
P

E

N

N

University of Pennsylvania
Founded by Benjamin Franklin in 1740

The Institute For
Research In Cognitive

Science

Aspects of Partial Information
in Databases

(Ph.D. Dissertation)

by

Leonid Libkin

IRCS Report 94-10

University of Pennsylvania
3401 Walnut Street, Suite 400C
Philadelphia, PA 19104-6228

August 1994

Site of the NSF Science and Technology Center for

Research in Cognitive Science

ASPECTS OF PARTIAL INFORMATION IN DATABASES

Leonid Libkin

A DISSERTATION
in

COMPUTER AND INFORMATION SCIENCE

Presented to the Faculties of the University of Pennsylvania in Partial Ful�llment of the
Requirements for the Degree of Doctor of Philosophy�

����

Peter Buneman
Supervisor of Dissertation

Mark Steedman
Graduate Group Chairperson

c� Copyright ����

by

Leonid Libkin

Averbakh�Kotov
Zurich� September ��� ����

�� d��d� Ng��f� ��� g��f	 g��f	
�� c��c� d��d� ��� Rg��g� f	�f�

� Ng��f
 Nb��d� ��� Be
�f� Rf��f�
�� Nb��c
 e��e	
�� Nc
�e� Qd��h
��
	� e��e� Bf��e�
�� Kh��h
 Rf��h�
�� Bf��e� ���
�� Kh
�g� Ng��f�
�� ��� c��c�

� Kg��f	 Nf��d�
�� Qd��c� Rf��e�
�� Rg��g	 Rb��f�
�� Rf��d� Be��f�
	� Kf	�g� Nd��f�
��� Ra��b� a��a	
�� Kg��f	 Nf��g�
��� d��d	 Nd��c	
�� Kf	�g� Ng��f�
��� Bc��e
 Qd��c�
�� Kg��f	 Nf��d	
�
� h��h
� Bc��d�
�� Kf	�g� Nd	�f�
��� Rb��c� g��g� ��� Kg��f	 Nf��g�
�	� Nf
�d� Ra��b� ��� Kf	�g� Ng��f�
��� Nd��b
 Nc	�b
 ��� Kg��f	 Nf��g�
��� Qc��b
 c��c	 �
� Kf	�g� Be��g	
��� Kg��h� Kg��h� ��� Kg��g	 Rf��f�
��� Qb
�c� Nf��g� �	� Bf��h� Rh��g�
��� Be��g� Ng��h� ��� Kg	�h	 Rf��g�
��� Bg��d� Qc��d� ��� Bh��g	 Rg��g	
��� Qc��d� Nh��g� ��� Kh	�h� Ng��f�
�
� g��g��� f��f	 ��� Ne��g
 Rg	�g

��� f��f
 Bf��e� 	�� Qd��d� Rg
�g�
�	� Rd��g� Re��f� 	�� Qd��b� Rg��g�
��� Rc��f� Rf��f� ���

Preface

In most applications� information stored in databases is not complete� There are various sources
of partiality of information� First� some information may be missing� For example� in a database
of employees some salaries may not be recorded� Second source of partiality is con�icts that
occur when di�erent databases are merged and they contradict each other� Another source of
partiality is asking queries against several databases simultaneously� Even if all databases are
complete� in most cases answers to such queries can only be approximated�

The �eld of partial information in databases has not received the attention that it deserves�
Most work on partial information in databases asks which operations of standard languages�
like relational algebra� can still be performed correctly in the presence of simple forms of partial
information like missing values� We believe that the problem should be looked at from another
point of view� the semantics of partiality must be clearly understood and it should give us new
design principles for languages for databases with partial information�

The main goals of this thesis are to develop new analytical tools for studying partial information
and its semantics� and to use the semantics of partiality as the basis for design of query languages�

This work should be distinguished from the body of work on partial information in arti�cial
intelligence� In most arti�cial intelligence applications the main concern is the design of models
for speci�c applications that could eventually lead to fast algorithms� In this thesis we are
interested in representation and querying partial information in database systems� Consequently�
we concentrate on general purpose solutions that are e�ectively implementable in the context
of database query languages and provide a �exible basis for future modeling challenges�

We present a common semantic framework for various kinds of partial information which can
be applied in a context more general than the �at relational model� This semantics is based
on the idea of ordering objects in terms of being more informative� Such ordered semantics�
which uses the ideas from the semantics of programming languages� cleanly intergrates all kinds
of partial information and serves as a tool to establish connections between them� In addition�
by analyzing mathematical properties of partial data� it is possible to �nd operations naturally
associated with it that can be turned into programming language constructs� More precisely�
having de�ned semantic domains for various kinds of collections of partial data� we can describe

v

vi

them as free algebras� and this gives us the desired sets of operations�

Various queries over partial databases can be formulated in terms of approximations� By an	
alyzing di�erent situations in which a precise answer can not be obtained for a query asked
against several databases� we propose a classi�cation of constructs that can be used to model
approximations� Using the same approach as for collections� we de�ne the semantics and the
orderings of approximations and show their intimate connection with combination of disjunctive
and conjunctive sets
so	called or	sets��

We discuss languages for databases with partial information� We follow the recently proposed
approach to the design of query languages based on developing languages around operations
naturally associated with the type constructors of their type systems� Such operations usually
come from the universality properties of semantic domains of those types� A language for sets
and or	sets is introduced and normalization theorem is proved� It allows to incorporate semantics
into the language and to distinguish two levels of querying� structural and conceptual� We then
use the semantic connection between sets� or	sets and approximations and show how to use this
language to work with approximations� Languages for multisets are also discussed�

The language for sets and or	sets has been implemented on top of Standard ML� Its imple	
mentation is described and and two typical examples of queries are given� One deals with
querying incomplete databases which often occur in computer aided design applications� The
other example deals with querying independent databases�

Summing up� this thesis develops a new approach to dealing with partial information in databases�
This approach is based on deep understanding of semantics of various kinds of partial informa	
tion that may occur in many di�erent contexts� and on designing languages naturally associated
with partial information� rather than adapting existing languages for complete databases�

Acknowledgements

It has become a tradition to start the acknowledgement section of a dissertation by thanking
the advisor� I shall certainly do so� but I want to keep expressing gratitude in the chronological
order� It was �ve years ago that I �nished a manuscript entitled �Abstract Convexities in Lattices
and Semilattices� which was supposed to be my PhD thesis in mathematics� I never got a PhD
in math� my thesis was disassembled and published in a number of papers� and shortly after
�nishing it I played my own Qd�h�� by switching to computer science� The way from lattices
and convexity to partial information and query languages was not easy or fast� it lasted �ve
years� went through �ve countries and� as for any critical move� there never will be a proof of
correctness� This move is truly an example of partial information � we will never know for sure
if it is correct� and this is why the game is taken as the epigraph for the thesis�� But there is
still something that I can assert without a shadow of doubt� I would never be where I am today
without having written that manuscript� And I would have never achieved that without help of
a number of people�

Most of all I would like to thank my parents for their support that allowed me to do research
when it was next to impossible� I also want to thank them for showing me that ����� miles is
not an obstacle for their support and encouragement that I feel every day� I am immeasurably
grateful to Ilya Muchnik� my advisor from ���� till ����� with whom I wrote thirteen papers�
for being responsible for my real undergraduate education and for collaborating with me on so
many projects� I want to thank J�anos Demetrovics for inviting me to visit Budapest in ����
and the Soviet authorities for unexpectedly allowing me to go� I recall that it was a pleasant
surprise for me and perhaps a move like g�	g� on their part� J�anos and E�T� Schmidt from the
Institute of Mathematics in Budapest convinced me that I should stop writing in Russian and
helped me write my �rst English papers�

J�anos gave an initial impulse to my transition to computer science� But it would not have been
complete and I would not have ended up at Penn without help and good advice that came at
the crucial moment� I would like to thank Georg Gottlob� Paolo Atzeni� Joachim Biskup and
Victor Vianu for their help during my short but very important stay in Europe in ���������� I
also would like to thank Mila and Yuri Chekanovsky who helped complete this transition and

�The game is taken from Bronshtein �����

vii

viii

supported me when I arrived to the US�

Having done with the past� let�s move to the present� I am very grateful to my advisor Peter
Buneman for numerous comments� ideas� suggestions and for being largely responsible for the
development of the main principles upon which this thesis is based� I am also grateful to the
members of the Penn database group
a�k�a� the �Tuesday Club��� Susan Davidson� Wenfei
Fan� Anthony Kosky� Rona Machlin� Dan Suciu� Val Tannen and Limsoon Wong� Val has been
extremely helpful since I came here� I can not think of a single piece of my database work
in which in some way his in�uence is not present� I wrote seven papers with Limsoon and
our collaboration was very pleasant and fruitful for me
and I hope for him as well�� Dan�s
comments often helped improve those papers and consequently this thesis� Achim Jung from
Darmstadt University gave me the �rst lessons in domain theory when we wrote our joint paper�
He invited me to Darmstadt in October �� where I learned about the problem of approximation
in databases� I also would like to thank Hermann Puhlmann for his hospitality during my stay
in Darmstadt� Carl Gunter was always very helpful� especially when I was trying to understand
some �ne points in the semantics of programming languages� before his excellent book appeared�
Elsa Gunter has helped me a lot as my AT�T �mentor�� She also in�uenced the implementation
of OR	SML� the language that I built during my three	month stay at AT�T Bell Laboratories
in ����� I thank Paris Kanellakis for his comments on an earlier version of the thesis that have
led to many improvements�

Many people read my papers upon which this thesis is based� and made useful suggestions� I was
also very lucky to have presented the material of this thesis before very responsive audiences� and
some penetrating questions asked during or after my talks in�uenced the contents of the thesis�
It is impossible to mention all names� and I apologize for unintentionally omitting some people�
For their comments� suggestions� questions and encouragement I thank Susan Davidson� J�anos
Demetrovics� Jean Gallier� Stephane Grumbach� Rick Hull� Tomasz Imielinski� Paris Kanellakis�
Anthony Kosky� Alberto Mendelzon� Dale Miller� Inderpal Mumick� Shamim Naqvi� Teow	Hin
Ngair� Atsushi Ohori� Jan Paredaens� Hermann Puhlmann� Jon Riecke� Anna Romanowska� Bill
Rounds� Bernhard Thalheim� Kumar Vadaparty� Bennet Vance� Jan Van den Bussche� Dirk Van
Gucht� Victor Vianu� Steve Vickers and Scott Weinstein� I thank Paul Taylor for his diagram
macros� and Nan Biltz and Michael Felker for being a bu�er between me and UPenn bureaucracy�
all three saved me hours and perhaps even days that I could then use for research�

Finally� I gratefully acknowledge �nancial support provided by AT�T Doctoral Fellowship and
NSF Grant IRI	��	�����

Contents

Preface v

Acknowledgements vii

� The Problem of Partial Information in Databases �

��� Null values �

����� Early work on null values in databases �

����� Types of nulls �

����� Semantics and query evaluation �

����� Extension to complex objects ��

��� Disjunctive information and or	sets ��

����� De�nition and examples of or	sets ��

����� Structural and conceptual queries ��

��� Approximations ��

����� Example� Querying independent databases � � � � � � � � � � � � � � � � � ��

����� Simple approximations ��

����� Approximating by many relations ��

��� Toward a general theory of partial information ��

ix

x CONTENTS

� Mathematical Background ��

��� Ordered sets and domains ��

��� Algebras ��

��� Adjunctions and monads ��

��� Rewrite systems ��

� Preliminaries ��

��� Databases with partial information and domain theory � � � � � � � � � � � � � � � ��

����� Order on objects and partiality ��

����� Schemes �

����� Dependency theory ��

����� Queries ��

��� Languages for programming with collections ��

����� Data	oriented programming ��

����� Sets ��

����� Bags �

� Semantics of Partial Information ��

��� Order and Semantics ��

����� Orderings on collections ��

����� Semantics of collections �

����� Formal models of approximations ���

��� Universality properties of partial data ���

����� Universality properties of collections ���

����� The iterated construction ���

CONTENTS xi

����� Universality properties of approximations � � � � � � � � � � � � � � � � � � ���

� Languages for partial information ���

��� Languages for collections of partial data ���

����� Language for sets ���

����� Language for or	sets ���

����� Language for bags ���

��� Language for sets and or	sets ���

����� Syntax and semantics ���

����� Normalization and conceptual programming � � � � � � � � � � � � � � � � � ��

����� Partial normalization ���

����� Losslessness of normalization ���

����� Costs of normalization ���

��� Programming with approximations ���

����� Structural recursion on approximations ���

����� Using sets and or	sets to program with approximations � � � � � � � � � � ���

	 OR
SML ���

��� Overview of OR	SML ���

����� Core language ��

����� Additional features ���

����� Implementation issues ��

��� Applications of OR	SML ���

����� Querying incomplete databases ���

����� Querying independent databases and approximations � � � � � � � � � � � � ���

xii CONTENTS

� Conclusion and further research ���

�� Brief summary ���

�� Problems for further investigation ���

Bibliography ���

Index ���

Chapter �

The Problem of Partial Information

in Databases

In this chapter we give a brief introduction into the theory of partial information in databases�
In the �rst section� we recall some major developments in the �eld and consider various types of
null values which are used most often to introduce partial information into relational databases�
We discuss representation systems and problems with query evaluation� These are the only
two sub�elds in which signi�cant progress has been made� We review extensions of partial
information to the complex object
nested relational� data model�

Then we consider two di�erent kinds of partial information that have not received the same
amount of attention from the database community� One is disjunctive information represented
via or	sets� the other is a number of constructions of similar structure called approximations�
Having surveyed the results known for these two kinds of partiality� we summarize open problems
that we solve or demonstrate new approaches towards solving� and outline the structure of the
thesis�

��� Null values

����� Early work on null values in databases

Any practical database management system must deal with the concept of partial information�
It was observed by Maier ����� that the fact that the structure of information may not �t the
relational model is not its only major limitation� Equally important is the reason that even if
information does �t the model� part of it may be missing for some reason� While there has been
a �urry of activity lately in trying to go beyond the standard relational model� one can not

�

� CHAPTER �� THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

say the same about partial information� The topic is still unexplored� there are few signi�cant
results and there is no clear understanding of what partiality really means�

Soon after Codd introduced his relational model� people realized that in real applications not
all values may be present� For example� in a simple relation below that might be a part of a
university or a corporation database� some values are missing and the symbol ni
no information�
is used� Note that there could be several di�erent reasons for using ni� For example� a person
may not have a phone� or may have a phone but the number is unknown
for example� he may
have forgotten it while �lling out a form which was later entered in a database�� or there could
be no information whatsoever
if a clerk was entering the data and did not know anything about
the phone in a particular o�ce��

Name Salary Room Telephone

John ��K �� ni

Ann �K ni ni

Mary ni ��� x	����

In ��� Codd ���� perhaps did not consider it as a serious problem and suggested a simple
solution� a fact about a tuple is either true
�� or false
�� or neither
��� which is the case when
we do not have a complete information� However� a few years later� Grant ���� showed that
Codd�s solution leads to wrong results if we are to select certain tuples from the database� He
proposed an alternative solution which was� in fact� introduction of the Skolem constants for
nulls� formally studied by Biskup ���� a few years later�

The example given by Grant ���� and Codd ���� is essentially the following� Suppose we have a
person whose name is in a database but salary is unknown� as for Mary in the above example�
Suppose that we want to partition the table into two� T� containing employees with salaries less
than ��K and T� of employees with salaries at least ��K� Of course� we believe that T� � T�
should produce the original table back� But as a matter of fact� according to Codd�s query
evaluation algorithm in the presence of null values ����� Mary will not be included in T� nor in
T��

Still� one very important observation was made in Codd ����� Since every null value can be
replaced by a non	null value� each relation with nulls is represented by a set of relations without
partial information� Moreover� this set could be considered as the semantics of the given incom	
plete relation� Thus� the most important lesson that we learn from the early work on partial
information is that there is a need in better mathematical models for partial information and in
better understanding of its semantics�

In the late �s and early ��s there were three major developments in the theory of partial
information� First� the idea to use orderings as a means to express partiality emerged� Second�
a rather rudimentary approach to disjunctive information was developed and an attempt was

���� NULL VALUES �

made towards a design of a query language speci�cally for partial information� Third� the
distinction between various assumptions on partiality was made and it was shown how those
assumptions lead to di�erent semantics and query evaluation algorithms� Let us consider all
three�

Orderings and partial information

We believe that the idea of expressing partiality of information by means of orderings is due to
Vassiliou ����� Two years after his initial work� this idea was further developed by Biskup �����

As a simple example� consider values that may occur in a database� Then ni is more partial� or
less informative� than any nonpartial value v such as ��K or �Mary�� Therefore� we impose an
order according to which ni � v for any nonpartial value v�

Since databases are obtained by applying record and set constructors� we need to extend the
orderings respectively� For records the most natural way to do it is componentwise� For records
with �elds labeled by l�� � � � � ln� we de�ne

�l� � v�� � � � � ln � vn� � �l� � v
�
�� � � � � l

�
n � v�n� i� �i � �� � � � � n � vi � v�i

For sets there are various ways to extend a partial order� and typically the following one� per	
ceived as a generalized subset ordering� was considered�

X v Y i� �x � X �y � Y � x � y

Let us brie�y consider two of the early works dealing with ordering on objects� Biskup ����
considered two null values� One is � and its meaning is the same as ni in the example above�
there is no information about the value of an attribute and there exists a complete value that
can be substituted for it� The other is a somewhat less natural value � meaning that any value
is a right substitution for it� For instance� a record �l� � v�� l� � �� is just a short notation for a
set of records �l� � v�� l� � v� for all possible values v� That is� � is not really a null value� This is
further con�rmed by the ordering imposed on values�

HHHHHH�
�

�

�
�
�
�

�
��

�
�

������
v� v� v� v�

� � �

�

�

Biskups�s paper made two major contributions to the �eld� First� he showed that truth of certain
logical formulae about databases with added � and � values is intimately connected with the

� CHAPTER �� THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

ordering� Second� he showed how to evaluate some of the standard database operations in the
presence of those values�

Another approach to incorporating orderings as a means to express partiality into the relational
model was proposed by Zaniolo ������ He considered one kind of null� ni� and de�ned the
ordering on tuples and sets in a way similar to the one given above� the only di�erence is that
he allowed to compare tuples over di�erent sets of attributes by inserting nulls in the missing
columns� For example� a tuple �Name � �Joe�� Age � ��� is less informative than �Name �
�Joe�� Age � ��� Salary � ��K� because the former is extended to �Name � �Joe�� Age � ���
Salary � ni�� which is less informative than the latter under the componentwise ordering�

The notion of being more informative is extended from tuples to relations by the ordering given
above� that is� R� v R� i� �t� � R��t� � R� � t� � t�� This is a preorder� and it might
be the case that both R� v R� and R� v R� hold� in this case R� and R� are information	
wise equivalent and we write R�

�� R�� By an x�relation Zaniolo means an equivalence class of
relations with respect to ��� an equivalence class of a relation R is denoted by �R� It is easy to
express the generalized notion of a tuple t belonging to an x	relation �R using the following fact�
t � R� for some R� � �R i� t � t� for some t� � R� We use the notation t�� �R for this notion of
being an element� Then one can rede�ne the union� intersection and di�erence on equivalence
classes �R� and �R� as equivalence classes given by the following relations� ft j t�� �R� or t�� �R�g�
ft j t�� �R� and t�� �R�g� ft j t�� �R� and �
t�� �R��g respectively�

De�ning join is slightly trickier� First we say that two tuples t� and t� are joinable if� for any
common attribute A� either in one of the two the A	value is ni or in both the A	values coincide�
Since any two tuples can be viewed as tuples over the same set of attributes� we de�ne the join
of t� and t� of two joinable tuples by taking its A	value to be ni if both A	values in t� and t�
are ni� or v is either A	value of t� is v or A	value of t� is v and v �� ni� For example�

�Name� John�Age� ���� �Name� John�Room� ��� � �Name� John�Age� ���Room� ���

The reason is that both tuples are �rst extended by adding ni to the missing �elds� then they
are found to be joinable and then the join is taken� Now� given a set X of attributes� a join of
two equivalence classes of relations �R� and �R� on X is de�ned by �R� �X

�R� � �R where

R � ft� 	 t� j t���R�� t���R�� t� and t� are total on Xg

Zaniolo ����� showed that the algebra thus de�ned can be used to query databases with partial
information� In particular� he showed how to represent universal quanti�cation and negation in
queries�

���� NULL VALUES �

Disjunctive information and query languages

In his classical papers� Lipski ����� ���� introduced two very important concepts that have
in�uenced the theory of partial information ever since�

First� he proposed a special data model for partial information� This data model� is based not
on null values but rather on assigning sets to objects and attributes� The idea is that for a given
object x and a given attribute a� the value that x may have on a is taken from this assigned set
Xa
x � This data model is the �rst instance of the use of disjunctive information in the database

literature dealing with partial information� Disjunctive information is of special importance in
this thesis and we shall discuss it later in details�

The second idea is based on the assumption that� in the presence of partial information� it
is often impossible to evaluate queries precisely� Therefore� one should look for a reasonable
approximation� We believe that Lipski ����� was the �rst to explicitly state the requirements
that two bounds for a query Q constitute the answer for partial databases�

�� The lower approximation to the answer to Q� that is� those objects for we which one can
conclude with certainty that they belong to the answer to Q�

�� The upper approximation to the answer to Q� that is� those objects for we which one can
conclude that they may belong to the answer to Q�

However� it was not until ten years later that it was observed by Buneman� Davidson and
Watters ���� ��� that those pairs of approximations may not only be regarded as results of query
evaluation but may also be used as a representation mechanism for certain kinds partial data�
Studying such approximation constructs is central to this thesis and we shall present a thorough
study of them later�

However� another idea from Lipski�s papers ����� ���� was overlooked by many� Unlike most
other researchers� Lipski did not try to tie his data model to the standard relational data model
and consequently he did not use languages like the relational algebra� Instead� he designed a
special language� that arose quite naturally from the structures he was considering� Thus� it
was the �rst instance
and unfortunately one of very few� when� instead of adapting existing
languages to work with partial information� a new language was designed speci�cally for the
purpose of working with partial information� This is the approach we advocate throughout this
thesis and we shall see its many features later�

�Called in ����� ���� information systems� which is in direct con	ict with the informations systems used in
programming semantics �
���

� CHAPTER �� THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

Open worlds and closed worlds

It was observed by Reiter ����� that certain assumptions on the nature of partiality are to be
made if we want to provide a notion of correctness of query evaluation algorithm� To explain
those assumptions� consider the following relation�

Name Salary Room

ni ni ��

Mary �K ni

Once all or some information about missing values
ni�s� is known� we have a relation that
represents better knowledge than the one above� However� there is a question what values are
allowed in the new relation

One possible interpretation� called the closed world assumption or CWA� states that we can only
improve our knowledge about records that are already stored but can not invent new ones� For
example� it is legal to add any record v� v� �� which improves upon the �rst record in

the relation� It is also possible to add a record Mary �K ��� which is better knowledge
than that represented by the second record in a database� However� it is not possible to add
a record Ann ni ��� as it does not improve any of the records already in the database�
Indeed� it can not be seen as an improvement of the knowledge represented by the �rst record

since the o�ce number is ��� and not ���� nor the second one
as the name is Ann� not Mary��
That is� the database is closed for adding new records�

Contrary to that� the open world assumption or OWA allows adding records to database as well
as improving already existing records� Under the open world assumption� adding any record
considered above to the database is perfectly legal� That is� the database is open for adding new
records�

There is another interpretation of the CWA and the OWA� Facts stored in a database are
presumed to be positive facts� Then� under the CWA� we assume that if a fact is not represented
in the database� then it is not true� i�e� we have a perfect picture of the world and nothing can
be added to it� Under the OWA� this is not the case and not having a fact stored in a database
does not tell us whether it should or should not be there�

To summarize� Figure ��� shows how to replace missing values according to both assumptions�

Reiter ����� de�ned the concept of a CWA answer to a query� He proved that minimal CWA
answers contain precisely one tuple� that CWA query evaluation distributes over intersection and
union� and that for a database that is consistent with the family of negations of facts stored in it�
the CWA evaluation algorithm gives exactly the same result as the OWA evaluation algorithm�

���� NULL VALUES

Name Salary Room

John ��K ��

Ann ni ��

Mary �K ���

�
�
�
�
�

CWA
�

Name Salary Room

ni ni ��

Mary �K ni �
�
�
�
�

OWA
R

Name Salary Room

John ��K ��

Ann ��K ���

Mary �K ���

Figure ���� Illustration to CWA and OWA

Computational complexity of problems related to CWA or OWA was studied by Vardi ����� He
assumed a very simple model of partiality� namely values of a subset U of a set of attributes
V are missing� Then a V 	relation R� OWA	represents a U 	relation R if R
 �U
R

��� and it
CWA	represents R if R � �U
R

��� Vardi considered certain problems related to dependency
satisfaction and inference for both representations� He obtained a number of results of the
following �avor� if a problem for OWA representations lies in a complexity class C� then the
same problem for CWA representations lies in the corresponding nondeterministic complexity
classNC� However� the situation is reverse for evaluation of boolean queries in all representations
satisfying a given set of dependencies� Then for CWA the problem is PSPACE	complete whereas
it is co	r�e�	complete for OWA representations�

����� Types of nulls

So far we have considered only one null value� ni� following Zaniolo ������ There are other kinds
of nulls in the literature�

Existing unknown values� In all examples above� we have not said anything about existence
of a value that can be substituted for a null� For example� in the CWA completion of the database
in �gure ���� Ann has no salary� There could be several reasons for that� First� we may simply
lack information about Ann�s salary for some reason� For example� she was hired but is not on
the payroll yet� Secondly� it could be the case she does not have a salary� For example� she

� CHAPTER �� THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

might be working voluntarily� without getting paid�

In order to represent the �rst case� when a value does exist but is unknown at present time�
existing unknown null values have been introduced� These have been studied most� see Codd
���� ���� Biskup ����� Maier ������ Grahne ���� etc� We shall often use un to denote such nulls�

Nonexisting nulls� As we have just mentioned� one of the reasons for a value to be missing is
that it does not exist� Such values are denoted by ne� they were studied by Lerat and Lipski �����
The main reson that such values appear in a database is that some attributes are not always
applicable� For example� not every employee may have a telephone� the �children� attribute
is certainly not applicable to all people� nor are �maiden name� and even more so �spouse�s
business phone number��

There is some confusion about considering ne as a null� Indeed� ne represents perfect knowledge
in exactly the same way as any usual value� Knowing that Ann�s maiden name is Smyth is as
good as knowing she is not married and does not have one� if our concern is partiality of
information� We shall see shortly that the intuition that ne �is not really a null value� will be
con�rmed when we consider ordering on those values in more detail�

No information nulls� These are nulls ni we have considered in the previous section� Having
ni in a database simply means that there is no knowledge whatsoever about the situation�

Having introduced these three kinds of nulls� let us reexamine the �rst example of a relation
with incomplete information given in this thesis� If we use nulls as follows�

Name Salary Room Telephone

John ��K �� ne

Ann �K un ni

Mary un ��� x	����

We certainly have better knowledge than we had using only the ni null value� First� we know that
John does not have a phone� moreover� we also obtained the knowledge that Mary and Ann do
have some salary but at this time it is unknown what their salaries are� Hence� information	wise�
ni is the worst situation possible� while having either a value or ne gives us complete knowledge
about the situation� un is an intermediate situation� it is better than ni but certainly worse
than any value� and it is incomparable with ne�

Now� applying the idea of representing partiality by means of an order on values� we obtain the
ordering for the three kinds of nulls we studied in this section� see �gure ���� Perfect knowledge�
i�e� knowledge that can not be improved� is represented by elements which are not dominated
by any other elements in this poset� In particular� ne is such�

���� NULL VALUES �

�
�

�

�
�
�
�

�
�

�
�
�

��
��

��
���

ni

ne

un

v� v� v�
� � �

vn
� � �

Figure ���� Order on null values

Open null values� Another kind of null values was introduced by Gottlob and Zicari ���� in
the context of closed world databases� Assume we have a database with two kinds of null values�
ne and un� and further assume the closed world assumption� Now� assume that we would like
to relax this closed world assumption for a given attribute� but retain it for the others� The idea
of Gottlob and Zicari was to introduce a new null� called open� which then will mean that the
corresponding attribute is �open�� i�e� it may have arbitrary values and not only those consistent
with the information already stored in a database� We shall return to open null values later
when we study semantics of partiality�

Generic nulls� In many cases we are not concerned with the meaning of null values and simply
want to distinguish nulls from non	nulls� Then we use generic nulls� which will be denoted by
�� Generic nulls are often used in the literature if general properties of partial information are
investigated� see Buneman et al� ����� Levene and Loizou �����

����� Semantics and query evaluation

Assume we are given a relational database with nulls and a query written in the relational
algebra� How does one evaluate that query on an incomplete relation

This is the question that has been studied most in the theory of partial information� A num	
ber of approaches resulted in two landmark papers� Imielinski and Lipski ��� and Abiteboul�
Kanellakis and Grahne ��� which are� in my opinion� the most profound contributions into the
theory of partial information in relational databases��

An incomplete database can represent many complete ones� which are often called possible
worlds� Let R be a relation� and let ��R�� be the semantics of R� that is� the set of all possible
worlds that R can denote� We explain later how ����� can be de�ned� For now it is only important
to understand that ��R�� is a family of relations� Let Q be a relational algebra query� We can

�Some of the results from ��� can also be found in the book Grahne �
���

�� CHAPTER �� THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

de�ne Q on ��R�� by

Q
��R��� � fQ
R�� j R� � ��R��g
The question arises� how can we de�ne the action of Q on the incomplete relation R The most
natural requirement for this action of Q on R� which will be denoted by Q�
R�� is to represent
precisely Q
��R���� That is� ��Q�
R��� � Q
��R���� Using terminology of Grahne ����� we call a
pair h������!i a strong representation system if ��Q�
R��� � Q
��R��� holds for any query Q which is
written in a sublanguage of the relational algebra that uses only operations from !�

As it was noted in Imielinski and Lipski ���� the structure of ��R�� is too irregular to allow h������!i
be a strong representation system for most !� Therefore� they suggested that one has to settle
for something less� Their idea was to look at the set of certain answers to Q which is de�ned as

Qc
R� �
�

Q
��R��� �
�
fQ
R�� j R� � ��R��g

Now we say that h������!i is a weak representation system if for any query Q it is possible to �nd
a query Q� which represents the certain answer to Q� that is��

��Q�
R��� � Qc
R�

It was observed in Grahne ���� that the concepts of strong and weak representation systems
coincide when ! includes all operations of the relational algebra�

The next step is to de�ne some classes of relations with null values and the semantic function �����
for them� Codd tables are de�ned as relations in which variables can occur as well as constants
and every variable occurs at most once� Variables represent null values� and each variable can
be substituted by any value� That is� in terms of orderings� the basic domain of values that can
occur in Codd tables is shown below� It is a complete bipartite graph between variables xi�s and
constants cj �s� In other words� every variable xi is less informative than every constant cj and
consequently can be replaced by it�

�
�
�
�
�
�

�
�
�
�
�
�Q

Q
Q
Q
Q
Q
Q
QQ�

�
�
�
�
�

�
�
�
�
�
�A

A
A
A
A
A HH

HH
HH

HH
HH

HHQQ
Q
Q
Q
Q
Q
QQ

�
�
�
�
�
� �

�
�

�
�

�A
A
A
A
A
A �

�
�

�
�

��
�

�
�

�
�

A
A
A
A
A
A�

�
�
�
�
�
�
���
�

�
�

�
�

A
A
A
A
A
A��

��
��

��
��

����
�

�
�

�
�

�� �
�
�
�
�
�

x� x� x� x� x�

c� c� c� c� c�
� � �

� � �

An inequality table is obtained from a Codd table by adding a �nite number of inequalities
between variables and between variables and constants� Equality tables are obtained from Codd�s
tables by declaring some variables equal� That is� the condition that every variable may occur
at most once is removed� A combination of equality and inequality tables� that is� an equality

���� NULL VALUES ��

table with a set of inequalities attached to it� is called a global table� Finally� a conditioned
table is a global table with local conditions attached to each record� Those local conditions are
conjunctions of equalities and inequalities� Below we give an example of each kind of tables�

� x

y �

v z
Codd table

� x

y �

x y
Equality table

x �� � v �� z

� x

y �

v z
Inequality table

x �� � v �� �

� x

x �

v v
Global table

x �� � v �� �

� x z � z

x � v � �

v v v �� x
Conditioned table

To de�ne the semantic function ������ we �st de�ne valuations as partial maps from variables
to constants� Given a valuation �� it can be extended to tables in a natural way
that is� by
requiring that all conditions hold under the valuation ��� If a valuation does not satisfy the
condition associated with a given record� it is not de�ned on that record� Similarly� if the global
condition is not satis�ed� then the valuation is not de�ned on a table with that global condition�
That is� valuations extended to relations remain partial functions�

For a given table R� let VAR
R� be the set of all variables that occur in R� For a given valuation
�� let dom
�� be the set of variables on which � is de�ned� Now we can de�ne ����� under both
closed and open world assumptions�

��R��CWA � fR� j �� � VAR
R�
 dom
�� � �
R� � R�g
��R��OWA � fR� j ���R�� � VAR
R�
 dom
�� � �
R� � R�� � R��
 R�g

That is� the main di�erence between CWA and OWA interpretations is that the latter allows
adding any number of records that do not contain variables�

The main results of Imielinski and Lispki ��� are the following�

�� If ! contains all operations of the relational algebra� then h�����OWA �!i is a strong repre	
sentation system for tables without the global condition�

�� If ! contains all operations of the relational algebra except di�erence and selection with
negations present in the conditions� then h�����OWA �!i is a weak representation system for
equality tables�

�� If ! consists of projection and selection only� then h�����OWA�!i is not a weak representation
system for equality tables�

�� If ! consists of projection and selection only� then h�����OWA�!i is a weak representation
system for Codd tables�

�� CHAPTER �� THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

�� If ! consists of projection� selection and union� then h�����OWA�!i is not a weak represen	
tation system for Codd tables�

�� If ! consists of projection and join� then h�����OWA �!i is not a weak representation system
for Codd tables�

� If ! does not contain di�erence� then h�����CWA�!i is a weak representation system i� so is
h�����OWA�!i�

Abiteboul� Kanellakis and Grahne ��� studied complexity of certain problems related to the
CWA semantics of the tables� Two most important problems they studied are membership and
containment�

The membership problem has a parameter Q which is a query that can be evaluated in polyno	
mial time� It has two inputs� a relation R� without incomplete information and a conditioned
table R� The question is whether R� � ��R��CWA�

The containment problem two parameters� Q� and Q�� which are queries that can be evaluated
in polynomial time� It has two conditioned tables R and R� as an input� The question is whether
Q�
��R��CWA�
 Q�
��R

���CWA��

It was shown that the general containment problem lies in "p
� and the general membership

problem lies in NP � In the case when the parameter of the membership problem is the identity
query id� the membership problem becomes polynomial for Codd tables but is NP	complete for
equation and inequation tables� When both parameters of the containment problem are id� the
problem is in NP for global tables and equality tables� and even in PTIME when one input is a
global table and the other is a Codd table� However� it is "p

�	complete if one input is an equality
table and the other is a conditioned table� or if one input is an inequality table and the other is
a Codd table� More results of this �avor can be found in ����

Query evaluation algorithms for databases with null values have also been studied by Reiter
������ He used his earlier framework of representing databases as �rst	order theories ����� and
showed how to incorporate existing but unknown nulls into it� In that setting� he demonstrated
a sound query evaluation algorithm which is also complete under certain restrictions�

����� Extension to complex objects

All examples considered so far use the standard �at relational model� In the past few years many
attempts have been made to go beyond that model� Most of them focus on nested relations or
complex objects� We give a brief description of those and then discuss the problem of adding
partial information into the complex object data model� The reader interested in development of
the theory of nested relations per se should consult Schek and Scholl ������ Thomas and Fischer
����� Paredaens et al� ����� and the collection of articles ����

���� NULL VALUES ��

The basic idea is that attributes may be relation	valued themselves� For example� in the following
simple database the attribute Sections is relation	valued as any course may have a number of
sections with di�erent teaching assistants� Attributes Course and Instructor are single	valued�
their values are like CS� or Brown�

Course Instructor Sections

CS� Smith

Section# TA

��� Ann

��� John

CS� Brown

Section# TA

��� Michael

��� Jim

All operations of the relational algebra can be used with nested relations as well� However�
for nested relations we need more than just relational algebra as it does not allow us to go
deep inside the relations� Two operations for doing so have been proposed � nest and unnest�
The unnest operation unnests values of some attributes� For example� unnesting the Sections
attribute in the example above produces the usual
�at� relation

Course Instructor Section# TA

CS� Smith ��� Ann

CS� Smith ��� John

CS� Brown ��� Michael

CS� Brown ��� Jim

Nesting over a group of attributes collects tuples with equal projections onto those attributes into
new relations� thus creating an additional level of nesting� For example� nesting over Section#
and TA in the above �at relation will give us the original nested relation�

The operations of nesting and unnesting are not mutually inverse� and doing unnest followed by
nest we may lose some information� In the following example� we start with a nested relation
and unnest the TA attribute and then nest over that attribute� The result� however� is di�erent
from the original relation�

�� CHAPTER �� THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

Course TA

CS�

TA Name

Mary

John

CS�
TA Name

Ann

CS�
TA Name

Jim

UnnestTA�

Course TA Name

CS� Mary

CS� John

CS� Ann

CS� Jim

NestTA Name�

Course TA

CS�

TA Name

Mary

John

Ann

CS�
TA Name

Jim

There are several algebras for nested relations based on adding nest and unnest to the �at
relational algebra� see Schek and Scholl ����� and Thomas and Fischer ����� Colby ���� proposed
an algebra in which operations can be de�ned recursively to go arbitrarily deep into nested
relations� and showed that such an algebra is equivalent to the standard algebras of Schek
and Scholl and Thomas and Fischer� Therefore� we can speak of the nested relational algebra�
meaning any of these�

There are two main problems with existing algebras for nested relations� One is using nest and
unnest in majority of queries� Every nest or unnest requires restructuring of data� which makes
those algebras ine�ective� Second problem is very cumbersome syntax of the nested relational
algebras� Indeed� to ask a query about atomic values in a complex object of nesting depth two�
two unnest operations must be performed� then a relational algebra query must be asked which
may or may not be followed by some nest operations�

Therefore� if we aim at the design of a language capable of working with nested relations� we
should �nd a better language to start with� Fortunately� new languages for complex objects
have been invented recently which do not have many de�ciencies of the standard languages� see
Buneman et al� ����� Buneman� Tannen and Wong ���� and Libkin and Wong ������ We present
these languages in chapter ��

In many applications nested relations are restricted to those in partitioned normal form� see
Abiteboul and Bidoit ���� Roth� Korth and Silberschatz ����� and Van Gucht and Fischer ������
In such relations� the single	valued attributes form a key� and each nested subrelation is in the
partitioned normal form itself� The relation shown in the beginning of this subsection is such�
An example of a non	partitioned normal form relation is given below� It can not be in the
partitioned normal form because it does not have any single	valued attributes�

���� NULL VALUES ��

Employee Salary History

Name Department

Ann CS

Mary Math

Year Amount

���� ��K

���� ��K

Name Department

Jim Physics

John CS

Year Amount

���� ��K

���� ��K

Null values were introduced into partitioned normal form complex objects in Roth� Korth and
Silberschatz ������ They considered three kinds of null values� ni� un and ne� They de�ned
an algebra on such complex objects with null values and claimed that the algebra was a precise
generalization of the nested relational algebra restricted to partitioned normal form complex
objects� By �precise� they meant that queries commute with unnest in the following sense� if a
query Q sends a nested relation R into R�� then unnesting R over zero	order attributes and then
performing Q on the result is the same as unnesting R� over zero	order attributes� However�
it was shown by Levene and Loizou ���� that projection in the algebra of Roth� Korth and
Silberschatz is not a precise generalization of the standard projection�

To remedy this� Levene and Loizou introduced the notion of information	wise equivalent nested
relations in ����� This notion is based on the idea of ordering� They started with one generic null
and the ordering � � v for any value v and extended it component	wise to tuples� To extend
it to sets� they used the ordering v shown in the section on orderings and null values� Then�
if R� v R� and R� v R�� they said that R� and R� are information	wise equivalent� Under
this notion of equivalence� it is possible to generalize the nested relational algebra in the precise
way� that is� in the way that agrees with respective operations on complete relations up to the
information	wise equivalence�

One major problem with the approach of Levene and Loizou ���� is that they used the standard
nested relational algebra and inherited all of its problems and drawbacks� In particular� the
description of their notion of null	extended join operator is almost one	page long� and many
other operations are rather hard to grasp�

Finishing this section� let us mention brie�y some other directions of research on null values
that we do not address in the thesis� Updates in relational databases with null values have been
studied in Abiteboul and Grahne ��� and Grahne ����� Functional dependencies in relational
databases with existing unknown nulls were studied in Vassiliou ���� and Atzeni and Morfuni
���� Dependencies in incomplete databases speci�ed by Horn clauses are one of the main subjects
of Grahne ����� Dependencies in relations with existing unknown nulls are also studied in the
context of the weak instance model� see Honeyman ���� A generalization of the weak instance
model that incorporates nonexisting nulls was given by Atzeni and De Bernardis ����� More
information on dependencies in incomplete relational databases can be found in Thalheim ������

�� CHAPTER �� THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

Dependencies in nested relations with generic nulls are the main topic of Levene and Loizou
����

��� Disjunctive information and or�sets

����� De�nition and examples of or�sets

As we mentioned before� the idea of using disjunctive information as a means to express partiality
was already present in Lipski ����� ����� It was not until almost ten years later that the �rst
attempt was made to introduce disjunctions explicitly into the standard relational model�

Consider the following example� Suppose we have two databases� D� and D� shown below�

D� �

Name SS# Age

John �������� ��

Mary �������� ��

D� �

Name SS# Age

John �������� �

Ann �������� ��

Assume that we merge D� and D�� It is clear that records Mary �������� �� and

Ann �������� �� should be in the resulting database� But what is the value of the
Age �eld for John Since SS# identi�es people uniquely� � we have con�icting information com	
ing from two databases� and this con�ict must be recorded in the newly created database until
one �nds out if John is �� or � years of age�

Therefore� both ages � �� and � � are stored in the new database� However� the semantics of
the Age attribute
which is now set	valued� is di�erent from the usual interpretation of sets in
databases� Rather than suggesting that John is both �� and � years old� it says that John is
�� or ��

Since such disjunctive sets� also called or�sets� have semantics that di�ers from the ordinary
sets� we shall use a special notation hi for them� That is� the result of merging D� and D� is

D �

Name SS# Age

John �������� h��� �i
Mary �������� ��

Ann �������� ��

�Or at least is supposed to�

���� DISJUNCTIVE INFORMATION AND OR�SETS �

Again� we emphasize that the or	set h��� �i denotes one of its elements� So semantically it is
either �� or ��

It is interesting to note that one practical implementation of or	sets was done in early ��s in
Hungary� as I was told by J�anos Demetrovics ����� Their primary motivation was police database�
and their observations showed that di�erent witnesses of the same event often contradicted each
other� hence the need for or	sets� For example� one witness could say that a car used by robbers
was green� another saw a red car and the third witness could have seen a car that was both red
and green� A data model for such a database should allow all three statements to be stored in an
appropriate way� Therefore� using only ordinary sets was no longer su�cient� and a rudimentary
model of disjunctive information was used in that project�

In early papers dealing with objects that may include or	sets
Imielinski and Vadaparty �����
Liu and Sinderraman ������ Ola ������ a very limited model was considered� In fact� in those
papers or	sets could only appear as entries in the usual relations� as it is in the example above�
In Liu and Sinderraman ����� and Ola ����� extensions of the traditional relational algebra
were studied� As we mentioned before� this is not the approach we advocate here� Rather� we
prefer Lipski�s approach ����� that new languages should be designed for new kinds of partiality�
That we should follow Lipski�s approach is further con�rmed by many di�culties encountered
in the above mentioned papers� For example� to obtain the correctness result� in Ola ����� some
rather ad	hoc types of tuples are introduced and representation systems are de�ned via those
types� Contrary to ����� ���� which used extensions of the relational algebra� in Imielinski and
Vadaparty ���� a logical language was used� Another logical language for or	sets was proposed
in Sakai ����� but it was not feasible for many applications as it had an a priori upper bound
on the number of elements in or	sets�

In subsequent papers� such as Imielinski� Naqvi and Vadaparty ���� ���� Rounds ����� and Libkin
and Wong ����� more general data models were considered� In particular� it was possible to freely
combine sets� records and or	sets�

As we have said above� an or	set h�� �� �i denotes a single integer� of which we only know that it
is either � or � or � but do not know which one� That is� or	sets are used to represent a special
case of partial information� A singleton or	set corresponds to precise information� that is� h�i
denotes the integer �� An empty or	set can be interpreted as inconsistency as its meaning is
�choose one out of nothing��

In ����� Imiellinski� Naqvi and Vadaparty designed a data model and a logical query language for
or	objects� following the approach of Abiteboul and Kanellakis ��� Consequently� the semantics
and query language are rather involved� They also obtained some complexity results for their
logical language� In particular� they were able to demonstrate co�NP	completeness result� and
they were successful in identifying certain restricted tractable fragments that are useful in real	
life applications�

A similar notion of disjunctive deductive databases was also studied in Minker ������ However�

�� CHAPTER �� THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

it is important to make a clear distinction between or	sets and disjunctive deductive databases

cf� ������ In the latter arbitrary disjunctions are allowed� In contrast to that� we regard or	sets
as a type constructor� Hence� or	sets can appear only in certain places speci�ed by a database
schema� Furthermore� in the �eld of deductive databases� a database is considered as a theory�
whereas representation of objects involving or	sets is purely structural� Finally� or	sets are
distinguished from other forms of disjunctive information by having two distinct interpretation�
which are described in the following subsection�

����� Structural and conceptual queries

As we have just said� or	sets are distinguished from other kinds of disjunctive information by
having two distinct interpretation� An or	set can either be treated at the structural level or at the
conceptual level� The structural level concerns the precise way in which an or	set is constructed�
The conceptual level concerns the meaning of or	sets� It sees an or	set as representing an object
which is equal to a member of the or	set� For example� the or	set h�� �� �i is structurally a
collection of numbers� however it is conceptually a number that is either �� �� or ��

If an or	set is sitting inside another structure� such as a relation� it is not immediately clear what
the whole object is conceptually� Consider our example of the database D that was obtained by
merging D� and D�� Its representation that has been shown is on the structural level� To see
what its meaning is� observe that John�s age is
conceptually� either �� or �� Therefore� the
whole D is conceptually either

Name SS# Age

John �������� ��

Mary �������� ��

Ann �������� ��

or

Name SS# Age

John �������� �

Mary �������� ��

Ann �������� ��

The two views of or	sets are complementary� Consider a design template used by an engineer�
The template may indicate that component A can be built by either module B or module C�
Such a template� as explained in ����� is structurally a complex object whose component A is
the or	set containing B and C� Moreover� A� B and C can in turn have the similar structure� A
designer employing such a template should be allowed to query the structure of the template�
for example� by asking what are the choices for component A� On the other hand� the designer
should also be allowed to query about possible completed designs� for example� by asking if there
is a cheap complete design� or if all completed designs have do not exceed certain cost is some of
the choices have been made� In the latter case� as the designer is still in the process of creating
a design� the �complete design� is purely conceptual� Both views of or	sets are important and
should be supported�

���� APPROXIMATIONS ��

The structural interpretation of or	sets is quite clear� However� the conceptual interpretation
requires further exposition� For example� to go to the conceptual level from the structural level�
we need operators prescribing the interaction of or	sets� records and ordinary sets� Several of
them can be considered� For example� taking or	set brackets outside of records or sets by listing
explicitly all possible choices� as we just did with the database D� Such operators provide an
idea of what to include in a structural query language� But what kind of operators should be
provided in a conceptual query language Should there be an operator for testing whether two
objects are conceptually equivalent Should there be an operator for testing whether one object
is amongst the objects that a second object can conceptually be Fortunately� it is not necessary
to make such chaotic �enhancements�� We will show later that the operators informally described
above are su�cient to construct a normal form
or� conceptual representation� of every object
unambiguously�

��� Approximations

In this we section consider another kind of partiality which often arises when one tries to query
independent databases that do not necessarily agree with each other� As it was observed by
many� an answer to a query against a number of independent databases can at best be approx	
imated� That is� it is unrealistic to expect a precise answer�

In this section we start with an example that illustrates the problems arising in querying in	
dependent databases� We then proceed to introduce a number of models that are used for
approximated answers� There is a tradition to give food names to those� It started when Bune	
man� Davidson and Watters ���� ��� introduced sandwiches� which consist of lower and upper
approximations and denote precisely what is in between� hence the name� Other constructions
were called mixes
Gunter ������ snacks
Ngair ������ Puhlmann ����� although they were studied
much earlier by pure mathematicians� P$lonka ����� ����� Balbes ������ scones� and salads
Libkin
������� The generic name for these constructions is edible powerdomains
Libkin ������� It is
probably not a very good naming convention� as names do not re�ect the structure of speci�c
approximations� However� we follow the tradition and later introduce a new systematic notation
for all the constructs�

����� Example� Querying independent databases

The general problem of querying independent databases is the following� given a set of databases
D�� � � � � Dn and a query q that can not be answered by using information from one of Di�s� ap	
proximate the answer to q by using information from all D�� � � � � Dn� These problems have been

�This is not a good choice of name suggested by Jung and then used by Puhlmann ����� as it is in con	ict with
the notion of a scone used in category theory and recently in the categorical models of polymorphic languages�
see Mitchell and Scedrov ������

�� CHAPTER �� THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

investigated theoretically� and they gave rise to a number of constructions called approximations�
Intuitively� given a query q� the databases are divided into two groups� one giving the upper
approximation to the answer to q and the other giving the lower approximations�

Consider the following problem� Suppose the university database has two relations� Employees
and CS�
for teaching the course CS���

Employees

Name Salary

John ��K

Ann �K

Mary ��K

Michael ��K

CS�

Name Room

John ��

Michael ���

Assume that our query asks to compute the set TA of teaching assistants� We further assume
that only TAs can teach CS� and every TA is a university employee� Also� for simplicity� we make
an assumption that the Name �eld is a key� Of course this may not be the case� and solutions we
consider in this thesis work if no assumptions about keys were made� This assumption� however�
makes the examples easier to understand�

To be able to reason about entries in di�erent tables at the same time� we assume that all tables
have the same attributes by putting nulls in the missing columns�

Employees

Name Salary Room

John ��K �
Ann �K �
Mary ��K �

Michael ��K �

CS�

Name Salary Room

John � ��

Michael � ���

Let us brie�y outline how the TA query can be answered� We know that every person in CS� is
a TA� therefore� CS� gives us the certain part of the answer� Moreover� every TA is an employee�
hence �nding people in the Employees relation who are not represented in the CS� relation gives
us the possible part of the answer to the TA query� Notice that it is possible to �nd possible
TAs because Name is a key� If it were not� we would have to use or	sets�

Of course� in the real life applications� the situation is not always that close to ideal� Let us just
brie�y list the problems one should have in mind while querying independent databases�

 Databases could be inconsistent� Then anomalies must be removed before a query could
be evaluated� There are� however� a number of subproblems�

���� APPROXIMATIONS ��

�� Which database to believe Each one can be updated�

�� If in the example above we believe Employees and the Name �eld is not a key� assume
we have one John in Employees and two Johns in CS�� Then one of the Johns in CS�
must be deleted� But which one

 Even if databases are consistent� but the Name �eld is not a key� there is no way to evaluate
the TA query unambiguously� For example� there could be two Johns with di�erent salaries
in Employees� but only one in CS�� Assume a query �give the list of sure TAs� was asked�
Then what is John�s salary

Notice that these problems have not been addressed in Buneman� Davidson and Watters ���� ����
In the thesis we shall show how to solve these problems using various tools for programming
with approximations and or	sets�

����� Simple approximations

A pair of relations CS� and Employees is called a sandwich
for TA�� The Employees relation is
an upper bound� every TA is an Employee� The CS� relation is a lower bound� every entry in
CS� represents a TA� Notice that in our example records in CS� and Employees are consistent�
for every record CS�� there is a record in Employees consistent with it� That is� they are joinable
and their join can be de�ned� For example�

John ��K � 	 John � �� � John ��K ��

Hence� a sandwich
for a query Q� is a pair of relations R� and R� such that R� is an upper
bound or an upper approximation to Q� R� is a lower bound or a lower approximation to Q�
and R� and R� are consistent�

Assume a pair of consistent relations R� and R� is given� What is the semantics of the sandwich

R�� R�� To emphasize that R� is an upper approximation� we denote it by U from now on�
Similarly� we denote the lower approximation R� by L�

To answer the question about semantics of
U� L� � at this stage� only informally � we appeal to
the idea of representing partial objects as elements of ordered sets� In a graphical representation�
ordered sets will be shown as triangles standing on one of their vertices� That vertex represents
the minimal� or bottom element�� The side opposite to that vertex represents maximal ele	
ments� In our interpretation of the order as �being less partial�� maximal elements correspond
to complete descriptions� i�e� those that do not have any partial information at all�

�We almost always consider ordered sets with minimal elements�

�� CHAPTER �� THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

�
�

�
�

�
�

�
�

�
�
� 	

	
	

	
	

	
	

	
	

	
	

Z

Z
Z

ZZJ
J
J
J
J
JJ �

�
�
�
�
��

B
B
BB

J
J
JJ

A
A
A
A
A
AA

U

L

Figure ���� Sandwich
U� L� and its semantics

The graphical representation of a sandwich
U� L� is shown in �gure ���� Trapezoids standing
on U and L represent graphically elements of the whole space which are bigger than an element
of U or L respectively� The semantics of a sandwich is a family of sets such as the one denoted
by three bullets in the picture� There are two properties of such sets X that include them into
the semantic space of a sandwich�

�� For every element l � L� there is an element x � X such that l � x�

�� All X lies in the trapezoid standing on U � That is� for every x � X � there exists u � U
such that u � x�

Observe that in our particular example depicted in the picture� L is assumed to have two
elements� Since both of them are under elements of the three	bullet set� which in turn are all
above some elements of U �
U� L� satis�es the consistency condition� i�e� it is a sandwich�

Now� assume that the Name �eld is a key� Then we can replace certain nulls in relations CS� and
Employees by corresponding values� taken from the other relation� The reason is that certain
tuples are joinable� and corresponding joins can be taken to infer missing values� One such join
was shown in the beginning of this section� Since Name is a key� we know that there is only one
John and we assume that the same John is represented by both databases� Hence we infer that
he is in the o�ce �� and his salary is ��K� Similarly for Michael we infer that he is in the o�ce
��� and his salary is ��K� Thus� we can replace Employees and CS� by Employees� and CS�� as
shown below�

���� APPROXIMATIONS ��

J
J
J
J
J
J
J
J
J

A
A
A
A
A
A

�
�
�
�
�
�

A
A
A

U

L

Figure ���� Mix
U� L� and its semantics

Employees�

Name Salary Room

John ��K ��

Ann �K �
Mary ��K �

Michael ��K ���

CS��

Name Salary Room

John ��K ��

Michael ��K ���

We can regard CS�� and Employees� as another approximation for TA� But this one satis�es
a much stronger consistency condition than sandwiches� every record in CS�� is also found in
Employees�� We call a pair satisfying this consistency condition a mix� An example of a mix is
shown in �gure ����

Mixes were introduced by Gunter ���� as an alternative approximation construct� whose prop	
erties are generally easier to study than properties of sandwiches because of its consistency
condition in which no joins are involved� We shall discuss this phenomenon in details later�

Semantics of mixes is de�ned in exactly the same way as semantics of sandwiches� we look at
sets that represent all elements of the lower approximation and whose elements are representable
by the upper approximation� In Figure ���� a set shown by four bullets is such�

����� Approximating by many relations

Let us consider a more complicated situation� Assume now that CS� has two sections� CS��
and CS��� and each section requires a teaching assistant� Assume that we have a pool of
prospective TAs for each section that includes those graduate students who volunteered to be
TAs for that section� Now suppose that the selection of TAs has been made� and those who
have been selected were entered in the database of employees� while the database of prospective
TAs remained unchanged� This situation can be represented by an example below�

�� CHAPTER �� THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

S
S
S
S
S
S
S
S
S
S
SS�

�
�
�
�
�
�
�
�
�
��

B
B
B
BB

A
A
A
A
A
A

�
�
�
�
�
�

A
A
A

�
�
�

L�

U

L�

Figure ���� Scone
U� fL�� L�g� and its semantics

Employees

Name Salary Room

John ��K �
Ann �K �
Mary ��K �

Michael ��K �

Name Salary Room

John � ��

Jim � �
CS��

Name Salary Room

Michael � ���

Helen � ���

CS��

Since all the selections have been made� at least one of prospective TAs for each section is
now a TA and therefore there is a record in Employees for him or her� That is� in each of the
subrelations of CS�� at least one entry is consistent with the Employees relation�

Let us summarize the main di�erence between this construction and sandwiches or mixes con	
sidered in the previous section�

�� The lower approximation is no longer a single relation but a family of relations�

�� The consistency condition does not postulate that all elements in the lower approximation
are consistent with the upper approximation� but rather that there exists and element in
each of the subrelations of the lower approximation that is consistent with the upper�

Such approximations are called scones� We shall denote the lower approximation by L and its
components by L�� L� etc� The graphical representation of a scone with the two	element L is
shown in Figure ����

The semantics of a scone is a family of sets X that satisfy the following two properties�

���� APPROXIMATIONS ��

�� For every set L � L� there exist l � L and x � X such that l � x�

�� All X lies in the trapezoid standing on U � That is� for every x � X � there exists u � U

such that u � x�

For example� in Figure ��� the set denoted by three bullets is such� Observe that the second
property is exactly the same for scones as it is for sandwiches and mixes� but the �rst one is
di�erent and it re�ects the di�erences in the structure of scones and sandwiches�

Now let us look at the data represented by CS�� and CS��� Assume again that the Name �eld is
a key� Observe that some preprocessing can be done before any queries are asked� In particular�
there is no entry for Jim in the Employees relation� Hence� Jim could not have been chosen as a
possible TA for a section of CS�� Similarly� Helen can be removed from CS��� Having removed
Jim and Helen from CS�� and CS��� we can now infer some of the null �elds as we did before
in order to obtain mixes from scones� Doing so in our example yields�

Employees

Name Salary Room

John ��K ��

Ann �K �
Mary ��K �

Michael ��K ���

Name Salary Room

John ��K ��
CS��

Name Salary Room

Michael ��K ���
CS��

We now see that the condition expressing consistency of this approximation is much stronger
than the condition we used for scones� In fact� all elements in CS�� and CS�� are elements of
Employees� In other words� taking into account that some entries can be nulls� we see that the
new consistency condition says that every element of every set in the lower approximation is
bigger than some element of the upper approximation� Such constructions are called snacks�
see Ngair ������ Puhlmann ������ The graphical representation of a snack with two	element L is
given in Figure ����

The semantics of snacks is de�ned precisely in the same way as the semantics of scones� For exam	
ple� in Figure ��� the four	element set denoted by the bullets is in the semantics of
U� fL�� L�g��
Thus� it is only the consistency condition that makes scones di�erent from snacks� The impor	
tance of this condition will be studied later in the thesis�

Finally� what if we have arbitrary data coming from two independent databases that may not
be consistent
as was discussed in the beginning of this section�� For instance� we saw that
there may be anomalies in the data that ruin various consistency conditions� Then we need a
model that would not require any consistency condition at all� Such a model was introduced
and studied by Libkin ������ Since it is in essence �all others put together�� it is called salad�

�� CHAPTER �� THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

S
S
S
S
S
S
S
S
S
S
SS�

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�

C
C
C
C
C
C

�
�
�

J
J
J
JJ

U

L�

L�

Figure ���� Snack
U� fL�� L�g� and its semantics

At this point we give a historical remark� Snacks were introduced long before scones� In fact�
snacks were studied by Ngair in ����� see ������ A few initial results on scones were obtained by
Jung and Puhlmann only in late ����� The reason it happened
despite the fact that scones may
appear more natural as a model of approximation� as we have seen� is that the development of
models for approximating partial data has been done in a rather ad	hoc manner� new consistency
conditions were introduced and studied� Since snacks appear simpler than scones� they were
invented �rst�

Later in the thesis we shall present a systematic approach that lists all possible consistency
conditions in conjunction with various data structures� thus giving us all possible approximation
constructs� We shall characterize each of them mathematically� and then develop a unifying
approach that encompasses all of them�

��� Toward a general theory of partial information

As we have seen� there are a number of models for partial information in the database literature�
Some of them are quite ad	hoc� based on speci�c needs arising in particular applications� We have
covered three main sources of partiality� null values� disjunctive information and approximations�
There are no solid theoretical foundations for any of these� nor are there any results that show
how they are connected� Moreover� most models of partiality are developed only for the �at
relational model� and virtually nothing is known for more complicated database models� This
situation in the �eld of partial information was summarized by Kanellakis in his recent survey
�����

�� � � for the representation and querying of incomplete information databases� there
are many partial solutions but no satisfactory full answer� It seems that the further
away we move from the relational data model� the fewer analytical and algebraic

���� TOWARD A GENERAL THEORY OF PARTIAL INFORMATION �

tools are available��

Thus� to address the problem of partial information in databases and to move closer to satisfac	
tory solutions that work for a large class of data models� one has to come up with new analytical
tools and show their applicability not only in the study of the extended data models but also
in the development of new query languages for databases with partial information� Making
progress in achieving these goals is the major motivation for this work� The main contribution
of the thesis is the following�

In this thesis we make a step toward a general theory of partial information in
databases� We do it by developing a new approach to partial information that in�
tegrates all kinds of partiality within the same semantic framework� In addition to
giving us necessary analytical and algebraic tools to study various kinds of partial in�
formation� this framework also naturally suggests operations that should be included
into the language that works with partial information� Techniques that are developed
for analyzing the structure of partial information can be applied to the study of the
languages that deal with it�

This general statement can be decomposed into the two key ideas upon which our approach to
partial information is based�

I� Partiality of data is represented via orderings on values�

As we saw� this idea in its rudimentary form was already present in Biskup ����� Zanilo �����
and several other papers� However� they all had two major limitations� First� they dealt with
the relational model or very limited complex object model
such as Roth� Korthand Silberschatz
������� Second� the class of null values was always given a priori� hence all the models lacked
generality that we seek�

A few recent results provided a basis for overcoming these limitations� Buneman� Jung and
Ohori ���� started developing a general framework for representing partial objects as elements of
certain ordered sets that have been used extensively in the semantics of programming languages
���� Their results were further extended by Ohori ����� ����� Levene and Loizou ����� Libkin
���� and Jung� Libkin and Puhlmann ����� which resulted in the theoretical foundation for the
studying of the problem of partial information�

It was shown in Buneman� Jung and Ohori ���� that the existing models of null values and
many data models �t very nicely with their approach� They were successful in de�ning some
notions of the relational database theory such as scheme and functional dependencies� However�
they encountered certain di�culties� For example� there is no �universal� way to order subsets

�� CHAPTER �� THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

of ordered sets� They suggested using the Smyth ordering ���� known in the semantics of
concurrency� mainly because it gives the natural join for free� But using the Smyth ordering
often leads to counterintuitive results� Other papers mentioned above used the Hoare ordering
����� but also without any justi�cation� Thus� the problem of choosing the way of extending the
orderings to various collections is a central one and should be addressed�

Once the problem of ordering various database objects has been resolved� one should look at
the fundamental properties of the semantic domains they give rise to� The reason why this is so
important is the second central idea of this thesis�

II� Semantics suggests programming constructs�

How does one choose primitive operations upon which database query languages are constructed
An approach that has been increasingly popular in the past few years is to look at the operations
that are naturally de�ned by the data types involved� This is an example of data�oriented
programming of Cardelli �����

To answer the question about operations naturally associated with a data type� one has to
understand �rst what the values of that data type are semantically and what is the structure
of the semantic domain of the data type� In particular� one often tries to �nd universality
properties of those semantic domains which guarantee existence and uniqueness of operations
on data that can be turned into programming language syntax� This approach has been applied
to a number of data types and has proved extremely useful� see Buneman et al� ���� ���� Libkin
and Wong ����� ���� ����� Suciu ������

Therefore� in this thesis we shall be looking for the universality properties of various kinds of
partial data as a main tool for the language design� In other words� the mathematical properties
of semantics of partial data will naturally suggest the programming primitives to be included
in the languages� Thus� the purpose of developing the semantics of partiality is twofold� First�
we use it to integrate all kinds of partial information� Second� we use it to design languages for
incomplete databases�

Let us summarize the main contributions of the thesis�

�� We de�ne a general model of representation of database objects in certain partially ordered
sets to capture the notion of being less partial�

�� We de�ne the semantics for sets and or	sets and use it to show how they must be ordered�

�� We propose the �update� semantics� which explains being less partial as obtained via a
sequence of elementary updates that add information� and show that it leads to the same
orderings�

���� TOWARD A GENERAL THEORY OF PARTIAL INFORMATION ��

�� We analyze semantics and orderings on approximations and show how they can be encoded
with sets and or	sets�

�� We exhibit universality properties for semantic domains of all kinds of partial information�

�� We study the interaction of sets and or	sets and demonstrate a computable isomorphism
between iterated semantic domains of those�

� We use the universality properties together with the above computable isomorphism to
design a language for sets and or	sets�

�� We show how the meaning of or	objects can be incorporated into the language by means
of a process called normalization� and investigate structural and computational aspects of
that process�

�� We demonstrate that the universality properties for approximations do not lead to a rea	
sonable programming language because of the complexity of the operations involved� and
show how to use the language for sets and or	sets to program with approximations�

��� We describe implementation of the language for sets and or	sets and show how it can be
used to query incomplete and independent databases�

The structure of the thesis

In chapter � we present the mathematical background which is necessary to understand this
thesis� In chapter � we lay the foundation for our study of semantics of partiality and languages
to work with partial information� The notion of partial information in databases is re	examined
and connected with certain partially ordered spaces of descriptions used in the semantics of
programming languages� Several main concepts of the relational database theory are rede�ned
in such a setting� Also in chapter � we explain the new approach to the design of query languages
whose gist is turning universality properties of collections into syntax�

In chapter � we study the semantics of partial data� Orderings on collections and approxima	
tions are de�ned via the semantics and updates and are shown to be the same� These results
explain how sets an or	sets of partial descriptions arise as free constructions� They also demon	
strate a natural way of combining sets and or	sets to encode approximations� We show that all
approximations arise as free constructions as well� We also construct an isomorphism between
iterations of semantic domains for sets and or	sets�

In chapter � we apply the approach that makes programming syntax out of universality prop	
erties to study languages for databases with partial information� We add order on objects as a
primitive and study the resulting languages� We then introduce the language for sets and or	
sets and show how to normalize objects and explain why normalization provides us with passage
from the structural to the conceptual level� Finally� we discuss two approaches to programming

�� CHAPTER �� THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

with approximations� One is the structural recursion and the other is encoding approximations
with sets and or	sets�

In chapter � we describe an implementation of the language for sets and or	sets on top of
Standard ML
hence called OR	SML�� We give examples of queries which require disjunctive
information and demonstrate how to use the language to answer those queries� The language is
extended in a way that allows dealing with bags and aggregate functions� It is also extensible
by user	de�ned base types� The language has been implemented as a library of modules in
Standard ML� This allows the user to build just the database language as an independent
system� or to interface it to other systems built in Standard ML� Since the system is running on
top of Standard ML and all database objects are values in the latter� the system bene�ts from
combining a sophisticated query language with the full power of a programming language�

Finally� in chapter we summarize the main contributions of this thesis and outline prospects
for further research�

Relationship with work of others

Most of the results in the thesis are my own� However� on several occasions I did include some
of the results that are due to my colleagues or that have been obtained jointly�

In the �rst part of chapter � I mix my own results from Libkin ���� and Jung� Libkin and
Puhlmann ���� with the results from Buneman� Jung and Ohori ����� In the second part of that
chapter I present the approach which was originally developed by Buneman� Breazu	Tannen�
Naqvi and Wong ���� ���� Many properties of the languages it gives rise to have been studied
in my joint papers with Wong ����� ���� ��� ���� and I include some of the results that have
been proven jointly by us�

Or	sets are the main topic of my paper with Wong ������ The normalization theorem for set
semantics was proved by us independently� the proof in the thesis as well as other variations of
the normalization theorem are my own� The losslessness theorem that I prove is mine� although
there is a related losslessness result by Wong that appeared in ������

E� Gunter in�uenced the implementation of OR	SML in many ways and some of the examples
in our paper ���� that I use here are due to her�

Chapter �

Mathematical Background

In this chapter we give mathematical background which is necessary to understand the results of
this thesis� We present basic de�nitions and some results about ordered sets� universal algebras

paying particular attention to ordered algebras freely generated by posets�� categories� adjoint
functors and associated monads� abstract rewrite systems and term rewrite systems� Covering
basic domain theory� we give a somewhat unusual presentation of powerdomains� In view of
this� we sketch a few proofs�

��� Ordered sets and domains

A preorder on a set A is a re�exive transitive relation� A preorder is called a �partial� order if it
is antisymmetric� A set with a partial order on it is called a poset� We shall use symbols ���
and the likes to denote orders�

Let hA��i be a poset� and x� y � A� We say that x and y are consistent
denoted by x�y� if
there exists z � A such that x� y � z� A subset X
 A is downward closed� or an order�ideal�
if x � X and x� � x imply x� � X � The order ideal generated by a set X is denoted by �X �
�X � fy � x j x � Xg� If X � fxg� then �X � also denoted by �x� is called principal� The
concept of an upward closed set or a 	lter is de�ned dually� for a �lter generated by X we use
the notation �X �

A subset X
 A is called directed if a common upper bound exists for any two elements of X �
that is� given x�� x� � X � there exists x � X such that x � x�� x�� A poset is called complete

abbreviated � cpo� if every directed subset X
 A has a least upper bound tX � An element of
a cpo is called compact if it can not be below a least upper bound of a directed set X without
being below an element of X � That is� x is compact if x � tX for a directed X implies x � x�

��

�� CHAPTER �� MATHEMATICAL BACKGROUND

for some x� � X � A cpo is called algebraic if every element is the least upper bound of compact
elements below it� see C� Gunter �����

A domain is an algebraic cpo with bottom� Given a domain D� � denotes its order and KD is
the set of its compact elements�

A cpo D is bounded complete if supremum of X
 D� denoted by tX � exists whenever X is
bounded above in D� i�e� there is a � D such that a � x for all x � X � We shall use a more
convenient notation a�	 � � �	 an instead of tfa�� � � � � ang� An element x of a bounded complete
cpo D is compact if� whenever tX exists and x � tX � x � tX � where X �
 X is �nite�

In a bounded complete cpo the set of compact elements below any element is always directed�
therefore� a bounded complete cpo is algebraic if any element is the supremum of all compact
elements below it� Algebraic bounded complete cpos are also called Scott�domains� Equivalently�
a Scott	domain is a domain which happens to be a complete meet	semilattice�

A Scott	domain is called distributive if every principal ideal �x is a distributive lattice� It is
called qualitative if all �x are Boolean lattices� cf� Girard ����

Given X� Y
 D� the lower� the upper and the convex powerdomain orderings are given by

X v� B � �x � X�y � Y � x � y

X v� Y � �y � Y �x � Y � x � y

X v� Y � X v� Y and X v� Y

Sometimes they are called the Hoare� the Smyth and the Plotkin orderings respectively�

A subset of an ordered set is called a chain if every two elements in it are comparable� and an
antichain if no two elements in it are comparable� If hX��i is an ordered set and Y
 X � then
max� Y and min� Y are sets of maximal and minimal elements of Y � We will use just maxY
and min Y if the ordering is understood� A�n
X� stands for the set of all �nite antichains of X �

For an arbitrary poset A� we denote hA�n
A��v�i by P�
A� and hA�n
A��v�i by P�
A�� Note
that we can canonically embed A into both P�
A� and P�
A��

�a � A � �
a� � fag � A�n
A�

At this point� let us make a number of observations about the two constructs we have just
introduced� First of all� P�
A� is always a join	semilattice with bottom element and P�
A� is
always a meet	semilattice with top element� Indeed� the join and meet operations are given by

X t� Y � max
X � Y �

�The name algebraic� comes from lattice theory where it was motivated by the fact that algebraic lattices are
exactly the lattices of subalgebras�congruences of algebras� Analog of the �rst result for certain cpos was given
in Libkin ������

���� ORDERED SETS AND DOMAINS ��

X u� Y � min
X � Y �

and empty set is the bottom
top� element with respect to v�
v���

Furthermore� if A is a meet	semilattice� then the meet operation with respect to v� exists�

X u� Y � maxfx � y j x � X� y � Y g
and� if A is bounded complete� then the join with respect to v� exists�

X t� Y � minfx 	 y j x � X� y � Y� x	 y existsg

Another observation is almost obvious but it will be used numerous times in this thesis�

Lemma ��� a� X v� Y i
 maxX v� maxY �
b� X v� Y i
 minX v� min Y �
c� X v� Y i
 maxX v� maxY and minX v� min Y � �

Another observation that will be used later as a very important tool for the language design� is
the following simple fact stating the universality properties of P�
�� and P�
���

Lemma ��� a� Let A be a poset� Then for every join�semilattice with bottom element hS�	��i
and every monotone map f � A � S� there exists a unique semilattice homomorphism f� �
P�
A�� S that makes the following diagram commute�

A
�� P�
A�

�
�
�
�
�

f
R

S
�

�%f�

b� Let A be a poset� Then for every meet�semilattice with top element hS����i and every
monotone map f � A � S� there exists a unique semilattice homomorphism f� � P�
A� � S

that makes the following diagram commute�

A
�� P�
A�

�
�
�
�
�

f
R

S
�

�%f�

�� CHAPTER �� MATHEMATICAL BACKGROUND

Proof� We prove a� only� Consider a �nite antichain X � fx�� � � � � xng in A and de�ne

f�
X� �

�
� if n � �
f
x��	 � � �	 f
xn� otherwise

That f� is a homomorphism follows from monotonicity of f and X � �
x��t� � � �t� �
xn� and
its uniqueness follows from the de�nition� �

It is well	known that both P�
�� and P�
�� preserve bounded	completeness� see Gunter ����

We now turn our attention to the Plotkin construction� for which we also give a somewhat
unusual description� De�ne conv
A� as a subset of A�n
A��A�n
A� that consists of pairs
X� Y �
with X v� Y � These pairs are ordered by�
X�� Y�� v�
X�� Y�� i� X� v� X� and Y� v� Y��
Notice that
X� Y � is in conv
A� i� there exists a �nite set Z�X�Y �
 A such that X � minZ�X�Y �

and Y � maxZ�X�Y �� moreover� in this case
X�� Y�� v�
X�� Y�� i� Z�X��Y�� v� Z�X��Y���

We de�ne P�
A� as hconv
A�� f
�� ��g�v�i� The universality property for this construction is
given by the following lemma which uses v	ordered semilattices� i�e� semilattices hS� ��vi in
which � is monotone with respect to the partial order v� That P�
A� is a v�	ordered semilattice
follows from the observation that
X�� Y�� ��
X�� Y�� �
X� u� X�� Y� t� Y�� is a semilattice
operation monotone with respect to v��

Lemma ��� Let A be a poset� Then for v�monotone semilattice hS� ��vi and every monotone
map f � A � S� there exists a unique v�monotone semilattice homomorphism f� � P�
A�� S
that makes the following diagram commute �where �
a� �
fag� fag���

A
�� P�
A�

�
�
�
�
�

f
R

S
�

�%f�

Proof� De�ne f� by

f�
fx�� � � � � xmg� fy�� � � � � yng� � f
x�� � � � � � f
xm� � f
y�� � � � � � f
yn�
�Note abuse of notation� but it will not lead to ambiguities�

���� ALGEBRAS ��

It is easy to see that f� is monotone with repsect to the additional order� It can also be
seen that the above representation does not change if non	minimal
non	maximal� elements are
added to the �rst
second� component� Hence� f�

X�� Y�� ��
X�� Y��� �
�x�X��X�

f
x�� �

�y�Y��Y�f
y�� �
�x�min�X��X��f
x�� �
�y�max�Y��Y��f
y�� � f�

X�� Y��� � f�

X�� Y���� That
the diagram commutes follows from the de�nition of f�� Its uniqueness follows from

fx�� � � � � xmg� fy�� � � � � yng� � �
x�� �� � � � �� �
xm� �� �
y�� �� � � � �� �
yn�� �

In the semantics of programming languages� usually the ideal completion is applied to P�
A��
P�
A� and P�
A�� where A is taken to be KD for some domain D� It is easy to see that
in this case we obtain the standard constructions of the Hoare powerdomain ���� the Smyth
powerdomain ���� and the Plotkin powerdomain ����� However� for the purpose of this thesis
we shall not need use the ideal completion�

For more information on domain theory� the reader is referred to Gunter ���� Gunter and Scott
���� and Abramsky and Jung �����

��� Algebras

In this section we recall a few de�nitions from universal algebra� A signature is just a collection
& of symbols� or operation names� with associated arities� An algebra is a pair hA�&i where A is
a set� called carrier� and each operation � in & of arity n is interpreted as a function from An to
A� We refer the reader to standard textbooks
Gr'atzer ����� Wechler ���� for de�nitions of the
concepts of homomorphism� subalgebra etc� If it does not give rise to ambiguity� we occasionally
confuse an algebra with its carrier�

Let hA�&i be an algebra and X
 A� Then �X � denotes the subalgebra of hA�&i generated by
X � Let K be a class of algebras of the same signature� We say that hA�&i is freely generated by
X in K if two conditions hold�

i� hA�&i is generated by X in � that is� �X � � A� and

ii� for any algebra hB�&i � K and any map f � X � B there exists a unique homomorphism
f� � hA�&i � hB�&i such that the following diagram commutes� where � is the embedding
of X into A�

�� CHAPTER �� MATHEMATICAL BACKGROUND

X �
�� hA�&i

�
�
�
�
�

f
R
hB�&i

�

�%f�

Freely generated algebras need not exist for an arbitrary K and generally it is a hard result to
prove their existence� see Gr'atzer ����� One important case in which a positive result is well
known is when K is a variety� or an equational class�

In this thesis we shall mostly work with ordered algebras� In mathematical literature freely
generated ordered algebras are typically considered with respect to embeddings that disregard
order� see Gr'atzer ���� and Bloom ����� This no longer satis�es our needs in the denotational
semantics which will be used throughout this thesis� The need for the theory of freely generated
ordered algebras was recognized� for example� by Stoughton in his work on full abstraction ������
Although there are still no general results about existence of ordered algebras freely generated by
posets� most classes of algebras we shall consider do possess them� and we shall not be concerned
with the lack of underlying mathematical theory� at least for the purpose of this work�

An ordered algebra hA�&i has a predicate � as one of the symbols in the signature� its inter	
pretation is a partial order on the carrier� A monotone homomorphism f � hA�&i � hB�&i is
a homomrphism which is monotone with respect to �� We say that hA�&i is freely generated
by X
 A in a class K if the condition
i� above holds� and for every other hB�&i � K and
a monotone f � X � B there exists a unique monotone f� that makes the diagram above
commute�

Occasionally� we shall also be slightly imprecise saying that an algebra hA�&i is freely generated
by a set X which is not a subset of A if the emdedding

X �
� � A

is understood� Of course by that we mean that hA�&i is freely generated by �
X��

Thus� we can reformulate lemma ��� as follows� For any posetA� P�
A� is the free join	semilattice
with bottom generated by A� and P�
A� is the free meet	semilattice with top generated by A�

��� Adjunctions and monads

The reader may skip this section and still be able to understand the rest of the thesis� However�
certain concepts de�ned here are very useful for understanding the mathematical structure

���� ADJUNCTIONS AND MONADS �

underlying the main principles of the language design� We refer the reader to Barr and Wells
���� or MacLane ����� for the de�nition of categories� functors and natural transformations�

First of all� let us de�ne a number of categories that will be useful later�

Set� the category of sets�

FSet� the category of �nite sets�

Poset� the category of posets and monotone maps�

FSL� the category of �nite semilattices and semilattice homomorphisms� Two important
subcategories are FSL� and FSL� that contain join
or meet� semilattices with bottom

top�� the morphisms are required to preserve the special elements� If semilattices of
arbitrary cardinality are considered� the corresponding categories are denoted by SL� and
SL��

&
Alg� the category of &�algebras and homomorphism between them�

Let A and B be categories and F � A � B and G � B � A be two functors� Then F is left
adjoint to G and G is right adjoint to F� written F a G� if the following two conditions hold�

i� There exists a natural transformation � � id� GF� and

ii� For any object A of A� any object B of B and any arrow A
f�� G
B� in A there exists a

unique F
A�
g�� B in B such that the following diagram
in A� commutes
where �A is

the A	component of ���

A
�A� GF
A�

�
�
�
�
�

f
R
G
B�
�

G
g�

The property expressed by the diagram is called the universal mapping property or just univer�
sality property� It is closely related to the freeness conditions considered in the previous sections�
as a few examples below show� In all of them� the right adjoint is the forgetful functor U that
�forgets� the additional structure�

�� Powerset can be considered as a functor P � Set � SL� that takes a set and returns its
powerset considered as a semilattice under the inclusion ordering� Its action on morphisms

�� CHAPTER �� MATHEMATICAL BACKGROUND

is de�ned by �mapping� a function f from a set X to a set Y over subsets of X � i�e�
P
f�
A� � ff
a� j a � Ag� Then P is left adjoint to U � SL� � Set� In other words� P
X�
is the free join	semilattice with bottom generated by X �

Restricting to �nite sets� we obtain an adjunction P	n a U�
�� P�
�� can be considered as a functor from Poset to SL�� Its action on a monotone map

f � X � Y is given by P�
f� � P�
X� � P�
Y � where P�
f�
A� � maxff
a� j a � Ag�
According ot the lemmas proved above� P�
�� is left adjoint to U � SL� � Poset� Similarly
for P�
�� � Poset� SL�� we have P�
�� a U� Note that the action of P�
�� on morphisms
is given by P�
f�
A� � minff
a� j a � Ag�

�� More generally� let K be a full subcategory of &
Alg� Assume that for each set X � a free
algebra FK
X� generated by X in K exists� Then FK can be considered as a functor from
Set to &
Alg whose action on morphisms is given by the universality property� Then
FK a U�

Associated with every adjunction F a G there is another natural transformation� � � FG� idB�
The details of its construction can be found in Barr and Wells ���� and MacLane ������

The next construct to be introduced is closely associated with adjunctions� Given a category
A� a monad on it is a triple hT� �� �i where T is an endofunctor
i�e� a functor T � A � A�
and � � id � T and � � T� � T are natural transformations such that the following diagrams
commute�

T
�T � T� �

T�
T

�
�
�
�
�

�
R ��

�
�
�
�

�

T
�

�

T�
T� � T�

T�

�T

�

�
� T

�

�

Every adjunction F a G where F �A� B and G � B� A gives rise to a monad hGF� ��G�Fi on
A�

Consider three examples of this construction that will be used throughout the thesis�

�� Consider P�n a U as an adjunction between �nite sets and semilattices� Then it gives rise
to the monad hPs� �� �i where Ps is the powerset functor from FSet to itself� and for each
�nite set X we have�

�X � X � Ps
X� x
�X��� fxg

�X � Ps
Ps
X��� Ps
X� fX�� � � � � Xng �X��� X� � � � ��Xn

���� ADJUNCTIONS AND MONADS ��

�� Consider P� a U as an adjunction between posets and semilattices� It gives rise to the
monad hP�� �� �i where P� is now considered as a functor from Poset to itself� and for
each poset A we have�

�A � A� P�
X� a
�A��� fag

�A � P�
P�
X��� P�
X� fX�� � � � � Xng �A��� X�t� � � �t�Xn � max
X�� � � ��Xn�

�� The construction for P� a U is similar except that u� is used instead of t��

It is also known that the converse is true as well� that is� every adjunction comes from a monad�
The construction is due to Eilenberg and Moore and it is out of the scope of this thesis� In the
rest of this section we de�ne another construction giving an alternative description of monads
that inspired some of the programming primitives we will be working with�

Let T � hT� �� �i be a monad on A� Then the Kleisli category for T � denoted by Kl
T �� has the
same objects as A� and its arrows are arrows A �� T
B� in A� The composition is obtained

by using the properties of the monad� To compose A
f�� T
B� and B

g�� T
C� in Kl
T �� we
obtain an arrow from A to T
C� by

A
f � T
B�

T
g�� T�
C�
�C� T
C�

The identity is simply �A � A� T
A��

There are two functors associated with the Kleisli category� One of them� G � Kl
T � � A

coincides with T on objects and� given a morphism A
f�� T
B�� produces a morphism T
A� ��

T
B� in A as follows�

T
A�
T
f�� T�
B�

�B� T
B�

The other one� F � A� Kl
T �� is the identity on objects� and for A
g�� B in A it produces a

morphism A �� T
B� is Kl
T � as follows�

A
�A� T
A�

T
g�� T
B�

The reason Kl
T � can be called an alternative representation of a monad is the following� For
F and G just constructed� F a G� GF � T and the monad associated with F a G is T �

�� CHAPTER �� MATHEMATICAL BACKGROUND

Let us apply the Kleisli constructions to the three main examples of this section� In those
examples� for the reasons that should emerge shortly� we shall use the notation ext for the
action of G on morphisms�

�� Consider hPs� �� �i associated with the adjunction P a U� Given a function f � X � P�n
Y ��
ext
f� is a function P�n
X�� P�n
Y � given by ext
f� � � � Ps
f� or equivalently

ext
f�
Z� �
�
z�Z

f
z�

�� Consider hP�
��� �� �i given by P�
�� a U� For a monotone map f � A � P�
B�� we have
ext
f� � � � P�
f�� or�

ext
f�
C� � t�c�Cf
c� � max

�
c�C

f
c��

�� Similarly� for hP�
��� �� �i arising from P�
�� a U and a monotone f � A� P�
B�� we have

ext
f�
C� � u�c�Cf
c� � min

�
c�C

f
c��

This justi�es calling G on morphisms ext � it extends the action of f � A � T
B� to T
A��
If ext is given� it is also possible to reconstruct the functor T and the natural transformation
� � T� � T for a given �� If A

g�� B in A� then T
g� is given by ext
A
g�� B

�B�� T
B��� For

any object A� �A is obtained as ext
T�
A�
id�� T�
A��� The reader can easily check that in all

three examples above� if we start with ext � we obtain the corresponding functor and the natural
transformation ��

There have been two primary motivations for using monads in computer science� One is ap	
plication in the language design� which will be considered in detail later� Another one is using
monads to de�ne a general notion of computation� This idea is due to Moggi ����� who de�ned
T
A� as �computations of type A�� where A could be a set or a domain or any other semantic
object representing a type� In fact� Moggi used a slightly more general construction that also
accommodates terminal objects and binary products� The use of monads to structure functional
programs was discussed in Wadler ����� A dual construction � comonad � was used by Brookes
and Van Stone ���� in their work on intensional semantics of programming languages�

��� Rewrite systems

We shall need some basic facts about abstract and term rewrite systems� namely Newman�s
lemma and the critical pair lemma� For more information on rewrite systems� see Dershowitz
and Jouannand ���� and Wechler ����

���� REWRITE SYSTEMS ��

An asbtract rewrite system
or reduction system� is a pair hA��i where A is a set and � is a
binary relation� The transitive	re�exive closure of � will be denoted by either ���� or

��� The
symmetric closure of �� that is� � � ��� is denoted by ��� and we occasionally use � for
����

An element a � A is said to be a normal form if there is no b � A such that a� b� An element
a � A admits a normal form if there exists a normal form a� such that a ���� a�� We will mostly
be interested in systems in which every element admits a unique normal form�

A rewrite system is called terminating or strongly normalizing if there is no in�nite sequence of
rewritings a� � a� � � � �an � � � �� It is called con�uent or Church�Rosser if for any a ���� a�
and a ���� a� there exists a� � A such that a� ���� a� and a� ���� a�� Diagramically�

a

���
�
� �

�
�RR

a� a�

�
�
�RR ���

�
�

a�

In a terminating Church	Rosser rewrite system every element admits a unique normal form�
However� the property of being Church	Rosser is usually hard to verify� and this is due to the
fact that the condition a� ���� a ���� a� is rather complicated� Replacing it by a� �� a �� a�
we obtain weak Church�Rosser systems� Precisely� a rewrite system is called weakly Church	
Rosser if for any a� �� a �� a� there exists a� � A such that a� ���� a� and a� ���� a��
Diagramically�

a

��
�
� �

�
�R

a� a�

�
��RR ����

�

a�

Fortunately� in many cases verifying this su�ces� because

Lemma ��� Newman� A terminating rewrite system is Church�Rosser i
 it is weakly Church�
Rosser� �

�� CHAPTER �� MATHEMATICAL BACKGROUND

Term rewrite systems constitute the most important example of abstract rewrite systems� Let
& be a signature and X a set of variables� Then T

X� denotes the set of all terms that can
be constructed from X by using operations from &� A
term� rewrite rule is an expression
t� � t� where t�� t� � T

X�� A
term� rewrite system is a �nite collection R of term rewrite
rules� Associated with R� there is a binary relation ��R on T

X� de�ned as follows� Assume
s � t � R� w is a term and � is a substitution� Then w�s�� ��R w�t�� where s� and t� are
substituted at the same position in w� and no other terms are related by ��R�

We shall need two results that establish when a term rewrite system is terminating and Church	
Rosser�

Lemma ��� Assume that there exists a function 	 � T

X� � N such that u ��R v implies
	
u�
 	
v�� Then ��R is terminating� �

Let s �� t and u �� v be two rewrite rules in R� with no variable in common
this can be
done by renaming variables appropriately�� Suppose that a subterm of s at position p is not a
variable and is uni�able with u� and let � be the most general uni�er� Then
t�� s��v���
where
v� is substituted at the position p� is called a critical pair� CP
R� stands for the set of all
critical pairs between the rules of R�

Lemma ��	 Critical pair lemma� Let R be a term rewrite system� If s ��R u ��R t�
then either there exists a term v such that s ����R v ����R t� or else s��CP �R� t� �

Applying the Newman lemma� we get

Corollary ��� A terminating rewrite system R is Church�Rosser i
 CP
R�
����R � ����R�
In other words� for every critical pair
s� t� there exists a term v such that s ����R v ����R t� �

Chapter �

Preliminaries

This chapter covers the foundation for the study of the semantics of partiality and languages
to work with partial information� As we have observed earlier� the unifying theme for various
kinds of partial information is using ordered sets as their semantics� where meaning of the order
is �being more informative�� There exist standard mathematical models for �at and nested
relations without partial information� Once orderings on values come into play� there is a need
in new basic models for incomplete databases� The �rst attempt to come up with such a model
was done by Buneman� Jung and Ohori ���� and it was further developed in Libkin ����� Jung�
Libkin and Puhlmann ���� and Levene and Loizou ����� We present the model in the �rst section
and study some of its properties� In particular� we show how to rede�ne the notions of scheme�
functional and multivalued dependencies and operations of the relational algebra� Ordered sets
that we use for modeling partiality are domains typically used in the programming semantics�

Secondly� we must develop a framework for the query language design� In the second section� we
explain Cardelli�s data�oriented programming ����� in particular� the idea of using introduction
and elimination operations for programming with data� We then go on and explain the approach
of Buneman� Breazu	Tannen and Naqvi ���� that suggests to derive data	oriented languages from
operations naturally associated with the data� Those operations come from the universality
properties� Their approach was further developed in Breazu	Tannen� Buneman and Wong ����
where a simple reformulation of the nested relational algebra was found� Even more importantly�
���� suggested a uniform way of getting rid of non	well	de�nedness of programs� This way� in
categorical terms� is going from an adjunctions to the associated monad� Before applying this
approach to partial data in chapter �� we demonstrate its usefulness by showing how it can be
used with bags
multisets�� Some of the results are taken from Libkin and Wong ����� ���� ���
�����

��

�� CHAPTER �� PRELIMINARIES

��� Databases with partial information and domain theory

As we have said many times in the introduction� most models of partiality of data can be
represented via orderings on values� In this section we study a new approach to databases which
treats relations not as subsets of a Cartesian product but as subsets of some domain � a partially
ordered space of descriptions� This approach permits generalizations of relations that admit null
values and variants� We show how to de�ne the notion of a relation scheme in such a setting� We
study properties of schemes� Then we show that operations analogous to projection� selection
and join retain the desired properties� Schemes also allow us to develop dependency theory
for such generalized relations� They play an essential role in an extension of this model which
admits a set constructor and is therefore useful for the study of higher	order relations and their
generalizations�

Throughout this section� we consider only Scott domains�

����� Order on objects and partiality

It has recently been discovered by Buneman et al� ���� that a representation of the underlying
principles of relational database theory can be found in the theory of domains which has been
developed as the basis of the denotational semantics of programming languages� This represen	
tation does not take into account the details of the data structure and� therefore� allows us to
extend the main principles of relational databases to much more general constructions� Use of
domain theory in the generalization of relational databases may also help to establish the con	
nection between data models and types� that is� to represent database objects
not necessarily
relational databases� as typed objects in programming languages�

In denotational semantics of programming languages expressions denote values� and the domains
of values are partially ordered� A database is a collection of objects having descriptions and
meanings� The meaning is the set of all possible objects described by a description� The meaning
having been de�ned as a set� we can order descriptions by saying that a description d� is better
than a description d� if it describes fewer objects� i�e� if it is a more precise description�

Let ��d�� stand for the meaning of d� Suppose that d� and d� are the records in a relational
database and

d� � �Dept� CIS�O�ce� ����

d� � �Name� John�Dept� CIS�O�ce� ���

Assume that name� department and o�ce are the only attributes� Then the meaning of d� is
the set of all possible records that refer to CIS people in o�ce ��� in particular� d�� Therefore�

���� DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY ��

d� is better than d� because ��d���
 ��d����

If all descriptions of objects come from the same domain D which is partially ordered by ��
then we can give the following de�nition of ��d���

��d��
def
� fd� � D j d� � dg � �d

Now the following is immediate�

Lemma ��� d� � d� i
 ��d���
 ��d���� �

The above ordering corresponds to the usual one in the theory of databases with incomplete
information� For relations� it was used by Biskup ����� Imielinski and Lipski ��� and others�
The same idea of ordering was used for complex objects in Bancilhon and Khosha�an �����

Before we go any further� let us �x the notation for records� A record with �eld names l�� � � � � lk
and corresponding values v�� � � � � vk will be denoted by �l�� v�� � � � � lk� vk �� We use the �� brackets
as others will be used for various collections later on� Fortunately� until chapter � when we
switch to the ML notation� lists are not used� and we are able to avoid confusion� We shall
denote the lith �eld of a record r by r
li� or r�li�

Let V� � V�f�g where V is a set of non	partial values� � corresponds to incomplete information

it is a generic null� and �v � V � � � v while all elements of V are incomparable� In other words�
V� is a �at domain� Let L be a set of attributes
in the above example L � fName�Dept�O�ceg��
Then the set of functions from L to V�� denoted by L � V�� is ordered by d� � d� i� d�
l� � d�
l�
for all l � L where d�� d� � L � V�� For example� if d� and d� are as in the above example� L �
fName�Dept�O�ceg and V contains names of departments� people and numbers of o�ces� then
d�� d� � L � V� since d� � �Name� ��Dept� CIS�O�ce� ���� Obviously d� � d��

There is an alternative way of giving semantics of partial description by using maximal elements
of D� Recall that for every Scott domain D there exists a set Dmax
 D such that for every
d � D there is dm � Dmax such that d � dm� In other words� Dmax is the antichain of maximal
elements� For example� in the case of L � V�� maximal elements are precisely records without
nulls� that is� records without incomplete information� Therefore� it was proposed by some
���� ��� �� to rede�ne semantics as

��d��max
def
� fd� � Dmax j d� � dg � �d �Dmax

Let us brie�y outline some problems with this approach
we shall see more when we study
approximations�� First� consider
just informally� recursive values with nulls� For instance� if
we have a type declaration person � �name�string� father�person�� then elements of this
type are potentially in�nite sequences of names� In fact� if C is a domain of strings� then the
semantics of type person is given by a solution to the recursive domain equation D � C �D�

�� CHAPTER �� PRELIMINARIES

Maximal elements of D are then in	nite sequences of maximal elements of C and it is unlikely
we would be interested in approximating those� In fact� we are interested in descriptions of �nite
length ending with in�nitely many bottom elements� i�e� generic nulls�

Un�nished experiments are another example� They are just sequences of observations made�
say� every day� Formally� such experiments are partial functions from N to some domain C� and
these are ordered by f� � f� � �n � f�
n� is de�ned � f�
n� is de�ned and f�
n� � f�
n��
In this example maximal elements are totally de�ned functions f with im
f�
 Cmax� Again�
we see that partiality of information does not necessarily mean trying to approximate maximal
elements� which are never reached�

Finally� using ����max we lose the nice connection between the ordering and semantics� It is no
longer the case that ��d���max � ��d���max � d� � d�� A simple counterexample is a �nite chain�
for all elements their ����max is the top element�

Looking at these examples gives us another important observation� Elements of type person

that can be stored in a database are precisely �nite sequences of names� Un�nished experiments
that can be stored are precisely partial functions with �nite domains whose values can be stored�
Mathematically speaking� these are compact elements� This �ts very well with the semantics of
compact elements proposed by Dana Scott� in his approach they are �computable� functions�
in our approach they are objects that can be stored in a database�

We are now in the position to explain the main idea of Buneman et al� ����� Consider the domain
L � V�� Its elements are records whose attributes are elements of L and values are taken from
V�� The relations are �nite sets of records� that is� �nite subsets of L � V�� However� not
every �nite subset of L � V� corresponds to a relation� If we have a subset containing both
d� and d� from our example� d� is less informative than d� and should be removed
notice that
we can not argue this way for bags� Indeed� as we will show later� the ordering on bags of
partial descriptions is quite di�erent from the ordering on sets�� Less informative here means
that d� � d�� Therefore� relations correspond to �nite subsets of domains that do not contain
comparable elements� that is� to antichains� Combining this with the idea of the previous
paragraph that elements that can be stored correspond to compact elements of domains� we
arrive at the
slightly changed� principle proposed by Buneman� Jung and Ohori �����

Generalized relations are 	nite antichains of compact elements

Example ��� Let L and V be as in the above examples� Let

d� � �Name� Ann�Dept� Math�O�ce� �����
d� � �Name� Ann�Dept� Math�O�ce� ��

d� shows that the person has not been assigned an o�ce yet�� Then fd�� d�g is a generalized
relation but neither fd�� d�g nor fd�� d�g is because d� � d� and d� � d�� �

���� DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY �

In the examples above we considered only one generic null value� We have seen already other
kinds of null values and orders on them� To order more complex structures� it is necessary to
lift orders� To lift order to records is easy� it is just done componentwise� To lift order to sets
is more problematic as domain theory does not provide us with a universal way to do so� We
shall brie�y discuss lower and upper orderings in this chapter� and later in chapter � we justify
using the lower ordering for lifting to relations�

����� Schemes

In the subsequent sections we shall develop dependency theory and a simple query language
for the model presented above� To do so� we need to �nd an analog of the concept of scheme�
Recall that in the relational database theory� a scheme is just a subset of attributes� We need
this concept to formulate the de�nitions of functional and multivalued dependencies and later
to de�ne analogs of the relational algebra operations such as projection and selection� In this
subsection we consider two de�nitions� one due to Bunemanet al� ���� and the other due to
Libkin �����

Consider the usual relational algebra projection� where relations are allowed to have nulls� Let L�
be a subset of the set of attributes L� If y � pL�
x�� then y has nulls in the positions corresponding
to attributes in L � L�� Hence� pL�
y� � y� and this shows that IL� � fpL�
x� j x � L � V�g is
an ideal� Furthermore� if pL�
x� 	 pL�
y� exists� it still has nulls in all positions corresponding
to L � L�� and hence it belongs to IL� �

Ideals which are closed under existing suprema are called strong ideals� The observation we have
just made shows that as the �rst approximation to the de�nition of scheme we can take strong
ideals� However� this is not good enough as the following example shows�

Example ��� Let L and V be as in the examples of the previous subsection� Let

I� � f�Name� v�Dept� ��O�ce� �� j v � V�g�

Then I� is a strong ideal and for any d � �Name� v��Dept� v��O�ce� v�� its projection onto
I� is pI�
d� � �Name� v��Dept� ��O�ce� ��� The set of maximal elements of I� is f�Name� v�
Dept� �� O�ce� �� j v � Vg�

Let I� � �d where d � L � V�� Then I� is a strong ideal with unique maximal element d and
for any d� � L � V� � pI�
d

�� � d � d�� �

Therefore� we need more for the analogy of projection in relational algebra than being a projec	
tion onto a strong ideal� In fact� that ideal must satisfy some additional properties� In L � V�
schemes correspond to subsets of L� That is� a projection onto the scheme corresponding to

�� CHAPTER �� PRELIMINARIES

S
 L is given by

pS
x� � x� where x�
l� � x
l� if l � S and x�
l� � � otherwise�

These projections will be called canonical� It is a natural requirement for the de�nition of
scheme and projection in an arbitrary domain that the projections be canonical when restricted
to L � V�� One can easily see that for every x � L � V� the ideal �x is strong while the
projection p�x is not canonical�

In L � V� schemes correspond to the subsets of L and projections to the canonical projections�
It is natural to de�ne the concept of scheme such that� being applied to L � V�� it will give
rise exactly to canonical projections� Also� schemes should be signi�cant parts of a domain that
re�ect the structure of the whole domain� This means that if the elements of a domain are
treated as database objects
for example� records in relations�� then projection into an ideal
generated by a scheme should correspond to losing some piece of information and the same
pieces of information are lost for all the elements of the domain� This means that projections
generated by schemes are in a way homogeneous�

If we have two maximal elements of a domain
complete descriptions� and they are projected
into a scheme
i�e� the same pieces of information are ignored� then the projections can not be
comparable� This observation leads us to the following de�nition�

De�nition ��� Let D be a domain and S an antichain in D such that �S is a strong ideal�
Then S is called a scheme in D if projection p�S
x� of any element of x � Dmax is a maximal
element in �S�

If S
 D is a scheme� then �S is called a scheme�ideal and p�S is called a scheme�projection�
We shall write pS instead of p�S �

The picture below illustrates these concepts�

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�
�
�
�
�
��

B
BBM

�
�
�
�
�
�R

C
C
C
C
C
CW

�
�
�
�
�
��

pS pS pS

D

S

�S

Dmax

In the reasonings that led us to the above de�nition we took into account only how we lose
information by projecting into a scheme� In Buneman et al� ���� another aspect of the problem

���� DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY ��

was considered � what can be said about the lost information Can we consider it independently
and �add� to another object
element of a domain�

The idea of ���� was that� given a scheme S� there is its complement
as there is a complement
L�S for every S
 L for the domain L � V��� and projecting into S is simply losing information
corresponding to the complement of S� Assuming that the pieces of information contained in
projections into the scheme and its complement are independent� we can combine them� To be
more precise� if we have an object and its projection into a scheme is less than an element of this
scheme� we can add lost information to the latter element� This corresponds precisely to the
slide condition of Buneman et al� ����� We say that a strong ideal I satis�es the slide condition
if for any x � D and y � I� pI
x� � y implies that x 	 y exists� This property obviously holds
for canonical projections in L � V�� The following picture illustrates the slide condition
xI
stands for pI
x���

S
S

S
S

S
S

S
S

S
S

SS

�
�
�
�
�
�
�
�
�
�
��

S
S
S
S
S
S

��
�C
C
C
C
C
C

D

I

x

xI

y

x 	 yr

rr

r

De�nition ��� ���� ���� Let D be a domain and S an antichain such that �S is a strong ideal�
Then S is called a semi	factor if �S satis	es the slide condition� that is� if x � D and y � �S
are such that pS
x� � y� then x 	 y exists� �S is called a semi�factor ideal� and pS is called a
semi�factor projection�

Every semi	factor is a scheme� the converse is not true in general� If it were true� it would mean

informally� that for all the schemes their complements exist� because we could consider the
paragraph before the de�nition of semi	factor as an informal proof� In a certain class of domains
this can be formally proved� and we will �nish this section with such a result�

Example ��� Let d�� d� be as in the examples � and �� Let

r� � �Name� John�Dept� ��O�ce� ���

r� � �Name� ��Dept� CIS�O�ce� 	����

r� � �Name� Ann�Dept� Math�O�ce� ���

�� CHAPTER �� PRELIMINARIES

r� � �Name� ��Dept� ��O�ce� ��
��

Let D � fd�� d�� r�� r�� r�� r���g where � is the tuple with all null values� The diagram of D
is shown below�

�
�
�
�
�
�
��

�
�
�
�
�
�
��D
D
D
D
D
D
DD
L
L
L
L
L
L
LL�
�
�
�
�
�
��
�
�
�
�
�
�
��L
L
L
L
L
L
LL

�
�
�
�
�
�
��

d� d�

r� r�r� r�

�

r r

r r r r

r

This domain has no semi	factors except f�g and Dmax while it has eight proper schemes�
fr�� r�g� fr�� r�g� fr�� r�g� fr�� r�g� fd�� r�g� fd�� r�g� fd�� r�g� fd�� r�g� �

In order to justify both de�nitions we must prove that they describe exactly canonical projections
when applied to the domain L � V��

Proposition ��� S is a scheme �or a semi�factor� of L � V� i
 pS is a canonical projection�

Proof� We prove the proposition for schemes only�
See ���� for semi	factors�� The �if � part is
immediate� To prove the �only if � part� consider a scheme S� De�ne L
 L as L � fl � L �
r
l� �� �� where r � pS
r��� for some r�� �
L � V��maxg� Now we are to show that pS is the
canonical projection onto L� That is� we are to show that r
l� � r�
l� for all l � L and r�
l� � �
for l �� L provided that r� � pS
r��

If l �� L� consider any r�� � r� r�� �
L � V��max� Then pS
r
���
l� � � � pS
r�
l� � r
l��

Thus r
l� � �� If l � L� consider two cases� If r
l� � �� then r� � r and r�
l� � � too� If
r
l� � v� by de�nition of L there is a maximal element r�� such that pS
r

���
l� � v� �� �� If
v� �� v� consider another maximal element rv that di�ers from r�� only in its lth component which
is v� If pS
rv�
l� � �� then r�� 	 rv exists� which contradicts the de�nition of scheme� Thus�
pS
rv�
l� � v� and a record rv whose only nonbottom component is rv
l� � v is in �S� Since
rv � r� rv is also below r�� which proves r�
l� � v � r
l�� �

���� DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY ��

If L is �nite� L � V� is isomorphic to Vn�� where n � jLj� Therefore� in direct products of �at
domains all schemes are semi	factors� Theorem ���� below will generalize this fact�

We shall mostly use schemes rather than semi	factors because the de�nition of schemes is more
general and does not make use of any additional assumptions and� as we are going to show�
schemes satisfy almost all properties that were proved in order to justify the de�nition of semi	
factor in Buneman et al� ����� In the rest of the subsection we prove some properties of schemes
and state a result characterizing qualitative domains in which the concepts of scheme and semi	
factor coincide�

Let A�B
 D be two sets� We de�ne A 	B as the pointwise supremum� i�e� A 	 B � fa 	 b �
a � A� b � B� a 	 b existsg�

Proposition ��� Let D be a distributive domain� Then
�� If A�B are scheme�ideals� then so is A 	B�
�� The set of scheme�ideals over D is a complete lattice�

Proof� We are going to prove a more general fact� namely that for any indexed set of scheme	
ideals Ai� i � I � A �

W
Ai is a scheme	ideal
the supremum is de�ned pointwise�� Then both ��

and �� will easily follow�

Prove that A is a strong ideal� Of course� it is closed under all existing joins since so are all Ais�
To show that it is an ideal� consider x � 	xi� where xi � Ai� and y � x� Since D is a domain�
y is the join of all compact elements below it� Let a � y be compact� Then a � xi� 	 � � �	 xik �
and by distributivity there are x�ij � xij � j � �� ���� k� such that a � x�i� 	 � � �	 x�ik � Thus� a � A�
and since A is closed under existing joins� y � A� Therefore� A is a strong ideal�

Our next step is to show that pA
x� �
W
pAi
x�� Let pA
x� � 	ai� where ai � Ai� Then each

ai � pA
x� � x� Since ai � Ai� ai � pAi
x�� Thus� pA
x� � W pAi
x�� The equality now follows
from pAi
x� � pA
x��

To �nish the proof� show that A is a scheme	ideal� Let x� y � Dmax and pA
x� � pA
y�� Then
for each index i� pAi
x� � pA
y� � y� Since Ai is a scheme	ideal� pAi
x� � pAi
y�� hence
pA
x� � pA
y�� Thus� A is a scheme	ideal� �

The same results have been proved for semi	factors in ����� Notice that scheme	ideals may not
be closed under intersection in contrast to the case of semi	factor ideals� For example� in the
domain shown below� both fx�� y���g and fx�� y�� y���g are scheme	ideals� but their intersection
fy���g is not�

�� CHAPTER �� PRELIMINARIES

S
S

S
S

S
S
�
�
�
�
�
�C
C
C
C
C
C
C
C
C
C
C
C�
�
�
A
A
A
�
�
�
�
�
�C
C
C
C
C
C
�
�
�

�

x� x�

y�

y� y�

r

r r r r
r

r r

Proposition ���
�� says that schemes ordered by v� form a lattice if D is distributive� A question
arises � what can be said about other powerdomain orderings v� and v� The following result
shows that these orderings coincide for schemes in any domain� The same result for semi	factors
was proved in �����

Theorem ��� Let D be an arbitrary domain and S�� S� two schemes� Then S� v� S� i
 S� v�

S� i
 S� v� S��

Proof� According to the de�nition of v�� it is enough to prove that S� v� S� i� S� v� S�� Let
S� v� S�� Consider any x � S�� We have to show the existence of an element z � S� such that
z � x� Let x� � Dmax� x� � x� Since S� v� S�� there exists y � S� such that z � pS�
x

�� � y� If
y � x� we are done� Otherwise� z and x are incomparable� and since z � �S�
because z � y��
z 	 x exists� Thus� z 	 x
 x and z 	 x � �S�
because S� is a scheme�� a contradiction�

Let� conversely� S� v� S�� We are to prove that for every x � S� there exists z � S� such that
x � z� Let x� � Dmax� x� � x� Let z � pS�
x

��� Since S� v� S�� there exists y � S� such that
y � z� If y � x� we are done� Otherwise� y 	 x exists� since y and x are bounded by x�� which
contradicts the fact that S� is a scheme� Theorem is proved� �

Proposition ��� Let D � D��D� �or D � D��D��� Then S is a scheme in D i
 S � S��S�
�or S � S� � S�� for some schemes S� and S� in D� and D�� respectively� �

At this point� let us consider restrictions of our main de�nitions to the compact elements� First�
to be able to speak of projections of compact elements onto compact elements of strong ideals�
one must restrict the class of domain as the following lemma shows� Recall that ACC stands
for the �ascending chain condition� which states that there are no in�nite ascending chains
x� � x� � x� � � � ��

Lemma ��	 If D is a domain� then the following are equivalent�

���� DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY ��

i� For any strong ideal I and x � KD� pI
x� � KD�

ii� KD is downward closed� i�e� �KD � KD�

iii� �x satis	es ACC for any x � KD�

Proof�
i� �
ii�� Let x � KD and y � x� Then by
i� y � p�y
x� is in KD�

ii� �
iii�� Assume KD � �KD� If x � KD is such that �x does not satisfy ACC� consider
a chain x� � x� � x� � � � � � x� Then x� � tixi is not a compact element� but x� � x� This
contradiction shows that �x satis�es ACC�

iii� �
i�� Let I be a strong ideal and x � KD� Then pI
x� �
W

y j y � x and y � KD � I��

Since �x satis�es ACC� pI
x� is a join of only �nitely many y�s and as such is compact� �

Therefore� if D satis�es any condition of the lemma� we can restrict our attention to compact
elements only� A projection is now de�ned as

pI
x� �
�

y�x and y�I

y for x � KD

That allows us to rede�ne semi	factors at the level of compact elements� We say that I
 KD
is a compact semi�factor ideal if it is downward closed� closed under 	nite least upper bounds
and satis�es the slide condition for compact elements�

Proposition ��� Let D be a domain such that �KD � KD� Then I �� I �KD establishes a
bijection between semi�factor ideals and compact semi�factor ideals�

Proof� It is easy to see that I �KD is a compact semi	factor ideal whenever I is a semi	factor
ideal since compact elements are projected into compact elements� To see that the correspon	
dence is bijective� we must prove that I � fWX j X
 I �KD�

W
X existsg� The � inclusion

is obvious� Conversely� let x � I and let X � �x�KD� Then X
 I �KD and x �
W
X � which

proves the reverse inclusion and the proposition� �

Thus� one can reason about semi	factors entirely on the level of compact elements� In this aspect
semi	factors are better suited for developing the database concepts in the domain	theoretic
model� Another advantage of semi	factors will be seen when multivalued dependencies are
studies� However� schemes are more general than semi	factors and in most cases the desired
results can be stated for schemes�

We �nish this section by two results of the same spirit� Both of them relate the properties of
schemes that one would expect in a domain like L � V� to the internal structure of the domain�

Observe that in L � V� no element of a scheme can be replaced by another element such that
the resulting set is still a scheme� To capture this property� we say that a scheme S in an

�� CHAPTER �� PRELIMINARIES

arbitrary domain D is saturated if� for any x � S� there is no y � D� y �� x such that
S� x�� y
is a scheme� We say that D is coatomic if every element is a meet of maximal elements� Notice
that L � V� is coatomic and all schemes in L � V� are saturated�

Proposition ��� If D is coatomic� then all schemes in D are saturated�

Proof� Let D be a coatomic domain� Assume that S a non	saturated scheme in D� i�e�

S� x�� y is a scheme for some x � S and y �� x� If S � fxg� then pS
z� � x for any z � Dmax

and x � Vz�Dmax z � � since D is coatomic� Hence� if
S � x� � y were a scheme� y would
equal bottom yielding y � x� This contradiction shows that S has at least two elements� Now
consider three cases�

Case � y � x� Since D is coatomic� there exists ym � Dmax such that ym � y but ym �� x� Let
z � pS
ym�� Since ym �� x� z �� x� Therefore� z� y �
S � x� � y and z�y which contradicts the
de�nition of scheme�

Case �� y
 x� Now we can �nd xm � Dmax such that xm � x and xm �� y� Let z �
p�S�x��y
xm�� Since xm �� y� x � S�x and x�z which again contradicts the de�nition of scheme�

Case �� y and x are not comparable� Similarly� we can �nd xm � Dmax such that xm � x and
xm �� y and the proof proceeds as in the second case� Thus� all three cases lead to contradiction
which proves the proposition� �

Corollary ��� Let D be a coatomic domain and S a scheme� If S� � S� then S is not a scheme�
�

The reader can easily establish a number of properties of saturated schemes� For instance�
even in distributive domains it is possible to �nd examples of saturated schemes which are not
semi	factors and examples of semi	factors which are not saturated� Saturated scheme	ideals may
fail to be closed under intersection� The converse of proposition ��� is not true� there exists a
domain in which all schemes are saturated but which is not coatomic�

Our next result is a precise characterization of those qualitative domains in which the concepts
of scheme and semi	factor coincide� Informally� this results states that in a certain class of
domains the concepts of scheme and semi	factor coincide i� the domain looks like L � V�� The
proof is not given here� It relies on the theory of decomposition of domains developed by Jung�
Libkin and Puhlmann �����

Theorem ���� Let D be a qualitative domain� Every scheme of D is a semi�factor i

D �
Y
i�I

Di

���� DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY ��

where each Di has no proper scheme� the schemes of D are in � correspondence with subsets
of I� �

����� Dependency theory

The purpose of this section is to develop some basic dependency theory for our domain model
of databases� Functional dependencies were introduced in Buneman et al� ���� for semi	factors�
here we show that all the results remain true for schemes� The major contribution of this
section is introduction of multivalued dependencies for generalized relations and proving the
decomposition theorem� However� some work must be done before we can de�ne multivalued
dependencies� In the relational theory these dependencies establish relationship not only between
projections into two schemes� but also between projections into a complement of one of them�
i�e� all the operations of Boolean algebra � intersection� union and complement � are involved�
From proposition ��� we know that analogs of only two operations � intersection and union �
have been de�ned for the schemes so far� Therefore� we need to de�ne complements for schemes�
In order to do that� it is necessary to restrict the class of domains� It will turn out that this
class consists of the qualitative domains�

Functional dependencies

Having introduced the notion of scheme� we can de�ne functional dependencies� If S�� S� are
schemes in a domain D� then a functional dependency is an expression of the form S� � S��
Usually in the theory of databases with incomplete information dependencies are de�ned only
on the schemes projections into which do not contain tuples with null values� This condition
can be equivalently expressed as� for any record in a relation there is a record in a scheme which
is less informative than the relation record� In other words� if R is a relation and S is a scheme�
then S v� R�

Now we can de�ne satis�ability for functional dependencies� Let R
 D be a relation� We say
that R satis�es a functional dependency S� � S� if S�� S� v� R and pS�
x� � pS�
y� whenever
pS�
x� � pS�
y� for every x� y � R�

Functional dependencies in distributive domains have been investigated in ���� for the particular
case of semi	factors� and the following analogs of the Armstrong axioms are due to ����� where
F is a set of functional dependencies and hSchemes
D���i is the complete lattice of schemes
over distributive domain D
cf� proposition �����

a� If S�� S� � Schemes
D�� S� � S� and S� � S� � F � then S� � S� � F �

b� If for any i � I � S � Si � F where S� Si � Schemes
D�� then S � Wi�I Si � F �

�� CHAPTER �� PRELIMINARIES

c� If S� � S� � F and S� � S� � F � where S�� S�� S� � Schemes
D�� then S� � S� � F �

We need the additional condition S� � S� � F to guarantee consistency since generally it may
not be the case that S� v� R� The result of ���� proved for semi	factors is also true for schemes�

Proposition ���� The Armstrong Axioms �a���c� are consistent and complete for relations in
distributive domains�

Proof� Prove consistency �rst�
a� Let S� � S� � F � Then S� v� R� Since S� � S� in
Schemes
D�� �S�
 �S� and S� v� S�� According to theorem ���� S� v� S�� hence S� v� R�
Thus� S� � S� � F �

b� Let Si v� R� i � I � Prove that SI �
W
i�I Si v� R� Let r � R� Then for any i � I there

is such si � Si that si � r� Therefore� sI � 	i�Isi � r� Since D is distributive� sI � SI
cf�
proposition ����� and SI v� R� Now let pS
x� � pS
y� for x� y � R� Then

pSI
x� �
�
i�I

pSi
x� �
�
i�I

pSi
y� � pSI
y��

Thus� S � SI � F �

c� is obvious� Completeness follows from the fact that our model is a generalization of the
standard relational model� Therefore� we have more relations available� �

Complements of schemes

Our goal is to introduce multivalued dependencies for generalized relations� A multivalued
dependency X �� Y � where X� Y are sets� uses the projection ontoX�Y � While � corresponds
to 	 in the domain model� there is no analog for the complement� More precisely� the poset
of schemes is a lattice if the domain is distributive� but schemes may fail to have complements
in contrast to the case of L � V�� Thus� our goal is twofold� First� we de�ne complements of
schemes and the proceed to introduce multivalued dependencies and prove the decomposition
theorem�

Consider the domain L � V�� Its schemes correspond to subsets of L� with scheme	projections
being canonical projections� The complement of a scheme corresponds to projecting onto the
complementary subset of L� Suppose that we have de�ned the concept of a complement� Let p
be a scheme	projection and p the projection corresponding to the scheme�s complement� What
should the properties of p be First� if we have any element x � D� then p
x� � p
x� � ��
Suppose that x � D� Then p
x� �forgets� about information contained in p
x�� The fact that
p is the complement of p means that all information contained in x can be reconstructed from
p
x� and p
x�� i�e� x � p
x� 	 p
x�� That means that in order to introduce complements� we

���� DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY �

have to require that all principal ideals �x in D be complemented lattices� Moreover� they
must be uniquely complemented since we want to speak about the complement� The following
proposition shows why we restrict our attention only to qualitative domains�

Proposition ���� Any principal ideal of a domain D is a uniquely complemented lattice i
 D
is a qualitative domain�

Proof follows immediately from the de�nition of qualitative domains and the fact that any
uniquely complemented algebraic lattice is Boolean� see Salii ������ �

There is another elegant way to de�ne complements due to Jung ���� Let S
 D be a scheme
in any domain D � We de�ne IS as the set of maximal elements of fx � D � pS
x� � �g� It can
be shown that IS is not generally a scheme� In order to be able to operate with complements�
we have to make two observations�

Proposition ���� Let D be a qualitative domain and S any scheme� Then �IS � �IS� That
is� IS is the set of maximal elements of IS� Moreover� �IS is a strong ideal�

Proof� �IS
 �IS easily follows from the observation that y � pS
x� implies pS
y� � �� To
prove the renverse inclusion� consider an element x � �IS � i�e� pS
x� � �� Let x� � x be a
maximal element� We �nish the proof by showing that x � pS
x

��� If x is not under pS
x
���

then z � x � pS
x�� �� � since �x� is Boolean� Then z � �S and z � x� hence � � pS
x� � z� a
contradiction� Thus� x � pS
x

���

To show that �IS
and therefore �IS� is a strong ideal� consider an indexed family xi � D� i � I

such that pS
xi� � � for all i and x �
W
i�I xi exists� By ���� pS
x� �

W
i�I pS
xi�� Therefore�

pS
x� � � and x � �IS � which proves strongness� �

The following example shows why IS may fail to be a scheme even in a qualitative domain�
S � fx�� yg is a scheme� but IS � fx�g is not�

A
A
A

�
�
�

�
�
�
��

�
�
�A
A
Ax� x� y

r
r r r
r

Given a scheme S in a qualitative domain� we can correctly de�ne its complement as IS � As we
mentioned above� the complement of a scheme may fail to be a scheme� However� complements
of semi	factors are schemes� as the following result shows�

�� CHAPTER �� PRELIMINARIES

Proposition ���� The complement of a semi�factor is a scheme in any qualitative domain�

Proof� Let S be a semi	factor in a qualitative domain D� Denote the projection onto �IS as
p�
This projection is correctly de�ned since �IS is a strong ideal�� Suppose that there are
x�� x� � Dmax such that p
x��
 p
x��� Then pS
p
x��� � � � pS
x��� and y � p
x�� 	 pS
x��
exists since S is a semi	factor� Since pS
x�� � y and p
x�� � p
x�� � y� x� � y� Thus� y � x�
since x� � Dmax� The lattice �x� is Boolean� therefore z � pS
x�� � p
x�� �� � since p
x��
is greater than pS
x���s complement in �x�� However� z � p
x��� thus pS
z� � �� which is
impossible since z � pS
x�� and hence is in �S� This contradiction shows that projections of
maximal elements can not be comparable� thus the complement of S is a scheme� �

If IS is a scheme� we say that S has the complement
which is IS� and denote it by S� Of
course� any semi	factor is complemented by proposition �����

Multivalued dependencies

Now that the complements have been de�ned� the de�nition of multivalued dependencies in
qualitative domains can be given�

De�nition ��� Let D be a qualitative domain and S a scheme having the complement S� Let
S� be a scheme� We say that a relation R
 D satis	es multivalued dependency S� �� S if for
every x� y � R with pS�
x� � pS�
y� there exists z � R such that pS�
z�	 pS
z� � pS�
x�	 pS
x�
and pS�
z� 	 pS
z� � pS�
y� 	 pS
y��

If D is L � V�� this is the usual de�nition of multivalued dependency in a relational database�
Notice that multivalued dependencies� like functional dependencies� should be considered only
on schemes the projections into which do not contain null values� As it was shown above� it
means that a scheme is less than a relation in the Smyth ordering v�� Therefore� in the above
de�nition the following should hold� S�	S v� R and S�	S v� R� It can be easily concluded from
these inclusions that R
 Dmax� Therefore we will consider only relations without incomplete
information when speaking of multivalued dependencies�

The above introduced functional and multivalued dependencies satisfy two standard properties�
The proof is immediate from the de�nitions�

Proposition ���� Let D be a qualitative domain� and S a scheme having complement S� Let
S� be a scheme� and R a relation without incomplete information� i�e� a 	nite subset of Dmax�
Then
�� If R satis	es S� � S then R satis	es S� �� S�
�� If R satis	es S� �� S� then R satis	es S��� S� �

���� DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY ��

It was shown in Buneman et al� ���� that the natural join operation in the relational algebra
corresponds to the join t� in the Smyth ordering� We have shown that the complement of a
semi	factor in a qualitative domain is a scheme and de�ned multivalued dependencies� Now we
are in the position to formulate the decomposition theorem�

Theorem ���	 Let D be a qualitative domain� and R a relation without incomplete information
�that is� a 	nite subset of Dmax�� Let S and S� be semi�factors of D� Then R satis	es multivalued
dependency S� �� S i
 R � �pS� 	 pS
R�� � �pS� 	 pS
R��� where join � is t��

Proof� To simplify the notation� we will write xS and RS instead of pS
x� and pS
R�� S� 	 S
will be denoted by S� and S� 	 S by S�� the corresponding projections are x� and x��

Since S is the complement of S� xS	xS � x�	x� � x for any x� By proposition ���� x� � xS	xS�
and x� � xS 	 xS� � We will also need the following fact� xS� � x� � x�� Indeed� since �x is a
Boolean lattice and xS and xS complement each other in �x� x��x� �
xS	xS���
xS	xS�� � xS� �
The following picture illustrates the relationship between di�erent projections of x�

A
A
A�

�
�

����
�
�
�

A
A
A

xS xS� xS

x� � xS 	 xS� x� � xS 	 xS�
x

r r r
r rr

According to the de�nitions introduced above� R obeys S� �� S i� xS� � yS� implies the
existence of such z that z� � x� and z� � y��

Recall the de�nition of the join� R�
� R�� � minfx � Dj�r� � R�� r�� � R�� � r� 	 r�� � xg� For

example� if x � x� 	 x��� then x � x� � x��� In particular� x � x� � x� for any x� Having done
the preliminary work� we can now proceed to prove the theorem�

 Let R obey the dependency S� �� S� We must show that R � R� � R�� Suppose x � R�
Then x � x� 	 x�� and x is not in R� � R� i� there exist t� t� � R such that x
 t� 	 t���
Assume such t� t� exist� Let v � tS 	 t�

S

it exists since it is bounded by x�� Suppose

v �� Dmax� Then there is v� � Dmax� v�
 v� Since both S and S are schemes� v�S � tS and
v�
S
� t�

S
� Therefore� v� � tS 	 t�S � v� This shows v � Dmax� Since v � x� v � x� But then

x � v � t� 	 t�� � x� This contradiction shows that x � R� � R�� i�e� R
 R� � R��

Let� conversely� x � R� � R�� i�e� for some t� t� � R � x � t�	 t��� As we have shown above�
x � Dmax� Since S� is a scheme� x� � t�� projecting both parts into S� we get xS� � tS� �
Analogously� xS� � t�S� � Thus tS� � t�S� � Since R obeys S� �� S� there is such v � R that
v� � t� and v� � t��� Hence v � v� 	 v� � t� 	 t�� � x� i�e� x � R� Thus� R � R� � R��

�� CHAPTER �� PRELIMINARIES

 Let� conversely� R � R� � R�� We have shown above that for any x and y the element
x� 	 y� is maximal if it exists� therefore� if x� 	 y� exists for some x� y � R� it must belong
to R according to the de�nition of join�

Consider x� y � R such that xS� � yS� � Then pS��S
y�� � pS�
y��	pS
y�� � yS� 	pS
yS��	
pS
yS� � yS� � xS� � x�� Since both S and S� are semi	factors� so is S 	 S� ����� Hence
z � y� 	 x� exists and is an element of R�

We will �nish the proof that R obeys S� �� S by showing that z� � x� and z� � y��
Calculate z�� z� � pS��S
y� 	 x�� � pS�
y�� 	 pS
y�� 	 pS�
x�� 	 pS
x�� � pS�
yS� 	 yS� 	
pS
yS�	yS�	pS�
xS�	xS�	pS
xS�	xS� � yS�	pS
yS��	pS
yS�	xS�	xS � yS�	xS�	xS �
xS� 	 xS � x�� Similarly z� � y�� Theorem is proved� �

Let us �nish this section by an observation that supports the reasonings that led us to two
alternative de�nitions of scheme� It was said before that only a very natural assumption that
complete descriptions are projected into complete descriptions is behind the de�nition of scheme�
while in the de�nition of semi	factors it is implicitly assumed that each scheme is complemented
and projecting is just throwing away those pieces of information which belong to this comple	
ment� So it did not appear as a complete surprise that a scheme may fail to have a complement
even in a qualitative domain while a semi	factor is always complemented in such a domain�
The above theorem that relates multivalued dependencies and decompositions of relations in a
qualitative domain holds for semi	factors but not for schemes because we do need complements
and the possibility to work with the information �thrown away�� Notice� however� that the �only
if� part remains true if S� is an arbitrary scheme and S is a scheme having complement S�

����� Queries

In this section we shall �nd analogs of the main operations of relational algebra for generalized
relations� Schemes introduced before will be used to de�ne projections� Generalized relations
will be considered as �nite antichains in database domains� Let us describe the operations of
the algebra as in Libkin �����

�� Union� Let D be a domain and R�� R� two relations� Then their union is de�ned as R�(�R� �
max
R� � R��� Observe that this is the join in the Hoare powerdomain� That is�

R�(�R� � R� t� R�

We need the max operation because R� �R� may fail to be an antichain� but R�(�R� always is�
R�(�R� can be interpreted as the set of the most informative elements from R� and R��

�� Di
erence� Let D be a domain and R�� R� two relations� Then R� � R� is the usual set
di�erence� Since R� �R�
 R�� it is a relation�

���� DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY ��

Intersection can be expressed as R� �R� � R� �
R� �R���

�� Cartesian
direct� product � Let D�� D� be two domains and R�� R� relations in D�� D� respec	
tively� Then R��R� is a relation in D��D� de�ned as R��R� � fhr�� r�i j r� � R�� r� � R�g�

�� Projection� Given a
database� domain D� we de�ne projection as projection into a scheme	
ideal �S in D� If D is L � V�� then projections thus de�ned coincide with projections in the
relational algebra�

If R
 D is a relation and S is a scheme� pS
R� may fail to be an antichain� Therefore� we need
two operations of projection�

pmin
S
R� � min pS
R�� pmax

S
R� � max pS
R��

If R is a one	element relation� these two projections coincide and we will write simply pS
R��
The above de�ned operations also coincide for relations without incomplete information� i�e�
subsets of Dmax�

�� Selection� We can also de�ne selection using the concept of scheme� First we have to de�ne
conditions� As usually� if c�� c� are conditions� then so are c� 	 c�� c��c� and �c�� Schemes are
necessary to de�ne conditions we start with� Let S� S�
 D be schemes� a � �S� x � D� Then
the elementary conditions are pS
x��a� pS
x��pS�
x�� where � � f������ �����
g�

Let R
 D be a relation� that is� an antichain in D� If c � D � ftrue � falseg is a condition� then
the selection is de�ned as

�c
R� � fx � R � c
x� � trueg�

If we do not know what the class B of basic domains is and howD was constructed from the basic
domains� the above de�ned selection is all we can get� However� if we know a concrete procedure
of construction of D
for example� a term in the signature h���i with variables from B�� then
we can de�ne more complex conditions� For example� if the database domain is D � D � D�
then we are able to select those elements whose �rst and third projections coincide�

We can give the selection more power if we introduce binary relations on domains from B� For
example� if P is a binary relation on D� � B and �S � D�� then we can introduce conditions like

pS
x�� a� � P � This is necessary because� for example� domain of natural numbers is represented
in domain theory as a �at domain N� � f�� n�� n�� n�� � � �g where ni corresponds to the natural
number i� and the ordering ofN� is given by letting � be less than all ni�s� We can not conclude
that � � � from this information� Therefore� we need a binary relation P on N� describing the
ordering of natural numbers as comparing values stored in a database is one of the most typical
operations used in queries over relational databases� Therefore� it is essential that the selection
on database domains be powerful enough to be able to carry out various comparisons�

To de�ne such powerful selection we �rst need the de�nition of similar schemes and a �	�
correspondence between their scheme	ideals� In the above example of D � D � D schemes

�� CHAPTER �� PRELIMINARIES

D�f�g�f�g and f�g�f�g�D should be similar and �	� correspondence between their scheme	
ideals associates the �rst and the third projections of any record� This gives us a possibility to
compare projections on di�erent schemes� As it was said earlier� we may want� for example� to
select records with coinciding �rst and third projections�

In what follows� assume that only record and variant constructors are allowed� That is� D can
be represented as t
D�� � � � � Dn� where t is a term in the signature h���i and D�� � � � � Dn � B

for example� N� �N��
N��
Bool�N����� We now de�ne similarity of two schemes S� S�

and mapping 	S	S� � �S � �S��

 If S is a scheme in D � B� then S is similar to itself and 	S	S is the identity mapping on
�S�

 Let D � t
D�� � � � � Dn�� where Di � B� i � �� � � � � n� Suppose S� S� are two schemes in
D� Assume that the last operation of t is �� i�e� t
�� � t�
�� � � � �� tk
�� and the last
operation of each ti is not �� Then S � S� � � � � � Sk and S� � S�� � � � � � S�k where
Si� S

�
i are schemes in ti
D�� � � � � Dn�� Then S is similar to S� i� there are i and j such that

ti � tj � Si is similar to S�j in ti
D�� � � � � Dn� � tj
D�� � � � � Dn� and Sl � f�tl�D������Dn�g�
S�p � f�tp�D������Dn�g� l �� i� p �� j� 	S	S� maps a record x � �S with only nonbottom ith
component xi � �Si to the record whose only nonbottom jth component is 	Si	S�j

xi��

 If the last operation of the term is �� then S � S� � ���� Sk and S� � S�� � ���� S�k where
Si� S

�
i are schemes in ti
D�� � � � � Dn�� Then S is similar to S� i� each Si is similar to S �i in

ti
D�� � � � � Dn�� and for any x � �S � 	S	S�
x� � 	Si	S�i

x� if x � Si�

Example ��� Let S � f�g � f�g � D and S� � D � f�g � f�g be two scheme	ideals in
D � D � D� Then S and S� are similar and 	S	S�
f���� xg� � fx����g� Scheme	ideals
D �
f�g �D� and D �
D� f�g� are similar in D �
D �D�� �

Now we can extend the list of possible elementary conditions by adding the conditions of form
	S	S�
pS
x���pS�
x� where S� S� are two similar schemes in a database domain D�

As we said before� one may also want to de�ne some binary relations on basic domains� Let
P k
i � k � Ii be a family of binary relations on Di � B� where Ii is
possibly empty� set of indices�

We say that a scheme S of a database domain D � t
D�� � � � � Dn� is also a scheme in a basic
domain Di if S � t
f�g� � � � � Si� � � � � f�g� where Si
 Di is a scheme� In this case we can identify
elements of �S and �Si�

The third type of elementary conditions includes the conditions
pS
x�� a� � P k
i and
pS
x��pS�
x��

� P k
i where S� S � are schemes in Di identi�ed with Si� a � Si and k � Ii�

With such extensions being added� selection covers the usual selection in the relational algebra�

���� DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY ��

Example ��� Consider a relation with variants describing companies� Each record contains
the following information� name� total donations for non	pro�t companies� gross revenue and
costs for pro�t companies� Below are examples of records with variants�

r� � �Name� X� Status� hNon� pro�t� �Donations� 	� ���� ����i��

r� � �Name� Y� Status� hPro�t� �Revenue� �� ���� ����Costs� 	� ���� ����i��

Let D be a domain of names� Then the above records are elements of a database domain
D �
N� �
N� �N���� Consider the following schemes�

S� � f�Dg �
N� �
f�N�
g � f�N�

g���

S� � f�Dg �
f�N�
g�
N� � f�N�

g���
S� � f�Dg �
f�N�

g�
f�N�
g �N����

Then S�� S�� S� are also schemes in N� and S� is similar to S��

Let P be a binary relation on N� such that
ni� nj� � P i� i � j�
�� x� � P for all x � N��
Consider the following conditions� c�
pS�
x� �� �N�

�
to be more precise� we should compare

pS�
x� with an element of �S�� that is� with f�D��N�
� f�gg�� c�

pS�
x�� pS�
x�� � P ��

Let R be a relation in the above database domain� Then �c�
R� selects non	pro�t companies
from R while �c�
R� selects companies working well� that is� whose gross revenue exceeds costs�
�

�� Natural join� Join was introduced in ���� as the supremum in the Smyth ordering� That is�

given two relations
antichains� R�� R�
 D� their join is R�t�R�� It was proved that for domain
L � V� the above de�ned operation coincides with the natural join in relational algebra� We
use more convenient and customary symbol � instead of t��

There is another way to think of the join operation� Given two generalized relations R�� R�
 D�
their join R� � R� is the set of minimal
in D� elements which are greater than some element
of R� and some element of R� �

R� � R� � minfx � D j �r� � R�� r� � R� � r� � x� r� � xg�

This formula follows from the de�nition of R� t� R� and basic properties of the Smyth power	
domain ordering v� ���� ����

Several conditions were given in Tanaka and Chang ����� that the analog of the natural join in
object	oriented model should satisfy� Informally� they are� �� if there are no common attributes
of two relations� the result of the join is isomorphic to their direct
Cartesian� product� �� if two
relations are de�ned over the same sets of attributes� the result of the join is their intersection�

�� CHAPTER �� PRELIMINARIES

�� the join of two relations can be obtained as union of pairwise joins of their elements
if these
exist�� Join is also known to be associative in relational algebra� see Ullman ������

Let us formalize these properties�

�� Let R�
 D�� R�
 D� be two relations� and D� � D� � �� Let R�
� � R� � f��g and

R�
� � R� � f��g be two relations in D� �D�� Then R�

� � R�
� � R� �R��

�� Let R�� R�
 Dmax be two relations� Then R� � R� � R� � R��

Formalizing property �� we must keep in mind that the union of pairwise joins may contain
comparable elements while relations are antichains� Therefore� after �nding union of individual
joins we have to eliminate some elements in order to obtain an antichain� According to Imielinski
and Lipski ���� there is no �semantically correct� way to do it� Since joining relations with null
values may often yield counter	intuitive results
cf� ��� ����� we think that formalizing the third
property we have to eliminate nonminimal elements� i�e� to leave the least informative elements
among pairwise joins�

Let us illustrate it by the following example� Consider two relations�

R� �

Name Room Phone

John �� �
John � ����

R� �
Name Room Salary

John �� ��K

Taking element	wise joins gives us two records over attributes Name� Room� Phone� Salary�
One is r� � John �� � ��K and the other is r� � John �� ���� ��K � Clearly�
r� � r�� Hence� taking maximal records into the result of the join operation tells us that John
is in the room ��� makes ��K and has the telephone number ����� even though there is no
indication in R� and R� that this should be the case� Taking the minimal record r� as the result
is indeed consistent with the information stored in R� and R�� Summing up� the third property
of the join operation is the following�

�� Let R�R�
 D be two relations� and R � fr�� � � � � rng� R� � fr��� � � � � r�mg� Then R � R� �
min

S

frig � fr�jg � i � �� ���� n� j � �� ���� m���

�� If R�� R�� R�
 D are three relations� then R� �
R� � R�� �
R� � R�� � R��

Proposition ���� The join operation t� satis	es �� 	 ���

Proof� Let us �rst rewrite the de�nition of the join operation as R� � R� � minfr� 	 r�jr� �
R�� r� � R�� r� 	 r� exists g�

�� If r�� � R�
�� then r�� is of form hr���i for some r� � R�� Similarly each r� � R� is of

���� DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY ��

form h�� r�i for some r� � R�� Thus for any r�� � R�
� and r�� � R�

� their join exists� in fact�
hr���i 	 h�� r�i � hr�� r�i� Notice that fhr�� r�ijr� � R�� r� � R�g is an antichain provided that
so are R� and R�� Thus R�

� � R�
� � R� �R��

�� If both R� and R� are subsets ofD
max� then r�	r� exists i� r� � r�� Hence R� � R� � R��R��

�� follows immediately from the formula for the join operation given above and an observation
that fr�g � fr��g is r� 	 r�� if this join exists and empty otherwise�

�� follows from the basic properties of the powerdomain ordering v�� see ���� �� ���� �

Recall that the join operation in the algebra of Zaniolo ����� is de�ned only if there are no
occurrences of null values for attributes which are common for both relations� In this case�
starting with antichains� we always obtain an antichain as the result� Therefore� even though
Zaniolo suggests taking maximal elements among individual joins of records and the Smyth join
operation takes minimal elements� they coincide in the limited setting where Zaniolo�s operation
is de�ned�

It is known that in relational algebra join can be expressed via projection� selection and Cartesian
product� This is not true for generalized relations� However� if the underlying domain is the
direct product of domains� then such a representation for join exists� Let D � D� � � � ��Dn

and R�� R� be two relations in D� For any x � D by xi we mean its ith component� i�e�
projection to Di� Let R
 D be a relation� and I
R� � fi j �r � R � ri �� �Di

g� Let
Si � f�g � � � ��Dk�i� � � � �� f�g where k
i� � i if i � n and n � i otherwise and Dk�i� is the
ith factor among �n factors� Then Si is a scheme in D�D� Let S be the direct product of such
Sis that i � I
R�� for i � n and i� n �� I
R�� for i
 n� Let c be the conjunction of conditions
pSi
x� � pSn�i
x� for all i � I
R�� � I
R��� Then

R� � R� � pmin
S
�c
R� �R����

We �nish this section by observation that the above de�ned operations indeed form an algebra�
that is� generalized relations are closed under union (�� di�erence� Cartesian product� projections�
selection and join� The proof is immediate from the de�nitions�

Theorem ���� Generalized relations are closed under the operations (������ pmin� pmax� ����
�

Summing up� we have seen how relational algebra can be reconstructed in the domain model�
However� we shall not use this algebra as the basis for our languages� In section ��� we describe a
new formalism for design of relational query languages which will generalize smoothly to many
kinds of collections� ordered or not� We shall use that formalism as a foundation for query
languages for partial information�

�� CHAPTER �� PRELIMINARIES

��� Languages for programming with collections

����� Data�oriented programming

In this section we give an overview of the data�orientation as a new programming language
paradigm
cf� Cardelli ����� and demonstrate some important instances such as languages for
sets and bags� In particular� we cover a new approach that uses universality properties of
collections as a source of operations that are to be included in a language�

It was observed by Cardelli ���� that while traditional programming languages are mostly al	
gorithmic and procedure	oriented and pay little attention to handling of data� dealing with
information systems in general and databases in particular requires more emphasis on the data�
Databases are designed using some data models� e�g� relational� complex object� etc� To make
it possible to program with data� it is necessary to represent the concept of a data model in a
programming language� The best way to do it is to use type systems as a representation of data
models�

Representing data models via type systems often allows static type�checking of programs which
is particularly important in handling large data as run	time errors are very costly� To make sure
that the type system is not too restrictive and does not limit the programmer�s freedom� some
form of polymorphism must be allowed� We allow all type constructs to be polymorphic� e�g� a
set type constructor can be applied to any type� a product type constructor can be applied to
any pair of types etc�

It was suggested by Cardelli ���� that one use introduction and elimination operations associated
with a type constructor as primitives of a programming language� The introduction operations
are needed to construct objects of a given type whereas the elimination operations are used to
deconstruct them� or rather to do some computation with them� For example� for records� the
introduction operation is forming a record with given �elds� and the elimination operations are
projections�

Since databases work with various kinds of collections� it is important to look at the introduc	
tion and elimination operations associated with those collections� One way to do it is to �nd
operations that are naturally associated with collections� To do so� we de�ne semantics of a
collection type and try to characterize it by �nding out if it has a universality property�

Universality properties immediately tell us what are the introduction and the elimination op	
erations� Assume we have a collection type constructor that we denote by C
�� and a type t�
Recall that by universality property we mean that it is possible to �nd a set & of operations on
the semantic domain of C
t�� which we denote by ��C
t���� and a map � � ��t�� � ��C
t��� such that
for any other &	algebra hX�&i and a map f � ��t�� � X there exists a unique &	homomorphism
f� such that

���� LANGUAGES FOR PROGRAMMING WITH COLLECTIONS �

��t��
�� h��C
t����&i

�
�
�
�
�

f
R
hX�&i

�

f�

Hence� the introduction operations are � and those in & as we can use them to construct
any object of type C
t� from objects of type t� The elimination operations are given by the
universality property� In fact� the general elimination operation is the one that takes f into f��
It is often called the structural recursion�

Notice� however� that the structural recursion has as its parameters the interpretation of the
operations of & on X � Should it happen that in a particular application those do not satisfy
the intended axioms
usually equations�� the resulting program f� may not be well	de�ned�

We shall see some examples shortly�� Therefore� it is particularly important to ensure well	
de�nedness� One way to do it is to require that hX�&i be h��C
s����&i for some type s� Then for
any function f of type t � C
s�� the unique completing homomorphism of the diagram below�
f�� is of type C
t�� C
s� and it is always well	de�ned�

��t��
� � h��C
t����&i

�
�
�
�
�

f
R
h��C
s����&i

�

f� � ext
f�

The reader who chose not to skip the optional section on adjunctions and monads can now be
rewarded� He can see now that there is no mysticism in what we have been doing� In fact� the
general form of the structural recursion corresponds to the adjunction given by the universality
property while the restricted form is precisely the Kleisli category of the corresponding monad%
Indeed� f� in that case is what we called ext
f��

More precisely� assume that semantic domains of all types are objects in some category A and
that C is a functor from A to &
Alg� Since every ��t�� is an object of A� there exists a forgetful
functor U � &
Alg� A� In fact� U simply �forgets� the additional structure given by &� that is�
U
h��C
t����&i� � ��C
t���� Further assume that � is a natural transformation between id and CU

this will be the case on all applications�� Then the universality property stated above means
that C is left adjoint to U� that is� C a U�

�� CHAPTER �� PRELIMINARIES

Let hT� �� �i be the monad associated with the adjunction C a U� where T � UC� Then� for any
type t� ���t�� is an arrow from ��t�� to ��C
t���� In other words� we can regard � as a polymorphic

function of type t � C
t�� Similarly� ���t�� is an arrow from ��C
C
t���� to ��C
t���� Thus� � can be

understood as a polymorphic function of type C
C
t�� to C
t��

Finally� T � UC is a functor on A� Given a function f � s � t and its semantic interpretation
��f �� which a function from ��s�� to ��t�� in A� T
��f ��� is a function from ��C
s���� ��C
t���� That is� T
can be regarded as a polymorphic constructor that takes a function of type s � t and returns
a function of type C
s�� C
t��

Associated with a monad� there is its Kleisli category� In particular� there is a functor from the
Kleisli category of a monad to the original category A whose action on an arrow A� T
B� in
the Kleisli category is an arrow T
A�� T
B� in A� In our terminology� this can be represented
as a polymorphic constructor that takes a function of type t� C
s� and produces a function of
type C
t�� C
s�� This constructor corresponds to taking f into f� in the universality diagram
when the target is h��C
s����&i� In our terminology� this constructor is called ext � Its examples
for various adjunctions have been given in section ����

The fact that the Kleisli category describes a monad can be translated into certain equations on
the polymorphic functions and constructs de�ned above� It is a simple exercise to go through
the constructions of section ��� and see that the following hold�

ext
f� � � � T
f� � � ext
id� T
f� � ext
� � f�

Therefore� there are two equivalent presentations of the restricted form of structural recursion�
one is h�� exti and the other is hT� �� �i�

In two subsequent sections we apply this approach to sets and bags� Before we proceed with
the technical development� let us o�er some remarks on the origins of this approach and some
of its features that are out of the scope of this thesis�

This approach �nds its origins in functional languages like Machiavelli ���� which use special
constructs to work with sets� It was �rst proposed in Breazu	Tannen� Buneman and Naqvi
����
a related language was studied almost simultaneously by Immerman� Stemple and Patnaik
������ Its various restrictions� properties and generalizations to other collections were studied in
Breazu	Tannen� Buneman and Wong ����� Wong ����� Libkin and Wong ����� ���� ���� ��� ����
and Suciu ������

There are a few logical languages for complex objects� e�g� COL of ��� and f	logic of �����
However� recently the idea of using functional languages rather than logical ones for database
programming has been advocated by many researchers� A survey of functional languages for

���� LANGUAGES FOR PROGRAMMING WITH COLLECTIONS ��

databases can be found in Buneman ����� Mathematical foundations for development of such
languages for relational databases have been studied in Hillebrand� Kanellakis and Mairson ���
and Hillebrand and Kanellakis ���� Atkinson et al� ���� point out that one of the advantages of
using functional languages is having a simple comprehension syntax associated with them that
closely resembles conventional query languages like SQL� It is important to note that for the
languages studied here there is an associated comprehension syntax that gives us the languages
of exactly the same expressive power� see Buneman et al� ����� Initially� the idea of using
comprehensions in functional programming appeared in Wadler ����� Immerman� Patnaik and
Stemple ���� and Stemple and Sheard ����� studied languages closely related to those to be
presented shortly� There is an important distinction between their approach and the one that
we are using here� the main computing engine of their language� the set�reduce operation� is
based on nondeterministic choice of elements from a set� whereas there is no nondeterminism in
any of the languages we study� A functional language for sets based on the operations coming
from the consideration of the Plotkin powerdomain was studied in Poulovassilis and Small ������

In the next section we describe two forms of structural recursion on sets� We discuss problems
with them such as non	well	de�nedness� and show how to overcome these problems by imposing
simple syntactic restrictions which correspond to the ext constructor� The language thus ob	
tained turns out to be equivalent to what is known in database theory as the nested relational
algebra� Strictly speaking� there are several nested relational algebras and calculi� of Thomas
and Fischer ����� of Schek and Scholl ������ of Colby ���� and of Abiteboul et al� ���� But since
all of them are known to be equivalent� we speak of the nested relational algebra�

The methodology of using structural recursion and monads has the advantage of being easily
applied to any kind of collections for which a universality property is known� We show how to
use the approach to design the language for nested bags� We shall also discuss some properties
of query language for bags and its representation in a set language� These results will play
an important role when it comes to choosing primitives to be used in the implementation of a
language for sets and or	sets�

����� Sets

The language being described is designed to work with nested sets and records� For simplicity of
exposition� we assume only products
these are su�cient to simulate records�� Types of objects

object types� are given by the following grammar�

t ��� b j unit j bool j t� t j ftg

Here b ranges over an unspeci�ed collection of base types
like int� string etc�� and unit is a
type whose domain consists of a unique element denoted by
��

� CHAPTER �� PRELIMINARIES

Semantics of the product type is as usual� ��t� s�� � f
x� y� j x � ��t��� y � ��s��g� Semantics of the
set type is the �nite powerset� That is� ��ftg�� � fX j X
	n ��t��g�

Expressions of the language have type s� t where s and t are object types� Let us consider the
question of what should be included into such language� For each type constructor there must
the introduction and the elimination operations� For products these are pair formation and two
projections� Since all expressions are functions� we include
f� g� � s � t � r if f � s � r and
g � t� r and �� � s� t � s� �� � s� t � t� For type unit there is only one introduction operation
% � t� unit which always returns the unique element
� of type unit �

To see what must be included for sets� recall that the semantic constructor of the set type� the
�nite powerset P�n� can be regarded as a functor from Set� the category of sets� to SL�� the
category of join	semilattices with zero� Moreover� P�n is left adjoint to the forgetful functor U �
SL� � Set and � de�ned by �X � X � P�n
X� where �X
x� � fxg is a natural transformation
from id to UP�n� This tell us that for any join	semilattice with zero hA�	� �i and a function
f � X � A there is a unique homomorphism f� such that the following diagram commutes�

X
�� hP�n
X���� �i

�
�
�
�
�

f
R
hA�	� �i

�

f�

Therefore� the introduction operations for the set type constructor are �� the singleton formation
� and union �� To represent any constant c of type t as a function� we make it a function
Kc � unit� t� Thus� � is represented in the language as a function empty � unit � ftg�

The universality property also tells us what the decomposition operation is� The following
function is uniquely de�ned� provided e and u supply its range with the structure of a semilattice
with zero�

fun s sru �e� h� u�
�� � e
j s sru �e� h� u�
fxg� � h
x�
j s sru �e� h� u�
A�B� � u
s sru�e� h� u�
A�� s sru �e� h� u�
B��

Here s sru stands for the �structural recursion on the union presentation of sets�� So� one
possibility to deal with sets is to add the empty set� singleton formation� union and s sru as
operations on sets�

However� if e and u do not supply the range of s sru with the structure of a semilattice with
zero� then s sru may not be well	de�ned� For example� if e is � of type int� h always returns

���� LANGUAGES FOR PROGRAMMING WITH COLLECTIONS �

�� and u is �� one may think that s sru ��� x����� is the cardinality of a set� But this is
false as the following example shows� � � s sru ���x�����
f�g� � s sru ���x�����
f�� �g� � ��
Unfortunately� Breazu	Tannen and Subrahmanyam ��� showed that checking if s sru �e� h� u� is
well	de�ned is undecidable�

To ensure well	de�nedness� we have to go to the monad or its Kleisli category as it was explained
in section ������ Going back to the examples from section ���� we can see what the operations
T� � and ext are� T simply maps a function of type s� t over a set of type fsg returning a set
of type ftg� For example� T
x�x� ��f�� �� �g� f�� �� �g� From now on� we shall call it map� �
takes a set of sets of type s and returns their union� For example� �
ff�� �� �g� f�� �� �g� f�� �gg� �
f�� �� �� �� �� �g� And ext
f� is de�ned as � �map
f��

Thus� at this time we can add map
�� and � as the elimination operations to the language�
Note that there is still no way to interact between sets and products and to compare ob	
jects� So� we add an operator �� � s � ftg � fs � tg whose semantics is ��
x� fy�� � � � � yng� �
f
x� y��� � � � �
x� yn�g and the equality test� The operator �� comes from the notion of a strong
monad� see Moggi ������ Finally� to make the language compositional� we allow composition of
functions�

The language we have obtained is shown in the �gure ��� below� It is denoted by NRL
nested
relational language�� We have added the type of booleans and the if�then�else construct� For
all expressions in the �gure ��� we showed their most general types in the superscripts� In the
future� those superscripts will be usually omitted as the most general type of any expression can
be inferred�

Writing NRL expressions we shall occasionally use one level of 	abstraction
no higher order
functions� and application of a �term to an object� This is possible because there is a calculus
equivalent to NRA which allows such operations� see Breazu	Tannen� Buneman and Wong ����
and Libkin and Wong ������

The following was proved in Breazu	Tannen� Buneman and Wong ����� Paredaens and Van Gucht
����� and Wong �����

Theorem ���� � NRL has precisely the expressive power of the nested relational algebra�
Moreover� if eq is replaced by either of membership test� subset test� intersection or di
erence
together with an emptiness test� the expressive power remains the same�
�� NRA is conservative over relational algebra� That is� the expressive power of the sublanguage
of NRA obtained by restricting input and output types to �at types �that is� sets of products of
base types� is precisely that of the relational algebra� �

This theorem tells us about limitations of the language� Since it has essentially the power of the
�rst order logic� it can not express recursive queries or parity of cardinality� There are various
tools for analyzing the expressiveness of the �rst order logic� such as Ehrenfaucht	Fra')ss�e games�

� CHAPTER �� PRELIMINARIES

Category with products

g � u� s f � s� t

f � g � u� t

c � bool f � s� t g � s� t

if c then f else g � s� t

f � u� s g � u� t

f� g� � u� s� t

�s�t� � s� t� s �s�t� � s� t� t %t � t� unit

Kc � unit� Type
c� idt � t� t eqs � s � s� bool

Set monad

�
s�t
� � s � ftg � fs� tg �t � t� ftg �t � ftg � ftg � ftg

�t � fftgg � ftg empty t � unit� ftg
f � s� t

map f � fsg � ftg

Figure ���� Expressions of NRL

���� LANGUAGES FOR PROGRAMMING WITH COLLECTIONS �

�*� laws
see Fagin ������ Hanf�s lemma
see Fagin et al� ������ Here we demonstrate another
tool� the bounded degree� which was proposed by Libkin and Wong ������ It has an advantage of
being more uniform than other techniques�

Let G � hV�Ei be a graph� De�ne in�deg
v� � card
fv� j
v�� v� � Eg� and out�deg
v� �
card
fv� j
v� v�� � Eg�� The degree set of G� deg
G�� is de�ned as fin�deg
v� j v � V g �
fout�deg
v� j v � V g
 N� One of the reasons why most recursive queries are not �rst	order
de�nable is that they may take in a graph� whose degree set contains only small integers and
may return a graph whose degree set is large� The de�nition below captures this intuition�

De�nition ��� Let L be a language� It is said to have the bounded degree property �at type
s� if� for any f � fs � sg � fs � sg that is de	nable in L and for any number k there exists a
number c� depending on f and k only� such that card
deg
f
G��� � c for any graph G satisfying
deg
G�
 f�� �� � � � � kg�

First� let us show how the bounded degree property can be used to prove various inexpressibility
results� We consider the following queries�

 chain � fs � sg � bool is a query that takes a graph and returns true i� the graph is a
chain� that is� a tree such that the out	degree of each node is at most ��

 bbtree � fs � sg � bool is a query that takes a graph and returns true i� the graph is a
balanced binary tree� that is� a binary tree in which all paths from the root to the leaves
have the same length�

 dtc � fs � sg � fs � sg is the deterministic transitive closure� That is� if G � hV�Ei
is a digraph� then dtc
G� � hV�E�i where
v�� vk� � E� i� there is a path
v�� v�� �
E� � � ��
vk��� vk� � E such that vi�� is a unique descendant of vi� i � �� � � � � k � �� See
Immerman �����

The deterministic transitive closure is a �rst	order complete problem for DLOGSPACE ����� It
is not hard to show that chain and bbtree are at most as hard as dtc� That is� if L is a language
that has at least the power of the �rst order logic
relational algebra�� then both chain and
bbtree are expressible in L augmented with dtc� see Libkin and Wong ������

Proposition ���� Let L be a language that has at least the power of the relational algebra�
Then� if L has the bounded degree property at type s� then neither chain � fs � sg � bool nor
bbtree � fs� sg � bool is expressible in L�

�We use graphs for the simplicity of exposition� Relational structures of arbitrary �nite arity can be used�

� CHAPTER �� PRELIMINARIES

Proof� We o�er a proof by picture� Assume chain is de�nable� then it is possible to de�ne an
expression that� when given a chain as an input� returns its transitive closure� As shown below�
using chain it is possible to determine if a precedes b by re	arranging two edges and checking if
the resulting graph is a chain� First� edges from a and b to their successors a� and b� are removed
and then two edges are added� one from a to b� and the other from the node with no outcoming
edges to a��

���
�

���
�

�

��
�� �

�

� ��

��

a a� b b�

b b� a a�

But this contradicts the bounded degree property as we started with an n�node graph whose
degree set is f�� �g and ended up with f�� �� � � � � ng�

If bbtree is de�nable� it is possible to determine if two nodes in a balanced binary tree are at
the same level by re	arranging two edges as follows and checking if the result is still a balanced
binary tree�

�
�

�
�

�
�

�
�
� �

�
�

�
�

�
�

�
�
������

�
���

�
��R

Q
Q
QQs

�
�

���

a b

a� a�� b� b��

Again� we start with an n�node graph whose degree set is f�� �� �g and� making cliques of the
nodes at the same level� end up with a graph whose degree set has cardinality log�
n� ��� �

The main reason we study this property is that it holds in NRL�

Theorem ���� NRL has the bounded degree property at base types�

Proof sketch� Let f � fb� bg � fb� bg be an NRC expression where b is a base type� Then�
by conservativity� f is equivalent to a relational algebra expression� Let E be an input to f and
E� � f
E�� both E and E� are sets of pairs of elements of type b� Then for some �rst	order

���� LANGUAGES FOR PROGRAMMING WITH COLLECTIONS �

expression F we have �a�b �
a� b� � E� ! F
a� b� E� where E appears in F as a predicate of
form E
x� y��

By a neighborhood of radius r of x in E we mean the set of all nodes whose distance from x
that
is� the length of a minimal path in E� does not exceed r� We denote the r	neighborhood of x by
Nr
x�� By Nr
X� we mean

S
x�X Nr
x�� According to Gaifman ����� F is a Boolean combination

of certain sentences and formulae with a� b as free variables in which all quanti�ers are bounded
to some neighborhoods of a and b� Moreover� the maximal radius of those neighborhoods� r�
is determined by F � If deg
G�
 f�� � � � � kg� then it is possible to �nd the number qr of all
nonisomorphic neighborhoods of radius up to r� In fact� qr � pr�

p�r where pr �
�k � ��r is an
upper bound on the size of Nr
x��
Whenever we speak of a neighborhood� we assume we also
know its �center�� This is the reason for multiplying by pr� which represents a choice of the
center element��

Now consider a partition X�� � � � � Xq�r�� of the set of nodes into subsets of nodes having iso	
morphic neighborhoods of radius �r � �� Let a�� a� belong to the same class Xi� If b ��
N�r��
a�� �N�r��
a��� then Nr
a�� b� and Nr
a�� b� are isomorphic� In particular�
a�� b� � E�

i�
a�� b� � E ��

Let Ya � fb j
a� b� � E�g� Then there exists a constant di that depends on r and k only
such that j card
Ya��� card
Ya�� j� di whenever a�� a� � Xi� Indeed� for elements b outside of
N�r��
a���N�r��
a���
a�� b� i�
a�� b�� and hence the only di�erence is in the edges either inside
or between those neighborhoods� But the upper bound on the number of those is determined
by k and r� In fact� it is at most �p��r����p�r��� Now assume that a� and a� are such elements
in the class in the partition that the cardinality of Ya� is minimal and the cardinality of Ya� is
maximal� Then we derive that the number of di�erent outdegrees restricted to targets outside
of respective �r � � neighborhoods is at most di� Since the number of possible outdegrees
inside �r � � neighborhoods is bounded above by p�r��� we obtain that the number of di�erent
outdegrees in a given partition class Xi is at most p�r�� � di� Since the number of elements in
the partition is at most q�r��� this tells us that the number of distinct outdegrees in E� depends
only on k and r� In fact� it is bounded above by q�r��

Pq�r��
i��
p�r���di�� The proof for indegrees

is similar� �

Corollary ���� None of the following are expressible in NRL� dtc� transitive closure� tests
for connectivity of directed and undirected graphs� testing whether a graph is a tree� testing for
acyclicity� �

Therefore� there is a need in primitives that enrich the expressive power of the language� We
have seen one of them 	 the structural recursion on the union presentation� Alternatively� one
can construct sets using �insert presentation�� and de�ne s sri � structural recursion on the insert
presentation� as follows�

� CHAPTER �� PRELIMINARIES

fun s sri �e� i�
�� � e

j s sri �e� i�
insert
x�X�� � i
x� s sri �e� i�
X��

The typing rules for both structural recursion constructs are as follows�

e � t h � s� t u � t� t� t

s sru�e� h� u� � fsg � t

e � t i � s� t � t

s sri �e� i� � fsg � t

The semantics of s sri is given by s sri �e� i�
fx�� � � � � xng� � i
x�� i
x�� � � �i
xn� e� � � ���� Unfortu	
nately� s sri retains the major of problem of s sru � It is well	de�ned i� i
x� i
x� a�� � i
x� a� and
i
x� i
y� a�� � i
y� i
x� a��� That is� it must be irrelevant in which order elements of a set are pro	
cessed and how many duplicates are found� It was shown by Breazu	Tannen and Subrahmanyam
��� that these conditions are generally undecidable�

So� both forms of the structural recursion can express recursive queries like transitive closure�
but they are not necessarily well	de�ned� The question arises� is there a well	de�ned construct
that adds su�cient power to the language

One solution proposed by Abiteboul and Beeri ��� and Gyssens and Van Gucht ��� was to
include powerset as a primitive� The type of powerset is ftg � fftgg and it returns the set of
all subsets of a given set� It was shown by Abiteboul and Beeri that many recursive queries�
such as the transitive closure� can be expressed in NRL
powerset�� Moreover� Breazu	Tannen�
Buneman and Wong ���� and independently Gyssens and Van Gucht ��� showed that

Theorem ���� NRL
s sri� � NRL
powerset�� �

However� using powerset has a big disadvantage� it has exponential complexity� For example�
to compute transitive closure of a relation� it is necessary to take the powerset of the total
relation of the domain� Moreover� it was shown recently by Suciu and Paredaens ����� that
any expression for transitive closure in NRA
powerset� needs exponential space to be evaluated�
Thus� using powerset as an alternative to the structural recursion is unsatisfactory�

Another alternative was proposed by Libkin and Wong ������� It is the loop construct given by

f � s� s

loop
f� � ftg � s� s

�I was informed recently that Saraiya ����� studied the same construct and proved one direction of theorem
�����

���� LANGUAGES FOR PROGRAMMING WITH COLLECTIONS

with the following semantics� given an n	element set X and an object x � s� then loop
f�
X� x� �
fn
x�� Then the following holds�

Theorem ���� NRL
s sri� � NRL
loop�� �

We shall prove a similar theorem for bags later� The proof of theorem ���� is essentially the
same� Note that simulation of loop with s sri is e�cient� while the reverse simulation requires
exponential time� In the subsection dealing with bags we shall demonstrate an e�cient simula	
tion�

����� Bags

Sets and bags are closely related structures� While sets have been studied intensively by the
theoretical database community� bags have not received the same amount of attention� However�
real implementations frequently use bags as the underlying data model� For example� the �select
distinct� construct and the �select average of column� construct of SQL can be better explained
if bags instead of sets are used�

To use our approach� we �rst change the type system to

t ��� b j unit j bool j t� t j fjtjg

where the fjjg brackets are used for bags� To see what the bag constructs are� we must exhibit
a universality property for bags�

Let X be a set and Pb
X� the set of all �nite bags of elements of X � De�ne " as the additive
union on bags� For example� fja� a� bjg " fja� b� b� bjg � fja� a� a� b� b� b� bjg� Then hPb
X��"� fjjgi
is the free commutative monoid generated by X � That is� for any other commutative monoid
hA� �� ei� any map f from X to A and � � X � Pb
X� de�ned by �
x� � fjajg� there exists a
unique monoid homomorphism f� such that the following diagram commutes�

X
�� hPb
X��"� fjjgi

�
�
�
�
�

f
R

hA� �� ei
�

f�

� CHAPTER �� PRELIMINARIES

Therefore� the introduction operations for the bag type constructor are the empty bag fjjg�
the singleton formation which we denote by b � to distinguish it from the corresponding set
construct� and the additive union "�

The universality property also tells us what the elimination operation is� The following function
is uniquely de�ned� provided e and u supply its range with the structure of a commutative
monoid�

fun b sru�e� h� u�
�� � e
j b sru�e� h� u�
fxg� � h
x�
j b sru�e� h� u�
A� B� � u
b sru �e� h� u�
A�� b sru �e� h� u�
B��

Note that calculation of cardinality of bag as b sru ��� x����� is now correct as � and � do
supply N with the structure of a commutative monoid� However� b sru ��� id��� is not well	
de�ned because �� � b sru ��� id���
fj�� �jg� � b sru ��� id���
fj�� �jg� � �� The reason of course
is that � is not commutative� Moreover� it was shown by Breazu	Tannen and Subrahmanyam
��� that checking preconditions for b sru to be well	de�ned is generally undecidable�

There is an insert presentation of the bag structural recursion given by the construct

e � t i � s � t� t

b sri
i� e� � fjsjg � t

Its semantics is similar to the semantics of s sri � Moreover� it has the same expressive power
as b sru � However� it is required that i satisfy the commutativity precondition� i
a� i
b�X�� �
i
b� i
a�X��� which again can not be automatically veri�ed ����

Therefore� we need to impose syntactic restriction to ensure well	de�nedness� that is� we must
go from the adjunction to the monad� In this case it means adding mapping of a function over
bags� b map� and �attening bag of bags� b �� For example�

b map
x�x� ��
fj�� �� �� �� �jg� � fj�� �� �� �� �jg
b �fjfj�� �jg� fj�� �jg� fj�� �� �jgjg � fj�� �� �� �� �� �� �jg

Note that unlike mapping over sets� b map always preserves the cardinality of a bag�

Now we can add the bag monad constructs shown in the table below to the general categorical
constructs
composition� pairing etc� to obtain the language that we call NBL � the nested bag
language�

���� LANGUAGES FOR PROGRAMMING WITH COLLECTIONS �

Bag monad

b �
s�t
� � s� fjtjg � fjs� tjg b �t � t� fjtjg "t � fjtjg � fjtjg � fjtjg

b �t � fjfjtjgjg � fjtjg b empty t � unit� fjtjg
f � s� t

b map f � fjsjg � fjtjg

Recall that the equality test was included in NRL� and we showed that it was enough to de�ne
various other tests
membership� subset�� di�erence� intersection etc� However� this is not the
case with bags� Moreover� with bags we have a new important construct� duplicate elimination�
Our �rst goal is to study the relative expressive power of the following operations
see Grumbach
and Milo ���� and Libkin and Wong ������ with respect to NBL� In what follows� count
d� B� is
the number of occurrences of an element d in a bag B�

 monus � fjsjg � fjsjg � fjsjg� monus
B�� B�� evaluates to a B such that for every
d � s� count
d� B� � count
d� B�� � count
d� B�� if count
d� B��
 count
d� B��� and
count
d� B� � � otherwise�

 max � fjsjg � fjsjg � fjsjg� max
B�� B�� evaluates to a B such that for every d � s�
count
d� B� � max
count
d� B��� count
d� B����

 min � fjsjg � fjsjg � fjsjg� min
B�� B�� evaluates to a B such that for every d � s�
count
d� B� � min
count
d� B��� count
d� B����

 eq � s � s� bool � equality test�

 member � s� fjsjg � bool � membership test�

 subbag � fjsjg � fjsjg � bool � subbag test�

 unique � fjsjg � fjsjg� unique
B� eliminates duplicates from B� That is� for every d � s�
count
d� B�
 � if and only if count
d� unique
B�� � ��

The following result of Wong
see Libkin and Wong ������ gives a precise characterization of
expressive power of these constructs relative to NBL�

Theorem ���� monus can express all primitives other than unique� unique is independent of
the rest of the primitives� min is equivalent to subbag and can express both max and eq� member
and eq are interde	nable and both are independent of max � �

�� CHAPTER �� PRELIMINARIES

The results of theorem ���� can be visualized in the following diagram�

monus

min subbag unique

�
�

max eq member

We therefore work with the strongest combination of those primitives� monus and unique � The
language NBL
monus � unique� will be denoted by BQL �Bag Query Language��

How can we study the expressiveness of BQL One idea is to �nd a set language equivalent to
BQL in terms of expressive power� Here we exhibit such a language� Add natural numbers� N�
as a base type equipped with the following� addition �� multiplication �� modi�ed subtraction

monus� � and summation

P
�

f � s� NP
f � fsg � N

with semantics
P
f
fx�� � � � � xng� � f
x�� � � � �� f
xn�� Observe that � can be expressed withP

�

Theorem ���	 BQL � NRL
N�+� �� � �� �

Of course� in order to speak of the equivalence of the languages with di�erent type systems� one
has to give a translation between those type systems� For theorem ����� sets are translated into
bags in a straightforward manner and bags are represented as sets of pairs �element	number of
occurrences��

One of the reasons this equivalence is useful is that the set language equivalent to BQL possesses
what is called the conservative extension property� That is� its expressive power is independent
from the set height of the intermediate data� see Libkin and Wong ������ As a consequence�

Theorem ���� Let U be a property of natural numbers� That is� U
 N� Then membership in
U can be expressed in BQL i
 either U or N� U is 	nite�

Proof sketch� Assume that U and N�U are both in�nite and that membership in U is de�nable�
Then the following function p � N � N is de�nable in NRL
N�+� �� � �� p
n� � � if n � U and
p
n� � � if n �� U � By conservativity� p can be de�ned without using any set constructs� i�e� it
is constructed from the arithmetic functions� constants and if�then�else� It is not hard to show

���� LANGUAGES FOR PROGRAMMING WITH COLLECTIONS ��

that in this case p coincides with a polynomial almost everywhere� Since it has in�nitely many
roots� it must then be zero almost everywhere� contradiction� �

Corollary ���� None of the following functions is expressible in BQL�
 parity test�
 division by a constant�
 bounded summation�
 bounded product�
 gen � N� fjNjg given by gen
n� � fj�� �� � � � � njg� �

We still would like to know if the queries of corollary ���� are de�nable in BQL or equivalently
in NRL
N�+� �� � �� One way to show they are not de�nable is to prove that BQL possesses the
bounded degree property� This approach is very problematic as� to the best of our knowledge�
there is no known logic capturing the language NRL
N�+� �� � � nor its �at fragment� The proof
of the bounded degree property for NRL is based on Gaifman�s result about local formulae �����
That result was proved by the quanti�er elimination� This poses a problem if we try to prove
the bounded degree property for �at types in NRL
N�+� �� � � or BQL�

It was shown by Libkin and Wong ����� that adding operations to NRL that capture the expres	
sive power of BQL amounts essentially to adding aggregate functions� Inexpressibility of recursive
queries in languages with aggregates was studied by Consens and Mendelzon ����� They showed
that the transitive closure is not expressible in a �rst	order language with aggregate functions�
provided DLOGSPACE is strictly included in NLOGSPACE�

However� there is no simple proof of inexpressibility results we want to show based on this kind
of complexity arguments� For example� the deterministic transitive closure is a DLOGSPACE	
complexity query� If it can be shown that the complexity of BQL queries is in a class that is
strictly lower than DLOGSPACE� then we would have shown that the deterministic transitive
closure is not de�nable in BQL� It is known that AC� � DLOGSPACE ����� Queries written
in NRL have AC� data complexity ������ This inclusion implies that the parity test
is the
cardinality of a set even � and the transitive closure cannot be expressed in NRC because they
can not be done within AC� �����

If BQL had AC� data complexity� the same argument would work for it� However� it is not
hard to see that there are non	AC� queries that one can write in BQL since multiplication is
not in AC� ����� As a more interesting example of a non	AC� query� consider the restriction
of NRL
N�+� �� � � with just two base types� N and unit � We are going to show that in such a
restriction parity of the cardinality of a set is de�nable� First� we need

Theorem ���� If a linear order �b is given at each base type b� then a linear order �s at each
type s can be expressed in NRL
N�+� �� � �� �

�� CHAPTER �� PRELIMINARIES

The proof of this result is based on the following lemma
see Libkin and Wong ���� for details��

Lemma ���� Given a partially ordered set hA��i� de	ne an ordering � on its 	nite powerset
P�n
A� as follows� X � Y i
 max

X�Y ��
Y �X��
 Y � or� equivalently� if �x � X�Y �y �
Y �X � x � y� Then � is a partial order� Moreover� if � is linear� then so is �� �

Since the usual ordering on naturals is de�nable
n � m i� n � m � ��� by theorem ���� the
linear ordering �s is available at any type� Then the cardinality of a set X � fsg is odd i� there
is x � X such that fy � X j y �s xg and fy � X j x �s yg have equal cardinality� Since testing
for equal cardinality can be done in NRL
N�+� �� � �� one can test whether a set has odd number
of elements� Thus� we exhibited another non	AC� query that can be de�ned in NRL
N�+� �� � ��
Note that this does not mean that parity of cardinality can be de�ned at any unordered type�

Therefore� one needs new techniques to study expressiveness of bag languages� Such techniques
were proposed recently in Libkin and Wong ����� where the following was proved�

Theorem ���� None of the following are expressible in BQL �or equivalently NRL
N�+� �� � ���
dtc� chain� bbtree� transitive closure� tests for connectivity of directed and undirected graphs�
testing whether a graph is a tree� testing for acyclicity� �

However� it remains open whether BQL has the bounded degree property�

Summing up� going from sets to bags buys us aggregate functions� but we still can not express
recursive queries� Of course they can be expressed with structural recursion� but then veri�cation
of preconditions becomes undecidable� Hence� one needs other ways to enhance the expressive
power�

Following Abiteboul and Beeri ���� Grumbach and Milo ���� introduced the powerbag operator
into their nested bag language� The semantics of powerbag is the function that produces a bag
of all subbags of the input bag� For example�

powerbagfj�� �� �jg� fjfjjg� fj�jg� fj�jg� fj�jg� fj�� �jg� fj�� �jg� fj�� �jg� fj�� �� �jgjg
They also de�ned the powerset operator on bags as unique � powerbag � For example�

powersetfj�� �� �jg� fjfjjg� fj�jg� fj�jg� fj�� �jg� fj�� �jg� fj�� �� �jgjg
We do not consider powerset on bags further because of the following result�

Proposition ���� BQL
powerbag� � BQL
powerset��

Proof sketch� Suppose a bag B is given� then another bag B� can be constructed such that
for any a � B� B� contains a pair
a� fja� � � � � ajg� where the cardinality of the second component

���� LANGUAGES FOR PROGRAMMING WITH COLLECTIONS ��

is count
a� B�� Let B�� � unique
B��� then B�� can be computed by BQL� Now observe that
changing the second component of every pair to its powerset and then b map
b ��� followed
by �attening will give us a bag where each element a � B will be given a unique label� Now
applying powerset to this bag followed by elimination of labels produces powerbag
B�� �

In contrast to the set languages� the structural recursion for bags is strictly stronger than
powerbag �

Theorem ���� BQL
powerbag� � BQL
b sri��

Proof sketch� First� powerbag can be expressed using b sri � cf� ����� Then it can be shown
that any function in BQL
powerbag� produces outputs whose sizes are bounded by an elementary
function on the size of the input� but in BQL
b sri� it is possible to de�ne a function that on the
input of size n produces the output of the hyperexponential size
where the height of the stack
of powers depends on n� and hence can not be bounded by an elementary function� �

As an illustration of theorem ����� we characterize precisely the classes of arithmetic functions
that both languages express� It also gives an alternative proof of theorem �����

Theorem ���� a� The class of functions f � N� � � ��N� N de	nable in BQL
b sri� coincides
with the class of primitive recursive functions�
b� The class of functions f � N � � � �� N � N de	nable in BQL
powerbag� coincides with the
class of Kalmar�elementary functions� �

Similar results for other languages for bags or sets with built	in natural numbers were proved
in Grumbach and Milo ���� and Immerman et al� �����

The bounded loop construct for bags is given by

f � s� s

loopt
f� � fjtjg � s� s

Its semantics is as follows� loop
f�
fjo�� � � � � onjg� o� � f
� � � f
o� � � �� where f is applied n times
to o�

Similarly to the set case� we have

Theorem ���� BQL
loop� � BQL
b sri��

�� CHAPTER �� PRELIMINARIES

Proof� For the BQL
loop�
 BQL
b sri� part� it su�ces to observe that loop
f�
n� e� � b sri
f �
��� e�
n�� where n is a shorthand for the bag of n units�

To prove BQL
b sri�
 BQL
loop�� we �rst de�ne a function g � fjtjg � fjfjt � Njgjg where
N� as usual� is an abbreviation for fjunitjg� This function g� when applied to a bag B� pro	
duces the bag whose elements are bags of pairs� such that mapping �� over such a bag gives
B and mapping �� gives a bag of numbers from � to n where n is the cardinality of B� More	
over� g
B� contains all possible labeling of elements by numbers� For example� gfja� bjg �
fjfj
a� ���
b� ��jg� fj
a� ���
b� ��jgjg�

To show that such g is de�nable� �rst notice that powerbag is de�nable in BQL
loop�� Indeed�
it is easy to de�ne an expression that� given a bag� produces all subbags of cardinality one less
than the cardinality of the bag� Now using the loop construct with such an expression gives us
powerset and therefore powerbag � If n is the cardinality of B
which is obtained by applying
b map
%� to B�� then powerset applied to it produces the bag of all numbers from � to n� Hence�
we can construct a bag of all numbers from � to n� Now take the cartesian product of this
bag and B and denote it by B�� Then powerbag
B�� contains all bags whose elements are pairs�
the �rst component being an element of B and the second component being a number from
� to n� Such a bag B�� makes it to the output of g i� the two conditions are satis�ed� �rst�
b map
���
B��� � B and second� b map
���
B��� � fj�� � � � � njg� Since equality test and selection
are available� g can be de�ned in BQL
loop��

Now we must de�ne b sri
i� e� � fjsjg � t in BQL
loop�� Given a bag B � fjsjg� to determine
the value of b sri
i� e� on B �rst apply g to B to obtain B�� De�ne h � fjs � Njg � t �
fjs � Njg � t as follows� h
B�� a� selects the pair
b� k� from B� with the maximal k and returns

B�monusfj
b� k�jg� i
b� a��� Now loop
h� applied to
B�
B�� e��� where B� is an element of B��
returns a pair whose second component is the value of sri
i� e� on B if elements of B are
enumerated for applying the structural recursion as they are labeled in B�� Threfore� mapping
this loop over B� we obtain all possible outcomes of b sri
i� e�
B� depending on in which order
i was applied� If b sri
i� e� is well	de�ned� then the order does not matter and applying unique
gives us a singleton bag that contains b sri
i�e�
B�� This shows that b sri is expressible in
BQL
loop�� �

Note that as in the set case� the simulation of loop with b sri is e�cient� while the reverse
simulation requires exponential time� However� if linear orderings are given at base types� one
can e�ciently lift them to arbitrary types
cf� theorem ����� and de�ne a function sort � fsg �
fs � Ng such that sort
X� � f
x�� ��� � � � �
xn� n�g whenever x� �s � � � �s xn by counting the
numebr of elements in a set which are less than a given element� Using sort we can make both
translations e�cient� going from loop to b sri we use sort to pick an order in which elements
are given to b sri for processing�

Theorem ���� also sheds some light on theorem ���� by showing that its statement is very
intuitive and well expected� There are two classical results in recursion theory ������ One� due

���� LANGUAGES FOR PROGRAMMING WITH COLLECTIONS ��

to Meyer and Ritchie� states that the functions computable by the language that has assignment
statement and for n do S� are precisely the primitive recursive functions� The semantics of
for n do S is to repeat S n times� A similar result by Robinson� later improved by Gladstone�
says that the primitive recursive functions are functions built from the initial functions by
composition and iteration� That is� f
n� �x� � g�n�
�x�� see ������ The structural recursion for
bags is essentially the for�do construct and� not surprisingly� it expresses precisely the primitive
recursive functions�

We have seen the equivalence BQL � NRL
N�+� �� � �� Now it is natural to ask whether it
continues to hold
under the translations of theorem ����� when set and bag languages are
augmented with powerset and powerbag or structural recursion� Consider the following primitive
in the set language
cf� corollary ������

gen � N� fNg� gen
n� � f�� �� � � � � ng

Under translations of theorem ����� it corresponds to the bag language primitive that takes a
bag of n units and returns bag of bags containing i units for each i � �� �� � � � � n� In other words�
it is powersetunit � unique � powerbagunit�

Having made this observation� we can show the separation result�

Theorem ���	 a� NRL
N�+� �� � � powerset� � BQL
powerbag��
b� NRL
N�+� �� � � s sri� � BQL
b sri�� �

Now we have a problem of �lling the gap between set and bag languages with power operators
or structural recursion� It turns out that the gen primitive is su�ciently powerful to do the job�

Theorem ���� a� NRL
N�+� �� � � powerset � gen� � BQL
powerbag��
b� NRL
N�+� �� � � s sri � gen� � BQL
b sri�� �

We shall use these equivalences later for making decision about adding power to the implemen	
tation of the language for sets and or	sets�

This concludes our discussion of the background we need in order to develop the semantics of
partiality and to design query languages for partial data�

WHERE ARE WE NOW AND WHERE ARE WE GOING�

�� CHAPTER �� PRELIMINARIES

It is time to pause for a moment and see where we have arrived to and where we should go from
here� In the introduction� we formulated two main themes of this thesis� partiality of data is

represented via orderings on values and semantics suggests programming constructs�

In this chapter� we have developed the background necessary to put these ideas to work� First�
we have studied the domain	theoretic model that accommodates various collections of partial
values� Then we have seen how universality properties of semantics of datatypes can be turned
into the programming language syntax�

Our �rst task is to specialize the general theory of section ��� to various collections of partial data�
These include sets under both closed and open world assumptions� or	sets and the approximation
constructs� Keeping our second goal of developing query languages in mind� not only do we have
to come up with semantic models for those� but we also must �nd their universality properties�
Having developed the semantics of collections and proved their universality properties� we can
use the general techniques of section ��� to design languages to work with partial information�

Semantics of partial data is studied in the next chapter� We exhibit orderings and semantic do	
mains for all kinds of collections we have seen and� furthermore� prove the universality properties
for those semantic domains�

We then proceed in chapter � to design languages for sets and or	sets
possibly with null values�
and approximation constructs� We shall show that the language for sets and or	sets possesses
many intersting properties� Two are of special importance� First� semantics of objects can be
incorporated into the language by means of normalization of objects� The process of normal	
ization will be studied in details� Second� we show that the language has adequate expressive
power to encode approximation constructs and program with them�

Finally� in chapter � we describe a practical system based on the language for sets and or	sets
and show how it can be used for querying incomplete databases and producing approximate
answers to queries�

Chapter �

Semantics of Partial Information

The purpose of this chapter is to study the semantics of partial data� Our �rst goal is to
choose orderings on various kinds of collections� To do so� we formalize elementary updates
on collections which improve our knowledge about the real world situation represented by that
data� that is� add information� Then we characterize transitive closures of those updates� thus
obtaining the orderings� We carry out this program for OWA and CWA sets and bags� or	sets
and all approximations�

We use the orderings to de�ne the semantics of collections of partial objects� It will be shown
that the semantics and the orderings agree naturally� Furthermore� we establish an intimate
connection between approximation constructs and certain objects obtained by combination of
OWA sets and or	sets� This semantic connection will be used extensively in chapter � to design
languages for giving approximate answers to queries�

Our approach to the programming language design is based on turning universality property of
semantics of types into syntax� In the second half of this chapter we describe various collections
as free ordered algebras� These include OWA and CWA sets� or	sets and two iteration constructs�
that correspond to sets of or	sets and or	sets of sets�

Furthermore� we show that most approximations arise as free constructions� To do so� we �rst
de�ne formal models of approximations and propose a classi�cation of those� The proposed
classi�cation gives rise to ten possible approximation constructs� We study them thoroughly
and prove that some of them possess universality properties� Some of them are shown not to
be free ordered algebras generated by posets in a �naive� way� but we �nd a way to repair
it by showing that they do possess universality properties with respect to di�erent generating
posets and restricted classes of maps� It will be seen in chapter � that such characterizations are
su�cient for de�ning the general structural recursion based language and certain sublanguages
thereof�

�

�� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

��� Order and Semantics

There are several goals we want to pursue in this section� First� we show how sets under both
OWA and CWA� or	sets and bags should be ordered� We then use the orderings to give the
semantics of collections of partial data� Second� we analyze the approximation constructs and
propose a classi�cation of those� Having done this� we de�ne and study orderings and semantics
of the approximation constructs in the same way as we did it for the other collections� Finally�
we show how to represent the approximation constructs using sets and or	sets�

����� Orderings on collections

In this section we study the following general problem� Given a poset hA��i and the family of all
collections
sets� bags� or	sets etc�� over A� how do we order those As usual� our interpretation
of the partial order is �being more informative�� What does it mean to say that one collection
of partial descriptions is more informative than another

The technique we use to answer this question is the following� We try to de�ne �elementary
updates� that add information� For example� for CWA databases such updates should add
information to individual records� For OWA we may have additional updates that add records
to a database� For or	sets� reducing the number of possibilities adds information as an or	sets
denotes one of its elements� We formalize those updates and then look at their transitive closure�
That is� a collection C� is more informative than C� if C� can be reached from C� by a sequence
of elementary updates that add information� We characterize �ve orderings that arise this way�
for OWA sets� CWA sets� or	sets and bags under both CWA and OWA�

As we mentioned in section ���� redundancies represented by comparable elements can usually
be removed� That is� we often represent database objects as antichains� Therefore� there are
two ways to perform updates that add information� One way is to keep all elements� even those
that are comparable� The other way is to remove redundancies� that is� to make sure that the
result of each elementary update is an antichain again� These two ways lead to some orderings
on either antichains of ordered sets or arbitrary subsets thereof� We shall consider both and
show that they coincide�

Ordering CWA databases

In a closed world database� it is possible to update individual records but it is impossible to add
new records� To understand what the elementary updates are� let us consider again the example
we used in chapter ��

���� ORDER AND SEMANTICS ��

Name Salary Room

� � ��

Mary �K �
CWA�

Name Salary Room

John ��K ��

Ann � ��

Mary �K ���

In these relations� we use generic nulls� The �rst relation says that there exists room ��� and
thatMarymakes �K� Note that there could be more than one person in ��� To see why� it might
be easier to consider the �rst relation as obtained from the second one by losing information�
Assume we had information about two people in �� and then lost information about their names
and salaries� As the result� there are two copies of the record � � �� � However� we are
dealing with sets and duplicates are always removed� Therefore� losing information contained
in two records would result in getting just one record in the new database� In other words� an
incomplete record can be updated in various ways that give rise to a number of new records�
and this is consistent with the closed world assumption�

The third record in the updated database is obtained from the second record in the initial
database by adding the salary value� Thus� we see that the way the closed world databases are
made more informative is via getting more information about individual records� The following
picture illustrates those updates� We simply remove an element
record� from a database and
replace it by a number of more informative elements
records��

�
�

�
�

	
 ��

B
B
B
B
B
BB

There are two ways to formalize those updates� depending on whether arbitrary sets or only
antichains are allowed� Let X
 A be a �nite subset of the poset A� Let x � X and X �
 A

be a �nite nonempty subset of A such that x � x� for all x� � X �� Then we allow the following
update�

X
CWA���
X � x� �X �

For antichains� we need to impose two additional restrictions� First� X � must be an antichain�
and second� the result must be an antichain� To ensure that the second requirement is satis�ed�
we keep only maximal elements� That is� in the case of antichains the legitimate updates are

X
CWA���a max

X � x� �X ��

�� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

We now say that X vCWA Y if X� Y
 A and Y can be obtained from X by a sequence of
updates

CWA���� that is� vCWA is the transitive closure of
CWA��� on P�n
A�� Similarly� X vCWA

a Y if

X� Y are �nite antichains of A and Y can be obtained from X by a sequence of updates
CWA���a�

that is� vCWA

a is the transitive closure of
CWA���a on A�n
A��

Our claim is the following�

The closed world databases must be ordered by the Plotkin ordering�

We justify it by proving

Theorem ��� a� Let X� Y � P�n
A�� Then X vCWA Y i
 X v� Y �
b� Let X� Y � A�n
A�� Then X vCWA

a Y i
 X v� Y �

Proof� The proof of part a� is easy� First� X
CWA��� Y implies X v� Y and hence X vCWA Y

implies X v� Y � Conversely� if X v� Y � let Yx � fy � Y j y � xg� Then updates X
CWA���

X � x� � Yx give a way from X to Y �

To prove part b� �rst observe that X
CWA���a Y implies X v� Y and hence X vCWA

a Y implies
X v� Y �

AssumeX� Y � A�n
A� andX v� Y � We prove by induction on the cardinality ofX�Y that there

exists a family fX�� � � � � Xlg of subsets of X � Y such that X
CWA���a X�

CWA���a � � �
CWA���a Xl

CWA���a Y �

In the case when either X or Y is a singleton� we need just one
CWA���a arrow� Assume that

card
X� � m� card
Y � � k� m� k
 � and for any sets of cardinalities less than m and k the
statement above is true�

Let X� be a minimal
with respect to inclusion� subset of X such that X v� Y � We �rst show

that X� and Y are
CWA���a related by a sequence of subsets of X�� Y � If X� is a singleton� this is

immediate� If X� has more than one element� consider x � X�� Then X� � x �v� Y � Therefore�
there exists an element y � Y such that y �� z for any z � X� � x
otherwise we would have
X� � x v� Y �� Let Y � be the set of all y � Y with this property� we know Y � �� �� Then
X�� x v� Y � Y �� Indeed� if x� � X� � x� then there exists y � Y such that x� � y� Moreover�
y �� Y � by the de�nition of Y �� Hence� X� � x v� Y � Y �� If y � Y � Y �� then there exists
x� � X� such that x� � y� If x is the only element in X� that is under y� then y � Y �� Hence�
we can pick x� � X� � x� This shows X� � x v� Y � Y � and hence X� � x v� Y � Y ��

Now by induction hypothesis we can �nd a sequence Z�� � � � � Zp of subsets of
X��x��
Y �Y ��

such that X��x CWA���a Z�
CWA���a � � �

CWA���a Zp
CWA���a Y �Y �� Since for any Z

X��x��
Y �Y ���

Z�Y � is an antichain� we obtain X� CWA���a
X��x��Y � CWA���a Z��Y � CWA���a � � �
CWA���a Zp�Y � CWA���a

Y �Y ���Y � � Y � To see that X vCWA

a Y � we apply exactly the same updates to X � The only

���� ORDER AND SEMANTICS ��

di�erence with the sequence of updates above is that now at any stage there are possibly some
elements of X�X� added� However� they disappear at the last stage as X v� Y and we always
apply max� This shows X vCWA

a Y � Theorem is proved� �

Corollary ��� Let X and Y be 	nite antichains in A such that X v� Y � Then it is possible to
	nd a sequence of antichains X�� � � � � Xn such that X�� � � � � Xn
 X � Y and X

CWA���a X�
CWA���a

� � �
CWA���a Xn

CWA���a Y � �

Ordering OWA databases

In an open world database� it is possible to update individual records and add new records� As
in the case of the CWA databases� consider a simple example to understand what the elementary
updates are�

Name Salary Room

� � ��

Mary �K �
OWA�

Name Salary Room

John ��K ��

Ann � ���

Mary �K ���

Some of the records in the second relation� that we view as a more informative one� are obtained
by modifying records of the original relation� However� one record� Ann � ��� can not
be obtained by modifying any record in the original database� The reason it was put there is
that the database is open for new records� Under this interpretation� we view adding records
as an update that adds information� In the above example� adding that record improves our
knowledge about what can be a university or a company database of employees�

The following picture illustrates updates that are used to improve information stored in an
open world database� Not only do we allow replacing an element
record� by a number of more
informative elements
records�� but we also allow adding new records�

�
�

�
�

�
�

�
�

	
 ��

B
B
B
B
B
BB

�� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

Similarly to the CWA case� there are two ways to formalize these updates� depending on whether
arbitrary sets or only antichains are allowed� Let X
 A be a �nite nonempty subset of the
poset A� Let x � X and X �
 A be a �nite subset of A such that x � x� for all x� � X �� Let X ��

be an arbitrary �nite subset of A� Then we allow the following updates�

X
OWA���
X � x� �X � and X

OWA��� X �X ��

For antichains� we impose an additional restriction that the result always be an antichain� We do
it by keeping only maximal elements in the results� see section ���� Another reason for keeping
only maximal elements will be seen shortly� Therefore� in the case of antichains the legitimate
updates are

X
OWA���a max

X � x� �X �� and X

OWA��� max
X �X ���

We say that X vOWA Y if X� Y
 A and Y can be obtained from X by a sequence of updates
OWA���� that is� vOWA is the transitive closure of

OWA��� on P�n
A�� Similarly� X vOWA

a Y if X� Y are

�nite antichains of A and Y can be obtained from X by a sequence of updates
OWA���a� that is�

vOWA

a is the transitive closure of
OWA���a on A�n
A��

Our main claim about ordering of OWA databases is the following�

The open world databases must be ordered by the Hoare ordering�

We justify it by proving

Theorem ��� a� Let X� Y � P�n
A�� Then X vOWA Y i
 X v� Y �

b� Let X� Y � A�n
A�� Then X vOWA

a Y i
 X v� Y �

Proof� The proof of part a� is very similar to the proof of a� in theorem ���� To prove b��
�rst observe that the inclusion vOWA
v� is immediate� Let X� Y � A�n
A� and X v� Y � Let
YX � fy � Y j �x � X � x � yg� Then X v� YX and by theorem ��� we can �nd a family

X�� � � � � Xn of subsets of X � YX such that X
CWA���a X�

CWA���a � � �
CWA���a Xn

CWA���a YX � Since
CWA���

updates are a particular case of
OWA��� updates� we obtain X

OWA���a X�
OWA���a � � �

OWA���a Xn
OWA���a

YX
OWA���a max
YX �
Y � YX�� � Y which proves X vOWA

a Y � �

Corollary ��� Let X and Y be 	nite antichains in A such that X v� Y � Then it is possible to
	nd a sequence of antichains X�� � � � � Xn such that X�� � � � � Xn
 X � Y and X

OWA���a X�
OWA���a

� � �
OWA���a Xn

OWA���a Y � �

Ordering or
sets

We now de�ne update rules for or	sets� We start with a simple example�

���� ORDER AND SEMANTICS ��

X� �

� Name Salary Room

John � ��

Ann � �
Mary �K �

�
or� set�� X� �

� Name Salary Room

John � ��

Ann ��K �

�

There are two reasons why we view X� as a more informative or	set than X�� First� additional
information about Ann was obtained� It is now known that her salary is ��K� Second� one of the
records was removed� Note that removing an element from an or	set makes it more informative�
Indeed� while h�� �� �i is an integer which is either � or � or �� h�� �i is an integer which is � or
�� so we have additional information that it can not be �� Finally� h�i is an example of perfect
knowledge as it stands for the integer ��

Therefore� we consider two types of updates on or	sets� improving information about individual
records and removing elements�

X
or���
X � x� �X � if x � X and x � x� for all x� � X � and X � �� �

X
or��� X � x if x � X and X � x �� �

To rede�ne these updates for antichains� we must decide how redundancies in or	sets are removed�
We suggest that only minimal elements be kept in the results� To see why� consider the following
or	set with two comparable records�

� Name Room

John ��

John un

�

This or	set denotes a person whose name is John and who is either in room �� or in an unknown
room� The semantics of this is exactly as having one record for John in an unknown room�
This
will be made precise in the next section�� Hence� we prefer to retain the minimal elements� Then
the updates for antichains become

X
or��� min

X � x� �X �� if x � X and x � x� for all x� � X � and X � �� �

X
or��� X � x if x � X and X � x �� �

Our next claim about orderings on collections is the following�

�� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

The or�sets must be ordered by the Smyth ordering�

To make it formal� we de�ne vor and vor

a as the transitive closure of
or��� and

or���a respectively�

Theorem ��� a� Let X� Y � P�n
A�� X� Y �� �� Then X vor Y i
 X v� Y �
b� Let X� Y � A�n
A�� X� Y �� �� Then X vor

a Y i
 X v� Y �

Proof� The proof of a� is similar to proofs of a� in theorems ��� and ���� To prove b�� �rst
observe that X

or���a Y implies X v� Y � and hence X vor

a Y implies X v� Y �

Now we prove the following claim� If X v� Y � X � Y � � and X � v� Y for no proper
subset X � � X � then X vor

a Y and moreover only elements of X � Y are used in the
or���a

transformations� We prove it by induction on card
X � Y �� When one set is a singleton�
the statement is immediate� Assume cardinalities of both X and Y are bigger than one� Let
Yx � fy � Y j y � xg� We claim that there exists x � X such that X � x v� Y � Yx� Assume
that this is not the case� Then for any x� X � x �v� Y � Yx� That is� there exists x� � X such
that x� is not under any element of Y � Yx� In other words� Yx�
 Yx� Continuing� we obtain
Yx � Yx� � Yx� � � � �� Since X and Y are �nite� we have Yxi � Yxj for some distinct xi and xj �
But in this case X�xi v� Y which contradicts the minimality of X � Hence� X�x v� Y �Yx for
some x� By the induction hypothesis� X�x vor

a Y �Yx� Since only elements of
X�x��
Y �Yx�
were used in the transformations� X vor

a
Y � Yx� � x
or���a Y which �nishes the proof of the

claim�

Now it is easy to see that the condition X � Y � � can be dropped as adding X � Y to any
transformation does not interfere with its result� Hence� X v� Y implies X vor

a Y if X is
minimal such with respect to inclusion�

Let X v� Y � De�ne XY � fx � X j �y � Y � x � yg� Then XY v� Y � Let X �
Y be a minimal

with respect to inclusion subset of XY such that X �
Y v� Y � Then X vor

a X �
Y vor

a Y �nishes the
proof� �

Corollary ��	 Let X and Y be 	nite antichains in A such that X v� Y � Then it is possible to
	nd a sequence of antichains X�� � � � � Xn such that X�� � � � � Xn
 X � Y and X

or���a X�
or���a

� � �
or���a Xn

or���a Y � �

Ordering bags

We now use similar techniques to de�ne orderings for bags� Even though the orderings appear
somewhat awkward� we demonstrate e�ective algorithms to test whether two bags are compa	
rable�

���� ORDER AND SEMANTICS ��

First of all� let us see why the naive approach would not work� Bags over a poset A are often
represented as sets of pairs
a� n� where a is an element of A and n is the number of occurrences�
Pairs could be ordered in the usual way�
a� n� �
b�m� i� a � b and n � m� While this ordering
has many nice properties� it is counterintuitive from the practical point of view� Having a bag
rather than a set means that each element of a bag represents an object and if there are many
occurrences of some element� then at the moment certain objects are indistinguishable� For
example� initially we might have a bag of three null values� representing our knowledge about
three objects� Suppose this bag fj�����jg is later updated to fja� b� cjg� We want to say that
the latter is more informative than the former� But that is not in the above ordering because it
requires that the three nulls be replaced by three identical objects� that is� fja� a� ajg� fjb� b� bjg�
or fjc� c� cjg� Each of them is more informative than fj�����jg but fja� b� cjg is unfortunately not%

Mathematical aspects of partial information represented by bags were studied by Vickers �����
He de�ned the concept of re�nements which� among other instances� includes both the ordering
that we shall propose shortly and the ordering that we have just seen� Therefore� his approach
is too general to be adopted here�

To extend the update idea to bags� recall again that each element of a bag represents an object
and if there are many occurrences of some element� then at the moment certain objects are in	
distinguishable� This justi�es the following de�nition� We say that a bag B� is more informative
than a bag B� if B� can be obtained from B� by a sequence of updates of the following form�
��
an element a is removed from B� and is replaced by an element b such that b is more informative
than a� and under OWA in addition
�� an element b is added to B��

Formally� let hA��i be a partially ordered set� Let Pb
A� be the set of all �nite bags whose
elements are in A� Then we de�ne the following updates for elements of Pb
A�� Under both
CWA and OWA we have

B
CWA
�
Bmonusfjajg� " fjbjg and B

OWA
�
Bmonusfjajg�" fjbjg where a � B�

In addition� under OWA we add a new update

B
OWA
� B " fjbjg

As usual� by ECWA and EOWA we denote the transitive closure of
CWA
� and

OWA
� respectively� To

describe these relations� let Nq denote the totally unordered poset whose elements are natural
numbers
the superscript is used to distinguish it fromN which typically denotes natural numbers
with the usual ordering�� For a �nite bag B and an injective map � � B � Nq� which is sometimes
called labeling� by �
B� we denote the set f
b� �
b�� j b � Bg� In other words� � assigns a unique
label to each element of a bag� If B � Pb
A�� the ordering on pairs
b� n� where b � B and
n � Nq is the usual pair ordering� that is�
b� n� �
b�� n�� i� b � b� and n � n��

Proposition ��� The binary relations ECWA and EOWA on bags are partial orders� Given two
bags B� and B�� B� E

CWA B� �B� E
OWA B�� i
 there exist labelings � and � on B� and B�

respectively such that �
B�� v� �
B�� �respectively �
B�� v� �
B����

�� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

Proof� We prove the statement about EOWA � the statement about ECWA is proved similarly� We
write B� �

� B� if there exist � and � such that �
B�� v� �
B��� First demonstrate that �� is
a partial order� It is obviously re�exive�

To prove transitivity� let B� �
� B� and B� �

� B�� That is� �
B�� v� �
B�� and �
B�� v� �
B���
Let � be a bijection on N such that � � � � �� De�ne � as � � �� Then for every b � B� there is
b� � B� such that b � b� and �
b� � �
b��� Therefore� �
b� � �
b�� and there exists b�� � B� such
that �
b��� � �
b�� and b�� � b�� This shows �
B�� v� �
B�� and hence B� �

� B��

To show that �� is anti	symmetric� let B� �
� B� and B� �

� B�� As was shown above� there exist
a� � and � such that �
B�� v� �
B�� v� �
B��� In particular� if we de�ne g � �
B��� �
B�� by
g
b� n� �
b�� n� where �
b�� � n� it is easy to see that g is one	to	one� monotone and in�ationary�
Since B� is �nite� it is the identity map� If b�� � B� and �
b��� � n� then b � b�� � b� � b� so
b � b�� where �
b� � �
b�� � n� Therefore� every element of B� is in B� and vice versa� i�e�
B� � B�� This shows that �� is a partial order�

Since B�
OWA

� B� implies B� �� B�� we conclude EOWA
 ��� Conversely� if B� �
� B�� i�e�

�
B�� v� �
B��� then� according to ���� �
B�� can be obtained from �
B�� by a sequence of
OWA��� updates which� if we drop indices� are translated into

OWA
� updates on bags� Therefore�

B� E
OWA B�� which proves EOWA � ��� �

The Hoare ordering v� of sets can be e�ectively veri�ed� Indeed� if two sets are given� there is
an O
n�� time complexity algorithm to check if they are comparable� The description of EOWA

given above seems to be somewhat awkward algorithmically� However� it is not much harder to
test for�

Proposition ��� There exists an O
n���� time complexity algorithm that� given two bags B�

and B� in Pb
A�� returns true if B� E
OWA B� �B� E

OWA B�� and false otherwise�

Proof� The proof is almost the same for both EOWA and EOWA� Given B� and B�� consider
two labelings � and � on B� and B�� Assume without loss of generality that the codomains
of � and � are disjoint� De�ne a bipartite graph G � hV�Ei by V �� �
B�� � �
B�� and
E �� f

b� n��
b�� n�� j
b� n� � �
B���
b

�� n�� � �
B��� b � b�g� It can be easily concluded
from proposition �� that B� E

OWA B� i� there is a matching in G that contains all �
B��� In
other words� B� E

OWA B� i� the cardinality of the maximal matching in G is that of B�� The
proposition now follows from the facts that all maximal matching in G have the same cardinality

as bases of a matroid� and that the Hopcroft	Karp algorithm �nds a maximal matching in
O
n���� where n is the cardinality of V
see ����� �

There is a big di�erence between orders on sets and bags� While X v� Y does not say anything
about cardinality of X and Y � B� E

OWA B� implies that the cardinality of B� is less than or
equal to the cardinality of B�� This re�ects our point of view that having a bag rather than

���� ORDER AND SEMANTICS �

a set means that each element of a bag represents a distinct object� Therefore� the cardinality
can not be reduced in the process of obtaining more information� In particular� in the set case
the Hoare ordering can be obtained as the transitive closure of the following binary relation�
X ��
X � X �� � fxg where x � x� for all x� � X � and X �� X � fxg� However� applying
the same idea to bags amounts to the loss of information about the number of occurrences
of each element in a bag� Precisely� let J be de�ned as the transitive closure of �� where
B� �
B�monusB

�
�� " fjbjg� b � b� for any b� � B�

�� and B� � B� " fjbjg� It can be easily shown
that B� J B� i� unique
B�� v� unique
B��� And� in our opinion� this is not the right ordering
on bags as it loses information about duplicates�

It can also be shown easily that� unlike v� and v�� the orderings EOWA and ECWA may not have
least upper or greatest lower bounds and may fail to take bounded complete posets into bounded
complete posets� The reader is invited to �nd simple counterexamples�

����� Semantics of collections

Recall that in section ��� the semantics of a database object d which is an element of an ordered
set A was de�ned as the set of all elements of A that it can possibly denote� that is� the set of
all elements in A that are greater than or equal to d�

��d�� � �d � fd� � A j d� � dg

Following this de�nition and the results of the previous section� we can de�ne the semantics of
sets under OWA and CWA� Assume that elements of sets are taken from a partially ordered set
A� Then we de�ne the semantic functions �����OWAset � �����OWA� �����CWAset � �����CWA where index set stands
for the set semantics
as opposed to the antichain semantics for which we do not use an index��
as follows�

��X ��OWAset � fY � P�n
A� j X v� Y g ��X ��OWA � fY � A�n
A� j X v� Y g

��X ��CWAset � fY � P�n
A� j X v� Y g ��X ��CWA � fY � A�n
A� j X v� Y g
As we mentioned in section ���� sometimes only subsets of maximal elements of A
if such
elements exist� are taken into account� In this case we use index max instead of set in the
semantic function�

In what follows� we shall mostly consider the open world assumption� Hence� if no superscript
is used� it is assumed that we deal with the OWA sets or bags� That is� ���� is the same as ����OWA

and ����set is the same as ����OWAset �

There are a number of useful properties of these semantic functions which we summarize in the
following proposition� An easy proof is left to the reader�

�� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

Proposition ��� � If X� Y
	n A� then ��Y ��OWAset
 ��X ��OWAset i
 X vOWA Y i
 X v� Y �

�� If X� Y � A�n
A�� then ��Y ��
 ��X �� i
 X vOWA

a Y i
 X v� Y �

�� If X
	n A� then ��X �� � ��maxX �� and ��X ��OWAset � ��maxX ��OWAset �

�� If X� Y
	n A� then ��Y ��CWAset
 ��X ��CWAset i
 X vCWA Y i
 X v� Y �

�� If X
	n A� then ��X ��CWAset � ��maxX �minX ��CWAset and ��X ��CWA � ��maxX �minX ��CWA� �

In chapter � we discussed Reiter�s work ����� on the CWA databases� He de�ned a CWA answer
to a query as a certain set of complete tuples� In our terminology� this corresponds to �nding
an answer to a query with respect to the ����CWAmax semantic function� Reiter ����� proved that
CWA query evaluation distributes over union and intersection� and that whenever a database is
consistent with the negations of the facts stored in it� the OWA and the CWA query evaluation
algorithms produce the same result� He also proved that the minimal CWA answers contain
exactly one tuple�

The following proposition shows that analogs of these results hold in our setting� Note that to
say that a database X is consistent with negation of any fact stored in it� is the same as to say
that any y �� X is consistent with some x � X � In other words� if every z � A lies under some
zm � Amax� then X v� Amax� Finally� a domain of n	ary relations with one kind of null is the
product of n copies of an in�nite �at domain� In view of this� the proposition below says that
the results of ����� are preserved� at least in the spirit�

Proposition ���� Let A be a poset such that each element is under an element of Amax� Then
� If A is a product of n copies of in	nite �at domains and Y � ��X� �X���

CWA

max � then Y � Y��Y�
where Y� � ��X���

CWA

max and Y� � ��X���
CWA

max �
�� For any poset A� ��X� �X���

CWA

max � fY� � Y� j Y� � ��X���
CWA

max � Y� � ��X���
CWA

maxg�
�� If X v� Amax� then ��X ��CWAmax � ��X ��OWAmax �
�� If X is bounded above in A� then a minimal nonempty Y � ��X ��CWAmax is a singleton� �

For or	sets the situation is di�erent� Recall that or	sets can be treated at both structural and
conceptual levels� At the structural level we just de�ne ��X ��or � fY � P�n
A� j X v� Y g
or
using A�n
A� if we need an antichain semantics�� The following proposition is immediate from
the de�nitions�

Proposition ���� � If X� Y
	n A� then ��Y ��or
 ��X ��or i
 X vor Y i
 X v� Y �

�� If X� Y � A�n
A�� then ��Y ��or
 ��X ��or i
 X vor

a Y i
 X v� Y �

�� If X
	n A� then ��X ��or � ��minX ��or� �

���� ORDER AND SEMANTICS ��

Similar semantic functions can be de�ned for bags� depending on whether OWA or CWA is used�
Unlike sets� bags are not subject to removal of redundancies as every entry in a bag represents
a distinct object and nothing can be deleted�

Note that propositions ��� and ���� justify using maximal elements to remove redundancies
from sets under OWA and using minimal elements to remove redundancies from or	sets� For
sets under CWA� it is necessary to retain both minimal and maximal elements� the elements
which are strictly in between can be removed as the �fth item in proposition ��� suggests�

The semantic functions above could also be used to de�ne the semantic domains of types� For
example� assume that we have the following type system

t ��� b j t � t j ftg
OWA

j ftg
CWA

j hti

We now de�ne the structural semantics ����s that corresponds to the structural interpretation of
or	sets�

Suppose that for each base type b its semantic domain ��b��s is given� We de�ne the semantic
domains of all types inductively� Suppose we want to deal with antichains� Then

 ��t� s��s � ��t��s � ��s��s�

 ��ftg
OWA

��s � hA�n
��t��s��v�i � P�
��t��s��

 ��ftg
CWA

��s � hA�n
��t��s��v�i�

 ��hti��s � hA�n
��t��s��v�i � P�
��t��s��

The structural semantics of objects is de�ned inductively�

 For each base type b and an element x of this type� ��x��s � �x � fx� � ��b��s j x� � xg�

 If x �
x�� x��� then ��x��s � ��x���s � ��x���s�

 Let X be a CWA set of type ftg
CWA

� then ��X ��s � ��X ��CWA� Similarly� for OWA sets�
��X ��s � ��X ��OWA�

 Let X � hx�� � � � � xni be an or	set of type hti� Then ��X ��s � ��X ��or�

Note that the last clauses in the de�nitions of type and object semantics say that we have de�ned
the structural semantics of or	sets� That is� we viewed or	sets as collections and not as single
elements they could represent� Our next goal is to de�ne the conceptual semantics of or	sets�

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

Semantics of sets and or
sets

Our purpose here is to de�ne a semantics to be used when or	sets are dealt with at the conceptual
level� This semantic function takes database objects into �nitely generated �lters of ordered sets�
For simplicity� assume that we have the following type system�

t ��� b j t � t j ftg j hti

and that we are dealing with the open world assumption�

We shall denote the semantic function that deals with the conceptual representation of or	sets
by ����c� We know that conceptually an or	set is one of its elements� That is� conceptually
X � hd�� � � � � dni is one of di�s� If di�s themselves are partial descriptions� they may denote
other elements� Hence� whatever the semantic function ���� for the elements of X is� we have
��X ��c �

S
x�X ��x���

If the semantic function ���� satis�es the property that ��x��
 ��y�� i� y � x� then ��x�� � �x and we
obtain

��X ��c �
�
x�X

�x � �X

Hence� from the results of the previous section and the properties of the Smyth order� we
conclude that in this particular case ����c for or	sets satis�es all properties listed in proposition
�����

To de�ne the conceptual semantics of types� we assume that a semantic domain ��b��c is given
for each base type b� We now de�ne semantic domains of arbitrary types as follows� Note that
there are two possibilities for the semantics of the set type constructor� but the de�nition of the
semantics of objects will work with both of them�

 ��t� s��c � ��t��c � ��s��c�

 ��ftg��c � hA�n
��t����v�i � P�
��t��c� or ��ftg��c � hP�n
��t��c��v�i�
 ��hti��c � ��t��c�

The last clause corresponds to the fact that conceptually an or	set is just one of its elements�
Semantics of each object is now going to be a �nitely generated �lter F � �ff�� � � � � fng �
�f� � � � �� �fn� Again� we de�ne it inductively�

 For each base type b and an element x of this type� ��x��c � �x � fx� � ��b��c j x� � xg�
 If x �
x�� x��� then ��x��c � ��x���c � ��x���c�

���� ORDER AND SEMANTICS ���

 LetX � fx�� � � � � xng be a set of type ftg� Then ��X ��c � fY j �i � �� � � � � n � Y ���xi��c �� �g�
Here Y is taken from P�n
��t��c� or A�n
��t��c� depending on the de�nition of the semantics of
types�

 Let X � hx�� � � � � xni be an or	set of type hti� Then ��X ��c � ��x���c � � � �� ��xn��c�

Before we prove that this semantic function possesses the desired properties� let us make a few
observation� First� the de�nition of the semantics of or	sets agrees with the de�nition of ����or given
above� Second� to understand the semantics of pairs and sets� consider tow simple examples� Let
x� � h�� �i� x� � h�� �i� Assume that there is no ordering involved� The semantics of x� is then
a set f�� �g and the semantics of x� is f�� �g� Therefore� ��
x�� x����c � f
�� ���
�� ���
�� ���
�� ��g�
Now consider
x�� x��� It is a pair whose �rst component is � or � and whose second component
is � or �� Hence� it is one of the following pairs�
�� ���
�� ���
�� ���
�� ��� And this is exactly
what the semantic function ����c tells us�

For semantics of sets� consider X � fx�� x�g � fh�� �i� h�� �ig� It is is a set that has at least two
elements� one is � or �� and the other is � or �� Hence� it must contain one of the following
sets
since we believe in OWA�� f�� �g� f�� �g� f�� �g� f�� �g� Now look at ��X ��c� A set Y belongs
to ��X ��c if Y � ��h�� �i��c � Y � f�� �g �� � and Y � ��h�� �i��c � Y � f�� �g �� � which happens if
and only if Y contains one of the four sets above� This justi�es our de�nition of the conceptual
semantics of sets�

Now we can prove the following�

Proposition ���� For every object x of type t� ��x��c is a 	nitely generated 	lter in ��t��c� Fur�
thermore� if x and y are of type t and x � y in ��t��s� then ��y��c
 ��x��c�

Proof� Prove the �rst statement by induction� For objects of base types it is given by the
de�nition� For pairs� it is easy to show that if x� and x� are �nitely generated �lters in ��t���c
and ��t���c respectively� then ��x��c is a �nitely generated �lter in ��t� � t���c� For sets� let X �
fx�� � � � � xng be a set of type ftg� Let ��xi��c � �ff i�� � � � � f inig� Let G be the set of maps g �
f�� � � � � ng � N such that � � g
i� � ni for all i� De�ne G
X� � minv�fff ig�i� j i � �� � � � � ng j
g � Gg� Then Y � ��X ��c i� there exists Y � � G
X� such that Y � v� Y � Therefore� ��X ��c � �G
X��
This shows that ��X ��c is a �nitely generated �lter� For arbitrary sets� the proof proceeds similarly
but we do not have to take min� The second result will be proved later
see theorem ��� in
chapter ��� �

From the properties of the structural and conceptual semantics� we obtain

Corollary ���� If x and y are objects of the same type� then ��x��s � ��y��s implies ��x��c � ��y��c�
�

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

The converse is not true� hh�� �i� h�ii and hh�i� h�i� h�ii are structurally di�erent objects of type
hhintii� but ��hh�� �i� h�ii��c � ��hh�i� h�i� h�ii��c � f�� �� �g�

The importance of the conceptual semantics will be seen in the next chapter when we show that
normalization of or	objects does not change the meaning�

Relationship between CWA sets� OWA sets and or
sets

There is a naturally arising question� do we really need all three kinds of collections � OWA sets�
CWA sets and or	sets Can not we just represent some of them using the others The answer to
this question is that we do need all three kinds of collections and no such representations exist�
First� let us see what could be a representation of� say� OWA sets with or	sets� It could be a
procedure that� given a poset A and X � A�n
A�� calculates Y � A�n
A� such that Z � ��X �� i�
Z � ��Y ��or� The following proposition tells us that it is impossible to do so�

Proposition ���� For every poset A which is not a chain� there exists X � A�n
A� such that
for no Y � A�n
A� the following holds� � ��X �� � ��Y ��or� �� ��X ��or � ��Y ��� �� ��X �� � ��Y ��CWAset � ��
��X ��CWAset � ��Y ��� �� ��X ��or � ��Y ��CWAset � �� ��X ��CWAset � ��Y ��or�

Proof� �� Assume A has two incomparable elements x and y and let X � fxg� Assume Y is such
that ��fxg�� � ��Y ��or� Then fxg v� fx� yg v� fyg and hence fyg � ��fxg��� contradiction� For ���
consider the same poset by take X to be fx� yg� For ��� take the same poset and take X � fxg�
Assume there is Y such that ��fxg�� � ��Y ��or� Then fx� yg � ��fxg�� and hence Y v� fx� yg� We
have fxg v� Y � so there is an element z � y such that x � z� contradiction� The proof of �� is
similar� We invite the reader to �nd similar easy proofs for �� and ��� �

����� Formal models of approximations

In this section we re	examine the approximation constructs such as sandwiches� mixes and
snacks introduced in chapter �� We do it by applying the idea of representing database objects
with partial information as elements of certain ordered sets� and then getting all approximation
constructs as families of antichains in those posets�

Recall the de�nition of a sandwich� It is given by an upper approximation U and a lower
approximation L which satisfy the following consistency condition� for every u � U there is
l � L such that u and l are consistent� The notion of consistency here is the same as consistency
in posets� If there are two records� then they are consistent if there is a record that is above
both of them in the ordering� For example� � � � and � � � are consistent as they

have a common upper bound � � � � but � � � and � � � are not consistent as

���� ORDER AND SEMANTICS ���

there are no common upper bounds� Recall that we use the notation x�y to denote the fact that
x and y are consistent� Now we can give a formal de�nition of sandwiches�

De�nition ��� Given a poset hA��i� a sandwich over A is a pair of 	nite antichains
U� L�
satisfying the following consistency condition�

�l � L �u � U � u�l

U is usually referred to as the upper approximation and L as the lower approximation� The
family of all sandwiches over A is denoted by P
�
A� �the reason for this notation will be seen
shortly��

For example�

Name Salary Room

John ��K �
Ann �K �
Mary ��K �

Michael ��K �

and

Name Salary Room

John � ��

Michael � ���

form a sandwich� First� each relation can be considered as a subset of V��V��V� as explained
in section ���� Moreover� since

John � �� � John ��K � and Michael � ��� � Michael ��K �

the pair satis�es the consistency condition and hence forms a sandwich in V��V��V�� where
the �rst relation is the upper approximation and the second relation is the lower approximation�

The consistency condition for sandwiches can be equivalently stated in the following way� A pair
of �nite antichains
U� L� is a sandwich if there exists a set W such that U v� W and L v� W �
Observe that U � � implies L � ��

Recall that in chapter � we used the assumption that the Name �eld is a key to infer additional
information about the relations shown above� It led us to the following relations�

Name Salary Room

John ��K ��

Ann �K �
Mary ��K �

Michael ��K ���

and

Name Salary Room

John ��K ��

Michael ��K ���

The di�erence is that now for each record in the second relation there is a record in the �rst
relation that is less or equally informative� This is the de�nition of mixes�

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

De�nition ��� Given a poset hA��i� a mix over A is a pair of 	nite antichains
U� L� satisfying
the following consistency condition�

�l � L �u � U � u � l

U is usually referred to as the upper approximation and L as the lower approximation� The family
of all mixes over A is denoted by P

A� �the reason for this notation will be seen shortly��

Observe that the consistency condition for mixes can be also stated as U v� L� Again� U � �
implies L � ��

Now recall the de�nition of scones� In a scone� the lower approximation is a family of sets

relations�� as shown below�

Name Salary Room

John ��K �
Ann �K �

Michael ��K �

Name Salary Room

John � ��

Jim � �

Name Salary Room

Michael � ���

The consistency condition that relates the upper and the lower approximations now says that
for every set in the lower approximation� there exists an element in that set that is consistent
with an element of the upper approximation� Therefore� we can formalize the notion of a scone
as follows�

De�nition ��� Given a poset hA��i� a scone over A is a pair
U�L� where U is a 	nite an�
tichain� and L � fL�� � � � � Lkg is a family of 	nite nonempty antichains which is itself an
antichain with respect to v�� That is� Li �v� Lj if i �� j� In addition� a scone is required to
satisfy the consistency condition�

�L � L �l � L �u � u � u�l

We refer to U as the upper approximation and to L as the lower approximation� The family of
all scones over A is denoted by PP��
A��

Note that the consistency condition for scones can be reformulated as �L � �U �� � for any
L � L�

The last construction that we have seen in chapter � was a snack� Snacks are obtained from
scones in the same way as mixes are obtained from sandwiches� by using the assumption about

���� ORDER AND SEMANTICS ���

keys� additional information is inferred� Moreover� the record for Jim disappears as it is now
inferred that Jim is not a TA� In our example� assuming that Name is a key� this yields�

Name Salary Room

John ��K ��

Ann �K �
Michael ��K ���

Name Salary Room

John ��K ��

Name Salary Room

Michael ��K ���

Thus� now we know that every record in every relation in the lower approximation is at least as
informative as some record in the upper approximation� This leads us to the following de�nition�

De�nition ��� Given a poset hA��i� a snack over A is a pair
U�L� where U is a 	nite
antichain� and L � fL�� � � � � Lkg is a family of 	nite nonempty antichains which is itself an
antichain with respect to v�� That is� Li �v� Lj if i �� j� In addition� a snack is required to
satisfy the consistency condition�

�L � L �l � L �u � u � u � l

We refer to U as the upper approximation and to L as the lower approximation� The family of
all snacks over A is denoted by PP

A��

The consistency condition for snacks can be equivalently stated as U v� L for any L � L�

Now let us look at these constructs again� There are three main parameters that may vary and
give rise to new constructs�

�� The lower approximation is either a set or a set of sets�

�� The consistency condition is of form

Ql � L �u � U C
u� l� for simple lower approximations and

�L � L Ql � L �u � U C
u� l� for multi	set lower approximations�

where Q is a quanti�er
either � or �� and C
u� l� is a condition that relates u and l�

�� The condition C
u� l� is either u � l or u�l�

Therefore� we have eight constructions since each of the parameters that may vary � the struc	
ture of the lower approximation� the quanti�er Q and the condition C
u� l� � has two possible
values� For constructs that have a single set lower approximation we use notation P and for the

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

constructs with multi	set lower approximation we use PP� The rest is indicated in the superscript
which consists of one or two symbols� The �rst is always a quanti�er and indicates whether �
or � is used as Q� The second is omitted if the condition is u � l� and it is � if the condition
is u�l
to indicate that there is an element above u and l�� Moreover� we have seen a need for
constructs with no consistency condition� in order to deal with inconsistencies in independent
databases� For such constructs we shall use just one superscript ��

Summing up� we have ten possible constructs� P
�PP
�P
��PP
��P��PP��P���PP���P��PP�� Some
of them we have seen already� P

A� is the family of mixes over A� P
�
A� is the family of
sandwiches over A� PP

A� is the family of snacks over A and PP��
A� is the family of scones over
A� This is summarized in the table below�

type of consistency condition �quanti	er�condition�
L�part � u � l � u�l � u � l � u�l no condition

one set P

mix� P
�
sandwich� P� P�� P�
family of sets PP

snack� PP
� PP� PP��
scone� PP�

Our next goal is to de�ne orders on all approximation constructs and their semantics�

Ordering approximations

Our approach to ordering approximations is the same as the one we used for ordering collections�
We de�ne elementary updates that add information and then de�ne orderings as transitive
closure of those updates� It is important to mention that we use the open world assumption for
the lower approximation as it describes the approximated collection only partially�

Let us �rst introduce the rules for constructions with one	set lower approximation
like mixes
and sandwiches�� The idea behind these rules is that there are three ways to make a pair more
informative� to obtain additional information about elements already in one of the sets� to
make the lower approximation more informative by adding new elements and to make the upper
approximation more informative by reducing the number of possibilities� i�e� by removing some
elements� This is formalized as follows�

��
U� L� ��
U � u� L��

��
U� L� ��
min

U � u� � V �� L� where v � u for all v � V �

��
U� L� ��
U�max

L� l�� L��� where l � l� for all l� � L��

��
U� L� ��
U�max
L � l���

���� ORDER AND SEMANTICS ��

Similarly� updates � and � will work for approximation constructs with the multi	set lower
approximation� However� we need new rules for the lower approximation� Recall that in a multi	
set lower approximation each set contributes at least one element into the result
an element of
the semantics� and elements of that set list possible choices of elements to be included in the
results� Hence� adding new sets into L as well as deleting elements from L � L add information�
Now we can formalize updates as follows� We use symbol max� to denote maximum with respect
to v��

��
U�L��
U � u�L��
��
U�L��
min

U � u� � V ��L� where v � u for all v � V �

��
U�L��
U�max�
L � L���
��
U�L��
U�max�

L � L� �
L� l��� if L� l �� ��
��
U�L��
U�max�

L � L� �min

L� l�� L���� where l � l� for all l� � L��

We now de�ne two orderings� called the Buneman orderings� see ���� ���� For pairs
U� L� and

U �� L��� let

U� L� vB
U �� L�� i� U v� U � and L v� L�

In other words� vB�v� � v�� For pairs
U�L� and
U ��L��� let

U�L� vB

f
U ��L�� i� U v� U � and �L � L �L� � L� � L v� L�

In other words�vB

f�v� �
v���� The index f is ised in vB

f to indicate that the ordering deals with
families of sets in the lower approximations� whereas vB deals with simple lower approximations�

Our main claim about orderings on approximations is the following�

The approximations must be ordered by the Buneman orderings�

We justify it by proving the following theorem� Recall that � over an arrow is used as a notation
for the transitive	re�exive closure�

Theorem ���� a� Let
U� L� and
V�M� be two approximations with one�set lower approxima�
tion �e�g� mixes� sandwiches etc�� Then
U� L�

���
V�M� i

U� L� vB
V�M��
b� Let
U�L� and and
V�M� be two approximations with multi�set lower approximation �e�g�
snacks� scones etc�� Then
U�L� �

�
V�M� i

U�L� vB

f
V�M��

Proof� We prove part b� here� the proof of part a� is similar
and in fact easier�� First� observe
that whenever S� � S� and both S� and S� are approximation constructs with the multi	set

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

lower approximation� then S� vB

f S�� Hence� the transitive closure of � is included in vB

f � To

prove the converse� let
U�L� vB

f
V�M�� Since L
v���M� by theorem ��� there is a sequence

L OWA���a L� OWA���a � � �
OWA���a Lk OWA���a M such that Li
 L �M� In particular� each
U�Li� is a

snack
scone� if
U�L� and
V�M� are snacks
scones�� For tranformation Li OWA���a Li�� there
are two cases�

Case �� Li�� � max�
L � L��� In this case
U�Li��
U�Li��� follows from the de�nitions�

Case �� Li�� � max�

Li � L� � L�� where L v� L�� Then� by theorem ���� there is a sequence
L

or���a L�
or���a L�

or���a � � �
or���a Lp

or���a L
� such that each Lj is a subset of L�L�� In particular�

this shows that
U�max�

Li � Lj� � Lj���� is a snack or a scone respectively� Now there are
two subcases� In the �rst subcase� Lj�� � min
Lj � l� and then
U�max�

Li � L� � Lj�� �

U�max�

Li�L��Lj���� follows from the de�nition� Similarly� it holds for the second subcase
when Lj�� � min

Lj � l�� L���

Therefore�
U�Li� �
�
U�Li��� which implies
U�L� �

�
U�M�� Now from theorem ��� we
have U

or���a U�
or���a U�

or���a � � �
or���a Ur

or���a V such that each Ui is a subset of U � V �
Since �V
 �U � this implies consistency condition for each
Ui�M�� Each Ui � Ui�� is either
Ui � Ui � u or Ui � min

Ui � u� � U �� where u� � u for all u� � U �� In both cases�

Ui�M��
Ui���M�� Therefore�
U�M�

�
�
V�M� which �nishes the proof of
U�L� �

�
V�M��
The result for mixes and sandwiches is easily proved along the same lines� �

Thus� when we consider approximation constructs P i
A� and PP
A�� where i � f�� �� ��� ��� �g�
we assume that they are ordered by vB and vB

f respectively�

Semantics of approximations

To understand the semantics of the approximation constructs� recall the example of querying
independent databases from chapter �� We used two relations� Employees and CS�� to approxi	
mate the set of teaching assistants� We assumed that a set TA is approximated by Employees
and CS� if every record in CS� represents
is less than� a record in TA and every record in TA
is represented
is greater than� by a record in Employees� In other words� CS� v� TA and TA
v� Employees�

For scones and snacks� where CS� was subdivided into a family of relations CS�i� we assumed
that at least one element from each CS�i represents an element in TA� That is� TA v� Employees�
and for all i� there exists an element in CS�i that represents an element of TA� In other words�
�CS�i � �TA �� ��

To formalize it� we introduce two semantic functions� For constructions with one	element lower
approximations
like mixes and sandwiches� we have

���� ORDER AND SEMANTICS ���

��
U� L��� � fX � P�n
A� j U v� X and L v� Xg
��
U� L���max � fX � P�n
Amax� j U v� X and L v� Xg

For constructions with multi	element lower approximations
like snacks and scones� we have

��
U�L��� � fX � P�n
A� j U v� X and �i � �Li �X �� �g
��
U�L���max � fX � P�n
Amax� j U v� X and �i � �Li �X �� �g

Note that for both mixes and sandwiches� it is guaranteed that there semantics is not empty�

Of course for ����max we have to require that every x � A be bounded above by xm � Amax��
The same is true for any S � P��
A�� However� it is easy to see that for S � P�
A�� ��S�� �� � i�
S � P��
A��

The semantics of mixes and sandwiches has been studied in Buneman et al� ���� and Gunter
����� Here we concentrate on the constructs with the multi	element L	part�

Let A be a three element chain a � b � c and S� �
a� b� and S� �
a� c� two snacks over A�
Then ��S���max � ��S���max but S� is strictly below S� in the snack order� A more complicated
example of incomparable S� and S� such that ��S���max � ��S���max can also be found� Thus� the
semantics in terms of maximal elements does not agree very well with the ordering of snacks
which is supposed to mean being more partial� However� we can show
cf� Ngair ������ that

Proposition ���	 If S� and S� are two snacks� then S� vB

f S� i
 ��S���
 ��S����

Proof� Let S� �
U�L� and S� �
V�M�� Prove the �if � part �rst� Assume ��S���
 ��S���� Pick
arbitrarily an element mM from each M � M� Then V � � V � fmM jM � Mg � ��S��� and
therefore V � � ��S��� which means U v� V � v� V � Hence� U v� V �

Let M � �� Then L � � because if L �� �� then � � ��S��� but � �� ��S���� Hence� in this case
S� vB

f S��

Assume M �� � and S� �vB

f S�� then �L �M �m � M �l � L � l �� m� Let L � L be a set for
which the statement above is true� then� selecting appropriate m for each M � M we obtain a
set Q such that Q�M �� � for all M � M and �l � L�q � Q � l �� q� In other words� �L�Q � ��
On the other hand� Q � ��S���
 ��S��� and therefore �L�Q �� � for all L � L� This contradiction
shows S� vB

f S��

To show the �only if � part� assume S� vB

f S� and Q � ��S���� Then U v� V v� Q and� given
L � L� there exist M � M such that �M
 �L and therefore Q� �L �� �� This shows Q � ��S����
Proposition is proved� �

Unfortunately� this is no longer true for scones because� given the following A�

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

�
�

�
�

�
�
�

�
�
�

�
�

�

�

�

a b c

let S� �
a� b� and S� �
a� c� be two scones over A� Then ff�g� fa��gg � ��S��� � ��S��� but S�
and S� are incomparable�

However� there is a very close connection between semantics of scones and snacks and the
ordering� In some sense� the family of snacks over A is the maximal subclass of scones over A
on which the semantics and the orderings agree� To formulate this rigorously� let S� � S� i�
��S���
 ��S���� Then � is a preorder and the induced equivalence relation is denoted by ���

Proposition ���� For a bounded complete poset A� hPP��
A���i��� �� PP

A��

Proof� If A is bounded complete� then for two �nite sets U and L the set min
�U � �L� is
also �nite� Hence� we de�ne � � PP��
A� � PP

A� by �

U�L�� �
U� fmin
�U � �L�gjL � L��
Clearly� ��S�� � ���
S��� and �
�
S�� � �
S�� According to proposition ����� �
S� is the only
snack in the ��	equivalence class of S� Moreover� � is monotone because� if U v� V and L v� M �
then min
�L � �U� v� min
�M � �V �� This �nishes the proof of the proposition� �

The following result follows directly from the de�nitions�

Proposition ���� Given S � PP�
A�� ��S�� �� � i
 S � PP��
A�� �

Summing up� scones are the maximal class of approximation constructs with multi	set L	part
that has well	de�ned semantics� and snacks are the maximal subclass of scones over on which
the semantics and the orderings agree�

Using or
sets to encode approximations

We have seen already that orderings on approximations are obtained by combining orderings that
were suggested for OWA sets and or	sets� This brings up the idea of using or	sets in encoding
approximations� We show an intimate connection between the semantics of sets� or	sets and
approximations that suggests a clean way of encoding approximations with sets and or	sets�

First� consider the semantics of a mix
or a sandwich�
U� L�� Let X � ��
U� L���� Then L v� X
which means X � ��L��s where L is considered as an ordinary set� Furthermore U v� X means
X � ��U ��s where U is considered as an or	set� Thus� we have

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ���

Proposition ���� For any mix �sandwich�
U� L� where U � fu�� � � � � ung and L � fl�� � � � � lkg�
X � ��
U� L��� i
 X � ��fl�� � � � � lkg��s and X � ��hu�� � � � � uni��s� �

Furthermore� assume that all elements of U and L come from a poset A� Then X � ��
U� L���
means that X � ��fl�� � � � � lkg��c and X
 ��hu�� � � � � uni��c� This suggests that the lower approxi	
mation be encoded as a set and the upper as an or	set�

Now consider constructions like snacks and scones� Then the following is immediate from the
de�nitions�

Proposition ���� Assume that U � A�n
A� and L is an antichain �with respect to v�� of
	nite antichains of A� Let
U�L� be an element of PPi
A�� where i � f�� �� ��� ��� �g� where
U � fu�� � � � � ung and L � fL�� � � � � Lkg� Li � fli�� � � � � limi

g� Then X � ��
U�L��� i

X
 ��hu�� � � � � uni��c and X � ��fhl��� � � � � l�m�

i� � � � � hlk�� � � � � l�mk
ig��c

This proposition suggests that the lower approximation be encoded as a set of or	sets and
the upper as an or	set� Summing up� we have the following correspondence between types of
approximations over type t and sets and or	sets�

Approximations Encoding

P i
��t���� i � f�� �� ��� ��� �g hti � ftg
PP i
��t���� i � f�� �� ��� ��� �g hti � fhtig

It will be seen in chapter � that these encodings provide a convenient way of programming
with approximations� which has a number of advantages over the approach based on structural
recursion and monads�

��� Universality properties of partial data

The goal of this section is to demonstrate the universality properties of various collections that
later will be used as a basis for the programming syntax design� We have seen examples of
turning universality properties into syntax in section ����

The collections we study include sets and or	sets� We concentrate on sets under the open world
assumption� We also look at the iterated constructions which correspond to the objects of types
hftgi and fhtig� These will be of special importance when we study normalization of or	objects�
Finally� we characterize approximation constructs as free algebras�

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

To explain the setting before we embark on a lengthy technical development
and thus save time
for the reader who does not want to read the proofs and just want to look at the theorems�� we
always start with a partially ordered set A and characterize various constructions as free ordered
algebras generated by A� That is� the general form of the results is �nding the signature & of an
ordered algebra on each construction C
A� and an embedding � � A� C
A� such that for each
ordered &	algebra hX�&i and each monotone map f � A � X � there exists a unique monotone
&	homomorphism that makes the following diagram commute�

A �
�� hC
A��&i

�
�
�
�
�

f
R
hX�&i

�

�%f�

Constructions C that we consider are the following� For sets
under OWA� we use P�
A�� for
or	sets we use P�
A�� We consider two iterated constructions P�
P�
A�� and P�
P�
A��� And
we study approximations P i
A� and PP i
A� where i � f�� �� ��� ��� �g�

����� Universality properties of collections

Universality properties of P�
A� and P�
A� have been demonstrated already� In lemma ��� it
was proved that P�
A� is the join	semilattice with bottom element freely generated by A and
P�
A� is the meet	semilattice with top element freely generated by A� In other words� if we
consider P� as a functor from Poset to SL� and P� as a functor from Poset to SL�� then we
have the following adjunctions�

P� a U
SL��Poset

P� a U
SL��Poset

where Us are forgetful functors� This adjunction cuts down to an adjunction of categories in
which all objects are �nite� The monads corresponding to these adjunctions have been shown
in section ���� We shall return to them again in chapter ��

����� The iterated construction

We have seen that or	sets correspond to the Smyth powerdomain and sets correspond to the
Hoare powerdomain� If we would like to see how sets and or	sets can interact� we should look at
a combination of these two constructions�
This is similar to the way the de�nition of a strong

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ���

monad was introduced� One needed an interaction of a functor T with products� In the case
of the languages from section ���� this resulted in adding �� which provides interaction between
sets or bags and products��

We have two ways of combining the the semantic constructions corresponding to sets and or	
sets� P��
A� � P�
P�
A�� and P��
A� � P�
P�
A��� The question that arises is which one to
consider� The answer is� either one� This is possible because Flannery and Martin ���� proved
that P��
A� and P��
A� are isomorphic� However� from their proof it is impossible to derive the
isomorphism we would be able to use� as they proved the isomorphism at the level of information
systems� cf� C� Gunter ����

Later Heckmann ��� tried to simplify the proof� His proof� however� was based on a number
of universality properties which postulated existence and uniqueness of certain mappings� and
a combination of some of those was shown to be the desired isomorphism� This again is not
satisfactory� Finally� in Libkin ������ an elementary proof was given in which the isomorphism
was explicitly constructed� We state the result here� and later use the isomorphism to add a
primitive providing interaction between sets and or	sets to the language for those collections�

An element of P��
A� is a �nite antichain� with respect to v�� of �nite antichains of elements
of A� and a element of P��
A� is a �nite antichain� with respect to v�� of �nite antichains of
elements of A� Given a �nite set of �nite sets X � fX�� � � � � Xng where Xi � fxi�� � � � � xikig� let
FX be the set of functions f � f�� ���� ng� N such that for any i� � � f
i� � ki� For f � FX � let
f
X � � fxif�i� j i � �� � � � � ng� If all Xi�s are subsets of A� de�ne two maps � and � as follows�

�
X � � min
f�FX

v�
max f
X ��

�
X � � max
f�FX

v�
min f
X ��

Theorem ���� � � P��
A� � P��
A� and � � P��
A� � P��
A� are mutually inverse isomor�
phisms between P��
A� and P��
A��

Proof� We have to show that � maps P��
A� to P��
A�� � maps P��
A� to P��
A� and � and �

are mutually inverse and monotone� The �rst two claims follow immediately from the de�nitions
of � and �� To complete the proof� show that � is monotone and � � � � id� By duality the
proof of monotonicity of � and � � � � id can be obtained�

Recall that if V and W are �nite subsets of an arbitrary poset� then �� V v� W i� maxV v�

maxW and �� V v� W i� minV v� minW � Notice that both P��
A� and P��
A� have bottom
and top elements� These are � and f�g� and they are mapped to each other by � and �� Hence�
in the rest of the proof we do not consider empty sets�

Throughout this proof� X is de�ned as above� i�e� X � fX�� � � � � Xng and each Xi consists of
elements xij � j � �� � � � � ki�

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

Claim � � is monotone�
Proof of claim � Let X �Y � fY�� ���� Ymg � P��
A� and X v� Y � We must prove �
X � v� �
Y��
In view of the above observations� it is enough to show that for any f � FY there exists g � FX
such that g
X � v� f
Y�� Since for each i � �� � � � � n there exists ji such that Xi v� Yji � there

is an element xipi � Xi such that xipi � yjif�ji�� Let g
i� � pi� Then for this function g one has

fxig�i� j i � �� � � � � ng v� fyif�i� j i � �� � � � � mg� i�e� g
X � v� f
Y�� Claim � is proved�

Let X � P��
A� and Y � fY�� � � � � Ymg � �
X � � P��
A�� By �� and �� above� to show that
� � � � id� i�e� that �
Y� � X � it su�ces to prove
Claim �� For any f � FY there exists Xi � X such that f
Y� v� Xi�
Claim �� Every Xi is in �
Y��

Proof of claim �� Let Z be the collection of all sets f
X � where f � FX � Z � fZ�� � � � � Zkg�
Then for any g � FZ � there exists Xi � X such that Xi is contained in g
Z� because� if this is
not the case� for any Xi � X there exists ji � ki such that xiji � Xi and� for any f � FX � g on

f
X � picks an element di�erent from xiji � If we de�ne f� such that f�
i� � ji� g may pick only

elements of form xiji on f�
X �� a contradiction� Therefore� g
Z�v� Xi for some i�

Let f � FY � Let H be the set of functions in FX that correspond to elements of Y � �
X � or�
in other words� maxh
X � � Y for h � H � Then� for any h� � FX �H � there exists a function
h � H such that max h
X � v� maxh�
X �� i�e� h
X � v� h�
X �� Since h � H � maxh
X � � Y � i�e�
maxh
X � � Yi� If f
i� � j� then there is an element in h�
X � that is greater than yij � De�ne a
function g � FZ to coincide with f on those Zi�s that are given by functions in H � On Zi that
corresponds to f � FX �H � let g pick an element which is greater than some yij where f
i� � j

we have just shown it can be done�� Then f
Y� v� fzig�i� j i � �� � � � � kg � g
Z�� We know that

there exists Xi � X such that g
Z� v� Xi� Thus� f
Y� v� Xi� Claim � is proved�

Proof of claim �� Prove that for any xij � Xi there exists Yl � Y such that xij � Yl� Consider the

set F ij
X of functions f � FX such that f
i� � j� If for no f � F ij

X � xij � max f
X �� then there

exists Xp � X such that all elements of Xp are greater than xij � i�e� Xi v� Xp which contradicts

our assumption that X is an antichain with respect to v�� Hence� xij � max f
X � for at least

one function in F ij
X � Since X is an antichain� for any p �� i there exists xpq � Xp which is not

greater than any element of Xi� Change f to pick such an element for any p �� i� Then xij
is still in max f
X �� There exists a function f � � FX such that max f �
X � v� max f
X � and
max f �
X � � �
X �� If f �
i� � j� �� j� then� since f �
X � v� f
X � and Xi is an antichain� xij� � xpq
for some p and q� where p �� i� But this contradicts the de�nition of f � Hence� f �
i� � j and
xij � max f �
X � because xij � max f
X �� Since max f �
X � � Yl for some index l� xij � Yl � Y �

Let Y � be the collection of elements of Y that contain elements of Xi� Then we can de�ne a
function f � FY on elements of Y � to pick all elements of Xi� Each Yj � Y � Y � either contains
an element of Xi or contains an element which is greater than some xip � Xi� Let f pick any

such element� Then min f
Y� � Xi� Suppose Xi �� �
Y�� Then Xi v� min g
Y� for some

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ���

function g � FY such that min g
Y� � �
Y�� By claim �� g
Y� v� Xj for some Xj � Hence�
min g
Y� v� Xj and since X is an antichain with respect to v�� Xi � Xj � min g
Y� � �
Y��
This �nishes the proof of claim � and the theorem� �

Now� let us see what � does if there is no order involved� In this case an input to � can be
considered as a set of or	sets�

X � fhx��� � � � � x�k�i� � � � � hxn� � � � � � xnknig
Then �
X � is the or	set of sets

hfx�f���� � � � � xnf�n�g j f � FX i
That is� all possible choices encoded by or	sets are explicitly listed� Notice that we used a very
similar construction in the proof of proposition ���� to show that the conceptual semantics of
any object is a �nitely generated �lter� We shall use � as a programming primitive extensively
in chapter ��

The iterated construction does possess a universality property�

Theorem ���� For any poset A� P��
A� is the free distributive lattice with top and bottom
generated by A�

Proof� First� P��
A� is a distributive lattice with top and bottom since P�
A� is a distributive
lattice for any A� and P��
A� has top element f�g and bottom element �� Now we must prove
the following� for any distributive lattice with bottom and top hD���i� and any monotone map
f � A � D� there exists a unique homomorphism of distributive lattices with top and bottom
f� that makes the following diagram commute
where �
x� � ffxgg��

A �
�� hP��
A��t��u�� f�g� �i

�
�
�
�
�

f
R

hD�	������i
�

�%f�

To de�ne f�� �rst notice that f�
�� � � and f�
f�g� � �� Other elements of P��
A� are
antichains X � with respect to v�� of antichains of A� Let X � fX�� � � � � Xng where Xi �
fxi�� � � � � xikig� Then de�ne

f�
X � �
n�
i��

ki�
j��

f
xij�

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

Clearly� f�
�
x�� � f
x�� Let us show that f� is a homomorphism� Given X and Y �
fY�� ���� Ymg� then X t� Y � max�
X � Y� and X u� Y � max�fX u� Y j X � X � Y � Yg �
max�fmin
X � Y � j X � X � Y � Yg� Notice that V v� W implies

V
v�V f
v� �

V
w�W f
w��

Moreover� X
v���Y implies f�
X � � f�
Y�� Hence� writing expressions for f� we may leave
nonminimal elements in individual antichains and nonmaximal elements in families of antichains�
With this in mind� we calculate

f�
X t� Y� �
�

Z�X�Y

�
z�Z

f
z� � f�
X �	 f�
Y� and

f�
X u� Y� �
�

X�X �Y�Y

�
z�X�Y

f
z� �

�
X�X

�
x�X

f
x�� �

�
Y �Y

�
y�Y

f
y�� � f�
X �� f�
Y�

Thus� f� is a homomorphism� Its uniqueness follows from X � t�i u�j �
xji�� Theorem is proved�
�

This result can be generalized for slightly changed iterated constructions� Let P�
���
A� and P�

���
be de�ned as P� and P� except that the empty antichain is not allowed� Let P��

��� and P��

��� be

respective compositions of P�
��� and P�

���� Then analyzing the proofs of theorems ���� and �����

it is easy to see that the following holds�

Corollary ���� For an arbitrary poset A� P��

���
A� and P��

���
A� are isomorphic� Moreover�

P��

���
A� is the free distributive lattice generated by A� �

In particular� P��

��� a U form an adjoint pair of functors between categories Poset and DL�

where DL is the category of distributive lattices and U is the forgetful functor DL� Poset�

����� Universality properties of approximations

The main purpose of this section is to describe all approximation constructions� that is� P i
A�
and PP i
A�� as free ordered algebras generated by A� Of course we have to explain how A is
viewed as a subset of those� This is achieved by de�ning two functions
for which we use the
same notation�

A �
�� P i
A� � �
x� �
x� x� and A �

�� PPi
A� � �
x� �
x� fxg�

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ��

Notice that we often omit the set brackets fg when we deal with singletons� In particular� by
fxg we meant a family of sets that consists of one singleton� In proofs� we shall also occasionally
omit commas separating elements of sets� writing xyz for fx� y� zg�

It would be ideal if could obtain freeness results for all constructions� but there is one obstacle�
Consider a poset A and x� y � A such that x�y� Then
x� y� is a sandwich and
x� fyg� is a
scone� Thus� if P
�
A� or PP��
A� were free algebras generated by A� there would be a way to
construct
x� y� or
x� fyg� from the singletons like
x� x� or
x� fxg�� But this way must use the
information about consistency in A and therefore can not be �universal�%

We shall make this precise by proving that the approximation constructs with u�l used in the
consistency condition do not arise as free ordered algebras generated by A� But we give a method
to repair the failure of certain approximations to be free algebras� The idea is that information
about consistency in A must be conveyed by the generating poset� We de�ne the consistent
closure of A as

A�A � f
a� b� j a � A� b � A� a�bg
The consistent closure of A can be embedded into P i
A� and PP i
A�
where i � f���
�g� by
means of the following functions�

A�A �
��� P i
A� � ��
x� y� �
x� y� and A�A �

��� PPi
A� � ��
x� y� �
x� fyg�

When the structure of an arbitrary free algebra is described� it is assumed that � is an arbitrary
map of generators into an algebra of the given signature� This is no longer enough for ordered
constructions like P�
A� and P�
A� because those are free ordered algebras generated by ordered
sets� In particular� we always start with a monotone map that is to be extended to a monotone
homomorphism� In the case of sandwiches or scones� we go even further and impose additional
structure on the generating poset� This structure must be consistent with the resulting algebra�
To guarantee it� we put additional restriction on the map f saying that the structure of A�A
should not be destroyed by f � We call such maps admissible� Of course there will be di�erent
de�nitions of admissibility for di�erent kinds of approximations� When we say that an algebra
is freely generated by a poset with respect to a class C of maps� we mean that any map f in C
can be extended to a monotone homomorphism�

In the rest of this section we prove three kinds of results� The constructs not using u�l� u� l � A
in the consistency condition are found to be certain ordered algebras freely generated by A�
Those that do use such consistency conditions can not be obtained as free algebras generated
by A� However� some of them can be obtained as algebras freely generated by A�A with respect
to properly restricted
admissible� maps�

Operations used in the free algebra characterizations are either operations similar to the �formal
union� such as in the characterization of the Plotkin powerdomain ����� or modal operations

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

in the spirit of Winskel ���� or operations associated with the orderings
such as in�mum� or
other binary operations that can be viewed as combinations of the above�

Universality of P

A� mixes�

The characterization of the mixes as free ordered algebras was given by C� Gunter ����� For the
sake of completeness� we recall it here� We shall also need the same algebras for dealing with
sandwiches�

De�nition ��� A mix algebra hM����� ei has partially ordered carrier M � one monotone bi�
nary operation � and one monotone unary operation �� hM��� ei is a semilattice with identity
e� and in addition the following equations must hold�
� �
x� y� � �x� �y�
�� ��x � �x�
�� �x � x�
�� x��x � x�
�� x��y � x�

A mix homomorphism of two mix algebras hM�������� e�i and hM�������� e�i is a monotone
map f � M� � M� such that f
x �� y� � f
x� �� f
y�� f
��x� � ��f
x� and f
e�� � f
e���
That is� in addition to being homomorphism in the usual sense� f must be monotone as well�

P

A� can be given the structure of a mix algebra by taking the ordering vB and de�ning

U� L� �
V�M� �
min
U � V ��max
L �M�� �
U� L� �
U� �� e �
�� ��

Theorem ���� C� Gunter ����� P

A� is the free mix algebra generated by A� That is� for
any mix algebra M and a monotone map f � A �M there exists a unique mix homomorphism
f� � P

A��M that makes the following diagram commute�

A �
�� hP

A������ ei

�
�
�
�
�

f
R
hM����� ei

�

�%f�

�

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ���

Universality of P
� sandwiches�

We would like to characterize sandwiches as a free construction over A� Suppose we start with
the same function � � A � P
�
A� given by �
x� �
x� x�� For any pair x� y � A such that
x�y� there is a sandwich
x� y� over A� Thus� if we view P
�
A� as a free algebra in a certain
signature� there must be a way to construct
x� y� out of pairs with identical components� But
this way must use information that x�y and therefore can not be �universal�� To be precise� the
following holds�

Theorem ���� It is impossible to 	nd a family & of operations on sandwiches such that P
�
��
would be left adjoint to the forgetful functor from the category of ordered &�algebras to Poset�
In other words� for no & is P
�
A� the free ordered &�algebra generated by A�

Proof� Assume that there exists a set of operation & such that P
�
A� the free ordered &	
algebra generated by A for any poset A� Let A � fx� y� zg be an antichain and A� � fx�� y�� z�g
be a poset such that x�� y� � z� and x� �� y�� y� �� x�� Let f � A � P
�
A�� be de�ned by
f
a� �
a�� a��� a � A� Now the assumed universality property tells us that f can be extended
to a monotone &	homomorphism f� � P
�
A� � P
�
A��� Let S � P
�
A��� Since P
�
A��
is the free &	algebra generated by A�� we can �nd a term t in the signature & such that S �
t
�
x��� �
y��� �
z���� Since �
x�� � f
x� � f�
�
x�� and similarly for y� and z�� we obtain
S � f�
t
�
x�� �
y�� �
z��� � f�
S�� for some S� � P
�
A�� Therefore� f� is onto�

De�ne P
�xy
A� as the set of elements of P
�
A� which are not under
x� x� or
y� y�� It

is easy to check that P
�xy
A� includes the following�
z� z��
xz� z��
yz� z��
z� ���
xz� xz��

yz� yz��
xy� xy��
xyz� xz��
xyz� yz��
xyz� xy��
xyz� z�� Similarly� de�ne P
�x�y�
A�� as the

set of elements of P
�
A�� which are not under
x�� x�� or
y�� y��� These are�
x�� y���
y�� x���

x�y�� z���
z�� x�y���
x�� z���
z�� x���
y�� z���
z�� y���
z�� ���
z�� z��� Since f� is monotone� we
derive that its restriction on P
�xy
A� must be an onto map from a subset of P
�xy
A� to

P
�x�y�
A��� Observe that in P
�xy
A� the only element that is not above
xyz� z� is
z� ��� Hence�

if f�

xyz� z�� � S � P
�x�y�
A��� then f�
P
�xy
A�� f
z� ��g� is a subset of the principal �lter

of S in P
�x�y�
A��� However� P
�x�y�
A�� has four minimal elements�
x�� y���
y�� x���
x�y�� z�� and

z�� �� which shows that f� can not be an onto monotone map between P
�xy
A� and P
�x�y�
A���
This contradiction shows that P
�
A� can not be obtained as the free &	algebra generated by
A� �

Therefore� as we suggested in the introduction to this section� the information about consistency
in A must be conveyed by the generating poset� That is� we use A�A instead of A� The surprising
result now says that sandwiches over A are the free mix algebra generated by the consistent
closure of A under the same interpretation of the operations of mix algebras% Of course� we need
an admissibility condition�

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

De�nition ��	 Let M be a mix algebra� A monotone map f � A�A � M is called admissible
�or sandwich�admissible� if f
x� y� � f
z� y� � f
x� y� and �f
x� y� � �f
x� z��

Theorem ���	 Given a poset A� P
�
A� is the free mix algebra generated by A�A with respect
to the admissible maps� That is� given a mix algebra M and an admissible map f � A�A � M �
there exists a unique mix homomorphism f� � P
�
A� � M such that the following diagram
commutes�

A�A �
��� hP
�
A������ ei

�
�
�
�
�

f
R
hM����� ei

�

�%f�

Proof� We omit an easy veri�cation that P
�
A� is a mix algebra�

Let us �rst establish a number of useful properties of admissible maps� In what follows� f is
always an admissible map from A�A to M �

�� Assume v � u and u�l� Then f
u� l� � f
v� l� � f
v� l��

First� f
u� l� � f
v� l�� By monotonicity of �� f
v� l� � f
v� l� � f
v� l� � f
v� l� � f
u� l�� But
since f is admissible� f
u� l� � f
v� l�� f
v� l�� Hence� �� holds�

�� Assume p � l� v�l and q�p� Then f
v� l� � f
q� p� � �f
v� v� � f
q� p��

First show f
q� p� � f
q� l� � f
q� p�� By monotonicity� f
q� p� � f
q� l� � f
q� p� � f
q� p� �
f
q� p�� On the other hand� f
q� p� � f
q� l� � f
q� p� � �f
q� l� � f
q� p� � �f
q� p� � f
q� p��
which proves the equation� Since �f
v� v� � �f
v� l� � f
v� l�� the � inequation for �� holds�
Conversely� f
v� l� � f
q� p� � f
v� l� � f
q� l� � f
q� p� � �f
v� l� � f
v� l� � f
q� l� � f
q� p� �
�f
v� l�� f
q� l�� f
q� p� � �f
v� v�� f
q� p� which shows the reverse inequation� �� is proved�

�� If l � m� then f
v� l� � f
q�m� � �f
v� v� � f
q�m��

The � inequation is obvious� As in the proof of ��� we obtain f
v� l��f
q�m� � f
v� l��f
q� l��
f
q�m� � �f
v� l��f
v� l��f
q� l��f
q�m�� �f
v� l��f
q� l��f
q�m�� �f
v� l��f
q�m� �
�f
v� v� � f
q�m��

�� Assume v � u� Then f
v� l� � f
u� l� � �f
v� v��

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ���

First� f
u� l��f
v� l�� f
v� l� � f
v� l��f
v� l�� f
u� l��f
v� l�� hence f
u� l��f
v� l� � f
v� l��
Now we have� f
v� l� � f
v� l� � f
u� l� � f
u� l� � �f
v� l� � f
u� l� � �f
v� v�� On the other
hand� f
v� l� � f
v� l� � �f
v� l�� f
u� l� � �f
v� v�� proving ���

�� If v � u� then �f
u� u� ��f
v� v� � �f
v� v��

According to the proof of ��� f
u� v� � f
v� v� � f
v� v� and from this �� follows immediately�

�� Assume u�l and v�l� Then f
v� l� � �f
u� u� � f
v� l� ��f
u� u� � f
u� l��

Since �f
u� u� � �f
u� l� � f
u� l�� the � inequality holds� Since f
v� l� � f
u� l� � f
v� l�� we
obtain the reverse inequality�

Now let us come back to the statement of the theorem� Let S �
U� L� be a sandwich over A
with U � fu�� � � � � ung and L � fl�� � � � � lkg� Since S is a sandwich� for every lj � L there exists
uij � U such that lj�uij � Let I
 �n���k� be the set of pairs of indices such that
i� j� � I � ui�lj �
Then

�� S �
X

�i�j��I

ui� lj� ��
nX
i��

ui� ui�

From now on we assume that summation over an empty set is the identity for the � operation�
It shows that
�� holds even if one of the components of a sandwich is empty�

Using representation
��� de�ne f� for an admissible f � A�A�M as follows�

�� f�
S� �
X

�i�j��I

f
ui� lj� ��
nX
i��

f
ui� ui�

Let us show that f� is a homomorphism� Prove that f� is monotone �rst� Let S� �
U� L�
and S� �
V�M� be two sandwiches such that S� vB S�� that is� U v� V and L v� M � Let
S �
U�M�� Observe that S is a sandwich� Therefore� the proof of f�
S�� � f�
S�� is contained
in the following two claims�

Claim � f�
S�� � f�
S��

Proof of claim � If L � �� then claim follows easily from
��� admissibility and equation � of
mix algebras� For L �� �� since L v� M � there is a sequence of sets L� � L� L�� � � � � Ln � M

such that each Li
 L � M and either Li�� � max
Li � l� or Li�� � max

Li � L�� � l�
where l� � l for all l� � L�� see theorem ���� Then each
U� Li� is a sandwich� We must
show f�
U� Li� � f�
U� Li���� Consider the �rst case� i�e� Li�� � max
Li � l�� To verify
f�
U� Li� � f�
U� Li��� in this case� it is enough to show �f
u� u��f
u� l�� �f
u� u� if u�l and�
if there is an element l� � L such that l� � l� then f
u�� l���f
u� l���f
u� u� � f
u�� l����f
u� u�

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

if u��l�� The �rst one is easy� �f
u� u� � f
u� l� � �f
u� l� � f
u� l� � f
u� l� � �f
u� u�� The
second one follows from monotonicity of �� f
u� l� ��f
u� u� � �f
u� l� � �f
u� u��

Consider the second case� i�e� Li�� � max

Li � L�� � l�� Assume u�l� Then u�l� for any l� � L��
Therefore� any summand f
u� l� in
�� for
U� Li��� is bigger than f
u� l�� in
�� for
U� Li�� Now
suppose there is l� � L� such that u��l� but u� is not consistent with l� If l is consistent with some
u � U � then u�l�� Therefore� to �nish the proof of claim �� we must show that f
u�� l���f
u� l�� �
f
u� l�� But this follows from admissibility of f � f
u�� l�� � f
u� l� � f
u� l�� � f
u� l�� Claim �
is proved�

Claim �� f�
S� � f�
S���

Proof of claim �� Again� we assume non	emptiness� since for empty sets the proof of claim �
readily follows from
��� We start with proving the following� Given a sandwich
W�N� and
n � N � let wn be arbitrarily chosen element of W such that wn�n� Then� given an admissible
function f � f�
W�N� de�ned by
�� equals

P
n�N f
wn� n� � �

P
w�W f
w�w�� To prove this�

assume that there are two elements w� and w� in W consistent with n � N � Then we must
show f
w�� n� � f
w�� n� � �f
w�� w�� � �f
w�� w�� � f
w�� n� � �f
w�� w�� � �f
w�� w���
That the left hand side is less than the right hand side follows from admissibility� On the other
hand� f
w�� n���f
w�� w����f
w�� w�� � f
w�� n���f
w�� n���f
w�� w����f
w�� w�� �
f
w�� n� � f
w�� n� ��f
w�� w�� ��f
w�� w�� which proves our claim�

Now� to prove claim �� consider S� �
V�M� and let vm be an element of V consistent with
m � M � Since U v� V � let um be an element of U under vm� Then um�m� Also� let uv be
an element of U under v � V � Then �

P
u�U f
u� u� � �

P
v�V f
u

v� uv� � �
P

u ��uv f
u� u� �
�
P

v�V f
u
v� uv� � �Pv�V f
v� v�� Now� by the claim proved above� f�
S� �Pm�M f
um� m��

�
P

u�U f
u� u� �
P

m�M f
vm� m� ��
P

v�V f
v� v� � f�
S�� which �nishes the proof of claim
� and monotonicity of f��

Now we demonstrate that f� preserves the operations of the signature of the mix algebras�
Since � distributes over �� �f�
S� �

P
�i�j��I �f
ui� lj� �

P
i�f
ui� ui�� Since �f
ui� lj� �

�f
ui� ui� � �f
ui� ui�� we obtain �f�
S� �
Pn

i���f
ui� ui� � f�
�S�� Moreover� since
�e � e� this also holds when one of components is empty� In addition� f�
�� �� � e�

That f� is a �	homomorphism easily follows from
�� when one of the components is empty� So
in the rest of the proof we assume that the second components of all sandwiches are not empty�

Let S� �
U� L�� S� �
V�M�� Let S � S��S� �
W�N�� Consider a pair
ui� lj� with
i� j� � I�
There are three cases� this pair is either present in the representation
�� of S or ui � vk for
some vk � V �min
U � V � or lj � mk �M �max
L �M��

Consider the second case� We have vk�lj � Assume lj � p and p � N � We know that p�q for some
q � W � Since f
vk � lj� � f
q� p� � �f
vk� vk� � f
q� p� � �f
v� v� by ��� we obtain f�
S� �
f�
S� � f
vk� lj�� Furthermore� since �f
vk� vk� � f
ui� lj� � f
vk� lj� � �f
vk� vk� � f
vk � lj�

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ���

by ��� we have f�
S� � f�
S� � f
vk� lj� � f
ui� lj��

Consider the third case� Assume ui is greater or equal than some v � W and mk�q for q � W �
Then f
v� lj�� f
q�mk� � �f
v� v�� f
q�mk� by ��� and hence f�
S� � f�
S�� f
v� lj�� Since
f
v� lj� � f
u� lj� � �f
v� v� by ��� we obtain f�
S� � f�
S� � f
ui� lj��

Assume that u � v� Since �f
u� u� � �f
v� v� � �f
v� v� by ��� we obtain f�
S� � f�
S� �
�f
ui� ui� for any ui�

All this shows that f�
S� can be rewritten as f�
S�� � f�
S�� �X where X is a sum of some
elements of form f
ui� mj� or f
vi� lj�� Consider a pair
ui� mj� such that ui�mj � There exists
vk such that vk�mj � Since f
vk � mj� ��f
ui� ui� � f
vk � mj� ��f
ui� ui� � f
ui� mj� by ��� the
summand f
ui� mj� can be safely removed from X � Thus� any summand can be removed from
X and f�
S� � f�
S�� � f�
S��� Therefore� f� is a homomorphism�

The uniqueness of f� follows from
��� Since f�
��
x� x�� � f
x� x� � �f
x� x� � f
x� x�� we
have f� � �� � f � The theorem is proved� �

Universality of P�

For P�
A�� the situation is analogous to mixes� That is� there exists a family of operations &
such that P�
A� is the free ordered &	algebra generated by A�

Recall that a left normal band is an algebra hB� �i such that � is associative� idempotent and
x � y � z � x � z � y� see Romanowska and Smith ������

De�nition ��� An algebra hB�#� �i is called a distributive bi	LNB algebra if�
� # and � are left normal band operations�
�� All distributive laws between � and # hold�
�� a#
b � c� � a# b�
��
a � b�# b �
b � a�# a�

Some useful equalities can be derived from �� 	 ��� For example� a �
b # c� � a � b # a � c �
a � b # a � a � b # a � b � a � b and a � b# a � c � a � b # a � a � b # a � b � a � b� It follows
immediately from �� and �� that
a � b�#
b � a� �
b � a�#
a � b��

We need not include the order in the signature as it is de�nable�

Lemma ���� In a distributive bi�LNB algebra� a � b �� b# a � a � b de	nes a partial order�
Moreover� # and � are monotone with respect to ��

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

Proof� First� let us show that b# a � a � b implies a# b � a and b �a � b� If a � b � b# a� then
b�a � b�a�b � b�
b#a� � b#b�a � b#b � b� Moreover� a � a#a � a#a�b � a#b#a � a#b�

Because of idempotency� � is re�exive� To prove transitivity� let a � b and b � c� We must
show a � c � c# a� Calculate c# a � c � b# a# b �
c# b� � b# a � b � c � b# a � b � c# a �

b#a��
c#a� � a� b�c#a�b�a� a�b�c#a� a�b� c#a� b�c� a�b�c� On the other hand�
a � c �
a# b� � c � b � a � c � b# b � c � b � a � c � b# b �
a# b� �
c# b�b � a � b � c � b � a � b � c�
Hence� c# a � a � c and a � c� Finally� if a � b and b � a� then a# b � a and b � a � b� Hence�
b � b � a � a# b � a� which �nishes the proof that � is a partial order�

Assume that a � b� To see that a# c � b# c� calculate
a# c� �
b# c� � a � b#a � c# c � b# c�
a � b# a # c � b# a # c �
b# c�#
a # c�� Similarly� # is monotone in its second argument�
To show a � c � b � c� calculate a � c # b � c �
a # b� � c � b � a � c � b � c � a � c� Similarly�
c � a# c � b � c �
a# b� � c � b � a � c � a � c � b� Hence� � is monotone� �

Thus� we treat distributive bi	LNB algebras as ordered algebras�

We interpret the operations � and # on P�
A� as follows�

U� L�#
V�M� �
min
U � V �� L�
U� L� �
V�M� �
U�max
L �M��

Note that under this interpretation x � y �
x � y�# y where the � operation is the one used
for mixes and sandwiches� Hence� �� is just commutativity of ��

Theorem ���� P�
A� is the free distributive bi�LND algebra algebra generated by A� That is�
for any distributive bi�LND algebra B and any monotone map f � A� B� there exists a unique
homomorphism which completes the following diagram�

A �
�� hP�
A��#� �i

�
�
�
�
�

f
R
hB�#� �i

�

�%f�

Proof� First observe that if
U� L� � P�
A�� then U� L �� �� We leave it to the reader to �nd
an easy proof that P�
A� satis�es all equations of the distributive bi	LND algebras under the
given interpretation of # and � and that S� vB S� i� S� � S� � S� #S�� Given
U� L� � P�
A��
we can �nd u � U and l � L such that u� � l�� Then� using

P� for repeated applications of #�
and

N
for repeated applications of �� we can see that

U� L� �
P� u�U�
u� � �
u�� � �
l�� �O

l�L

�
l�

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ���

if in the summation over elements of U the �rst summand is below an element of L� Now� given
a monotone f from A into an algebra B� de�ne f� � P�
A�� B as follows�

f�
U� L� �
P� u�Uf
u� � f
u�� � f
l�� �O

l�L

f
l�

Our �rst goal is to show that in the above representation any number of expressions of form
f
u���f
l��� where u� � l�� can be added after f
u���f
l��� This is indeed correct� as f
u�� � f
l��
implies f
u�� � f
l�� � f
l�� and f
l�� is subsumed by

N
l�L f
l��

Denote f
u��#� � �#f
un� by (U forU � fu�� � � � � ung and f
l���� � ��f
lk� by �L for L � fl�� � � � � lkg�
Then f�

U� L�� � (U � f
ui�� � � � � � f
uim� � �L for any number of uij �s which are under some
elements of L�

To show that f� is well	de�ned� we must prove that its value does not change if we pick a
di�erent �rst summand in (U as long as it is below an element of L� It su�ces to prove the
following� Let ui � li� i � �� �� Then
f
u�� # f
u��� � �L �
f
u�� # f
u��� � �L� This can be
further reduced to proving
f
u��# f
u��� � f
l�� � f
l�� �
f
u��# f
u��� � f
l�� � f
l��� Again�
we calculate

f
u��# f
u��� � f
l�� � f
l�� � f
u�� � f
l�� � f
l��# f
u�� � f
l�� � f
l�� �

f
l��# f
u��� � f
l��#
f
l��# f
u��� � f
l�� �

f
l�� � f
l��# f
l�� � f
l��# f
u�� � f
l��# f
u�� � f
l��

Similarly�

f
u��# f
u��� � f
l�� � f
l�� � f
l�� � f
l��# f
l�� � f
l��# f
u�� � f
l��# f
u�� � f
l��

Now the desired equality follows from the equality
a � b�#
b � a� �
b � a� #
a � b� which is
true in all bi	LNB algebras�

Our next goal is to show that any number of nonminimal elements can be added to U and any
number of nonmaximal elements can be added to L and that it does not change the value of
f�� That is� writing expressions for f� we may disregard min and max operations�

Assume that u � u� and u� is added to U � There are two cases� If f
u�� is not the �rst summand
in gU � u�� then f
u� # f
u�� � f
u�� so we may disregard f
u��� It is also possible that f
u��
can be used in the expression for f� between (U and �L� in which case it can also be disregarded
as� if it is below some l� then f
u�� � f
l� � f
l�� Finally� consider the case when f
u�� is the
�rst summand� It is only possible if u � u� � l for some l � L� To prove that f
u�� can be
dropped and replaced by f
u� in this case� we must show
f
u��#f
u���f
l� � f
u��f
l�� Since
f
u� � f
u�� and f
u��#f
u� � f
u��f
u��� we obtain
f
u��#f
u���f
l� � f
u��f
u���f
l� �
f
u� � f
l� � f
u�� � f
u� � f
l��

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

If l� � l is added to L� f
l�� does not change the value of f� as f
l� � f
l�� � f
l�� Therefore� we
may disregard all max and min operations in expressions for f��

At this point we are ready to show that f� is a homomorphism� Its uniqueness will follow
from the representation of elements of P�
A� from singletons and well	de�nedness of f�� Let
S� �
U� L� and S� �
V�M�� Let u� � l� and v� � m� for u� � U� l� � L� v� � V�m� �
M � Then f�
S�� � f�
S�� �

P� v�V
f�
S�� � f
v� � f
v�� � �M�� For two vi and vj � consider

f�
S�� � f
vi� � f
v�� � �M and f�
S�� � f
vj� � f
v�� � �M � Since L �� �� they are the same�
because a � b#a � c � a � b is a derivable equality� Hence� f�
S�� � f�
S�� � f�
S�� � f
v�� � �M �
Since v� � m�� we have f
m�� � f
v�� � f
m�� and hence x � f
v�� � �M � x � �M for any x�
Thus� f�
S�� � f�
S�� � (U � f
u�� � �L � �M � (U � f
u�� � dL �M � f�
S� � S��� Therefore� f�

is a �	homomorphism�

Now consider f�
S�� # f�
S��� From the equational theory� we immediately have f�
S�� #
f�
S�� �
 (U � f
u�� � �L�# (V � Furthermore� since
a# c� � b � a � b# c � b � a � b# c� we have
f�
S��# f�
S�� �
 (U # (V � � f
u�� � �L � gU � V � f
u�� � �L � f�
S��# f�
S��� Thus� f� is a
homomorphism� Theorem is proved� �

Universality of P�

Recall that P�
A� is the poset of pairs of �nite antichains
U� L� ordered by vB� Hence� it is
isomorphic to the direct product of P�
A� and P�
A�� each of them being a free construction�
A product of free algebras is not necessarily a free algebra� However� for the case of P�
A� we
exhibit a simple way of combining mixes with their �dual� algebras to obtain the universality
property for P�
A��

De�nition ��� An algebra hB������i is called a bi	mix algebra if hB����i is a mix algebra
�see de	nition ����� x � �x � �x and hB����i is a dual mix algebra� By this we mean that
� is a closure� that is� � is monotone� �x � x� ��x � �x and �
x� y� � �x� �y� and in
addition x��x � x and x��y � x�

We give P�
A� the structure of a bi	mix algebra by interpreting � and � in the same way as
for P

A� and by putting �
U� L� �
�� L��

Theorem ���� P�
A� is the free bi�mix algebra generated by A� That is� for any bi�mix algebra
B and any monotone map f � A� B� there exists a unique homomorphism which completes the
following diagram�

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ��

A �
�� hP�
A�������i

�
�
�
�
�

f
R
hB������i

�

�%f�

Proof� It is easy to check that P�
A� is a bi	mix algebra under the given interpretation of the
operations� To prove freeness� we �rst need a few facts about bi	mix algebras�

Let e � ��x� We have y��x � y and hence by monotonicity �y�e � �y� Adding �y to both
sides� we get by monotonicity that �y��y�e � �y��y and hence y � y�e � y which proves
that e is the identity of �� Similarly� if we de�ne e� � ��x� then e� is the identity of � and
therefore e � e�� This shows that the identity of � can be correctly de�ned as e � ��x � ��y
for arbitrary x and y� Since x � �x� we have �x � ��x � e� Similarly� �x � e� It is also easy
to see that �e � �e � e�

Now� given
U� L� � P�
A�� observe that

U� L� � �
X
u�U

�
u� � �
X
l�L

�
l�

As usual� summation over � is assumed to be e� Then� given f � A� B� de�ne f� � P�
A�� B

as follows�
f�

U� L�� � �

X
u�U

f
u� � �
X
l�L

f
l�

First� f�
�
x�� � f�

x� x�� � �f
x� ��f
x� � f
x� and hence f� � � � f � Now we are going
to show that f� is a homomorphism� Its uniqueness will then follow from the representation of
elements of P�
A� given above�

Before we show that f� is monotone� let us check that the value of f� does not change if an
element l� � l � L is added to L or an element u� � u � U is added to U � Indeed� to prove the
former� observe that f
l�� � f
l� and �f
l�� ��f
l� � �f
l� ��f
l� � �f
l�� For the latter�
�f
u� � �f
u� � �f
u�� � �f
u� and hence �f
u� � �f
u�� � �f
u��

To show that f� is monotone� observe that if
U� L� vB
V�M�� then U vor

a V and L vOWA

a M

and hence V can be obtained from U by a sequence of updates described in theorem ��� and
M can be obtained from L by a sequence of updates described in theorem ���� It is easy to see
that updates that replace an element by a number of bigger elements are monotone� Consider
removing an element u from U � If U � fug� then Pu����f
u

�� � e � �f
u�� If u� � U � fug�
then �f
u�� � �f
u�� ��f
u� which proves monotonicity in this case� Finally� if L � � and an

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

element is l added� then �f
l� �Pl����f
l
�� � e� If l � L and l� is added� we have monotonicity

because �f
l� ��f
l�� � �f
l��

Nowwe are ready to prove that f� is preserves �� � and�� First��f�

U� L�� � ��
P

u�U f
u��
��
P

l�L f
l� � �
P

u�U f
u� � e � f�
�
U� L��� Similarly� �f�

U� L�� � f�
�
U� L��� The
fact that � is preserved follows immediately from the de�nition of f� and the observation that
nonminimal elements in U and nonmaximal elements in L do not a�ect the value of f�� �

Universality of PP
 snacks�

Snacks were �rst introduced by Buneman and then studied by Ngair in his dissertation ������
Later they were characterized by Puhlmann ����� as free distributive bisemilattices ���� �����
Since Pulhmann�s proof is not very complicated and since it exploits an unusual presentation
of the equational theory� for the sake of completeness we prove the characterization theorem
here� We then shall demonstrate the connection between snacks and theory of P$lonka�s sums of
algebras ����� �����

First observe that the ordering vB

f gives PP

A� the structure of a meet	semilattice ����� where

U�L��
V�M� �
min
U � V ��max�fmin
L �M� j L � L�M � Mg�

De�nition ���
see ���� ������ A bisemilattice is an algebra hB��� �i such that � and � are
semilattice operations� A bisemilattice B is called distributive if both distributive laws hold� that
is� x
y�z� � xy�xz and x�yz �
x�y�
x�z�� �For convenience� we often omit � in formulas
and equations��

When we speak of the ordering on a bisemilattice B� we mean the ordering associated with ��
that is� x � y i� xy � x�

PP

A� can be given the structure of distributive bisemilattice by making � to be the greatest
lower bound operation above and by de�ning � as

U�L� �
V�M� �
min
U � V ��max�
L �M��

Observe that the empty snack e �
�� �� is the identity for ��

De�nition ���� A snack algebra is a distributive bisemilattice in which � has identity e�

A homomorphism of snack algebras is a homomorphism in the usual algebraic sense� In other
words� there is no need to require monotonicity as we did for mixes� because it is implied� if
x � y� then h
x� � h
y� � h
x � y� � h
x� and h
x� � h
y��

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ���

Theorem ���� Given a poset A� PP

A� is the free snack algebra generated by A� That is�
for any snack algebra Sn and a monotone map f � A � Sn� there exists a unique snack
homomorphism f� � PP

A�� Sn such that the following diagram commutes�

A �
�� hPP

A���� �� ei

�
�
�
�
�

f
R
hSn��� �� ei

�

�%f�

Proof� We omit veri�cation that PP

A� is a snack algebra
in fact� the distributivity laws will
be veri�ed later in the greater generality��

Given a snack S �
U�L� where U � fu�� � � � � ung and L � fL�� � � � � Lkg� Li � fli�� � � � � likig� we
have

�� S �

nY
i��

�
ui��e�
kX
i��

kiY
j��

�
lij�

Then� if monotone f � A� Sn is given� de�ne f� � PP

A�� Sn by

�� f�
S� �

nY
i��

f
ui��e�
kX
i��

kiY
j��

f
lij�

Clearly� f�
�� �� � e and f�
�
x�� � f
x� � e � f
x� � f
x�� We must show that f� is a
homomorphism�

We start with a few easy observations� First� notice that for a snack algebra � is monotone
with respect to �� Indeed� take b � c and observe that
a � b�
a� c� � a � bc � a � c� hence
a � b � a � c� Let us now take three elements a � b � c� We have� ae � c � ae � ae � c �
ae� b� c � ae� c� c � ea� c� Hence� ae� b� c � ae� c� Furthermore� consider arbitrary a
and b� Since abe
a� b� � abe� we have abe �
a� b�e� On the other hand� ae� be is below a� b
and e� and hence ae� be � abe� Thus� abe �
a� b�e�

Let x � y in A� Then f
x� � f
y� and hence f
x� � f
y� � f
x�� Therefore� if X and Y are two
�nite subsets of A equivalent with respect to v�� then

Q
x�X f
x� �

Q
y�Y f
y��

Furthermore� assume U v� X v� Y for U�X� Y � P�n
A�� Then we have
Q
u�U f
u� � e �Q

x�X f
x� � Qy�Y f
y� and therefore
Q

u�U f
u� �e�
Q
x�X f
x��

Q
y�Y f
y� �

Q
u�U f
u� �e�Q

y�Y f
y�� This observation shows that writing an expression for f�
S� � S�� and f�
S� � S��

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

one may disregard all max and min operations� That is� for S� �
U�L� and S� �
V�M��

�� f�
S� � S�� �
Y
u�U

f
u� �
Y
v�V

f
v� � e�
X
L�L

Y
l�L

f
l� �
X

M�M

Y
m�M

f
m�

�� f�
S� � S�� �
Y
u�U

f
u� �
Y
v�V

f
v� � e�
X

L�L�M�M

Y
l�L

f
l� �
Y

m�M

f
m�

That f�
S� � S�� � f�
S�� � f�
S�� follows immediately from
���

Let us denote
Q
x�X by (X� Then f�
S� � S�� � (U (V e� (Ue �PM

(M � (V e �PL
(L�
P

L
(L �PM

(M �
The last summand is easily seen to be

P
L�M

(L � (M � Since
P

M
(M � (V � the last summand is also

greater than (V e �PL
(L which can therefore be dropped� Similarly� (Ue �PM

(M can be dropped�
Thus� f�
S� � S�� � f�
S�� � f�
S�� which shows that f� is a homomorphism� Its uniqueness
follows from
��� �

We now show that a particular case of this theorem
when A is a discrete order� is well known�
If A is discrete� then any subset of A is an antichain� and the consistency condition says that
Li
 U for any snack
U� fL�� � � � � Lkg�� To rede�ne bisemilattice operations� simply remove all
min�s and replace max� with min��

Fix U
 A and consider LU � fL j
U�L� is a snackg� Then it is easy to see that hLU ��� �i is
the free distributive lattice generated by U � It shows that PP

A� is what is known in universal
algebra as the P$lonka sum of free distributive lattices over the semilattice hP�n
A���i which
itself is the free semilattice generated by A� Now� the result of P$lonka ����� tells us that such
construction is isomorphic to a free distributive bisemilattice� Thus� we have shown how to
extend the result of ����� to arbitrary generated posets and how to include the identity constant
into the signature�

Universality of PP
�

The di�erence between elements of PP

A� and PP
�
A� is that in the latter the consistency
condition is similar to that in sandwiches� for any
U�L� in PP
�
A�� and any L � L� there exists
W such that L v� W and U v� W � Our goal is to show that PP
�
A� can not be described as
a free ordered algebra generated by A� Recall that we de�ned � as an operation on snacks by

U�L� �
V�M� �
min
U � V ��max�
L �M��� It is easy to see that elements of PP
�
A� are
closed under this operation as well�

Theorem ���� Let &� be a set of operations on elements of PP
�
A� such that � is a derived
operation� Then PP
�
�� is not left adjoint to the forgetful functor from the category of ordered

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ���

&��algebras to Poset� In other words� for no &� is PP
�
A� the free ordered &��algebra generated
by A�

Proof� Assume that there exists a set of operation &� such that P
�
A� the free ordered
&	algebra generated by A for any poset A and � is a derived operation� Let A � fx� y� zg be
an antichain and A� � fx�� y�� z�g be a poset such that x�� y� � z� and x� �� y�� y� �� x�� Let
f � A � PP
�
A�� be de�ned by f
a� �
a�� a��� a � A� Now the assumed universality property
tells us that f can be extended to a monotone &�	homomorphism f� � PP
�
A�� PP
�
A��� Let
S � PP
�
A��� Since PP
�
A�� is the free &�	algebra generated by A�� we can �nd a term t in the
signature &� such that S � t
�
x��� �
y��� �
z���� Since �
x�� � f
x� � f�
�
x�� and similarly
for y� and z�� we obtain S � f�
t
�
x�� �
y�� �
z��� � f�
S�� for some S� � PP
�
A�� Therefore�
f� is an onto �	homomorphism�

Using the fact that f� is a �	homomorphism� we �nd f�

xy� fx� yg�� � f�

x� x� �
y� y�� �

x�� x�� �
y�� y�� �
x�y�� fx�� y�g� and f�

xz� fx� zg�� � f�

x� x� �
z� z�� �
x�� x�� �
z�� z�� �

x�� z��� Similarly� f�

yz� fy� zg�� �
y�� z��� De�ne

PP
��
A� � PP
�
A�� �f
x� x��
y� y��
xy� fx� yg��
xz� fx� zg��
yz� fy� zg�g and

PP
��
A�� � PP
�
A��� �f
x�� x���
y�� y���
x�y�� fx�� y�g��
x�� z���
y�� z��g
Since f� maps PP
�
A� � PP
��
A� into PP
�
A�� � PP
��
A��� there must be an onto map from a
subset of PP
��
A� onto PP
��
A��� Now we can �nd that PP
��
A� � f
xyz� fx� y� zg��
z� z��
z� ��g
and PP
��
A�� � f
z�� z���
z�� fx�� y�g��
z�� x���
z�� y���
z�� x�y���
z�� ���
x�y�� z��g� Therefore� there
is no map from a subset of PP
��
A� onto PP
��
A��� This contradiction proves the theorem� �

Universality of PP�

The consistency condition for
U�L� � PP�
A� says that �U �L �� � for every L � L� Therefore�
PP�
A� is closed under � de�ned� as usual� by
U�L� �
V�M� �
min
U � V ��max�
L �M���
Our goal is to show that PP�
A� can not be described as a free ordered algebra generated by
A� This is more surprising than similar results for approximation constructs using u�l in the
consistency condition� Here no information about consistency is needed� but we still can not
�nd a free algebra characterization�

Theorem ���� Let &� be a set of operations on elements of PP�
A� such that � is a derived
operation� Then PP�
�� is not left adjoint to the forgetful functor from the category of ordered
&��algebras to Poset� In other words� for no &� is PP�
A� the free ordered &��algebra generated
by A�

Proof� Consider two posets� A � fx� y� zg and A� � fx�� y�� z�g� In A� x� y � z and x and y
are incomparable� A� is a chain� x� � y� � z�� De�ne f � A � A� by f
x� � x�� f
y� � y� and
f
z� � z�� Clearly� f is monotone�

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

Assume that there exists a signature &� such that for any poset B� hPP�
B��&�i is the free &�

algebra generated by B� Then we would have a monotone �	homomorphism f� � PP�
A� �
PP�
A�� such that f�

x� x�� �
x�� x��� f�

y� y�� �
y�� y�� and f�

z� z�� �
z�� z��� Then
we have f�

xy� fx� yg�� � f�

x� x� �
y� y�� �
x�� x�� �
y�� y�� �
x�� y�� and f�

y� z�� �
f�

y� y� �
z� z�� �
y�� y�� �
z�� z�� �
y�� z���

Since f� is monotone and
x� xy� �
x� x�� we obtain f�

x� xy�� �
x�� x��� Similarly� f�

xy�
xy�� �
x�� x��� Then
x�� x�� � f�

xy� xy�� � f�

x� xy� �
y� xy�� �
x�� x�� � f�

y� xy���
Since
y� xy� �
y� y�� f�

y� xy�� can be either
y�� y�� or
x�� y�� or
x�� x��� The equality above
then tells us that f�

y� xy�� �
x�� x���

Now we use these values of f� to calculate
y�� z�� � f�

y� z�� � f�

y� xy� �
y� z�� �
f�

y� xy�� � f�

y� z�� �
x�� x�� �
y�� z�� �
x�� z��� This contradiction shows that f � A� A�

can not be extended to a monotone �	homomorphism between PP�
A� and PP�
A�� and hence
PP�
A� is not a free &�	algebra generated by A� �

Universality of PP�� scones�

Scones were introduced recently by Jung and a few initial results were proved by Puhlmann
������ For example� it was shown that scones preserve bounded completeness and distributivity�
while snacks preserve the former but not the latter�

If x� y � A and x�y� then
x� fyg� is a scone� Thus� we have the same problem as we had with
sandwiches� it is no longer enough to start with A itself as a generating poset if we want to
represent scones as a free construction� That is� some information about consistency must be
incorporated into the generating poset� As we did in the case of sandwiches� we use A�A as the
generating poset�

Let us now describe the algebra� Recall that a left normal band is an algebra hB� �i where � is
idempotent� associative and x � y � z � x � z � y� see Romanowska and Smith ���� �����

De�nition ���� A scone algebra is an algebra hSc��� �� ei where � is a semilattice operation
with identity e� � is a left normal band operation� � and � distribute over each other� the
absorption laws hold and e � x � e� Formally� in addition to � being left normal band and �
being semilattice operation� the following hold�
� x� y � z �
x� y� �
x� z��
��
x� y� � z � x � z � y � z�
�� z �
x� y� � z � x� z � y�
�� x� x � y � x�
�� e� x � x� e � x�
�� e � x � e�

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ���

In other words� a scone algebra is �almost distributive lattice� � commutativity of one of the
operations is replaced by the law of the left normal bands� Scone algebras are known as idem	
potent distributive semirings with semilattice and left zero bands reducts� There is no known
characterization of such algebras we could bene�t from
though the characterization of free
idempotent distributive semirings with semilattice reducts is known� see ������

If Sc is a scone algebra� de�ne x �y � x�y�y �x� It is an easy observation that � is a semilattice
operation� An ordering on Sc is de�ned according to this operation� that is� x � y � xy � x�
Similarly to the case of snacks� this implies monotonicity of any homomorphism�

To give PP��
A� the structure of a scone algebra we must show how to de�ne � and �� The �
operation is de�ned as for snacks� and

U�L� �
V�M� �
U�max�fmin
L �M� j L � L�M � Mg�
It is easy to check that
U�L� �
V�M� satis�es the consistency condition� e is the empty scone

�� ��� Similarly to the case of sandwiches� a de�nition of admissibility is needed to preserve the
additional structure given by the consistent closure of A�

De�nition� Let hSc��� �� ei be a scone algebra� A monotone map f � A�A � Sc is called
admissible if f
u� l� � f
v�m� � f
u�m� � f
w� l� and f
u� l� � e � f
u�m� � e�

Theorem ���� Given a poset A� PP��
A� is the free scone algebra generated by A�A with respect
to admissible maps� That is� for any scone algebra Sc and an admissible map f � A�A � Sc�
there exists a unique scone homomorphism f� � PP��
A� � Sc which completes the following
diagram�

A�A �
��� hPP��
A���� �� ei

�
�
�
�
�

f
R
hSc��� �� ei

�

�%f�

Proof� We shall verify the distributivity laws in the proof of algebraic characterization of the
salads in the next subsection� Distributivity laws for scones then follow from the observation
that the second components of
U�L� �
V�M� and
U�L� �
V�M� coincide� Equation �� is
immediate� Thus� PP��
A� is a scone algebra�

We now need some observations about the scone algebras� In what follows� f is an admissible
map from A�A to a scone algebra Sc� The de�nition of admissibility can be rewritten to f
u� l��
f
v�m� � f
u� l� � f
w�m� � f
u�m� � f
v� l��

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

�� � is monotone with respect to the ordering given by ��

Let b � a� Then
a�c�
b�c� �
a�c��
b�c��
b�c��
a�c� � c�a�b�b�a � c�ab � b�c�
i�e� b� c � a� c�

�� � distributes over ��

x
y � z� � x �
y � z� �
y � z� � x � x � y � y � x� x � z � z � x � xy � xz�

�� If a � b� then a � e � b � e�

a � e� �
b � e� � a � b � e� b � a � e �
a � b� b � a� � e �
ab� � e � a � e�

�� f
x� y� � f
z� y� � f
x� y��

f
x� y�� f
z� y� � f
x� y� �
f
x� y�� f
z� y�� � f
x� y�� f
x� y� �
f
x� y�� f
z� y�� �
f
x� y��
f
x� y� � f
z� y�� � f
z� y� � f
x� y� � f
x� y� � f
z� y� � f
z� y� � f
x� y� � f
z� y��

�� If a � b� then f
a� a� � e� f
b� b� � e � f
a� a� � e�

First of all� f
a� a� � e� f
b� b� � e � f
a� a� � e� f
b� a� � e �
f
a� a� � f
b� a�� � e � f
a� a� � e
by �� and ��� Furthermore� f
a� a� � f
a� a� � f
a� a� � f
a� a� � f
b� b� by �� and therefore
f
a� a� � e �
f
a� a� � f
b� b�� � e which �nishes the proof�

�� If a � b and b�x� then f
x� a� � f
b� b� � f
x� a��

We have f
x� a� � f
b� b� � f
x� a� � f
x� b� � f
x� b� � f
x� a�� Hence f
x� a� � f
b� b� � f
x� a� �
f
x� b� � f
x� b� � f
x� a� � f
x� a� � f
x� b� � f
x� a� because f
x� a� � f
x� b��

� For any a�b� f
a� b� � f
b� a� � f
a� b��

It is easy to see that
f
a� b� � f
b� a�� � f
a� b� � f
a� b� � f
b� a��

�� If a � b� then f
b� b� � f
a� a� � f
b� a��

By admissibility and �� f
b� b� � f
a� a� � f
b� a� � f
a� b� � f
b� a�� On the other hand�
f
b� a� �
f
b� b�� f
a� a�� � f
b� a� � f
b� b�� f
a� a�� f
b� b�� f
a� a� � f
b� a� � f
b� a� � f
b� b��
f
b� a� � f
b� b� � f
b� a� � f
b� a� � f
b� a� � f
b� b� � f
b� b� � f
b� a� � f
b� a� � f
b� b� � f
b� a��
Hence� f
b� a� � f
b� b� � f
a� a� which proves ���

Since
Q

is already used to denote repeated applications of �� for many applications of � we shall
use $�

Let S �
U�L� be a scone over A� Since �U � �L �� � for all L � L� there exists a pair
ui� l
j
ki
�

for every j such that ui�ljki � Let i
j� and k
j� be some indices such that ui�j��ljk�j�� Then S can

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ���

be represented as

� S �
X
u�U

��
u� u� � e�
X
Lj�L

��
ui�j�� l
j
k�j�� �

O
l�Lj

��
l� l��

Recall that summation over � is the identity� We will never need product over the empty index
set for all antichains in the second component are nonempty� Moreover� observe that in
� it
does not matter how pairs
i
j�� k
j�� are chosen�

Using
�� de�ne

�� f�
S� �
X
u�U

f
u� u� � e�
X
Lj�L

f
ui�j�� l
j
k�j�� �

O
l�Lj

f
l� l��

Our �rst goal is to verify that f� is well	de�ned� that is� it does not depend on how pairs
i
j�� k
j� are chosen� To save space� denote

N
l�L f
l� l� by �L� First observe that any number

of applications of f to a consistent pair
u� l� for l � Lj can be put after f
ui�j�� l
j
k�j�� because�

by admissibility� f
ui�j�� l
j
k�j�� � f
u� l� � f
ui�j�� l

j
k�j�� � f
l� l� and � is idempotent� To �nish the

proof of well	de�nedness� it is enough to show that the following equation holds� f
u� u� � e �
f
u�� u�� � e � f
u� l� � �L � f
u� u� � e � f
u�� u�� � e � f
u�� l�� � �L where u� u� � U and l� l� � L�
By distributivity� this reduces to showing that f
u� u� � e � f
u�� u�� � e � f
u� l� � f
l�� l�� �
f
u� u��e�f
u�� u���e�f
u�� l���f
l� l�� Because of the symmetry in this equation� it is enough
to prove

f
u� u� � e� f
u�� u�� � e � f
u� l� � f
l�� l�� � f
u� u� � e � f
u�� u�� � e� f
u�� l�� � f
l� l�

Denote f
u� u��e�f
u�� u���e by p� f
u� l��f
l�� l�� by q and f
u�� l���f
l� l� by r� We must show
q� p � r� p� By ���
q� p�
r� p� � rq� rp� qp� p� By monotonicity of �
see ���� it enough
to prove qp � r� We prove more� In fact� p � r� First observe that if a � b� then a � e � b � c�
Indeed�
a � e� �
b � c� � a � e� b � e � a � e by the same argument as in ��� Thus� we must show
p � f
u� l�� Calculate p�f
u� l� �
f
u� u��f
u�� u����e�f
u� l� �
f
u� u��f
u�� u����e�f
u� l��
f
u� l��
f
u� u��f
u�� u����e �
f
u� u��f
u�� u����e�f
u� l��e� f
u� u��e�f
u�� u���e � p�
Thus� p � r and this �nishes the proof of well	de�nedness�

Our next goal is to show� as we did for snacks� that if we drop max and min in de�ning operations
on scones� formula
� will remain true� That will make it much easier to prove that f� is a
homomorphism�

First observe that if u � U and v � u� then (U � e � gU � v � e
we use notation (U as a shorthand
for
P

u�U f
u� u��� This follows immediately from ���

Consider the L	part� In order to show that for l� � l � L� the corresponding summand of
��
remains the same if f
l�� l�� is added� we must show f
u� l�� � f
l� l� � f
l�� l�� � f
u� l�� � f
l� l��
The left hand side is equal to f
u� l���f
l� l��f
l� l�� and by �� f
l� l��f
l� l�� � f
l� l�� Therefore�
the left hand side is equal to f
u� l�� � f
l� l��

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

Finally� it must be shown that adding M v� L � L does not change the value of the right
hand side of
��� Assume u � U � m � M and l � L are such that m � l and u�l
we can �nd
such because of the consistency condition and M v� L�� Let a � �L and b � �M � We must
show f
u� l� � a � f
u�m� � b � f
u� l� � a
it was already shown that it does not matter which
consistent pair is chosen in representation
���� Let a� � f
u� l� � a and b� � f
u�m� � b� First�
a� � b� �
f
u� l� � f
u�m� � f
u�m� � f
u� l�� � a � b �
f
u� l� � f
u�m�� � a � b � f
u�m� � a � b�
Since L v� M and f
c� c� � f
d� d� � f
d� c� for d � c by ��� we obtain a� � b� � f
u�m� � b � b��
Hence b� � a� and a� � b� � a� by ��� To prove the reverse inequality� a� � a� � b�� calculate
a��
a��b�� � a��
a��b�� � a��a��b��b��a� � f
u� l��a�f
u� l��f
u�m��a�b�f
u�m��f
u� l��a�b�
By admissibility� f
u� l��f
u�m� � f
u�m��f
u� l�� Therefore� a� �
a��b�� � f
u� l��a�f
u� l��
a � f
u�m� � b� a��a� � b� � a�� Thus� a� � a�� b� and this �nishes the proof that the summand
corresponding to M v� L can be added to
���

Now we are ready to prove that f� is a homomorphism� First� f�
�� �� � e � e� e � e�

Let S� �
U�L�� and S� �
V�M�� Writing expression
�� for f�
S�� S�� we can use U � V as
the �rst component and L�M as the second� We know that it does not matter how we pick an
element from U � V to be consistent with some element of a set from L �M� For every L � L
choose uL � U which is consistent with some lL � L and similarly for every M � M choose
vM � V which is consistent with some mM �M � Then we have

f�
S��S�� �
X

u�U�V

f
u� u��e�
X
L�L

f
uL� lL�� �L��
X

M�M

f
vM � mM�� �M� � f�
S���f�
S��

Clearly� this also holds if either L or M or both are empty�

Let aL � f
u� l���L� cM � f
v�m�� �M where u�l� v�m� v � V � u � U � l � L � L and m �M � M�
Let b � (U � e and d � (V � e� Then f�
S�� � f�
S�� �

P
L�L
aL � b�� �
PM�M
cM � d�� �P

L�L�M�M
aL �cM�aL �d�b�cM�b�d�� Since d � (V �e� aL �d � aL�e and aL �cM�aL �d �

aL � cM � aL � e � aL � cM � Similarly� b � d � b � e� Since b � (U � e� b � b � e� Therefore�
b � cM � b � e � b and b � d � b � e � b� Therefore� f�
S�� � f�
S�� �PL�L�M�M
aL � cM� � b�
Consider aL � cM � Since f
v�m� occurs inside the expression� by admissibility it can be changed
to f
m�m�� Therefore� aL � cM � f
u� l� � �L � �M � Thus�

f�
S�� � f�
S�� � b�
X

L�L�M�M

f
u� l� � �L � �M �

X
u�U

f
u� u� � e�
X

N�fL�M jL�L�M�Mg

f
u� l� � �N � f�
S� � S��

Now� to �nish that proof that f� is a homomorphism� it is enough to show that f�
S���f�
S�� �
f�
S� � S�� if one of the components is empty� Assume L � �� Then the equation follows
from x � e � y � x � e and the fact that S� � S� � S�� If M � �� then f�
S�� � f�
S�� �

 (U �e�PL�L f
uL� lL�� �L�� (V �e � (U �e�PL�L f
uL� lL��e � (U �e � f�
U� �� � f�
S��S���
Thus� f� is a homomorphism�

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ��

The uniqueness of f� follows from
� and well	de�nedness of
��� Finally� f�
��
x� y�� �
f
x� x� � e� f
x� y� � f
y� y� � f
x� y� � e� f
x� y� � f
x� y�� This shows f� � �� � f � Theorem
is proved� �

Now we prove that it is impossible to characterize PP��
A� as a free ordered algebra generated by
A� such that all operations of the scone algebras are present� That is� they are derived operations
of the signature�

Theorem ���� Let &Sc be a set of operations on scones such that �� � and e are derived op�
erations� Then PP��
�� is not left adjoint to the forgetful functor from the category of ordered
&Sc�algebras to Poset� In other words� for no &Sc is PP��
A� the free ordered &Sc�algebra gen�
erated by A�

Proof� Let x� y � z in A� Then

x� x� �
�� �� �
z� z�� �
y� y� �
x� y�� Now consider the
following poset A � fx� y� z� vg� In this poset x� y � z� x� y � v and fx� yg and fz� vg are
antichains� Now consider the following scone algebra Sc� � hB��� �� ei� Its carrier is a four	
element chain p�
 p�
 p�
 p�� We interpret � as minimum of two elements� � as maximum�
and e � p�� It is easy to see that Sc� is a scone algebra as it is a distributive lattice�

De�ne f � A� B as follows� f
z� � p�� f
v� � p�� f
x� � p� and f
y� � p�� Now suppose that
f can be extended to a homomorphism f� � PP��
A�� Sc� Then

f�

x� y�� � f�

�
x� � e � f
z�� � �
y�� �

f
x� � e� f
z�� � f
y� � maxfminfmaxfp�� p�g� p�g� p�g � p�

On the other hand�

f�

x� y�� � f�

�
x� � e� f
v�� � �
y�� �

f
x� � e� f
v�� � f
y� � maxfminfmaxfp�� p�g� p�g� p�g � p�

Hence� p� � p�� which contradicts the de�nition of B� This shows that f can not be extended
to a homomorphism of scone algebras� �

The main observation we used in the proof of theorem ���� was the following� If x�y� then the
scone
x� y� can be obtained as follows�
x� y� �
��
x� � e � ��
z�� � ��
y�� provided x� y � z�
Therefore� the question arises� is it possible to restrict the class of maps from A to scone algebras
in such a way that the universality diagram will be obtained for such maps� The next theorem
we are going to prove gives us a way to do so� But �rst we need a new de�nition of admissibility�

De�nition ���� A monotone function f � A � Sc from a poset A to a scone algebra Sc is
called scone	admissible if� for any two consistent pairs x�y� and x�y� such that x� yi � zi� i � �� ��
the following holds�

f
x� � e� f
z��� � f
y�� � f
y�� �
f
x� � e� f
z��� � f
y�� � f
y��

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

Theorem ���� For any poset A� PP��
A� is the free scone algebra generated by A with respect
to scone�admissible maps� That is� for any scone algebra Sc and a scone�admissible map f �
A� Sc� there exists a unique scone homomorphism which completes the following diagram�

A �
�� hPP��
A���� �� ei

�
�
�
�
�

f
R
hSc��� �� ei

�

�%f�

Proof� Let f � A� Sc be a scone	admissible map� De�ne 	f � A�A� Sc by

	f

x� y�� �
f
x� � e� f
z�� � f
y� if x� y � z

It follows from the de�nition of scone	admissible maps that 	f is well	de�ned� That is� if
x� y � z�� z�� then
f
x� � e� f
z��� � f
y� �
f
x� � e� f
z��� � f
y� � f
y� �
f
x� � e� f
z��� �
f
y� � f
y� �
f
x� � e� f
z��� � f
y� and hence the value of 	f

x� y�� does not depend on the
choice of z above x and y�

Let , � A� A�A be given by ,
a� �
a� a�� Our next goal is to prove two claims�

Claim � 	f is admissible
according to de�nition before theorem ������
Claim �� 	f �, � f �

Before we prove these two claims� let us show how the theorem follows from them� Consider the
following diagram�

A
, � A�A ��� PP��
A�

�
�
�
�
�

	f
R

Sc
�

�%f�

Since 	f is admissible and �� � , � �� we can �nd a homomorphism f� such that f� � � �
f� � �� � , � 	f � , � f � Assume f� is another homomorphism PP��
A� � Sc such that
f� � � � f � Consider
x� y� � A�A� x� y � z� Then ��
x� y� �
�
x� � e � �
z�� � �
y�� Hence�
f�
��
x� y�� �
f
x� � e � f
z�� � f
y� � 	f

x� y�� which shows that f� � �� � 	f � Then� by
claim � and theorem ����� we obtain f� � f� and thus there is a unique homomorphic extension
of f �

Proof of claim � First� we must show 	f

x� y����e � 	f

x� y����e if x� y� � z� and x� y� � z��
From the properties of scone algebras� it follows that a�e�b�e � a�e if a � b� Since f
x� � f
z���

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ���

we obtain 	f

x� y����e �
f
x��e�f
z����f
y���e � f
x��e�f
z���e � f
x��e� Similarly�
	f

x� y��� � e � f
x� � e � 	f

x� y����

For the second condition in the de�nition of admissibility� assume u� l � xul and v�m � xvm�
Moreover� let u�m � xum and w� l � xwl� We must show 	f

u� l�� � 	f

v�m�� � 	f

u�m�� �
	f

w� l��� Observe that b � c implies a�b�c � a�c in a scone algebra� Hence� f
xul��f
xvm��
f
m� � f
xul� � f
m�� Moreover� as we saw already� f
u� � e � f
xul� � e � f
u� � e� Now we
calculate�

	f

u� l�� � 	f

v�m�� �
f
u� � e� f
xul�� � f
l� �
f
v� � e� f
xvm�� � f
m� �

f
u� � e� f
xul� � e � f
xul� � f
xvm�� � f
l� � f
m� �

f
u� � e� f
xul� � f
xvm�� � f
l� � f
m� �
f
u� � e � f
xul�� � f
l� � f
m�

Similarly�
	f

u�m�� � 	f

w� l�� �
f
u� � f
xum�� � f
l� � f
m�

Now the desired equality follows from scone	admissibility of f � Claim � is proved�

Proof of claim �� 	f

x� x�� �
f
x� � e � f
x�� � f
x� � f
x� � e � f
x� � f
x�� Claim � and
the theorem are proved� �

Universality of PP�

In this section we describe PP�
A� � a construction which can be seen as �all others put together
with no restrictions�� This justi�es the name of the salad� Salads can be viewed as snacks or
scones without the consistency condition�

Similarly to the case of P�
A�� PP�
A� is isomorphic to the direct product of P�
A� and the iter	
ated construction from section ������ Both possess universality property� but� as we mentioned
already� a product of two free algebras need not be a free algebra� However� similarly to the
case of P�
A�� we �nd a way to combine the two in a way that gives us a characterization of
PP�
A� as a free ordered algebra�

De�nition ���� A salad algebra hSd��� �����i is an algebra with two semilattice operations
� and � and two unary operation � and � such that the following equations hold�
� x �
y � z� � x � y � x � z�
�� x � �x��x�
�� �
x� y� � �x� �y � �x ��y � �
x � y��
�� �
x� y� � �x��y�
�� �
x � y� � �x ��y�
�� �x ��y � �x�
�� �x ��y ��x � �x�

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

�� ��x� �x�
�� ��x � �x�

De�ne an ordering � on a salad algebra according to the � operation� x � y i� xy � x� Then
every homomorphism of salad algebras is monotone with respect to the ordering�

De�ne �Sd � f�x j x � Sdg and �Sd � f�x j x � Sdg� Some useful properties of salads are
summarized in the following proposition�

Proposition ���	 Given a salad algebra Sd� the distributivity law x�yz �
x�y�
x�z� holds�
Consequently� �� � and � are monotone� In addition� the following holds�

i� �x � x � �x�

ii� �Sd is a distributive lattice�

iii� � and � coincide on �Sd�

iiii� ��x � ��y�

Proof� Using �� and distributivity law �� calculate
x�y�
x�z� �
�x��y��x��y�
�x�
�z ��x��z� �
by �� and ��� � �x� �y � �z ��x��x ��y ��x ��z ��y ��z �
by
�� � �x � �y � �z ��x� �y ��z� Similarly� x � yz � �x � �x�
�y ��y�
�z ��z� �
�x � �x � �y � �z � �y � �z� Hence�
x � y�
x � z� � x � yz� Now monotonicity of �
follows from the distributivity laws� That � and � are monotone� follows from �� and ��� To
prove
i�� calculate x � �x �
�x � �x��x � �x � �x � �x � �x � �x � �x� Moreover�
x ��x �
�x��x��x� �x ��x��x � �x��x � x�

ii� and
iii� follow immediately from the de�nitions�

iiii� By �� �x � ��y� hence ��x � ��y and by symmetry ��x � ��y� Similarly� ��x �
��y� De�ne e� � ��x and e� � ��x� The equations above show that e� and e� are well	
de�ned� Now calculate e� � x � ��x� x � ��x��x� x � �
�x� x� � x � �x� x � x�
Similarly� e� � x � ��x� x � ��x� �x� x � �
�x� x� � x � �x� x � x� Thus� both e�
and e� are identities for �� Therefore� e� � e� � e� � e�� �

This proposition tells us that we can give the following equivalent de�nition of a salad algebra� A
salad algebra is a distributive bisemilattice hSd��� �i on which a projection � and a closure � are
de�ned such that �Sd is a semilattice� �Sd is a lattice� x � �x��x and �x � �Sd �y � �Sd�
x � y�

There is also one property of salad algebras that is worth mentioning and that follows directly
from the de�nitions� Given a semilattice hS�	i with bottom� a pair of ideals I� and I� is called
a general decomposition of S if bottom is the only common element of I� and I� and every s in
S has a unique representation as s � s�	s� where s� � I� and s� � I�� If S is a bounded lattice�
general decompositions become direct decompositions� For a large class of posets with partially

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ���

de�ned lubs general decompositions are in �	� correspondence with neutral complemented ideals�
see Jung� Libkin and Puhlmann �����

Proposition ���� Given a salad algebra Sd� �Sd and �Sd form a general decomposition of
Sd�

Proof� Let �� denote the ordering given by �� that is� x �� y i� x � y � y� Let x �� �y�
Then �x���y � ��y� i�e� �x� e� � e� and �x � e�� Now x � �x��x � e���x � �x�
Hence x � �Sd� which shows that �Sd is an ideal� Similarly� �Sd is an ideal� It follows from

iiii� of the lemma that �Sd��Sd � feg where e � e� � e�� Finally� let x � �y ��z� Then
�x � �y���z � �y and similarly �x � �z� Hence� x � �x��x is a unique representation of
x as a sum of elements from �Sd and �Sd� Thus� �Sd and �Sd form a general decomposition�
�

Let us now show how the salad algebra operations are interpreted on PP�
A�� Operations � and
� are de�ned precisely as for snacks� For � and ��

�
U�L� �
U� �� �
U�L� �
��L�

Theorem ���� Given a poset A� PP�
A� is the free salad algebra generated by A� That is� for
every monotone map f from A to a salad algebra Sd there exists a unique salad homomorphism
f� � PP�
A�� Sd such that the following diagram commutes�

A �
�� hPP�
A���� �����i

�
�
�
�
�

f
R
hSd��� �����i

�

�%f�

Proof� First verify that PP�
A� is a salad algebra� We need to check the distributivity law and
�� all others are straightforward� Let S� �
U�L��S� �
V�M� and S� �
W�N �� Our goal is
to show S� �
S� � S�� � S� � S� � S� � S�� The �rst components of the left hand and the right
hand sides coincide� It this case it is easier to work with �lters rather than antichains � it allows
us to drop max and min operations� In particular� it is enough to show that

f�
L �K�jL � L� K � M� Ng �

f�LM jLM � fL �M jL � L�M � Mgg
�
f�LN jLN � fL�N jL � L� N � Ngg

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

Let C be an element of the left hand side� i�e� C � �
L�K�� Without loss of generality� K � M�
Then C is in the right hand side� Conversely� if C is in the right hand side� say C � �LM for
LM � L�M � then C � �
L�M� and therefore is in the left hand side� This shows the equality
above� Now� taking minimal elements for each �lter and applying max� to both collections would
give us second components of the lhs and the rhs of the distributivity equation� which therefore
are equal�

Now prove �� that is� �
U�L� ��
V�M� � �
U�L� � �
U�L�� The �rst components of both
sides are �� The second component of the left hand side is max�
L � max�fmin
L �M�jL �
L�M � Mg�� Since min
L �M� v� L� this expression is equal to max�L � L� Hence� � holds�
Thus� PP�
A� is a salad algebra�

Now show that PP�
A� is a free salad algebra� Given a salad S �
U�L��

�� S � �
X
u�U

�
u� ��
X
L�L

Y
l�L

�
l�

To see that this also works for empty components� observe that �e � �e � e�

Now� given monotone f � A� Sd� de�ne

��� f�
S� � �
X
u�U

f
u� ��
X
L�L

Y
l�L

f
l�

We have� f�
�
x�� � f�

x� fxg�� � �f
x� � �f
x� � x� Now we must show that f� is a
homomorphism� First� it follows immediately from the properties of � and � and the fact that
e � ��x � ��y is the identity for �
see lemma� that f�
�S� � �f�
S� and f�
�S� �
�f�
S��

Assume X v� Y � Y �� �� and let xy be an element in X below y � Y � Then

�
X
x�X

f
x� ��
X
y�Y

f
y� � �

X
x�X

f
x� �
X
y�Y

f
y�� � �
X
x�X

f
x� � �
X
y�Y

f
y� � f
xy�� �

�
X
x�X

f
x� � �
X
y�Y

f
y� � f
xy�� � �
X
x�X

f
x� ��
X
y�Y

f
xy� � �
X
x�X

f
x�

Therefore� if X and Y are equivalent with respect to v�� �
P

x�X f
x� � �
P

y�Y f
y�� Our

next goal is to show that �
Q
x�X f
x� ��

Q
y�Y f
y� � �

Q
y�Y f
y� if Y �� �� Since X v� Y �

we have
Q
x�X f
x� � Qy�Y f
y� and then the equation above follows from �� Finally� let

x� � x � X � Then f
x�� � f
x� and
Q
x�X f
x� � f
x�� �Qx�X f
x��

These three observations show that max and min operations can be disregarded when one writes
an expression for f� on S� � S� or S� � S�� Therefore� for S� �
U�L� and S� �
V�M��

f�
S� � S�� � �
X

x�U�V

f
x� ��

X
L�L

Y
l�L

f
l� �
X

M�M

Y
m�M

f
m�� � f�
S�� � f�
S��

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ���

To calculate f�
S� �S��� observe that
P

i�I �xi �
P

j�J �yj �
P

i�I�j�J �xi ��yj �
P

i�I �xi and
this is also true if I � � because e ��y � e� Therefore�

f�
S� � S�� �
�
X
u�U

f
u� ��
X
L�L

Y
l�L

f
l�� �
�
X
v�V

f
v� ��
X

M�M

Y
m�M

f
m�� �

�
X
u�U

f
u� ��
X
v�V

f
v�� �
�
X
v�V

f
v� ��
X

M�M

Y
m�M

f
m�� �

�
�
X
v�V

f
v� ��
X
L�L

Y
l�L

f
l�� �
�
X
L�L

Y
l�L

f
l� ��
X

M�M

Y
m�M

f
m�� �

�
X
u�U

f
u� ��
X
v�V

f
v� ��
X
L�L
M�M

Y
l�L

f
l� �
Y

m�M

f
m�� �

�
X

x�U�V

f
x� ��
X
L�L
M�M

Y
y�L�M

f
y� � f�
S�� � f�
S��

Thus� f� is a homomorphism� Its uniqueness follows from
��� Theorem is proved� �

Let us summarize the results on the universality properties of approximations in the following
table� For each construction with u � l used in the consistency condition
with one exception�
we found a free algebra characterization� For constructions with u�l used in the consistency
condition� we showed that they do not arize as free algebras generated by the poset itself� but
do arize as free constructions generated by A�A
with respect to a restricted class of map�� We
use dna
does not apply� for constructions based on the u � l consistency condition with A�A
as the generating poset� Notice that there are still three ni null values � these questions remain
open�

type of consistency condition �quanti�er�condition�
L�part� generator � u � l � u�l � u � l � u�l no condition

one set� A mix algebra ne bi�LNB algebra ni bi�mix algebra
one set� A�A dna mix dna ni dna

family of sets� A snack algebra ne ne ne salad algebra
family of sets� A�A dna ni dna scone algebra dna

Relationship between the approximations

In this subsection we study the relationship between the four best	known approximations� mixes�
sandwiches� scones� and snacks� We also show that we can view them as instances of the most
general construction� salads� that is� PP�
A�� We will substantiate the assertion that by their
�complexity� the approximation constructs should be places as

Salads � Scones � Snacks � Sandwiches � Mixes

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

and algebras as
Salads � Scones � Snacks � Mixes

The reader is invited to see how other constructions studied in this chapter will �t into the general
picture� We consider only �ve approximation constructions to keep the diagrams reasonably
small�

Relationship between algebras� The general technique we use is the following� Given an
algebra hA�&i� let &� be a subset of & and &�� a set of derived operations� Let ! �
&�&���&���
Then A can be considered as a !	algebra which is called !�reduct of hA�&i� see Gr'atzer �����
We denote a map that takes an &	algebra hA�&i and returns the !	algebra hA�!i by 	
	��

We now de�ne reductions for the algebras from the previous section� The superscripts of these
reductions contain the information about its argument� They are the same as superscipts for
the approximations themselves� except that we use index f
family� for PP i�s� For example� a
snack reduct of a scone will be denoted by 	��	
f �

De�nition� a� Given a salad algebra Sd � hA��� �����i� de	ne its reducts as follows�

Scone reduct 	�	��
Sd� � hA��� �� ei where x � y � x ��y and e � ��x�

Snack reduct 	�	
f
Sd� � hA��� �� ei where e � ��x�

Mix reduct 	�	

Sd� � hA����� ei where e � ��x�

b� Given a scone algebra Sc � hA��� �� ei� de	ne its reducts as follows�

Snack reduct 	��	
f
Sc� � hA��� �� ei where x � y � x � y � y � x�
Mix reduct 	��	

Sc� � hA����� ei where �x � x � e�

c� Given a snack algebra Sn � hA��� �� ei� de	ne its mix reduct 	
f	

Sn� as hA����� ei where
�x � x � e�

Our �rst goal is to show that the concepts above are well	de�ned� i�e� that a mix reduct is a mix
algebra� scone reduct is a scone algebra etc� We then proceed to show that it does not matter
which path we choose� i�e� a mix reduct of a scone reduct of a salad is a mix reduct of a salad
etc�

Proposition ���� The reducts above are well�de	ned�

Proof� We start with reducts of salads� First demonstrate that 	�	��
Sd� is a scone algebra�
That e is the identity for � was already proved� Distributivity of � over � is obvious� We

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ���

must show the other distributivity law� a � x � y �
a � x� �
a� y�� To prove this� calculate
a� xa � a �
�x��x�
�a��a� � a� �x ��a� �x� �a��x ��a � a� �x��x ��a �
a�
�x��x��a� a�a��a� Now� a�x�y � a�x��y �
a�x�
a��y� � a�xa�a��y�x��y �
a�x ��a�a ��y�x ��y �
a�x�
�a��y� �
a�x��
a�y�� This proves distributivity� That
� is a left normal band operation is obvious� We have e �x � ��x ��x� �
�x �x� � ��x � e�
Finally� x�x�y � x�
�x��x���y � x��x��x��y � x��x��x��x��y � x��x��x � x�
Therefore� 	�	��
Sd� is a scone algebra�

We have already shown in the previous section that � and � distribute over each other� hence�
	�	
f
Sd� is a snack algebra� To check that 	�	

Sd� is a mix algebra� verify the equations
of the mix algebra� The �rst two are also equations of the salad algebras� and we have shown
already that x��x � x and �x � x� Thus� we must show x��y � x� Calculate
x��y�x �
x��y � x � x ��y ��x��y ��x � x ��x� �y � x� �y� Hence� x��y � x�

Now consider reducts of scones� To show that 	��	
f
Sc� is a scone algebra� we must verify the
distributivity laws� One of them was veri�ed in the proof of the characterization of scones� The
other one is also easy� x�y �z � x�y�z�z�y �
x�y��
x�z��
x�z��
x�y� �
x�y�
x�z��
The next step is to verify that �x � x � e satis�es the equations of the mix algebras� We have
x��x � x� x � e �
x� x� �
x� e� � x and x ��x � x � x � e� x � e � x � x � e � �x� hence
�x � x� Finally�
x � y � e�x �
x � y � e� � x� x �
x � y � e� � x � y � e � x � e � x � y � e�
Therefore� x� �y � x and 	��	

Sc� is a mix algebra�

Finally� if in a snack algebra �x is de�ned as xe� then x� xe �
x � x�
x � e� � x� xxe � xe

and
x� ye�x � x � yex � x� x � x� Thus� 	
f	

Sn� is a mix algebra and this �nishes the
proof of the proposition� �

Our next goal is to show path independence� that is� it does not matter if we perform reduction
from one algebra to another directly or via a number of steps� This can be formalized as follows�

Theorem ���� The following diagram commutes �where the arrow from Sd to Sn is 	�	
f

and the arrow from Sc to Mix is 	��	
��

Sd
	�	��

� Sc

�
�
�
�
�
�
�R��

�
�
�
�
�
�

Mix

	�	

�
�

	
f	

Sn
�

	��	
f

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

Proof� We have already shown that reductions are well	de�ned� Consider 	��	
 � 	�	�� �
Sd� Mix� The identity for � is e � ��x and the box operation of the result� ��x� is de�ned
as ��x � x � e � x ����x�
�x��x� ���x � �x ���x��x ���x � �x���x���x �
�x� e � �x� Hence� 	��	
 � 	�	�� � 	��	
� Now consider 	
f	
 � 	�	
f � Sd� Mix� The
box operation of the result is ��x � xe �
�x��x���x� �x�e � �x� hence 	
f	
�	�	
f �
	�	
� Then consider 	
f	
 � 	��	
f � 	�	�� � Sd � Mix� The box operation of the result is
�
�x � x �Sn e � x�e�e�x � x ����x���x ��x� x ���x���x ��x� �x�e � �x� Thus�

	
f	
 � 	��	
f � 	�	�� � 	�	
� To show 	�	
f � 	��	
f � 	�	��� it is enough to show that
x�y � x��y�y ��x� But this is easy� x�y �
�x��x��
�y��y� � �x��y��x��y��x��y �
�x��y��x ��y and x ��y� y ��x �
�x��x� ��y�
�y��y� ��x � �x��y��x ��y�
Finally� to show that 	��	
 � 	
f	
 �	��	
f � observe that x � e� e � x � x � e� e � x � e and
therefore �x is the same for both reductions� Theorem is proved� �

Embeddings� We show that the reductions introduced above correspond to the embeddings
of the approximation constructions� The general idea is as follows� Assume that a poset A is
given and P � and P �� are two approximation constructions such that P � is �higher� than P ��
in the hierarchy shown in the beginning of the section� That is� there is a reduction 	 that
takes P �
A� and makes it an algebra in the signature corresponding to P ��� Depending on the
generating poset for P ��
A�� consider either �
A� or ��
A� which is a subset of P �
A�� Then the
subalgebra of 	
P �
A�� generated by this subset is P ��
A�� Moreover� this construction is �path
independent� in the sense of theorem ����� To formalize it� we use the notation

P �
A�
��
A�� � 	� P ��
A� or P �
A�

���
A�� � 	� P ��
A�

The meaning of these arrows is� Take P �
A� and consider it as an algebra corresponding to P ��

by means of 	�� Then its subalgebra generated by �
A�
or ��
A�� is P ��
A��

Theorem ���� In the following diagram all arrows are well�de	ned and the diagram commutes�

���� UNIVERSALITY PROPERTIES OF PARTIAL DATA ��

PP�
A�
���
A�� � 	�	��

� PP��
A�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�R

PPPPPPPPPPPPPPPPPPPPPPPPPq

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �

�
�
�
�
�
�

��
A�� � 	��	
f

R
PP

A�

���
��

��
��

��
��

��
��

��
��

��
��

�

��
�
�
�
�
�
�

���
A�� � 	
f	

P

A�

��
A�� � 	�	

�
�

��
A��
P
�
A�

�

The arrows not shown on the diagram are�

��
A�� � 	�	
f � PP�
A�� PP

A� ���
A�� � 	�	
 � PP�
A�� P
�
A�

��
A�� � 	��	
 � PP��
A�� P

A� ���
A�� � 	��	
 � PP��
A�� P
�
A�

��
A�� � 	
f	
 � P
�
A�� P

A�

Proof� Full proof requires a lot of easy calculations so we only sketch it here� First observe
that all de�nitions of new operations for reductions agree with their interpretation� For example�
given two scones
U�L� and
V�M� in PP��
A�� the value of
U�L� �
V�M� in 	��	
f
PP��
A��
is
U�L� �
V�M� �
V�M� �
U�L� �
min
U � V ��max�fL �M jL � L�M � Mg� which is
indeed the in�mum operation in PP

A�� The veri�cation that other reductions agree with the
operations on approximations is also straightforward� Now representations of sandwiches
���
snacks
��� scones
� and mixes as

���
U� L� � �
X
u�U

�
u� �
X
l�L

�
l�

tell us that all arrows are well	de�ned� Commutativity follows in a straightforward way from
the representations
���
���
��
��� and theorem ����� �

This completes our discussion of the semantics of partial data� We have de�ned orderings on
various kinds of collections and used them to de�ne the formal semantics of those� The semantic

��� CHAPTER �� SEMANTICS OF PARTIAL INFORMATION

domains of the collection type constructors have been shown to possess universality properties�
We shall use the universality properties in the next chapter to design programming languages
for partial information� as described in section ����

Chapter �

Languages for partial information

In previous chapters we have developed the semantics of partial information that was based on
one of the two main principles of this thesis� partiality of data is represented via orderings on
objects� In this chapter we use the semantic results to build languages for databases with partial
information� following the second principle which says that semantics suggests programming
constructs�

We start with languages for sets under the open world assumption� Since the universality
properties for arbitrary sets and antichains are essentially the same� we obtain two very close
languages� and show that one of them� dealing with antichains� can naturally be viewed as a
sublanguage of the other� We give several reasons why it is better to view the language dealing
with the ordered semantics as a sublanguage of the language for the set	theoretic semantics�
One of them is that in the former it is important to be able to identify the monotone fragment
of the language� but this is undecidable� We show that two languages considered so far � the
language of Zaniolo and the domain theoretic algebra from section ��� � are sublanguages of the
language for OWA sets�

We also consider languages for or	sets� viewed structurally� and prove similar results� Having
de�ned languages for sets and or	sets� we combine them to obtain a new language called or	NRL�
Since it is necessary to distinguish between sets and or	sets� we enhance the language with a
primitive that provides interaction between sets and or	sets� This primitive is precisely the
isomorphism � from section ������

The language or	NRL has a number of very important properties� First� it is possible to de�ne a
function that lists all possibilities encoded by an or	object� This enables the language to answer
conceptual queries such as� is there a complete design of a given cost Moreover� we show that
under both set	theoretic and antichain semantics the process of listing all possibilities encoded
by an object always yields the same result� no matter what strategy is used� We call this result

���

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

normalization theorem� The process of listing all possibilities is also called normalization�

We show that normalization can be quite expensive� In fact� we determine tight upper bounds
on the size of normalized objects and the number of possibilities that arbitrary or	objects can
encode� Then we observe that it is not always necessary to complete the process of normalization
to answer a conceptual query� However� it is not always the case that partial normalization is
unambiguous� That is� the analog of the normalization theorem need not hold� Nevertheless� we
are able to identify very strong su�cient conditions for such an analog to hold� and then prove
the partial normalization theorem that unambiguously determines a representation of object of
one type at another type� This allows us to answer certain conceptual queries faster�

We also demonstrate a losslessness result� which says that the loss of structural information in
the process of normalization does not have any e�ect with respect to the large class of queries�

Finally� we discuss two approaches to programming with approximations� One is based on struc	
tural recursion and monads� It is now applicable due to the characterization of approximations
as free constructions� However� we show that there are certain problems with using this ap	
proach� The other is encoding approximations with sets and or	sets and using the language for
sets and or	sets� We show how all monad primitives for approximations can then be encoded in
that language and argue that this makes it a better candidate for a programming language for
approximations�

��� Languages for collections of partial data

����� Language for sets

In this section we consider a language for sets under the open world assumption� This language is
based on the universality property� Since the universality properties of the semantic domains of
sets with no partial information involved and of sets under OWA are essentially the same � both
are free semilattices� but one is generated by a set and the other by a poset � the languages are
essentially similar and the only syntactic di�erence is replacing equality test by comparability
test� The only semantic di�erence is that in the language for partial information we operate
with antichains rather than arbitrary sets� as is suggested by the semantic domain for OWA
sets� We shall see that the language we de�ne can be viewed as a sublanguage of NRL with
orders on base types� We study some of its properties and explain how two languages that we
have seen
Zaniolo�s algebra ����� and the domain algebra of section ���� can be viewed as its
sublanguages�

The language we are about to describe is based on the universality properties for OWA sets�
Recall that for a given set X � hP�n
X���� �i is the free semilattice with bottom generated by X �
For posets� the result is similar� given a poset A� hP�
A��t�� �i is the free ordered semilattice

���� LANGUAGES FOR COLLECTIONS OF PARTIAL DATA ���

with bottom generated by A� Therefore� following section ���� we de�ne two variations of the
structural recursion� the one dealing with antichains using index a� Since we do not consider
structural recursion on bags in this chapter� we use sru and sri instead of s sru and s sri �

fun sru�e� h� u�
�� � e
j sru�e� h� u�
fxg� � h
x�

j sru�e� h� u�
At� B� � u
sru�e� h� u�
A�� sru�e� h� u�
B��

fun srua�e� h� u�
�� � e

j srua�e� h� u�
fxg� � h
x�

j srua�e� h� u�
At� B� � u
srua�e� h� u�
A�� srua�e� h� u�
B��

As we discussed in section ���� the general structural recursion need not be well	de�ned� Hence�
we used the operation of the Kleisli category of the corresponding adjunction as primitives of
the programming language� For sets� we used

map
f�fx�� � � � � xng � ff
x��� � � � � f
xn�g �
fX�� � � � � Xng� � X� � � � ��Xn �
x� � fxg

Similarly� for antichains we would have
cf� section ����

mapa
f�fx�� � � � � xng � maxff
x��� � � � � f
xn�g �
x� � fxg

�a
fX�� � � � � Xng� � X� t� � � �t� Xn � max
X� � � � ��Xn�

In addition to the equality test� which was chosen as a primitive in NRL� we include a new
primitive which tests whether two objects of type t are comparable as elements of the semantic
domains ��t���� That is� we assume that the ordering on base types is given� and it is lifted to
pairs component	wise and to sets by using the Hoare ordering�

x� y� �s�t
x
�� y��� x �s x

� and y �t y
��

 x �fsg y � x ��
s y
i�e� �o � x �o� � y � o �s o

���

Now we give the expressions of the language which we call NRLa� see �gure ����

Let us make a few observations about this language�

Proposition ��� Assume that �b is given for any base type b� Then �s is de	nable in NRLa
without using �s as a primitive�

�Since we do not use or�sets� the structural semantics ����s and the conceptual semantics ����c coincide� This
justi�es using just ���� in this section�

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

Category with products

g � u� s f � s� t

f � g � u� t

c � bool f � s� t g � s� t

if c then f else g � s� t

f � u� s g � u� t

f� g� � u� s� t

�
s�t
� � s� t� s �

s�t
� � s� t� t %t � t� unit

Kc � unit� Type
c� idt � t � t �s� s � s� bool

OWA sets monad given by P��

�
s�t
� � s� ftg � fs� tg �t � t� ftg t�t � ftg � ftg � ftg

�ta � fftgg � ftg empty t � unit� ftg
f � s� t

mapa f � fsg � ftg

Figure ���� Expressions of NRLa

���� LANGUAGES FOR COLLECTIONS OF PARTIAL DATA ���

Proof� We only have to check that �fsg is de�nable if �s is� Assume X� Y are sets of type fsg�
Then we create an object f
x� Y � j x � Xg of type fs� fsgg and check for every
x� Y � if there
exists y in Y such that x �s y� This is achieved by �rst applying �� to
x� Y � and then mapping
�s over the result and testing whether true occurs in the output� �

Proposition ��� Under the assumption that �b can be tested in O
�� time� the time complexity
of verifying x �s y is O
n��� where n is the total size of x and y�

Proof� De�ne the size of a base type object to be � and the size of a set or a pair to be the sum
of the sizes of its elements
components�� We prove by induction on the structure of objects that
testing�t of two objects o�� o� of type t can be done in O
size
o���size
o���� Then the proposition
will follow� Let X � fx�� � � � � xkg and Y � fy�� � � � � ylg be sets of type fsg� According to the
proof of proposition ���� checking whether X �fsg Y requires some preprocessing that costs at

most O
size
X� � size
Y �� and� by the induction hypothesis� O

Pk

i��

Pl
j��
size
xi� � size
yj���

for actual comparisons� We have
Pk

i��

Pl
j��
size
xi� � size
yj��� � size
Y �

Pk
i�� size
xi� �

size
X� � size
Y �� which �nishes the proof� �

Now we can show that using NRL is su�cient because

Theorem ��� NRLa is a sublanguage of NRL
�b��

Proof� We have already shown in proposition ��� how to de�ne �s for any s if �b is given�
The rest is to observe that mapa
f�
X� � maxmap
f�
X� and �a
X � � max
�
X ��� Hence�
de�nability of max would imply that NRLa is a sublanguage of NRL
�b�� It is easy to see that
maxX is implementable by deleting such elements x � X for which there exists x� � X with
x � x� and x �� x�� Indeed� if � is present� there is a �rst order formula that is true i� x � maxX
and hence even operations of the relational algebra su�ce� �

However� there is one subtle point� Assume that we have two sets X� and X� of type ftg such
that maxX� � maxX�� That is� X� and X� represent the same object in ��ftg��� Let f � ftg � s

be a function de�nable in NRL� Is it true that f
X�� and f
X�� represent the same object
in ��s�� Unfortunately� the answer to this question is negative� To see why� consider x and y

of type t such that x �t y and x �� y� Assume that g � t � s is such that g
x� and g
y� are
not comparable by �s� Then map
g�
fyg� � fg
y�g and map
g�
fx� yg� � fg
x�� g
y�g� Even
though maxfyg � maxfx� yg� we have max
map
g�
fyg�� �� max
map
g�
fx� yg���

The reason this happens is that g is not a monotone function� Requiring monotonicity is
su�cient to repair this problem� De�ne the following translation function
��� on objects that
forces objects in the set	theoretic semantics into the objects in the antichain semantics�

 For x of base type b� x� � x�

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

 For x �
x�� x��� x
� �
x��� x

�
���

 For X � fx�� � � � � xng� X� � maxfx��� � � � � x�ng�

We say that a function f � s� t de�nable in NRL agrees with the antichain semantics if x� � y�

implies f
x�� � f
y��� We say that it is monotone i� x �s y implies f
x� �t f
y��

Proposition ��� A monotone function f de	nable in NRL agrees with the antichain semantics�
If f is not monotone� then map
f� does not agree with the antichain semantics�

Proof� First prove that x �s y i� x� �s y
� for any x� y of type s and vice versa� Prove it

by induction� The only interesting case is the set type constructor� Let X � fx�� � � � � xng and
Y � fy�� � � � � ymg be two sets of type fsg� Assume X �fsg Y � Then �xi � X �yj � Y � xi �s yj
and by induction hypothesis �xi � X �yj � Y � x�i �s y

�
j � Hence� fx��� � � � � x�ng �fsg fy��� � � � � y�mg

and then X� �fsg Y �� Conversely� if X� �fsg Y �� then fx��� � � � � x�ng �fsg fy��� � � � � y�mg and by
induction hypothesis �xi � X �yj � Y � xi �s yj � that is� X �fsg Y �

Since x� is an antichain for any x� this observation implies that x� � y� for x� y of type s i�
x �s y and y �s x�

Now assume f � s� t is monotone and x� � y�� Then x �s y and y �s x and hence f
x� �t f
y�
and f
y� �t f
x� which proves f
x�� � f
y��� That is� f agrees with antichain semantics�

Assume f � s � t is not monotone� i�e� f
x� ��t f
y� for some x �s y� We have x� �s

y� and hence fx� yg� � fyg�� Moreover� x� �� y� for otherwise we would have y �s x�
Now� map
f�
fx� yg� � ff
x�� f
y�g and map
f�
fyg� � ff
y�g and it is easy to see that
ff
x�� f
y�g� �� ff
y�g� if f
y� �t f
x� or f
y� and f
x� are incomparable� Proposition is
proved� �

Therefore� we would like to identify the subclass of monotone functions de�nable in NRL�
Unfortunately� it is not possible to do it algorithmically� Not being able to decide monotonicity
is another reason why we prefer to view NRLa as a sublanguage of NRL in which the antichain
semantics can be modeled� rather than a separate language�

Theorem ��� It is undecidable whether a function f de	nable in NRL is monotone�

Proof� Assume monotonicity is decidable� Now� given two NRL functions f� g � fsg � t� de�ne
a new function � � fsg � fboolg as follows�

�
x� �� if x � � then ftrueg else if f
x� � g
x� then ftrueg else ffalseg
Here fxg is syntactic sugar for �
x�� Now� if want to check whether f
x� � g
x� for all x� check if
f
�� and g
�� are the same and then check if � is monotone� Thus having a test for monotonicity

���� LANGUAGES FOR COLLECTIONS OF PARTIAL DATA ���

would give us equality test for functions of type fsg � t� Such functions include all functions
de�nable in the relational algebra� and it is known that equality of those is undecidable� see
Imielinski and Lipski ���� This shows that monotonicity of NRL expressions is undecidable� �

There are some intersting anomalies of the antichain semantics� The most surprising of all is
that ����� � ��powerset �� or� in other words� NRLa
powerset� � NRLa� Indeed� since for any
Y � P�n
X� we have Y
 X and hence Y v� X � then under the antichain semantics ��P�n
X��� �
��maxP�n
X��� � ��fXg�� � ���
X���� There are two lessons we learn from this interesting collapse�
First� as we have said already� it is better to view NRLa as a sublanguage of NRL rather than
a separate language� Second� powerset is not a good candidate to enrich expressiveness of the
language�
Of course� the theorem of Paredaens and Suciu ����� is a much stronger argument
against powerset %�

The next question we are going to address is that of conservativity of NRL over NRLa� Given
a family of primitives �p interpreted for both set theoretic and antichain semantics� we say that
NRL
�b� �p� is conservative over NRLa
�p� if for any function f de�nable in NRL
�b� �p� and
satisfying the condition that f
x� � f
x�� for any x � x�� such f is de�nable in NRLa
�p�� We
do not know if NRL
�b� is conservative overNRLa� However� we can show that it is conservative
when augmented with aggregate functions as in section ����

Proposition ��	 NRL
N�P� �� � ��b� is conservative over NRLa
N�P� �� � ��
Proof sketch� The key observation is that in the language with arithmetic functions it is
possible to assign unique numerical ranks to elements in a set if linear orders at base types are
given� Indeed� this follows from theorem ���� since we can lift the linear order to all types� and
then for each element of a set use

P
to count the number of elements not greater than it in the

linear order� A careful analysis of the lifting procedure and rank assignment shows that they
can be done in NRLa
N�P� �� � � as well�

Now consider x � x�� Since all its subobjects of set type are antichains� we can do the following
in NRLa
N�P� �� � �� For each set subobject of x�� assign unique ranks to its elements� Now
we have a new object x� such that x� � x�� and all elements in all sets in x have their ranks
attached to them� Then we can de�ne the action of f on this object� The only two cases that
require special care to make sure information is not lost are union and �attening� For X � Y �
we �rst create f
x� �� j x � Xg and f
y� �� j y � Y g and then union those� For �
fX�� � � � � Xng��
assume that the rank of Xi is i� Then create ff
x� �� j x � X�g� � � � � f
x� n� j x � Xngg and
apply � to it� The equality test also requires some care as it needs to be de�ned in such a way
that it disregards all attached indices� but it also can be done�

At the end� we have essentially f
x� except that many integers are attached to its subobjects�
We simply remove those using projections� Since f
x� � f
x��� it is guaranteed that no loss of
information occurs while those ranks are projected out� and hence the result is f
x�� �

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

Now we give two examples of using NRL
�b�� based on the fact that NRLa is it sublanguage

see theorem ����� First� we explain how Zaniolo�s language described in section ��� can be
viewed as a sublanguage of NRL
�b�� Second� we do it with the language of section ��� which
is based on the domain model�

Example� Zaniolo�s language

Recall that in the language of Zaniolo ����� there is only one kind of nulls � ni� The ordering on
records was de�ned component	wise and it was lifted to relations by using the Hoare ordering�
Zaniolo�s language was initially designed for �at relations only but here we show how to extend
it to the nested relations�

The main notion was that of x	relation which was an equivalence class with respect to the Hoare
ordering� That is� R� and R� are equivalent if R� v� R� and R� v� R�� In our terminology this
means that �R� � �R�� Therefore� we can pick a canonical representative of each equivalence
class which is given by the max operation� That is� the canonical representative of the equivalence
class of R is maxR� Clearly� �R� � �R� implies maxR� � maxR��

The next notion used for de�ning the operations was that of generalized membership� t��R i�
t � t� for some t� � R� In other words� t��R i� t � �R� Using this notion� Zaniolo de�ned the
following main operations�

R���R� � maxft j t��R� or t��R�g

R���R� � maxft j t��R� and t��R�g

R� ��R� � maxft j t��R� and �
t��R��g
We assume that all base types are Scott domains� This is certainly true in the original Zaniolo�s
model as he only considered �at domains� If we use nested relations� it is still guaranteed that
we only deal with bounded complete posets� that is� gratest lower bounds of consistent pairs are
de�ned at all types� With this in mind� we see how the above operations are translated into the
standard order	theoretic language we advocate in this thesis�

R���R� � maxft j t � �R� or t � R�g � max �R� � �R� � R� t� R�

R���R� � max �R� � �R� � maxfr� � r� j r� � R�� r� � R�g � R� u� R�

R� ��R� � maxft j t��R� and �
t��R��g � R� � �R�

Thus� Zaniolo�s union� intersection and di�erence are order	theoretic analogs of the usual set	
theoretic union� intersection and di�erence� Next we notice that these operations are de�nable
in NRLa and hence in NRL
�b�� We have seen already that max is de�nable� so we only need
the following lemma which is proved by an easy induction and de�nitions of t� and u��

���� LANGUAGES FOR COLLECTIONS OF PARTIAL DATA ��

Lemma ��� If the least upper bound 	b � b� b� b and the greatest lower bound �b � b� b� b
are given for any base type b� then the least upper bound 	s � s � s � s and the greatest lower
bound �s � s � s� s are de	nable in NRLa for every type s� �

The last operation of Zaniolo�s language is the join
we omit projection and selection as these
are standard and of course de�nable in NRLa�� The join with respect to a set X of attributes
was de�ned as

R� �X R� �� maxft� 	 t� j t���R�� t���R�� t� and t� are total on Xg
Without the condition that t� and t� must be total on X that translates into maxft� 	 t� j
t� � R�� t� � R�g and hence is de�nable in NRLa by taking cartesian product of R� and R�

and mapping 	 over it� In the case of �at relations� it is also possible to check if the value
of a projection is ni since ni is available as a constant of base types now� Hence� the totality
condition can be checked� and since selection is de�nable� so is �X � Summing up� we have

Theorem ��� The language of Zaniolo is a sublanguage of NRLa� and hence NRL� �

Notice that in the case of model with one null ni we do not have to require orderings on base
types as these are de�nable using just equality test�

Example� Domain
theoretic language

A simple language based on the domain model was introduced in section ���� It had six opera	
tions� union� di�erence� selection� projection� cartesian product and join� The reason for having
six operations rather than the usual �ve was that the join was not de�nable via the rest of the
operations for all domains� but only for domains of a special structure� The union operation
was t� which is� as we have just seen� de�nable in NRLa� Di�erence was the usual set di�erence

which was su�cient to de�ne the di�erence as in Zaniolo�s language�� Projection and selection
were based on the concept of scheme
see section ����� Here we assume that there are only
trivial schemes� that is� those given by the �leds of records or components of pairs� Therefore�
projection and selection are de�nable in NRLa�

The join operation was de�ned as the Smyth join t�� that is�

R� t� R� � minfx j �r� � R� �r� � R� � r� � x and r� � xg �
� minfr� 	 r� j r� � R� and r� � R�g

Therefore� by lemma ��� R� t� R� is de�nable in NRLa� Summing up� we obtain

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

Proposition ��� The domain�theoretic algebra of section �� is a sublanguage of NRLa and
hence of NRL
�b�� �

Notice that here we do have to include �b as the domains of base types could be arbitrary�

����� Language for or�sets

In this section we follow the method developed in the previous section� The language we are
going to describe is based on the universality properties for or	sets� One of the languages� NRLor�
disregards order� and views or	sets structurally� that is� just as subsets of a given set� The other�
NRLora � also views or	sets structurally� but takes into account the ordering and regards or	sets
as antichains�

Given a poset A� hP�
A��u�� �i is the free ordered semilattice with top generated by A� Recall
that X� u� X� � min
X� �X��� Hence� the syntax of two languages NRLor and NRLora is very
similar to the syntax of NRL and NRLa� In particular� the category with products part is just
inherited from those languages� So here we only give the monad constructs� Types are given by
the following grammar for both NRLor and NRLora �

t ��� b j unit j bool j t � t j hti

The monad primitives are shown in �gure ���

The only di�erence between the semantics of two languages is the interpretation of or �a and
or mapa which was shown already in section ����

or mapa
f�
hx�� � � � � xni� � minhf
x��� � � � � f
xn�i

or �ahX�� � � � � Xni � X� u� � � �u� Xn � min
X� � � � ��Xn�

Since or	sets are ordered by the Smyth ordering and redundancies are removed by taking minimal
elements� we augment the de�nitions of orderings on complex objects and forcing sets into
antichains from the previous section as follows�

 x �hsi y � x ��
s y
i�e� �o� � y �o � x � o �s o

�� hx�� � � � � xni� � minhx��� � � � � x�ni

Now one can repeat the proofs of the previous section verbatim and arrive at the following
theorem�

Theorem ���� � If �b is given at any base type b� then �s is de	nable in NRLora without
using �s as a primitive�

���� LANGUAGES FOR COLLECTIONS OF PARTIAL DATA ���

Or
Set monad of NRLor

or ��
s�t � s� hti � hs� ti or �t � t� hti or �t � hti � hti � hti

or �t � hhtii � hti or empty t � unit� hti
f � s� t

or map f � hsi � hti

Or
Set monad of NRLora given by P��

or ��
s�t � s� hti � hs� ti or �t � t� hti u�t � hti � hti � hti

or �ta � hhtii � hti or empty t � unit� hti
f � s� t

or mapa f � hsi � hti

Figure ���� Expressions of NRLor and NRLora

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

�� Under the assumption that �b can be tested in O
�� time� the time complexity of verifying
x �s y is O
n��� where n is the total size of x and y�

�� NRLora is a sublanguage of NRLor
�b��

�� Any monotone function f de	nable in NRLor agrees with the antichain semantics� If f is
not monotone� then or map
f� does not agree with the antichain semantics�

�� It is undecidable whether a function f de	nable in NRLor is monotone� �

These languages per se are not of great practical interest� In the next section we combine NRL
with NRLor and add a new operation that provides a meaningful interaction between sets and
or	sets� Then we show that a great deal of structural and conceptual queries can be expressed
in the resulting language�

����� Language for bags

As we explained in sections ��� and ������ the main di�erence between having bags and sets as
the underlying data model is that in a bag every entry represents a distinct object� Therefore�
having equal entries means that at the present time we have only partial information about
two objects and they can not be distinguished� Having two objects x and y such that x is less
informative than y still means that x and y are distinct and now we know less about x than we
know about y� In particular� in bags there are no redundancies arising from having comparable
elements� and bags need not be represented as antichains�

This interpretation of bags led us to two orderings ECWA and EOWA depending on whether we
believe in OWA or CWA� These orderings are quite di�erent from v� and v� used for CWA
sets and OWA sets respectively� We have seen that v� and v� are de�nable in the standard
language for sets NRL or standard language for antichains NRLa which is a sublanguage of NRL
if orderings on base types are provided� However� the situation with bags is quite di�erent� In
the standard bag language BQL� which is the bag counterpart of NRL� it is impossible to de�ne
ECWA and EOWA�

Theorem ���� The orderings ECWA and EOWA are not de	nable in BQL�

Proof� We prove this in two stages� First� consider the following problem called SDR� Given
an object o of type fjfjtjgjg such that all bags are in fact sets� that is� all elements occur at most
once� Does o have a system of distinct representatives We also need a slight modi�cation of
this problem SDR� asking whether there exists a system of distinct representatives having the
same cardinality as the number of bags in o�

We prove the following�

���� LANGUAGES FOR COLLECTIONS OF PARTIAL DATA ���

Claim � If EOWA is de�nable in BQL� then SDR is de�nable in BQL�
Claim �� If ECWA is de�nable in BQL� then SDR� is de�nable in BQL�
Claim �� Neither SDR nor SDR� is de�nable in BQL�

In proving these claims� we use theorem ���� from section ��� which says that instead of BQL
we can consider NRL with natural numbers and simple arithmetic which we denote by NRLnat�

Proof of claim � If EOWA or ECWA is de�nable in BQL� then we can write a function that lifts
an order on elements of type t to the order on elements of type fjtjg� It is enough to restrict our
attention to bags without duplicates�

Assume that a family S � fS�� � � � � Sng of sets of type ftg is given� Then we do the following�
First� by using � we �nd dom
S� � S� � � � � � Sn and then assign unique ranks to elements
of dom
S�
see the remark after theorem ���� which explains how to do it in NRLnat�� Also
assign unique ranks to the sets in S� From now on� assume the indices of the sets are their
ranks� Then attach the ranks of elements of dom
S� to elements of Si�s� It is easy to see that
this can be done in NRLnat� Thus� we have an object S� of type fft � Ngg� Now de�ne a
new set V which consists of pairs
s�m� such that s is the element of dom
S� with rank � and
m � card
dom
S�� � �� � � � � card
dom
S��� � � n� Again� this can be done in NRLnat� Notice
that V � dom
S�� � ��

Now de�ne a binary relation on V � dom
S�� by letting
s�m� �
s�� j� i� s� � Sm�card�dom�S���
Then� according to proposition ���� V EOWA dom
S��
when these are considered as bags� i� S
has a system of distinct representatives� Hence� runing SDR on S is reduced to testing EOWA

between two bags� This completes the proof of claim ��

Proof of claim �� We just repeat all the steps of proof of claim � and observe V ECWA dom
S��
i� SDR� has a solution on S�

To prove claim �� we de�ne a new query called chain even� It takes an input of type ft� tg and
returns a boolean� If the input is a chain
i�e� a tree with out	degree at most ��� then it returns
true if the length of the chain is even and false if it is odd� If the input is not chain� the output
is arbitrary�

Claim �� chain even is not de	nable in NRLnat�
Proof� It was shown in Libkin and Wong ����� that in BQL� for every boolean query q on simple
circuits there exists a number l such that either q
c� � true for all circuits c of length � l
or q
c� � false for all circuits c of length � l� Now consider the following query q� which is
de�nable with chain even� Take in a simple a circuits and consider all chains that are obtained
by removing one edge from a circuit� and map chain even over all such chains� It is easy to see
that q�
c� � ftrueg if the length of c is odd and q�
c� � ffalseg if the length of c is even� This
contradicts the result of ������ The claim is proved�

Now we need the following lemma which reduces SDR and SDR� to chain even� In fact� this is

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

a �rst order reduction�

Let Xm � fx�� � � � � xmg� m
 �� be a chain such that xi�� is immediate successor of xi� i �
�� � � � � m� �� De�ne Sm as ffx�g� fxmggSffxi��� xi��g j i � �� � � � � m� �g�

Lemma� Sm has a system of distinct representatives i
 m is even�

Proof of lemma� First� �x some notation� Given Xm� let Y m
i be fx�g for i � �� fxmg for i � m

and fxi��� xi��g for � � i � m� If a family fY m
i g of sets has a system of distinct representatives�

then we use c
Ym
i � to denote the representative of Y m

i �

We prove this lemma by induction on m� For m � �� � it is easy to see that lemma is true� Now�
assume that m
 � and m is even� By induction hypothesis� we know Sm�� has a system of
distinct representatives� For any i � m � �� Y m

i � Y m��
i � Furthermore� Y m��

m�� � fxm��g
and
hence c
Y m��

m�� � � xm���� Y m
m�� � fxm��� xm��g� Y m

m�� � fxm��� xmg� Y m
m � fxmg� Then Sm

has a system of distinct representatives de�ned as follows� For k � m � �� c
Y m
k � � c
Y m��

k ��
For m� �� c
Y m

m��� � xm��� and c
Ym
m��� � xm�� and c
Y m

m � � xm� Hence� Sm has a system of
distinct representatives�

Now let m
 � be odd� We know Sm�� does not have a system of distinct representatives�
Assume Sm does have it� Then c
Y m

m � � fxmg and c
Y m
m��� � xm�� are forced� For c
Ym

m���
there are two choices� xm�� and xm��� If c
Y m

m��� � xm��� then note that xm�� is not present
in any other Y m

l and hence will never get selected� But since the cardinalities of Xm and Sm
coincide� this means Sm does not have a system of distinct representatives� This contradiction
shows that c
Y m

m��� � xm��� Therefore� for any i � m� �� c
Y m
i � � xj where j � m� �� Since

Y m
i � Y m��

i for i � m��� then by taking c
Y m��
i � � c
Y m

i � for i � m�� and c
Ym��
m�� � � xm��

we obtain a system of distinct representatives for Sm��� contradiction� Hence� Sm does not have
a system of distinct representatives� This �nishes the proof of the lemma�

Now claim � follows from the lemma and claim �� Indeed� if SDR
or even SDR� since cardi	
nalities of Xm and Sm coincide� were de�nable� by the lemma we would be able to test whether
a chain has even or odd length� This �nishes the proof of the theorem� �

Therefore� any implementation of BQL that is supposed to deal with the problem of partial
information must provide ECWA and EOWA as additional primitives�

Corollary ���� Neither NRL nor NRL with arithmetic functions can de	ne a function of type
ffsgg � bool that tests whether a family of sets has a system of distinct representatives� �

Unlike most queries whose inexpressibility has been proved earlier� this one is a truly nested
query� it has no �rst order analog�

���� LANGUAGE FOR SETS AND OR�SETS ���

��� Language for sets and or�sets

In this section we introduce the main theoretical language of this thesis that combines sets and
or	sets� We study its properties and later show how it can be used to deal with approximations�
This language also serves as the core of the system called OR	SML which will be described in
the next chapter�

As we often said� or	sets have emerged from applications within the design and planning areas�
and in particular computer aided design� Now we give a simple example of an incomplete design
database and use it to illustrate the main problems that arise in querying such databases� We
then proceed to solve some of those problems�

Example� Querying incomplete database

Assume that we have a database containing an incomplete design� For example� a part may
consist of several subparts and each of them can be chosen from several possibilities with di�erent
parameters like price and reliability� To give an example� assume that we have a design which
requires two subparts� A and B� An A is either A� or A�� The part A� consists of two subparts�
A��� and A���� An A��� is either x or y and an A��� is either z or v� The part A��� consists of
three subparts� A���� A��� and A���� An A��� is either p or q� an A��� is either r or s and an
A��� is either t or u� A B consists of B� and B�� A B� is either w or k and a B� is either l
or m� This incomplete design is shown in �gure ���� We use dashed lines to represent possible
choices�

Now assume that for every subpart that can make it into the completed design
those are
denoted by lower case letters� we have two parameters� its cost c
�� and reliability r
��� Below
we give examples of structural queries� that is� queries asking questions about the structural
representation of an incomplete design� and conceptual queries� that is� queries asking questions
about completed designs which are not stored in a database and thus are purely conceptual�

Structural Queries

� List all possible subparts of A��

� What is the cost of w

� How many possible choices are there for A���

� Which choice for A��� has the minimal cost

Conceptual Queries

� Is there a complete design that costs less than -��

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

��
��

��
��

HH
HH

HH
HH
A� B� B�

x y z v

w k l m

q s t

A���

A��� A��� A���

A���

A�

A B

p r u

DESIGN

Figure ���� An incomplete design

���� LANGUAGE FOR SETS AND OR�SETS ���

� Is there a complete design that costs less than -�� and whose reliability is at least
��.

� What is the least expensive complete design

� What is the most reliable complete design

� How many complete designs are there

We would like to design a language that is capable of supporting both kinds of queries� To do
it� we need a way to ask conceptual queries like the ones above� Let us explain� at this point
just informally� how this can be done�

First� we must represent DESIGN as an object in the language� We assume that types are built
from base types by using the product� set fg and or	set hi type constructors� We build the
design bottom	up� First� we obtain

A��� � hx� yi
A��� � hz� vi
A��� � hp� qi
A��� � hr� si
A��� � ht� ui
B� � hw� ki
B� � hl�mi

NowB �
B�� B��� The A part requires more care� We see from the diagram that A � hA�� A�i�
Hence� A� and A� must be of the same type� This means that it is impossible to represent A�
as
A���� A���� and A� as
A����
A����A����� for then A � hA�� A�i would not typecheck�
Therefore� we represent A� and A� as sets� That is� we build

A� � fA���� A���g
A� � fA���� A����A���g
A � hA�� A�i

and �nally DESIGN �
A�B�� Assuming that all descriptions of the smallest subparts
those
that are denoted by the lower case letters� have type t� the type of DESIGN is

hfhtigi �
hti � hti�

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

Now consider A� � fhx� yi� hz� vig which is of type fhtig� It is a set which has four possible
values� fx� zg� fx� vg� fy� zg� fy� vg� To obtain or	sets containing these sets from A� one needs
essentially the isomorphism between the iterated constructions � described in section ������ If
we apply it to both A� and A�� we obtain two objects of type hftgi� Now A becomes an object
of type hhftgii and we make it an object of type hftgi by applying or � which� as we remarked
earlier� does not change the meaning�

Similarly� B is an object of type hti�hti and one can list all possibilities encoded by B by taking
the cartesian product of B� and B�� Hence� B becomes an object of type ht� ti� Now the whole
DESIGN becomes an object of type hftgi � ht � ti� Again� we take the cartesian product and
obtain an object of type hftg �
t� t�i�

Intuitively� elements of this object are the complete designs� Therefore� we can write conceptual
queries by simply selecting certain elements from this or	set� So� in order to �nd out if we can
ask those conceptual queries� we must answer the following questions�

 Given any object o involving or	sets� is it possible to construct an object o� which is an or	
set containing objects not involving or	sets such that o� represents all possibilities encoded
by o

 Does o� depend on the order in which operations like cartesian product and � in our
example are performed

In this section we introduce a language for sets and or	sets and show that using that language
we can construct o� from o in a way that is �path independent�� that is� does not depend on
the order in which operations are applied� That object o� will be called the normal form of o�
and the language will be capable of expressing a function normalize that takes o into o�� Then
conceptual queries simply become queries asked against normal forms�

����� Syntax and semantics

The language we present deals with sets and or	sets� Its type system is given by

t ��� b j unit j bool j t � t j ftg j hti

Its expressions simply combine expressions of NRL and NRLor� However� if we do just that�
there is no way to distinguish between sets and or	set� because all arrows coming out of sets
or	
sets� go to sets
or	sets�� The way to distinguish between the two is to look at their interaction�
That is� we want to know what is the connection between fhtig and hftgi�

Since ordering on sets corresponds to the Hoare ordering� and ordering on or	sets is the Smyth
ordering� we would like to see if there is a natural correspondence between the operators P�� and

���� LANGUAGE FOR SETS AND OR�SETS ��

P��� As we saw in section ������ these two operators always produce isomorphic domains� so we
take one of the isomorphisms as a primitive in the language� Summing up� we have the language
for writing structural queries over sets and or	sets� which we call or	NRL� Its expressions are
shown in �gure ����

Syntax of or	NRLa is the same except that � is used instead of eq and the following operations
have index a� map� or map� �� or � and ��

Semantics� The semantics of all constructs other than � has been given already� Now de�ne
the semantics of � and �a�

Let X � fX�� � � � � Xng be a set of or	sets where Xi � hxi�� � � � � xinii� Let FX be the set of all
choice functions on X � that is� the set of all functions f � f�� � � � � ng � N such that � � f
i� � ni
for all i � �� � � � � n� Then

�
X � � hfxif�i� j i � �� � � � � ng j f � FX i

�a
X � � minv�hmaxfxif�i� j i � �� � � � � ng j f � FX i
Therefore� according to theorem ����� �ta is an isomorphism between ��fhtig��s and ��hftgi��s and
in addition �a
X � � �
X ���

Recall that objects involving or	sets have two di�erent semantics� the structural semantics ����s
and the conceptual semantics ����c� Therefore� every expression of or	NRL or or	NRLa has inter	
pretation with respect to both ����s and ����c� The remark about � used the structural semantics�
the conceptual semantics will be studied in the next section�

Combining techniques from the previous section� we can easily show the following properties of
or	NRL and or	NRLa
see theorem ������

Theorem ���� � If �b is given at any base type b� then �s is de	nable in or�NRLa without
using �s as a primitive�

�� Under the assumption that �b can be tested in O
�� time� the time complexity of verifying
x �s y is O
n��� where n is the total size of x and y�

�� or�NRLa is a sublanguage of or�NRL
�b��

�� For any two objects x� y of type s� x �s y i
 x� �s y
��

�� Any monotone function f de	nable in or�NRL agrees with the antichain semantics� If f
is not monotone� then map
f� and or map
f� do not agree with the antichain semantics�

�� It is undecidable whether a function f de	nable in or�NRL is monotone� �

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

Operators shared by NRL and NRLor

g � u� s f � s� t

f � g � u� t

c � bool f � s� t g � s� t

if c then f else g � s� t

f � u� s g � u� t

f� g� � u� s� t

�s�t� � s� t� s �s�t� � s� t� t %t � t� unit

Kc � unit� Type
c� idt � t� t eqt � t � t� bool

Operators from set monad of NRL

�s�t� � s� ftg � fs � tg �t � t� ftg �t � ftg � ftg � ftg

�t � fftgg � ftg empty t � unit� ftg
f � s� t

map f � fsg � ftg

Operators from or
set monad of NRLor

or ��
s�t � s � hti � hs� ti or �t � t� hti or �t � hti � hti � hti

or �t � hhtii � hti or empty t � unit� hti
f � s� t

or map f � hsi � hti

Interaction of sets and or
sets

�t � fhtig � hftgi

Figure ���� Syntax of or�NRL

���� LANGUAGE FOR SETS AND OR�SETS ���

One of or	NRL primitives� �� is essentially a translation of conjunctive normal form into dis	
junctive normal form� This operation may be very expensive� Indeed� if its argument is a
collection of n two	element or	sets� all �n elements being distinct� then � produces an or	set
containing �n n	element sets� The result that we are going to formulate can be intuitively un	
derstood as follows� the expressive power of � is that of powerset � However� powerset does
not use the hi type constructor� To be able to speak of the equivalence of expressive power of
languages one of which uses or	sets and the other does not� for technical purposes only� we in	
troduce the functions or to set � hti � ftg and set to or � ftg � hti with the obvious semantics�
or to set
hx�� � � � � xni� � fx�� � � � � xng and set to or
fx�� � � � � xng� � hx�� � � � � xni� We remark
here that� if or to set and set to or are given� then NRL and NRLor are interde�nable�

Proposition ���� or�NRL
or to set� set to or� �� �� or�NRL
or to set� set to or� powerset��

Proof� First� powerset can be expressed as follows�

powerset � or to set � � �map
or � �
or � � empty�%� or � � ���

Conversely� we must show that � is de�nable in or	NRL
or to set� set to or� powerset�� It is
known that the test for equal cardinality can be implemented using powerset
see ������ To
check whether card
X� � card
Y �� notice that

� �map
Z� if equal card
X�Z� then X else fg�
powerset
Y ��

returns X if card
X� � card
Y � and fg otherwise� thus giving us the test for lesser cardinality�

Now� given an input of type fhtig� �rst apply map
or to set� to it and then �atten the result�
thus obtaining the set of elements that occur in the input� Applying powerset now gives the set
of all sets of those elements� A set of elements of the input makes it to the output if and only
if two conditions hold� �rst� its cardinality does not exceed the cardinality of the input
i�e� the
number of or	sets� and it has a nonempty intersection with any element of the input� unless the
input is fg� Since selection� lesser cardinality test� intersection and test for nonemptiness are
de�nable in NRL selection over the powerset followed by an application of set to or yields the
desired result� �

Example� Membership problem for equality tables in or
NRL

As a simple example of applicability of or	NRL to classical problems of incomplete information
in relational databases� we show how to use it to solve the membership problem for equality
tables� Recall that equality tables are relations where variables can be used as well as nonpartial
values� and each variable may occur more than once� The membership problem is to determine�
given an equality table and a relation without variables� if the relation is a possible world for

�� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

the table� That is� if it is possible to instantiate variables to values such that the table will be
instantiated into the given relation� It is known that this problem is NP	complete� so we can
not hope to give a solution that does not use the expensive ��

For simplicity of exposition� assume that we have a base type b having both variables x�� � � � and
values v�� � � � and that it is possible to distinguish between variables and values� A relation R is
an object of type fb� bg such that no variable occurs in it� A table T is also an object of type
fb� bg but now variables may occur�

It is possible to �nd the set of all variables that occur in T using the fact that select is de�able
in NRL�

VarT �� select
is variable� �map
���
T � � select
is variable� �map
���
T �

All values that occur in R can be found as

ValR �� map
���
R� � map
���
R�

We saw in the proof of proposition ���� that powersetor � ftg � hftgi is de�nable in or	NRL�
So� the next step is to compute powersetor
cartprod
VarT �ValR�� and select those sets in it
in which every variable from VarT occurs exactly once� We denote this resulting object of type
hfb� bgi by Assign�

Each element of Assign can be viewed as an assignment of values to variables� so it can be
applied to T in the following sense� For every x in Assign
which is a set of pairs variable	value�
we can write a function that substitutes each variable in T by the corresponding value� and then
map this function over Assign� The reader is invited to see how such a function can be written
in or	NRL�

The resulting object is nowX of type hfb�bgiwhich is the or	set of all possible relations that can
be obtained from T by using valuation maps whose values are in ValR� Therefore� R is a possible
world for T if and only if R is a member of X � To verify this� we write or map
x�eq
x�R��
X�
and then check if true is in the result� This gives us the membership test�

It is interesting to note that the membership problem for Codd tables� while being of polynomial
time complexity� requires solving the bipartite matching problem which can be reformulated as
a problem of �nding a system of distinct representatives� see Abiteboul et al� ���� Therefore� the
power of NRL is too limited to solve the membership problem even for Codd tables� However�
with the power of �� the language can solve a much more complicated membership for equality
tables�

����� Normalization and conceptual programming

The main goal of this section is to show that every object involving or	sets has a unique rep	
resentation of type hti where t does not involve or	sets� That is� all possibilities encoded by

���� LANGUAGE FOR SETS AND OR�SETS ��

or	objects can be listed and� moreover� in a way that is implementable in or	NRL�

We start with a few examples in which we use the set	theoretic semantics� If a pair
x� y� of
or	sets is given� say�
h�� �i� h�� �i�� on conceptual level we must deal with all possible objects it
can conceptually stand for� that is� with or	set of pairs h
�� ���
�� ���
�� ���
�� ��i� In this case
the function that carries out transformation of structural representation to conceptual one can
be given as or � � or map
or ��� � or ��� Another example of the passage from structural to
conceptual level is given by the primitive �s � fhsig � hfsgi� provided that s is in the or	set free
fragment�

Let us consider a more sophisticated example� Given an object x �
fh�� �i� h�ig� h�� �i� of type
fhintig � hinti� Denote the �rst component by y� Applying or �� to x �rst yields h
y� ���
y� ��i
which is an object of type hfhintig � inti� Applying or map
� � ��� ��� yields an object

h
hf�� �g� f�� �gi� ���
hf�� �g� f�� �gi� ��i
of type hhfintgi � inti� Finally� applying or � � or map
or ��� yields

h
f�� �g� ���
f�� �g� ���
f�� �g� ���
f�� �g� ��i
of type hfintg� inti� This can be considered as a conceptual level object for all the possibilities
are listed�

However� one could have used another strategy to list all the possibilities� For example� to apply

� ���� ��� �rst to obtain an object of type hfintgi� hinti and then or � � or map
or ��� � or ��
to obtain an object of type hfintg � inti� It is easy to check that such a strategy results in
precisely the same object as the previous one�

In fact� there is a general result saying that each type has a unique representation at the
conceptual level � such that no or	set type occurs in the type expression except as the outermost
type constructor� For reasons that should emerge shortly we call such a type a normal form�
Furthermore� for each object of type t there exists its unique representation at the conceptual
level whose type is the normal form of t�

To state these results precisely� introduce the rewrite rules for type expressions�

t � hsi �� ht � si hti � s �� ht� si

hhtii �� hti fhtig �� hftgi

Proposition ���� The above rewrite system is terminating and Church�Rosser� The normal
form nf
t� for type t can be found as follows� If t does not use hi� then nf
t� � t� Otherwise�
remove all angle brackets from t� If the resulting type is t�� then nf
t� � ht�i�

�� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

Proof� To show that the rewrite system is terminating� de�ne the following function on types�
Considering types as their derivation trees� let ki be the number of occurrences of hi on the ith
level of the derivation tree of type t� If the height of the derivation tree is n� de�ne 	
t� as
+n
i��ki � i� It is easy to see that if t �� t�� then 	
t�
 	
t��� Hence� any rewriting terminates�

To prove Church	Rosserness� one has to �nd the critical pairs� see section ���� which in essence
are pairs of terms that can give rise to ambiguity in rewriting� and show that for any critical
pair
��� ��� there exists a term � such that �� ���� � and �� ���� � � A straightforward analysis
of our rewrite system reveals the following critical pairs� ��
hfhtigi� fhtig�� ��
ht�hsii� t�hsi��
��
hhsi � ti� hs � htii� and ��
hhsi � ti� hhsii � t� and their symmetric analogs� The terms to
which both components of critical pairs rewrite are hftgi for ��� ht� si for �� and hs� ti for ��
and ��� Thus� the rewrite system is Church	Rosser and� therefore� has unique normal forms�

The proof of the last statement is by induction on the structure of a given type� We limit
ourselves only to types containing hi� The base case is immediate� In general case� consider
three subcases� �� t � t� � t�� �� t � ft�g� �� t � ht�i� In subcase �� t� � t�� � t��� hence� if both
t� and t� contain or	sets� nf
t�� � ht��i� nf
t�� � ht��i and t ���� ht��i � ht��i ���� ht�� � t��i � ht�i
which is a normal form� Thus� nf
t� � ht�i� The simple proofs of other cases are omitted� �

Having de�ned rewrite rules for types� we must show how to apply these rules to instances�
First� associate a function in or	NRL with each rule as follows�

or �� � t � hsi �� ht � si or �� � hti � s �� ht� si

or � � hhtii �� hti � � fhtig �� hftgi

In the case of using antichain semantics� that is� or	NRLa� we replace or � and � by or �a and
�a respectively�

Let t be a type and p a position in the derivation tree for t such that applying a rewrite rule with
associated function f to t at p yields type s� Our aim is to de�ne a function app
t� p� f� � t� s

showing the action of rewrite rules on objects� De�ne it by induction on the structure of t�

 if p is the root of the derivation of t� then app
t� p� f� � f �

 if t � t� � t� and p is in t� � then app
t� p� f� �
app
t�� p� f� � ��� ����
 if t � t� � t� and p is in t�� then app
t� p� f� �
��� app
t�� p� f� � ����
 if t � ft�g then app
t� p� f� � map
app
t�� p� f���

���� LANGUAGE FOR SETS AND OR�SETS ��

 if t � ht�i then app
t� p� f� � or map
app
t�� p� f���

Notice that the de�nition of app relies on the fact that the functions associated with the rewrite
rules are polymorphic� Again� for or	NRLa we use corresponding operations with index a from
or	NRLa� and denote the corresponding application function by appa�

Given a type t and a rewriting strategy r �� t
f��� t�

f��� � � �
fn�� tn � nf
t� such that the

rewrite rule with associated function fi is applied at a position pi� we can extend the function
app to app
t� r� � t� nf
t� by

app
t� r� �� app
tn��� pn� fn� � � � � � app
t�� p�� f�� � app
t� p�� f��

We now formulate the main theorem which states that it is possible to compute all possibilities
a given or	object represents� and that computation is �path independent�� We discuss some
important consequences of this result before giving a
somewhat lengthy� proof�

Theorem ���	 Normalization� Given a type t� any two rewrite strategies r�� r� � t ���� nf
t�
yield the same result on objects in or�NRL and or�NRLa� That is� for any object x of type t�

app
t� r��
x� � app
t� r��
x� and appa
t� r��
x� � appa
t� r��
x� �

Therefore� all objects with the same meaning at the conceptual level rewrite to the same normal
form� The intuitive notion of the conceptual meaning can now be rigorously de�ned as the
normal form� So now we can de�ne the conceptual query language or�NRL� by adding the new
construct

normalizet � t� nf
t�

to or	NRL� The conceptual query language for the antichain semantics or	NRL�a can be de�ned
by adding normalizeta � t� nf
t� to or	NRLa�

By the normalization theorem� normalizet can be implemented as app
t� r� where r � t ���� nf
t�
and normalizeta can be implemented as appa
t� r�� Notice that� for any given t� normalizet and
normalizeta can be expressed in or�NRL and or	NRLa
maybe in more than one way� but it is
impossible to express them polymorphically�

As an illustration of using normalization� consider the example with the incomplete design
database� Assuming that the cost function c
�� is given for all pieces� it is possible to calculate
the cost function cost for the complete designs� Now� to �nd out if it is possible to complete
design using -��� one would write

select
x�x
 ���
or map cost normalize
DESIGN ��

�� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

recall that select is de�nable in or	NRL�� To list the designs which cost exactly -�� one would
write

select
x�cost
x� � ��
normalize
DESIGN ��

Moreover� it is possible to express all examples of conceptual queries listed in the beginning of
this section� We shall return to this example later in chapter � and show how those conceptual
queries can be implemented in a practical language OR	SML which is based on or	NRL�

Before we prove the normalization theorem� let us make one important observation� The nor	
malization theorem states that ��app
t� r��
x���s � ��app
t� r��
x���s� no matter what r� and r�� Of
course� this also implies that the conceptual semantics of the two is the same� However� there is
a much closer connection between normalization and the conceptual semantics� The slogan is�

Normalization preserves conceptual semantics�

In other words� the following holds�

Theorem ���� For any type t and any object x of type t�

��x��c � ��normalize
x���c and ��x��c � ��normalizea
x���c

That is� ��normalize��c � ��normalizea��c � ��id ��c�

Proof� We prove this theorem for the antichain semantics� the proof for the set	theoretic
semantics is similar
and in fact easier�� We must show that all four operations used in the
process of normalization do not change the conceptual semantics� We do it by cases� Recall that
��x��c is a �nitely generated �lter in ��t��c for any x of type t� First� we need to prove the following�

Claim� If x and y are of type t and x �t y� then ��y��c
 ��x��c�
Prove this by cases� The base type case and the product type case are immediate� Let X �
hx�� � � � � xni� Y � hy�� � � � � ymi be of type hti and let X �hti Y � Then �yi � Y �xj � X � xj �t yi
and hence �yi � Y �xj � X � ��yj ��c
 ��xi��c and then ��Y ��c
 ��X ��c�

Let X � fx�� � � � � xng� Y � fy�� � � � � ymg be of type ftg and let X �ftg Y � Then �x � X�y �
Y � x �t y� that is� ��y��c
 ��x��c� This also means min ��x��c v� min ��y��c� Now consider

X � � fmin ��x���c� � � � �min ��xn��cg and Y � � fmin ��y���c� � � � �min ��ym��cg� Then X �
��
t�
� Y �� Now

recall from the proof of proposition ���� that ��X ��c � ��a
X �� where �a
X �� is considered as a
collection of sets� and similarly ��Y ��c � ��a
Y ��� From the proof of theorem ���� we know that

�a
X
��
��

t�
� �a
Y

�� which means �a
X
�� ��

ftg �a
Y
�� and hence ��a
Y ��
 ��a
X ��� Therefore�

��Y ��c
 ��X ��c� This �nishes the proof of the claim� Now we prove that all operations used in the
process of normalization preserve ����c�

Case � or ��� Let ��x��c � Fx and ��yi��c � Fi for i � �� � � � � n� Then for Y � hy�� � � � � yni we
have ��Y ��c �

Sn
i�� Fi � FY and ��
x� Y ���c � Fx � FY � On the other hand� ��or ��
x� Y ���c �

���� LANGUAGE FOR SETS AND OR�SETS ��

��h
x� y��� � � � �
x� yn�i��c �
Sn
i��
Fx � Fi� � Fx � Sni�� Fi � Fx � FY � Hence� ��
x� Y ���c �

��or ��
x� Y ���c� The case of or �� is similar�

Case �� or �a� Let X � hX�� � � � � Xni and Xi � hxi�� � � � � xinii for i � �� � � � � n� Let ��xij ��c � F i
j �

Then ��X ��c �
S
i

S
j F

i
j � By monotonicity of ����c� we obtain

��X ��c �
�

xij�min�X������Xn�

F i
j

and hence ��X ��c � ��or �a
X ���c�

Case �� �a� Let X � fX�� � � � � Xng where Xi � hxi�� � � � � xinii for i � �� � � � � n� Let ��xij ��c � F i
j �

Then ��X ��c is the �lter generated by such �nite antichains Y that Y �F i �� � for all i � �� � � � � n
where F i �

Sni
j�� F

i
j � Now� �a
X � � minv�hmaxff
xif�i�� j i � �� � � � � ng j f � FX i� Therefore�

by monotonicity of ����c� ���a
X ���c is the �lter generated by all �nite antichains Y such that
for every i � �� � � � � n� Y � F i

f�i� �� � for at least one f � FX � Now it is easy to see that

���a
X ���c � ��X ��c�

Therefore� all operations used in normalization do not change the value of ����c and hence ��x��c �
��normalizea
x���c for any x� �

Proof of the normalization theorem

We start with normalization for the set	theoretic semantics� Let us �rst explain the strategy for
proving the theorem� We de�ne an abstract rewrite system on objects by letting x� y i� y can
be obtained from x by application of one of the rewrite rules for types to x
by means of app��
For instance�
�� hh�i� h�ii��
�� h�� �i� by applying hhtii � hti in the second position� If x is of
type t and y is of type s� then t� s according to the rewrite system for types� Moreover� normal
forms with respect to our new rewrite system are precisely objects whose types are normal form�
Therefore� the rewrite system is terminating according to proposition �����

Now our goal is to prove that the new rewrite system is weakly Church	Rosser� Then� by
Newman�s lemma
see section ���� it will follow that it is Church	Rosser and has unique normal
forms� Since for a rewriting r from t to s� y � app
t� r�
x� implies that x ���� y� the uniqueness
of normal forms will imply the normalization theorem�

To prove weak Church	Rosserness� we have to show that for x � x� and x � x�� there exists
x� such that x�� x� ���� x�� We shall often view types as trees� Assume that x � x� by means
of rule r� in position p� in t and x� x� by means of rule r� in position p� in t� We denote the
functions that correspond to rules r� and r� by f� and f� respectively� Notice that if positions
p� and p� are in two di�erent subtrees determined by a pair formation� then the existence of
x� is immediate� Hence� we can assume that one position� say p�� is closer to the root than p�
because fg and hi are unary type constructors�

�� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

Now we prove weak Church	Rosserness by cases which are given by the rewrite rules applied in
position p�� Subcases will be given by rewrite rules applied in position p��

Case � The rule applied in p� is s � hti � hs � ti� The object therefore is a pair
x�� x�� and
the function applied is or ��� Now we have three subcases�

Subcase �� p� occurs inside the tree for s� Assume that app
s� p�� r��
x�� � x��� Then we
obtain

h
x�� xi�� j xi� � x�i

�
�
�
�
�

or ��
� �

�
�
�
�

or map
f� � ��� ���
R

x�� x�� h
x��� xi�� j xi� � x�i
�
�
�
�
�

f� � ��� ���
R �

�
�
�
�

or ��

�

x��� x��

Subcase ��� p� occurs inside t� That is� rewriting is apllied to elements of or	set x�� For
x� � hyiii� assume that f�
yi� � zi� Then we obtain

h
x�� yi� j yi � x�i

�
�
�
�
�

or ��
� �

�
�
�
�

or map
��� f� � ���
R

x�� x�� h
x�� zi� j yi � x�i
�
�
�
�
�

��� or map
f�� � ���
R �

�
�
�
�

or ��

�

x�� hziii�

Subcase ��� p� coincides with the root of hti� Since the root of hti is the or	set type�
the only rule that can be applied is hht�ii � ht�i� that is� t � ht�i� Now assume x� �
hX�� � � � � Xpi where each Xi is an or	set of type ht�i� Let V � X� � � � � � Xp� Then we
obtain

���� LANGUAGE FOR SETS AND OR�SETS �

h
x�� X i�ipi��
or map
or ���� hh
x� y� j y � Xii j i � �� � � � � pi

�
�
�
�
�

or ��
� �

�
�
�
�

or �

R

x�� x�� h
x�� y� j y � V i

�
�
�
�
�

��� or � � ���
R �

�
�
�
�
�
�
�

or ��

�

x�� V �
id �
x�� V �

Case �� The rule applied in p� is hhtii � hti� The object therefore is an or	set of or	sets
X � hX�� � � � � Xpi where Xi � hxi�� � � � � xinii and the function applied is or �� Now we have two
subcases�

Subcase ��� p� occurs inside the tree for t� Assume that for each element xij in Xi we

have f�
x
i
j� � yij � Let Yi � or map
f��
Xi�� Then we obtain

hxij j i � �� � � � � p� j � �� � � � � nii

�
�
�
�
�

or �
� �

�
�
�
�

or map
f��

R
X hyij j i � �� � � � � p� j � �� � � � � nii

�
�
�
�
�

or map
or map
f���

R �
�
�
�
�

or �

�

hYi j i � �� � � � � pi

Subcase ��� p� is the root of hti� that is� p� is the immediate successor of p�� Hence� the
only rule that can be applied at p� is hhsii � hsi� In other words� t � hsi and X has type
hhhsiii� Rewriting at p� is then or map
or ��� Therefore� two reducts of X are or �
X � and
or map
or �
X ��� The case now holds because or � � or map
or ��
X � � or � � or �
X ��

Case �� The rule applied in p� is fhtig � hftgi� The object therefore is a set of or	sets
X � fX�� � � � � Xpg where Xi � hxi�� � � � � xinii and the function applied is �� Now we have two
subcases�

�� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

Subcase ��� p� is inside t� Assume that applying f� to every xij yields yij � The result of

applying f�
in the sense of app� to X is fhyij j j � �� � � � � niii � �� � � � � pg� Now we can see
that the following diagram commutes and hence the case holds�

hfxih�i� j i � �� � � � � pg j h � FX i

�
�
�
�
�

�
� �

�
�
�
�

or map
map
f���

R
X hfyih�i� j i � �� � � � � pg j h � FX i

�
�
�
�
�

map
or map
f���

R �
�
�
�
�

�

�

fhyij j j � �� � � � � nii j i � �� � � � � pg

Subcase ���� p� is the root of hti� In this case the only rule that can be applied is
hht�ii � ht�i and hence t � ht�i� In particular� applying f� now is map
or ��� Now it can
be seen that the following diagram commutes which proves the case� In that diagram we
only give types of intermediate objects�

 � hfht�igi or map
��� � hhft�gii

�
�
�
�
�

�
� �

�
�
�
�

or �

R
X � fhht�iig � hft�gi

�
�
�
�
�

map
or ��
R �

�
�
�
�

�

�

 � fht�ig id � � fht�ig

This �nishes the proof that for the set	theoretic semantics the rewrite system is weak Church	
Rosser and therefore the normalization theorem holds�

To prove normalization for or	NRLa� recall the translation from the set	theoretic semantics into
the antichain semantics� x� � x for any x of base type�
x� y�� �
x�� y��� fx�� � � � � xng� �
maxfx��� � � � � x�ng and hx�� � � � � xni� � minhx��� � � � � x�ni� Now we need two lemmas�

Lemma ���� Any function f in the fragment of or�NRL that does not contain �� or � and eq�
is monotone�

���� LANGUAGE FOR SETS AND OR�SETS ��

Proof is by induction� We consider only a few cases� Most cases� such as projections� pairing�
composition� singleton and pair	with are immediate� That � is monotone follows from theorem
����� Let X �Y be of type fftgg and X �fftgg Y � Then consider x � �
X �� Since x � X for
some X � X � there exists Y � Y such that X �ftg Y and then there exists y � Y such that
x �t y� This shows �
X � �ftg �
Y�� The proof for or � is similar�

Assume that g � t � s is monotone and consider X� Y � ftg such that X �ftg Y � Let g
x� �
map
g�
X�� Then there exists y � Y such that x �t y and hence g
x� �s g
y� which shows
map
g�
X��fsg mapa
g�
Y �� The proof for or map is similar� �

Let f be a function de�nable in or	NRL� By fa we denote the corresponding function in or	NRLa�
that is� the function obtained from f by replacing set	theoretic operations with their antichain
counterparts� e�g� by replacing or map with or mapa and so on�

Lemma ���� Let f be a function in the fragment of or�NRL that does not contain �� or ��
equality and comparability tests� Then for any object x� fa
x�� � f
x����

The proof is again by induction on f � We show a few cases here� The proof for � is easily derived
from theorem ����� Given X of type fftgg� consider �a
X ��� It is easy to see that �a
X �� �
max
�
maxfX� j X � Xg�� � �
X ��� and so the case holds� The case for map� observe that
mapa
ga�
X

�� � max
map
ga�
X�� � maxfga
x�� j x� � X�g � maxfg
x��� j x� � X�g �
map
g�
X���� Similarly� the case for or map holds� Finally� consider h � f � g where g � s � t
and f � t � u� Then by induction hypothesis ha
x�� � f
g
x����� and h
x��� � f
g
x�����
Since g and f come from a monotone fragment of or	NRL� we obtain g
x�� �t g
x

��� �t g
x
��

and therefore f
g
x��� �u f
g
x���� �u f
g
x��� which shows f
g
x����� � f
g
x���� and hence
ha
x

�� � h
x���� This �nishes the proof� �

To prove normalization for the antichain semantics� we de�ne the rewrite system on objects in
exactly the same way we did it for the set	theoretic semantics� Now our goal is to show that the
system is weakly Church	Rosser�

Assume that we have an object x in the antichain semantics� that is� x � x�� and assume
that it can be rewritten to two objects x� and x�� That is� there exist two functions f and
g which are in fact instances of appa such that x� � fa
x� and x� � ga
x�� Let y� � f
x�
and y� � g
x�� By the proof of normalization theorem for set	theoretic semantics we know
that there exists an object z
in set	theoretic semantics� such that both y� and y� rewrite to
z� That is� for some function f � and g�� which are compositions of instances of app� we have
f �
y�� � g�
y�� � z� Now using the fact that �� or � and eq are not present in functions that
arise as instances of app and hence these functions are monotone� we apply the previous lemma
to obtain f �a
x�� � f �a
fa
x�� � f �
f
x��� � z� � g�
g
x��� � g�a
ga
x�� � g�a
x��� Since f �a
and g�a are compositions of instances of appa� this means that the rewrite system is weakly
Church	Rosser and normalization for the antichain semantics follows�

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

����� Partial normalization

We have seen that the normalization process can be quite expensive� Indeed� since � has
essentially the expressive power of powerset and can be applied several times in the course of
normalization� the resulting object may be of at least exponential size� In section ����� we shall
give tight upper bounds for the costs of normalization� Meanwhile� we would like to ask another
question� Is it possible to answer conceptual queries faster

First� we are going to show that even simple existential queries like �is there a complete design
that costs less than -�� � can be very expensive� Then we proceed to suggest a method that
occasionally allows to answer queries without completing the normalization process�

The importance of existential queries was emphasized in Imielinski et al� ���� ���� Essentially� an
existential query asks whether there exists a possibility � in the normal form � satisfying a given
property� In terms of or�NRL�� if nf
s� � hti and p � t � bool is a predicate� �
p� � hti � bool

is a predicate which is true of y � hti if or map
p�
y� � hbooli is an or	set containing the true
value� Given an object y of type s� one may ask a query �
p�
normalize
y��� Clearly� this query
can be answered in time polynomial in the size of normalize
y�� but can it be answered in time
polynomial in the size of y

The following example gives a negative answer to this question� provided P �� NP � Assume
pk � ftg � bool evaluates to true if and only if cardinality of the set is at most k� Let b a
base type� For an object x of type fhbig� one may ask a query Q
k� x� � �
pk�
normalize
x���
It is immediately seen that this query evaluates to true i� there exists a system of distinct
representatives of elements of x
which are or	sets� whose size is at most k� The problem of
�nding a system of distinct representatives of size � k is known to be NP	complete� see �����
Therefore� the problem whether Q
k� x� evaluates to true is NP	complete�

Thus� there is no hope that even simple existential queries can be answered e�ciently� Does
that mean we always have to go through the whole process of normalization Not necessarily so�
Consider the following query about the incomplete design in �gure ���� Is it possible to build
part A using -�� Of course we do not have to normalize the whole DESIGN but only the A
component� In other words� instead of normalizing an object of type hfhtigi �
hti � hti� and
getting an object of type hftg�
t� t�i� it is enough to get an object of type hftgi�
hti � hti��
leaving the B component intact�

The question that naturally arises is whether it is possible to do this unambiguously� That is�
if t ���� t�� and r� and r� are two strategies that perform this rewriting� is it true that app
t� r��
and app
t� r�� are the same as functions of type t� t�

It is not hard to see that the answer to this question is negative� as shown in example in �gure
����

���� LANGUAGE FOR SETS AND OR�SETS ���

hhh�� �i� h�ii� hh�i� h�iii � hhhintiii
�
�
�
�
�

or �

R
hh�� �� �i� h�� �ii � hhintii

or map
or ��

�
hh�� �i� h�i� h�i� h�ii � hhintii

Figure ���� A counterexample to unambiguity of partial rewriting

However� the result that we are going to prove says that this is essentially the only possible
counterexample� We need a couple of de�nitions �rst�

De�nition ��� A �	type is a type that does not contain a subtype hhtii� A �	rewrite strategy
r � t ���� s between two ��types t and s is a rewrite strategy such that� whenever a subtype hht�ii
appears as the result of application of a rewrite rule� the next rewrite rule is hht�ii � ht�i�

For example� hti � ht� fhtigi is a �	type and

hti � ht� fhtigi �� hti � ht � hftgii �� hti � hht� ftgii �� hti � ht� ftgi
is a �	rewrite strategy� Notice that it does not go all the way to the normal form�

Now the slogan is

The normalization theorem holds for ��rewrite strategies between ��types�

Before we formulate and prove the partial normalization theorem� we need a few results dealing
with the structure of types involving the or	set type constructor� Recall that by t ���� s we mean
that t can be rewritten to s in zero or more steps using the four rules given before proposition
����� Now we write t % s if s is obtained from t by removing some of the or	set brackets� In
other words� s is obtained from t by applying the rules in �gure ����

Now de�ne a binary relation C on types by means of four rules in �gure ���

Theorem ���� Rules in 	gure ��� are sound and complete for ����� In other words� s ���� t i

s C t�

Proof� First prove the following� Let sor be a type obtained from s by inserting a pair of
or	set brackets� In terms of trees� it just means inserting a new node marked by hi somewhere�

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

hti % t

t % s

hti % s

t % s

hti % hsi
t % s

ftg % fsg

t % s

t� t� % s � t�
t % s

t� � t % t� � s

t % s t� % s�

t� t� % s � s�

Figure ���� Rules for %

t C t

t C t� s C s�

t � t� C s� s�

t C s

ftg C fsg
t % t� t� C s

t C hsi

Figure ��� Rules for C

Then sor ���� hsi� We prove this by cases� If s is a base type� then sor could only be hsi� If
s � s�� s�� then in the case when or	set brackets are put around s� we are done� Assume or	set
brackets are inserted inside s�� Then sor � s�or � s� ���� hs�i � s� ���� hs� � s�i � hsi� Assume
s � fs�g� Again� if we put or	set brackets around s� we are done� Assume that a new pair of
or	set brackets is put in s�� Then sor � fs�org ���� fhs�ig ���� hfs�gi � hsi� The proof for s � hs�i
is similar� Therefore� if t % s� then t was obtained from s by inserting a number of pairs of
or	set brackets in s and hence t ���� hsi�

Now we prove soundness of the rules in �gure ��� The �rst three rules are obvious� so only the
last one needs to proved� Assume that we know t� ���� s and let t % t�� We must show t ���� hsi�
By the remark made above we obtain t ���� ht�i� Therefore� t ���� ht�i ���� hsi� which proves
soundness�

To prove completeness� we must show how to derive all four rewrite rules for types from the
rules in �gure ��� First� we obtain

hti � s % t� s t� s C t � s

hti � s C ht� si
t � hsi % t � s t � s C t � s

t� hsi C ht� si

���� LANGUAGE FOR SETS AND OR�SETS ���

For the rules for sets and or	sets� we have

fhtig % ftg ftg C ftg
fhtig C hftgi

hhtii % t t C t

hhtii C hti

Finally� we need to show that if a subtype s of a type t rewrites to s�� then t rewrites to t�s��s��
In other words� if s C s�� then t C t�s��s�� We prove it by induction on the structure of t� If the
position of s is the immediate successor of a product or a set node� then this follows immediately
from the rules in �gure ��� Now assume that the position of s is the immediate successor of the
or	set node� Then we obtain

hsi % s

���
s C s�

hsi C hs�i
as required� This �nishes the proof of the theorem� �

The last rule in �gure �� resembles the cut rule in the sequent calculus ���� as it introduces a
new variable t�� In the sequent calculus it is possible to eliminate the cut rules but the cost is
the hyperexponential blow	up in the length of the proof� see Girard ����� The last rule in �gure
�� does not suggest an immediate search strategy to prove that t C hsi but rather a search for
the right t�� Thus� the following question arises� Given two types t and s� how hard is it to
check if t ���� s One may fear that it is at least exponential in the size of s and t� as suggested
by the rules for C� Fortunately� we can prove the following result�

Proposition ���� There exists a O
n�� time complexity algorithm that� given two types s and
t� returns true if s ���� t and false otherwise�

Proof� First� de�ne a carcass of type t� denoted by �t� as follows� If nf
t� � ht�i� then �t � t��
otherwise �t � t� Now� according to proposition ����� s ���� t implies �s � �t� Therefore� we assume
that the �rst stage of the algorithm is to check that �s � �t� This can be done in linear time in
the size of t and s�

Assume s and t are given such that s ���� t� The proof of theorem ���� gives us a translation
of any rewriting strategy into a proof using the rules for C� Analysing these rules� we see that
all of them are forced except the case when t � ht�i� That is� if t � t� � t�� then we should have
s � s� � s� and s� C t� and s� C t� must be proved� If t � ft�g� then we should have s � fs�g
and s� C t� must be proved�

Assume that t � ht�i� Analyzing the translation from ���� into C given in the proof of theorem
����� we can see that there are only three instances of applying this rule to show s C ht�i� In
three of them� the subproof for the C relation is a one	step proof
equality��

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

Therefore� when we have to prove s C ht�i� we do the following� First� we check if t� � t�� � t���
If this is so� we check if s � s� � s�� If this is again so� we check if s� � ht��i and s� � t��� If this
is so� we stop since we succeeded in proving s C ht�i� If this is not so� the rule for product could
not have been used in the translation of ���� to C�

Next we check if t� � ft��g� If this is so� we check if s � fht��ig and if this is the case� we stop as
we succeeded in proving s C ht�i� If this is not so� the rule for sets could not have been used in
the translation of ���� to C�

Then we check if s � hht��ii� If this is so� we stop as s C ht�i is proved� If this is not so� the rule
for or	sets of or	sets could not have been used in the translation of ���� to C�

If going through these steps the algorithm does not stop� the translation from ���� to C tells us
that the only way to prove s C ht�i is to check that s � hs�i and to prove s� C t�� Hence� we
remove one or	set type constructor and then repeat all steps for the simpler types s� and t�� The
goal is proved when all its subgoals are proved� that is� in proving each subgoal the algorithm
stops returning success�

Analyzing this algorithm� we see that after each step the goal is reduced to a simpler subgoal

or two of them in the case of product� and that the only operations performed are a constant
number of equality tests which can be done in linear time� Since the number of equality tests
performed is linear in the size of the input� the time complexity of the algorithm is O
n��� �

Since sizes of types are typically small
as compared to sizes of objects�� this O
n�� algorithm
will work very fast� Notice that we assumed that types are represented as trees� This is the case
in the implementation called OR	SML which we shall describe in the next chapter� Had types
been given as strings� due to the simple grammar for types� they can be parsed by an LR parser
to obtain the tree representation in linear time ����� Hence� the algorithm for checking s C t is
still of O
n�� time complexity�

Our main goal is to prove the normalization theorem for �	rewrite strategies between �	types�
The �rst question is how to obtain �	rewrite strategies and �	types� Let us see why the naive
approach would not work� Given a type t� de�ne Mt as the type obtained by deleting multiple
or	set brackets from t� That is� Mb � b� Ms� t � Ms�Mt� Mftg � fMtg� Mhhtii � MhMti and
Mhti � hMti if t is not of form ht�i� Obviously� for any t� Mt is a �	type� Now given two types t
and s such that t C s� is it true that Mt C Ms�

The answer to this question is negative� Indeed� take t � b� hhbii and s � hb� hbii� where b is
a base type� Then t C s� but Mt � b� hbi �C Ms � hb� hbii� However� we still can prove the
following result�

Proposition ���� If s and t are two ��types such that s C t� then there exists a ��rewrite
strategy that rewrites s to t�

���� LANGUAGE FOR SETS AND OR�SETS ���

Proof� Let s C t� Then there is a rewrite strategy that rewrites s to t� i�e� s ���� t� Consider
the �rst step at which the condition for �	rewrite strategy is violated� That is� in some reduct
s� of s a subtype of form hht�ii appeared� but the next rule is not the one that rewrites hht�ii
to ht�i� Since t is a �	type and does not have double or	set brackets� this pair of or	set brackets
must disappear in the process of rewriting� There are three possible cases�

Case � The product rule is used to eliminate the double or	set brackets� That is� t� may have
been rewritten to some t�� and then the rule hht��ii � t�� � hht��i � t��i was used� According to
the rules for C� this means that in s�� hht�ii appeared in the context hht�ii� t� and that t� C t���
Since s is a �	type and s� is the �rst reduct in which a pair of or	set brackets appeared that was
not canceled at the next step� there are two possible ways for it to appear�

Subcase �� t� � t�� � t�� and a pair of or	set brackets around t� appeared by applying
the rule t��� ht��i � ht��� t��i� Therefore� the type that was rewritten to hht�ii � t� was
ht�� � ht��ii � t�� Now it can be rewritten to hht��i � t��i as follows�

ht�� � ht��ii � t� � h
t�� � ht��i�� t�i � hht�� � t��i � t�i � hht�i � t�i ���� hht��i � t��i

Note that the �rst two rules satisfy the conditions for �	rewriting�

Subcase �� when t� � t�� � t�� and the ruled applied is ht��i � t�� � ht�� � t��i is similar
to the subcase ����

Subcase ��� t� � ft��g and a pair of or	set brackets around t� appeared by applying the
rule fht��ig � hft��gi � ht�i� Therefore� according to the rules for C� the type that was
rewritten to hht�ii� t� was hfht��igi� t�� Now it can be rewritten to hht��i� t��i as follows�

hfht��igi � t� � hfht��ig � t�i � hhft��gi � t�i � hht�i � t�i ���� hht��i � t��i

Again� note that the �rst two rules satisfy the conditions for �	rewriting�

Case �� The set rule is used to eliminate the double or	set brackets� That is� t� may have been
rewritten to some t�� and then the rule fhht��iig � hfht��igi was used� According to the rules for
C� this means that in s�� hht�ii appeared in the context fhht�iig� Since s is a �	type and s� is
the �rst reduct in which a pair of or	set brackets appeared that was not canceled at the next
step� there are two possible ways for it to appear�

Subcase ��� t� � t�� � t�� and a pair of or	set brackets around t� appeared by applying
the rule t�� � ht��i � ht�� � t��i� Therefore� the type that was rewritten to fhht�iig was
fht�� � ht��iig� Now it can be rewritten to hfht��igi as follows�

fht�� � ht��iig � hft�� � ht��igi � hfht�� � t��igi � hfht�igi ���� hfht��igi

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

Subcase ���� t� � t�� � t�� and a pair of or	set brackets around t� appeared by applying
the rule ht��i � t�� � ht�� � t��i� This case is similar to ����

Subcase ���� t� � ft��g and a pair of or	set brackets around t� appeared by applying
the rule fht��ig � hft��gi � ht�i� Therefore� the type that was rewritten to fhht�iig was
fhfht��igig� Now it can be rewritten to hfht��igi as follows�

fhfht��igig � hffht��iggi � hfhft��gigi � hfht�igi ���� hfht��igi

Note that in all three subcases the new rules we introduce satisfy the conditions for �	
rewriting�

Case �� In hht�ii� t� could be rewritten to t�� � ht��i and then the pair of or	set brackets
around to t�� is canceled by applying the rule hht��ii � ht��i� That is� hht�ii ���� hht��ii� This
equivalently could be achieved by rewriting hht�ii as follows�

hht�ii � ht�i ���� ht��i � hht��ii

Notice that the �rst rule is an instance of �	rewriting� double or	set brackets are canceled
immediately after they appeared�

Now we de�ne a measure of a rewriting from s to t as the total number of instances of hhii in
all intermediate results of rewritings such that those double or	set brackets are not canceled by
applying the � rule at the next step� If the measure of a rewriting is at least one� we can �nd
an instance of the �rst appearance of hhii that is not canceled immediately afterwards� and use
the above algorithm to decrease the measure by at least one� Hence� this algorithm eventually
produces a rewrite strategy of measure zero� and such is a �	strategy� Proposition is proved� �

Now that we know that there exist �	rewrite strategies between �	types t� and t� satisfying
t� C t�� we can prove the following result�

Theorem ���� Partial Normalization� Given two ��types t� and t� such that t� C t�� any
two ��rewrite strategies r�� r� � t� ���� t� yield the same result on objects in or�NRL and
or�NRLa� That is� for any object x of type t��

app
t�� r��
x� � app
t�� r��
x� and appa
t�� r��
x� � appa
t�� r��
x�

Proof� The proof is going to follow the proof of the normalization theorem� but here we need
to do most of the work with types rather than object� Again� we de�ne a rewrite system on
objects by letting x of type s� rewrite in one step to y of type s� if t� C s� C s� C t� and one of
the following holds� Either s� is a �	type and y is obtained by applying one type rewrite rule

in the sense of app� to x� or x has one subobject of type hhs�ii and y is obtained from x by
applying the type rewrite rule hhs�ii � hs�i� Then� in order to prove the theorem� similarly to

���� LANGUAGE FOR SETS AND OR�SETS ��

the case of the normalization theorem� we must show that thus de�ned abstract rewrite system
is weakly Church	Rosser�

To show this� we go through all the cases considered in the proof of theorem ���� and observe
that some of them
���� ���� ���� ���� can not happen with the new de�nition of rewriting�
Let us list all others� leaving only types in the diagrams� Notice that in all the diagrams� if
types we start with are �	types� and rewritings s ���� s� and t ���� t� are �	rewritings� then all
intermediate types are �	types and all rewritings are �	rewritings�

Case � Two di�erent components of a pair are rewritten�
Case �� This case corresponds to case ��� in the proof of normalization� These two cases are
shown in the diagrams below�

s� � t

��
�� �

��R
s� t s� � t�

�
��R ��

��

s� t�

Case �

hs� ti

�
�
�� �

�
�R

s � hti hs� � ti
�
�
�R �

�
��

s� � hti
Case �

Case �� This case corresponds to case ��� in the proof of normalization� where t� �� ht��i�
Case �� This case corresponds to case ��� in the proof of normalization� where t� � ht��i� It is
not hard to see that the diagram below commutes�

hs� ti

�
�
�� �

�
�R

s� hti hs� t�i
�
�
�R �

�
��

s� ht�i
Case �

hs � ti � hs� ht��ii ��� hs� ht��ii

�
�
��

s� hti hhs� t��ii
�

�
�
�R
s � hht��ii � s � ht��i � hs� t��i

�

Case �

Case �� This case corresponds to case ��� in the proof of normalization� where t� �� ht��i�
Case �� This case corresponds to case ��� in the proof of normalization� where t� � ht��i� That
the diagram commutes follows from commutativity of diagrams for cases ��� and ��� in the proof
of normalization
see theorem ������

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

hftgi

��
�� �

��R
fhtig hft�gi

�
��R ��

��

fht�ig
Case �

hftgi � hfht��igi ��� hfht��igi

��
��

fhtig hhft��gii
�

�
��R
fhht��iig � fht��ig � hft��gi

�

Case �

Notice that commutativity of these diagrams is not su�cient to conclude that the rewrite system
we de�ned is weakly Church	Rosser� There is one additional condition� namely that for all
intermediate types s� it must be the case that s� C t�� To show that this is so� we must prove
the following�

For case �� we must show that if s�� t C t� and s� t� C t�� then s�� t� C t�� For case �� we must
show that of hs� ti C t� and s� � hti C t�� then hs� � ti C t� if s C s�� For case � we must prove
that hs� ti C t� and s� ht�i C t� imply that hs � t�i C t� if t C t�� For case � it is necessary to
show that t C ht��i� hs� ti C t� and s� hht��ii C t� imply hs� t�i C t�� For case �� we must prove
that hftgi C t� and fht�ig C t� together with t C t� imply hft�gi C t�� Finally� in case � we must
prove that hft��gi C t� whenever hftgi C t�� fhht��iig C t� and t C ht��i�

In the rest of the proof� whenever a type t is given� t� will always denote a type which is obtained
from t by removing some or	set brackets� That is� t % t��

Before we prove these cases� let us make the following observation� Assume hvi is a �	type� If
t and t�� such that t C t� C v and t C hvi� then t� C hhuii for some type u� Indeed� the way the
rewriting works is that some pairs of or	set brackets move up in the carcass of a type� and some
multiple or	set brackets are canceled� Therefore� the only possibility for t C v and t C hvi to
hold simultaneously is that v � hv�i� Again� looking at how rewriting works� we see that any
rewriting t ���� hhv�ii must go through t� and hence t� C hhv�ii�

Now consider case �� If t� is a product type� say w � u� we obtain that s� C w and t� C u

and hence s� � t� C t�� The other possibility is that t� � hwi� In this case� for some types
u� & s� � t and u� & s � t� is must be the case that u� C w and u� C w from which we derive
that w is a product type since hwi is a �	type� Let w � w� � w�� Now u� C w� � w� can be
translated into three possible cases� depending on whether u� is s��� t or s��� t� or s�� t� where
t % t� and s� % s��� Similarly three cases arise for u�� Since t C ht�i and s� C hs��i� we obtain
s� � t� C hw� � w�i in all cases but the following one� t� C w� and s� C w�� In this case we
have t C hw�i and s C hw�i� Then� by the observation made above� wi � hw�ii� i � �� �� and
s� � t� C hhw��ii � hhw��ii C hhw��i � hw��ii C hwi � t� as required� Case � is proved�

Consider case �� Since hs� ti C t�� we obtain t� � hwi� Moreover� w is either a product or a set

���� LANGUAGE FOR SETS AND OR�SETS ���

type� Now for some types u� & hs� ti and u� & s� � hti we have u�� u� C w� This shows that w
is a product type� say w��w�� Moreover� u� & s� t� Again� there are three possibilities how u�
and u� can be obtained by removing or	set brackets from components� and it is easy to see that
in all of them s� � t C w or s� � t C hwi� both proving hs� � ti C t�� For example� if u� � s� � t

and u� � s� � t�� then s� C w� and t C w� and s� � t C w� If u� � s� t� and u� � s�� � hti� then
s� C hw�i and t C hw�i and s� � t C hw�i � hw�i C hwi� Case � is proved�

Consider case �� We have hs � ti C t� and hence t� � hwi� Since s � ht�i C hwi and t� is a
�	type� we obtain that w is a product type� i�e� w � w� � w�� Now we have that for some
types u� & s� t and u� & s� ht�i� this holds� u�� u� C w� If for some t�� & t� it is the case that
ht��i C w�� then it is not hard to see that s � t� C w� � w� or s � t� C hw�i � w� depending on
whether s rewrites to w� or hw�i� In both cases hs� t�i C t�� Similarly� the case holds if t� C w��

The only remaining case is when ht�i C w�� Then we must have that u� � s� � ht�i and hence
s C hs�i C hw�i� Since ht�i C w�� we have w� � hui and u is not of form hu�i because w� is a
�	type� Therefore� ht�i C hui leaves two possibilities� either t� C u or t� C hui� If t� C hui� then
s� t� C hw�i�w� C hwi and we are done� So consider the case when t� C u� From u� C w��w�

we also have that either t� C w� and then t C hw�i C hui or t C w� � hui� Hence� t C t� C u and
t C hui� As we remarked earlier� this must imply that u is an or	set type� i�e� u � hu�i but this
would contradict the assumption that w� is a �	type� Hence� this case leads to a contradiction
and in all other cases it was shown that hs� t�i C t�� Hence� case � holds�

Notice that nowhere in the proof of case � did we use the assumption that t� �� ht��i� Now
consider case �� Since s � hht��ii C t� is a part of a �	rewrite strategy and t� is a �	type� we
obtain s� ht��i C t�� Now the proof of case � tells us that hs� t��i C t� which proves case ��

Now consider case �� We have hftgi C t� and hence t� � hwi for some w� Moreover� w can not
be of form hw�i since t� is a �	type� Now we have fht�ig C hwi and hence for some u & fht�ig
we have u C w� Since w is not of form hw�i� it must be fw�g for some w��

Now we have three cases� First� u could be ft�g and in this case ft�g C fw�g implies t� C w�

and then hft�gi C hfw�gi � t� and we are done� In the second case� for some t�� & t�� we have
fht��ig C w and hence ht��i C w�� Then we have t� C ht��i C w�� Then hft�gi C hfw�gi � hwi � t��
Finally� in the third case we have ft��g C fw�g and t�� C w�� hence t� C ht��i C hw�i� Now
hft�gi C hfhw�igi C hhfw�gii C hfw�gi � t�� This �nishes the proof of case ��

Since we have not used the assumption that t� �� ht��i anywhere� this also proves case �� Indeed�
since fhht��iig C t� is a part of a �	rewrite strategy and t� is a �	type� we obtain fht��ig C t� and
then the proof of case � applies� Hence� all cases are proved� and this tells us that the rewrite
system is weakly Church	Rosser�

This �nishes the proof of partial normalization for the set	theoretic semantics� The proof for
the antichain semantics is obtained by repeating the proof of normalization for the antichain
semantics verbatim� thus showing that weak Church	Rosserness of the corresponding rewrite

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

system for antichains follows from the result we have just proved� Theorem is completely proved
now� �

To add partial normalization to the language� one has to introduce a new function pnorm t��t� �
t� � t� which is de�ned if t� and t� are �	types and t� C t�� According to proposition �����
there exists a �	rewrite strategy r � t� ���� t� and then by theorem ���� we can correctly de�ne
the semantics of pnorm t��t� as app
t�� r� and the semantics of pnormt��t�

a as appa
t�� r�� These
two functions are de�nable in or	NRL and or	NRLa� but not polymorphically�

Repeating the proof of theorem ��� verbatim� we obtain the following result�

Corollary ���� For any two ��types t� and t� such that t� ���� t� and any object x of type t��

��x��c � ��pnorm t��t�
x���c and ��x��c � ��pnorm t��t�
a
x���c

In other words� ��pnorm t��t� ��c � ��pnorm t��t�
a ��c � ��id ��c� �

There are many open questions about partial normalization� Even though we can test if s C t

e�ciently and we know that there exists a �	rewriting from s to t if s and t are �	types�
algorithmic aspects of �nding a �	rewrite strategy between �	types need to be further explored�
Partial normalization must also be combined with a smart evaluation strategy to help answer
queries faster�

As another important consequence of partial normalization� notice that it allows us to compare
objects of di�erent types in terms of their partiality� Previously we were able to compare
only objects of the same type� That is� the function � had type s � s � bool � Now partial
normalization gives us a canonical representation of an object of type s at type t where s C t

and s and t are �	types� Therefore� we can say if x of type s is more informative than y of type
t by checking if pnorms�t
x� �t y� This appears to be a new phenomenon in the �eld of partial
information�

����� Losslessness of normalization

This section investigates whether the process of normalization loses anything �that can be re	
garded as critical�� If loss of information is inevitable in the general case� then one would
like to obtain a set of general su�cient
and� if possible� necessary� conditions that guarantee
losslessness of normalization�

In chapter � we discussed the concept of representation system for relational databases with
partial information� A representation system is in fact a semantic function that maps every
incomplete relation R into the set of possible worlds thatR can represent� Of course the question

���� LANGUAGE FOR SETS AND OR�SETS ���

that immediately arises is whether any loss of information occurs as the result of replacing R
with the corresponding set of possible worlds� That is� if we evaluate a query on each of the
possible worlds� can the resulting family of relations be represented by one incomplete relation

Observe that the normalization process is very closed in the spirit to the representation systems�
That is� we replace an incomplete object by the or	set of objects it can represent� So� again we
may ask if this representation is lossless� that is� if loss of the structural information has any
impact on the conceptual queries�

First� let us see how this problem can be formalized in a wrong way which is just a reformulation
of the concept of a strong representation system� Suppose an object x is given and we ask a
query against each possibility represented by x� That is� we apply a function f that does not use
or	sets to all objects in normalize
x�� Let the result of this be an or	set hy�� � � � � yni� That is�
or map
f�
normalize
x�� � hy�� � � � � yni� The question we ask is whether there exists an object
y such that normalize
y� � hy�� � � � � yni�

The answer to this question is positive because we can just take y to be or map
f� � normalize%
Of course the reason we can do this is that we can use normalize in the language whereas the
concept of representation systems can not be expressed in the standard database languages�
Therefore� we should look for another formalization of losslessness of normalization�

Given an or	NRL	de�nable function f � s� t and an object x � s containing some or	sets� Then
x conceptually represents several values x�� ���� xn� Suppose f
x� is an object containing or	sets�
then it conceptually represents several values y�� ���� ym� It is desirable to discover which one of
x�� ���� xn leads to which one of y�� ���� ym� This is a question of searching for a conceptual analog
of f that associates each xi in normalize x to a subset of normalize
f x��

The idea of the conceptual analog of a query is illustrated in �gure ���� One would like to
know which combination of the conceptual values of the input give rise to which subset of the
conceptual values of the output� However� the ideal situation can only be approximated� As
a �rst attempt� for each possible conceptual value xi of the input x� we aim only to account
for some of the conceptual values in the output that are due to it� This approximation to
conceptual analog is illustrated in �gure ���� Some conceptual values yj in the output may be
left unaccounted for� For example� the last element of normalize y in the �gure� Similarly� the
picture given for each input xi is only partial� For example� the second element of normalize x
in the �gure might in reality contribute to three values in the output but the conceptual analog
discovers only two�

Now restrict types only to those containing or	sets� De�ne purely or�types by the following
grammar� t ��� hbi j t � t j ftg j hti� It is possible to force any type into a purely or	
type by putting or	set brackets around every occurrence of a base type� Its action on objects
is represented by taking each base type subobject z into or �
z�� We call such a function
preserve� It can be easily seen that any object x is conceptually equivalent to preserve
x��
i�e� normalize
x� � normalize
preserve
x�� provided x has or	sets� That is� without loss of

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

h f fi fh f f f
�

�
� fi

m ����

f
� �

�

�

A
A
A
A
AAU

�
�
�
�
���

C
C
C
C
CW

S
S
S
S
Sw

�
�
�
�
��R

�
�
�
�
��

�
�
�
�
���

�

x y

normalize

f

preserve
f�

normalize

Figure ���� Conceptual analog of function f

generality we can speak of objects preserve
x��

Given an or	NRL	function f � s � t and two objects x � s and y � f
x� � t� let normalize
x� �
hx�� � � � � xni and normalize
y� � hy�� � � � � ymi� nf
s� � hs�i and nf
t� � ht�i� Our motivation
to study losslessness is to �nd a conceptual analog of f � What can such an analog be As
the �rst approximation� it is given by a function f � � s� � ht�i which associates with each
element xi in normalize
x� a subset of normalize
y�� thus de�ning the action of f on elements
its input could possibly stand for� This is illustrated in �gure ���� Note that the second element
of normalize
x� is mapped into a two	element subset of normalize
y� and the last element of
normalize
y� is not accounted for� The morphism preserve
f� � nf
s� � nf
t� can now be
de�ned as or � � or map
f ���

How could one re�ne the action of f on elements of normalized object There are two ways
to do so� First� to require that this action be de�ned unambiguously� that is� f � maps every
element from normalize
x� into a unique element of normalize
y�� thus having type s� � t��
preserve
f� can then be reconstructed as or map
f ��� Secondly� one may require that all the
elements of normalize
y� be accounted for� that is� preserve
f� �normalize
x� � normalize
y��
In other words� preserve
f� is onto�

Proposition ���� Let s and t be purely or�types and f � s� t a function de	nable in or�NRL
that does not use or empty and any primitive p whose type has or�sets� Then there exists a
conceptual analog preserve
f� which is generally of form or ��or map
�� and of form or map
��
if f does not use or �� If f does not use pairing� �� and or ��� the conceptual analog is also
onto�

Proof is by induction on the structure of f � Most of its steps are quite straightforward� so we
just show a few cases as an example� Consider the case f � �� � s � ftg � fs � tg� Since s

���� LANGUAGE FOR SETS AND OR�SETS ���

and t are purely or	types� nf
s� � hs�i and nf
t� � ht�i� Then preserve
��� must have type

hs� � ft�gi � hfs� � t�gi� We take preserve
��� to be or map
�s
��t�

� �� An easy application of the

normalization theorem shows that for any object x of type s�ftg� or map
�s��t�� ��normalize
x�

normalize � �s�t�
x�� Therefore� being onto can not be maintained for ���

As another illustration� consider f � or � � hti � hti � hti� To see why the translation can
not be of form or map
��� let t be a base type� say int� and consider an object x �
h�� �i� h�i��
Applying normalize � or � gives h�� �� �i while applying normalize yields h
�� ���
�� ��i and no
mapping over the latter object can produce the former� So in the general case the translation
of or � is

preserve
or �� � or � � or map
or �
or � � ��� or � � �����

Induction hypothesis is applied for pairing� map� or map and composition� The case of pairing
is similar to ��� the translation of map is a straightforward application of induction hypothesis�
In the case of composition one can easily show that� given a composition f � g such that either
preserve
f� or preserve
g� is of form or � � or map
��� preserve
f � g� is such and if both
preserve
f� and preserve
g� are of form or map
��� then so is preserve
f � g�� Moreover� the
translation maintains being onto� depending on f and g� As an illustration� consider f and g

such that preserve
f� � or � � or map
f �� and preserve
g� � or � � or map
g��� Then

preserve
f � g� � or � � or map
or � � or map
g�� � f ��

In the case of f � or map
f �� � hsi � hti� if both hsi and hti are normalized� preserve
f� � f � if
both are unnormalized� then preserve
f� � preserve
f ��� Since we are considering only purely
or	types� s
or t� is a normal form i� s�
or t�� is a base type� Therefore� the case when t is a
normal form and s is not is impossible� If s is a normal form and t is not� then preserve
f� �
or � � or map
normalize � f ��� Notice that if or � is not used� f � can produce only or	singletons
on elements of a base type� In this case f � � or � � f �� and preserve
f� � or map
f ���� �

����� Costs of normalization

We have seen before that the complexity of or	NRL� queries can be exponential� In particular�
the cardinality of normalize
x� can be exponential in the size of x provided that � was used in
the course of normalization� In fact� we showed that powerset can be expressed using �� If one
tries to estimate the cost of normalization by �brute force�� a hyperexponential upper bound
can be immediately obtained� indeed� if n is the size of x� applying the costly � O
n� times
seems to yield a hyperexponential bound�

In this section we show that the fear of hyperexponentiality is not justi�ed� In fact� both
cardinality of normalize
x� and its size are in the worst case exponential in the size of x� The �rst
result in this section explains why consecutive applications of � still yield objects of exponential
size� Then we proceed to �nd upper bounds on the cardinality and the size of normalized objects�

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

Let x be an object and y � normalize
x�� De�ne m
y� as the number of elements in y if it is an
or	set and � otherwise� Uniformly� m
x� � jnormalize
or �
x��j� The size of an object is de�ned
inductively� the size of an atomic object is �� size
x� y� � size x � size y� size fx�� � � � � xng �
size hx�� � � � � xni � size x� � � � �� size xn�

To work with objects� it is convenient to associate rooted labeled trees with them� A tree
T x associated with an atomic object x is de�ned as a one	node tree labeled by x� T
x� y�
is a tree with the root labeled by � and two subtrees rooted at its children are T x and T y�
T fx�� � � � � xng
or T hx�� � � � � xni� is a tree whose root is labeled by fg
or hi� and n subtrees
rooted at its children are T x�� � � � � T xn� In view of this de�nition� m
x� can be rede�ned as the
number of children of the root of T normalize
x� if the root is labeled by hi and � otherwise�
size x is the number of leaves in T x�

Intuitively� the following proposition says that the �internal� structure of T x does not contribute
to the creation of new possibilities in normalize
x�� and the number of such possibilities m
x�
is determined by the or	sets which are closest to the leaves�

Proposition ���	 Let x be an object� and v�� � � � � vk the nodes in T x labeled by hi� such that
the subtrees rooted at vi�s do not have other nodes labeled by hi �i�e� they are or�sets closest to
the leaves�� Let mi be the number of children of vi� i � �� ���� k� Then� if k �� ��

m
x� �
kY
i��

mi � ��

Proof is by induction on the structure of the object� We consider only objects containing or	
sets� The base case
i�e� or	sets of objects of base types� is obvious� Let x �
x�� x��� Assume
that both x� and x� contain or	sets and v�� � � � � vp are nodes of T x� and vp��� � � � � vk are nodes of
T x�� Then� by induction hypothesis� m
x�� � Qp

i��
mi � �� and m
x�� � Qk
i�p��
mi � ��� By

coherence� normalize
x� � or �

normalize
x��� normalize
x���� where or � pairs each item in
its �rst argument with each item in its second argument
it can be easily expressed in or�NRL��
Therefore� m
x� � m
x��m
x�� � Qk

i��
mi���� Two other cases when either x� or x� contains
or	sets are similar�

Let x � fx�� � � � � xng� Then all xi�s contain or	sets� Again� by coherence�

normalize
x� � �
fnormalize
x��� � � � � normalize
xn�g�

Therefore� m
x� � Qn
i��m
xi� and the result follows from the induction hypothesis�

Finally� if x � hx�� � � � � xni� there are two cases� If xi�s do not contain or	sets� then m
x� � n �
n� �� If they do contain or	sets� then by coherence

normalize
x� � or �
hnormalize
x��� � � � � normalize
xn�i�

���� LANGUAGE FOR SETS AND OR�SETS ���

i�e� m
x� � +n
i��m
xi� � Qn

i��m
xi� because m
�� � �� The case now follows from the
hypothesis� �

This proposition explains why there is an exponential upper bound for m
x� despite the fact
that � can be applied many times� The following three results �nd upper bounds on the number
of elements in the normal form and its size in terms of the size of object rather than the tree
structure� We �rst formulate the results and then give their proofs�

Theorem ���� Let x be an object with size x � n� Then

m
x� � �
p
�
n

Moreover� for any n divisible by � there exists an object x such that size x � n and m
x� � �
p
�
n
�

�

Theorem ���� Let x be an object with size
x� � n where n
 �� Then

size normalize
x� � n
�

�
p
�
n

�

Corollary ���� Let x � normalize
y� and size x � n� Then

O
logn� � size y � n �

The upper bound of theorem ���� is not tight� The following result exhibits a tight upper
bound for a large class of objects� This shows that the previous theorem can not be signi�cantly
improved�

Theorem ���� Let x be an object with size x � n containing or�sets� Assume that every
subobject of type fht�ig has size at least ��� every subobject of type t� � ht��i or ht��i � t� has size
at least � and every subobject of type hht�ii has size at least �� where t� and t�� do not use the
or�set type constructor� Then

size normalize
x� � n

�
�
p
�
n

Moreover� for any n divisible by � there exists an object x such that size x � n and
size normalize
x� � n

�
�
p
�
n
� �

Since the size of normalizea
x� can not exceed the size of normalize
x�� and since all examples
demonstrating tightness of upper bounds do not use orderings� we obtain

Corollary ���� All results of theorems ����� ���� and ���� hold for the antichain semantics�
that is� for normalizea� �

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

Proofs of theorems

Proof of theorem ����� As in the proof of proposition ����� consider only objects containing
or	sets� Proceed by induction on the number of steps of normalization� If the object is already
normalized� we are done� Assume normalize
x� is obtained by one step of normalization� Then
this step is one of the maps associated with the rewrite rules� so we have four cases� Notice that
in the base cases we may assume w�l�o�g that any element of a set or an or	set is of base type
since this will give us the maximal possible m
x� for a given size x�

Case �� x �
x�� x�� where x� � hx��� � � � � x�n��i� Then normalize
x� � or ��
x� and it is an easy

arithmetic exercise to show that m
x� � n � � � �
p
�
n
�

Case � when or �� is applied to obtain the normal form is similar�

Case �� Let x � fX�� � � � � Xkg where each Xi is an or	set hxi�� � � � � xikii where all xij are elements

of base types� Since we are interested in upper bound� assume w�l�o�g� that all xij �s are distinct

if they are not� some of sets in normalize
x� could collapse�� Let X �
S
i�j x

i
j � De�ne a graph

G �
X�E� where
xi�j� � x
i�
j�
� is in E i� i� �� i�� Let normalize
x� � �
x� � hY�� � � � � Ypi
Yk �s

are sets�� Then it follows from the de�nition of � that Y�� � � � � Yp are precisely the cliques of G�
Since n � size x � jXj� applying the upper bound on the number of cliques for a graph with n
vertices ������ we obtain p � m
x� � �

p
�
n
�

Case �� x � hX�� � � � � Xki where Xi�s are or	sets of a base type� Then normalize
x� � or �
x�
and m
x� � n� Again� simple arithmetic shows that n � �

p
�
n
� Hence� m
x� � �

p
�
n
�

The proof of the general case is very similar to the proof of proposition ���� and we will show
only step� Let x � fx�� � � � � xkg where xi�s are not normalized� Then normalize
x� is obtained by
applying � to fnormalize
x��� � � � � normalize
xn�g� Let size xi � ni� By induction hypothesis�
m
xi� � �

p
�
ni
� We now have

m
x� �
kY
i��

m
xi� �
kY
i��

�
p
�
ni � �

p
�
n

The other cases are similar� To show the tightness of the upper bound� let n � �k� k
 �� Assume
that we have a base type whose domain is in�nite
typical example is int�� Let b�� � � � � bn be n
distinct elements of such a type� Let

x � fhb�� b�� b�i� hb�� b�� bi� � � � � hbn��� bn��� bnig
Then size x � n and normalize
x� � �
x� contains �k � �

p
�
n

elements� The theorem is
completely proved�

Proof of theorem ����� Similarly to the proof of theorem ���� proceed by induction on the
steps of normalization� We start with base cases� i�e� consider application of or �� or or �� or
� or or ��

���� LANGUAGE FOR SETS AND OR�SETS ��

Case �� x �
x�� x�� where x� � hx��� � � � � x�ki� Let size x� � s�� size x
�
i � �i� Then s����� � � ��

�k � n� Since normalize
x� � or ��
x�� size normalize
x� � ks������ � ���k � ks��
n�s�� �

n� s��s� � n� s� � �n� �� Since empty sets and or	sets are excluded� n � � in this case and
therefore �n� � � n

�
�
p
�
n
�

Case � when or �� is applied is similar�

Case �� Let x � fX�� � � � � Xlg where each Xi is an or	set hxi�� � � � � xikii where all xij have types

containing no or	set� Let size xij � sij and

kiX
j��

sij � �i

lX
i��

�i � n

Then an easy calculation shows that size normalize
x� � size �
x� is given by

�� � k� � ��� � kl � �� � k� � k� � ��� � kl � � � �� �l � k� � ��� � kl�� � l � �� � � � � � �l
Therefore� we need to maximize l � �� � � � � � �l under constraint �� � � � �� �l � n� A standard
argument shows that such a maximum is bounded above by��	�

� if n � �
n
�

p
�
n

if � � n � ��
n
�

�
p
�
n

if n � ��

If it easy to see that for n
 �� the upper bounds given above are less than n
�

�
p
�
n
� If n � ��

then the size of the normal form is also ��

Case �� x � hX�� � � � � Xli where Xi�s are or	sets of a type that does not contain or	sets� Then
normalize
x� � or �
x�� Since the or � does not change size� size normalize
x� � n

�
�
p
�
n
for all

n � �� If n � �� then size normalize
x� � ��

To complete the inductive proof� we show that after each step of normalization that produces
a normalized subobject x��� that is� x�� � normalize
x�� for a subobject x� of x� either size x�� �
n
�

�
p
�
n
is satis�ed if n � size x�
 �� or size x�� � � if n � �� This will complete the proof� Two

cases corresponding to application of or �� or or �� are similar to the case of �� so we show here
only the case of application of ��

Let x � fx�� � � � � xkg where each xi is an unnormalized object� Let x�i � normalize
xi� and ki
be the cardinality of x�i� i�e� ki � m
xi�� Let ni � size xi� By theorem ���� ki � �

p
�
ni � First

consider the case when all ni
 ��

Let x�i � hyi�� � � � � yikii� i � �� � � � � k� By sij we denote size yij � By induction hypothesis�

�i � �� � � � � k �
kiX
j��

sij �
ni
�

�
p
�
ni

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

normalize
x� is obtained by applying � to fx��� � � � � x�kg� i�e� its elements are sets of represen	
tatives of x��� � � � � x

�
k� Since we are interested in an upper bound� we may assume that all the

elements of x��� � � � � x
�
k are distinct� Then each element of x�i will be present in k�i� �

Qk
j�� kj��ki

sets� Therefore� the upper bound for size normalize
x� can be calculated as the sum of the sizes
of all elements of x��� � � � � x

�
k multiplied by the number of their occurrences in the normalized

object� i�e�

size normalize
x� �
kX
i��

kiX
j��

k�i�sij �
kX
i��

k�i�
kiX
j��

sij �

kX
i��

ni
�
k�i�

�
p
�
ni � �

p
�
n������ni

kX
i��

ni
�

�
n

�
�
p
�
n

If all ni � �� then size normalize
x� � k � n� If n
 �� then n � n
�

�
p
�
n
and if n � �� that is�

size x � �� then size normalize
x� � ��

Now consider the general case� i�e� n�� � � � � np
 � and np��� � � � � nk � �� Normalization of xi for
i
 p results in a size one object� Let �� � n� � � � �� np and �� � k � p� Clearly �� � �� � n�
Had we applied � only to fx��� � � � � x�pg� it would have resulted in an object whose size is bounded

above by ��
�

�
p
�
�� according to the calculations for the case where all ni
 �� But taking into

account �� size one objects adds size �� to every element of the or	set normalize
x�� Since there
are at most �

p
�
�� such sets� we obtain

size normalize
x� � ��
�

�
p
�
��

� ��
�
p
�
��

Since ��
 �� �� � ��� �
�� � ���
�
p
�
��

which shows

size normalize
x� � ��
�

�
p
�
��

� ��
�
p
�
�� � n

�
�
p
�
n

Finally� if or � is applied in the process of normalization� it does not change size� Assume x �
hx�� � � � � xki where each xi is an unnormalized object� Let x�i � normalize
xi� and ni � size xi�
Assume n�� � � � � np
 � and np�� � � � �� nk � �� De�ne �� and �� as in the case of applying ��
Then� by induction hypothesis�

size normalize
x� �
pX

i��

ni
�

�
p
�
ni

� �� � ��
�

�
p
�
��

� �� � n

�
�
p
�
n

If all ni � �� then two cases arise� If n
 �� then size normalize
x� � n � n
�

�
p
�
n
� and if n � ��

then size normalize
x� � n � �� Theorem is proved�

Proof of theorem ����� We have to rework the base cases only� Since no subobject involving
or	sets can have size one� the induction step easily goes through� cf� the proof of theorem �����

���� PROGRAMMING WITH APPROXIMATIONS ���

The case of applying � was already proved� see proof of theorem ����� For the case of applying
or �� or or ��� we established an upper bound �n� �� It is easily seen that �n� � � n

�
�
p
�
n
for

n � �� Finally� applying or � does not a�ect size� and n � n
�

�
p
�
n
for n � ��

To show sharpness� consider example from the proof of theorem ����� Let

x � fhb�� b�� b�i� hb�� b�� bi� � � � � hbn��� bn��� bnig

where all bi�s are distinct elements of a base type� Then �
x� contains �
p
�
n

elements� each
having cardinality n

� � Thus� size normalize
x� � n
�

�
p
�
n
� Theorem is proved�

��� Programming with approximations

In this section we study programming with approximations� First� we use the approach that
turns universality properties of collections into programming syntax� Since most approximation
constructions possess universality properties� as we showed in section ���� this approach is ap	
plicable� However� it has a number of drawbacks� First� dealing with ordered collections� we
run into the problem of identifying monotone fragments of the language� As we have seen in
examples ofNRLa and or	NRLa� this leads to undecidable problems� Second� although there is a
correspondence between di�erent algebras used to characterize approximations� it is not always
the case that some of them can be expressed in terms of the others� Consequently� instead of
having a language with just one structural recursion construct� or one set of monad operations�
we need one for each approximation which makes the language very inconvenient to use�

In an attempt to overcome these problems� we look at the semantic connection between approxi	
mations and sets and or	sets established in propositions ���� and ����� This connection suggests
that approximation constructions can be encoded with sets and or	sets� We use these encodings
to show that all monads arising from the universality properties of approximations can be ex	
pressed in or	NRLa� In addition� if type t encoded a certain approximation construction� then
the ordering �t de�nable in or	NRLa is precisely the Buneman ordering used for that kind of
approximations�

����� Structural recursion on approximations

We start with mixes� Mixes will be considered as a new type constructor� That is� for any type
t we now have a new type t mix such that ��t mix �� � P

��t���� Since mixes arise as free mix
algebras� we can de�ne the structural recursion on mixes as follows�

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

fun sr mix �e� f� u� h�
�� �� � e
j sr mix �e� f� u� h�
�
x�� � f
x�
j sr mix �e� f� u� h�
M��M�� � u
sr mix �e� f� u� h�
M��� sr mix �e� f� u� h�
M���
j sr mix �e� f� u� h�
�M� � h
sr mix �e� f� u� h�
M��

Similarly to the case of sets and bags� sr mix is well	de�ned i� e� u� h� supply its range with the
structure of a mix algebra� Now if we consider only those mixes whose second component is
empty� checking this precondition is the same as checking whether e and u supply its range with
the structure of a semilattice with identity� and this is undecidable according to Breazu	Tannen
and Subrahmanyam ���� Therefore� well	de�nedness of sr mix is undecidable�

Our approach is to impose syntactic restriction on the general form of structural recursion�
That is� to go from structural recursion to a monad� In the case of mixes it yields the following
construct�

mix ext
f�
def
� sr mix �
�� ��� f�����

provided f sends elements of type t to s mix � In this case mix ext
f� is a function of type
t mix � s mix � However� this alone does not eliminate the need to verify preconditions in the
case when we use the ordered semantics� As we have just shown� restricting mixes to those
with the empty second component we obtain a sublanguage of the expressive power of the NRL
monad constructs� Therefore� monotonicity of f is needed for well	de�nedness of mix ext � And
we know that even in NRLa monotonicity is undecidable�

Our second example is sandwiches� Again� we view them as a type constructor t sand such that
��t sand �� � P
�
��t���� Since sandwiches arise as free mix algebras generated by the consistent
closure� we can de�ne the structural recursion on sandwiches as follows�

fun sr sand �e� f� u� h�
�� �� � e
j sr sand �e� f� u� h�
��
x� y�� � f
x� y�
j sr sand �e� f� u� h�
S�� S�� � u
sr sand �e� f� u� h�
S��� sr sand �e� f� u� h�
S���
j sr sand �e� f� u� h�
�S� � h
sr sand �e� f� u� h�
S��

If we consider the subset of sandwiches generated by A� then it coincides with the family of mixes
over the same poset� see theorem ����� Therefore� well	de�nedness of sr sand is undecidable�
The monad construct

ext sand
f�
def
� sr sand �
�� ��� f�����

is well	de�ned i� f is monotone which again is undecidable�

As our last example� we consider snacks which again are viewed as a type constructor� t snack is
a type whose semantic domain is PP

��t���� Since snacks are free algebras in the signature having
one nullary operation and two binary operations� we de�ne the structural recursion on them as
follows�

���� PROGRAMMING WITH APPROXIMATIONS ���

fun sr snack �e� f� u� h�
�� �� � e
j sr snack �e� f� u� h�
�
x�� � f
x�
j sr snack �e� f� u� h�
S�� S�� � u
sr snack �e� f� u� h�
S��� sr snack �e� f� u� h�
S���
j sr snack �e� f� u� h�
S� � S�� � h
sr snack �e� f� u� h�
S��� sr snack �e� f� u� h

��
S���

Again� by restricting our attention only to snacks with empty second component� we see that the
well	de�nedness condition� which for snacks requires � and � to form a distributive semilattice
with e being the identity for �� is now the same as well	de�nedness for the structural recursion
on sets and hence undecidable� The monad construct

ext snack
f�
def
� sr snack �
�� ��� f��� ��

is similarly well	de�ned i� f is monotone� and monotonicity is undecidable even in the NRL
fragment�

The reader is invited to do similar exercises with other approximations and observe similar phe	
nomena� Now we can summarize the major problems of using the approach based on structural
recursion and monads for programming with approximations�

 Most operations used in the universality properties for approximations are not as intuitive
as union� intersection and so on� Therefore� the average programmer would have a very
hard time trying to write a program that uses constructs like sr mix or ext snack �

 All approximations have di�erent equational characterizations� and therefore there are
ten forms of structural recursion and ten sets of the monad primitives� This means that
the language must contain all of them and therefore it is going to be too complicated
to comprehend even for a theoretician� let alone a programmer� Furthermore� in many
applications more than one approximation model is used� and therefore in addition to ten
approximations we also need a few dozen of operations that coerce one approximation into
another�

 Veri�cation of preconditions remains a big problem and it can not be taken care of by the
compiler as the preconditions are undecidable � even for the monad operations when the
ordered model is used�

Therefore� we need a unifying framework for programming with approximations� And such a
framework is given by the language for sets and or	sets or	NRL�

����� Using sets and or�sets to program with approximations

When we discussed semantics of sets� or	sets and approximations� we saw that approximations
can be encoded as objects in the type system of or	NRL� In fact� the following encoding was
proposed�

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

Approximations Encoding

t mix � t sand and similar hti � ftg
t snack � t scone and similar hti � fhtig

Using these encodings� we can encode the monad operations on approximations� Consider mixes�
First we notice that the Buneman ordering for mixes over type t� which is v� � v�� is precisely
�hti�ftg� For f � t� s mix� where s mix is now abbreviation for hsi � fsg� we have

mix ext
f� �
U� L��
or �a
or mapa
�� � f�
U��� �a
mapa
�� � f�
L���

Mix singleton is de�ned as � mix
x� �
or �� ��� Then� for g � s� t�

mix map
g�
U� L� �
or mapa
g�
U��mapa
g�
L�� � s mix � t mix and

� mix � x�
or �a
or mapa
����
x�� �a
mapa
���
x��� � s mix mix � s mix

Now we have the following standard monad equations for any monotone f and g�

	 mix ext
f� � � mix
mix map
f��

	 � mix � mix ext
x�x�

	 mix map
g� � mix ext
x�� mix
g
x���

Our second example is snacks� We use t snack as an abbreviation for hti � fhtig� First observe
that �t snack is precisely the Buneman order used for snacks� and hence our encoding again
agrees with the ordering� But the important question is how to express ext snack
f� � s snack �
t snack if f � s� t snack is given�

Assume that we have a snack S �
U�L� of type s snack � Then ext snack
f�
S� can be found
as

ext snack
f�
S� �

X
u�U

f
u�� � e�
X
L�L

Y
l�L

f
l�

Look at the �rst component� If f
u� �
Vu� Nu�� then it is equal to min

S
u�U Vu� and therefore

can be expressed as C� � or �a
or mapa
�� � f�
�� S���

Now �x L � L� Assume that f
l� �
Wl�Ml� for each l � L� ThenY
l�L

f
l� �
min
�
l�L

Wl�max�
min

�
l�L

Ml jMl � Ml���

To �nd the �rst component� compute or �a
or mapa
�� � f�
L�� To �nd the second component�
observe thatX � or mapa
���f�
L� is hMl j l � Li� Therefore� the second component is simply
mapa
or �a
�a
X���� Here �a is the inverse of �a� that is� isomorphism between the semantic

���� PROGRAMMING WITH APPROXIMATIONS ���

domains of types hftgi and fhtig� It is not hard to see that in the presence of set to or and
or to set it is possible to express �a in or	NRL� Hence� we can write a function

g ��
or �a � or mapa �
�� � f��mapa � or �a � �a � or mapa �
�� � f��

which� when applied to L� produces
Q

l�L f
l� �
ZL�NL��

Now we need to calculate
P

L
ZL�NL� �
min
S
L ZL�max�

S
LNL��� The second component

can be obtained as
C� � �a
mapa
�� � g�
L��

and it is of type fhtig� To compute the �rst component� we need a way out of sets to get an
or	set� This is achieved by writing C� � or �a
set to or
mapa
�� � g���
L�� Finally� we have

ext snack
f�
S� �
or �a
C�� C��� C��

Summing up� we obtain the following result�

Theorem ���� All monad constructs arising from the universality properties of approximations
and all operations given by those universality properties can be expressed in or�NRL
�b�� possibly
enhanced with set to or and or to set in the case of multi�element lower approximations� �

We do not give the proofs for other approximations� but it proceeds straightforwardly along the
same lines as the proofs for mixes and snacks� following representation of approximations from
singleton developed in the proofs of their universality properties�

Therefore� we believe that encoding approximations and using or	NRL with very little extra
power is a much better way to program with those than using just structural recursion and
monads based on the universality properties� In the next chapter we give examples of program	
ming with approximations in a practical language based on or	NRL�

��� CHAPTER �� LANGUAGES FOR PARTIAL INFORMATION

Chapter �

OR�SML

In this chapter we describe a functional database language OR	SML for handling disjunctive
information in database queries� and its implementation on top of Standard ML ������ The
core language of this implementation is or	NRL� hence the name OR	SML� We give examples
of queries which require disjunctive information
such as querying incomplete or independent
databases� and show how to use the language to answer the queries� The language is extended
in a way that allows dealing with bags and aggregate functions� It is also con�gurable by
user	de�ned base types�

Since the system runs on top of Standard ML and all database objects are values in the latter�
the system bene�ts from combining a sophisticated query language with the full power of a
programming language� The language has been implemented as a library of modules in Stan	
dard ML� This allows the user to build just the database language as an independent system�
or to interface it to other systems built in Standard ML� The ML module system makes the
implementation of di�erent parts of the language virtually independent and thus easy to change
without touching the rest of the system�

We describe OR	SML in the �rst section� In the second section of this chapter� we show how it
can be applied to problems of querying independent and incomplete databases�

��� Overview of OR�SML

As we have just said� the core language of OR	SML is or	NRL� But the system OR	SML
includes much more than just or	NRL� First� normalization is present as a primitive� Some
limited arithmetic is added to elevate the language to the expressive power of the bag language
BQL� We show how bags and certain aggregate functions can be encoded� OR	SML also allows

���

��� CHAPTER
� OR�SML

programming with structural recursion on sets and or	sets� The system is extensible with user	
de�ned base types� It provides a mechanism for converting any user	de�ned functions on base
types into functions that �t into the type system of OR	SML� It also gives a way �out of complex
objects� into SML values� This is necessary� for example� if OR	SML is a part of a larger system
and the OR	SML query is part of a larger computation that needs to analyze the result of the
query to proceed� OR	SML comes equipped with libraries of derived functions that are helpful
in writing programs or advanced applications such as querying independent databases�

We chose Standard ML
SML� as the basis for our implementation in order to combine the
simplicity of or	NRL queries with features of a functional programming language ������ OR	
SML bene�ts from it in a number of ways�

�� OR	SML queries may involve and become involved in arbitrary SML procedures� The
usefulness of this is enhanced by the presence of higher	order functions in SML� allowing
SML functions to be arguments to queries and queries to be arguments to SML functions�

�� OR	SML is implemented as a library of modules in SML� This allows the user to build
just the database language as an independent system� or to interface it to other systems
built in SML�

�� The stand	alone version of OR	SML is implemented as a library loaded into the interactive
system of SML� and as such is an interactive system itself� One interacts with OR	SML by
entering declarations and expressions to be evaluated into the top	level read	evaluate	print
loop of SML� The results are then bound to SML identi�ers for future use�

�� The SML module system makes the implementation of di�erent parts of the language
virtually independent and easily modi�able�

As of now� the system is suitable for querying small and medium size databases
hundreds
of records�� which are fairly common� To extend its capabilities to handle large databases�
certain changes need to be made� in particular� optimizations in the presence of disjunctive
information need to be added to OR	SML� As we have just mentioned� due to the modularity
of the implementation� such changes can often be made without a�ecting the way the system
looks to the end	user�

In what follows we shall need some of the SML syntax� The interested reader is referred to
Milner at al� ����� for the de�nition of Standard ML or to Paulson ����� for a more humane
introduction� But the following �primer� should be su�cient to understand the examples in this
chapter�

In SML� val binds an identi�er and � is the SML prompt� so � val x � �� binds x to � and
val x � � � int is the SML response saying that x is now bound to � which is of type int�
fun is used for function declaration� Functions in SML can also be created without being named
by using the construct �fn x �	 body
x�
� For example

��� OVERVIEW OF OR�SML ��

� � � �fn x �� x � �� �	

val it �
 � int

� fun makepair x � �fn y �� �x�y��	

val makepair � fn � a �� b �� a � b

� val makepairwith� � makepair �	

val makepairwith� � fn � a �� int � a

� makepairwith� �	

val it � ����� � int � int

Symbols like �a are used to indicate polymorphic types� For example� makepairwith� takes a
value v of any type �a and forms a pair
�� v� of type int �a�

If a function is applied to its argument and the result is not bound to any variable� then SML
assigns it a special identi�er it which lives until it is overridden by the next such application�
We have seen two examples of this above� If one writes � factorial ��� this will cause the
SML response val it � �� � int� let � � � in � � � end is used for local binding� The �� � ��
brackets denote lists� �� is used for strings� The symbol � is used for list append� For example�

� let val a � ��a���b��

val b � ��b���c��

in a � b end	

val it � ��a���b���b���c�� � string list

	���� Core language

The core language of OR	SML is or	NRL� In the table below we show the correspondence
between or	NRL primitives and their names in OR	SML�

or	NRL name OR	SML name or	NRL name OR	SML name

f � g comp�f�g
 if � then � else cond

��� �� p�� p� % bang

f� g� pair�f�g
 id id

� sng empty empty

� union � flat

�� pairwith map smap

or � orsng or empty orempty

or � orunion or � orflat

or �� orpairwith or map orsmap

� alpha normalize normal

Let us describe how these constructs are represented over SML� Every complex object has type
co� We shall refer to the type of an object or a function in or	NRL as its true type� Types of

��� CHAPTER
� OR�SML

complex objects can be inferred� they are SML values having type co type� When OR	SML
prints a complex object together with its type� it uses �� for the true type� as � co is used to show
that the SML type of the object is co� Values are created by functions create � string �	 co

or make � unit �	 co
interactive creation�� The function make is terminated by typing ����
For example�

� val a � make��	

� �������� �����
��

����� ��

val a � ���� �� ��� ��� ��� ��� ��
�� �� ��int�� � co

� val b � create ����abc��	

val b � ��� abc� �� int � string � co

Notice that the order of elements in the set was changed� This is the result of the duplicate
elimination algorithm which will be discussed later�

Typechecking is done in two steps� Static typechecking is simply SML typechecking� for example�
trying to call union�a�a�a
 will cause an ML type error� However� since all objects have type
co� the SML typechecking algorithm can not detect all type errors statically� For example� ML
will see nothing wrong with union�a�b
 even though the true types of a and b are fhintig and
int � string � Hence� the remaining type errors are detected dynamically by OR	SML and an
appropriate exception is raised� For instance�

� union�a�b�	

uncaught exception Badtypeunion

The language we presented can express many functions commonly found in query languages�
for example� Boolean and� or and negation� membership test� subset test� di�erence� selection�
cartesian product and their counterparts for or	sets� see section ��� and ���� ����� These functions
are included in OR	SML in the form of a structure called Set� Some examples of programming
using the core language and functions from Set are given below� Notice that we use ����� for
strings to distinguish them from SML strings�

� alpha �create ����������������	

val it � ����� ��� ��� ��� ��� ��� ��� �� ��int�� � co

� val x� � create �������	

val x� � ��� �� �� �int� � co

� smap �pair�id�id�� x�	

val it � ���� ��� ��� ��� �� �int � int� � co

� val x� � create �������	

val x� � ��� �� �� �int� � co

� union�x��x��	

��� OVERVIEW OF OR�SML ���

val it � ��� �� �� �� �� �int� � co

� Set�cartprod�x��x��	

val it � ���� ��� ��� ��� ��� ��� ��� ��� �� �int � int� � co

� val y � create �����������	

val y � ��� �� �� �� �� �int� � co

� val z � create �ab�	

val z � ab �� string � co

� orpairwith�z�y�	

val it � ��ab� ��� �ab� ��� �ab� ��� �ab� ��� �� �string � int� � co

� orsmap p� it	

val it � �ab� �� �string� � co

Normalization of types and objects is represented in OR	SML by two functions normalize �

co type �	 co type and normal co �	 co� For example�

� val x � create ������������������
����	

val x � ���� ��� ���� ��� ���
��� �� �int � �int�� � co

� normalize �typeof x�	

val it � ��int � int�� � co�type

� normal x	

val it � ����� ��� ��� ���� ���� ��� ��� ���� ���� ��� ���
��� ������� ���
��� � co

OR	SML allows user de�ned base types� Values of these types have type base in ML� The
user is required to supply a structure containing basic information about the base type when
a particular version of OR	SML is built� One of the functions that is included in this user	
supplied structure is parsing� its type is string �	 base� If user	de�ned base types are used�
then creation of objects requires special care� Objects of base type are printed in parentheses
and preceded by the symbol �� They also must be input accordingly if make or create is used�
For example� in a version of OR	SML with real numbers� one would write�

� val a � create ��������	

val a � ������ �� real � co

In the case of reals numbers� the symbol ��� plays a crucial role and can not be used to indicate
the end of the input to make� There is a way to change the symbol whose meaning is �end of
object��

� End�symb �� ���	

val it � �� � unit

� val b � make ��	

� ������� ������� ������ ��

val b � �������� ������� ������� �� �real� � co

��� CHAPTER
� OR�SML

There are also a number of functions that make complex objects out of ML objects� These are
necessary� for example� if a user	de�ned base type is supplied without a parser� In this case
objects can be created using constructor functions� The function mkbaseco is used to produce
a complex object
that is� an element of type co� from an element of base type� Similarly�
mkintco produces complex object integers� mkprodco produces a pair from two complex objects
and mksetco and mkorsco produce sets and or	sets from lists of complex objects� For example�

� val a � ���������������������	

val a � ��������������������� � real list list

� val co�a � mksetco�map �fn z �� mkorsco�map mkbaseco z�� a�	

val co�a � ��������� �������� �������� �������� �� ��real�� � co

There are various styles for printing objects and object types� Some of them are better suited for
printing normalized objects� while others do not distinguish between sets and or	sets� All styles
for objects and types can be freely combined� giving OR	SML a total of nine di�erent printing
styles� A new printer can be installed by using the functions printer and printer type of type
int �	 unit� These functions can be invoked at any time� Further details can be found in the
system manual E� Gunter and Libkin ����� In examples in this chapter we use di�erent printing
styles� For instance� we often chose not to print types of objects if those do not �t on one line�

This concludes our discussion of the core language� In the subsequent sections we will show how
to enrich the language to make it suitable for solving problems related to normalization and
approximations�

	���� Additional features

Arithmetic functions

OR	SML has integers as one of its base types� The following operations are available on integers�
addition� multiplication� monus� summation over sets and or	sets and gen� In the table below
we give their OR	SML names�

or	NRL name OR	SML name or	NRL name OR	SML name

� plus � mult
� monus

P
sum

gen gen or
P

orsum

The reason these operators have been included comes primarily from our discussion of bags� As
we have seen� these operators elevate a set language to a bag language
with power operators

��� OVERVIEW OF OR�SML ���

and*or structural recursion�� If bags are represented as sets of pairs of �element�number of
occurrences�� all functions on bags from subsection ����� can now be modeled easily in OR	
SML� For example� under the assumption that in a bag X for each element all its occurrences
are recorded once
that is� we can not have pairs
a� �� and
a� �� instead of one pair
a� ���� the
di�erence of two bags X � Y is

select��z��eq����z�� ����map��x�����x��monus����x��������select��y�eq����x�� ���y����Y ������X��

We are using a function select from Set which takes in a predicate p � t� bool and a set X � ftg
and returns fx � X j p
x�g� Below we show how to implement these functions in OR	SML�
First� total second column would look like

� val x � create ���a�����b�����c�����	

val x � ��c� ��� �a� ��� �b� ��� �� �string � int� � co

� val y � create ���b�����b�����c�����d�����	

val y � ��d� ��� �b� ��� �b� ��� �c� ��� �� �string � int� � co

� sum p� y	

val it � � �� int � co

Bag di�erence can be implemented as follows�

fun bag�diff �x�y� � let

fun equals�a a � select �fn z �� eq�p��z��p��a��� y

in select �fn v �� neg�eq�p��v��mkintco������

�smap �fn z �� mkprodco�p��z��monus�p��z���sum p� �equals�a z����� x�

end	

val bag�diff � fn � co � co �� co

� bag�diff�x�y�	

val it � ��b� ��� �a� ��� �� �string � int� � co

Various functions can be implemented using arithmetic functions� Two of them� which are of
particular importance� are included in the standard library Set� One is card� and the other is
rank assignment function sort � fsg � fs� intg discussed in subsection ������ Note that card
is simply summation of the constant function�

� val card � sum �fn x �� mkintco����	

val card � fn � co �� co

� card �create ������������	

val it � � �� int � co

To be able to assign unique ranks to elements of a set� it is necessary to lift order to all types�
as it is done in theorem ����� This is implemented by means of a function leq�co �	 co in
the structure Set that compares objects of the same true type
if true types do not coincide� it
raises exception Cannotcompare�� For example�

��� CHAPTER
� OR�SML

� val a � create ���������� �����
�� �������	

val a � ���� �� ��� ��� ��� ��� ��
�� �� ��int�� � co

� val b � create �������
�� ������ �������	

val b � ���� ��� ��� ��� ��� ��
�� �� ��int�� � co

� val c � create ���������	

val c � ��� �� �� �� �int� � co

� leq�a�b�	

val it � F �� bool � co

� leq�b�a�	

val it � T �� bool � co

� leq�b�c�	

uncaught exception Cannotcompare

� sort a	

val it � ����� �� ��� ��� ���� ��� ��� ���� ��
�� ��� �� ���int� � int�� � co

Primitives involving base types

Since the system allows user	de�ned base types� it must provide a way of making functions on
those base types into functions that �t into the type system of OR	SML� For example� if the
user	de�ned base type is real� there must be a way to have a function plus � co co �	 co

whose semantics is addition of real numbers� Furthermore� there is a need for a mechanism of
translation of predicates on base types into predicates on complex objects that can be used with
cond and select�

The solution to this problem is given by the function apply that takes a function f � base

list �	 base and returns a function from co to co representing the action of f on complex ob	
jects� For example� if val f co � apply f� then f co applied to a complex object
r��
r�� r���
yields f �r��r��r�� in the form of a complex object�

In practice� most of the primitives on base types are unary or binary� Therefore� OR	SML has
a special feature that allows you to apply binary and unary functions on base types by using
functions apply unary� apply binary and apply op�� The di�erence between apply binary

and apply op� is that apply binary produces a function of type co �	 co whose true type
is supposed to be b � b � b� That is� the argument must be a pair� The function apply op�

produces a function of type co co �	 co� For predicates� apply test takes a function of
type �base �	 bool
 and returns it in the form of a function on complex objects�

Example�

� val addone�co � apply�unary � fn x �� x � ����	

val addone�co � fn � co �� co

� val x � create �� ������������� ��	

val x � �������� ������� �� �real� � co

��� OVERVIEW OF OR�SML ���

� smap addone�co x	

val it � �������� ������� �� �real� � co

� val addreal�co � apply�binary �fn ��x�real���y�real�� �� x � y�	

val addreal�co � fn � co �� co

� smap addreal�co �Set�cartprod�x�x��	

val it � �������� ������� ������� � co

� val biggerthanthree�co � apply�test �fn x �� x � ����	

val biggerthanthree�co � fn � co �� co

� Set�select biggerthanthree�co x	

val it � �������� �� �real� � co

Structural recursion

Structural recursion on sets and or	sets a very powerful programming tool for query languages�
Unfortunately� it is too powerful because it is often unsafe� A function de�ned by structural
recursion is not guaranteed to be well	de�ned� and well	de�nedness can not be generally checked
by a compiler� It is� however� often helpful in writing programs or changing types of big databases

rather than reinputting them�� so we have decided to include structural recursion in OR	SML�
Structural recursion on sets and or	sets is available to the user by means of two constructs sr
and orsr�

f � s� t� t e � t

sr
e� f� � fsg � t

f � s� t� t e � t

orsr
e� f� � hsi � t

They take an object e of type t and a function f of type s� t� t and return a function sr
e� f�
of type fsg � t or a function orsr
e� f� of type hsi � t respectively� The semantics is as
follows� sr
e� f�fx�� � � � � xng � f
x�� f
x�� f
x�� � � �f
xn� e� � � ���� and similarly for orsr� The
two functions implementing structural recursion are SR�sr and SR�orsr� For example� to �nd
the product of elements of a set� one may use structural recursion as follows�

� val fact � SR�sr��create �����mult�	

val fact � fn � co �� co

� fact �create ��������������	

val it � ��� �� int � co

There are a few functions that can be written with help of structural recursion which are included
in the library �sr�lib�� Among them are set to or � ftg � hti and or to set � hti � ftg that

��� CHAPTER
� OR�SML

convert sets into or	sets and vice versa� powerset � ftg � fftgg
which can also be implemented
using just ��� and pick � ftg � t which picks an element of a set�

In section ��� we showed that structural recursion is equivalent to the loop construct that iterates
a function once for each element of a set� In the following example we show how to implement
loop and how to use it to iterate the function that increments an integer given number of times�
Recall that c from the example of applying sort is a three	element set�

� fun loop f � �fn �X�z� �� SR�sr�z� �fn �v��v�� �� f�v�����X��	

val loop � fn � �co �� co� �� co � co �� co

� val one � create ���	

val one � � �� int � co

� fun intaddone x � plus�x�one�	

val intaddone � fn � co �� co

� loop intaddone �c�one�	

val it � � �� int � co

Moreover� using sort it is now possible to give an e�cient translating from loop to structural
recursion�

� fun select�max X � Set�select �fn z �� eq�p��z��Set�card�X��� X	

val select�max � fn � co �� co

� fun new�sr �e�f� �

let fun g INPUT � let val X�curr � p� INPUT

val RES�curr � p� INPUT

val x�max � select�max X�curr

in mkprodco�

Set�diff�X�curr�x�max��

flat��smap

�fn z �� �smap �fn v �� f�p��z��v�� RES�curr��

x�max���

end

in

�fn X �� p��loop g �X�mkprodco��Set�sort�X��sng�e������

end	

val new�sr � fn � co � �co � co �� co� �� co �� co

� val new�fact � new�sr��create �����mult�	

val new�fact � fn � co �� co

� new�fact �create ��������������	

val it � ����� �� �int� � co

This example shows the �cost� one has to pay for translation from loop into structural recursion

cf� theorem ������ instead of a value v� the translation produces the singleton fvg�

��� OVERVIEW OF OR�SML ���

I�O

To support a form of persistence for databases� OR	SML provides means for writing lists of
complex objects to �les and reading such lists back in later� There are two modules for �le I*O
in OR	SML� one working with binary �les and one with ASCII �les� Working with ASCII �les
is relatively safe� if there is any problem with reading an object� an exception will be raised�
It
is not safe from editing�� However� it requires a parser for objects of base type� because strings
read from a �le are parsed to create complex objects�

If a parser for objects of base type was not provided� then the binary input	output module must
be used� Since binary I*O is an unsafe feature of Standard ML ������ all binary �les are required
to have the extension ��db�� If it is not used� OR	SML will add it and ask if the operation
should be continued� It is also possible to obtain the list of all �les with extension ��db� in the
current directory using the function show db�unit �	 unit�

The ASCII input	output module provides two functions� store db� co list string �	 unit

takes a database and a �le name and stores the database� For example� store db �db��mydb�

stores a list of complex objects db in a �le �mydb�� To read a database� use retrieve db �

string �	 co list� This function takes a �le name and returns the database stored in that
�le�

If a parser for objects of base type was not provided� it is necessary to use the binary input	
output module� Function write db� co list string �	 unit is used to write a database
to a �le� For example� write db�db��mydb�db�
 will write a list of complex objects db into
the �le �mydb�db�� Moreover� write db�db��mydb�db�
 and write db�db��mydb�
 will have
the same e�ect� Databases are read by using the function read db� string �	 co list� For
instance� val db � read db��mydb�
 creates a list of complex objects stored in �mydb�db��

Example
in this example we use function tl that produces the tail of a list��

� val DB � let val a � create ���������

val b � create ���������

val c � create ����
����

in �a�b�c� end	

val DB � ���� �� ������ �� ������
� ��� � co list

� store�db�DB��mydbfile��	

val it � �� � unit

� write�db �tl�DB�� �mydbfile��	

File names must have extension �db

Do you want to write your database in mydbfile�db��yes�no� yes

Database written to mydbfile�db

val it � �� � unit

� show�db��	

��� CHAPTER
� OR�SML

mydbfile�db

Now we have two �les� one named mydbfile and containing three sets� and the other named
mydbfile�db and containing two sets� It is possible to read them back�

� val get�big�DB � retrieve�db �mydbfile�	

val get�big�DB � ���� �� ������ �� ������
� ��� � co list

� val get�small�DB � read�db �mydbfile�	

File names must have extension �db

Do you want to read your database from mydbfile�db��yes�no� yes

Warning� read is an unsafe operation�

If there is a problem with your file� it will throw you out of orsml

Are you ready to read the file� �yes�no� yes

val get�small�DB � ���� �� ������
� ��� � co list

Deconstruction of complex objects

It may be the case that after evaluating a query� the user may need to write some program to
deal with the result� Since all operations of OR	SML work with type co� there is a need to
have a way out of complex objects to the usual ML types� The structure DEST contains some
functions to deconstruct complex objects and obtain ML values� For example� to convert an
object of true type fhintig
which still has SML type co� into int list list� one writes�

� val a � create ���������������	

val a � ���� ��� ��� ��� � co

� DEST�co�to�list a	

val it � ���� ������ ��� � co list

� map DEST�co�to�list it	

val it � ������������� � co list list

� map �map DEST�co�to�int� it	

val it � ������������� � int list list

Orderings and antichains

In chapter � we saw that the language for the antichain semantics� or	NRLa� can be viewed as
a sublanguage of or	NRL� This point of view is supported by OR	SML� It provides a library of
derived functions dealing with orderings and antichains� Among them are leqdom that compares
elements of the same true type
that is� it implements the order �t�� meet and join that compute
the meet and join operations� set max and orset min that select maximal and minimal elements
from sets and or	sets to implement the transformation x� x� we used throughout chapter ��

��� OVERVIEW OF OR�SML ��

Note that the true type of join and meet is t � t � hti� If the join
or meet� of two objects x
and y is de�ned� then the corresponding function produces a singleton containing that join or
meet� If it is not de�ned� it produces hi�

Example�

� val a � create �������������������������������	

val a � ���� ��� ��� �� ��� ��� ��� ��� �� ��� �� ��int�� � co

� val b � create ���������������������	

val b � ���� �� ��� ��� �� �� ��� �� ��int�� � co

� val a� � set�max a	

val a� � ���� ��� ��� ��� �� ��int�� � co

� val b� � set�max b	

val b� � ���� �� ��� �� ��int�� � co

� leqdom�b��a��	

val it � T �� bool � co

� join�a� �create �����������	

val it � ����� ��� ��� ��� ��� ���� �� ���int��� � co

	���� Implementation issues

In this subsection we brie�y describe the general structure of OR	SML implementation and
discuss duplicate elimination�

The general structure of the implementation of OR	SML is given in �gure ���� This �gure shows
dependencies between the pieces of the implementation� Each piece is implemented as an SML
functor� A short description of each piece is given in �gure ����

In the initial version of OR	SML� duplicate elimination was done straightforwardly� That is� a
O
n�� time complexity algorithm was used� However� a number of experiments revealed that it
was mostly the duplicate elimination component that hampered the performance of the system�
In the current version we use the following hash function for objects�

h
o� �

��������	�������

� if o � unit
o if o � int
jo j if o � string
if o then � else � if o � bool
h
o�� � h
o�� if o �
o�� o��
h
o�� � � � �� h
on� if o � fo�� � � � � ong or o � ho�� � � � � oni

Then it is easy to show that� for any type involving sets and or	sets of a type with non	�nite
domain� for two randomly generated objects o� and o�� the probability of h
o�� � h
o�� is zero�
Therefore� the expected running time of the duplicate elimination with hashing is O
n logn��
Some results showing performance of OR	SML with two kinds of duplicate elimination algorithm

��� CHAPTER
� OR�SML

PP
PP

PP
PPP

B
B
B
B
B
B
B
BB

��
��

��
��

��
��

��
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C�

�
�

�
��

�
�
�
�
��

�
�

�
�

��

�
�
�
�
��

�
�

�
�

��

�
�
�
�
��

��
��

��
��

��
�

��
��

��
��

��
��

��
���

���
���

���
���

���
���

����
���

���

PARSER

BUILD ORSML

ALGEBRA

IO ASCII

PRINT MAKE

TYPE DUPELIM SR DESTRUCT
IO BIN

COMMON

BTS �user�supplied�

Figure ���� OR	SML implementation

��� OVERVIEW OF OR�SML ���

BTS � Base Type Structure� It is supplied by the user to build a new version
of OR	SML with additional base types�

COMMON � contains some auxiliary functions used in all other modules�

TYPE � provides functions to work with complex object types�

DUPELIM � duplicate elimination�

SR � implementation of structural recursion�

DESTRUCT � functions for destruction of complex objects�

IO BIN � operations for binary �le I*O�

MAKE � takes as an input structures created by TYPE and DUPELIM and pro	
vides functions for creating complex objects�

PRINT � takes in the structure created by TYPE and provides printing routines�

PARSER � takes in the structure created by MAKE and gives the parser for complex
objects�

ALGEBRA � implements operations of the language�

IO ASCII � takes in the structures created by PRINT and PARSER and provides
operations for the ASCII �le I*O�

BUILD ORSML � builds the system and exports it together with ML compiler�

Figure ���� Description of OR	SML modules

��� CHAPTER
� OR�SML

CartesianProduct

size ��� �� �� � ���� ��� ���� ���

without
hashing ���� ����� ������ �����

with
hashing ��� ���� ���� �����

Flattening

size ��� ��� ��� ��� ���� ����

without
hashing ���� ���� ���� ��� ���� ����

with
hashing ���� ���� ���� ���� ��� ����

Figure ���� Comparison of two duplicate elimination algorithms

are shown in �gure ���� Two functions for which we determined running time are cartesian
product and �attening of a large set of sets�

��� Applications of OR�SML

In this section we show how to use OR	SML to ask conceptual queries if only a compact repre	
sentation of incomplete objects is stored in a database� and how to solve some of the problems
of querying independent databases described in section ����

	���� Querying incomplete databases

In this subsection we show applications of normalization of databases� We start with a database
containing an incomplete design and ask certain queries about possible completed designs� We
then show how to write these queries using normalization�

Assume that we have a database containing the incomplete design shown in �gure ���� That
is� the whole design requires two subparts� A and B� An A is either A� or A�� The part A�
consists of two subparts� A��� and A���� An A��� is either x or y and an A��� is either z or
v� The part A��� consists of three subparts� A���� A��� and A���� An A��� is either p or q� an
A��� is either r or s and an A��� is either t or u� A B consists of B� and B�� A B� is either
w or k and a B� is either l or m� Now assume that we know the cost and reliability of each
part that can make it into the completed designs
that is� for parts denoted by the lower case

��� APPLICATIONS OF OR�SML ���

letters��

Part Cost Reliability

l �� ����
m �� ����
w � ����
k �� ����
x �� �����
y �� ����
z �� ����
v �� �����
p �� ����
q �� ����
r �� ���
s � ����
t �� ����
u �� ����

Now we can create OR	SML values describing these parts as follows�

val l � create ��l���������������	

val m � create ��m���������������	

val w � create ��w����������
����	

val k � create ��k���������������	

val x � create ��x����������������	

val y � create ��y���������������	

val z � create ��z���������������	

val v � create ��v����������������	

val p � create ��p���������������	

val q � create ��q����������
����	

val r � create ��r���������������	

val s � create ��s����������
����	

val t � create ��t���������������	

val u � create ��l���������������	

Each part has true type string �
int � real�� Now B can be created as

� val B � mkprodco ��mkorsco �w�k��� �mkorsco �l�m���	

val B �

���k� ���� ���������� �w� ���� �����
�����

��l� ���� ���������� �m� ���� ����������� � co

��� CHAPTER
� OR�SML

and A�� A� and A can be created as

� val A� � mksetco ��mkorsco �x�y��� �mkorsco �z�v���	

val A� �

���z� ���� ���������� �v� ���� ������������

��y� ���� ���������� �x� ���� ������������ � co

� val A� � mksetco ��mkorsco �p�q��� �mkorsco �r�s��� �mkorsco �t�u���	

val A� �

���p� ���� ���������� �q� ���� �����
�����

��s� ���� �����
���� �r� ���� �����������

��t� ���� ���������� �l� ���� ����������� � co

� val A � mkorsco �A�� A��	

val A �

����z� ���� ���������� �v� ���� ������������

��y� ���� ���������� �x� ���� �������������

���p� ���� ���������� �q� ���� �����
�����

��s� ���� �����
���� �r� ���� �����������

��t� ���� ���������� �l� ���� �����������

� � co

Finally� the whole design is created as

� val design � mkprodco �A�B�	

val design �

�����z� ���� ���������� �v� ���� ������������

��y� ���� ���������� �x� ���� �������������

���p� ���� ���������� �q� ���� �����
�����

��s� ���� �����
���� �r� ���� �����������

��t� ���� ���������� �l� ���� �������������

���k� ���� ���������� �w� ���� �����
�����

��l� ���� ���������� �m� ���� ������������ � co

Inferring the type of design and normalizing it shows us the type of the database of completed
designs�

val ndt �

����string � �int � real��� �

��string � �int � real�� � �string � �int � real����� � co�type

Hence� one can write the cost function which is the sum of the costs of all the parts� In this
particular case it is

��� APPLICATIONS OF OR�SML ���

� fun cost X �

let fun cost� X � sum �fn z �� p��p��z��� �p� X�

fun cost� X � p��p��p��p��X����

fun cost� X � p��p��p��p��X����

in plus�cost��X�� plus�cost��X��cost��X��� end	

val cost � fn � co �� co

Calculating reliability may be a bit harder because it depends on how di�erent parts are con	
nected� In the case of parallel connection of two parts with individual reliabilities r� and r�� the
reliability is calculated as r� � r� � r� � r�� whereas for the series connection it is r� � r�� To be
able to operate with these functions� we must have them as functions from complex objects to
complex objects� That is� we need the following�

� val rminus � apply�op� �fn �x�real�y�real� �� x � y�	

val rminus � fn � co � co �� co

� val rmult � apply�op� �fn �x�real�y�real� �� x � y�	

val rmult � fn � co � co �� co

� val rprod � SR�sr ��create ���������� rmult�	

val rprod � fn � co �� co

� val par�rel � apply�op� �fn �x�real�y�real� �� x � y � �x � y��	

val par�rel � fn � co � co �� co

Now we can calculate reliabilities for A� B� and B�� assuming that subparts of A are connected
in series�

� fun relA X � rprod �smap �fn z �� p��p��z��� �p� X��	

val relA � fn � co �� co

� fun relB� X � p��p��p��p��X����	

val relB� � fn � co �� co

� fun relB� X � p��p��p��p��X����	

val relB� � fn � co �� co

With these functions� it is possible to write various reliability functions depending on the way A�
B� and B� are connected� For example� if only series connection is used� then the total reliability
function is the product of relA� relB� and relB�� In our example� we assume parallel connection
of B� and B� and series connection of A and B� Then

� fun reliability X � rmult�relA�X�� par�rel�relB��X��relB��X���	

val reliability � fn � co �� co

Now assume that we want to answer the following conceptual queries�

��� CHAPTER
� OR�SML

 How many completed designs are there

 Which completed design has the best reliability

 Which completed design that costs less than n dollars has the best reliability

To answer these queries� we �rst normalize design� creating the or	set of all possible completed
designs�

val nd � normal design	 �� output omitted ��

Now it is possible to get all information about reliabilities and costs of completed designs by
saying orsmap cr nd where cr is the function fn x �	 mkprodco ��cost x
� �reliability

x

� To answer our queries� we write

� orsum �fn z �� mkintco���� nd	

val it � �� � co

Hence� there are �� completed designs� To �nd the one that has the best reliability� we write
the following query

� fun is�better�x�y� � apply�test �fn �z�real� �� z � ���� �rminus�x�y��	

val is�better � fn � co � co �� co

� fun is�best �x�obj� � eq�

�Set�orselect

�fn y �� is�better�reliability�y��

reliability�x���

obj�� orempty�	

val is�best � fn � co � co �� co

and then ask

� val select�best � Set�orselect �fn y �� is�best�y�nd�� nd	

val select�best �

����v� ���� ����������� �x� ���� ������������

��w� ���� �����
���� �m� ���� ������������ � co

� orsmap cr select�best	

val it � ��

� ���������
����� � co

��� APPLICATIONS OF OR�SML ���

Thus� we see that the design with the best reliability costs only -��� even though the cost varies
from -�� to -��� as we know from mapping cr over nd� So� as it often happens� one does not
have to buy the most expensive thing to get the best quality�

Finally� to select the design with the best reliability that costs under n dollars� we write a
function

� fun bestunder n �

let val des�under�n � �Set�orselect �fn y ��

eq�mkintco����

monus�cost�y��mkintco�n����

nd�

in

Set�orselect �fn y �� is�best�y�des�under�n�� des�under�n

end	

val bestunder � fn � int �� co

and then ask for the best design that costs under� say� -���

� bestunder
�	

val it �

����v� ���� ����������� �x� ���� ������������

��k� ���� ���������� �m� ���� ������������ � co

� orsmap cr it	

val it � ��
�� ����������������� � co

Again� it is not necessary to get the most expensive design for the best quality�

Summing up� we see that normalization is a very powerful tool for answering conceptual queries�
Many queries that would be practically impossible to answer in just the structural language�
now can be programmed in a matter of minutes in OR	SML�

	���� Querying independent databases and approximations

In this subsection we discuss various solutions to the problem of �nding teaching assistants� given
relations Employees of employees and CS� of people teaching the course CS�� First� consider
the following example�

��� CHAPTER
� OR�SML

Employees

Name Salary

John ��K

John ��K

Mary ��K

Sally �K

CS�

Name Room

John ��

Jim ���

Sally ���

Assume that our query asks to compute the set TA of teaching assistants� We further assume
that only TAs can teach CS� and every TA is a university employee�

Let us recall the problems we face answering the TA query� First� the databases are inconsistent�
Jim teaches CS� and hence he is a TA and an employee� but there is no record for Jim in the
Employees relation� To get rid of this anomaly� we must decide if we believe CS� or Employees�
If the former is the case� then the problem is solved by adding Jim from CS� to Employees�
However� a more intersting case is when we believe the Employees relation� Here we have two
possibilities�

 The Name �eld is a key� This is the assumption made in Buneman et al� ���� ���� Then
the record corresponding to Jim is deleted from CS��

 The Name �eld is not a key� This may cause problems if there are several anomalous
records� For example� if there were two records with name Jim in CS� but only one in
Employees� then one record should be deleted from CS�� but which one We suggest using
or	sets to represent both possibilities� as this is the best knowledge that can be obtained�

Now assume there are no inconsistencies in relations� We have to �nd an approximation of the
set of TAs� that is� we have to �nd people who certainly are TAs and those who could be� Again�
there are two cases�

 The Name �eld is a key� Then all people in CS� are TAs� and those in Employees who
are not represented in CS� could be TAs� Now� to produce an approximation� two things
must be done�

	 For every entry in CS�� try to infer as much information about it as possible using
Employees� In our example that means adding the Salary �eld� To do so� check all
records in Employees consistent with a given record in CS� and� if such a record is
found� use the value of its Salary �eld� Inferring such additional information was
called promotion in ���� ����

	 For each entry of Employees� check if that entry is also represented by the CS�
relation� If it is not� then we found a possible TA�

��� APPLICATIONS OF OR�SML ��

 The Name �eld is not a key� Then it is impossible to determine promotion unambiguously
because there could be two records in Employees with the same Name �led but di�erent
Salary �elds� Our solution is to use or	sets to represent both possibilities� Then� for each
possible choice of records in Employees corresponding to records in CS� we have uniquely
determined set of possible TAs�

We are going to show how some of the operations described above can be done in OR	SML�
First we have to de�ne a framework for doing operations like promotion and consistency check�

As before� we assume that all records have the same �elds by putting �
null� into the missing
�elds� This allows us to take joins and meet of records� Notice that the join of two records is
not necessarily de�ned�

Now we show how a query �approximate the set of TAs� can be done in OR	SML� Since Em	
ployees and CS� are going to make either a sandwich or a mix for TA� we make Employees an
or	set and CS� a set� We now represent the data as follows�

� val emp � make��	

��John� ������������ ����� �John� ������������ �����

�Mary� ������������ ����� �Sally� ������������ ������

� val cs� � create ���John�������
���� �Jim������������� �Sally��������������	

The �rst problem we face is getting rid of inconsistencies in the database� In our particular
example� Jim is in CS� but not in the Employees� Assuming we believe the Employees relation�
we remove this anomaly as follows�

� fun remove�anomaly compat �R�S� �

let fun compat�to�X �X�x� �

Set�ormember�mkboolco�true���orsmap �fn z �� compat�z�x�� X��	

in Set�select �fn z �� compat�to�X �R�z�� S end	

� val new�cs� � remove�anomaly compatible �emp�cs��	

val new�cs� � ��John� ���� ��
���� �Sally� ���� �������� � co

Here compatible is a function that tests whether the join of two elements is de�ned�

fun compatible �x�y� � neg�eq�join�x�y��orempty��	

Now� consider the solution proposed by Buneman et al� ���� ���� Given an element x � CS��
let y�� � � � � yn be those elements in Employees that can be joined with x� Then x� �

V
i
x 	 yi�

was called a promotion of x�
Intuitively� the promotion of x adds all information about x from

��� CHAPTER
� OR�SML

Employees�� The solution was to take all promotions of elements in CS� as �sure TAs� and
elements of Employees not consistent with those promotions as �possible TAs�� However� this
solution was contingent upon the condition that the name �eld is a key� With this condition� we
can easily program the solution of ���� ��� using a function promote and a new relation emp��

� fun promote compat �R�S� �

let fun compat�to�x �X�x� � Set�orselect �fn z �� compat�z�x�� X

in alpha �smap �fn z �� big�meet �orflat�orsmap �fn v �� join�z�v��

�compat�to�x �R�z�����

S� end	

� val emp� � make��	

��John� ������������ ����� �Mary������������� ����� �Sally� ������������ ������

� val promoted�cs� � promote compatible �emp��new�cs��	

val promoted�cs� � ���John� ����������� ��
���� �Sally� ����������� ��������� � co

Here big meet calculates the meet of a family of objects� Observe that this operation corresponds
precisely to forcing a sandwich into a mix using the assumption about keys�

Now it is possible to separate sure TAs from possible TAs�

fun divide compat �R�S� � let

fun compat�to�set �X�x� � member�mkboolco�true��

�smap �fn z �� compat�z�x�� X��

in �orselect �fn z �� neg�compat�to�set �S�z��� R� S� end	

fun divide�all compat �R�S� � orsmap �fn z �� mkprodco�

divide compat �p��z��p��z����

�orpairwith�R�S��	

� val res � divide�all compatible �emp��promoted�cs��	

val res � ����Mary� ����������� ������

��John� ����������� ��
���� �Sally� ����������� ���������� � co

Therefore� John from o�ce � and with salary ��K and Sally from o�ce ��� and with salary
�K are de	nitely TAs and Mary with salary ��K and not known o�ce may be a TA�

However� if the name �eld is not a key� this solution will not work� For example� both Johns
from Employees will be joined with John from CS�� and when the meet is taken� the salary
�eld is lost� But this is not what the information in the database tells us� We know that one
John from Employees teaches CS�� but we do not know which John� Since either could be� the
solution is to use an or�set to represent this situation� In particular� we take all possible joins
x	 y�� � � � � x	 yn and make them into an or	set� which now plays the role of the promotion of x�

��� APPLICATIONS OF OR�SML ���

Then� taking the or	set brackets outside� we obtain the or	set with all possible answers to the
TA query�

fun solution compat �R�S� � let fun get�R�a a � orselect �fn z �� compat�z�a�� R

in orpairwith�R� alpha�smap get�R�a S�� end	

val solution � fn � �co � co �� co� �� co � co �� co

� val result � solution compatible �emp� new�cs��	

val result �

����John� ����������� ����� �Mary� ����������� �����

�John� ����������� ����� �Sally� ����������� ������

��John� ����������� ����� �Sally� ����������� �������

���John� ����������� ����� �Mary� ����������� �����

�John� ����������� ����� �Sally� ����������� ������

��John� ����������� ����� �Sally� ����������� ������� � co

We now see that there are two possible answers to the TA query� both say that Mary could be
a TA and that Sally is a TA� and one says that John making ��K is a TA while the other says
that John making ��K is a TA�

Summing up� we have seen that one of the canonical problems of querying independent databases
can be solved by OR	SML� Moreover� using or	sets gives us the correct answer even if the key
constraints do not hold� something that the solution of Buneman et al� ���� ��� falls short of
doing�

As the �nal example� we demonstrate the implementation of mixes as a new OR	SML datatype�
as was suggested in chapter �� The operations we have on mixes are the monad operation
mix ext � operations of the mix algebra� and type inference� That is� to implement mixes� we
create a structure MIX of signature MIXSIG following the description of mix ext given in chapter
�� These signature and structure are shown in �gure ����

Using mix ext� it is possible to implement monad operations like map mix and flat mix as
follows�

� local open MIX in

fun map�mix f � mix�ext �fn x �� mix�sng�f x��

val flat�mix � mix�ext �fn x �� ��p��x��p��x���mix��

end

val map�mix � fn � �co �� co� �� MIX�mix �� MIX�mix

val flat�mix � fn � MIX�mix �� MIX�mix

The following simple example shows how mixes can be created and manipulated� We assume
that three complex objects a� b and c which are respectively ��� and �� are given� Then we show

��� CHAPTER
� OR�SML

signature MIXSIG �

sig

type mix

val mix�sng � co �� mix

val mix�plus � mix � mix �� mix

val mix�box � mix �� mix

val mix�ext � �co �� mix� �� mix �� mix

val typeof�mix � mix �� unit

end

structure MIX � struct

type mix � co � co

fun mix�sng x � ��orsng�x�� sng�x���mix�

fun mix�plus ��x�mix���y�mix�� � let val �x��x�� � x

val �y��y�� � y

in

��orset�min�orunion�x��y����

set�max �union �x��y�����mix�

end

fun mix�box �x�mix� � let val �x���� � x in ��x��empty��mix� end

fun mix�ext �f � co �� mix� �

�fn �MX�mix� ��

let val �U�L� � MX

val FIRST � orsmap �fn v ��

let val �v���� � f v

in v� end�

U

val SECOND � smap �fn v ��

let val ���v�� � f v

in v� end�

L

in

��orset�min�orflat FIRST��

set�max �flat SECOND���mix�

end�

fun typeof�mix �x�mix� � let val �x���� � x

val tx � tp�print�typeof x��

val tp � substring �tx���size�tx����

in print �tp � mix!n!n�� end

end	

Figure ���� Implementation of mixes in OR	SML

��� APPLICATIONS OF OR�SML ���

how the function� that for any object n creates a mix encoded as
hn� �� n� �i� fn� �g�� can
be extended to a mix over integers by means of mix ext�

� val big � mix�plus�mix�sng�a��mix�plus�mix�sng�b��mix�sng�c���	

val big � ���� �� ������ �� ��� � mix

� val small � mix�plus�mix�sng�a��mix�sng�b��	

val small � ���� ������ ��� � mix

� val newmix � mix�plus�small� mix�box�big��	

val newmix � ���� �� ������ ��� � mix

� map�mix intaddone newmix	

val it � ���� �� ������ ��� � mix

� fun f x � mix�plus�

mix�box�

mix�plus�mix�sng�intaddone�x���

mix�sng�intaddone�intaddone�x������

mix�sng�intaddone�x���	

val f � fn � co �� mix

� mix�ext f newmix	

val it � ���� �� �� ������ ��� � mix

� typeof�mix newmix	

int mix

This shows that OR	SML is capable of supporting operations on approximations arising from
their universality properties� as well as some nontraditional operations like promotion and remov	
ing anomalies� Such operations may often occur in real life applications� This further con�rms
that or	NRL
and hence OR	SML� has adequate power to program with approximations� and is
in fact a good candidate for a language for solving problems like querying independent databases�

��� CHAPTER
� OR�SML

Chapter �

Conclusion and further research

��� Brief summary

We started this thesis with a survey of the �eld of databases with partial information and �nally
arrived to a point where we had a well thought out language for partial information� The main
tool was using new techniques to understand the semantics of partiality�

In chapter � we formulated two main principles of our approach� partiality of data is represented
via orderings on values and semantics suggests programming constructs� In chapter � we made
a �rst step toward applying these principles to the study of databases with partial information�
First� a general order	theoretic model of partial information was developed� Second� we presented
an approach to design of query languages based on the universality properties of the semantic
domains corresponding to the type constructors� In chapter � we studied the semantics of various
kinds of partial information and proved the universality properties� In chapter � we used those
universality properties to design and study languages for partial information� Finally� in chapter
� we described an implementation of a query language based on these ideas�

Before we discuss open problems� let us brie�y recall the main contributions of this thesis�

 We have surveyed the �eld of partial information in databases and analyzed structures
and techniques used for studying partial information� We have concluded that there are
no adequate analytical and algebraic tools available for the study of partial information�

 We have suggested a new approach to the study of partial information based on two main
premises� One says that the concept of being more informative is represented as an ordering
on objects� The other says that the right programming constructs should be derived from
the mathematical properties of the semantics of partial data�

���

��� CHAPTER �� CONCLUSION AND FURTHER RESEARCH

 We have extended the approach of Buneman� Jung and Ohori ���� that treats database
objects as elements of domains� In particular� it was shown how schemes can be de�ned
and how multivalued dependencies and decompositions are related in such a generalized
setting�

 We have described the approach to the language design based on turning universality
properties of collections into programming syntax� We have introduced new tools for
analyzing expressibility of such languages and explained the di�erence between using sets
and bags
multisets��

 Two levels of manipulating or	sets � structural and conceptual � were clearly distinguished�

 We have shown how all known approximation constructs arise in the problem of query	
ing independent databases� Based on the analysis of the models of approximations� we
suggested a new classi�cation of those�

 We have used the �update� semantics to de�ne orderings for �ve kinds of collections�
sets under OWA and CWA� bags under OWA and CWA and or	sets� Orderings for sets
under OWA and CWA and or	sets are the Hoare� the Plotkin and the Smyth orderings
respectively�

 Based on the orderings for collections� we have de�ned their semantics� For objects in	
volving or	sets we have given both structural and conceptual semantics� We have shown
that the semantic domains of collections have the universality properties�

 For the �rst time� an isomorphism between the iterated powerdomains
Smyth and Hoare�
has been explicitly constructed� This isomorphism has given us a primitive to include into
the structural language for sets and or	sets to provide interaction between sets and or	sets�
It has also been proved that the iterated construction possesses a universality property�

 Semantics for approximations has been given and the orderings have been determined
using the update approach� From this it has been concluded how approximations can be
modeled with sets and or	sets�

 Most constructions used in approximations have been characterized as free algebras� That
is� they all possess universality properties which allow to incorporate them into a program	
ming language� Some of them have been shown not to arise as free algebras� However� for
those approximations it is possible to obtain restricted universality properties�

 Languages for collections based on their universality properties have been de�ned� The
languages arising from the ordered semantics were shown to be sublanguages of the lan	
guages arising from the set theoretic semantics� However� well	de�nedness of functions on
ordered objects within the languages based on the set theoretic semantics turned out to
be undecidable�

 It was proved that the orderings for bags under both OWA and CWA are not de�nable in
the standard bag language BQL�

���� PROBLEMS FOR FURTHER INVESTIGATION ���

 The language or	NRL based on combining sets and or	sets and using the isomorphism
between the iterated powerdomains has been introduced� or	NRL was shown to contain
some known languages for partial information as sublanguages�

 The normalization theorem for or	NRL has been proved for both set theoretic and ordered
semantics� That is� all objects normalize to the same object� no matter how they are
normalized� The normalization construct gives us the language to query sets and or	sets
at the conceptual level�

 The costs of normalization have been studied and tight upper bounds have been found�

 The partial normalization theorem for or	NRL has been proved for both set theoretic and
ordered semantics� That is� for properly restricted types� all objects of type t normalize to
the same object of type s� no matter how they are normalized� It was shown that partial
normalization may help answer conceptual queries faster�

 Structural recursion and monad languages have been studied for all approximations� The
monad constructs have been shown to require preconditions which are generally undecid	
able� It also has been shown that the monad languages for approximations are sublan	
guages of or	NRL�

 The language OR	SML based on or	NRL and BQL has been implemented on top of Stan	
dard ML� Its applications in querying incomplete and independent databases have been
shown�

��� Problems for further investigation

In this section we outline some problems that must be further investigated� Discussion of some
of them is quite speculative as the �eld is new and many areas have not been looked into at all�
However� we show a number of very concrete problems that should be solvable using techniques
developed in this thesis� The problems are given in no particular order�

Bags� aggregate functions and partial information

Most theoretical results in the �eld of databases deal with sets� whereas most practical imple	
mentations use bags as the underlying model� It has not been until just a few years ago that
people started paying attention to theoretical problems arising in the study of databases that
use multisets� Albert ���� proposed a number of operations for bags and studied some of their
properties� Grumbach and Milo ���� introduced a bag algebra and proved some complexity re	
sults� At the same time� Chaudhuri and Vardi ���� showed that many optimization principles
do not carry over from sets to bags�

��� CHAPTER �� CONCLUSION AND FURTHER RESEARCH

Incorporating aggregate functions into relational languages was also studied by Klug ���� and
Ozsoyoglu et al� ����� who introduced aggregate functions by de�ning them separately for each
column of a relation� An alternative approach using a technique called hiding was used by
Klausner and Goodman ����� Both approaches are rather clumsy and do not show any clear
connection between bags and aggregate functions�

Finally� in Libkin and Wong ����� ���� it was proved that in terms of expressive power adding
bags is precisely adding aggregate function� see also theorem ����� However� very little is know
about expressibility of languages with aggregate function� For example� Consens and Mendelzon
���� showed inexpressibility of transitive closure assuming separation of complexity classes� and
Mumick and Shmueli ����� gave a rather involved argument to show that certain recursive query
is not de�nable in a language with a limited number of aggregate functions�

If we could only show that the bounded degree property� proved in section ��� for NRL� also
holds for BQL� many results on expressive power would follow immediately� We believe that the
bounded degree property does hold for BQL� but proving this remains open� The main reason
this problem seems to be hard is that there is no logic capturing BQL or its �at fragment� Many
traditional languages for databases do not produce new values
are internal in terminology of
Hull ����� but this is certainly not the case for BQL which is translated into a language with
aggregates and hence can produce new values� Finding logics that capture such languages is
a di�cult task� For example� the logic with counting quanti�ers ���� does not have enough
�generating ability� to capture BQL� And results like the bounded degree property are proved
by using locality properties which in turn are based on the quanti�er elimination procedure�

Very little is known about interaction of partial information and bags or aggregate functions� In
this thesis we were able to de�ne orderings on bags and� using certain results about expressive
power of BQL� showed that it can not de�ne the orderings� This leads to a number of questions�
What is the minimal �natural� set of operations that can be added to BQL to enable it to
de�ne the orderings What are the corresponding operations in the set language with aggregate
functions What is a natural interpretation of orderings on bags when they are translated into
the set language In other words� how partial information interacts with aggregate functions
How aggregate functions are evaluated on partial data Although there are a number of ad	hoc
solutions in practical languages� there has been no systematic study of these problems�

Another set of intersting questions arises when one studies the ability to calculate by using
bags� We showed that three di�erent bag languages can express classes of extended polynomials�
elementary and primitive recursive functions� It can also be shown that there is a correspondence
between slightly enchanced versions of BQL and small classes of primitive recursive functions
like E� and E�
see Rose ����� for the de�nition�� It is not known what orderings on bags give
us in terms of the arithmetic power�

Our ordering for bags is closely connected with the ordering used by Pollard and Moshier �����
in linguistic applications� This connection could be worth studying�

���� PROBLEMS FOR FURTHER INVESTIGATION ��

Sets under the closed world assumption

Most results in chapter � were proved for sets under the open world assumption� Which results
remain true if we switch to the closed world assumption We saw that CWA sets can be
represented in or	NRLa by simply keeping both maximal and minimal elements� and therefore
all operations arising from the CWA set monad can be expressed� But the interaction between
CWA and or	sets has not been studied� What is the right primitive that provides such an
interaction It must be an analog of �� but we do not know if there is a commutativity result
for the Smyth and Plotkin powerdomains� So� one of the questions is the following� Is there an
analog of theorem ���� that relates the iterated Smyth and Plotkin constructions

If there is such an analog� and if it can be converted into a programming primitive� can we
recover the normalization theorem If yes� is it possible to represent such a normalization in
or	NRLa If not� what is the main problem and is there a way around it

Recursive types and values

The complex object data model� which was the main object of study in this thesis� usually
serves as the underlying model for object	oriented databases� But object	oriented databases
include more than that� In particular� they often deal with recursive values� That is� objects
can be de�ned recursively� In many models this is achieved by introducing objects identi�ers�
see Abiteboul and Kanellakis ��� In practice� these are implemented as pointers� However� the
formal semantics of recursive types and values� and in particular recursive types and values in
the presence of partial information� must be worked out�

Since semantics of recursive types is usually obtained as a limit construction� this suggests using
domain instead of arbitrary posets� Assume that we add the recursive type constructor to the
type system�

t �� x j b j unit j t � t j ftg j �x�t
where x ranges over type variables� and �x�t is a recursive type constructor
x must be free in
t�� A similar type system was considered� for example� in Lamersdorf ���� in the context of a
simple language� but no semantics was given� How do we de�ne the semantics of these types

Since semantics of recursive types is usually obtained as a solution to an equation� which in turn
is a
co�limit in some category� we have to switch to categories of domains from categories of
posets� It was suggested by Gunter ���� that one formulate a number of requirements on the
category of domains in which the semantics of types is to be found� In ���� such conditions were
given for categories suitable for giving semantics of types used in functional languages� However�
���� did not consider the set type constructor�

Now� following Gunter ����� let us try to formulate a number of requirements on the category

��� CHAPTER �� CONCLUSION AND FURTHER RESEARCH

of domains C that is suitable for giving semantics of recursive complex object types� First of
all� its objects must be closed under �
product type� and ��
�� which is Idl
P�
K���� the ideal
completion of P�
K��� Second� it must contain the domains of base types
which are usually �at
domains�� Third� domain equations of form D � F
D�� where F is a functor composed from the
constant base type functors� products and ��
��� must have a solution in C� This guarantees
that the semantics of recursive types can still be found in C�

Of course the category SFP and even the category of Scott domains satisfy these requirements�
But these categories contain too many domains that never arise as domains of types� Recall that
we interpret compact elements as objects that can actually be stored in a database� If we have
an object x that can be stored and an object y that is less informative than x� then� provided
or	sets are not used� it must be possible to store y is a database� In other words� domains D
which are objects of C must satisfy the following condition� �KD � KD� This is precisely the
condition that enabled us to de�ne schemes at the level of compact elements� see proposition
���

Now we formulate the requirements on the categories C for database semantics�

�� All objects of C must be domains satisfying �KD � KD�

�� C must contain �at domains and be closed under � and ��
���

�� Any equation D � F
D� must have a solution in C where F is an endofunctor on C built
from constant base type functors by using � and ��
���

As the �rst attempt we could consider C� that consists precisely of Scott domains satisfying
�KD � KD� But this category does not satisfy ��� It is known that the decreasing chain
condition is preserved by ��
�� ����� However� C� that contains domains in which �x satis�es the
decreasing chain condition for any x � KD� does not satisfy �� Now� take C� in which objects
are those domains which are objects in both C� and C�� That is� domains in which �x does
not have in�nite chains for any x � KD� Even restricting this� we take C� to be the category
of I	domains which satisfy the condition that �x is �nite for any x � KD� Now it is possible to
prove that C� and C� satisfy conditions �� � and �� and so do their full subcategories given by
distributive domains� and subcategories thereof in which morphisms carry compact elements to
compact elements� see Libkin ������ Moreover� the category of dI	domains
distributive domains
satisfying the property I� and stable maps
preserving in�ma of bounded pairs� also satis�es
conditions �� � and � ������

So� we have a number of categories in which semantics of recursive complex object types can
be found� But this is not the end of the story� because there are two major issues that must
be addressed� First� condition � is not longer satis�ed if we add the or	set type constructor�
Or	sets correspond to the Smyth powerdomain ��
�� � Idl
P�
K��� which does not preserve even

���� PROBLEMS FOR FURTHER INVESTIGATION ���

the decreasing chain condition� Hence� condition � must be replaced by another condition for
or	sets� The search for such a condition continues�

All recursive database objects have �nite representation and could be stored in a database�
But we can easily see that they are not necessarily compact elements in the domains of their
types� For example� consider �x�string � x� Its elements are in�nite sequences of strings� and
compact elements are those in which almost all entries are �string � We can think of this type
as� for example� type person � �Name�string� spouse�person�� Its elements certainly have �nite
representation� but are not compact elements of the domain of person� Therefore� we need to
identify elements of the domains which have a �nite representation� This identi�cation must
be done order	theoretically� Similar problems have been studied by Ohori ����� ���� but he
considered the model based on the regular trees ����� Such a model does not seem to be suitable
for dealing with partial information� whereas using the domain based model is well justi�ed�

Therefore� a proper de�nition of elements having a �nite representation and identi�cation of
elements of solutions of recursive domain equations having �nite representations remain open
problems� We believe that progress towards solving these problems will suggests the right
operations to be used for programming with recursive complex objects�

Types and schemas

Hull �� studied connections between database schemas and complex objects in the type system
that includes variant types but does not include or	sets� He de�ned a number of reductions
that are similar to the rewrite rules applied to or	types� These reductions were shown to form
a Church	Rosser rewrite system� and hence each database schema had a unique normal form�

If we consider variants as two	element or	sets
similarly pairs can be considered as two element
sets�� then all rewrites in Hull �� will becomes rewrites in our system for or	types� But our
analysis of the rewrite system is much deeper than just establishing Church	Rosserness� In
particular� we characterized the rewrite system in terms of the partial order C on types and
gave an e�cient algorithm that tests this order� Therefore� one might expect that our analysis
of the rewrite system for types may help gain a better understanding of transformations of
database schemas� For example� it may help produce e�cient algorithms that check if one
schema could be transformed into another�

Constraints and partial information

In this thesis we developed type systems and languages for databases with partial information�
but did not cover a very important area of constraints� Relatively little is known about con	
straints in relational databases with nulls
see ��� ��� ��� �� �� ���� ����� and virtually nothing
is known about constraints for other kinds of partial information� To the best of our knowledge�

��� CHAPTER �� CONCLUSION AND FURTHER RESEARCH

no work has been done on understanding how the ordering interacts with constraints�

An idea that proved to be useful for relational databases with the ni nulls is to introduce analogs
of some constrains in a �disjunctive� manner� see Atzeni and Morfuni ��� and Thalheim ������
Following Thalheim ������ we consider keys� In a usual relational database� a set K of attributes
is a key if �K
t�� �� �K
t�� for any two distinct tuples t� and t�� A family K � fK�� � � � � Kng
of sets of attributes is called a key set ����� if for any two distinct tuples t� and t�� there exists
a Ki � K such that t� and t� are de�ned on Ki
that is� none of the Ki	values is ni� and
�Ki
t�� �� �Ki
t��� For relations without null values this simply means that

SK is a key� A key
set is minimal if all Kis are singletons� The disjunctive nature of such constraints matches the
usual key constrains in the closed world semantics�

Proposition ��� For any relation R with ni null values and a set K of attributes� K � ffkg j
k � Kg is a minimal key set i
 �K�def�t�t��
t� � �K�def�t�t��
t

�� implies t � t�� where def
t� t�� is
the set of attributes on which both t and t� are de	ned� Furthermore� this implies that for any
T � ��R��CWAmax with card T � card R� K is a key of T � �

The converse to the last statement is not true� Consider R � f
ni� ���
�� ��g� Then for any T
as in the statement of the proposition� the �rst attribute is a key� but it is not a key set for R�

We believe that this idea of making one constraint into a family while maintaining a close
connection with the intended semantics can be quite productive� The concept of a key set can
be reformulated as �t� t� �K � K �
K
 def
t� t�� � �K
t� � �K
t��� � t � t�� This in turn
implies that

SK is a key for any T � ��R��CWAmax and shows that keys can be further generalized
to functional dependencies and probably a to greater class of dependencies given in a �rst order
language with equality�

Let us give a simple example to illustrate some of the problems arising from using other nulls�
Consider a simple relation

Name Dept Room

ne ne �

We interpret this relation as saying that room � does not belong to any department and is
empty� Now� consider a di�erent relation�

Name Dept Room

ne ne �

Joe CS �

Jim ne �

���� PROBLEMS FOR FURTHER INVESTIGATION ���

This relation says that there is one room � which does not have people in it and does not
belong to any department� and there is another room� also named �� that belongs to CS and
Joe sits in it� Moreover� there is yet another room � which does not belong to any department
but has someone named Jim in it�

Of course we can not represent the second database as a �rst order theory as in Reiter ������
because it would yield a contradiction� P
Joe�CS� �� � ��x��y P
x� y� ��� However� it still
makes perfect sense� But now assume that there is a constraint which says that there is only one
room �� While having two records Joe CS � and Ann Math � does not contadict

it� having a record ne ne � does contradict the constraint as it would be imply the
existence of two rooms �� one with Joe and Ann in it� and one empty� Even though the ne
null is a maximal element in the ordering and is treated in the same way as the usual nonpartial
values� it does behave di�erently in the presence of constraints�

How could one approach the problem of dealing with constraints in databases with partial
information Since we advocate the order	theoretic models of databases and consider rather
complicated type systems� we believe one should try to apply the approach that formalizes con	
straints independently of the particular kind of data structures involved� For example� one may
use the lattice theoretic approach to dependencies and normalization developed in Demetro	
vics et al� ��� and Day ���� or de�ne dependencies as certain classes of �rst order formulae
as in Fagin ����� One may also bene�t from using these approaches since most papers dealing
with constraints in the complex object model only study constraints on the top level attributes
���� ���� ����� But at this point there is almost no understanding how constraints interact with
partial information represented via orderings on objects� The area is completely open�

Genericity� computability and polymorphism

This subsection is de�nitely the most speculative of all� One of the important problems in
database theory is identifying important classes of queries and designing languages capable of
expressing those queries� There are several ways in which database query languages are di�erent
from traditional programming languages� First� most database queries are internal
see Hull
����� That is� they only manipulate with values stored in a database and do not create new
values� Second� they are generic� Most de�nitions of genericity� such as in Chandra and Harel
����� assume that there is only one domain of values and simply require that queries be invariant
under permutations of such a domain� For instance� a query computing the transitive closure of
a relation is such but the query returning the sum of two largest numbers stored in a database
is not�

Many researchers tried to identify languages capable of expressing precisely all generic queries
from a given complexity class over relational databases� A language for all computable queries
was given in Chandra and Harel ����� In Immerman ���� and Vardi ���� languages for the
class PTIME were given� and Abitebouland Vianu ��� showed how to capture PSPACE� Their

��� CHAPTER �� CONCLUSION AND FURTHER RESEARCH

results use an assumption that a linear ordering is given on objects� The question we would
like to investigate is how using partial order that represents incompleteness of information will
a�ect the main de�nitions� like genericity� and results about capturing complexity classes� The
situation when we have a partial order falls between the totally ordered case and the totally
unordered case which appears to be much harder� cf� Abiteboul and Vianu ���� and Immerman
and Lander ����� Note also that we want to look at these problems in the context of typed
languages� whereas in the above mentioned papers it is always assumed that only one domain
of values is present�

Another interesting project is to try to make precise a rather vague idea of establishing con	
nection between genericity and polymorphism� Genericity means that the queries are invariant
under permutations of the domains� and this is very close in the spirit to the idea of paramet	
ric polymorphism� Until recently� genericity has not been considered in the context of typed
database languages� In Libkin and Wong ����� a type system with type variables was studied�
That is� types are given by t �� x j b j unit j t � t j ftg where x ranges over type variables�
Then the de�nition of genericity of a query of type s� t was reformulated� where s and t may
have some type variables� That de�nition is much closer to various de�nitions of polymorphic
functions and can serve as a good starting point�

Note that in all our languages
even including the SML implementation of or	NRL that uses
higher	order functions� we deal only with instances of predicative polymorphism ������ That is�
in universal types �x�t� the range of x does not involve universal types� For instance� the type
of transitive closure can be viewed as �x�fx� xg � fx� xg where x ranges over object types�

The de�nition of genericity in Libkin and Wong ���� is set	theoretic� An intersting problem is to
�nd out whether there exist set	theoretic models for universal types in database query languages
like NRL� We have the set type constructor� so one may expect to observe a phenomenon similar
to Reynolds ����� where a power construction was used to refute the existence of set	theoretic
models for universal types� On the other hand� we deal only with instances of predicative
polymorphism� and it may be possible that the complications of ����� will be irrelevant�

Invariance under permutations no longer su�ces as the de�nition of genericity if we deal with
incomplete information represented via orderings on domains of object types� We need to extend
the de�nition to accommodate orderings� This situation appears to be quite similar � at least in
the spirit � to characterizing 	de�nability
see Plotkin ������� invariance under permutations is
an obvious �rst try� but it does not work� Instead� invariance under logical relations is needed�
Being invariant under logical relations is what parametric polymorphism is semantically� see
Mitchell ������ To extend the standard de�nitions from those suitable for languages based on
	calculi to languages with sets� one has to lift logical relations to powerdomains and not only
to function spaces� To the best of our knowledge� this has not been done� and it might be worth
looking at�

Returning to the problem of invariance under permutations or logical relations� we have a number

���� PROBLEMS FOR FURTHER INVESTIGATION ���

of new questions� First� one may want to describe functions expressible in the languages that we
have studied as functions which are invariant and satisfy some additional conditions� This idea
of course comes directly from the problem of 	de�nability� since we suggest that our languages
can be viewed as �canonical� languages for partial information� very much in the same way as
	calculus is the basis for the functional programming� Conversely� one may take some class C of
queries and search for a language that expresses exactly all invariant queries in C� Observe that
if C is a complexity class� then this is the problem of capturing such a class that was discussed
a few paragraphs ago� There is an indication that this problem may be very hard for important
classes like PTIME� with or without presence of partial information�

Using ordered semantics we have advocated can be helpful in �nding models of universal types
involving sets� There exist domain	theoretic models of polymorphism� An interesting project
would be to extend the model of Coquand et al� ���� based on Grothendieck �brations to in	
clude the set and or	set type constructors� From the results of this thesis we know what the
corresponding domain constructions are� they are the Hoare and the Smyth powerdomains� It
would be worth checking if the results of Coquand et al� ���� carry over to these powerdomains�

Since we deal mostly with predicative polymorphism� there is hope that many complications of
the impredicative polymorphism will not show up� and carrying out the project of understanding
genericity as polymorphism of functions in typed languages with sets will be possible� Of course
the most important outcome of this project would be having the database community speak of
polymorphic functions rather than generic queries�

Formal models of approximations

The theory of approximation in databases started just a few years ago and there are many
topics to be investigated� First� the algebraic characterization given in this thesis points out to
an intimate connection between these constructions and various algebras with idempotent binary
operations that have been extensively studied� most notably by Romanowska and Smith� see
���� ���� ���� ���� In ����� they characterized freely generated meet	distributive bisemilattices�
that is� bisemilattices satisfying only one distributive law� In ���� idempotent semirings with
semilattice reducts are characterized� These algebras are closely related to the scone algebras�

Algebras corresponding to three kinds of approximations
or absence thereof� have not been
discovered yet� Even though we showed that using structural recursion and monads based on
the universality properties of approximations is not the right approach to program with them�
�nding such characterization is still helpful as it would allow us to extend theorem ���� to include
all ten constructions�

Another open problem is applying Abramsky�s approach ���� that �nds logical theories corre	
sponding to various constructions on domains� For mixes this was done by Gunter ����� Recently�
some progress has been made in Darmstadt in applying Abramsky�s approach to snacks� It may

��� CHAPTER �� CONCLUSION AND FURTHER RESEARCH

also be interesting to see what� if any� are the connections between our work and recent work
by Chaudhuri and Kolaitis ��� on approximating recursive datalog programs with nonrecursive
ones�

How to answer conceptual queries faster�

We suggested using normalization as a means of answering conceptual queries and demonstrated
its usefulness� However� we showed that normalization can be quite expensive� Hence� one has
to look for ways to normalize faster�

We considered one approach to the problem� Often it is not necessary to normalize all way
to the normal form to answer a query� We proved a partial normalization result saying that
for types without occurrences of subtypes hhtii� an analog of the normalization theorem holds�
Hence� for such types it is possible to do partial normalization� Even though in all examples we
have encountered there were no occurrences of types of form hhtii other than at the intermediate
stages of the rewriting� we believe that it is still possible to improve the partial normalization
theorem by extending it to a larger class of types�

Even more importantly is to combine partial normalization with a smart evaluation strategy�
Most queries asked against normal forms are existential queries� That is� the queries asking if
there is a possibility in the normal form satisfying certain properties� Presently� the normal	
ization process computes all possibilities and then outputs them� The evaluation strategy we
need should evaluate normalization lazily� That is� it should try to produce an element of a
normal form� check if it satis�es a given property and then go on� This kind of optimization
that produces the �rst answer fast was considered by Wong ����� for his implementation of a
language based on NRL� In addition to using such optimizations� it would be desirable if query
evaluation algorithm tried to use some heuristics that would help produce an answer satisfying
the given condition faster�

We said that or	objects are typically present in the problems arising in design and planning
areas� and in particular in computer aided designs� Such objects are usually very large� and it
is necessary to combine all possible ways to speed up the query evaluation process� One step of
this process � the partial normalization � has been developed in this thesis� Devising a smart
query evaluation algorithm is an important open problem�

New features of OR
SML

There are a number improvements in the implementation of OR	SML that could be made�
First of all� real records must be added�
Now they are simulated with pairs�� A proper set
of operations on records should be identi�ed and some operations of the language� such as
normalization� must be reprogrammed� From the de�nition of normalization it can be seen

���� PROBLEMS FOR FURTHER INVESTIGATION ���

that record concatenation should become a new primitive operation� Therefore� we shall need
to add new tools for representing records and computing with them to the existing OR	SML
implementation� There are a number of known techniques for doing this� such as in Ohori �����
and R�emy ������

At this moment null values can only be added to the user	de�ned base types� Therefore� OR	
SML needs a way for the user to specify null values for already existing types and to de�ne an
order on them� Finally� using new tools such as the �visible compiler� of Appel and MacQueen
����� the system could be made much more user	friendly�

However� we believe that these changes to the existing implementation should not be made before
many questions related to bags� closed world sets and recursive types are clari�ed� because they
may cause additional changes� Only those changes that will for sure remain in the language
capable of working with recursive types� bags and closed world sets� could be made at this
stage�

��� CHAPTER �� CONCLUSION AND FURTHER RESEARCH

Bibliography

�	� S Abiteboul and C Beeri On the power of languages for the manipulation of complex objects In
Proc� Int� Workshop on Theory and Applications of Nested Relations and Complex Objects� Darm�
stadt� 	�

��� S Abiteboul� C Beeri� M Gyssens and D Van Gucht An introduction to the completeness of
languages for complex objects and nested relations In ���� pages 		��	�

��� S Abiteboul and N Bidoit Non �rst normal form relations� an algebra allowing data restructuring
Journal of Computer and System Sciences �� �	�
��� ��	����

��� S Abiteboul� PC Fischer and H�J Schek� editors �Nested Relations and Complex Objects�
Springer LNCS ��	� Springer Verlag� 	�
�

��� S Abiteboul and G Grahne Update semantics for incomplete databases In Proc� Very Large
Databases �	�
��� 	�	�

��� S Abiteboul and S Grumbach COL� a logical based language for complex objects in �Advances in
Database Programming Languages� �F Bancilhon and P Buneman� eds�� ACM Press� 	���� pages
�������

��� S Abiteboul and P Kanellakis Object identity as a query language primitive In SIGMOD 	
�
pages 	���	��

�
� S Abiteboul� P Kanellakis and G Grahne On the representation and querying of sets of possible
worlds Theoretical Computer Science �
 �	��	�� 	���	
�

��� S Abiteboul and V Vianu Datalog extensions for database queries and updates Journal of
Computer and System Sciences �� �	��	�� ���	��

�	�� S Abiteboul and V Vianu Generic computation and its complexity In Proceedings of ACM Symp�
on the Theory of Computing� 	��	

�		� S Abramsky Domain theory in logical form Annals of Pure and Applied Logic �	 �	��	�� 	���

�	�� S Abramsky and A Jung Domain Theory Chapter in Volume � of the �Handbook of Logic in
Computer Science�� Cambridge University Press� 	���

�	�� A Aho� R Sethi� and J Ullman �Compilers� Principles� Techniques and Tools� Addison Wesley�
	�
�

�	�� J Albert Algebraic properties of bag data types In Proceedings of Very Large Databases�
� pages
�		��	�

��

��� BIBLIOGRAPHY

�	�� A Appel and D MacQueen Separate compilation for Standard ML In Proceedings of the SIGPLAN
�
� Conf� on Programming Language Design and Implementation�

�	�� M Atkinson� P Richard and P Trinder Bulk types for large scale programming In Next Generation
Information System Technology� Springer LNCS ���� Springer Verlag� 	���� pages ��
����

�	�� P Atzeni and N Morfuni Functional dependencies and constraints on null values in database
relations Information and Control� �� �	�
��� 	��	

�	
� P Atzeni and M De Bernardis A new basis for the weak instance model In PODS�	�� pages ���
�

�	�� R Balbes A representation theorem for distributive quasilattices Fundamenta Mathematicae �

�	����� �����	�

���� F Bancilhon and S Khosha�an A calculus for complex objects In PODS
	�� pages �����

��	� M Barr and C Wells �Category Theory for Computing Science� Prentice Hall� 	���

���� G Birkho� �Lattice Theory� �rd ed� Amer Math Soc� 	���

���� J Biskup A formal approach to null values in database relations In� �Advances in Data Base
Theory�� Volume 	� Prenum Press� New York� 	�
	

���� S Bloom Varieties of ordered algebras Journal of Computer and System Sciences 	� �	�����
�����	�

���� V Breazu�Tannen� P Buneman� and S Naqvi Structural recursion as a query language In Proc� of
�rd Int� Workshop on Database Programming Languages� pages ��	�� Naphlion� Greece� August 	��	

���� V Breazu�Tannen� P Buneman� and L Wong Naturally embedded query languages In LNCS ����
Proc� ICDT� Berlin� Germany� October�

�� pages 	���	�� Springer�Verlag� October ��

���� V Breazu�Tannen and R Subrahmanyam Logical and computational aspects of programming with
sets�bags�lists In LNCS ��� Proc� of 	th ICALP� Madrid� Spain� July

� pages �����
Springer Verlag� 	��	

��
� D Bronshtein �The chess struggle in practice� candidates tournament� Zurich
��� D McKay
Co� New York� 	��

���� S Brookes� K Van Stone Monads and comonads in intensional semantics Technical Report CMU�
CS����	��� Carnegie Mellon University� April 	���

���� P Buneman Functional programming and databases In �Research Topics in Functional Program�
ming�� �D Turner ed�� Addison�Wesley� 	���� pages 	���	��

��	� P Buneman� S Davidson and AWatters A semantics for complex objects and approximate answers
Journal of Computer and System Sciences ���	��	�� 	����	

���� P Buneman� S Davidson and A Watters Querying independent databases Information Science�
�� �	�

�� 	���

���� P Buneman� A Jung� A Ohori Using powerdomains to generalize relational databases Theoretical
Computer Science �	�	��	�� �����

���� P Buneman� L Libkin� D Suciu� V Tannen and L Wong Comprehension syntax SIGMOD
Record� �� �	�����
����

���� L Cardelli Types for data�oriented languages In Proceedings of EDBT�		 �JW Schmidt� S Ceri
and M Missiko� eds�� Springer Lecture Notes in Computer Science� vol ���� Springer Verlag� 	�

BIBLIOGRAPHY ���

���� A Chandra and D Harel Structure and complexity of relational queries Journal of Computer and
System Sciences� �� �	�
��� ���	�

���� S Chaudhuri and Ph Kolaitis Can Datalog be approximated� In Proceedings of the �th Conference
on Principles of Database Systems� Minneapolis MN� May 	���� pages
����

��
� S Chaudhuri and M Vardi Optimization of real conjunctive queries In Proceedings of �th ACM
Symposium on Principles of Database Systems� pages ������ Washington� D C� May 	���

���� EF Codd Understanding relations Bulletin of ACM SIGMOD� 	���� pages ����

���� EF Codd Extending the database relational model to capture more meaningACM Trans� Database
Systems � �	����� �������

��	� L Colby A recursive algebra for nested relations Information Systems 	� �	����� �����
�

���� M Consens and A Mendelzon Low complexity aggregation in GraphLog and Datalog Theoretical
Computer Science 		� �	����� ���		�

���� T Coquand� C Gunter and G Winskel Domain theoretic models of polymorphism Information
and Computation
	 �	�
��� 	���	��

���� B Courcelle Fundamental properties of in�nite trees Theoretical Computer Science �� �	�
���
���	��

���� A Day The lattice theory of functional dependencies and normal decompositions Intern� J� of
Algebra and Computation � �	����� ������	

���� J Demetrovics private communication

���� J Demetrovics� L Libkin and I Muchnik Functional dependencies in relational databases � a lattice
point of view Discrete Applied Mathematics �� �	����� 	���	
�

��
� J Demetrovics� L R�onyai and HN Son An approach for normalization� composition and decom�
position of attributes In LNCS ���� Proc� ICDT� Berlin� Germany� October�

�� pages �	�
�
Springer�Verlag� October ��

���� N Dershowitz and J�P Jouannand Rewrite Systems Chapter � in �Handbook of Theoretical
Computer Science�� North Holland� 	���� pages �������

���� R Fagin Horn clauses and database dependencies Journal of ACM �� �	�
��� �����
�

��	� R Fagin Finite model theory � a personal perspective Theoretical Computer Science� 		� �	�����
����

���� R Fagin� L Stockmeyer� and M Vardi On monadic NP vs monadic co�NP In Proceedings of 	th
IEEE Conference on Structure in Complexity Theory� pages 	����� May 	���

���� KE Flannery and JJ Martin Hoare and Smyth power domain constructors commute under
composition Journal of Computer and System Sciences �� �	����� 	���	��

���� M Furst� J Saxe and M Sipser Parity� circuits and the polynomial time hierarchy Math� Systems
Theory� 	��	����� 	�
�

���� H Gaifman On local and non�local properties In� Proceedings of the Herbrand Symposium� Logic
Colloquium �
	� North Holland� 	�
�� pages 	���	��

���� M Garey and D Johnson �Computers and Intractability � A Guide to the Theory of NP� complete�
ness� San Francisco� WH Freeman� 	���

��� BIBLIOGRAPHY

���� J�Y Girard The system F of variable types � �fteen years later Theoretical Computer Science ��
�	�
��� 	���	��

��
� J�Y Girard �Proofs and Types�� Cambridge University Press� 	�
�

���� G Gottlob and R Zicari Closed world databases opened through null values In Proc� Very Large
Databases �	�

�� ����	

���� S Grumbach and T Milo Towards tractable algebras for bags Proceedings of the �th Conference
on Principles of Database Systems� Washington DC� 	���� pages ����

��	� G Gierz and A Romanowska Duality for distributive bisemilattices J� Austral� Math� Soc� �A� �	
�	��	�� �������

���� G Grahne �The Problem of Incomplete Information in Relational Databases� Springer�Verlag�
Berlin� 	��	

���� J Grant Null values in relational databases Information Processing Letters � �	����� 	���	��

���� GGr�atzer �Universal Algebra� Springer Verlag� 	�
�

���� C Gunter Comparing categories of domains In �Mathematical Foundations of Programming Se�
mantics �A Melton ed�� Springer Lecture Notes in Computer Science� vol ���� Springer� Berlin�
	�
�� pages 	�	�	�	

���� C Gunter The mixed powerdomain Theoretical Computer Science 	�� �	����� �		����

���� C Gunter �Semantics of Programming Languages� The MIT Press� 	���

��
� C Gunter and D Scott Semantic Domains Chapter 	� in �Handbook of Theoretical Computer
Science�� ed J van Leeuwen �North Holland� 	����� pages �������

���� E Gunter and L Libkin OR�SML� a functional database programming language for disjunctive
information and its applications In Proceedings of the Conference on Database and Expert Systems
Applications DEXA�
�� Springer Verlag� to appear

���� M Gyssens and D Van Gucht The powerset algebra as a natural tool to handle nested database
relations Journal of Computer and System Sciences �� �	����� ���	��

��	� R Heckmann Lower and upper power domain constructions commute on all cpos Information
Processing Letters �� �	��	�� ��		

���� G G Hillebrand� P C Kanellakis� and H G Mairson Database query languages embedded in
the typed lambda calculus In Proceedings of 	th IEEE Symposium on Logic in Computer Science�
Montreal� Canada� June 	���� pages �������

���� G G Hillebrand and P C Kanellakis Functional database query languages as typed lambda calculi
of �xed order In Proceedings of the �th Conference on Principles of Database Systems� Minneapolis
MN� May 	���� pages ������	

���� P Honeyman Testing satisfaction of functional dependencies Journal of the ACM� �� �	�
���
��
����

���� J Hopcroft and R Karp An n��� algorithm for maximum matchings in bipartite graphs SIAM
J� Computing � �	����� ������	

���� R Hull Relative information capacity of simple relational database schemata SIAM Journal of
Computing� 	� �	�
���
���

�

BIBLIOGRAPHY ���

���� R Hull A survey of theoretical research on typed complex database objects In �Databases�
�J Paredaens ed� Academic Press� London� 	�
�� pages 	������

��
� T Imielinski and W Lipski Incomplete information in relational databases Journal of ACM
�	�	�
��� ��	���	

���� T Imielinski and W Lipski The relational model of data and cylindric algebras� Journal of
Computer and System Science �
 �	�
���
��	��

�
�� T Imielinski� S Naqvi� and K Vadaparty Incomplete objects � a data model for design and
planning applications In Proc� of ACM�SIGMOD� Denver� Colorado� May

� pages �

����
Full paper submitted to ACM TODS

�
	� T Imielinski� S Naqvi� and K Vadaparty Querying design and planning databases In LNCS ����
Deductive and Object Oriented Databases� pages �������� Berlin� 	��	 Springer�Verlag

�
�� T Imielinski and K Vadaparty Complexity of querying databases with or�objects In PODS�	

�
�� N Immerman Relational queries computable in polynomial time Information and Control� �

�	�
���
��	��

�
�� N Immerman Languages that capture complexity classes SIAM J� Comput� 	� �	�
��� ������

�
�� N Immerman and E Lander Describing graphs� A �rst order approach to graph canonization In
�Complexity Theory Retrospective�� Springer Verlag� Berlin� 	���

�
�� N Immerman� S Patnaik and D Stemple The expressiveness of a family of �nite set languages In
Proceedings of the �th Symposium on Principles of Database Systems� 	��	� pages �����

�
�� A Jung personal communication

�

� A Jung� L Libkin and H Puhlmann Decomposition of domains In� Proceedings of the Conference
on Mathematical Foundations of Programming Semantics�
� Springer LNCS ��
� Springer Verlag�
Berlin� 	���� pages ������

�
�� P Kanellakis Elements of Relational Database Theory Chapter 	� in �Handbook of Theoretical
Computer Science�� North Holland� 	���� pages 	����		��

���� M Kifer and G Lausen F�Logic� a higher�order language for reasoning about objects� inheritance
and scheme In SIGMOD 	
� pages 	���	��

��	� A Klausner and N Goodman Multirelations� semantics and languages In Proceedings of Very
Large Databases�	�� pages ��	���

���� A Klug Equivalence of relational algebra and relational calculus query languages having aggregate
functions Journal of the ACM �� �	�
��� �����	�

���� W Lamersdorf Recursively de�ned complex objects In ���� pages 	���	
�

���� N Lerat and W Lipski Nonapplicable nulls Theoretical Computer Science �� �	�
��� ���
�

���� M Levene and G Loizou The nested relation type model� An application of domain theory to
databases The Computer Journal �� �	����� 	����

���� M Levene and G Loizou Correction to �Null values in nested relational databases by M A Roth�
H F Korth� and A Silberschatz Acta Informatica �
 �	��	�� �������

���� M Levene and G Loizou Semantics of null extended nested relations ACM Trans� Database
Systems 	
 �	����� �	�����

��� BIBLIOGRAPHY

��
� M Levene and G Loizou A fully precise null extended nested relational algebra Fundamenta
Informaticae 	� �	����� �������

���� L Libkin A relational algebra for complex objects based on partial information In LNCS �
��
Proceedings of Symposium on Mathematical Fundamentals of Database Systems�
� pages ����	�
Rostock� 	��	 Springer�Verlag

�	��� L Libkin An elementary proof that upper and lower powerdomain constructions commuteBulletin
of the EATCS� �
 �	����� 	���	��

�	�	� L Libkin Denotational semantics for complex objects and functions on them Unpublished notes�
University of Pennsylvania� 	���

�	��� L Libkin A remark about algebraicity in complete partial orders Journal of Pure and Applied
Algebra
� �	����� �����

�	��� L Libkin Algebraic characterization of edible powerdomains Technical Report MS�CIS�������L!C
�	� University of Pennsylvania� 	���

�	��� L Libkin and L Wong Semantic representations and query languages for or�sets Proceedings of
the �th Conference on Principles of Database Systems� Washington� DC� May 	���� pages ����

�	��� L Libkin and L Wong Some properties of query languages for bags In Proceedings of the Fourth
Workshop on Database Programming Languages� Manhattan NY� August ���September �

��
Springer Verlag� 	���� pages ���		�

�	��� L Libkin and LWong Aggregate functions� conservative extension and linear order In Proceedings
of the Fourth Workshop on Database Programming Languages� Manhattan NY� August ���September
�

�� Springer Verlag� 	���� pages �
�����

�	��� L Libkin and L Wong Conservativity of nested relational calculi with internal generic functions
Information Processing Letters �� �	����� �����
�

�	�
� L Libkin and L Wong New techniques for studying set languages� bag languages and aggregate
functions In Proceedings of the �th Conference on Principles of Database Systems� Minneapolis
MN� May 	���� pages 	���	��

�	��� W Lipski On semantic issues connected with incomplete information in databases ACM
Trans� Database Systems � �	����� �������

�		�� W Lipski On databases with incomplete information J� ACM �
 �	�
	�� �	���

�			� KC Liu and R Sinderraman Inde�nite and maybe information in relational databases ACM
Trans� Database Systems 	� �	����� 	���

�		�� S MacLane �Categories for the Working Mathematician� Springer Verlag� 	��	

�		�� D Maier �The Theory of Relational Databases� Computer Science Press� 	�
�

�		�� R Milner� M Tofte and R Harper �The De�nition of Standard ML� The MIT Press� 	���

�		�� J Minker� editor �Foundations of Deductive Databases and Logic Programming� M Kaufmann
Publishers� 	�

�		�� J Mitchell Type systems for programming languages Chapter
 in �Handbook of Theoretical
Computer Science�� North Holland� 	���� pages ������

�		�� J Mitchell and A Scedrov Notes on sconing and relators In Computer Science Logic�
�� Springer
LNCS ���� 	���� pages ������

BIBLIOGRAPHY ���

�		
� E Moggi Notions of computation and monads Information and Computation� �� �	��	�� �����

�		�� J Moon and L Moser On cliques in graphs Israel Journal of Mathematics ��	����� ����

�	��� I S Mumick and O Shmueli How expressive if strati�ed aggregation Annals of Mathematics and
Arti�cial Intelligence� 	���� to appear

�	�	� T�H Ngair �Convex Spaces as an Order�theoretic Basis for Problem Solving� �PhD Thesis�
Technical Report MS�CIS������� University of Pennsylvania� 	���

�	��� P Odifreddi �Classical Recursion Theory� North Holland� 	�
�

�	��� A Ohori �A Study on Semantics� Types and Languages for Databases and Object�oriented Pro�
gramming� PhD Thesis� University of Pennsylvania� 	�
�

�	��� A Ohori Orderings and types in databases In �Advances in Database Programming Languages�
�F Bancilhon and P Buneman� eds�� ACM Press� 	���� pages ���		�

�	��� A Ohori Semantics of types for database objects Theoretical Computer Science �� �	����� ����	

�	��� A Ohori A compilation method for ML�style polymorphic record calculi In Proc� of Symp� on
Principles of Programming Languages� 	���� pages 	���	��

�	��� A Ohori� V Breazu�Tannen and P Buneman Database programming in Machiavelli� a polymor�
phic language with static type inference In SIGMOD 	
� pages �����

�	�
� A Ola Relational databases with exclusive disjunctions In Data Engineering
�� pages ��
����

�	��� G Ozsoyoglu� Z M Ozsoyoglu� and V Matos Extending relational algebra and relational calculus
with set�valued attributes and aggregate functions ACM Transactions on Database Systems� 	�
�	�
��� �������

�	��� Z M Ozsoyoglu and L�Y Yuan A new normal form for nested relations ACM Transaction on
Database Systems� 	� �	�
��� 			�	��

�	�	� J Paredaens� P De Bra� M Gyssens and D Van Gucht �The Structure of the Relational Data
Model� Springer� Berlin� 	�
�

�	��� J Paredaens and D Van Gucht Converting nested relational algebra expressions into "at algebra
expressions ACM Transaction on Database Systems� 	� �	����� �����

�	��� LC Paulson �ML for the Working Programmer� Cambridge University Press� 	��	

�	��� J P#lonka On distributive quasilattices Fundamenta Mathematicae �� �	����� 	�	����

�	��� J P#lonka On a method of construction of abstract algebras Fundamenta Mathematicae �	 �	�����
	
��	
�

�	��� J P#lonka On free algebras and algebraic decompositions of algebras from some equational classes
de�ned by regular equations Algebra Universalis 	 �	��	�� ��	����

�	��� G Plotkin A powerdomain construction SIAM Journal of Computing � �	����� �����
�

�	�
� G Plotkin Lambda�de�nability in the full type hierarchy In �To H�B� Curry� Essays on Combi�
natory Logic� Lambda Calculus and Formalism�� edited by J Seldin and J Hindley� Academic Press�
London� 	�
�� pages �������

�	��� C Pollard and D Moshier Unifying partial descriptions of sets Manuscript� 	���

��� BIBLIOGRAPHY

�	��� A Poulovassilis and C Small A domain theoretic approach to integrating functional and logical
database languages In Proceedings of Very Large Databases�
�� pages �	����

�	�	� H Puhlmann The snack powerdomain for database semantics In LNCS �� Proceedings of Con�
ference on Mathematical Foundations of Computer Science� Gdansk� Poland� �� August�� September
	���� �Andrzej M Borzyszkowski and Stefan Sokolowski� eds�� Springer Verlag� 	���� pages �������

�	��� R Reiter On closed world databases In �Logic and Databases�� H Gallaire and J Minker eds�
Plenum Press� 	��
� pages �����

�	��� R Reiter Towards a logical reconstruction of relational database theory In� �On Conceptual
Modeling� �M Brodie and J Schmidt eds�� Springer Verlag� 	�
�� pages 	���	
�

�	��� R Reiter A sound and sometimes complete query evaluation algorithm for relational databases
with null values J� ACM �� �	�
��� �������

�	��� D R�emy E�cient representation of extensible records In ACM SIGPLAN Workshop on ML and
its applications� 	���� pages 	��	�

�	��� J Reynolds Polymorphism is not set�theoretic In �Semantics of Data Types� �G Kahn� D Mac�
queen and G Plotkin eds�� Springer Lecture Notes in Computer Science� vol 	��� Springer� Berlin�
	�
�� pages 	���	��

�	��� A Romanowska Free idempotent distributive semirings with a semilattice reduct Math� Japonica
�� �	�
��� �����
	

�	�
� A Romanowska and JDH Smith Bisemilattices of subsemilattices J� Algebra �� �	�
	�� �
�

�	��� A Romanowska and JDH Smith �Modal Theory� An Algebraic Approach to Order� Geometry
and Convexity� Heldermann Verlag� Berlin� 	�
�

�	��� H Rose �Subrecursion� Functions and Hierarchies� Clarendon Press� 	�
�

�	�	� MA Roth� HF Korth and A Silberschatz Null values in nested relational databases Acta
Informatica� �� �	�
��� �	�����

�	��� B Rounds Situation�theoretic aspects of databases In Proceedings of Conference on Situation
Theory and Applications� CSLI vol ��� 	��	� pages �������

�	��� H Sakai On a framework for logic programming with incomplete information Fundamenta Infor�
maticae 	� �	����� �������

�	��� VN Salii �Lattices with Unique Complements� �AMS� Providence� RI� 	�

�

�	��� Y Saraiya Fixpoints and optimizations in a language based on structural recursion on sets
Manuscript� December 	���

�	��� H�J Schek and M Scholl The relational model with relation�valued attributes Information
Systems 		 �	�
��� 	���	��

�	��� MB Smyth Power domains Journal of Computer and System Sciences 	� �	��
�� �����

�	�
� Standard ML of New Jersey� User�s guide Version ���� February 	��� AT!T Bell Laboratories

�	��� D Stemple and T Sheard A recursive base for database programming primitives In Next Gener�
ation Information System Technology� Springer LNCS ���� Springer Verlag� 	���� pages �		����

�	��� A Stoughton �Fully Abstract Models of Programming Languages� Pitman� London� 	�

BIBLIOGRAPHY ���

�	�	� D Suciu Bounded �xpoints for complex objects In Proceedings of the Fourth Workshop on
Database Programming Languages� Manhattan NY� August ���September �

�� Springer Verlag�
	���� pages �����
	

�	��� D Suciu and J Paredaens Any algorithm in the complex object algebra with powerset needs
exponential space to compute transitive closure In Proceedings of the �th Conference on Principles
of Database Systems� Minneapolis MN� May 	���� pages ��	�	��

�	��� D Suciu and V Tannen A query language for NC In Proceedings of the �th Conference on
Principles of Database Systems� Minneapolis MN� May 	���� pages 	���	�

�	��� K Tanaka and T�S Chang On natural join in object�oriented databases In � Proc� of Int� Conf�
on Deductive and Object�Oriented Databases Kyoto� December 	�
�

�	��� B Thalheim On semantic issues connected with keys in relational databases permitting null values
J� Inf� Process� and Cybernet�� ���	����		���� 	�
�

�	��� B Thalheim �Dependencies in Relational Databases� Teubner�Texte zur Mathematik� Band 	���
Stuttgart�Leipzig� 	��	

�	��� SJ Thomas and P Fischer Nested relational structures In P Kanellakis editor� �Advances in
Computing Research� The Theory of Databases�� pages �������� JAI Press� 	�
�

�	�
� JD Ullman �Principles of Database and Knowledge�Base Systems� Computer Science Press�
	�

�	��� D Van Gucht and P Fischer Multilevel nested relational structures Journal of Computer and
System Sciences �� �	�

�� ���	��

�	��� M Vardi The complexity of relational query languages In Proc� of ACM Symp� on the Theory of
Computing� 	�
�� pages 	���	��

�	�	� M Vardi On the integrity of databases with incomplete information In Proc� �th ACM Symp� on
Principles of Database Systems �	�
��� �������

�	��� Y Vassiliou Null values in database management � a denotational semantics approach In� SIG�
MOD
�
� pages 	���	��

�	��� Y Vassiliou Functional dependencies and incomplete information In� Very Large Databases
	��
pages �������

�	��� S Vickers Geometric theories and databases In P Johnstone and A Pitts� editors� Applications of
Categories in Computer Science� volume 	�� of London Mathematical Society Lecture Notes� pages
�

��	� Cambridge University Press� 	���

�	��� P Wadler Comprehending monads In Proceedings of ACM Conference on Lisp and Functional
Programming� Nice� June 	���

�	��� PWadler The essence of functional programming In Proc� of Symp� on Principles of Programming
Languages� 	���� pages 	�	�

�	��� W Wechler �Universal Algebra for Computer Scientists� Springer�Verlag� Berlin� 	���

�	�
� G Winskel Powerdomains and modality Theoretical Computer Science �� �	�
��� 	���	��

�	��� L Wong Normal forms and conservative properties for query languages over collection types In
PODS
�� pages ������ Washington� D C� May 	���

��� BIBLIOGRAPHY

�	
�� L Wong �Querying Nested Collections�� PhD Thesis� University of Pennsylvania� 	���

�	
	� C Zaniolo Database relations with null values Journal of Computer and System Sciences �

�	�
��� 	���	��

Index

A

Abiteboul� S �� 	�� 	�� 	�� 	�� ��� ���
�� 	���
���� ��	

Abramsky� S ��� ���
Adjoint functors ��
Albert� J ���
Algebra ��� ��

bi�LNB 	��
bi�mix 	��
carrier of ��
freely generated ��
mix 		

ordered ��
freely generated ��

reduct of 	��
relational �� 	�� ��� �	
nested 	�� 	�� ��� �	

salad 	��
scone 	��
signature of ��
snack 	��

Algebraic cpo ��
Anomalies in databases ��� ���

removal of ���
Antichain ��
Appel� A ���
Approximations 	����

as free algebras 		��	��
classi�cation of 	��� 	��
encoding of 			
in OR�SML ������	
lower
by many relations ��
simple �	

mix ��� 	��
orderings on 	���	�

relationship between 	���	�

salad ��
sandwich �	� 	��

scone ��� 	��
semantics of 	�
�		�
snack ��� 	��
upper �	

Arithmetic of bag languages
��
�
Ascending Chain Condition ��
Atkinson� M ��
Atzeni� P 	�� ���

B

Balanced binary tree ��
unde�nability of ��� ��

Balbes� R 	�
Bancilhon� F ��
Barr� M ��� �

Beeri� C ���
�
Bernardis� M 	�
Bidoit� N 	�
Bisemilattice 	�

distributive 	�

Biskup� J �� ��
� ��� ��
Bloom� S ��
Bounded degree property ��

applications of ��
in nested relational language ��

Breazu�Tannen� V 	�� ��� ��� �
� �	� ��� �
� ���
Brookes� S ��
Buneman� P �� �� 	�� 	�� �	� ��� �
� ��� ��� ���

������ �	� ��� ��� �
� ��� �	� ��� 	���
	�
� ���� ���� ���� ���

C

Cardelli� L �
� ��� ��
Category ��

FSL ��
Kleisli of monad ��
Poset ��
Set ��

��

��� INDEX

Chain ��
Chandra� A ��	
Chang� T ��
Chaudhuri� S ���� ���
Closed World Assumption ��

��	� ���� ���
Codd� EF ��

Colby� L 	�� ��
Complex objects 	��	�

as OR�SML type ���
types of ��

Consens� M
	� ���
Conservativity of languages �	�
�� 	��
Consistency

in posets �	
of approximations �	���

Containment problem 	�
Coquand� T ���
Critical pair ��� 	��
Critical pair lemma ��

D

Davidson� S �� 	�� �	
Day� A ��	
De�nability of queries

in bag languages
��
�� 	���	��
in set languages �	���

Demetrovics� J ��	
Dependency ��	

functional
in generalized relations ��� ��
in relations with nulls 	�� ���

multivalued �
���
Dershowitz� N ��
Directed subset �	
Distinct representatives

systems of 	��� 	��� 	��� 	
�
unde�nability of 	��

Domain ��
coatomic ��
distributive ��
"at ��� �	
qualitative ��
Scott ��

Duplicate elimination ��
in OR�SML �	�����

E

Element
bottom ��
compact �	
maximal ��
minimal ��
top ��

F

Fagin� R ��� ��	
Filter �	

�nitely generated 	�	
in conceptual semantics 	�	

Fischer� P 	�� 	�� ��
Flannery� K 		�
Function

admissible 		
� 	��� 	��� 	�

aggregate
	� 	��� ���� ���
monotone 	��
undecidability of 	��

Functor ��
adjoint ��� 		�
left ��� �
� ��� ��
right ��

forgetful ��� ��� ��

G

Gaifman� H ��
Girard� J�Y ��� 	
�
Goodman� N ���
Gottlob� G �
Grahne� G
�	�� 	�� 	�
Grant� J �
Gr�atzer� G ��� ��� 	��
Grumbach� S ���
��
�� ���
Gunter� C 	�� ��� ��� ��� ��� 	��� 		�� 		
� 		��

���� ���
Gunter� E ��� �	�
Gyssens� M ��

H

Harel� D ��	
Heckmann� R 		�
Hillebrand� G ��
Homomorphism ��

INDEX ���

monotone ��
Honeyman� P 	�
Hopcroft� J ��
Hull� R ���� ���� ��	

I

Ideal �	
completion ��
principal ��
strong ��

Imielinski� T ��		� 	�� ��� ��� 	��� 	
�
Immerman� N �
� ��� ���
�� ��	� ���
Iterated constructions 		�� 		�

isomorphism of 		�
universality of 		�

J

Jouannand� J�P ��
Jung� A 	�� ��� ��� ��� ��� ��� ��� ��� ��� 	���

	�	� ���

K

Kanellakis� P �� 	�� 	�� ��� ��� ���
Karp� R ��
Key set ���
Khosha�an� S ��
Klausner� A ���
Klug� A ���
Kolaitis� Ph ���
Korth� H 	�� 	�� ��

L

Lander� E ���
Language

for bags �

for sets and or�sets or�NRL 	�

nested relational ��� �	� ��
for antichains 	��
null values in 	�

of Zaniolo �� 	��� 	��
Lattice

free distributive 		�
uniquely complemented ��

Least upper bound �	
Left normal band 	��

Lerat� N

Levene� M �� 	�� 	�� ��� ��
Libkin� L 	�� 	�� 	�� ��� �
� ��� ��� ��� ��� ���

�
� �	� ��� ��� ���
�� 		�� 	�	� 	�	� �	��
���� ��
� ���

Lipski� W ��
�		� 	�� 	�� ��� ��� 	��
Liu� K 	�
Loizou� G �� 	�� 	�� ��� ��
Loop

equivalence to structural recursion ���
��
�	�

in bag languages
�
in set languages ��

Losslessness theorem 	��

M

��rewriting 	
	
��type 	
	
MacLane� S ��
MacQueen� D ���
Maier� D 	�

Mairson� H ��
Martin� J 		�
Membership

problem 	�� 	��
test �	� ��

Mendelzon� A
	� ���
Milner� R ���
Milo� T ���
��
�� ���
Minker� J 	�
Mitchell� J 	�� ���
Mixes ��� 	��

in OR�SML ������	
properties of 		
� 		�
semantics of ��� 	��

Modules of OR�SML �	�
Moggi� E ��� �	
Monad �

in programming syntax ��� �

Monus
�

as bag di�erence ��
Morfuni� N 	�� ���
Moshier� D ���
Mumick� IS ���

N

Naqvi� S 	�� ��� ��� �

��� INDEX

Newman�s lemma �	
Ngair� T�H 	�� ��� ��� 	��� 	�

Normalization 	��� 	���	��

costs of 	���	��
in conceptual queries 	��� ���
in OR�SML ���� ���
of objects 	��� 	��
of types 	�	
partial 	
�
theorem 	��

Null values 	�	�
existing unknown un

generic �
no information ni �
nonexisting ne

open �
ordering of �

O

Ohori� A ��� ��� ��� ��� ���� ���� ���
Open World Assumption �� �	� ��
Operation

elimination ��� ��
introduction ��� ��
nest 	�
unnest 	�

Operator
� 	��� 	�

composition ��
conditional ��
"attening �	� ��
map �	� ��
naturally associated with type ��� ��
normalize 	��
pair�with �	� ��
pairing ��
singleton ��� ��� �

union ��� ��
additive ��

Or�sets
examples of 	���	��� ���
in complex objects 	�� 	��
in relations 	�� 	�

Order
Buneman 	��
Hoare ��� ��
lifting of
	� 	�	� 	�

partial �	

Plotkin ��� ��
Smyth ��� ��

Orders for partiality
on approximations 	��
on bags ��
computing of ��
unde�nability of 	��

on or�sets ��
de�nability of 	�

on sets
de�nability of 	�	
under CWA ��
under OWA ��

Ozsoyoglu� ZM ���

P

Paredaens� J 	�� �	� ��� 	��
Patnaik� S �
� ��
Paulson� L ���
P#lonka� J 	�� 	�
� 	��
Plotkin� G ���
Pollard� C ���
Poset �	

bounded complete ��
complete �cpo� �	

Poulovassilis� A ��
Powerbag
�
Powerdomain orderings ��
Powerdomains ��
Powerset �

as primitive on bags
�
as primitive on sets ��
�nite �
� ��

Programming
data�oriented �����
with approximations 	������

Promotion ���
Puhlmann� H 	�� ������ ��� ��� ��� 	�
� 	���

	�	

Q

Queries
conceptual 	
� 	�� 	��� 	��� 	��
generic ��	
internal ���� ��	
polymorphic �
� �	� ���
structural 	
� 	�� 	��

INDEX ���

R

Records
consistent 	��
joinable �� �	

Redundancies
in bags ��
in or�sets ��
in sets

removal of ��

Reiter� R �� 	�� �
� ��	
Relations

generalized ��
nested 	�
with disjunctive information 	�
with nulls �

Remy� D ���
Rewrite rule ��
Rewrite system �	

Church�Rosser �	
for complex objects 	��
for object types 	�	
terminating �	
weakly Church�Rosser �	

Reynolds� J ���
Romanowska� A 	��� 	��� ���
Rose� H ���
Roth� M 	�� 	�� ��
Rounds� B 	�

S

Salad ��
properties of 	���	��
semantics of 	��� 		�

Salii� V ��
Sandwich �	� 	��

properties of 		��	��
semantics of ��� 	��

Saraiya� Y ��
Scedrov� A 	�
Schek� H�J 	�� 	�� ��
Schemes in domains �����

as semi�factors ��
complements of ����

de�nition of �

orderings on ��
projection on �

canonical �
� ��

saturated ��
Scholl� M 	�� 	�� ��
Scone ��� 	��

properties of 	���	��
semantics of ��� 	��� 		�

Scott� D ��� ��
Semantics

conceptual 	���	��
of objects ��
of or�sets ��
of sets
under CWA ��
under OWA ��

of types ��� ��
structural ��

Semi�factor ��
Semilattice

free with bottom ��
free with top ��

Sheard� T ��
Shmueli� O ���
Silberschatz� A 	�� 	�� ��
Sinderraman� R 	�
Small� C ��
Smith� JDH 	��� 	��� ���
Snack ��� 	��

properties of 	�
�	��
semantics of ��� 	��

Stemple� D �
� ��
Stoughton� A ��
Structural recursion ��

on bags �

on insert presentation ��� �

on or�sets �	�
on sets ��� ��� 	�	� �	�
on union presentation ��
preconditions for ��� ��� �

veri�cation of �	� ��

restricted form of �

Subalgebra ��
Subrahmanyam� R �	� ��� �
� ���
Suciu� D �
� �
� ��� 	��
Summation operator
�

T

Table 		
Codd 	�� 		� 	��
conditioned 		

��� INDEX

equality 		� 	��
Tanaka� K ��
Tannen� V see Breazu�Tannen� V
Test

comparability 	�	� 	��
equality �	
membership �	� ��
subbag ��
subset �	

Thalheim� B 	�� ���
Thomas� S 	�� 	�� ��
Transitive closure ��� ���
�

deterministic ��
Type

base ��
collection ��
variable ���

Type constructor
bag ��
or�set ��
product ��
recursive ���
set ��� ��

U

Ullman� J ��
Universality properties ��

of approximations 		��	��
of or�sets ��� 		�
of sets ��� 		�
of sets of or�sets 		�

V

Vadaparty� K 	�
Valuation 		
Van Gucht� D 	�� �	� ��
Vardi� M �� ���� ��	
Vassiliou� Y �� 	�
Vianu� V ��	
Vickers� S ��

W

Wadler� P ��� ��
Watters� A �� 	�� �	
Wechler� W ��� ��
Wells� C ��� �

Winskel� G 		

Wong� L 	�� 	�� �
� ��� ��� �
� �	� ��� ��� ���
��

	�	� ���� ���� ���

Z

Zaniolo� C �� �� ��� ��� 	��� 	��
Zicari� R �

