
On the Correspondence Between Proofs and A-Terms

MS-CIS-93-01
LOGIC & COMPUTATION 54

Jean Gallier

U~~iversity of Penrisylvar~ia
School of Engineerir~g and Applied Science

Computer and Irifor~riat~ior~ Scierlce Department

Plliladelpl~ia. PA 19104-6389

January 1993

On the Correspondence Between Proofs and A-Terms

Jean Gallier*
Department of Computer and Information Science

University of Pennsylvania
200 South 33rd St.

Philadelphia, PA 19104, USA
e-mail: j eanQsau1. c i s . upenn . edu

May 27, 1993

Abstract. The correspondence between natural deduction proofs and A-terms is presented and
discussed. A variant of the reducibility method is presented, and a general theorem for establishing
properties of typed (first-order) A-terms is proved. As a corollary, we obtain a simple proof of the
Church-Rosser property, and of the strong normalization property, for the typed A-calculus associ-
ated with the system of (intuitionistic) first-order natural deduction, including all the connectors
+, x, +, V, 3, and I (falsity) (with or without 7-like rules).

*This research was partially supported by ONR Grant N0001488-K-0593.

1

Contents

1 Introduction

2 Natural Deduction, Simply-Typed A-Calculus

3 Adding Conjunction, Negation, and Disjunction

4 First-Order Quantifiers

5 P-Candidates for the Arrow Type Constructor +

6 Adding Product and Sum Types x and +
7 Adding the Absurdity Type I

8 Adding First-Order Quantifiers V and 3

9 Adding 7-like Reduction Rules

1 Introduction

Curry ([2], 1958) made the remarkably insightful observation that certain typed combinators can
be viewed as representations of proofs (in a Hilbert system) of certain propositions. Building up
on this observation, Howard ([12], 1969) described a general correspondence between propositions
and types, proofs in natural deduction and certain typed A-terms, and proof normalization and
,f?-reduction. This correspondence, usually referred to as the "Curry/Howard isomorphism" or
"formulae-as-types principle7', is fundamental and very fruitful. The Curry/Howard isomorphism
establishes a deep correspondence between the notion of proof and the notion of computation.
It is this correspondence that leads to various "semantics of proofs", the most recent one being
Girard's geometry of interaction [lo]. However, a discussion of this subject would take us beyond
the scope of this paper, and we will restrict ourselves to a (thorough) discussion of the notion of
proof normalization.

The idea of proof normalization goes back to Gentzen ([6], 1935). Gentzen noted that (formal)
proofs can contain redundancies, or "detours", and that most complications in the analysis of proofs
are due to these redundancies. Thus, Gentzen had the idea that the analysis of proofs would be
simplified if it was possible to show that every proof can be converted to an equivalent irredundant
proof, a proof in normal form. Gentzen proved a technical result to that effect, the "cut-elimination
theorem", for a sequent-calculus formulation of first-order logic [6]. Cut-free proofs are direct, in
the sense that they never use auxiliary lemmas via the cut rule. It is important to note that
Gentzen7s result gives a particular algorithm to produce a proof in normal form. Thus, we know
that every proof can be reduced to some normal form using a specific strategy, but there may be
more than one normal form, and certain normalization strategies may not terminate.

About thirty years later, Prawitz ([16], 1965) reconsidered the issue of proof normalization,
but in the framework of natural deduction rather than the framework of sequent calculi.' Prawitz
explained very clearly what redundancies are in systems of natural deduction, and he proved that
every proof can be reduced to a normal form. Furthermore, this normal form is unique. A few years
later, Prawitz ([17], 1971) showed that in fact, every reduction sequence terminates, a property also
called strong normalization.

Sometimes between 1965 and 1967, Tait ([20]) proved that ,f?-reduction in the simply-typed
A-calculus is strongly normalizing. For this, he used a method usually known as reducibility or
computability. The word computability already having a meaning in recursion theory, we prefer
to use the word reducibility. In view of the Curry-Howard isomorphism (which, although it only
appeared in print in 1969, was known to the experts earlier that 1969), it was to be expected that a
proof of strong normalization for natural deduction could be obtained using the reducibility method.
More specifically, by representing (natural deduction) proofs as certain A-terms, and exploiting the
fact that proof normalization steps correspond to reduction steps in a certain typed A-calculus, one
can translate properties of A-terms in terms of properties of proofs. In fact, Girard did just that
(Girard [8] (1971), [9] (1972)), but he proved a much stronger result, namely strong normalization
for higher-order (intuitionistic) logic. A similar proof also appears in Stenlund [19]. Prawitz ([17],
1971) also uses a variant of the reducibility method for proving strong normalization of natural

'This is somewhat ironical, since Gentzen began his investigations using a natural deduction system, but decided
to switch to sequent calculi (known as Gentzen systems!) for technical reasons.

deduction for first-order intuitionistic logic. Prawitz also proves the confluence (Church-Rosser
property) of proof normalization.

The reducibility method is a very powerful method, but it is somewhat mysterious, and it has
several variations (Tait's version, Girard7s version, Krivine's version, etc). These variations have to
do with the choice of technical conditions on the so-called "candidates of reducibility", as we shall
see later.

Nowadays, the reducibility method is rather well known for proving strong normalization (or
normalization), but the fact that it can also be used to prove confluence or other properties does not
seem to be as well known. Statman showed that various properties of the simply-typed A-calculus
can be obtained using logical relations [18], but John Mitchell seems to be one of the first who
realized that reducibility can be used to prove more general properties than strong normalization.
The general idea is that if a unary predicate P expressing a property of (typed) A-terms satisfies
the conditions for being a "candidate" (as alluded to earlier) and some other closure conditions
(typically, if P(Mx) then P(M), where x is a variable), then P holds of all A-terms that type-check.
Although it is very nice, this approach has a defect, namely that it is too sensitive to the notion of
candidate chosen. This makes it difficult to generalize the method when we consider richer calculi.
Also, some of the closure conditions are not very "inductive".

Recently, we came accross a paper by Koletsos [13] in which confluence results for various
typed A-calculi are shown. What struck us, is that Koletsos uses a notion of candidate different
from all the others, and remarkably, this notion remains the same for all the calculi involved.
Furthermore, although specifically tailored for proving confluence, this notion works just as well
for strong normalization. In fact, we discovered that it was possible to prove a general theorem
about the typed A-calculus associated with first-order intuitionistic logic. Basically, we show that if
a unary predicate P expressing a property of (typed) A-terms satisfies certain inductive conditions,
then P holds of all A-terms that type-check. In particular, strong normalization and confluence
satisfy these conditions, and thus they hold in this typed A-calculus. In constrast to Mitchell's
approach, it is not necessary to assert that P is a candidate. The conditions on P seem more
"inductive".

Our plan is to prove the general theorem about the typed A-calculus associated with first-
order intuitionistic natural deduction. First, we will begin with proof systems in natural deduction
style (originally due to Gentzen [6] and thoroughly investigated by Prawitz [16] in the sixties).
By adopting a description of natural deduction in terms of judgements, as opposed to the tagged
trees used by Gentzen and Prawitz, we are also led quite naturally to the encoding of proofs as
certain typed A-terms, and to the correspondence between proof normalization and P-conversion
(the Curry/Howard isomorphism [12]). We will then present our version of the reducibity mehod
adpated from Koletsos. We will prove our general theorem incrementally, by first considering the
simply-typed A-calculus, and then adding other type constructors in stages.

In writing this paper, we tried to uncover some of the intuitions that may either have been
lost or obscured in advanced papers on the subject, but we have also tried to present relatively
sophisticated material, because this is more exciting for the reader. Thus, we have assumed that
the reader has a certain familiarity with logic and the lambda calculus. If the reader does not
feel sufficiently comfortable with these topics, we suggest consulting Girard, Lafont, Taylor [7] or
Gallier [4] for background on logic, and Barendregt [I], Hindley and Seldin [ll], or Krivine [14] for

background on the lambda calculus. For an in-depth study of constructivism in mathematics, we
highly recommend Troelstra and van Dalen 1221.

2 Natural Deduction, Simply-Typed A-Calculus

We first consider a syntactic variant of the natural deduction system for implicational propositions
due to Gentzen [6] and Prawitz [16].

In the natural deduction system of Gentzen and Prawitz, a deduction consists in deriving
a proposition from a finite number of packets of assumptions, using some predefined inference
rules. Technically, packets are multisets of propositions. During the course of a deduction, certain
packets of assumptions can be "closed", or "discharged". A proof is a deduction such that all the
assumptions have been discharged. In order to formalize the concept of a deduction, one faces the
problem of describing rigorously the process of discharging packets of assumptions. The difficulty
is that one is allowed to discharge any number of occurrences of the same proposition in a single
step, and this requires some form of tagging mechanism. At least two forms of tagging techniques
have been used.

The first one, used by Gentzen and Prawitz, consists in viewing a deduction as a tree whose
nodes are labeled with propositions (for a lucid presentation, see van Dalen [23]). One is allowed
to tag any set of occurrences of some proposition with a natural number, which also tags the
inference that triggers the simultaneous discharge of all the occurrences tagged by that number.

The second solution consists in keeping a record of all undischarged assumptions at every stage
of the deduction. Thus, a deduction is a tree whose nodes are labeled with expressions of the
form I' I- A, called sequents, where A is a proposition, and I' is a record of all undischarged
assumptions at the stage of the deduction associated with this node.

Although the first solution is perhaps more natural from a human's point of view and more
economical, the second one is mathematically easier to handle. In the sequel, we adopt the second
solution. It is convenient to tag packets of assumptions with labels, in order to discharge the
propositions in these packets in a single step. We use variables for the labels, and a packet labeled
with x consisting of occurrences of the proposition A is written as x: A. Thus, in a sequent I' I- A,
the expression I' is any finite set of the form XI: Al, . . . , x,: A,, where the x; are pairwise distinct
(but the A; need not be distinct). Given I' = X I : A1, . . . , x,: A,, the notation I?, x: A is only well
defined when x # x; for all i, 1 5 i 5 m, in which case it denotes the set XI: Al,. . . , x,: A,, x: A.
We have the following axioms and inference rules.

Definition 2.1 The axioms and inference rules of the system N,> (implicational logic) are listed
below:

r , x : AI- A

In an application of the rule (3-intro), we say that the proposition A which appears as a
hypothesis of the deduction is discharged (or ~ l o s e d) . ~ It is important to note that the ability to
label packets consisting of occurrences of the same proposition with different labels is essential,
in order to be able to have control over which groups of packets of assumptions are discharged
simultaneously. Equivalently, we could avoid tagging packets of assumptions with variables if
we assumed that in a sequent I' I- C, the expression I', also called a context, is a multiset of
propositions. The following two examples illustrate this point.

Example 2.2 Let
r = x : A > (B > C) , y : A > B,z:A.

I- (A > (B > C)) > ((A > B) > (A 3 C))

In the above example, two occurrences of A are discharged simultaneously. Compare with the
example below where these occurrences are discharged in two separate steps.

Example 2.3 Let
r = x: A 3 (B 3 c), y: A 3 B, zl: A, z2: A.

x: A > (B > C), y: A > B, zl: A, z2: A I- C

z 1 : A ~ (A > (B > C)) > ((A > B) > (A > C))

I- A 2 ((A 3 (B 3 C)) 3 ((A 3 B) 3 (A 3 c)))

For the sake of comparison, we show what these two natural deductions look like in the system
of Gentzen and Prawitz, where packets of assumptions discharged in the same inference are tagged
with a natural number. Example 2.2 corresponds to the following tree:

'In this system, the packet of assumptions A is always discharged. This is not so in Prawitz's system (as presented
for example in van Dalen [23]), but we also feel that this is a slightly confusing aspect of Prawitz's system.

Example 2.4

C - 1

A 3 C
2

(A 3 B) 3 (A 3 C)
3

(A 3 (B 3 C)) 3 ((A 3 B) 3 (A 3 C))

and Example 2.3 to the following tree:

Example 2.5

C
1

A 3 C
2

(A 3 B) 3 (A 3 C)
3

(A 3 (B 3 C)) 3 ((A 3 B) 3 (A 3 C))
4

A 3 ((A 3 (B 3 C)) 3 ((A 3 B) 3 (A 3 c)))

It is clear that a context (the I' in a sequent r I- A) is used to tag packets of assumptions and
to record the time at which they are discharged. From now on, we stick to the presentation of
natural deduction using sequents.

Proofs may contain redundancies, for example when an elimination immediately follows an
introduction, as in the following example in which Dl denotes a deduction with conclusion I?, x: A I-
B and V2 denotes a deduction with conclusion r I- A.

Intuitively, it should be possible to construct a deduction for r I- B from the two deductions
Dl and D2 without using at all the hypothesis x: A. This is indeed the case. If we look closely at
the deduction Dl, from the shape of the inference rules, assumptions are never created, and the
leaves must be labeled with expressions of the form I", A, x: A, y: C I- C or I?, A, x: A I- A, where
y # x and either = r' or r = r', y: C. We can form a new deduction for I' I- B as follows: in

Dl, wherever a leaf of the form I', A, x: A I- A occurs, replace it by the deduction obtained from
ID2 by adding A to the premise of each sequent in V2. Actually, one should be careful to first make
a fresh copy of V2 by renaming all the variables so that clashes with variables in V1 are avoided.
Finally, delete the assumption x: A from the premise of every sequent in the resulting proof. The
resulting deduction is obtained by a kind of substitution and may be denoted as V1[V2/x], with
some minor abuse of notation. Note that the assumptions x: A occurring in the leaves of the form
I", A, x: A, y: C I- C were never used anyway. This illustrates the fact that not all assumptions are
necessarily used. Also, the same assumption may be used more than once, as we can see in the
(I-elim) rule. The step which consists in transforming the above redundant proof figure into the
deduction D1[V2/x] is called a reduction step or normalization step.

We now show that the simply-typed A-calculus provides a natural notation for proofs in natural
deduction, and that p-conversion corresponds naturally to proof normalization. The trick is to
annotate inference rules with terms corresponding to the deductions being built, by placing these
terms on the righthand side of the sequent, so that the conclusion of a sequent appears to be
the "type of its proof". This way, inference rules have a reading as "type-checking rules". This
discovery due to Curry and Howard is known as the Curry/Howard isomorphism, or formulae-
as-types principle [12]. An early occurrence of this correspondence can be found in Curry and
Feys [2] (1958), Chapter 9E, pages 312-315. Furthermore, and this is the deepest aspect of the
Curry/Howard isomorphism, proof normalization corresponds to term reduction in the A-calculus
associated with the proof system.

Definition 2.6 The type-checking rules of the A-calculus A' (simply-typed A-calculus) are listed
below:

I',x:AI- M : B
(abstraction)

I' I- (Ax: A. M): A > B

I'I- M : A > B I'I- N:A
(application)

I' I- (MN): B

Now, sequents are of the form I' I- M: A, where M is a simply-typed A-term representing a
deduction of A from the assumptions in I?. Such sequents are also called judgements, and I' is
called a type assignment or context.

The example of redundancy is now written as follows:

I' I- (Ax: A. M): A > B I'I- N:A

I' I- (Ax: A. M)N: B

Now, V1 is incorporated in the deduction as the term M, and V2 is incorporated in the deduction
as the term N. The great bonus of this representation is that V1[V2/x] corresponds to M[N/x],
the result of performing a ,f?-reduction step on (Ax: A. M)N.

Example 2.7

x : P > (Q > P) , u : P I - u : P y: P, a: Q I- y: P

x : P > (Q 2 P)I- Au:P.u:(P> P) y: P I- Az: Q. y: (Q > P)

I - A x : (P > (Q > P)) . A u : P . u : (P > (Q > P)) > (P > P) I-Ay:P.Az:Q.y:P>(Q>P)

I- (Ax: (P > (Q > P)). Xu: P. u)Ay: P. Xz: Q. y: (P > P)

The term (Ax: (P > (Q > P)). Xu: P. u)Xy: P. Xz: Q. y reduces to Xu: P. u, which is indeed the
term representation of the natural deduction proof

Thus, the simply-typed A-calculus arises as a natural way to encode natural deduction proofs,
and P-reduction corresponds to proof normalization. The correspondence between proof normaliza-
tion and term reduction is the deepest and most fruitful aspect of the Curry/Howard isomorphism.
Indeed, using this correspondence, results about the simply-typed A-calculus can be translated into
the framework of natural deduction proofs, a very nice property. On the other hand, one should
not be too dogmatic (or naive) about the Curry/Howard isomorphism and make it into some kind
of supreme commandment (as we say in French, "prendre ses d6sirs pour des r6alitdsV). In the
functional style of programming, A-reduction corresponds to parameter-passing, but more is going
on, in particular recursion. Thus, although it is fruitful to view a program as a proof, the speci-
fication of a program as the proposition proved by that proof, and the execution of a program as
proof normalization (or cut elimination, but it is confusing to say that, since in most cases we are
dealing with a natural deduction system), it is abusive to claim that this is what programming is
all about. In fact, I believe that statements to that effect are detrimental to our field. There are
plenty of smart people who are doing research in the theory of programming and programming lan-
guage design, and such statements will only make them skeptical (at best). Programming cannot
be reduced to the Curry/Howard isomorphism.

When we deal with the calculus X3, rather than using 3, we usually use +, and thus, the
calculus is denoted as A'. In order to avoid ambiguities, the delimiter used to separate the lefthand
side from the righthand side of a judgement I? I- M: A will be D, so that judgements are written as
~ D M : A .

Before moving on to more fascinating topics, we cannot resist a brief digression on notation
(at least, we will spare the reader the moralistic lecture that we have inflicted upon students over
more than fourteen years!). Notation is supposed to help us, but the trouble is that it can also be
a handicap. This is because there is a very delicate balance between the explicit and the implicit.
Our philosophy is that the number of symbols used should be minimized, and that notation should
help remembering what things are, rather than force remembering what things are. The most
important thing is that notation should be as unambiguous as possible. Furthermore, we should
allow ourselves dropping certain symbols as long as no serious ambiguities arise, and we should
avoid using symbols that already have a standard meaning, although this is nearly impossible.

Lambda-abstraction and substitution are particularly spicy illustrations. For example, the
notation Ax: a M together with (M N) for application is unambiguous. However, when we see the
term (Ax: aMN) , we have to think a little (in fact, too much) to realize that this is indeed the
application of Ax: a M to N, and not the abstraction Ax: a(MN). This is even worse if we look at
the term Ax: a M N where the parentheses have been dropped. So, we may consider introducing
extra markers, just to help readability, although they are not strictly necessary. For example, we
can add a dot between a and M: abstraction is then written as Ax: a. M. Similarly, universally
quantified formulae are written as Vx: a. A. Now, Ax: a. M N is a little better, but still requires an
effort. Thus, we will add parentheses around the lambda abstraction and write (Ax: a. M) N. Yes,
we are using more symbols than we really need, but we feel that we have removed the potential
confusion with Ax: a. M N (which should really be written as Ax: a. (MN)). Since we prefer avoiding
subscripts or superscripts unless they are really necessary, we favor the notation Ax: a. M over the
(slightly old-fashion) Axu. M (we do not find the economy of one symbol worth the superscript).3
Now, let us present another choice of notation, a choice that we consider poor since it forces us
to remember something rather than help us. In this choice, abstraction is written as [x: o]M, and
universal quantification as (x: a)A. The problem is that the reader needs to remember which kind of
bracket corresponds to abstraction or to (universal) quantification. Since additional parentheses are
usually added when applications arise, we find this choice quite confusing. The argument that this
notation corresponds to some form of machine language is the worst that can be given. Humans are
not machines, and thus should not be forced to read machine code! An interesting variation on the
notations Ax: a. M and Vx: a. A is A(x: a) M and V(x: a)A, which is quite defendable. Substitution
is an even more controversial subject! Our view is the following. After all, a substitution is
a function whose domain is a set of variables and which is the identity except on a finite set.
Furthermore, substitutions can be composed. But beware: composition of substitutions is not
function composition (indeed, a substitution cp induces a homomorphism @, and the composition of
two substitutions cp and + is the function composition of @ and +, and not of cp and +). Thus, the
choice of notation for composition of substitutions has an influence on the notation for substitution.
If we choose to denote composition of substitution in the order cp ; +, then it is more convenient to
denote the result of applying a substitution cp to a term M as Mcp, or (M)cp, or as we prefer as M[cp].
Indeed, this way, M[cp][+] is equal to M[cp ; $1. Now, since a substitution is a function with domain
a finite set of variables, it can be denoted as [xl I+ MI,. . . , x, o M,]. In retrospect, we regret not
having adopted this notation. If this was the case, applying a substitution to M would be denoted
as M[xl w MI,. . . , x, H Mn]. Instead, we use the notation [tl/xl,. . . , t,/x,] which has been
used for some time in automated theorem proving. Then, applying a substitution to M is denoted
as M[tl/xl, . . . ,tn/xn] (think for just a second of the horrible clash if this notation was used
with [x: o]M for abstraction!). Other authors denote substitutions as [xl: = MI,. . . , x,: = M,].
Personally, we would prefer switching to [xl I+ MI,. . . , x, I+ M,], because : = is also used for
denoting a function f whose value at some argument x is redefined to be a, as in f [x: = a]. Finally,
a word about sequents and judgements. To us, the turnstile symbol I- means provability. A sequent
consists of two parts I' and A, and some separator is needed between them. In principle, anything
can do, and if the arrow + was not already used as a type-constructor, we would adopt the notation
I' + A. Some authors denote sequents as I' I- A. A problenl then arises when we want to say that
a sequent is provable, since this is written as !- I' I- A. The ideal is to use symbols of different size

3The notation Xzu. M seems to appear mostly in systems where contexts are not used, but instead where it is
assumed that each variable has been preassigned a type.

for the two uses of I-. In fact, we noticed that Girard himself has designed his own I- which has a
thicker but smaller (in height) foot: r-. Thus, we will use the "Girardian turnstile" I- in writing
sequents as I' I- A. Judgements have three parts, I', M, and a. Our view is that I' and M actually
come together to form what we have called elsewhere a "declared term" (thinking of the context I'
as a declaration of the variables). Again we need a way to put together I' and M , and we use the
symbol D, thus forming I' D M. Then, a declared term may have a type a, and such a judgement
is written as I' D M: a. To say that a judgement is provable, we write I- I' D M: a. We find this
less confusing than the notation t- I' t- M: a, and this is why we favor I' D M: a over I' t- M: a
(but some authors use D for the reduction relation! We use -+). And please, avoid the notation
I- I' t- M E a, which we find terribly confusing and cruel to E. But we have indulged too long into
this digression, and now back to more serious business.

3 Adding Conjunct ion, Negation, and Disjunction

First, we present the natural deduction systems, and then the corresponding extensions of the
simply-typed A-calculus. As far as proof normalization is concerned, conjunction does not cause
any problem, but as we will see, negation and disjunction are more problematic. In order to
add negation, we add the new constant I (false) to the language, and define negation TA as an
abbreviation for A >I.

Definition 3.1 The axioms and inference rules of the system (intuitionistic propositional
logic) are listed below:

I',x:At- A

I'r- A A B I ' F A A B
(A-elirn) (A-elirn)

r r - A r t - B

ri- A I ' r -B
(v-intro) (v-intm)

I ' I - A V B I'r- A V B

I'I- A V B I' ,x:At-C I ' , ~ : B I - C
(v-elirn) rI-c

Since the rule (I-elim) is trivial (does nothing) when A =I, from now on, we will assume that
A #I. Minimal propositional logic N,>vA*"*' is obtained by dropping the (I-elim) rule. In order
to obtain the system of classical propositional logic, denoted N,>*"iV$', we add to N,>I"*">' the
following inference rule corresponding to the principle of proof by contradiction (by-contm) (also
called rederctio ad absurdum).

1', x: i A 1-1
(by-contra) rt- A

Several useful remarks should be made.

(1) In classical propositional logic (Nz*A*V9'), the rule

can be derived, since if we have a deduction of I' 1-1, then for any arbitrary A we have a deduction
I', x: TA 1-1, and thus a deduction of I' t- A by applying the (by-contra) rule.

(2) The proposition A > 1-A is derivable in N,>I"*~$', but the reverse implication T-IA > A is
not derivable, even in N.""'~'~. On the other hand, 1 1 A > A is derivable in N,>~"I"I~:

x: i i A , y: i A 1-1
(by-contra)

(3) Using the (by-contra) inference rule together with (1-ebim) and (V-intro), we can prove
- A V A (that is, (A > I) V A). Let

We have the following proof for (A 21) V A in N:J'*",':

I',y:AI- A

I',y:At- ((A > I) v A) >I I',y:AI- (A ~ I) v A

I?, y: A 1-1

- - - -

r I-1
(by-contra)

I- (A > I) V A

As in (2), 1 A V A is not derivable in N;>l".V'L. The reader might wonder how one shows that
71A > A and -A V A are not provable in N;>'"'"". In fact, this is not easy to prove directly. One
method is to use the fact (given by theorem 3.4 and theorem 3.5) that every proof-term reduces to

a unique normal form. Then, argue that if the above propositions have a proof in normal form, this
leads to a contradiction. Another even simpler method is to use cut-free Gentzen systems. The
interested reader is referred to Gallier [3].

The typed A-calculus A ' 7 X y + 9 L corresponding to 4''A'V'L is given in the following definition.

Definition 3.2 The typed A-calculus A'*X7+*L is defined by the following rules.

with A #I,
r , x : A ~ M : B

(abstraction)
r b (A x : A . M) : A + B

I ' D M : A + B I ' D N : A
(application)

I' D (M N) : B

I ' D M : A I ' D N : B
(pairing)

I ' D (M , N) : A x B

I ' D M : A x B I ' D M : A x B
(projection) (projection)

I' D q (M) : A r D na (M): B

I ' D M : A I ' D M : B
(injection) (injection)

I' D i n l (M) : A + B I' D i n r (M) : A + B

~ D P : A + B I ' , x :ADM:C I ' , y :BDN:C
(by-cases)

I' D case(P, Ax: A. M , Ay: B . N) : C

A syntactic variant of case(P, Ax: A. M , Ay: B . N) often found in the literature is

case P of i n l (x : A) + M 1 inr (y: B) 5 N ,

or even
case P of i n l (x) + M I i n r (y) + N ,

and the (by-cases) rule can be written as

I ' D P : A + B I ' ,x:Ar>M:C I ' , y :BDN:C
(by-cases)

I' D (case P of i n l (x : A) + M I inr (y: B) + N) : C

We also have the following reduction rules.

Definition 3.3 The reduction rules of the system X'~X~+*'- are listed below:

(Ax: A. M)N + M[N/x],

d (M ? N)) - M,

~ 2 ((~ 7 N)) ---t N ?
case(inl(P), Ax: A. M, Xy: B. N) - M[P/x], or

case in l (P) of inl(x: A) =. M I inr(y: B) + N - M[P/x],

case(inr(P), Ax: A. M, Xy: B. N) ---, N[P/y], or

case in r (P) of inl(x: A) + M I inr(y: B) J N + N[P/y],

VA+B(M)N -) VB(M),

~ ~ (v A x B (M)) + VA(M),

T~(VAXB(M)) + VB(M),
c a s e (v ~ + ~ (P) , Ax: A. M, Xy: B. N) - vc(P) .

A fundamental result about natural deduction is the fact that every proof (term) reduces to a
normal form, which is unique up to a-renaming. This result was first proved by Prawitz [17] for

3 , A , V , 1 the system Ni

Theorem 3.4 [Church-Rosser property, Prawitz (1971)l Reduction in X'~X*+~L (specified in Def-
inition 3.3) is confluent. Equivakently, conversion in X'~X~t*' is Chuwh-Rosser.

A proof can be given by adapting the method of Tait and Martin-Lof [15] using a form of
parallel reduction (see also Barendregt [I], Hindley and Seldin [ll], or Stenlund [19]). We will give
another proof in section 8.

Theorem 3.5 [Strong normalization, Prawitz (1971)l Reduction in X'~Xi+~'- (as in Definition
3.3) is strongly normalizing.

A proof can be given by adapting Tait's reducibility method [20], [21], as done in Girard [8]
(1971), [9] (1972) (see also Gallier [5]). We will give another proof in section 8.

4 First-Order Quantifiers

We extend the system N ? ' ~ ' ~ ' ~ to deal with the quantifiers.

Definition 4.1 The axioms and inference rules of the system N,>'AvV'v'3"- for intuitionistic first-
order logic are listed below:

r ,x :Ar - A

with A #I,

I'I-AAB I'i- A A B
(A-elim) (A-elim) r ~ - A r l - B

T i - A r i - B
(v-intro) (V -intro)

T i - A V B I'i- A V B

ri- A V B I',x:AI- C I ' , y : B k C
(v-elim) rI-c

I' I- A[u/t] I' I- VtA
(V-intro) (V-elim)

I' I- VtA I' I- A[r/t]

where in (V-intro), u does not occur free in I' or VtA;

where in (3-elim), u does not occur free in I', 3tA, or C.

The variable u is called the eigenvariable of the inference.

One should observe that we are now using two kinds of variables: term (or package) variables
(x, y, z, . . .), and individual (or type) variables (t, u, . . .).

The typed A-calculus ~ ' 7 ~ 1 + 3 ~ 1 ~ * ~ corresponding to 4''A'V'v'3'1 is given in the following defini-
tion.

Definition 4.2 The typed A-calculus A'7X7+lv~311 is defined by the following rules.

with A +I,
I',x:Ab M: B

(abstraction)
rD(Ax:A. M) : A + B

I ' D M : A + B I ' D N : A
(application)

I' D (MN): B

I ' D M : A I ? D N : B
(pairing)

I 'D(M,N) :Ax B

r b M : A x B I ' b M : A x B
(projection) (projection) r b 7r1(M): A I' b 7r2(M): B

r b M : A r b M : B
(injection) (injection)

I' D i n l (M) : A + B I' b i n r (M) : A + B

I ' b P : A + B r , x : A b M : C I ' , y : B b N : C
(by-cases)

I' b case(P, Ax: A. M , Xy: B . N) : C

I ' D P : A + B I ' , x : A b M : C I ' , y : B b N : C
(by-cases)

I? b (case P of i n l (x : A) + M I inr (y: B) + N) : C

where u does not occur free in I' or VtA;

I' b M : A[r / t]
(3-intro)

I' b inx (r , M) : 3 tA

rb M : 3 t A I ' , x : A [u / t] b N : C
(3-elim)

I? b casex(M, Xu: L. Ax: A[u/ t] . N) : C

where u does not occur free in I?, 3tA, or C .

In the term (Xu: L. M) , the type L stands for the type of individuals. Note that

I' b Xu: L. Ax: A[u/ t] . N : Vu(A[u/t] -t C) .

The term Xu: L. Ax: A[u/ t] . N contains the type A[u/ t] which is a dependent type, since it usually
contains occurrences of u. Observe that (Xu: L. Ax: A[u/ t] . N) T reduces to Ax: A[r / t] . N [T / u] , in
which the type of x is now A[r / t] . The term casex(M, Xu: L . Ax: A[u/ t] . N) is also denoted as
casex M of inx(u: L, x: A[u / t]) + N , or even casex M of inx(u , x) + N , and the (3-elim) rule

I ' b M : 3 t A I ' , x : A [u / t] b N : C
(3-ebim)

I' b (casex M of inx(u: L , x: A[u / t]) + N) : C

where u does not occur free in I?, 3tA, or C .

Such a formalism can be easily generalized to many sorts (base types), if quantified formulae
are written as Vt: a. A and 3t: a. A , where a is a sort (base type). A further generalization would
be to allow higher-order quantification as in Girard's system F, (see Girard [9] or Gallier [5]). We
also have the following reduction rules.

Definition 4.3 The reduction rules of the system A'*X3+lv*3*1 are listed below:

(Ax: A. M) N - M[N/x],

~ l ((~ 7 N)) --, M7

r2((M, N)) - N7
case(inl(P), M, N) -+ MP, or

case in l (P) of inl(x: A) + M I inr(y: B) + N - M[P/x],

case(inr(P), M, N) - NP, or

case inr (P) of inl(x:A) + M I inr(y: B) + N - N[P/y],

VA-+B(M)N - V B (M) ~

nl(vAxB(M)) - V A (M) ~

T ~ V A X B (M)) -+ VB(M),
(At: L. M)T - M[r/t],

V V ~ A (~) T - V A [T / ~] (~) ,
c ~ s ~ (v A + B (~) , M, N) - VC(P),

casex(inx(, P) M) - (M) or

casex inx(r, P) of inx(t: L, x: A) J N - N[r/t , Plx],

casex(v3tA(P), M) - vC(P).

A fundamental result about natural deduction is the fact that every proof (term) reduces to a
normal form, which is unique up to a-renaming. This result was first proved by Prawitz [17] for

D,A,V,V,3,1 the system N;:

Theorem 4.4 [Church-Rosser property, Prawitz (1971)l Reduction in A'9x9+*v*3~1 (specified in
Definition 4.3) is confluent. Equivalently, conversion in A ' 1 ~ 9 + * ~ * ~ 1 ~ is Church-Rosser.

A proof can be given by adapting the method of Tait and Martin-Lof [15] using a form of
parallel reduction (see also Barendregt [I], Hindley and Seldin [Ill , or Stenlund [19]). We will give
another proof in section 8.

Theorem 4.5 [Strong normalization, Prawitz (1971)l Reduction in A'9X9+~v~391 is strongly nor-
malizing.

A proof can be given by adapting Tait's reducibility method [20], [21], as done in Girard [8]
(1971), [9] (1972) (see also Gallier [5]) . We will give another proof in section 8.

If one looks carefully at the structure of proofs, one realizes that it is not unreasonable to declare
other proofs as being redundant, and thus to add some additional reduction rules. For example,
the proof term (rl(M), rz(M)) can be identified with M itself. Similarly, if x is not free in M , the
term Ax: A. (Mx) can be identified with M. Thus, we have the following additional set of reduction
rules:

Ax: A. (Mx) - M, if x 6 FV(M),

(n (M) , r2(M)) - M,

case M of inl(x: A) + inl(x) (inr(y: B) + inr(y) + M,

At: L. (Mt) + M, if t $ FV(M),

casex M of inx(u: L, x: A[u/t]) + inx(u, x) - M, if u $ FV(M).

These rules are important in setting up categorical semantics for intuitionistic logic. However, a
discussion of this topic would take us far beyond the scope of this paper. Actually, in order to salvage
some form of subformula property ruined by the introduction of the connectives V, 3, and I, one
can add further conversions known as "commuting conversions" (or "permutative conversions"). A
lucid discussion of the necessity for such rules can be found in Girard [7]. Theorem 4.4 and theorem
4.5 can be extended to cover the reduction rules of definition 4.3 together with the new reductions
rules, but at the cost of rather tedious and rather noninstructive technical complications. Due to
the lack of space, we will not elaborate any further on this subject and simply refer the interested
reader to Prawitz [16], Girard [9], or Girard [7] for details.

5 P-Candidates for the Arrow Type Constructor -+

We first motivate our version of the reducibility method. The situation is that we have a unary
predicate P describing a property of (typed) A-terms, and a type-inference system S. For example,
P could be the property of being normalizable, or strongly normalizing, or that confluence holds
from any term, and S could be the system A', or A ' ~ X ~ + ~ L , or A'~X~+~v93~1. Our main goal is to
find sufficient conditions on the predicate P so that every term M that type-checks in S satisfies
the predicate P.

As an example of the above general schema, conditions (PI), (P2), (P3) of definition 5.3 together
with conditions (P4) and (P5) of definition 5.7 are such conditions on P with respect to system
A' (see theorem 5.10). Another example is given by conditions (Pl), (P2), (P3) of definition 8.4
together with conditions (P4) and (P5) of definition 8.8 with respect to system ~ ' 9 ~ 9 + * ~ * ~ * ~ (see
theorem 8.11). Since the property of being strongly normalizing satisfies properties (P1)-(P5), as
a corollary, we have that every term that type-checks in A'9x9+lvv37L is strongly normalizing (see
theorem 8.12). Similarly, we obtain that confluence holds (see theorem 8.13).

The main technique involved is a kind of realizability argument known as reducibility. The
crux of the reducibility method is to interpret every type a as a set [a] of X-terms having certain
closure properties. One of the crucial properties is that for any type a, the terms in [a] satisfy the
predicate P. If the sets [a] are defined right, then the following "realizability property" holds (for
example, see lemma 5.9):

If P is a predicate satisfying conditions (P1)-(P5), then for every term M that type-checks in
A' with type a, for every substitution cp such that p(y) E [y] for every y: y E FV(M), we have

Wcpl E [a].

Now, if the properties (P1)-(P5) on the predicate P are right, every variable is in every [a], and
thus, by chosing cp to be the identity substitution, we get that M E [a] whenever M type-checks in
A' with type a. Furthermore, properties (P1)-(P5) imply that [a] P, and thus, we have shown
that M satisfies the predicate P whenever M type-checks in A'.

Other examples of this schema are given by lemma 6.10, lemma 7.10, and lemma 8.10. In order
for an argument of this kind to go through, the sets [a] must satisfy some inductive invariant. In

the literature, this is often referred to as being a candidate. Inspired by the paper by Koletsos
[13], we use the notion of a P-candidate defined in definition 5.4. This notion has the advantage of
not requiring the terms to be strongly normalizing (as in Girard [7]), or to involve rather strange
looking terms such as MIN/x]Nl.. . Nk (as in Tait, Mitchell, or Krivine). By isolating the dual
notions of I-terms and simple terms, we can give a definition that remains invariant no matter
what the definition of the sets [a] is. Also, the definition of a P-candidate only requires that the
predicate P be satisfied, but nothing to do with the properties (P1)-(P5) on P. This separation is
helpful in understanding how to derive sufficient properties on P. In other presentations, properties
of the predicate P are often incorporated in the definition of a candidate, and this tends to obscure
the argument. Finally, our definition can be easily adapted to other type disciplines (conjunctive
types), or to higher-order types. Also, nice proofs of confluence can be obtained (see theorem 8.13).
We now proceed with the details.

Let 7 denote the set of (simple) types. The presentation will be simplified if we adopt the
definition of simply-typed A-terms where all the variables are explicitly assigned types once and
for all. More precisely, we have a family X = (Xu)uET of variables, where each Xu is a countably
infinite set of variables of type a, and XunX, = 0 whenever a # T. Using this definition, there is no
need to drag contexts along, and the most important feature of the proof, namely the reducibility
method, is easier to grasp. The type-checking rules of the system are summarized in the following
definition.

Definition 5.1 The terms of the typed A-calculus A' are defined by the following rules.

x: a, when x E Xu,

(we can also have c: a, for a set of constants that have been preassigned types).

X : U D M:T
(abstraction)

D (Ax: a. M): a + T

D M : U + T D N : a
(application)

D (MN): T

From now on, when we refer to a A-term, we mean a A-term that type-checks. We let A, denote
the set of A-terms of type a. In this section, the only reduction rule considered is P-reduction:

(Ax: a. M)N --+p M[N/x].

It turns out that the behavior of a term depends heavily on the nature of the last typing
inference rule used in typing this term. A term created by an introduction rule, or I-term, plays
a crucial role, because when combined with another term (or several other terms in the case of
disjunctive terms), a new redex is created. On the other hand, for a term created by an elimination
rule, or simple term, no new redex is created when this term is combined with another term (or
several other terms in the case of disjunctive terms). This motivates the following definition.

Definition 5.2 An I-term is a term of the form Ax: a. M. A simple term (or neutml term) is a
term that is not an I-term. Thus, a simple term is either a variable x, a constant c, or an application
MN. A term M is stubborn iff it is simple and, either M is irreducible, or M' is a simple term
whenever M f p M' (equivalently, MI is not an I-term).

Let P = be a family of nonempty sets of simply-typed A-terms.

Definition 5.3 Properties (P 1)-(P3) are defined as follows:

(PI) x E PC, c E P,, for every variable x and constant c of type a.

(P2) If M E P, and M +p N, then N E P,,.

(P3) If M is simple, M E P,,,, N E P,, and (Ax: a. M1)N E P, whenever M Lp Ax: a. MI,
then M N E P,.

From now on, we only consider families P satisfying conditions (PI)-(P3) of definition 5.3.

Definition 5.4 A nonempty set C of terms of type a is a P-candidate iff it satisfies the following
conditions:

(Rl) C P,.

(R2) If M E C and M -p N, then N E C.

(R3) If M is simple, M E P,, and Ax: 7. MI E C whenever M f Ax: 7. MI, then M E C .

Note that (R3) and (PI) imply that for every type a, any P-candidate C of type a contains all
variables and all constants of type a. More generally, (R3) implies that C contains all stubborn
terms in P,, and (PI) guarantees that variables and constants are stubborn terms in P, (for every
type 0).

By (P3), if M E P,,, is a stubborn term and N E P,, is any term, then M N E P, . Furthermore,
M N is also stubborn since it is a simple term and since it can only reduce to an I-term (a A-
abstraction) if M itself reduces to a A-abstraction, i.e. an I-term. Thus, if M E P,,, is a stubborn
term and N E P, is any term, then M N is a stubborn term in P,. As a consequence, since variables
are stubborn, for any terms Nl, . . . , Nk in P, for every variable x, the term xNl . . . Nk is a stubborn
term in P (assuming appropriate types for x and Nl, . . . , Nk). Instead of (R3), a condition that
occurs frequently in reducibility arguments is the following:

(S2) If N E P, and MIN/x]Nl . . . Nk E C, then (Ax: y. M)NNl . . . Nk E C.

It can be shown easily that (R2) and (R3) imply (S2) (see the proof of lemma 5.8). Terms of
the form xNl . . . Nk or MIN/x]Nl . . . Nk are known to play a role in reducibility arguments (for
example, by Tait, Mitchell, or Krivine), and it is no surprise that they crop up again. However, in
contrast with other presentations, we do not have to deal with them explicitly.

Given a family P, for every type a, we define [a] as follows.

Definition 5.5 The sets [a] are defined as follows:

[a] = Po, a a base type,

[a+ T] = {M I M E P,,,, and for all N,if N E [a] then M N E IT]) .

Lemma 5.6 If P is a family satisfying conditions (P1)-(P3), then each [a] is a P-candidate
that contains all stubborn terms in P,.

Proof. We proceed by induction on types. If a is a base type, [a] = P,, and obviously, every
stubborn term in P, is in [a]. Since [a] = P,, (Rl) is trivial, (R2) follows from (P2), and (R3) is
also t r i ~ i a l . ~

We now consider the induction step.

(Rl). By the definition of [a + TI, (Rl) is trivial.

(R2). Let M E [a -t T] and assume that M -p M'. Since M E Po,, by (Rl), we have
M' E P,,, by (P2). For any N E [a], since M E [a + T] we have M N E [TI, and since
M +p M' we have M N --+p M'N. Then, applying the induction hypothesis at type T, (R2)
holds for [TI, and thus M'N E [r]. Thus, we have shown that M' E Po,, and that if N E [a],
then M'N E [TI. By the definition of [a 4 r], this shows that M' E [a + TI, and (R2) holds at
type a + r.

(R3). Let M E P,,, be a simple term, and assume that Ax: a. M' E [a 4 T] whenever
M f p Ax: a. MI. We prove that for every N, if N E [a], then M N E [TI. First, we prove that
M N E P,, and for this we use (P3). First, assume that M E P,,, is stubborn, and let N be in
[a]. By (Rl), N E P,. By the induction hypothesis, all stubborn terms in P, are in [T]. Since
we have shown that M N is a stubborn term in P, whenever M E P,,, is stubborn and N E P,,
we have M E [a + r] . Now, consider M E P,,, non stubborn. If M f p Ax:a. M', then by
assumption, Ax: a. M' E [a -t r], and for any N E [a], we have (Ax: a. M')N E [T]. Since by (Rl),
N E P, and (Ax: a. M1)N E P,, by (P3), we have M N E P,. Now, there are two cases.

If T is a base type, then [TI = P, and M N E [TI.
If T is not a base type, the term M N is simple. Thus, we prove that M N E [r] using (R3)

(which by induction, holds at type T). The case where M N is stubborn follows from the induction
+ hypothesis. Otherwise, observe that if M N -p Q, where Q = Ay:r. P is an I-term, then the

reduction is necessarily of the form

where M f p Ax: a. M' and N Lp N'. Since by assumption, Ax: a. M' E [a + r] whenever

M f p Ax: a. MI, and by the induction hypothesis applied at type a, by (R2), N' E [a], we
conclude that (Ax: a. M1)N' E [TI. By the induction hypothesis applied at type T, by (R2), we
have Q E [TI, and by (R3), we have M N E [TI.

Since M E P,,, and M N E [T] whenever N E [a], we conclude that M E [a --+ T].

For the proof of the next lemma, we need to add two new conditions (P4) and (P5) to (P1)-(P3).

Definition 5.7 Properties (P4) and (P5) are defined as follows:

(P4) If M E P,, then Ax: a. M E P,,, .
(P5) If N E P, and M[N/x] E P,, then (Ax: a. M)N E P,.

Lemma 5.8 If P is a family satisfying conditions (Pi)-(P5) and for every N, (N E [a] implies
M[N/x] E [T]), then Ax: a. M E [a -t T].

'In fact, if [a] = P,, (R3) holds trivially even at nonbase types. This remark is useful is we allow type variables.

21

Proof. We prove that Ax: a. M E P,,, and that for every every N , if N E [a], then
(Ax: a .M)N E [T]. We will need the fact that the sets of the form [a] have the properties (R1)-(R3),
but this follows from lemma 5.6, since (P1)-(P3) hold. First, we prove that Ax: a. M E P,,,.

Since by lemma 5.6, x E [a] for every variable of type a, by the assumption of lemma 5.8,
M[x/x] = M E [r]. Then, by (Rl) , M E P,, and by (P4), we have Ax: a. M E P,,,.

Next, we prove that for every every N , if N E [a], then (Ax: a. M) N E [r]. Let us assume that
N E [a]. Then, by the assumption of lemma 5.8, M[N/x] E [r]. Thus, by (Rl), we have N E P,
and M[N/x] E P,. By (P5), we have (Ax: a. M) N E P,. Now, there are two cases.

If r is a base type, then [r] = P,. Since we just showed that (Ax: a. M) N E P,, we have
(Ax: a. M) N E [T].

If r is not a base type, then (Ax: a. M) N is simple. Thus, we prove that (Ax: a. M) N E
[r] using (R3). The case where (Ax: a. M) N is stubborn is trivial. Otherwise, observe that if
(Ax: a. M) N f p Q, where Q = Ay: y. P is an I-term, then the reduction is necessarily of the form

(Ax: a. M) N Ap (Ax: a. M1)N' -p M1[N'/z] Ap Q,

where M Lp M' and N Ap N'. But M[N/x] E [r], and since

by (R2), we have Q E [T]. Since (Ax: a. M) N E P, and Q E [r] whenever (Ax: a. M) N f p Q, by
(R3), we have (Ax: a. M) N E [r].

Lemma 5.9 If P is a family satisfying conditions (P1)-(P5), then for every term M of type a,
for every substitution cp such that cp(y) E [y] for every y: y E FV(M), we have M[cp] E [a].

Proof. We proceed by induction on the structure of M . If M is a variable, then x[cp] = cp(x) E
[a] by the assumption on cp. If c is a constant, then c[cp] = c, and c E [a] since this is true by
lemma 5.6.

If M = MINI, where MI has type a + r and N1 has type a, by the induction hypothesis,
MI [cp] E [a + r] and Nl [cp] E [a]. By the definition of [a + r], we get MI [cp]Nl[cp] E [r], which
shows that (MiNl)[cp] E [r], since Mi[cp]Nl[cp] = (MiNl)[cp].

If M = Ax: a. MI, consider any N E [a] and any substitution cp such that cp(y) E [y] for every
y: 7 E FV(Ax: a. MI). Thus, the substitution p[x: = N] has the property that cp(y) E [y] for every
y: y E FV(Ml). By suitable a-conversion, we can assume that x does not occur in any cp(~) for
every y E dom(cp), and that N is substitutable for x in MI. Then, MI [cp[x: = N]] = MI [cp][N/x].
By the induction hypothesis applied t o MI and cp[x: = N], we have Ml[cp[x: = N]] E [T I , that is,
Ml [cp] [NIX] E [T]. Consequently, by lemma 5.8, (Ax: a. Ml [cp]) E [a -t r], that is, (Ax: a. Ml)[cp] E
[a -+ r], since (Ax: a. MI [cp]) = (Ax: a. Ml)[cp].

Theorem 5.10 If P is a family of A-terms satisfying conditions (P1)-(P5), then P, = A, for
every type a (in other words, every term satisfies the unary predicate defined by P).

Proof. Apply lemma 5.9 to every term M of type a and to the identity substitution, which is
legitimate since x E [a] for every variable of type a (by lemma 5.6). Thus, M E [a] for every term
of type a, that is A, P, . Since obviously P, & A,, we have P, = A,.

6 Adding Product and Sum Types x and +
The type-checking rules of the system are summarized in the following definition.

Definition 6.1 The terms of the typed A-calculus A'pX*+ are defined by the following rules.

x :a , when x EX,,

(we can also have c: a , for a set of constants that have been preassigned types).

x : a b M : r
(abstraction)

P (Ax: a. M): a -t T

b M : a + r b N : a
(~ppl ic~t ion)

D (MN): T

b M : a b N:T
(pairing)

b (M , N) : a x r

r > M : a x r ~ M : a x r
(projection) (projection)

r> wl(M): a b 7r2(M): r

b M : a D M : T
(injection) (injection)

D i n l (M) : a + T D inr(M): a + T

b P : a + r x : a b M : 6 y : ~ b N : 6
(by-cases)

b (case P of inl(x: a) M I i n r (y: 7) j N): 6

We also recall the reduction rules.

Definition 6.2 The reduction rules of the system are listed below:

(Ax: a. M) N - M[N/x],

~ l ((~ , N)) + M,

~ 2 ((~ , ---+ N,
case i n l (P) of inl(x: a) + M I inr(y: T) +- N + M[P/x],

case i n r (P) of inl(x: a) + M (inr(y: 7) + N + N[P/y].

The reduction relation defined by the rules of definition 6.2 is still denoted as + p (even though
there are reductions other that /3-reduction). The definition of an I-term is extended as follows.

Definition 6.3 An I-term is a term of the form either Ax: a. M , (M, N) , i n l (M) , or inr(M). A
simple term (or neutral term) is a term that is not an I-term. Thus, a simple term is either a
variable x, a constant c, an application M N , a projection n l (M) or w2(M), or a conditional term
case P of in l (x : a) j M I inr(y: T) + N. A term M is stubborn iff it is simple and, either M is
irreducible, or M' is a simple term whenever M f p M' (equivalently, MI is no t an I-term).

Thus, an I-term is a proof-term corresponding to the conclusion of an introduction rule. The
beauty of I-terms is that they are just what makes condition (R3) work. We need to extend
definition 5.3, definition 5.4, definition 5.5, and definition 5.7, to take into account product types
a x r and sum types a + r.
Definition 6.4 Properties (P1)-(P3) are defined as follows:

(PI) x E P,, c E Po, for every variable x and constant c of type a.

(P2) If M E P, and M -p N, then N E P,.

(P3) If M is simple, then:
(1) If M E P,,,, N E P,, and (Ax: o. M1)N E P, whenever M f p Ax: a. MI, then M N E P,.

(2) If M E Pox,, and wl((M1, N')) E P, and n2((M1, N')) E P, whenever M f (M', N'),
then nl(M) E P, and na(M) E P,.

From now on, we only consider families P satisfying conditions (P1)-(P3) of definition 6.4. Note
that (P3) still implies that if M E P,,, is a stubborn term and N E P, is any term, then M N
is a stubborn term in P,. It also implies that if M E Pox, is a stubborn term, then nl(M) is a
stubborn term in P, and 7r2(M) is a stubborn term in P,.

Definition 6.5 A nonempty set C of terms of type a is a P-candidate iff it satisfies the following
conditions:

(Rl) C c P,.

(R2) If M E C and M +p N, then N E C.

(R3) If M is simple, M E P,, and M' E C whenever M f a M' and M' is an I-term, then
M E C.

Note that (R3) and (PI) imply that for every type a, any P-candidate C of type a contains all
variables and all constants of type a.

Definition 6.6 The sets [a] are defined as follows:

[a] = Po , a a base type,

[a + r] = {M (M E P,,,, and for all N, if N E [a] then M N E [r]),

[a X = {M I M E Po x77 ~1 (M) E [a] 7 and r2(M) E [r]),
[a + T] = {M I M E PC+,, either M' E [a] whenever M Ap inl(M1), or

M u E [T] whenever M inr(MU)}.

Note that [a x r] and [a + r] can also be defined as follows:

[a x 71 = {M I M E Pux,, r i (M) E [all n {M I M E Pox,, n2(M) E [7B},

[a + r] = {M I M E Po+,, M' E [a] whenever M inl(M')) U

{M I M E P,+,, M" E [r] whenever M Ap inr(MU)}.

We now prove a generalization of lemma 5.6.

Lemma 6.7 If P is a family satisfying conditions (P1)-(P3), then each [a] is a P-candidate
that contains all stubborn terms in P,.

Proof. We proceed by induction on types. The base case is as in lemma 5.6. The induction
step has more cases since we also need to deal with product and sum types.

(Rl). This is trivial by the definitions of [a + r], [a x TI, and [a + T],

(R2). There are three cases depending on the type.

1. Arrow type a + r. The proof is as in lemma 5.6, since an I-term of type a 4 r is necessarily
of the form Ax: a. M .

2. Product type a x r. Assume that M -p M' for M E [a x r]. We need to prove that
MI E P,,,, nl(M1) E [a], and 7r2(M1) E [TI. Since M E [a x r], by (Rl), M E Pox,, and by (P2)
MI E P,,,. Since M E [a x r], we have 7rl(M) E [a] and 7r2(M) E IT]. But 7r1(M) -+p nl(M1)
and 7r2(M) ---tp 7r2(M1), and by the induction hypothesis, by (R2), we get nl(Mf) E [a] and
7r2(M1) E [TI.

3. Sum type a+r. Assume that M +p M' for M E [a+r]l. We need to prove that MI E P,+,,
and that either MI E [a] whenever M' inl(Ml), or M2 E [r] whenever MI Ap inr(M2).
Since M E [a + TI), by (Rl), M E Po+,, and by (P2) M' E Po+,. Since M --+p MI, we have
M Lp inl(Ml) whenever M' Lp inl(Ml), and M L p inr(M2) whenever M' Lp inr(M2).
However, by definition of [a + T], either MI E [a] whenever M A p inl(Ml), or M2 E [T]

whenever M Lp inr(M2). Thus, MI E [a] whenever M' Ap inl(Ml), or M2 E [r] whenever
M' A p inr(M2).

(R3). Let M be a simple term. There are three cases depending on the type of M.

1. Arrow type a + r. The proof is as in lemma 5.6, since an I-term of type a + T is necessarily
of the form Ax: a. M , and we use (P3)(1).

2. Product type a x r. Let M E Pox, be a simple term, and assume that M' E [a x T]

whenever M f p M' and M' is an I-term. We need to show that 7rl(M) E [a] and a2(M) E (r].
If M E P,,, is stubborn, we have shown that nl(M) is a stubborn term in P, and that 7r2(M)
is a stubborn term in P,. By the induction hypothesis, all stubborn terms in P, are in [a] and
all stubborn terms in P, are in IT]. Thus, when M is stubborn, 7rl(M) E [a] and 7r2(M) E [TI.
Next, assume that M is not stubborn. Now, an I-term of type a x r is necessarily of the form
(MI, Nl), and by the assumption, whenever M f p (MI, Nl), we have (MI, Nl) E [a x r]. This
implies that nl((M1, Nl)) E [a] and 7r2((M1, Nl)) E [TI. By (Rl), we have nl((M1, Nl)) E Po,
n2((M1, Nl)) E P,, and by (P3)(2), we get nl(M) E P, and 7r2(M) E P,. If a is a base type, then
[a] = Pa and 7r1(M) E [a]. Similarly, if r is a base type, then [r] = P, and 7r2(M) E [T].

Let us now consider the case where a is not a base type, the case where r is not a base type
being similar. Then, we know that nl(M) E P, and nl(M) is a simple term. We use (R3) to prove
that 7r1(M) E [a]. The case where 7r1(M) is stubborn is trivial. Otherwise, we need to show that
MI E [a] whenever 7r1(M) f p MI and MI is an I-term. Then, the reduction al(M) f M'
must be of the form

~l (M) f - f p w((M1, Nl)) -p Ml A p MI,

