanation for why Julin et al. did not see curvature

dependence for their 2 nm and 4 nm droplets for water at 273.15 K. Extrapolating

the linear fit for the normalizing radius for water, solid line in Fig. 3.12(a), results in

R∗ = 1.91 nm for water at 273.15 K. The radii simulated by Julin et al. were equal to

or larger than R∗, thereby offering an explanation the lack of curvature dependence

in their work.

Summarizing, molecular dynamics simulations have shown that for a variety of

fluids ranging from simple point particles to complex fluids the mass accommodation
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coefficient is dependent on droplet size. This decreasing trend in α is supported by

the increased vapor density for small droplets and the decreased attraction between

an incident vapor molecule and the liquid droplet as the droplet radius decreases.

This size dependence appears to be universal when the droplet size is scaled by the

appropriate normalizing radius R0 and planar mass accommodation coefficient α∞.

The dependence on droplet radius is of importance for droplets with radii smaller

than ∼ 55 nm for the fluids and temperature modeled in this work. The dependence

mirrors the curvature dependence of surface tension but the normalizing radius found

for the mass accommodation coefficient does not correlate with the Tolman length.

Incorporating this curvature dependence into continuum models for the liquid-vapor

interfacial resistance for small droplets could lead to increased accuracy in these mod-

els allowing for better agreement between analytical models and experimental results

for small droplets. Future work could be to examine whether this curvature depen-

dence holds in the presence of non-condensible gases, for fluid mixtures, if surface

surfactants are present, or for actively condensing droplets.

3.4 Data Tables
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Table 3.10: Number of particles N , domain length L, domain width W for planar
simulations. Values for the Lennard-Jones and Buckingham potentials are dimen-
sionless.

Fluid T N L W

Lennard-Jones k = 12 0.6 180000 12599.7 81.1
Lennard-Jones k = 12 0.7 180000 3648.8 81.1
Lennard-Jones k = 12 0.8 180000 1164.4 81.1
Lennard-Jones k = 12 0.9 180000 508.9 81.1
Lennard-Jones k = 12 1.0 180000 267.1 81.1
Lennard-Jones k = 9 0.9 80000 1682.6 54.1
Lennard-Jones k = 9 1.2 80000 248.1 54.1

Buckingham k = 3 0.7 80000 1002.8 54.1
Buckingham k = 3 0.8 80000 391.4 54.1
Buckingham k = 2 0.9 80000 649.3 54.1
Buckingham k = 2 1.1 80000 190.0 54.1

Fluid T [K] N L [Å] W [Å]

Benzene 365 2400 1908.4 50.0
Benzene 415 2400 658.9 50.0
Butane 295 4000 4364.8 50.0
Butane 325 4000 1769.6 50.0
Butane 360 4000 1174.8 50.0

Methane 120 4000 1573.7 50.0
Methane 135 4000 729.3 50.0
Methane 150 4000 355.0 50.0

Methanol 325 4000 2595.2 50.0
Methanol 375 4000 574.5 50.0

Water 500 4000 2506.84 37.5
Water 525 4000 1315.5 37.5
Water 550 4000 853.5 37.5
Water 575 4000 524.0 37.5
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Table 3.11: Number of particles N , domain size L, droplet radius R and accom-
modation coefficient α for Lennard Jones potential with k = 12 for T = 0.6 and
T = 0.7.

T = 0.6 T = 0.7

N L R α L R α

1800 – – – 47.83 6.79± 0.08 0.576± 0.025

2100 – – – 50.35 7.21± 0.06 0.595± 0.024

2400 – – – 52.65 7.57± 0.10 0.614± 0.023

2700 70.98 8.37± 0.17 0.715± 0.028 54.75 7.94± 0.08 0.630± 0.023

3000 73.52 8.65± 0.18 0.714± 0.026 56.71 8.21± 0.06 0.643± 0.023

3300 75.89 8.96± 0.20 0.705± 0.024 58.54 8.53± 0.09 0.654± 0.022

3600 78.12 9.23± 0.24 0.730± 0.020 60.26 8.79± 0.06 0.658± 0.022

3900 80.23 9.51± 0.08 0.784± 0.032 61.89 9.01± 0.07 0.669± 0.022

4200 82.24 9.74± 0.08 0.786± 0.031 63.44 9.29± 0.06 0.675± 0.021

4500 84.15 9.97± 0.13 0.782± 0.026 64.92 9.53± 0.06 0.685± 0.021

4800 85.98 10.18± 0.14 0.787± 0.024 66.33 9.74± 0.08 0.689± 0.021

5100 87.74 10.45± 0.09 0.800± 0.029 67.68 9.97± 0.06 0.700± 0.021

5400 89.43 10.62± 0.16 0.785± 0.022 68.98 10.16± 0.07 0.700± 0.020

5700 91.05 10.83± 0.16 0.808± 0.021 70.24 10.36± 0.07 0.702± 0.020

6000 92.62 11.02± 0.03 0.809± 0.031 71.45 10.56± 0.05 0.702± 0.020

9000 106.03 12.67± 0.04 0.834± 0.028 81.79 12.16± 0.05 0.732± 0.018

12000 116.70 13.99± 0.03 0.857± 0.026 90.02 13.42± 0.04 0.748± 0.017

15000 125.71 15.09± 0.02 0.867± 0.025 96.97 14.52± 0.04 0.765± 0.016

18000 133.59 16.08± 0.03 0.878± 0.023 103.05 15.48± 0.05 0.777± 0.015

21000 140.63 16.93± 0.02 0.881± 0.022 108.48 16.32± 0.04 0.779± 0.014

24000 147.03 17.70± 0.03 0.883± 0.021 113.42 17.09± 0.03 0.788± 0.014
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27000 152.92 18.42± 0.02 0.889± 0.020 117.96 17.79± 0.04 0.791± 0.013

30000 158.38 19.09± 0.02 0.890± 0.020 122.18 18.45± 0.03 0.797± 0.013

33000 163.50 19.71± 0.04 0.893± 0.019 126.12 19.05± 0.04 0.799± 0.013

36000 168.31 20.30± 0.04 0.897± 0.018 129.83 19.66± 0.05 0.803± 0.012

39000 172.86 20.88± 0.03 0.899± 0.018 133.34 20.21± 0.06 0.806± 0.012

42000 177.18 21.37± 0.04 0.897± 0.018 136.68 20.69± 0.05 0.807± 0.012

45000 181.30 21.90± 0.03 0.903± 0.017 139.86 21.23± 0.06 0.809± 0.012

48000 185.25 22.35± 0.06 0.904± 0.017 142.90 21.74± 0.08 0.814± 0.011

– – – – 145.82 22.19± 0.10 0.815± 0.011

54000 192.66 23.26± 0.06 0.906± 0.016 148.62 22.71± 0.14 0.819± 0.011

57000 196.17 23.68± 0.05 0.909± 0.016 151.33 23.19± 0.18 0.826± 0.011

– – – – 153.94 23.51± 0.14 0.820± 0.011
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Table 3.12: Number of particles N , domain size L, droplet radius R and accommo-
dation coefficient α for Lennard Jones potential with k = 12 for T = 0.8.

T = 0.8

N L R α

1500 35.09 6.13± 0.11 0.392± 0.015

1800 37.29 6.59± 0.11 0.419± 0.015

1800 41.95 5.15± 0.26 0.314± 0.014

2100 39.26 7.00± 0.11 0.442± 0.015

2100 44.16 5.66± 0.27 0.350± 0.014

2400 41.04 7.37± 0.12 0.456± 0.014

2400 46.17 6.04± 0.27 0.376± 0.014

2700 42.69 7.71± 0.15 0.472± 0.014

2700 48.02 6.44± 0.41 0.389± 0.013

3000 44.21 8.00± 0.15 0.485± 0.014

3000 49.74 6.73± 0.40 0.405± 0.013

3300 45.64 8.30± 0.08 0.501± 0.014

3300 51.34 7.10± 0.20 0.436± 0.014

3600 46.98 8.55± 0.11 0.503± 0.014

3600 52.85 7.30± 0.20 0.446± 0.014

3900 48.25 8.80± 0.07 0.513± 0.014

3900 54.28 7.57± 0.22 0.458± 0.014

4200 49.46 9.08± 0.12 0.524± 0.013

4200 55.64 7.83± 0.18 0.471± 0.014

4500 50.61 9.29± 0.15 0.528± 0.013

4500 56.94 8.05± 0.27 0.480± 0.013
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4800 51.71 9.51± 0.14 0.537± 0.013

4800 58.17 8.29± 0.30 0.489± 0.013

5100 52.77 9.72± 0.17 0.541± 0.013

5100 59.36 8.43± 0.29 0.495± 0.013

5400 53.78 9.93± 0.14 0.547± 0.013

5400 60.50 8.66± 0.33 0.502± 0.012

5700 54.76 10.13± 0.10 0.551± 0.013

5700 61.60 8.82± 0.47 0.506± 0.011

6000 55.70 10.32± 0.07 0.547± 0.012

6000 62.67 9.03± 0.47 0.512± 0.010

9000 63.76 11.93± 0.06 0.584± 0.011

9000 71.73 10.55± 0.07 0.553± 0.012

12000 70.18 13.20± 0.06 0.599± 0.011

12000 78.95 11.73± 0.08 0.576± 0.014

15000 75.60 14.25± 0.05 0.613± 0.010

15000 85.05 12.76± 0.05 0.598± 0.015

18000 80.34 15.20± 0.06 0.623± 0.010

18000 90.38 13.69± 0.07 0.612± 0.016

21000 84.57 16.04± 0.04 0.634± 0.009

21000 95.15 14.42± 0.05 0.619± 0.016

24000 88.42 16.82± 0.05 0.640± 0.009

24000 99.48 15.19± 0.05 0.628± 0.017

27000 91.96 17.52± 0.06 0.647± 0.009

27000 103.46 15.86± 0.06 0.632± 0.017

30000 95.25 18.16± 0.05 0.652± 0.009
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30000 107.16 16.51± 0.05 0.642± 0.018

33000 98.33 18.78± 0.05 0.652± 0.008

36000 101.22 19.37± 0.04 0.658± 0.008

39000 103.96 19.92± 0.04 0.664± 0.008

42000 106.56 20.40± 0.04 0.663± 0.008

45000 109.04 20.91± 0.05 0.666± 0.008

48000 111.41 21.37± 0.06 0.667± 0.008

51000 113.68 21.84± 0.05 0.669± 0.007

54000 115.87 22.27± 0.09 0.671± 0.007

57000 117.97 22.72± 0.09 0.673± 0.007

60000 120.01 23.17± 0.09 0.678± 0.007
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Table 3.13: Number of particles N , domain size L, droplet radius R and accom-
modation coefficient α for Lennard Jones potential with k = 12 for T = 0.9 and
T = 1.0.

T = 0.9 T = 1.0

N L R α L R α

1500 29.84 5.47± 0.23 0.209± 0.008 – – –

1800 31.71 5.94± 0.20 0.235± 0.008 – – –

2100 33.39 6.35± 0.21 0.255± 0.008 – – –

2400 34.91 6.76± 0.24 0.274± 0.008 – – –

2700 36.30 7.08± 0.25 0.286± 0.008 – – –

3000 37.60 7.38± 0.24 0.300± 0.008 33.46 5.50± 0.42 0.088± 0.003

3300 38.81 7.68± 0.21 0.312± 0.008 34.54 5.91± 0.40 0.105± 0.003

3600 39.96 7.93± 0.16 0.320± 0.008 35.55 6.26± 0.29 0.118± 0.004

3900 41.04 8.21± 0.18 0.331± 0.008 36.51 6.47± 0.39 0.123± 0.004

4200 42.06 8.43± 0.15 0.338± 0.008 37.43 6.58± 0.43 0.125± 0.004

4500 43.04 8.69± 0.15 0.348± 0.008 38.30 6.90± 0.36 0.137± 0.004

4800 43.98 8.89± 0.18 0.350± 0.008 39.13 7.07± 0.41 0.141± 0.004

5100 44.88 9.12± 0.16 0.359± 0.008 39.93 7.35± 0.43 0.152± 0.004

5400 45.74 9.27± 0.20 0.361± 0.008 40.70 7.53± 0.49 0.156± 0.004

5700 46.57 9.51± 0.23 0.371± 0.008 41.44 7.74± 0.45 0.163± 0.004

6000 47.37 9.72± 0.11 0.366± 0.008 42.15 8.08± 0.30 0.170± 0.004

9000 54.23 11.27± 0.09 0.398± 0.007 48.25 9.65± 0.22 0.208± 0.004

12000 59.69 12.51± 0.10 0.417± 0.007 53.11 10.83± 0.23 0.230± 0.004

15000 64.30 13.59± 0.08 0.436± 0.006 57.21 11.89± 0.18 0.247± 0.004

18000 68.32 14.49± 0.09 0.444± 0.006 60.79 12.76± 0.14 0.258± 0.004

21000 71.93 15.32± 0.07 0.452± 0.006 64.00 13.55± 0.15 0.268± 0.004
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24000 75.20 16.03± 0.08 0.459± 0.006 66.91 14.31± 0.14 0.277± 0.003

27000 78.21 16.74± 0.07 0.465± 0.006 69.59 15.05± 0.14 0.286± 0.003

30000 81.01 17.41± 0.08 0.473± 0.005 72.08 15.57± 0.12 0.289± 0.003

33000 83.62 18.00± 0.07 0.476± 0.005 74.41 16.16± 0.13 0.296± 0.003

36000 86.08 18.60± 0.06 0.481± 0.005 76.60 16.69± 0.12 0.298± 0.003

39000 88.41 19.12± 0.06 0.483± 0.005 78.67 17.16± 0.14 0.302± 0.003

42000 90.62 19.61± 0.05 0.485± 0.005 80.64 17.67± 0.11 0.306± 0.003

45000 92.73 20.07± 0.06 0.488± 0.005 82.51 18.15± 0.10 0.309± 0.003

48000 94.75 20.56± 0.06 0.491± 0.005 84.31 18.54± 0.10 0.310± 0.003

51000 96.68 20.98± 0.06 0.493± 0.005 86.03 19.08± 0.09 0.317± 0.003

54000 98.54 21.45± 0.05 0.493± 0.005 87.68 19.46± 0.09 0.317± 0.003

57000 100.33 21.76± 0.07 0.492± 0.005 89.28 19.86± 0.11 0.320± 0.003

60000 102.06 22.22± 0.07 0.498± 0.005 90.82 20.30± 0.10 0.321± 0.003
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Table 3.14: Number of particles N , domain size L, droplet radius R and accommo-
dation coefficient α for Lennard Jones potential with k = 9. Value in (.) in the
uncertainty.

T = 0.9

N L R α

4800 65.82 6.29± 0.26 0.458± 0.015
6900 74.28 7.93± 0.16 0.540± 0.014
9600 82.93 9.39± 0.12 0.589± 0.013
12600 90.80 10.56± 0.12 0.620± 0.012
16500 99.34 11.79± 0.10 0.644± 0.011
21000 107.65 12.96± 0.09 0.664± 0.011
26100 115.74 14.05± 0.07 0.676± 0.010
30000 121.24 14.97± 0.06 0.688± 0.010
39000 132.32 16.52± 0.05 0.702± 0.009
48000 141.81 17.89± 0.07 0.711± 0.008
57000 150.17 19.11± 0.11 0.718± 0.008
63000 155.26 19.84± 0.12 0.721± 0.008
75000 164.55 21.29± 0.17 0.729± 0.007

T = 1.2

N L R α

3900 34.15 7.15± 0.31 0.128± 0.003
5700 38.75 8.56± 0.25 0.167± 0.003
7800 43.02 9.80± 0.19 0.193± 0.003
10200 47.05 10.88± 0.17 0.212± 0.003
13500 51.66 12.20± 0.16 0.233± 0.003
17100 55.89 13.34± 0.17 0.247± 0.003
21300 60.14 14.51± 0.16 0.260± 0.003
26100 64.35 15.72± 0.13 0.273± 0.003
33000 69.58 17.09± 0.13 0.281± 0.003
39000 73.57 18.24± 0.15 0.290± 0.002
45000 77.16 19.20± 0.12 0.295± 0.002
54000 82.00 20.46± 0.12 0.300± 0.002
63000 86.32 21.59± 0.10 0.306± 0.002
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Table 3.15: Number of particles N , domain size L, droplet radius R and accommo-
dation coefficient α for Buckingham potential with k = 3.

T = 0.7

N L R α

1800 31.06 6.42± 0.07 0.443± 0.016
2700 35.55 7.44± 0.07 0.489± 0.015
4500 42.15 8.90± 0.06 0.541± 0.014
6900 48.60 10.35± 0.05 0.580± 0.013
9900 54.82 11.72± 0.04 0.603± 0.012
13500 60.79 13.05± 0.04 0.626± 0.011
18000 66.91 14.40± 0.04 0.642± 0.011
23400 73.02 15.76± 0.04 0.656± 0.010
30000 79.33 17.14± 0.03 0.665± 0.011
36000 84.30 18.23± 0.03 0.673± 0.012
54000 96.50 20.95± 0.02 0.689± 0.014

T = 0.8

N L R α

1500 24.32 5.69± 0.12 0.239± 0.008
2700 29.58 7.13± 0.10 0.302± 0.008
4200 34.27 8.36± 0.09 0.340± 0.008
6300 39.23 9.71± 0.08 0.379± 0.008
9000 44.18 11.01± 0.07 0.406± 0.007
16500 54.08 13.63± 0.06 0.443± 0.006
21300 58.88 14.90± 0.05 0.457± 0.006
27300 63.96 16.22± 0.05 0.466± 0.006
33000 68.13 17.33± 0.05 0.474± 0.005
42000 73.84 18.85± 0.05 0.484± 0.005
51000 78.77 20.16± 0.05 0.495± 0.006
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Table 3.16: Number of particles N , domain size L, droplet radius R and accommo-
dation coefficient α for Buckingham potential with k = 2.

T = 0.9

N L R α

3000 40.91 6.02± 0.13 0.398± 0.012
4800 47.85 7.37± 0.09 0.467± 0.011
7200 54.78 8.65± 0.07 0.513± 0.010
10200 61.52 9.85± 0.08 0.545± 0.010
14100 68.53 11.11± 0.08 0.575± 0.009
18600 75.16 12.35± 0.07 0.594± 0.008
24000 81.83 13.56± 0.05 0.614± 0.008
30000 88.14 14.66± 0.04 0.624± 0.007
39000 96.20 16.08± 0.05 0.639± 0.007
48000 103.09 17.36± 0.04 0.649± 0.009

T = 1.1

N L R α

4200 33.11 5.78± 0.31 0.133± 0.004
6000 37.29 6.96± 0.23 0.180± 0.004
8700 42.20 8.26± 0.18 0.220± 0.004
12000 46.98 9.53± 0.17 0.253± 0.004
15900 51.60 10.57± 0.17 0.271± 0.004
20700 56.34 11.82± 0.13 0.292± 0.004
26400 61.10 8.26± 0.18 0.220± 0.004
33000 65.82 14.17± 0.10 0.322± 0.003
39000 69.58 15.13± 0.09 0.332± 0.003
48000 74.57 16.27± 0.09 0.339± 0.003
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Table 3.17: Number of molecules N , domain size L, droplet radius R and accommo-
dation coefficient α for benzene.

T = 365 K

N L [Å] R [Å] α

686 140.23 22.26± 0.94 0.277± 0.054
1024 160.26 26.55± 0.57 0.354± 0.053
1458 180.30 29.97± 0.54 0.401± 0.054
2000 200.33 34.35± 0.51 0.447± 0.052
2662 220.36 38.01± 0.73 0.475± 0.051
3456 240.40 42.09± 0.51 0.523± 0.050
4394 260.43 45.74± 0.66 0.539± 0.048
5488 280.46 49.73± 0.56 0.556± 0.048
6750 300.50 53.71± 0.51 0.579± 0.053
8192 320.53 57.01± 0.62 0.589± 0.042
9826 340.56 60.90± 0.50 0.608± 0.041
11664 360.60 64.78± 0.66 0.621± 0.043
13718 380.63 68.91± 0.61 0.638± 0.044
16000 400.66 72.45± 0.50 0.634± 0.046

T = 415 K

N L [Å] R [Å] α

2000 155.60 28.37± 1.19 0.136± 0.017
2662 171.16 31.01± 1.55 0.140± 0.014
3456 186.72 35.96± 1.05 0.192± 0.021
4394 202.28 39.48± 1.14 0.219± 0.023
5488 217.84 43.18± 0.98 0.241± 0.019
6750 233.40 47.77± 1.22 0.276± 0.025
8192 248.96 50.34± 1.07 0.281± 0.021
9826 264.53 53.44± 1.17 0.297± 0.018
11664 280.09 57.69± 1.10 0.317± 0.025
13718 295.65 62.11± 1.46 0.336± 0.030
16000 311.21 65.71± 0.97 0.353± 0.031
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Table 3.18: Number of molecules N , domain size L, droplet radius R and accommo-
dation coefficient α for butane at T = 295 K and T = 325 K.

T = 295 K

N L [Å] R [Å] α

1024 151.97 20.74± 1.19 0.065± 0.010
1458 170.97 25.66± 0.99 0.111± 0.012
2000 189.96 30.32± 0.60 0.153± 0.014
2662 208.96 34.02± 0.80 0.174± 0.013
3456 227.96 38.35± 0.42 0.206± 0.014
4394 246.95 41.85± 0.60 0.222± 0.014
5488 265.95 45.65± 0.36 0.241± 0.013
6750 284.94 49.24± 0.56 0.252± 0.013
8192 303.94 52.72± 0.40 0.264± 0.013
9826 322.94 55.73± 0.31 0.267± 0.012
11664 341.93 59.95± 0.40 0.286± 0.012
13718 360.93 63.92± 0.31 0.296± 0.012
16000 379.93 67.27± 0.30 0.304± 0.011

T = 325 K

N L [Å] R [Å] α

1458 136.17 24.85± 1.84 0.055± 0.007
2000 151.30 30.46± 1.00 0.090± 0.007
2662 166.43 34.73± 0.91 0.110± 0.008
3456 181.56 38.60± 0.79 0.136± 0.008
4394 196.69 41.90± 0.76 0.145± 0.008
5488 211.82 46.08± 0.57 0.173± 0.009
6750 226.95 49.48± 0.59 0.184± 0.008
8192 242.08 53.57± 0.61 0.202± 0.009
9826 257.21 57.28± 0.57 0.211± 0.008
11664 272.34 60.93± 0.50 0.228± 0.008
13718 287.47 64.80± 0.68 0.236± 0.008
16000 302.60 68.23± 0.57 0.243± 0.008
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Table 3.19: Number of molecules N , domain size L, droplet radius R and accommo-
dation coefficient α for butane at T = 360 K.

N L [Å] R [Å] α

4394 160.05 37.15± 2.56 0.046± 0.003
5488 172.36 42.07± 1.97 0.043± 0.003
6750 184.68 45.85± 1.72 0.057± 0.003
8192 196.99 49.41± 1.58 0.071± 0.003
9826 209.30 54.22± 1.43 0.076± 0.003
11664 221.61 58.74± 1.12 0.086± 0.003
13718 233.92 61.39± 1.20 0.088± 0.003
16000 246.23 65.67± 1.10 0.098± 0.003
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Table 3.20: Number of molecules N , domain size L, droplet radius R and accommo-
dation coefficient α for methane at T = 120 K and T = 135 K.

T = 120 K

N L [Å] R [Å] α

1024 94.68 20.76± 0.30 0.180± 0.015
1458 106.52 24.10± 0.29 0.230± 0.016
2000 118.36 26.96± 0.34 0.270± 0.017
2662 130.19 29.95± 0.20 0.300± 0.017
3456 142.03 33.03± 0.30 0.330± 0.016
4394 153.86 35.66± 0.21 0.352± 0.016
5488 165.70 38.94± 0.20 0.378± 0.016
6750 177.53 41.61± 0.21 0.397± 0.015
8192 189.37 44.69± 0.16 0.415± 0.015
9826 201.20 47.43± 0.25 0.424± 0.014
11664 213.04 50.38± 0.18 0.443± 0.015
13718 224.87 53.39± 0.19 0.453± 0.016
16000 236.71 56.18± 0.15 0.468± 0.021

T = 135 K

N L [Å] R [Å] α

1024 84.54 17.35± 0.93 0.050± 0.007
1458 95.11 20.18± 0.81 0.073± 0.006
2000 105.68 23.53± 0.62 0.106± 0.007
2662 116.24 26.59± 0.54 0.136± 0.008
3456 126.81 29.53± 0.39 0.157± 0.008
4394 137.38 31.75± 0.55 0.167± 0.008
5488 147.95 35.01± 0.37 0.194± 0.011
6750 158.52 37.76± 0.38 0.210± 0.010
8192 169.08 40.62± 0.38 0.228± 0.009
9826 179.65 43.04± 0.45 0.236± 0.009
11664 190.22 46.25± 0.40 0.258± 0.010
13718 200.79 49.00± 0.26 0.267± 0.011
16000 211.35 52.13± 0.31 0.283± 0.013
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Table 3.21: Number of molecules N , domain size L, droplet radius R and accommo-
dation coefficient α for methane at T = 150 K.

N L [Å] R [Å] α

4394 112.93 29.88± 1.49 0.045± 0.002
5488 121.61 32.04± 1.60 0.048± 0.003
6750 130.30 36.58± 1.05 0.064± 0.003
8192 138.99 39.64± 0.99 0.076± 0.003
9826 147.67 42.09± 0.74 0.080± 0.004
11664 156.36 44.48± 0.92 0.083± 0.004
13718 165.05 47.78± 0.81 0.093± 0.005
16000 173.73 50.31± 0.87 0.096± 0.004
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Table 3.22: Number of molecules N , domain size L, droplet radius R and accommo-
dation coefficient α for methanol.

T = 375 K

N L [Å] R [Å] α

686 114.46 19.70± 0.41 0.376± 0.058
1024 130.81 22.56± 0.51 0.427± 0.054
1458 147.16 25.38± 0.37 0.436± 0.049
2000 163.51 28.52± 0.45 0.463± 0.045
2662 179.86 31.31± 0.38 0.474± 0.043
3456 196.21 34.82± 0.32 0.505± 0.041
4394 212.56 37.81± 0.48 0.514± 0.038
5488 228.92 40.81± 0.22 0.525± 0.037
6750 245.27 43.86± 0.44 0.530± 0.034
8192 261.62 46.81± 0.45 0.537± 0.033
9826 277.97 50.06± 0.35 0.543± 0.031
11664 294.32 53.01± 0.40 0.549± 0.030
13718 310.67 55.97± 0.36 0.560± 0.029
16000 327.02 59.29± 0.34 0.564± 0.028

T = 425 K

N L [Å] R [Å] α

2662 151.61 21.32± 1.52 0.208± 0.021
3456 165.40 23.91± 1.43 0.231± 0.021
4394 179.18 25.14± 1.26 0.254± 0.019
5488 192.96 27.90± 1.01 0.268± 0.019
6750 206.75 30.91± 1.34 0.295± 0.018
8192 220.53 32.51± 2.07 0.293± 0.017
9826 234.31 35.26± 1.82 0.307± 0.016
11664 248.09 37.77± 2.30 0.316± 0.016
13718 261.88 40.10± 1.88 0.324± 0.015
16000 275.66 43.11± 2.73 0.335± 0.015
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Table 3.23: Number of molecules N , domain size L, droplet radius R and accommo-
dation coefficient α for water at T = 500 K and T = 525 K.

T = 500 K

N L [Å] R [Å] α

1500 112.52 19.84± 0.42 0.162± 0.010
1997 123.81 22.00± 0.42 0.178± 0.010
2592 135.03 24.15± 0.40 0.183± 0.009
3296 146.30 26.27± 0.39 0.201± 0.009
4116 157.53 28.53± 0.35 0.231± 0.010
5063 168.80 30.70± 0.32 0.238± 0.009
6144 180.04 32.83± 0.30 0.236± 0.009
7370 191.30 34.99± 0.30 0.268± 0.009
8748 202.54 37.16± 0.30 0.281± 0.009
10289 213.81 39.31± 0.30 0.280± 0.009
12000 225.05 41.43± 0.27 0.286± 0.008

T = 525 K

N L [Å] R [Å] α

1500 94.20 20.07± 0.56 0.131± 0.007
1997 103.64 22.38± 0.48 0.145± 0.007
2592 113.04 24.54± 0.47 0.165± 0.007
3296 122.47 26.84± 0.44 0.179± 0.007
4116 131.88 29.01± 0.42 0.185± 0.007
5063 141.31 31.32± 0.39 0.203± 0.008
6144 150.72 33.46± 0.38 0.214± 0.009
7370 160.15 35.65± 0.36 0.218± 0.007
8748 169.55 37.84± 0.35 0.213± 0.006
10289 178.98 40.07± 0.32 0.234± 0.007
12000 188.39 0.00± 0.00 0.000± 0.000
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Table 3.24: Number of molecules N , domain size L, droplet radius R and accommo-
dation coefficient α for water at T = 550 K and T = 575 K.

T = 550 K

N L [Å] R [Å] α

1500 90.45 17.95± 0.99 0.064± 0.004
1997 99.51 20.23± 0.77 0.071± 0.004
2592 108.53 22.36± 0.75 0.086± 0.006
3296 117.60 24.54± 0.67 0.099± 0.004
4116 126.62 26.84± 0.64 0.099± 0.004
5063 135.68 28.87± 0.63 0.121± 0.004
6144 144.71 31.01± 0.52 0.129± 0.004
7370 153.77 33.26± 0.55 0.125± 0.004
8748 162.80 35.45± 0.49 0.144± 0.005
10289 171.85 37.60± 0.45 0.141± 0.004
12000 180.89 39.63± 0.47 0.153± 0.004

T = 575 K

N L [Å] R [Å] α

2592 101.11 16.94± 1.99 0.023± 0.002
3296 109.55 20.11± 1.61 0.040± 0.002
4116 117.97 22.12± 1.43 0.053± 0.003
5063 126.40 24.83± 1.12 0.047± 0.002
6144 134.82 27.32± 0.99 0.057± 0.002
7370 143.25 29.06± 0.95 0.064± 0.003
8748 151.67 31.56± 0.94 0.072± 0.003
10289 160.10 33.15± 0.85 0.067± 0.002
12000 168.52 35.36± 0.88 0.079± 0.002
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4 Molecular Calculations of Fluid-Fluid Interfacial

Mobility

4.1 Introduction

Fluid-fluid interfaces are abundant in nature and in industrial processes involv-

ing drops and sprays [172], fluid injections [173], and emulsions [174,175]. Interfacial

motion is a dominant feature in many systems with applications including targeted

drug delivery [174], self-cleaning surfaces [176], electrowetting-based reflective dis-

plays [177], and fiber optics [178]. Interfacial motion is important in these applica-

tions because it controls where and how drugs are released [174], how quickly a surface

can be cleaned [176, 179], how light is refracted [178], how rapidly a display can be

changed [177] and how transmission through a fiber optic cable can be tuned [178].

Diffuse interface models are widely used in the literature [172,173,179–185] and

are often more favorable than their sharp interface counterparts to model the fluid-

fluid interfaces mentioned above. Diffuse interface models treat the interface as a finite

region between two fluids with physical properties that smoothly transition between

the bulk properties of the two fluids due to diffusive mixing of the species. Sharp

interface models treat the bulk fluids separately, connecting the fluids through an

infinitely thin interfacial region leading to discontinuous physical properties and jump

boundary conditions. Diffuse interface models avoid drawbacks such as mathematical

singularities due to contact line motion, [180,182–185] are able to handle mass transfer

across the interface [186], interface breakup [173], and ion or particle trapping at

the interface [187], and do not require computationally expensive interface tracking

[180, 182]. Furthermore, diffuse interface models are more appropriate for situations
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in which the characteristic length scale of a fluid approaches the fluid-fluid interfacial

thickness. Such situations include nano-liquid printing [173, 188] where droplets can

have radii as small as 300 nm [188] and coalescence induced jumping of nano-droplets

[189].

An important parameter in diffuse interface models is the interfacial mobility.

This quantity, which is a measure of how the fluid-fluid interface fluctuates with

time, dictates topological changes and energetic dissipation at the interface [181].

Like surface tension, it also connects the molecular scale interface motion to the

broader hydrodynamic motion [183]. However, it is not currently possible to measure

mobility experimentally, making the proper value for the mobility difficult to establish

[172]. As a result, values for mobility are frequently estimated [173] or obtained from

multiparameter fitting to experimental data [183–185]. This often leads to non-unique

solutions [183, 184] in numerical models, which limits the predictive nature of these

models.

Molecular dynamics (MD) simulations provide a different, direct approach to

obtain physically meaningful fluid-fluid interfacial mobility values. MD has been

widely used to study liquid-liquid [186,190–192] and liquid-vapor interfaces [193–198]

to calculate interfacial properties such as surface tension and interface thickness. It

has also been used to calculate the mobility of particles [85,199] and ions [187,200] in

bulk fluids and near or trapped within fluid-fluid interfaces [85,187,199,200]. However,

while interfacial mobility has been calculated for solid-solid interfaces such as grain

boundaries [201–203], it has not yet been calculated for fluid-fluid interfaces.

The interfacial mobility M is related to the mean square displacement (MSD)
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of the interface given by [85,201]

∂〈δxint(t)2〉
∂t

=
2MkBT

A
(4.1)

where t, kB, T , and A denote time, Boltzmann constant, temperature, and interface

area, respectively. δxint = xint(t) − xint(0) represents the difference between instan-

taneous and initial interface positions and 〈·〉 denotes an ensemble average. This

expression is valid in the long time limit of t. [85] An alternative method for obtain-

ing the mobility is to integrate the interfacial velocity time-autocorrelation function

(VACF) [85],

M =
1

kBT/A

∫ ∞
0

〈vint(t)vint(0)〉dt (4.2)

where vint is the interfacial velocity.

In this chapter the interfacial mobilities of three fluid-fluid interfaces, two liquid-

liquid and one liquid-vapor, are calculated with MD. The simulation details and

implementation are discussed in Sec. 4.2. The molecular definitions of xint and

vint are discussed in Sec. 4.3.1, while confirmation of a random interface walk is

discussed in Sec. 4.3.2. The mobility calculations are presented in Sec. 4.3.3, and

finally, a summary of the work as well as further applications and future directions

are presented in Sec. 4.4. Note that this chapter is based upon published work in

Journal of Chemical Physics volume 147 number 24 page 244703 (2017) [100].
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4.2 Simulation Details and Implementation

4.2.1 Domain Configuration

Three fluid-fluid interfaces were modeled in this work. The first was an interface

between two liquids that repel each other but whose properties are identical (denoted

“LL1”), the second was an interface between two different liquids (“LL2”), and the

third was a liquid-vapor interface (“LV”). Interfaces between two fluids, denoted α

and β, were modeled as shown in Fig. 4.1. The entire domain was set to be of width

W and square cross sectional area A. Particles of α with mass mα and particles of

β with mass mβ were initially placed in a simple cubic lattice structure throughout

the domain. For the LL1 system, Nα = 7200 α particles were placed between 0

and W/2, and Nβ = 7200 β particles were placed between W/2 and W . For the

LL2 system, 5808 α particles were placed between 0 and W/2, and 7200 β particles

were placed between W/2 and W . For the LV system, 135 α particles were placed

between 0 and 0.95W and 7200 particles were placed between 0.95W and W . The

uneven distribution for this system was chosen to ensure a sufficient number of vapor

particles in the domain.

Grand canonical Monte Carlo control volumes Ωα and Ωβ, of lengths dα and dβ,

were established at the left and right boundaries of the domain. These control volumes

were used to set temperature and chemical potential in the simulations, as discussed

later. dα for the LV system is significantly larger than its LL1 and LL2 counterparts

to ensure that there are enough particles within Ωα to define a proper temperature.

The domain was divided into static bins of width ∆xbin and volume Vbin = A∆xbin

in order to perform local calculations at different x positions. Reflective boundary

conditions (RBC) were applied in the horizontal direction, x, while, periodic boundary
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Fig. 4.1: System schematic. Shaded red and yellow regions at the boundaries indi-
cate grand canonical Monte Carlo control volumes while the blue plane indicates the
time-dependent interface position. Reflective boundary conditions are applied in the
x−direction, while periodic boundary conditions are applied in the other directions.
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Table 4.1: Input properties and geometry for the LL1, LL2, and LV simulations.

mα mβ εαα εββ εαβ W dα dβ µα µβ

LL1 1 1 1 1 0.375 107.28 5.36 5.36 -8.14 -8.14
LL2 0.8 1 0.8 1 0.375 107.28 5.36 5.36 -6.88 -8.14
LV 1 1 1 1 1 1126.4 107.28 5.36 -9.74 -8.40

Table 4.2: Common parameters used for the simulations.

T A rc ∆t τT neq nrun kid kt ∆xbin

0.7 165.72 3 0.005 1 1× 105 2× 106 50 100 1.354

conditions (PBC) were applied in the remaining directions.

4.2.2 Numerical Integration

Simulations were run for the different interfaces using the molecular simulation

package LAMMPS [204, 205] with the dimensionless truncated and shifted Lennard-

Jones potential [85],

φ(r) =

 4εij(
1
r12
− 1

r6
− 1

r12c
+ 1

r6c
) if r ≤ rc

0 else
. (4.3)

Here r, εij, and rc are the distance between particles, potential well depth and cutoff

radius. The indices of ε refer to the two particle types α and β with i = j being the

self interaction and i 6= j being the cross interaction. The velocity Verlet algorithm

was used to integrate the equations of motion with a time step of ∆t. In order to

minimize density fluctuations near the RBC, a force was added to particles near the

RBC to mimic the force due to the “missing” particles [206]. The value of this force

is dependent on the distance from the RBC as well as the number density of the

fluid. This missing force was calculated in separate simulations with PBC applied
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in all directions for all fluids used. The calculated profiles for this force were found

to be similar in magnitude to those found in previous works for fluids at similar

temperatures and densities [206–208].

The numerical values for all parameters used in the simulations (unless otherwise

noted) are found in Tables 4.1 and 4.2. All parameters and results in this work are

given in dimensionless form and can be converted to real units for argon using length,

energy, and mass scales of 0.3405 nm, 0.01032 eV, and 39.948 amu respectively [85].

Simulations were run on local machines as well as computing resources from the

Extreme Science and Engineering Discovery Environment [209].

For each simulation, the particles were initialized to a temperature T by selecting

their velocities from the corresponding Maxwell-Boltzmann distribution. To melt

the lattice, the system was run for neq steps with a global Berendsen thermostat

[90] with a damping constant τT . Then the velocity of the domain was removed to

ensure that there was no bulk fluid motion in the system. Next, dual control volume

grand canonical molecular dynamics (DCV-GCMD), a hybrid molecular dynamics

and Monte Carlo approach [93], was performed for nrun time steps to maintain the

control volumes Ωα and Ωβ at chemical potentials µα and µβ. Details about the

values chosen for µα and µβ, Table 4.1, can be found in the appendix at the end

of the chapter. The temperatures of both control volumes were maintained at T

using local Berendsen thermostats. To maintain µα and µβ in the control volumes,

grand canonical Monte Carlo was performed between every MD time step with kt

particle translation attempts and kid particle insertion or deletion attempts with the

probability of a particle insertion or deletion attempt being equal. The values chosen

for kt and kid are similar to those in the literature [93, 94]. This process was then

repeated for Ns different initial particle velocity distributions to perform the ensemble
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averaging needed for Eqs. 4.1 and 4.2. The number of initializations for each type of

interface can be found in Table 4.3.

4.3 Results and Discussion

4.3.1 Molecular Definitions of Interface Position and Velocity

In order to use the MSD and VACF to compute interfacial mobility, the interface

position, xint, and the interfacial velocity, vint, are needed. xint is determined as the

location where the local mass density is equal to the target density. For systems such

as LL1 and LL2 that have two species, the target density is defined as the density

where ρα = mαNα/Vbin is equal to ρβ = mβNβ/Vbin. For systems with a single species

but two phases (LV), the target density is defined as the location where the mass

density, ρ = mN/Vbin, is the average of the bulk liquid and bulk vapor calculated far

from the interface, ρ(xint) = (ρL + ρV )/2. Figure 4.2 shows instantaneous snapshots

of the density profiles for the three systems, and Table 4.3 gives the corresponding

bulk densities of fluid α (ρBα ), fluid β (ρBβ ), vapor (ρV ), and liquid (ρL). To obtain

xint, the density profiles ρα, ρβ, and ρ are linearly interpolated between the two

neighboring bins over which the relative density ρα − ρβ (for LL1 and LL2 systems)

or (ρL + ρV )/2 − ρ (for the LV system) changes sign. These two bins are shaded in

Fig. 4.2. To determine vint, it is reasonable to use the average molecular velocity of

particles in a region containing the interface. Here, this region is defined as the same

two spatial bins used to determine xint. Other potential ways to define xint and vint,

discussed in detail in the appendix at the end of the chapter, yield similar results for

the diffusion coefficient, within 1.5%, which is less than the estimated error of roughly

5%.
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Fig. 4.2: Instantaneous local density profiles versus horizontal position for the (a)
LL1, (b) LL2, and (c) LV interfaces. The intersection of the target density ( )
and the local density profiles determines the interface positions, xint ( ). Shaded
areas indicate the regions used to calculate vint.

86



Table 4.3: Number of initializations, calculated bulk densities, and interfacial thick-
nesses for the three types of interfaces. The (·) represents the uncertainty in the
preceding digit.

Ns ρBα ρBβ Lint
LL1 50 0.8072(5) 0.8074(5) 2.55(5)
LL2 12 0.5719(6) 0.8072(4) 2.98(3)

Ns ρV ρL Lint
LV 16 0.00227(7) 0.8103(5) 2.07(1)

4.3.2 Ensuring Proper Interface Motion

In order to use Eqs. 4.1 and 4.2 to calculate mobility, the interface must be

taking a random walk [85]. To ensure that the walks are indeed random, an inter-

face displacement histogram, δxint(t), was generated from time-dependent interface

positions using data from all initializations. These histograms were then fitted to

a normal distribution of the form C exp(−(δxint)
2/2σ2) where C and σ indicate the

distribution height and width. In order to use this method to calculate mobilities,

〈δxint(t)〉 should be approximately zero, which was found to be true as 〈δxint(t)〉 was

less than 0.4% of the interfacial thickness, Lint, for all three interface systems for

all calculated histograms. Table 4.3 lists Lint for the three interfaces; details of the

Lint calculations may be found in the appendix at the end of the chapter. Figures

4.3(a)-(c) show these distributions at several times for all three interfaces. Note that

the data in Fig. 4.3 are normalized by the total number of samples in the histogram

and the interfacial thickness. The results indicate that this is a truly random walk

because the sum of small random numbers is expected to be normally distributed

about zero due to the central limit theorem [169] which can be seen by the excellent

fits of the normal distribution.

The motivation for running DCV-GCMD as opposed to normal MD in this paper
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was that MD simulations showed unexpected artifacts. These artifacts took the form

of regular oscillations from periodic compression and expansion of the confined fluid

as it moved back and forth between the domain boundaries. Compression of liquid is

difficult due to its high density, which led to a suppression of the interface trajectory.

DCV-GCMD allows for the interface to move without fluid compression. Detailed

discussion of compression artifacts from MD and domain size effects in DCV-GCMD

can be found in the appendix at the end of the chapter.

4.3.3 Mobility Calculations and Discussion

After confirming that the interface is taking a true random walk, the mobility

was calculated for the LL1, LL2, and LV systems using three different methods. The

first method was to utilize the variance, σ2, of the distributions fit in Fig. 4.3. Figure

4.4(a) shows that the variances for these distributions linearly increase (R2 > 0.99)
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as a function of time. Since the average interface position is zero, the variance is

equivalent to the MSD and its time derivative can be used (Eq. 4.1) to calculate

mobility.

The MSD was also calculated with the averages, 〈·〉, in Eqs. 4.1 and 4.2, com-

puted using data from all initializations for a time length of 100 units with new time

origins taken every 5 units. This corresponds to averaging over 95, 23, or 31 thou-

sand ensembles for the LL1, LL2, and LV systems respectively. Calculations with

alternative time origins, from 1 time unit to 50 time units (changing the quantity

in the ensemble averages from roughly 10%–500% of the previous values), were also

performed; these gave similar results. Figure 4.4(b) shows that the MSD for all three

interfaces increases linearly. Finally, the mobility was calculated using the VACF.

Figure 4.5 shows the VACF and the time integral of the VACF for the LL1 interface.

The VACF was integrated numerically using Simpson’s rule. It has a rapid decay

and begins to fluctuate around zero after roughly 3 time units (inset of Fig. 4.5).
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Since the VACF approaches zero after a short period, its integral is roughly constant

after 3 time units. Although the estimated error for the VACF is small, that error

is compounded in the integral which is the reason for the increasing error with time.

Similar curves (not shown) were obtained for the LL2 and LV systems.

The interfacial mobilities were calculated using the above three methods in

conjunction with Eqs. 4.1 and 4.2. For the MSD method, the right hand side of Eq.

4.1 was approximated as ∂〈δx2int〉/∂t ≈ ∆〈δx2int〉/∆t with ∆t starting at 1 time unit

and ending at 10 time units. The motivation for starting from 1 is to ignore any early

time effects, which were found to decay after roughly 0.5 time units. For the VACF,

the integral was stopped at 10 time units which allowed for the VACF to stabilize
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Fig. 4.6: Mobility for the LL1, LL2, and LV interfaces calculated from the MSD,
VACF, and variance of the fitted distributions.

while not allowing the error of the integral to becomes excessively large. Figure 4.6

shows excellent agreement between the mobilities calculated with all three methods,

which confirms that the interfacial mobility is indeed being captured correctly in

the simulations. Furthermore, the significantly larger mobility for the LV interface

is expected as moving the low density gas is relatively easier than moving a higher

density liquid for the LL1 and LL2 interfaces.

Similarly to the diffusion coefficient and thermal conductivity, the mobility in

diffuse interface models, γ, stems from a linear force-flux relation [181]. It is an inher-

ently non-equilibrium parameter that affects how quickly an unstable interface, for

example a sharp interface, relaxes to its stable diffuse state. The mobility calculated

in this work and the mobility in the diffuse interface models differ by units of length.

The mobility is an inherently interfacial property, therefore it is expected that diffuse

mobility scales with the MSD mobility and the interfacial thickness, γ ∼MLint.
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4.4 Conclusions

A method for calculating the fluid-fluid interfacial mobility using DCV-GCMD

was developed. The mobility for three interfaces, two liquid-liquid interfaces and one

liquid-vapor interface, was calculated using the variance of interface position, MSD,

and VACF, showing excellent agreement between the three calculation methods. Do-

main size effects were explored and found to have negligible impact on the calcu-

lated mobility if data were analyzed at times shorter than the characteristic time

of wave propagation across the domain. This method provides a new approach to

obtain the mobility needed for diffuse interface continuum models of fluid-fluid inter-

faces [180–182]. Rather than being obtained as a fitted, [183–185] estimated [173], or

swept parameter [172,179], it is directly obtained from physically justifiable molecular-

scale calculations, similarly to other interfacial properties like surface tension and

interface thickness.

4.5 Appendix

4.5.1 Choosing Chemical Potentials

It was observed in the initial DCV-GCMD simulations that interfaces in LL2

and LV systems swept steadily across the domain, ultimately leading to the complete

disappearance of one of the fluids and thus of the interfaces themselves. To enable

analysis of interfaces and their random walks, it is important to choose chemical

potentials that maintain the time-averaged interface velocity, vint, and change in in-

terface position, δxint, at zero. Figure 4.7 illustrates the trial and error procedure used

to attain appropriate chemical potentials for the LL2 system. Normalized interface

position versus time is shown for three different choices of µα, with µβ held constant
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at −8.14. Each of the three curves represents an average over three different initial-

izations. It is evident that µα = −6.86 is the best choice to maintain a “stationary”

interface. A similar procedure was performed for the LV system. For the LL1 system,

no trial and error was needed because both fluids were identical. All that was needed

in that case to maintain a “stationary” interface was to set µα and µβ equal.

At the end of neq MD time steps and before the DCV-GCMD portion of the

simulations, the LL2 system displayed an unexpected vapor layer at the interface

between the bulk liquid α and β phases. This layer, roughly 0.1W thick and containing

both α and β particles, likely arose due to the low number of particles initially chosen

for α. Running DCV-GCMD caused bulk α and bulk β liquids to be driven toward

one another, resulting in a steady decrease in vapor film thickness. After running

60000 DCV-GCMD steps the film was completely removed, and the linear velocity

was removed from the system again before running DCV-GCMD for the mobility

calculations.
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4.5.2 Alternative definitions of Interface Position and Velocity

There are other potential ways to define xint besides the “two-bin” method

presented in the paper. One way, for systems with two species, is based on finding an

extremum of total mass density ρα+ρβ. Figures 2(a) and (b) show that the total mass

density exhibits a minimum very close to the value of xint previously determined by

setting ρα = ρβ. This minimum occurs because the repulsion between fluids α and β

leads to a local depletion of particles in the interface. Still another way is to define xint

as the position where the local particle number density, as opposed to mass density, is

equal to a target value. For the LL1 and LV systems, this yields equivalent xint values

to those obtained using mass density because mα = mβ. For LL2, this approach yields

slightly different xint values than those obtained from the mass density results in Fig.

2 because mα 6= mβ. Regardless of the slight differences in xint, it was found that

all three interface definitions give almost identical values for the diffusion coefficient,

within 1.5%, in the MSD calculations which is less than the estimated error of roughly

∼ 5%.

To determine vint, it is reasonable to use the average molecular velocity of par-

ticles in a region containing the interface. The key challenge is to determine the

location and spatial extent of this region. Various calculations of vint were performed

using different interface regions. These included a region comprised of the two spatial

bins used to interpolate the interface position xint (shaded gray region in Fig. 2), a

region comprised of the single spatial bin actually containing the interpolated xint,

regions centered on the interpolated xint with “10-90”, “5-95”, and “1-99” interface

thicknesses [191,192], and regions whose interface positions and thicknesses were de-

termined by fitting a hyperbolic tangent to the density profile [85]. For the latter two

interface regions, which generally spanned multiple bins and had boundaries that did
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not align perfectly with the bin edges, the contribution of each bin to the average vint

was weighted by the fraction of the bin contained by the interface.

For the hyperbolic tangent method, the interface thickness Lint of the LV system

was obtained, along with the interface position, from the following commonly used

fitting function

ρ(x) =
ρL + ρV

2
− ρL − ρV

2
tanh

(
2(x− xint)

Lint

)
. (4.4)

The interface thicknesses of the LL1 and LL2 systems were more complicated to

determine because fluids α and β are different species. The density profiles of each

species were separately fitted to the following equations

ρα(x) =
ρBα
2

(
1− tanh

(
2(x− sα)

Lα

))
(4.5a)

ρβ(x) =
ρBβ
2

(
1 + tanh

(
2(x− sβ)

Lβ

))
(4.5b)

and the overall interface thickness of the two-species was calculated from the interface

thicknesses and positions of the individual species (Table 4.4) as

Lint =

(
sβ +

Lβ
2

)
−
(
sα −

Lα
2

)
. (4.6)

In the above, ρBα and ρBβ (Table 4.3) are the bulk densities of α and β far from

the interface. To fit the data, instantaneous density profiles were recorded at each

time step, aligned about their interface positions, time averaged over 0.1nrun time

steps, and ensemble averaged over Ns initializations. This procedure gave the fitting

parameters and interfacial thicknesses in Eqs. 4.4-4.6; numerical values for these

parameters are found in Table 4.4.
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Table 4.4: Fitted values for the LL1 and LL2 density profiles. The (·) represents the
uncertainty in the preceding digit.

Lα Lβ sα sβ
LL1 1.97(3) 1.97(3) -0.292(8) 0.292(8)
LL2 2.38(2) 2.15(2) -0.206(6) 0.506(7)

It was found that the two bin region yielded velocity autocorrelation based

mobility values that agreed very well with those computed using other methods based

on mean squared interface displacement and variance of interface position for all three

systems. The single bin and hyperbolic tangent methods performed similarly to the

two bin method, however the uncertainty in the single bin method was roughly twice

that of the two bin method. For the 10–90, 5–95, and 1–99 methods, respectively,

the interface thickness increased and the calculated mobilities decreased to a value

11% lower (for the 1-99 method) than the mobility value calculated from the two bin

method.

It is believed that the 1-99 method (and to a lesser extent the 5–95 and 10–

90 methods) yields interfaces that are too wide, incorporating significant numbers of

bulk-like non-interface particles. These particles move much less readily than interface

particles, leading to lower average interfacial velocities and lower VACF values. For

these reasons the 1–99 method is not recommended. Due to its agreement with other

mobility calculation methods and to its computational simplicity, the two-bin method

is the preferred method for vint calculations and is used for all calculations presented

in the manuscript.
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4.5.3 Boundary and Domain Size Effects

It is also important to ensure that the interface motion does not include artifacts

arising from domain size and boundary conditions. Figure 4.8 shows MSD-related

data computed for LL1 systems of three different sizes: a baseline domain of volume

W ×A, a wide domain of volume 2W ×A, and a small cross section domain of volume

W ×A/2. Since mobility scales with the time derivative of the product of MSD and

cross sectional areas (Eq. 1), this product is plotted rather than the MSD itself.

Similarities for all three domain sizes are evident for times less than approximately

25 time units, but beyond that the two domains with width W both show a reduction

in slope of MSD × A. The domain with width 2W also shows a reduction in slope,

but at approximately 50 time units. Similar MSD results (not shown) were obtained

for LL2 and LV systems. These reductions in slope occur at times consistent with the

time it takes a sound wave to cross the domain and interact with the RBC boundary:

τ = W/c or 2W/c. Using the speed of sound for a LJ fluid at T = 0.7 from Haile [86],

the estimated interaction times are τ ≈ 20 and 40, which is roughly when deviations

begin. Due to the similarities in the MSD×A for all three cases below 25 time units,

it is expected that the domain size, both length and area, will have negligible effects

on mobility, if data are taken before this characteristic time. Accordingly, all mobility

calculations in this work are based on time windows shorter than τ .

The motivation for running DCV-GCMD as opposed to normal MD in this paper

was that MD simulations were initially tried but showed unexpected artifacts. These

artifacts took the form of regular oscillations with a well defined period, roughly 2τ ,

for domains of width W (“MD” curve in Fig. 4.8). These oscillations arose from

periodic compression and expansion of the confined fluid as it moved back and forth

between the domain boundaries. Compression of the liquid is difficult due to its high
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density, leading to suppression of the interface trajectory (Fig. 4.9) and reduction

of MSD (Fig. 4.8). Similar results on boundary-induced suppression of the diffusion

coefficient, which is related to the MSD of individual atoms, have previously been

reported [210, 211]. MD simulations with Monte Carlo translation steps were tried

next in order to permit the particles to access lower energy configurations, with the

goal of reducing the resistance of the liquid to interface motion. While the observed

displacements and MSD values were higher (“DCV-MCMD” curve, Figs. 4.8 and

4.9), the MSD still displayed the undesired oscillatory behavior. It was decided to

introduce particle sources and sinks at the boundaries via DCV-GCMD simulations,

in the hope that this would allow free movement of the liquid and thereby eliminate

the fluid compression effect of the confining walls. The oscillatory behavior was indeed

eliminated. The boundary effect also appears in the VACF and more noticeably in
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the integral of the VACF as seen in Fig. 4.10 which is a modified version of Fig. 4.5

in the main text that has been extended to longer time to illustrate the boundary

effect.
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5 Relationship between Interfacial Mobility and

Cahn-Hilliard Fluid Phase Mobility

Chapter 4 established a molecular dynamics method to calculate the interfacial

mobility between two fluids so that it could be used as an a priori input for con-

tinuum models. This chapter expands upon the continuum definition of the diffuse

interfacial mobility γ used in the Navier-Stokes-Cahn-Hilliard equations and relates

it to the fluctuation mobility M calculated in Chap. 4. The remainder of this chapter

is as follows: Sec. 5.1 further expands upon the continuum background established in

Chap. 2.3, Sec. 5.2 discusses equilibrium MD simulations and steady state continuum

simulations, Sec. 5.3 discusses non-equilibrium MD simulations and transient contin-

uum simulations of interfacial relaxation, and Sec. 5.4 makes a few final remarks and

draws conclusions about interfacial mobility.

5.1 Continuum Background

5.1.1 Navier-Stokes-Cahn-Hilliard Equations

The incompressible Navier-Stokes-Cahn-Hilliard (NSCH) equations, a modified

version of Eqs. 2.28, which are commonly used when modeling droplet motion [47,

172,173,179–185] are given by

∇ · v = 0 (5.1a)

ρ
D(v)

Dt
= −∇p+ η∇2v + Fσ (5.1b)

Dα

Dt
= γ∇2µ (5.1c)
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where v and p are the fluid velocity and pressure, α is the fluid phase fraction (not to

be confused with the accommodation coefficient α in Chap. 3) with α ∈ [0, 1] where

α = 0 and α = 1 represents the vapor V and liquid L phases, formerly fluid phases

A and B in Chap. 2. Here ρ and η are the fluid density and viscosity which are a

weighted average of the bulk values, ρ(α) = ρV +α(ρL−ρV ) and η = ηV +α(ηL−ηV ),

Fσ is the surface tension term, and µ is the chemical potential. Gurtin [212] proposed

the following surface tension model, Fσ = µ∇α, where the Cahn-Hilliard chemical

potential is defined by

µ = µw + µg = kw

(
α3 − 3α2

2
+
α

2

)
− kg∇2α. (5.2)

Here µw and µg represent contributions to the free energy from the phase fraction

and gradient of the phase fraction with strength kw and kg respectively. The first

term in Eq. 5.2 is a derivative of a symmetric double well potential for the Gibbs

free energy G shown in Fig. 5.1 and given by the expression, G = kwα
2(α − 1)2/4,

while the second term arises by keeping the first non-zero term in an expansion of

the free energy about the phase fraction [213]. µw arises from an energetic penalty

for the fluid not being in the pure vapor or liquid state, α = 0 or α = 1, while µg

is an energetic penalty for having sharp changes in phase. The balance between µw

and µg allows for a diffuse interface to form with finite thickness Lint. The strength

of the energetic well and phase gradient energy are related to the interfacial length

and the surface tension σST by [47,182–184]

kg =
3
√

2σSTLint
2

(5.3a)

kw =
6
√

2σST
Lint

. (5.3b)
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Fig. 5.1: Bulk Gibbs free energy 4G/kw (solid line) and chemical potential µ/kw
(dashed line) as a function of phase fraction for the Cahn-Hilliard symmetric double
well.

Other surface tension models are also used in the literature [214–217], but the Gurtin

model is the most common.

A benefit of the symmetric double well free energy G is that there exists an

analytical steady state solution for the interfacial profile αs [218,219],

αs(x) =
1

2

(
tanh

(
x√

2Lint

)
+ 1

)
. (5.4)

Although a steady state solution is beneficial, a symmetric double well potential is

only an approximation for the chemical potential of a Lennard Jones fluid [220,221].

Adjusting the free energy to an asymmetric fourth order double well leads to issues

discussed in Sec. 5.5. Higher order energetic wells are beyond the scope of this

dissertation; therefore, the symmetric double well potential will suffice.
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5.1.2 Navier-Stokes-Cahn-Hilliard Mobility

The mobility γ in the diffuse interface model of the NSCH equations stems from

a linear force-flux relation [181] and has units of Length3 × Time ×Mass−1. The

mobility M in Chap. 4 stems from random fluctuations of the interface using either

the mean-square displacement or a Green-Kubo style integration of the interfacial

velocity autocorrelation function and has units of Length2× Time×Mass−1. These

mobilities M and γ are both inherently interfacial properties, therefore it is expected

that diffuse mobility γ scales with the fluctuation mobility M . The interfacial thick-

ness Lint provides a connection between the two mobilities, and it is expected that

γ ∼MLint.

Equilibrium MD has been used to calculate transport coefficients such as viscos-

ity and thermal conductivity [85]. Alternatively, non-equilibrium MD combined with

analytical continuum solutions has been used to extract viscosity [222] and thermal

conductivity [223,224]. Similar to these examples, Chap. 4 establishes an equilibrium

method to extract interfacial mobility while this chapter extracts the mobility from

non-equilibrium simulations. These methods to calculate the mobility are similar

to the equilibrium and non-equilbrium methods to calculate other physical proper-

ties such as the viscosity and thermal conductivity. Therefore the extracted values

for γ from the interfacial relaxation simulations are expected to be related to the

equilibrium mobility M from Chap. 4.

5.2 Steady State Interface

Before interfacial relaxation simulations are performed, steady state validation

of the continuum equations in Sec. 5.3.2 must be discussed. MD simulations were
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run to gather physical properties needed as inputs for the continuum computational

fluid dynamics (CFD) simulations. CFD simulations were performed using the open

source software OpenFOAM [225, 226] with an in house solver for the NSCH equa-

tions. The solver used an implicit Euler time stepping scheme and linear Gaussian

discretization scheme for the spatial domain. Alternative higher order time stepping

schemes such as Runge-Kutta or Dormand-Prince and higher order discretization

schemes had minimal effects on the numerical results; therefore the above methods

were chosen to reduce computation time. Note both MD and CFD simulations are

run in dimensionless Lennard-Jones units and all values presented in this chapter are

dimensionless unless otherwise noted.

5.2.1 Molecular Domain Simulations

A dimensionless, truncated and shifted Lennard-Jones potential was used for

all interactions. Initially N = 12000 particles were placed in a domain of L×H ×H,

and Table 5.1 shows the domain sizes for the liquid-vapor simulations which were

chosen such that there would be approximately 10000 liquid particles and 2000 vapor

particles based on the bulk densities from the literature [162]. More particles were

placed in the center of the domain to allow for the liquid film to form in a reasonable

initialization period. The system was allowed to equilibrate to a temperature T for

Nequil = 4.5 × 106 steps with a time step ∆t = 0.005. Rescaling thermostats were

used to control T in two regions, one in the center portion of the liquid film and

one in the center of the vapor region. The size of the thermostatted region was such

that roughly 200 particles were thermostatted at every time step. Periodic boundary

conditions were implemented in all directions so two liquid-vapor interfaces formed
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Table 5.1: Temperatures, domain size, bulk densities, bulk viscosities, surface tension,
and interface width for the liquid-vapor interface relaxation simulations.

T L H ρL ρV (×100)

0.7 3769.30 12 0.81± 0.07 0.35± 0.04

0.8 1254.17 12 0.77± 0.07 1.07± 0.15

0.9 594.83 12 0.71± 0.07 2.54± 0.33

1.0 357.71 12 0.65± 0.07 4.77± 1.19

T ηL ηV (×100) σ Lint

0.7 2.61± 0.19 0.87± 0.16 0.71± 0.53 0.579± 0.006

0.8 1.76± 0.11 2.92± 0.36 0.60± 0.53 0.719± 0.006

0.9 1.27± 0.09 6.35± 0.38 0.46± 0.52 0.917± 0.007

1.0 0.97± 0.06 9.53± 0.55 0.23± 0.52 1.199± 0.010

in the simulation domain. The phase fraction α for the liquid-vapor systems is

α(x) =
ρ(x)− ρV
ρL − ρV

. (5.5)

The bulk liquid and vapor densities and surface tension (Table 5.1) as well as the

average interface profile were calculated during the last Nave = 106 steps. The steady

state phase solution, Eq. 5.4, was used to extract the interfacial length Lint. The

bulk viscosities, ηL and ηV , for the liquid and vapor phases were calculated using Eq.

2.58 in separate MD simulations at the corresponding temperature and densities.

5.2.2 Continuum Domain and Comparison

With the equilibrium MD complete, steady CFD simulations were performed

in order to model the Lennard Jones liquid-vapor interface. Bulk properties were

taken from the MD averages and the domain sizes were the same size as the MD
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simulations, Table 5.1. The initial α values for the CFD simulation were taken from

the MD steady state solution. Note that the MD α, Eq. 5.5, does not strictly limit

α ∈ [0, 1] so when needed, the values of α were truncated. Near the interfaces and in

the liquid domain, a spatial grid resolution of ∆x = 0.25 was used, while a slightly

larger spatial grid resolution was used for the remainder of the vapor domain. Studies

were performed with finer spatial grid resolutions and minimal differences were seen

in the numerical results. Simulations were run with various values of γ in order to

allow the continuum solver to relax to the desired steady state solution. Regardless

of the γ value used, the solver converged to a similar steady state profile after a

short simulation time (as expected since the initial condition is very close to the

equilibrium profile and is independent of γ). The time step for the CFD solver was

the same as the MD time step, and the simulations were run until the phase profile

was steady with time. Figure 5.2 shows the steady state MD and CFD profiles as well

as the analytical solution, Eq. 5.4. Excellent agreement is seen between the MD and

continuum data for all temperatures. Furthermore, the minimal differences between

the CFD results and analytical solutions in Figs. 5.2 indicate that the numerical CFD

model is implemented correctly and accurately capturing the steady state physics of

the NSCH equations (Eq. 5.1).

In order to quantitatively examine the differences between the MD and contin-

uum simulations, the steady state merit function χs is defined as

χs(x) = (αMD(x)− αCFD(x))2 . (5.6)

Figure 5.3 shows the merit function versus position, and the small values of χs confirm

that Eq. 5.4 accurately represents the steady state solution for the Lennard Jones

liquid-vapor interface at the temperatures simulated. Furthermore the peaks in Fig.
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Fig. 5.3: CFD merit function (Eq. 5.6) at various temperatures.

5.3 indicate that the merit function has non-negligible values only near the interfacial

region. This result is expected as the bulk phases in the continuum model are well

represented by the NSCH model.

5.3 Interfacial Relaxation Simulations

With the verification of the steady state solutions, relaxation of a stretched

interface were performed. Based upon Eq. 5.4, every interface has a natural resting

shape (a hyperbolic tangent) and width Lint over which the phase fraction α smoothly

changes from one phase to another. Therefore if perturbed from this natural state,
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figure show potential interface states.

an interface will relax to its desired length and the key parameters governing this

transition are the surface tension σ and the interfacial mobility γ. A simple way to

extract γ is to stretch the interface in one dimension at several values of γ and find

the value of γ which minimizes some merit function. Figure 5.4 shows a schematic of

a natural interface profile as well as the perturbed linear interface used to extract γ

for the Lennard-Jones fluid.

5.3.1 Molecular Simulations

In order to simulate the stretched interface in Fig. 5.4, MD simulations were run

in the following manner. Interface profiles taken during the steady state averaging

in Sec. 5.2.1 were used as the initial configurations for the MD domain. At t = 0,

particles were removed in the region ∆ = 10Lint in order to create the desired linear
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profile on either side of the liquid film. Table 5.2 contains the geometric data for the

relaxation simulation in Fig. 5.4. Besides the removal of particles from the domain,

all other values from the equilibrium MD simulations were used.

Table 5.2: Geometric information for interface relaxation simulations.

T LL LV ∆ LL + LV + 2∆

0.7 75.96 3681.76 5.79 3769.30

0.8 79.40 1160.39 7.19 1254.17

0.9 82.96 493.53 9.17 594.83

1.0 87.59 246.14 11.99 357.71

Normal MD was then run for Nrun = 50000 steps with data collected every

Nd = 50 steps. For all temperatures studied, this was sufficient time for the inter-

facial profile to relax to its desired length. This process was then repeated Nt = 50

times in order to gather appropriate temporal statistics on the interfacial relaxation.

Figure 5.5 shows the average interface profile at various times and temperatures. All

of the profiles rapidly converge to a steady profile and fluctuate about their equi-

librium profile as expected. Note that the colder temperatures which have sharper

interfaces converge more rapidly to the appropriate steady state solution than the

higher temperature interfaces. This is due to the higher surface tension and larger

difference between the liquid and vapor phases at colder temperatures.

5.3.2 Continuum Domain and Molecular Comparison

Continuum simulations were run in the following manner. The MD averaged

initial linear α profile was used as the initial condition for the phase fraction. Simu-

lations were then run with various values of γ in order to determine which value of
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Fig. 5.5: Phase fraction at various times and temperatures for MD (points) and CFD
(lines). Values for γ can be found in Table 5.3. Error bars for MD data are slightly
larger than marker size and were left out for clarity.

γ best matched the MD simulations. Figure 5.5 compares the MD and CFD simu-

lations at various times and temperatures. A reasonable agreement between the two

methods can be seen for the given time snapshots.

In order to quantify the difference between MD and CFD, the instantaneous

merit function

χt(x, t) = (αM(x, t)− αC(x, t))2 (5.7)

is defined, similar to the steady state merit function χs. Figure 5.6 show χt at various

time snap shots. The difference between the MD and CFD is higher than the steady

state counterpart, but χt is still reasonably small for “good” values of γ (the definition

of “good” will be defined later). The overall agreement in trends between the MD and

CFD results lends confidence that the Lennard Jones fluids is accurately represented
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Fig. 5.6: Instantaneous merit function (Eq. 5.7) comparing MD and CFD data.
Values for γ can be found in Table 5.3.

by the NSCH model.

The mobility γ is a required input for the continuum model, and it is not known

a priori which value matches the MD data the best for the entire spatial domain.

Therefore, several values of γ were run for each temperature, and the transient merit

function χ was used to determine the optimal value of γ by finding which value of γ

minimized χ with the overall transient merit function defined as

χ =
∑
t

∑
x

w(x, t)χt(x, t). (5.8)

Here w(x, t) is a weighting function. Since the MD and CFD start and end at similar

conditions the weights for these times should be minimal, therefore the weighting
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Table 5.3: Optimal values for the mobility γ from the CFD simulations and from a
polynomial fit which minimized the merit function χ.

T γmin γfitmin

0.7 0.13 0.1341

0.8 0.23 0.2274

0.9 0.40 0.4045

1.0 1.7 1.6616

function

w(x, t) = (αM(x, 0)− αM(x, t))2(αM(x,∞)− αM(x, t))2 (5.9)

was used because it has larger penalties for being dissimilar to the MD solution while

the interface is transitioning. Figure 5.7 shows the ratio χ(γ)/χ(γmin) where γmin is

the value of γ that minimizes a cubic polynomial fit of χ function. Each temperature

has a clear minimum in χ indicating that there exists an optimal value for γ which

minimizes the differences between the MD and CFD solutions. Table 5.3 lists the

values of γ which minimized χ at a given temperature.

Figure 5.8 shows the optimal diffuse mobilities γ as a function of temperature.

This temperature dependence of γ indicates that γ can be interpreted as a tempera-

ture dependent interfacial property for a given fluid-fluid interface similar to surface

tension and interfacial length. Figure 5.8 also shows MLint for T = 0.7 from Chap.

4. The similarity between γ and MLint for T = 0.7 lends confidence to the hypothesis

that γ ∼ MLint. However, robust conclusions on this result should be further veri-

fied by performing equilibrium simulations at additional temperatures. Furthermore,

compressibility or phase dependent mobility could be incorporated into the NSCH

in order to more accurately represent the Lennard Jones fluid, but these ideas are

beyond the scope of this dissertation.
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5.4 Conclusions

The this chapter establishes a method to obtain a value of mobility γ needed for

the NSCH model (Eq. 5.1) from a combination of molecular and continuum simula-

tions. First equilibrium MD simulations of a Lennard Jones liquid-vapor interface at

several temperatures was performed in order to extract bulk densities and viscosities

as well as surface tensions and interfacial lengths. Steady state continuum simula-

tions were performed on the NSCH model to verify the validity of the NSCH model

for the Lennard Jones fluid. With the validity of the equilibrium/steady state model,

non-equilibrium/transient simulations of interfacial relaxation from a unnatural lin-

ear state to its desired profile were performed in both MD and CFD. A global merit

function was defined in order to extract a “best” value for the continuum mobility γ.

Finally, a brief discussion of the relationship between the diffuse mobility γ and the

fluctuation mobility M was made with γ ∼MLint.

5.5 Appendix: Asymmetric Double Well

This appendix will discuss using an asymmetric double well as an alternative to

the symmetric double well free energy, G = kwα
2(α − 1)2/4. The symmetric fourth

order well is assumed as it has an analytical steady state solution (Eq. 5.4). However,

it may not accurately represent a Lennard-Jones liquid-vapor interface because the

liquid and vapor phases are identical, therefore the Gibbs free energy G may not be

perfectly symmetric. The simplest way to model this asymmetry would be with an

asymmetrical fourth order free energy Gasym. Note that the mathematical software

Mathematica [227] was heavily used throughout this portion.

An asymmetric fourth order double well free energy and chemical potential can
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Fig. 5.9: Dimensionless asymmetric Gibbs free energy 100Gasym/kw (left) and chem-
ical potential 100µasym/kw (right) as a function of phase fraction α for select values
of asymmetry k.

be written as

Gasym = kwα
2

(
α2

4
− (1 + k)α

3
+
k

2

)
(5.10a)

µasym = kwα(α− 1)(α− k) (5.10b)

where k ∈ [0, 1] and k = 1/2 results in the symmetric double well. Figure 5.9

shows the asymmetric free energy and chemical potential at select values of k. While

deriving αs [218,219], Eq. 5.4 assumes that

α(x) = a0 + a1w(x) +
a2
w(x)

(5.11)

where ai are constants and w(x) satisfies the Riccati equation

w′(x) = bw(x) + w2(x) (5.12)
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where b is a constant and ′ denotes differentiation with respect to x. Equation 5.12

has the general solution

w(x) =
1

2

(
−b+

√
−b2 tan(

√
−b2x)

)
. (5.13)

Plugging Eq. 5.11 into Eq. 5.1c and assuming steady state while using Eq. 5.12 to

remove all w′(x) results in a set of nine equations by matching powers of wi with

i = −3,−2, ..., 4, 5 that must be zero. In order to satisfy the steady state solutions

Eq. 5.1c, the following equations must hold:

−9a32b
2kw = 0 (5.14a)

−15a32bkw − 12a0a
2
2b

2kw + 4a22b
2(1 + k)kw = 0 (5.14b)

a2b
4kg − 6a32kw − 18a0a

2
2bkw − 3a20a2b

2kw − 3a1a
2
2b

2kw − a2b2kkw

+6a22b(1 + k)kw + 2a0a2b
2(1 + k)kw = 0

(5.14c)

a2b
3kg − 6a0a

2
2kw − 3a20a2bkw − 3a1a

2
2bkw − a2bkkw + 2a22(1 + k)kw

+2a0a2b(1 + k)kw = 0

(5.14d)

a1b
4kg − 3a20a1b

2kw − 3a21a2b
2kw − a1b2kkw + 2a0a1b

2(1 + k)kw = 0 (5.14e)

15a1b
3kg − 9a20a1bkw − 9a21a2bkw − 12a0a

2
1b

2kw − 3a1bkkw

+6a0a1b(1 + k)kw + 4a21b
2(1 + k)kw = 0

(5.14f)

50a1b
2kg − 6a20a1kw − 6a21a2kw − 30a0a

2
1bkw − 9a31b

2kw − 2a1kkw

+4a0a1(1 + k)kw + 10a21b(1 + k)kw = 0

(5.14g)

60a1bkg − 18a0a
2
1kw − 21a31bkw + 6a21(1 + k)kw = 0 (5.14h)

24a1kg − 12a31kw = 0. (5.14i)
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The solutions to Eq. 5.14 are of the form

b = ±

√
2kw
3kg

(k2 − k + 1) (5.15a)

a0 =
1

3

(
1 + k ±

√
3(k2 − k + 1)

)
(5.15b)

a1 = ±
√

2kg/kw (5.15c)

a2 = 0. (5.15d)

Note that taking the combinations of {−,−,−} or {−,+,+} for the ± operators in

Eqs. 5.15a, 5.15b, and 5.15c respectively are not solutions but all remaining combi-

nations for the ± operator are solutions. Plugging 5.15 into Eq. 5.11 and using Eq.

5.13 results in

α(x) =
1

3

(
1 + k +

√
3(k2 − k + 1) tanh

(
x

√
kw
6kg

(k2 − k + 1)

))
. (5.16)

The limits of tanh are ±1 so the minimum and maximum values of Eq. 5.16 are

αmin =
1

3

(
1 + k −

√
3(k2 − k + 1)

)
(5.17a)

αmax =
1

3

(
1 + k +

√
3(k2 − k + 1)

)
(5.17b)

∆α ≡ αmax − αmin =
2

3

√
3(k2 − k + 1). (5.17c)

Figure 5.10 shows Eq. 5.17 on the relevant interval of k ∈ [0, 1]. Note that it can be

easily shown that αmin = 0, αmax = 1, and ∆α = 1 only when k = 1/2; therefore for

asymmetric values of k (k 6= 1/2) the steady state solution for α yields non physical

results. This implies that an asymmetric fourth order free energy is unsuited for

use with the NSCH equations. Higher order double well free energies may offer a to

solution this issue, but is beyond the scope of this dissertation.
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6 Condensation onto Planar and Curved Interfaces

Chapters 3, 4, and 5 focused on constant temperature calculations of fluid-

fluid interfacial properties. This chapter focuses on liquid-vapor interfaces under

condensation using molecular dynamics. The outline of the remainder of this chapter

is as follows: Sec. 6.1 describes the MD simulations, Sec. 6.2 discusses the Schrage’s

relationship for the mass flux, Sec. 6.3 discusses the calculation of the Onsager

coefficients, and Sec. 6.4 discusses the effective heat transfer coefficient of the liquid-

vapor interface during condensation. Finally discussions of the results are made in

Sec. 6.5.

6.1 Molecular Dynamics Simulations

6.1.1 Domain Setup and Configuration

Condensation simulations in MD were performed on the dimensionless, trun-

cated, and shifted Lennard-Jones potential with a cutoff radius of 3 and a time step

of 0.005 with periodic boundary conditions. Figure 6.1 shows a schematic of the sim-

ulation domain for both the planar and curved liquid-vapor interfaces with domain

sizes of L×H×H and L×L×L respectively. Regions ΩV and ΩL are control volumes

where the temperature is thermostatted with velocity rescaling thermostats. Since

the desired goal is to maintain condensation without depletion in the vapor region, the

number of particles during the simulations must increase in order for the liquid region

to condense. This was done by running GCMD in ΩV in order to maintain a vapor

chemical potential of µres in the control volume ΩV . After the entire domain was

equilibrated at ρV (TV ), region ΩL was subcooled by ∆T with ∆T = TV − TL where

TL is the temperature in ΩL. A brief outline of the steps taken for the condensation
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Fig. 6.1: Schematic for the condensation simulations of (left) planar liquid films and
(right) spherical droplets. Blue regions indicate where cold thermostats were applied
while red regions indicate where hot thermostats and GCMC where applied.

simulations are as follows:

(A) Thermostat global domain to TV at ρV (TV )

(B) Turn off global thermostat

(C) Locally thermostat ΩV and ΩL to TV

(D) Begin GCMD to control µV in ΩV

(E) Locally thermostat ΩV to TV and ΩL to TL = TV −∆T .

Simulations were monitored to observe if liquid particles condensed in ΩL. If a liquid

region formed and was stable, the positions of the particles were centered such that

the center-of-mass of the liquid region coincided with the geometric center of ΩL.

This was done to prevent smearing of data for the condensing droplets as the data

was averaged in spherical bins centered about the origin.

6.1.2 Controlling the Chemical Potentials in ΩV

In order to maintain the desired density, GCMD was applied in ΩV . To deter-

mine the appropriate value for chemical potential of the vapor reservoir, µres, for ΩV ,

separate GCMD simulations were performed in a cubic domain with periodic bound-
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Fig. 6.2: Percent change in the number of atoms versus chemical potential for the
GCMD simulations at various temperatures. Markers are MD data while solid lines
are a quadratic fit to the data. Values for where the fitted quadratic crosses zero can
be found in Table 6.1.

ary conditions with N0 = 2048 particles. The lengths of the domains correspond to

the densities in Table 6.1. GCMC was performed at various values of µres, and the

number of molecules in the domain was monitored for 200000 time steps. Figure 6.2

shows the percent change in the number of particles, ∆N/N0, as a function of the

chemical potential µres. Each value of µres was run with three separate initializations

in order to obtain statistics for µres. A quadratic polynomial was then fit to the

data in the least squares sense [169] in order to obtain the value of µres that would

maintain the desired density of the domain at a set temperature. The values µres for

which ∆N/N0 = 0 can be found in Table 6.1.
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Table 6.1: Reservoir chemical potentials for vapor equilibrium at a given temperature
and density.

T ρV µres µres Error

0.7 0.0035 -3.953 0.006

0.8 0.0107 -3.677 0.004

0.9 0.0254 -3.504 0.011

1.0 0.0477 -3.399 0.003

6.1.3 Condensation and Interface Definition

Condensation simulations were run for at least 2 million time steps in order

to see if condensation occurred. Table 6.2 lists whether condensation was observed

for a given vapor temperature and liquid subcooling. No condensation was observed

for any of the simulations with TV = 0.7. At lower TV the vapor density decreases,

requiring larger density fluctuations in order to form a stable liquid droplet (film)

in ΩL. These larger fluctuations are less likely to occur resulting in no liquid region

forming during the simulation runtime. A similar argument can be used for the lack

of condensation seen at low subcooling.

The purpose of the GCMC steps in ΩV is to replenish vapor particles that leave

ΩV and condense due to the temperature gradient. Figures 6.3 and 6.4 show the

change in the number of particles in the simulation, ∆N , as a function of time for the

planar and spherical systems respectively. Linear profiles were fit to ∆N (the solid

lines in Figs. 6.3 and 6.4) all with excellent correlation with R2 > 0.99 for all fits.

The slopes of the linear profiles can be used to estimate the mass condensation rate

ṁ and are listed Table 6.3. As expected simulations with a larger subcooling ∆T

have larger ṁ as shown in Fig. 6.5. The mass flow for a given ∆T is the same within

error for all TV , which indicates that the subcooling, not the vapor temperature, is
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Table 6.2: Table showing when condensation occurred.

Planar Simulations

∆T 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

TV = 0.7 No No – – – – – –

TV = 0.8 No No No Yes – – – –

TV = 0.9 No No Yes Yes Yes Yes – –

TV = 1.0 No Yes Yes Yes Yes Yes Yes Yes

Spherical Simulations

∆T 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

TV = 0.7 No No – – – – – –

TV = 0.8 No No No No – – – –

TV = 0.9 No No Yes Yes Yes Yes – –

TV = 1.0 No Yes Yes Yes Yes Yes Yes Yes
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Fig. 6.3: Change in the number of particles in the planar simulations as a function
of time for various vapor temperatures and liquid subcoolings. Solid lines are linear
fits to the data after t = 3750 with R2 > 0.99 for all cases.
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of time for various vapor temperatures and liquid subcoolings. Solid lines are linear
fits to the data after t = 2500 with R2 > 0.99 for all cases.

the dominate factor in determining the mass flow rate.

The GCMD steps of the simulations attempts particle insertions and deletions

at a one to one ratio. Due to the net increase in ∆N the probability of accepting a

trial insertion is greater than than accepting a trial deletion. However, the probability

of accepting a trial deletion is > 65% and differs from the insertion probability by less

than 2% for all simulations. This indicates that the vapor region ΩV is maintaining

an appropriate chemical potential and therefore density as desired. A significantly

lower deletion probability would be a strong indicator that the vapor in ΩV is not

being appropriately replenished.

Figure 6.6 shows sample density and temperature profiles for the condensation

simulations. The density was fit to the profile of the form [87]

ρ(r) =
ρL(r) + ρV

2
− ρL(r) + ρV

2

(
1− tanh

(
r −R√

2Lint

))
(6.1)

where R is the interface position, Lint is the interfacial thickness, ρV is the bulk vapor
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Table 6.3: Mass flow rates.

TV ∆T Planar ṁ Spherical ṁ

0.8 0.20 7.512± 0.003 ——

0.9 0.15 7.527± 0.007 7.266± 0.007

0.9 0.20 9.123± 0.008 9.656± 0.005

0.9 0.25 10.553± 0.010 12.478± 0.005

0.9 0.30 12.064± 0.011 15.136± 0.005

1.0 0.10 5.908± 0.007 4.933± 0.009

1.0 0.15 7.101± 0.008 7.331± 0.009

1.0 0.20 8.543± 0.008 9.722± 0.007

1.0 0.25 9.855± 0.009 12.553± 0.007

1.0 0.30 11.018± 0.012 15.236± 0.010

1.0 0.35 12.408± 0.013 18.315± 0.006

1.0 0.40 13.440± 0.015 20.629± 0.010
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Fig. 6.6: Density (top) and temperature (bottom) profiles at t = 600 with TV = 1.0
and ∆T = 0.4 for the droplet simulation.

density, and ρL(r) = ar + b is a linear fit of the liquid density with slope of a and

intercept of b. The interfacial region is defined as the region between RL,i and RV,i.

Here RL,i is the location where 1−tanh((rL,i−R)/
√

2Lint) = k with k = 0.02 and RV,i

is the location where k = 0.98. Note that for the planar systems the notation x and

X are used for the interfacial position instead of r and R. The temperature within

the vapor region is approximately constant at TV for all simulations and indicates

that the energy flow through the vapor region is primarily due to mass flow. This

is similar to the condensation simulations seen by Liang et al. [4] and Kjelstrup et

al. [228]. However, there is a drastic temperature drop in the liquid region seen in Fig.

6.6, but in ΩL the liquid temperature stabilizes to TL indicating that thermostat in

ΩL is working as expected. The constant temperature in TV along with the constant

ṁ indicates that the energy flowing through the system is roughly constant because

ṁ is constant.
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In the temperature profile in Fig. 6.6 there is not a temperature discontinuity

throughout the interface as sometimes seen in colder interfaces and is in agreement

with previous literature [77–79, 130, 131, 229]. This is due to the broadening of the

interface, and the relative smoothness of the density profile across the interfacial

region as opposed to the sharper interfaces at colder temperatures. The broader

interface contains a larger number of particles, allowing for the latent heat of a vapor

particle to be absorbed by a larger number of interfacial particles.

Figure 6.7 and Fig. 6.8 show the interface location as a function of time for

the planar and droplet simulations respectively. Solid lines are fits for the data based

upon solutions to Ẋ = a for planar systems and Ṙ = bR−2 for spherical systems

where a and b are constant based upon the constant ṁ. The excellent fits for both

the planar and spherical systems seen in Figs. 6.7 and 6.8 confirms the assumption

that ṁ is constant. Note that the sudden decrease in the interface positions for the

planar simulations (around t = 3500 for TV = 0.8 and ∆T = 0.20) is the transition

from a cylindrical liquid “drop” to a liquid film due to geometry of the domain.
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6.2 Mass Flux: Schrage Relationship

The constant ṁ and interfacial area A can be used to calculate the mass flux ṁ′′

directly from the MD simulations. The mass flux for a planar interface was derived

by Schrage [72] using kinetic theory and is often simplified to [4, 71,73,164]

ṁ′′S =
2α

2− α

√
kB

2πm

(
ρV (TV,i)

√
TV,i − ρV (TL,i)

√
TL,i

)
(6.2)

where α is the mass accommodation coefficient and ρV (TV,i) and ρV (TL,i) are the vapor

densities evaluated at the vapor and liquid temperatures respectively. Marek [73]

modified Schrage’s result accounting for spherical geometry resulting in

ṁ′′S =
4α

4− 3α

√
kB

2πm

(
ρV (TV,i)

√
TV,i − ρV (TL,i)

√
TL,i

)
. (6.3)

Equation 6.2 and Eq. 6.3 assume that condensation is occurring slowly, v0v
−1
th � 1

where v0 = ρ−1V ṁ′′ is the condensation velocity and vth =
√

2kBT/πm is the thermal
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Fig. 6.9: Mass flux ṁ′′ as a function of (left) planar interface position X or (mid-
dle/right) droplet radius R for TV = 1.0 and ∆T = 0.4. Solid lines are the direct
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velocity. The minimum droplet radii analyzed during condensation is Rmin ∼ 10

therefore the maximum approach velocity is vmax0 ∼ 0.47. The thermal velocity

vth ∼ 0.7− 0.8 therefore Eqs. 6.2 and 6.3 are expected to be valid for the majority of

the droplet and film growth.

Figure 6.9 shows ṁ′′ for a planar interface (left) and a curved interface (mid-

dle/right) with TV = 1.0 and ∆T = 0.4. The middle panel does not account for

the curvature dependence of α (Eq. 3.21) while the right panel does. The curvature

correction for small R decreases the difference between the MD calculated mass flux

and Eq. 6.3. The mean square error χ is defined as

χ =

〈(
1− ṁ′′S

ṁ/A

)2
〉

(6.4)

and decreases by over 40% by appropriately correcting for the curvature dependence

of α, making χ similar to the value of the planar case.
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For the smallest droplets the assumption that v0v
−1
th � 1 may not be valid. The

more generic form of Schrage’s mass flux incorporating the approach velocity v0 is [4]

ṁ′′S,Full = α

√
kB

2πm

(
Γ(−v0v−1th )ρV (TV,i)

√
TV,i − ρV (TL,i)

√
TL,i

)
(6.5)

where Γ(a) is

Γ(a) = exp(−a2)− a
√
π(1− erf(a)), (6.6)

and erf is the error function. Figure 6.10 shows ṁ′′Full for a curved interface with

TV = 1.0 and ∆T = 0.4. The left panel does not account for the curvature dependence

of α (Eq. 3.21) while the right panel does. Similar to the previous result, applying

the curvature dependence for α decreases the χ by roughly 50%, and overall Eq. 6.5

has a lower χ value compared to Eq. 6.2 as expected as it makes fewer assumptions.

Applying Eq. 6.5 would have less of an effect on the planar interface because v0v
−1
th

does not change during the simulations because ṁ and A are constants.
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Deviations from Eq. 6.5 for the smallest radii can been seen in Fig. 6.10. The

prominence of interfacial fluctuations at small radii offer a potential explanation for

this deviation. A key assumption in the derivation of Eq. 6.5 is that the interface is

infinitely thin with no surface fluctuations. When the droplet is small, the interface

fluctuations are comparable to the droplet radii and have a dominate impact on the

liquid-vapor interactions. These regions of positive and negative curvature impact

condensation pathways of vapor particles as seen by Varilly and Chandler [230]. As

the droplet increases in size, these fluctuation become less dominate and droplet

becomes more “smooth” and spherical implying that the assumption made by Schrage

is valid.

6.3 Onsager Coefficients During Condensation

In order to calculate the coupled interfacial heat and mass transfer effects, the

local entropy generation σs (Eq. 2.42) can be simplified to

σs = q · ∇
(

1

T

)
(6.7)

recalling that q is the conductive heat flux. Integrating Eq. 6.7 (perpendicular to

the interface so the vector notation can be dropped) results in the total interfacial

entropy generation σS as [77,78,229,231–235]

σS =

∫
q
d

dx

(
1

T

)
dx =

∫
J
d

dx

(
1

T

)
dx−

∫
ṁ′′h

d

dx

(
1

T

)
dx (6.8)

where q is the conductive heat flux, ṁ′′h is the convective heat flux, and J is the

total heat flux due to both conduction and convection through the interface which

is assumed to be constant. Here h = u + P/ρ is the local enthalpy, u is the local
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potential at t = 2750 with TV = 1.0 and ∆T = 0.35 for the droplet simulation.

internal energy, and P is the pressure. The constant total heat flux assumption

[77,78,229,231–235] implies that J = qL+ṁ′′hL = qV +ṁ′′hV where the subscripts L

and V indicate the heat flowing through the liquid and vapor “edges” of the interface,

RL,i and RV,i respectively (dashed vertical gray lines in Fig. 6.6 and Fig. 6.11). Figure

6.11(top) shows a schematic of the energy flowing through the interface. Here the

local internal energy is assumed to be the average per particle potential energy within

a region, u = 〈Vj〉 where Vj is the pairwise potential energy of particle j.

Figure 6.12 shows the energy (heat) added and removed by the thermostats in

ΩV and ΩL respectively for TV = 1.0 and ∆T = 0.40. The agreement between ṁ′′hV t

133



-2
 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 5000  5100  5200  5300  5400  5500

E
n
e
rg

y
/A

re
a

Time  t

�L Removed
�V Added

m
.
''hVt

Fit

Fig. 6.12: Cumulative energy per area added or removed by the thermostats in ΩL

and ΩV for the planar interfaces with TV = 1.0 and ∆T = 0.40. Dashed lines are
linear fits of the data with R2 > 0.97. The solid blue line is ṁ′′hV t. The slope for the
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and the energy added in ΩV indicates that qV ≈ 0. This is in agreement with the

constant temperature in the vapor region as seen in Fig. 6.6 and is consistent with the

assumptions of Kjelstrup et al. [228]. The difference between the added and removed

energy combined with ṁ′′ is a measure of the latent energy being absorbed in the

domain due to condensation. With qV ≈ 0 and a the latent heat hV − hL, qL can be

approximated as qL ≈ (hV − hl)/ṁ′′.

Evaluating the integral in Eq. 6.8 at the “edges” of the interface using the

thermodynamic identity (details found in Sec. 6.6)

d

dx

(µ
T

)
= h

d

dx

(
1

T

)
(6.9)

where µ is the chemical potential, results in

σS = J

(
1

TV,i
− 1

TL,i

)
− ṁ′′

(
µV,i
TV,i
− µL,i
TL,i

)
. (6.10)
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Here subscripts V, i and L, i indicate properties taken at the vapor and liquid edges

of the interface respectively, RL,i and RV,i respectively (dashed vertical gray lines in

Fig. 6.6 and Fig. 6.11). Substituting back in for the conductive heat flux qL results

in

σS = qL

(
1

TV,i
− 1

TL,i

)
− ṁ′′

(
µV,i − hV,i

TV,i
− µL,i − hL,i

TL,i

)
. (6.11)

Figure shows 6.11 the local profiles for h and µ where Widom sampling, Eq. 2.61,

was used to calculate the excess portion of µ. The discontinuity in the interfacial

region for µ is due to the limited number of data points in the region. The chemical

potential throughout the interfacial region is not expected to be monotonic, similar

to the normal and transverse pressure profiles across an interface [236–239].

The Onsager relations (Eq. 2.43) based upon the results of Eq. 6.11 are

qL = LqqFT − LqmFM (6.12a)

ṁ′′ = LqmFT − LmmFM (6.12b)

where FT = (1/TV,i)− (1/TL,i) and FM = (µV,i− hV,i)/TV,i− (µL,i− hL,i)/TL,i are the

thermal and mass driving forces, and Lqq, Lmm, and Lqm are the Onsager coefficients

for heat flow, mass flow, and coupled heat-mass flow. Figures 6.13 and 6.14 show

the driving forces as a function of droplet size with FM being roughly an order of

magnitude greater than FT . From Fig. 6.13, there is a decrease in the magnitude

FT at increased R, which can be contributed to the decreased energetic flux due to

increasing surface area of the droplet. The similar magnitudes of FM between the

planar and spherical systems in Fig. 6.14 indicate that curvature does not play a key

role in the the mass driving force. A slight trend can be seen in Figs.6.13 and 6.14

where the increased subcooling increases the driving forces FT and FM for a given
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Fig. 6.13: Thermal driving force FT = (1/TV,i) − (1/TL,i) as a function of (top)
planar interface position and (bottom) droplet radius simulations for various vapor
temperatures.

vapor temperature. The noise in the data (especially for FT ) for both the planar and

spherical cases is due to the limited averaging because of the moving interfaces. This

makes it difficult to draw any robust conclusions about either of the driving forces as

a function of TV , ∆T , or R.

Bedeaux and Kjelstrup [235] and Kuhn et al. [240] relate the Onsager mass flow

coefficient to the diffusion coefficient D with Lmm ∼ D. Recalling the results from

Chap. 4, D is proportional to the interfacial mobility M mobility, therefore

Lmm ∼ ρ2TM ∼ ρ2Tγ

Lint
(6.13)

noting that Bedeaux and Kjelstrup [235] absorbed the temperature into the Onsager

coefficient and recalling that γ is the mobility from the Navier-Stokes-Cahn Hilliard
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model (Eqs. 5.1). Assuming that the proportionality constant is unity, Lmm is shown

in Fig. 6.15. The mass Onsager coefficient increases with temperature similar to the

mobility and interfacial length.

The remaining Onsager coefficients Lqq and Lqm can now be calculated in MD

because q and ṁ′′ are known. Figure 6.16 compares the ratio of the mass and thermal

driving terms in Eq. 6.12, (LqmFM)/(LqqFT ), as a function of interface position or

droplet size. The ratio being of O(1) indicates that the thermal and mass forces are

consistent with one another. This is supported by the small value of qL as compared

to (LqmFM). The slope in Fig. 6.12 can be used to estimate qL with qL ≈ 0.024. For

the corresponding case, the average of the mass driving term is LqmFM = 1.28±0.17.

The numerical values given are typical for both the spherical and planar interfaces

with the value for qL being small relative to the mass driving force. This indicates that
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there is a minimal coupling between the heat and mass fluxes because qL � LqmFM .

Due to the relatively slow condensation process and small values of ṁ′′ and qL, the

ratio of the driving forces and coefficients is fairly insensitive to the precise value used

for the proportionality in Eq. 6.13.

6.4 Effective Heat Transfer Coefficient

Section 6.3 shows the majority of energy transfered through the interface is

through accessing the latent heat required to change from the vapor to the liquid

phase, therefore the effective interfacial heat transfer coefficient heff is

heff =
qL − qV
TV,i − TL,i

≈ ṁ′′(hV,i − hL,i)
TV,i − TL,i

. (6.14)

This is the commonly used form for interfacial heat transfer and is verified in Sec.

6.3. Figure 6.17 shows heff as a function of subcooling ∆T for the planar (left) and

spherical (right) simulations averaged over the last 2000 time units. The general
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trend is that heat transfer improves with an increased temperature difference. This

is primarily due to the increased mass flux ṁ′′ as ṁ′′ increases linearly with ∆T , Fig.

6.5. The values for heff are also similar to the result of Liang et al. [4] giving further

confidence that the coupled heat-mass transport is negligible as assumed by Liang et

al.

The vapor temperature TV does not seem to have a significant impact on the

results. Furthermore, it is difficult to draw any firm conclusions about the effect of

TV due to the large overlap between the error bars in the data seen in Fig. 6.17.

The effect of TV could be further explored by setting TV to higher values than in this

work. However, larger TV would make TV greater than the critical temperature of

the fluid (Table 3.8) and care must be taken to ensure that TL = TV −∆T is within

the coexistence region, which would require larger ∆T than studied in this work.

6.5 Discussion and Conclusion

GCMD simulations were performed at various subcooling, and condensation oc-

curred only if the subcooling was above a given value for a specific vapor temperature.
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The mass flow increased with increased subcooling and showed minimal dependence

on the vapor temperature. Schrage’s mass flux relationship was examined and shown

to be valid for droplets with radii larger than 30 in dimensionless units. The coupled

heat and mass transfer was shown to be negligible for the subcoolings and vapor

temperatures simulated in this chapter, confirming that the total energy (heat) flux

through the interface is J ≈ ṁ′′(hV − hL). The effective heat transfer coefficient was

found to increase with subcooling similar to the mass flow rate.

The purpose of running GCMD is to replenish the vapor region in ΩV in a

thermodynamically consistent manner, allowing for condensation to occur in a quasi-

steady manner. However, the GCMD portion of the simulation drastically increases

the computational run time of the simulations as several ∼ 100 GCMC trial moves are

performed requiring energy computations between every MD time step, drastically

increasing the computational cost compared with standard MD [99]. There exist al-

ternative methods to replenish the vapor particles such as applying the USHER [241]

or FADE [242] algorithms in ΩV , similar to the particle insertion deletion method for

enforcing fluid flow [99]. However, these methods lack the thermodynamic justifica-

tion of GCMD, but could allow for a more thorough study of condensing systems in

the presence of non-condensible gases (NCG) or with surface surfactants.

The presence of NCGs can play a crucial role in condensation [130,131] and could

be an area of future exploration of droplet condensation simulations. The presence of

NCG has been shown to decrease the mass flux under similar subcooling [130] causing

a decrease in the effective heat transfer coefficient for planar simulations. The presence

of NCG was also shown to cause a temperature decreases in the pure vapor region

[131] while the temperature was roughly constant without the presence of NCG [4].

This would require larger temperature gradients in order for condensation to occur
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causing ΩV to contain vapor at temperature above the critical temperature similar

[77–79, 229]. The larger temperature gradients may cause the linear approximations

made in the Onsager relations to no longer be valid due to the larger driving forces.

6.6 Appendix: Thermodynamic Identity

In this chapter the assumption h = ∂(µ/T )
∂(1/T )

was used where h is the specific

enthalpy, µ is the chemical potential, and T is the temperature. Letting k = T−1 the

equation simplifies to

h =
∂(µ/T )

∂(1/T )
=
∂(kµ)

∂k
= µ+ k

∂µ

∂k
= µ+

1

T

∂µ

∂T

∂T

∂k
= µ− T ∂µ

∂T
. (6.15)

Therefore if the above can be shown then the assumption is valid. The Euler equation

solved for the specific entropy s is

s =
h− µ
T

(6.16)

and the Gibbs-Duhem relationship solving for s results in

s =
νdp− dµ

dT
. (6.17)

Combing Eqs. 6.16 and 6.17 and solving for h yields

h = νT
dp

dT
+ µ− T dµ

dT
. (6.18)
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If p = const and letting the partial derivative ∂ be a spatial derivative d/dx then Eq.

6.18 reduces to Eq. 6.15 as desired,

h
d

dx

(
1

T

)
=

d

dx

(µ
T

)
. (6.19)
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7 Conclusions

7.1 Summary

Fluid-fluid interfaces under equilibrium and non-equilibrium conditions were

investigated using molecular and continuum models. Several continuum properties

including the mass accommodation coefficient and interfacial mobility were computed

using molecular dynamics allowing for the physical parameters to be used as an

a priori input to continuum scale models such as the Navier-Stokes-Cahn-Hilliard

equations or interfacial resistances in condensation models.

Equilibrium molecular dynamics simulations were performed to calculate the

mass accommodation coefficient for liquid-vapor interfaces (liquid films and droplets)

for a variety of simple fluids as well as for the realistic fluids of benzene, butane,

methane, methanol, and water. A new method to tag accommodated particles was

developed and validated against the literature for planar interfaces. This method

was then applied to calculated the mass accommodation coefficient for highly curved

droplets. A curvature dependence was seen for all fluids simulated, and the mass

accommodation coefficient decreased as the size of the liquid droplet decreased. A

universal trend was seen if the mass accommodation coefficient is scaled by its planar

value and if the droplet radius is scaled by an appropriate normalizing radius. For

the fluids simulated, the curvature dependence was prevalent for droplets with radii

less than ∼ 55 nm. Incorporating this effect into continuum models may allow for a

more accurate representation of dropwise condensation on small length scales.

The fluid-fluid interfacial mobility for two liquid-liquid and one liquid-vapor

interface was computed using equilibrium molecular dynamics. The mobility was cal-
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culated from interfacial fluctuation using three methods: using the interfacial mean

square displacement, using a Green-Kubo integration of the interfacial velocity auto-

correlation function, and using the variance of the average interfacial position. The

three methods agreed well with one another for the three fluid-fluid interfaces indi-

cating that any of the methods could be used to compute the interfacial mobility.

The diffuse mobility in the Navier-Stokes-Cahn-Hilliard model was computed

from a combination of molecular dynamics and the computational fluid dynamics

using Navier-Stokes-Cahn-Hilliard equations for the Lennard-Jones interface at sev-

eral temperatures. The diffuse mobility is an inherently dynamic property, therefore

interfacial relaxation simulations were performed. Bulk parameters such as viscosity,

density, and surface tension, were first computed in molecular dynamics and used as

inputs for the continuum model. Comparison between the two methods allowed for

an effective diffuse mobility to found for the continuum model. This extracted diffuse

mobility was compared with the fluctuation mobility for the liquid-vapor interface.

The two mobilities differed by a unit of length, and the interfacial width was used to

bridge difference between the two mobilities. The two values for the mobilities agreed

well with one another indicating the the fluctuation mobility and diffuse mobility are

measuring a similar interfacial property.

Finally, condensation simulations were performed using molecular dynamics to

calculate interfacial properties for both condensing liquid films and droplets. The liq-

uid was subcooled to values ranging from 6.0 K to 48.4 K (0.05 to 0.4 dimensionless

units). Schrage’s relationship for the mass flux was shown to be valid if the curvature

dependence of the mass accommodation coefficient is taken into account for droplets

with radii larger than 10 nm (30 in dimensionless units). The interfacial heat transfer

coefficient increased with increased subcooling due to the increased mass flux and la-
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tent heat. Additionally the interfacial Onsager coefficients were calculated, including

the heat and mass cross term for the condensing systems. The coupled-heat mass

term was found to negligible for the systems studied in this work, but could be of im-

portance for systems with higher driving forces or in the presence of non-condensible

gases or on surfaces with heterogeneous condensation.

7.2 Engineering Perspective

This work examines the of physical properties for fluid-fluid interfaces with a

focus on liquid-vapor interfaces in the absence of non-condensible gases. Interfacial

motion and condensation have a direct impact in engineering applications such as wa-

ter harvesting [111–113], desalination [19,25], power generation [28–30,112,243–245],

thermal management [23, 24], and environmental control [26, 27, 246]. Homogeneous

nucleation of liquid droplets directly impact several of these applications through

the flashing phenomenon which impacts nuclear power plant safety and can cause

mechanical damage to refrigeration systems and emergency values [243,244,247]. Ho-

mogeneous nucleation is a difficult problem that is summarized well by a quote from

the review article by Wyslouzil and Wölk [248], “The fact that after ∼ 120 yr of ef-

fort we still cannot confidently predict the nucleation rates associated with this phase

transition, emphasizes that even homogeneous vapor phase nucleation is not an easy

problem.” The curvature dependence of the mass accommodation coefficients makes

strides toward understanding the challenges of fully homogeneous nucleation as it is

directly relevant toward the stability and growth of small liquid droplets.

Particle-cloud interactions are currently a significant open question in climate

modeling and are driven by the condensation of atmospheric water vapor onto cloud

condensation nuclei [101–104, 249]. This has lead to the investigation of alterna-
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tive cooling and refrigerant options such as ammonia, carbon dioxide, nitrogen,

and hydrocarbons as their ozone depletion and global warming potential are min-

imal [245, 250–254]. These coolants are expected to be used in future power plants

cooling systems [245], especially hydrocarbons due to their reduced costs and interac-

tions with common lubricants [250–252]. Being able to accurately characterize these

fluids and having a robust understanding of the interfacial motion and condensation

is important for improving the efficiency and reducing the emissions of these sys-

tems [255], and this dissertation provides a framework for calculating the physical

properties of these interfaces.

7.3 Future Directions

Future directions for this work could be to further explore the curvature depen-

dence of the mass accommodation coefficient to see if the dependence is present in

more complex fluid systems such as binary fluid mixtures, interfaces in the presence

of non-condensible gases. Furthermore, the connection between the fluctuation and

diffuse mobilities could be further established my comparing the mobilities at several

temperatures and for additional fluid-fluid interfaces. For the condensation simula-

tions, larger temperature gradients could be applied by increasing the vapor tem-

perature in order examine the effects of larger gradients on the Onsager coefficients,

specifically the coupled heat-mass coefficient. Incorporating the mass accommodation

coefficient into continuum models would allow for a more accurate representation of

small scale phenomena on a computationally accessible manner for condensing sys-

tems. This combined with an a priori mobility may open the door to further improve

and optimize condensing systems because the continuum models will be built on a

more robust foundation. These improved systems have the potential to have a positive
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impact on variety of applications ranging from microelectronics to power generation.
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[96] YJ Lü and M Chen. Oscillation of gas molecules in carbon nanotubes. Nan-

otechnology, 19(21):215707, 2008.

[97] T Mutat, J Adler, and M Sheintuch. Single species transport and self diffu-

sion in wide single-walled carbon nanotubes. The Journal of chemical physics,

136(23):234902, 2012.
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