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ABSTRACT 

 

STRUCTURE-FUNCTION RELATIONSHIPS OF RNA AND PROTEIN IN 

SYNAPTIC PLASTICITY  

Sarah A. Middleton 

Junhyong Kim 

  

 Structure is widely acknowledged to be important for the function of ribonucleic 

acids (RNAs) and proteins. However, due to the relative accessibility of sequence 

information compared to structure information, most large genomics studies currently use 

only sequence-based annotation tools to analyze the function of expressed molecules. In 

this thesis, I introduce two novel computational methods for genome-scale structure-

function analysis and demonstrate their application to identifying RNA and protein 

structures involved in synaptic plasticity and potentiation—important neuronal processes 

that are thought to form the basis of learning and memory. First, I describe a new method 

for de novo identification of RNA secondary structure motifs enriched in co-regulated 

transcripts. I show that this method can accurately identify secondary structure motifs 

that recur across three or more transcripts in the input set with an average recall of 0.80 

and precision of 0.98. Second, I describe a tool for predicting protein structural fold from 

amino acid sequence, which achieves greater than 96% accuracy on benchmarks and can 

be used to predict protein function and identify new structural folds. Importantly, both of 

these tools scale linearly with increasing numbers of input sequences, making them 
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feasible to run on thousands of sequences at a time. Finally, I use these tools to 

investigate RNA localization and local translation in dendrites—two processes that are 

prerequisites for long-lasting synaptic potentiation. Using soma- and dendrite-specific 

RNA-sequencing data as a starting point, I define the full set of RNAs localized to the 

dendrites, identify novel secondary structure motifs enriched in these RNAs that may act 

as dendritic localization signals, and predict the structure of all proteins that would be 

produced by these localized RNAs during local translation. The results shed new light on 

potential regulatory mechanisms of dendritic localization and roles of locally translated 

proteins at the synapse, and demonstrate the utility of structure-based tools in genomics 

analysis. 
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Chapter 1: Introduction 
 

 

 

 

As an introduction to the computational structure analysis tools and biological 

applications that will be presented in the main body of this thesis, I review here the basics 

of ribonucleic acid (RNA) secondary structure, protein tertiary structure, and the 

fundamental concepts of synaptic plasticity and long-term potentiation in neurons, 

focusing in particular on areas where structure analysis can yield new insight into 

biological function. 

 

1.1. RNA structure 
  

 RNAs are versatile macromolecules that play a wide variety of roles in the cell—

most notably as a mobile templates coding for proteins, but also sometimes as 

independent regulatory or catalytic molecules [1,2]. RNAs self-base pair to form various 

structures that help define their function and regulation. Below I review the basics of 

RNA structure, including how it can be predicted and examples of functional structures. 
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1.1.1. Overview 

 RNA is a single-stranded polymer made up of a chain of individual nucleotides, 

each composed of a ribose sugar with a phosphate group at the 5’ position, a nitrogenous 

base at the 1’ position, and hydroxyl groups at the 2’ and 3’ positions. Nucleotides are 

joined together by a phosphodiester bond between the phosphate group of one nucleotide 

and the 3’ hydroxyl of another. Thus the final RNA polymer has directionality, where one 

end has a free phosphate group (called the 5’ end) and the other end has a free hydroxyl 

(called the 3’ end). The 5’ end is considered the “beginning” of the molecule, since 

translation (the synthesis of protein from RNA) proceeds in a 5’ to 3’ direction.  

 There are four canonical types of bases used in RNA: adenine (A), guanine (G), 

cytosine (C), and uracil (U). Certain bases can form hydrogen bonds with each other to 

create base pairs. The standard “Watson-Crick” base pairs are G-C and A-U, but other 

pairings, most notably G-U “wobble” pairs [3], are also possible under certain conditions. 

Base pairing is energetically favorable, and therefore the single strand of a given RNA 

will tend to form base-pairing interactions with itself when possible. This causes each 

RNA to take on a shape determined by the base pairs that occur. The two-dimensional 

conformation of an RNA that results from base pairing is generally referred to as its 

“secondary structure”, whereas the linear sequence of nucleotides that make up the RNA 

is called its “primary structure”.  

 RNA secondary structures can be broken down into a relatively small set of 

building blocks. One of the most common building blocks is the stem-loop (or “hairpin”) 

structure. Stem-loops consist of a “stem” of consecutive paired bases, and a “loop” of at 
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least three unpaired bases, where the single strand of RNA loops back around to pair with 

itself at the stem (Fig. 1-1A). Stem-loops are often interrupted by interior loops, which 

are regions of one or more unpaired bases within the stem; or by bulges, which are 

interior loops where only one side of the stem is unpaired. Branches may also occur 

where two or more stems split from a single stem, sometimes accompanied by internal 

loop (Fig. 1-1A). 

 The definition of secondary structure is generally restricted to only base pairing 

interactions that result in well-nested structures (i.e. interactions that do not cross over 

each other) (Fig. 1-1B). However, RNA structure also has an important three-dimensional 

component, referred to as its tertiary structure. For example, stem-type secondary 

structures form a helix in three-dimensional space (Fig. 1-1C), and this helix can have 

different properties and shapes depending on the combination of base pairs that form the 

stem and the presence of bulges or interior loops [4]. Non-nested base pairing interactions 

are also possible, including pseudoknots, which are regions of base pairing interactions 

that cross over each other (Fig. 1-1D), and G-quadruplexes, which are formed by 

interactions between repeated groups of guanines to form a four-stranded structure (Fig. 

1-1E) [4].  

 

1.1.2. RNA structure prediction  

 

Experimental methods 



4 

 

 Until recently, experimental methods for probing RNA secondary structure were 

relatively low-throughput. Classic methods include X-ray crystallography, nuclear 

magnetic resonance (NMR) spectroscopy, single-strand RNA (ssRNA)- or double strand 

RNA (dsRNA)-specific chemical modification followed by primer extension (e.g. 

SHAPE [5]), and ssRNA/dsRNA nuclease cleavage followed by fragment size analysis 

[6]. These methods, though accurate, are time consuming and difficult to apply to 

multiple RNAs in parallel. New methods for structure probing combine various chemical- 

and nuclease-based techniques with high-throughput RNA sequencing to greatly increase 

the number of RNAs that can be probed at once [7]. Although these methods show great 

promise, they do not always give complete information for all RNAs, and have not yet 

been applied to all species. Because of this, computational structure prediction methods 

continue to be developed to fill the holes in existing RNA structure data. 

 

Computational methods 

 Given a set of parameter values defining the change in free energy associated with 

different base pairs (i.e. their stability), and assuming that all secondary structures will be 

well-nested, then the “optimal” secondary structure—that is, the structure with the 

minimum free energy (MFE)—for any given RNA sequence can be found in using a 

dynamic programming algorithm [8–12]. These thermodynamic modeling-based 

approaches are still widely used today to predict secondary structure in the absence of 

other sources of information. Although these methods are relatively fast, their main 

drawback is that the MFE structure is often not the structure taken on in vivo, due to 
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external factors such as protein binding to the RNA or changes in environmental ion 

concentration [1]. The differences between the MFE structure and true in vivo structure 

are particularly apparent for longer (>700nt) sequences, for which only about 60% of 

predicted base pairs are estimated to be correct on average [1]. 

 One way to improve the accuracy of in silico secondary structure prediction is to 

use comparative information across multiple homologous RNAs. If the structure of the 

RNA is functionally important, it may show a pattern of conservation called 

“covariation”. Covariation is when there are compensatory base changes that maintain 

base-pairing potential of the sequence. In a multiple sequence alignment of homologous 

RNAs, this manifests as columns of the alignment with pairing-compatible changes—for 

example, when the base in one column changes from a G to an A, the base in the other 

column changes from C to U (Fig. 1-2). Such a change maintains the ability of the RNA 

to form a base pair between those particular bases. The observation of multiple 

compensatory changes across evolution provides strong evidence for in vivo base-pairing 

interactions, and can therefore be used to guide structure prediction [13–17]. Often, this is 

used in combination with thermodynamic modeling to arrive at the final structure 

prediction [18–21]. Although these covariation-based methods can be very accurate, they 

are much more computationally intensive than thermodynamic modeling alone due to the 

need to calculate a multiple alignment of the input sequences. This method is therefore 

not feasible for all applications, as will be discussed further in Chapter 2. 
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1.1.3. Structure-function relationships 

One of the primary roles of RNA is to serve as a template for the creation of 

proteins. Within protein-coding RNAs, also known as messenger RNAs (mRNAs), three 

functionally distinct regions are defined: the coding region (CDS), which is the part of 

the mRNA that is translated into protein; the 5’ untranslated region (UTR), which is 

upstream of the CDS and is not translated; and the 3’UTR, which is downstream of the 

CDS and also not translated. The 5’UTR is generally relatively short (a few hundred 

nucleotides (nt)), but can occasionally contain sequence and structure motifs that help 

recruit and position translational machinery, such as the ribosome, at the correct start site 

of the CDS [22–24]. The 3’UTR, on the other hand, is often much longer (up to several 

thousand nt) and contains a rich variety of sequence and structure motifs involved in 

various aspects of mRNA regulation, including subcellular localization, translation, and 

degradation [25].  

There are several mechanisms by which secondary structures can play a functional 

role in the mRNA. Most prominently, structures often serve as binding sites for RNA-

binding proteins (RBPs). Depending on the RBP, it may be the RNA structure itself that 

is recognized (e.g. binding of the RBP Staufen to dsRNA [26]), or the structure may help 

position a linear sequence of unpaired nucleotides (e.g. within a loop) into a more 

favorable position for recognition [27]. Once bound, RBPs can initiate and regulate a 

variety of different functions. For example, Staufen2 likely helps mediate dendritic 

localization of the RNAs to which it binds [28,29]. Another example is the ADAR 

(adenosine deaminase acting on RNA) RBPs, which bind to long stems of dsRNA and 
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perform RNA editing to change adenines to inosines [30]. Conversely, a secondary 

structure can also function by occluding a binding site for an RBP or microRNA, 

blocking those molecules from binding. In rare cases, secondary structures mediate 

function by mimicking or replacing other molecules. For example, an mRNA from the 

cricket paralysis virus contains an internal ribosome entry site (IRES) that mimics the 

structure of tRNA-Met and forms a pseudoknot with the initiation codon. This allows the 

virus to initiate translation in the absence of canonical initiation factors [31,32]. 

Another large class of RNA is non-coding RNA (ncRNA), which includes 

functionally diverse subclasses such as microRNAs (miRNAs), transfer RNAs (tRNAs), 

ribosomal RNAs (rRNAs), long non-coding RNAs (lncRNAs), among others [33]. For 

these RNAs, structure is often a vital determinant of function [34]. For example, the 

cloverleaf structure of tRNA is strongly conserved across species, despite substantial 

variation on the sequence level (46% pairwise identity on average according to the Rfam 

database [35]), which allows it to associate with the ribosome. In the case of ribozymes, 

such as 23S rRNA, RNaseP, and self-splicing introns, the structure of the RNA actually 

confers independent catalytic activity to the RNA [33]. For other ncRNAs, structure plays 

the most important role during biogenesis. Examples of this are the hairpin structures of 

pri- and pre-miRNA that are necessary for cleavage into mature miRNA by Drosha and 

Dicer proteins [36]. There are many more examples of functional ncRNA structures in 

the literature, and many families of such structures have been compiled into the Rfam 

database [35]. 
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There are two particular ideas worth noting regarding the structure-function 

relationship of RNA. The first is that if we know of a structure that plays a functional role 

in one RNA, we can search the transcriptome for similar structures to identify other 

RNAs that have a common function (in the case of ncRNAs) or are co-regulated by the 

same RBP or pathway (in the case of mRNA regulatory motifs). This is the basis of the 

Rfam database [35], which uses covariance models—a type of stochastic context-free 

grammar that can model both sequence and secondary structure—to scan for new 

instances of known functional structures. Secondly, and relatedly, if we know a set of 

mRNAs are co-regulated, we can look for structural motifs shared between them to find 

candidates for the regulatory element or RBP binding site. Computational methods for 

performing this particular kind of analysis are currently lacking due to the difficulty of 

obtaining accurate structure predictions for large datasets and the difficulty of measuring 

the notion of similar secondary structures. This problem will be addressed in Chapter 2. 

 

1.2. Protein structure 
 

Proteins are the main workhorses of the cell, participating in almost all aspects of 

cellular function, including gene expression, energy production, signaling, catalysis, 

transport, and cytoskeleton formation. Structure is an indispensable aspect of function for 

almost all proteins, and even small disruptions of structure can lead to serious diseases 

[37]. In this section, I review the basics of protein structure-function relationships and 

how they can be predicted. 
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1.2.1. Overview 

A protein is composed of a linear chain of amino acid residues linked by peptide 

bonds between the carboxyl group of one amino acid and the amino group of the next. 

There are 20 canonical amino acids that vary in size, charge, hydrophobicity, polarity, 

and modifiability. The unique combination and ordering of residues in a protein are the 

basis for protein structure and function. 

Protein structure is often described as having four levels: primary, secondary, 

tertiary, and quaternary. The primary structure is simply the linear sequence of amino 

acids making up the protein. The secondary structure is defined as the local patterns of 

hydrogen bonding between a carboxyl oxygen and amino hydrogen of nearby residues. 

The most common and stable secondary structures are the α-helix [38] and β-sheet [39], 

but other conformations such as coils and turns are also observed. Tertiary structure is the 

full three-dimensional conformation of the protein, which is stabilized by covalent 

interactions, hydrogen bonds, hydrophobic interactions, van de Waals forces, electrostatic 

interactions, and repulsive forces. It is the tertiary structure that is considered most 

important for overall function of most proteins, although individual primary and 

secondary features can also have functional roles. Finally, the quaternary structure refers 

to the organization of multiple separate protein chains into a functional complex. 

Many proteins have smaller subregions called domains. In the context of structural 

biology, a domain is usually defined as a compact, stable, independent folding unit 

[40]—that is, if the domain sequence were to be cleaved from the rest of the protein, it 

would still take on its native, stable tertiary structure. Alternatively, in the context of 
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evolutionary sequence analysis, a domain is defined as a conserved region of the protein 

sequence, often with a conserved function (for example, the domains defined in the Pfam 

database [41] are of this type). It is important to note that in practice these two definitions 

often coincide, since structural domains are usually evolutionarily conserved and have a 

specific function [40]. The definition of a structural domain is broader, however, because 

it is possible for non-homologous sequences to have the same structure. In this thesis, I 

will primarily use the word “domain” to refer to the union of these definitions, and 

specify “structural domain” or “sequence domain” when distinction is necessary. 

A remarkable feature of domains is their modularity. Most proteomes appear to be 

composed of a finite library of domains that have been “mixed and matched” to produce 

various functional combinations within multi-domain proteins [40]. Due to accumulated 

sequence variation over time, the instances of a domain have varying levels of sequence 

similarity across different proteins and species. Many domains have become so diverged 

that it is impossible to recognize them based on sequence alone. In these cases, structural 

information can be used to identify domains, because structure is usually more conserved 

than sequence [42]. Given the complexity of relationships between domains, several 

hierarchical classification schemes have been created to organize domain instances (that 

is, individual observations of a domain in a protein) based on defined levels of similarity 

and evolutionary relationship. The Structural Classification of Proteins (SCOP) database, 

for example, manually curates groups of domains on four main levels: family, 

superfamily, fold, and class [43]. “Families” group together homologous domains with 

highly similar sequence and closely related function (although there can be fine-grained 
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functional differences between members of a family, such as different binding 

preferences for DNA-binding domains). “Superfamilies” group together families with 

more divergent, but still recognizable, sequence similarities. Superfamilies also tend to 

have a general conserved function. The next level is “fold”, which groups together 

superfamilies with similar tertiary structures (that is, similar numbers and topological 

arrangements of secondary structures). Folds are defined purely based on structure, and it 

is not always clear if the constituent superfamilies are related evolutionarily or have 

arrived at similar structures by convergent evolution. Nonetheless, members of a fold 

typically still have similar coarse-grain functions, with the exception of some highly 

diversified and prevalent “superfolds”, which have been adapted to a variety of distinct 

purposes [44]. Interestingly, there appears to be a limited number of folds used by natural 

proteins—only a little over 1,000 folds are currently defined, and the rate of new fold 

discoveries has steadily declined over the past few years. Finally, the “class” level of 

SCOP groups folds very roughly based on overall secondary structure composition and 

other properties, such as all-α-helix, all-β-sheet, mixed-α-β, membrane proteins, and a 

few others. Overall, this taxonomically-inspired classification scheme (and others, such 

as CATH [45]) provides a convenient discretization of domain similarity that enables 

analysis at defined levels of evolutionary and structural relationship.  

 

1.2.2. Protein structure prediction 

 

Experimental methods 
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Protein tertiary structure can be experimentally determined (“solved”) using 

several methods, most commonly X-ray crystallography and NMR spectroscopy. X-ray 

crystallography requires purification and crystallization of the protein of interest, which is 

then exposed to X-rays to obtain a diffraction pattern. This diffraction pattern is analyzed 

to infer the location of atoms in the structure. Although crystallography can be very 

accurate, it is limited by the difficulty of obtaining protein crystals. Proteins with flexible 

domains are particularly difficult to crystalize, and must be split into non-flexible 

fragments to obtain partial crystal structures. NMR spectroscopy, on the other hand, is 

well-suited for flexible proteins, since it works on proteins in solution and does not 

require crystallization. NMR spectroscopy measures atomic resonance while exposing the 

protein to various radio frequencies in a strong magnetic field, which can be analyzed to 

identify nearby atoms in the structure. This is then used to infer the three-dimensional 

structure. The drawbacks of NMR spectroscopy are that it is generally limited to only 

small proteins, cannot be used for insoluble proteins such as membrane proteins, and has 

low spatial resolution. Recently, another method called Cryo-electron microscopy (Cryo-

EM) has improved in resolution to the point where it can be used for atomic-level 

structure solving. Cryo-EM has promise to alleviate several of the difficulties facing 

crystallography, since it freezes molecules rather than crystalizing them, but the method 

is still under development [46]. Overall, all three methods are limited to various degrees 

by expense and throughput capacity, and because of this only a fraction of known protein 

sequences have been structurally characterized. This has motivated the development of a 

wide array of computational structure prediction methods. 
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Computational methods 

Computational methods for predicting protein tertiary structure can generally be 

divided into two categories: ab initio and template-based [47]. Ab initio (or de novo) 

methods attempt to determine a protein’s structure directly from the sequence using first-

principles molecular dynamics simulations. However, due to the enormous search space 

of possible three-dimensional conformations for an average-sized protein, ab initio 

methods are generally only computationally feasible for the smallest proteins [48]. 

Therefore, template-based modeling has been the more popular method over the last two 

decades.  

Template-based modeling covers a wide variety of methods that make use of 

currently known information about protein structures—e.g. experimentally solved protein 

structures in the Protein Data Bank (PDB) [49]—as a starting point (or “template”) for 

predicting the structures of new proteins. Template-based modeling can be subdivided 

into two main types: homology modeling and threading. Homology modeling, also called 

comparative modeling, uses sequence alignment methods to match a query sequence to 

any homologous sequences within the database of structurally-solved proteins. These 

methods work on the assumption that homologous proteins are likely to share a 

conserved structure, and therefore the structure of the homolog can be used to predict the 

structure of the query. Homology modeling methods such as HHPred [50]—which uses 

hidden Markov model (HMM)-based profile-profile alignments to increase sensitivity—

have demonstrated good results when a homolog can be detected. However, the major 
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challenge facing these methods is the difficulty of detecting more remote homologs—

those falling within the “twilight zone” of sequence similarity, usually <30% identity 

[51]. This includes a large fraction of proteins at the current time, and has thus motivated 

the second template-based method—threading. Threading or “fold recognition” methods 

do not require homology or sequence similarity with a structurally solved protein in order 

to work, but instead try to directly use structural information to find the best match for 

the query. Briefly, threading comprises aligning a query sequence to a structural 

“template”, defined in this context as the three-dimensional coordinates of atoms derived 

from a known protein structure (usually with the side chains removed). The best 

alignment between the query and structure is determined based on the compatibility of 

residue contacts, secondary structures, solvent access, and other criteria. This process is 

then repeated for every template in the database to identify which structure gives the most 

thermodynamically favorable structure for that sequence. Although threading has the 

advantage of working even in the absence of homology between the query and template, 

it is limited by much greater computational costs than homology modeling. Nonetheless, 

threading is much more tractable than ab initio methods, and thus has been used 

extensively and to good success over the last several years [51]. 

More recently, a third category of methods has emerged that combines aspects of ab 

initio and template-based methods [47]. These hybrid methods usually cut the protein 

sequence into many smaller fragments, and then attempt to match each fragment to one 

or more templates (which themselves are fragments of known structures). Once template 

candidates have been identified, ab initio methods are used to assemble the fragments 
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into a conformation that is energetically favorable for the protein as a whole. Using the 

templates as a starting point greatly limits the search space, making the ab initio 

simulations more tractable. I-TASSER [52] and Rosetta [53] are two examples of highly 

successful hybrid methods. However, these methods are still too slow to be applied to 

large scale projects, such as whole-proteome structure prediction. 

 

1.2.3. Structure-function relationships 

There is a strong association between structure and function among proteins. 

Proteins with similar structure very often have similar function [54], and—to a lesser 

extent—proteins with similar function may have similar structure. This has been shown 

to hold true even for highly disparate amino acid sequences, and is the main motivation 

behind the field of structural genomics, which makes extensive use of the experimental 

and computation methods described above to make inferences about function based on 

structural similarities between proteins on a genome scale [55]. 

There are limits to the amount of functional information that can be gained simply by 

matching proteins to similar tertiary structures. For one thing, since structure prediction is 

usually done on the level of individual domains, this information must be integrated to 

understand the overall function of multi-domain proteins. Secondly, many of the nuances 

of domain function are influenced by fine-grained differences in the arrangement of 

secondary structures or by variation of specific residues in a binding pocket or enzymatic 

active site. This is particularly evident in the case of “superfolds”; for example, the TIM 

barrel fold is primarily found in enzymes, but consists of at least 60 distinct enzyme 
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commission (EC) classes [44]. Finally, a large fraction of proteins include “intrinsically 

disordered” regions that do not take on a well-defined native tertiary structure. These 

regions often serve as flexible linkers between domains in multi-domain proteins, or may 

only fold when bound by a cofactor [47,56]. The function of these regions is therefore not 

amenable to typical structure-based analysis. 

Despite these limitations, structure prediction has proved to be an extremely useful 

first step towards a functional understanding of uncharacterized proteins [54]. Improving 

the speed of methods for recognizing structural similarities, especially in the absence of 

sequence similarity, will greatly increase our capability for genome-scale annotation of 

protein function. A new approach to this problem will be discussed in Chapter 3. 

 

1.3. Neurons, plasticity, and structure 
 

Neurons are highly polarized cells consisting of a cell body (soma), and long, 

branched processes (usually a single axon and multiple dendrites). The flow of 

information through the neuron typically proceeds from the dendrites, which receive 

signals from other neurons at synapses; to the soma, which integrates signals; and finally 

to the axon, which transmits signals to other neurons. Synapses show a remarkable ability 

to remodel themselves in response to stimulation, becoming more or less responsive to 

future inputs (synaptic plasticity). This is thought to be one of the mechanisms underlying 

the larger scale phenomena of learning and memory in the brain. Here, I will survey 

important concepts related to synaptic plasticity in pyramidal neurons of the CA1 
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hippocampus, which have been studied extensively in this context, and highlight areas 

where structure analysis can help further our understanding. 

 

1.3.1. Components of pyramidal neurons  

Pyramidal neurons exist in a wide variety of mammals and are generally found in 

brain structures associated with complex cognitive function [57,58]. The morphology of 

pyramidal neurons is characterized by a single axon with many branches that make 

excitatory glutamatergic synapses with other neurons, as well as an extensive dendritic 

arbor with mostly excitatory synaptic inputs [58]. Pyramidal neurons may also receive 

some synaptic inputs on the axon and soma, which are typically inhibitory GABAergic 

synapses [58]. 

 An important set of substructures of pyramidal dendrites are the dendritic 

spines—small, knob-like protrusions along the dendrites which are the site of most 

glutamatergic synapses. Spines vary widely in size and shape [59] and show 

morphological and functional plasticity over time [60–62]. A single pyramidal neuron 

may have thousands of dendritic spines, occurring at a density of about 1-10 spines per 

µm of dendritic length in mature neurons [59]. Although the precise purpose of spines is 

unclear, one of their main functions is likely to compartmentalize synapses and help 

prevent important molecules from diffusing away [63,64]. The spine neck may also serve 

to modulate electrical conductance properties [65]. Abnormal spine morphology has been 

observed in many neurological disorders, including Down Syndrome [66], Fragile X 

Syndrome [67], and epilepsy [68].  
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 Dendrites also contain a variety of organelles, including abundant mitochondria 

[69], endoplasmic reticulum (ER) [70–73], Golgi “outposts” [70], and multivesicular 

bodies [71,73]. An organelle called the “spine apparatus” has also been observed in 

dendrites [74,75], which appears in 10-15% of mature hippocampal spines [71]; however, 

the exact function of this organelle is not currently well understood. In addition to 

organelles, many components of the translational machinery have been found in dendrites 

at the base of spines, including tRNAs, polyribosomes, and initiation/elongation factors 

[76–78]. 

 

1.3.2. Long-term potentiation 

The idea that the plasticity of synapses could play a central role in learning and 

memory was suggested over a century ago by Santiago Ramόn y Cajal [79]. In 1949, 

Donald Hebb formalized a model of how synaptic plasticity relates to learning and 

memory [80], but it was not until about 20 years later that substantial evidence for a 

molecular basis of such a model was provided by the discovery of long-term potentiation 

(LTP) [81,82]. These studies showed that stimulating excitatory hippocampal synapses 

resulted in a long-lasting increase in synaptic strength of those synapses. Since then, LTP 

has become an area of intense research in the field of neuroscience, and remains one of 

the leading hypotheses of the molecular basis of learning and memory [83,84]. Although 

there are now thought to be multiple forms of LTP, which depend on factors such as 

brain region and stimulation frequency [84], I will focus here on N-methyl-D-aspartate 

(NMDA) receptor-dependent LTP that occurs in the CA1 region of the hippocampus. 
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 LTP is often described as having two stages: an early phase (E-LTP), usually 

defined as the first 1-3 hours after stimulation; and a late phase (L-LTP), which requires 

protein synthesis and gene transcription [85]. E-LTP is triggered by activation of post-

synaptic NMDA receptors (NMDARs), which open to allow calcium influx [84]. This 

activates Ca
2+

/calmodulin-dependent protein kinase (CaMKII) [86], which causes a rapid 

increase in α-Amino-3-hydroxy-5-methyl-4-isoxazoleprpionic acid receptors (AMPARs) 

in the synapse membrane [87]. The exact mechanism by which CaMKII influences 

AMPAR synaptic trafficking is currently unclear. Several early studies suggested that 

CaMKII phosphorylates the carboxy-terminal tail (C-tail) of AMPAR subunit GluA1 

and/or AMPAR-accessory proteins [84]. In contrast, a recent set of studies has suggested 

that the C-tail of GluA1 is not needed for normal LTP, and furthermore, AMPARs can be 

completely replaced with kainite receptors without a substantial impact on LTP [84,88]. 

There is also conflicting evidence about which other signaling cascades, besides that 

mediated by CaMKII, might be important for LTP. Many molecules have been 

discovered that seem to modulate LTP, but few besides CaMKII have been shown to be 

vital [83]. These results show that despite substantial progress over the past 20 years, 

there is still much that is not well understood about this process.  

 The second phase, L-LTP, is dependent on new protein translation. Furthermore, 

this new translation often occurs in the dendrites themselves, in close proximity to the 

activated synapse [89]. There is now substantial evidence that a subset of neuronal 

mRNAs are actively localized to the dendrites, usually in a translationally repressed state, 

and then translated locally in or near spines in response to synaptic activation. The topics 
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of mRNA localization and local translation are discussed in more detail in the next two 

sections. It is worth noting that there is also evidence for an important role of new 

transcription for L-LTP [90], which will not be reviewed extensively here.  

 Beyond changing the molecular composition of the synapse, LTP also causes (and 

possibly is perpetuated by) changes in the shape and size of the spine in which the 

synapse is housed [69]. The mechanisms of how this occurs are still being investigated, 

but filamentous actin (F-actin) polymerization dynamics likely play an important role 

[69,84]. F-actin makes up one of the major structural components of spines, and 

inhibition of actin polymerization prevents spine growth and LTP [91,92]. Activity-

dependent cytoskeletal growth may be due to CaMKII activation of Rho GTPases, which 

promote actin polymerization, although how this occurs is not known [84]. It is 

hypothesized that these changes in structure may help promote AMPAR incorporation 

into the synapse, and thus promotes LTP [84]. After increasing in size, the spine can be 

further stabilized by cell adhesion molecules, such as N-cadherin, which has been shown 

to increase after synaptic activity [69]. 

 

1.3.3. Importance of RNA localization and local translation 

Direct evidence for the idea that new protein synthesis was required for memory 

formation was first demonstrated in the 1960s, where it was shown that mice injected 

with the protein synthesis inhibitor puromycin to the temporal lobe showed impaired 

long-term memory formation if the injection was given within three days [93]. A large 

number of follow-up studies corroborated the potential importance of new protein 
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synthesis in a variety of memory-related behaviors [94]. On the molecular level, 

treatment with the protein synthesis inhibitor anisomycin was shown to inhibit spine 

enlargement during LTP [95], lending further support that LTP might form the molecular 

basis of learning and memory. However, these studies at first did not directly address the 

question of where within the neuron this new protein synthesis was occurring, and it was 

generally assumed that it would occur in the soma [85].  

Following the discovery of polyribosomes [76] and multiple mRNAs [96–98] in the 

dendrites, the idea that translation could occur locally in the dendrites began to gain 

popularity. This model was attractive for several reasons. For one, it provided a simple 

mechanism by which newly synthesized proteins could be sorted to the correct synapse: 

synaptic activation could trigger translation of only those mRNAs in the vicinity of the 

spine, thus causing a local increase in new proteins at the activated synapse. Other 

theoretical benefits include reduced transport costs, faster response time, and prevention 

of toxic ectopic protein expression [99,100]. Finally, in 1996, two studies provided direct 

evidence that protein synthesis can in fact occur locally in isolated dendrites [101] and 

hippocampal tissue slices [102].  

Although local translation is now generally accepted as being important for lasting 

synaptic potentiation [103], there is less known about exactly which mRNAs are 

localized and what roles individual locally-translated proteins play in LTP. As techniques 

for profiling and quantifying RNA have improved, estimates of the dendritic 

transcriptome have expanded from a few RNAs [98] to a few hundred [104–107] to 

possibly even a few thousand [108,109]. There are several RNAs that are considered 
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“gold standard” localized RNAs, which have been observed by multiple labs and 

methods to be robustly localized to the dendrites, such as CaMKIIα, β-actin, Arc, and 

BC1. But overall, there has been surprisingly little concordance between different 

analyses of the dendritic transcriptome, even when the same organism and brain region 

are profiled. In terms of understanding the actual functional role of individual localized 

mRNAs and their protein products, even more work remains to be done. To show 

specifically that local translation of a particular protein is important for LTP, an ideal 

experiment would disrupt only the local translation of that protein without altering its 

somatic expression. So far, this has mostly been accomplished in a few isolated cases, 

usually by abolishing the dendritic localization of the mRNA. For example, in mice 

lacking the 3’UTR of CaMKIIα mRNA, which contains its dendritic targeting sequence, 

it was shown that protein levels of CaMKII at the synapse were greatly reduced and L-

LTP was impaired [110]. Much more work remains to be done to understand the role of 

the many potential locally-translated proteins in LTP. 

 

1.3.4. Mechanisms of dendritic RNA localization: a role for structures 

Proper localization of RNAs to the dendrites is a prerequisite for local translation, 

and therefore for long-lasting synaptic potentiation. Dendritic localization is thought to be 

mediated by specific RNA-binding proteins (RBPs) that recognize sequence or structure 

motifs on their target RNAs [100,111,112]. These RBPs may recruit other proteins to the 

RNA, forming a ribonucleoprotein complex (RNP). The RNP typically includes proteins 

that interact with motor proteins such as kinesin and dynein [113–115], which move 
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along microtubules in the soma and dendrites to bring the RNP to its destination. While 

in the dendrites, RNA is mostly kept in a translationally repressed state by proteins in the 

RNP [115–117]. This repression is then relieved when a nearby synapse is activated, 

allowing for local production of proteins [117,118].  

Interactions between RBPs and RNAs are vital for proper localization, and much 

work has been done to try to identify the dendritic targeting elements (DTEs) on localized 

RNAs that are recognized by RBPs. Identifying these DTEs would have benefits such as 

(1) allowing us to predict additional localized RNAs based on the presence of similar 

motifs, (2) enabling the identification of co-regulated groups of RNAs based on the 

presence of shared DTEs, and (3) providing insights into how dysregulation of RBP 

binding and RNA localization can lead to disease. Thus far, however, the identification of 

DTEs has been challenging. Below I briefly outline what is known about the localization 

and DTEs of a few of the most well-characterized dendritic RNAs and localization-

mediating RBPs. 

BC1 RNA. Brain cytoplasmic RNA 1 (BC1) is a short (~150nt), structured non-

coding RNA that is dendritically localized [119] and plays a potential role in translational 

regulation [120]. The stem loop structure at its 5’ end has been experimentally 

determined [121] and is likely the DTE [122]. A particular part of the stem loop forms a 

GA kink-turn motif and seems to be bound by hnRNP-A2, which mediates the 

localization [123]. A type of short interspersed nuclear element (SINE) called the ID 

element is derived from BC1 [124] and has also been shown to act as a DTE in several 

dendritic RNAs in rat [125,126]. 
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Staufen. The Staufen family of proteins (Stau1 and Stau2) are RBPs that bind 

dsRNA such as that found in stem-loop structures. Stau1 is ubiquitously expressed across 

tissues and may play a role in L-LTP [127]. Stau2 protein is enriched in the brain [100], 

shuttles to the dendrites in RNPs [128], and is likely involved in dendritic localization 

[28]. Several secondary structures have been proposed to be bound by Stau2 [129], which 

appear mostly sequence-independent. 

ZBP1 and β-actin. A 54nt region in the 3’UTR of β-actin, known as the “zipcode” 

sequence, is necessary and sufficient for its localization in several cell types [130]. 

Binding of zipcode-binding protein 1 (ZBP1, called IMP-1 in human) to the zipcode was 

found to be important for both the localization and translational inhibition of β-actin 

[131,132]. Later studies showed that most of the zipcode actually functions as a spacer 

for two much shorter motifs that are bound by two KH domains of ZBP1, and that similar 

bipartite motifs were conserved in other mouse/human mRNAs, making them potential 

targets of ZBP1 as well [133]. 

FMRP. Fragile-X mental retardation protein (FMRP) is thought to play an 

important role in translational repression of localized mRNAs and possibly also 

modulates localization [116]. It appears to bind to a wide variety of localized RNAs, 

including CaMKIIα, Map1b, PSD-95, and Fmr1 (its own mRNA) [100]. It has been 

proposed to bind to G-quadruplexes through its RGG-box domain [134,135], although a 

more recent study of FMRP binding using HITS-CLIP showed no enrichment for G-

quadruplexes or any other motif [136]. 
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hnRNP-A2. Heterogeneous ribonucleoprotein particle A2 (hnRNP-A2) binds to 

known dendritically localized RNAs such as CaMKIIα and Arc [137] and is thought to be 

directly involved in localization. Multiple motifs have been proposed to be recognized by 

this RBP, including a pair of 11nt sequences (the hnRNP-A2 recognition element, A2RE) 

first identified in the MBP mRNA in oligodendrocytes [138], G-quadruplex structures 

and CGG repeats [139,140], and GA kink-turn structural motifs [123]. 

CaMKIIα. Although it is one of the most extensively studied dendritically localized 

mRNAs, CaMKIIα still does not have a fully defined DTE. Most reports point to an 

element in the 3’UTR, but there is conflicting evidence about the minimal element 

needed for localization [110,123,141–143]. Implicated regions so far include both linear 

sequences and secondary structures.  

A common theme in many of these examples is the lack of consensus regarding the 

location and nature (linear or structural) of DTEs on specific transcripts. Part of the 

problem may be that some localized RNAs in fact have multiple DTEs, each regulating 

distinct and/or redundant aspects of the localization process [99]. An interesting example 

of this is BC1, which was shown to have two sub-motifs within its DTE: one that was 

needed for nuclear export and another that was needed for transport to the distal dendrites 

[123]. Adding to this difficulty, many DTEs are now known to have a secondary structure 

component that is either central to or supports recognition by the RBP [144], which may 

have contributed to conflicting reports in the past that mostly focused on linear sequence 

DTEs. Given that there are hundreds or even thousands of localized RNAs in neurons, it 

seems unlikely that each one has a unique DTE and RBP mediating its localization. A 
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more likely explanation is that multiple localized RNAs share DTEs and are recognized 

by the same RBP, but we are missing these signals due to a lack of tools that perform de 

novo RNA structure motif discovery in large datasets. 

 

1.3.5. Protein structures of the synapse 

One of the gaps in our understanding of long-lasting synaptic potentiation is the 

specific role of each locally-translated protein in this process. Although experimental 

work will be needed to pick apart exact functions, we can make some initial guesses 

using computational annotation methods. Structure-based functional annotation may be 

of particular use in this case, given that there are a variety of important roles for protein 

structures at the synapse. Examples include the PDZ domain in scaffold-associated 

proteins [145]; cadherins, neurexins/neuroligins, ephBs/ephrin-B, and immunoglobulin-

containing cell adhesion folds at the synaptic junction [146]; transmembrane folds in 

membrane-bound channels and receptors; kinase and phosphatase catalytic folds involved 

in signaling and synaptic plasticity; and many others. Although many of the proteins 

containing these structures are likely to be constitutively present at the spine or post-

synaptic density (surveyed in [147–149]), and thus may be primarily synthesized in the 

soma, it would be interesting to see if a subpopulation of these proteins is locally 

translated as well, and if new examples of these folds can be discovered. Furthermore, 

recent genome-wide analyses of neurological diseases have revealed enrichment for 

causative mutations in synaptic proteins in human and mouse [147,149], several of which 

have been shown to disrupt important structural binding sites. A better understanding of 
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the structures of locally translated proteins will help guide future experimental work and 

aid in predicting the functional impact of mutations. 

 

1.4. Overview of thesis 
  

 In this thesis, I present two new methods for structure-based analysis of large-

scale datasets based on the concept of empirical feature spaces—feature spaces defined 

by examples of natural structures—and then apply these methods to address the questions 

outlined above regarding the localization of RNA in the dendrites of neurons and the 

possible roles of locally translated proteins.  

 In Chapter 2, I describe the RNA empirical structure space (RESS), which uses 

Rfam covariance models to map uncharacterized RNAs to a structural feature space. I 

will show that RNAs with similar structure cluster together within the RESS, even in the 

absence of sequence similarity, and use this fact to develop a pipeline for de novo 

secondary structure motif discovery that can be applied to finding functional motifs 

enriched in co-regulated transcripts. Since this method scales linearly with increasing 

input dataset size, it is feasible to run on thousands of sequences at once.  

 In Chapter 3, I describe the protein empirical structure space (PESS), which uses 

threading against a small set of known structure templates to map uncharacterized protein 

domain sequences to structural feature space. As with the RESS, the PESS clusters 

protein sequences based on structure even in the absence of detectable sequence 

similarity. I show that the PESS can be used for a variety of purposes including 

classification of sequences into known folds, identification of novel folds, and finding of 
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distant homologs (or structural analogs) across species. This method saves substantial 

amounts of time compared to traditional threading methods by using only a small library 

of templates for threading, yet has accuracy on par with threading against a much larger 

set.  

 In Chapter 4, I will combine experimental and computational methods, including 

the two methods described above, to catalog the set of RNAs localized to the dendrites in 

mouse hippocampal neurons, identify potential linear and structural localization signals, 

and predict the functions of locally translated proteins based on domain-level structural 

prediction. The results include findings that would be difficult to identify using 

traditional sequence-based tools, demonstrating the utility of including structure-based 

tools when performing functional analysis of RNA and protein.  

 Finally, in Chapter 5, I discuss some of the implications and future directions 

suggested by this work, including several avenues where structure analysis may yield 

particular insight. 
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Figure 1-1. RNA structure.  

(A) An example of RNA secondary structure, showing typical motifs. (B) A well nested 

structure (top) and non-nested structure (bottom). The black horizontal lines indicate an 

RNA sequence and the arches show base pairing. Red and orange arches highlight the 

non-nested part of the structure that crosses over itself. The top panel corresponds to the 
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structure in (A). (C) An example of RNA tertiary structure. (Image from the public 

domain.) (D) An example of a pseudoknot structure, which consists of non-nested base 

pairing interactions. (E) An example of a G-quadruplex structure consisting of four 

repeating units of three G’s, separated by small loops. 
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Figure 1-2. Covariation in a multiple alignment of RNA sequences.  

Arches show base pairing interactions. Paired bases tend to show compensatory changes 

that maintain pairing, whereas non-paired bases usually show uncorrelated variation. 

Note that G-U pairs are generally considered compatible. Figure generated using R-chie 

[150]. 
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2.1 Introduction 

RNA structures play an important role in the function and regulation of almost all 

known classes of RNA. In coding transcripts, conserved secondary structures have been 

found in the untranslated regions (UTRs) that operate in cis to regulate processes such as 

alternative splicing, translation, and subcellular localization (for review see [1]). Several 

of these cis-structures have been found to be motifs—modular elements that occur across 

multiple different transcripts and provide a similar function or regulatory signal. 

Examples include the selenocysteine insertion sequence [2], the iron response element 

[3], and some localization signals [4]. Structure motifs also play a well-documented role 
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in non-coding RNA function, such as the cloverleaf structure of tRNAs and the long 

hairpin structure of pre-microRNAs. The Rfam database [5] has organized many of these 

known motifs into structure “families” and provides a covariance model (CM) [6] for 

each family, which can be used to quickly scan new sequences to infer instances of 

known motifs. However, the identification of novel motifs that are not already modeled 

by Rfam remains a challenging problem. 

Existing algorithms for finding novel secondary structure motifs differ widely in 

their approaches, but almost all begin with some form of structure prediction. Structure 

prediction can be done for single sequences individually by maximizing thermodynamic 

stability, as in MFOLD [7,8] and RNAfold [9,10], or can be done using covariance 

information of stem nucleotide pairs from a multiple alignment. Although alignment-

based methods generally result in more reliable predictions than thermodynamic stability 

alone, building a multiple alignment of RNAs can be difficult when the primary 

sequences are highly diverged. For most traditional sequence aligners, performance drops 

off dramatically when aligning families with less than 60% sequence identity [11]. Given 

that many highly conserved structure families have an average sequence identity lower 

than this threshold (e.g. the tRNA family with 46% sequence identity), such aligners are 

often not sufficient for identifying RNA structure families. To address this issue, methods 

such as FoldalignM [12], Dynalign [13], and LocARNA [14] attempt to align RNAs by 

both sequence and structure simultaneously, using approximations of the Sankoff align-

and-fold algorithm [15]. While these methods generally perform better than traditional 
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aligners on structural RNAs, they are computationally intensive and require time-saving 

heuristics when used to align a large number of sequences.  

In order to identify structures that occur multiple times in a given dataset, an 

additional step of clustering is needed. The choice of distance metric and clustering 

algorithm depend largely on the method used for structure prediction. Individually 

predicted structures can be compared by computing a distance metric over the base pair 

probability matrices [16,17] or the dot-bracket structure representations [18]. A popular 

approach is to first reduce each individual structure to a tree representation, where stems 

and loops are reduced a graph-theoretic representation, before computing a tree alignment 

or edit-distance [9,19–22]. A recent algorithm in this vein is GraphClust [23], which uses 

the RNAshapes software [21] to sample several low-energy structures that are then 

encoded as graphs and compared using a graph kernel. Alternatively, instead of 

predicting each individual structure and then comparing pairs of structures, the structural 

similarity between two RNAs can be derived directly from their pairwise alignment using 

an align-and-fold algorithm. This is the strategy employed by RNAclust [14] and 

FoldalignM. Once a distance matrix has been created for the sequences of interest, 

common clustering methods can be employed to identify recurring structures. However, 

since these algorithms all use as their basis some form of folding or pairwise sequence 

alignment, they are limited by the tradeoff between speed and accuracy. 

 Here we describe a novel approach to RNA structure clustering which does not 

require folding or pairwise alignment of the input sequences. Our approach is inspired by 

the idea of an “empirical kernel”, where the distance between any two objects is 
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computed within an observation-spanned subspace by comparing each object to a set of 

empirical examples or models [24]. Using Rfam CMs as our empirical models, we thus 

measure the structural distance between two RNA sequences based on their respective 

scores against each CM. In this way, we represent each input sequence as a superposition 

of known structures. Part of the motivation for this approach comes from known 

examples of such superposition in nature, such as the presence of tRNA-like motifs in 

transfer-messenger RNA (tmRNA) [25] and in some internal ribosome entry sites [26]. 

However, as we will show here, this approach can identify motifs even in the absence of 

trivial similarity between the motif and the reference models. Using this folding- and 

alignment-free distance measure as a basis, we developed a pipeline called NoFold for 

clustering and automatically extracting cohesive clusters, which can be used to find 

structure motifs in any set of RNA sequences. In a benchmark containing 20 Rfam 

structure families, we demonstrate that NoFold can simultaneously recapitulate almost all 

of the families with high sensitivity and precision and that this performance is robust to 

the presence of unrelated sequences within the dataset or extraneous flanking sequence 

on the structural sequences. Using NoFold, we identify 213 motifs that are enriched in the 

3’UTRs and retained introns of dendritically localized transcripts, including a previously 

identified localization-mediating motif and several potentially novel structures with 

similarity to the Drosophila K10 localization element. 
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2.2 Results 

 

2.2.1 Construction and normalization of the structural feature space 

Our approach is akin to measuring the distance between two locations not by 

direct measurement but by using their respective distance to a set of landmarks. For 

example, the distance between two street corners A and B might be measured by 

measuring the distance between A to three tall buildings, X, Y, and Z and also measuring 

the distance between B to the same X, Y, and Z buildings. The accuracy of such 

triangulation will depend on the relative location and the number of such landmark 

buildings. The advantage is that we do not have to make direct measurements between A 

and B, which might be difficult (e.g., because the streets are blocked).  

Here, we used Rfam CMs as our landmarks to triangulate RNAs of unknown 

secondary structure, which enabled us to identify groups of similarly-structured RNAs 

(motifs) without explicitly predicting the structures of those RNAs. CMs are a form of 

stochastic context-free grammar used by the Rfam database to model the consensus 

sequence and secondary structure of RNA structure families [5,6]. We used all 1,973 

CMs in Rfam v.10.1 to create an empirical feature space for triangulation and clustering 

of RNAs. The raw feature space consisted of 1,973 dimensions, each corresponding to 

one CM. The coordinates of an arbitrary RNA sequence within this space was determined 

by scoring it against each CM using the cmscore module of Infernal (v.1.0.2) [27] and 

using the resulting bitscores as the coordinates along each axis. These bitscores indicate 

how well a sequence matches each CM, taking into account compensatory base changes 
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that maintain conserved pairing interactions. Thus, the feature space can map RNA 

sequences according to their similarity to known structures. We note that although 

scoring an RNA sequence against a CM can be considered a form of alignment, there was 

distinctly no pairwise sequence alignment of the RNA sequences to each other during this 

stage of the algorithm. Therefore, in contrast to existing alignment-based clustering 

algorithms, our algorithm had linear growth in the number of “alignments” with 

increasing dataset size, rather than quadratic growth. Although the subsequent clustering 

step in our method was quadratic [28], in practice this part of the process was much faster 

than in alignment-based algorithms because only a simple distance measure needed to be 

calculated for each comparison, rather than an alignment (that will typically add another 

quadratic factor in terms of sequence length). 

 Initial analysis of the raw feature space using randomly selected transcript 

sequences revealed a relationship between the length of an RNA sequence and the score 

it received against a CM (Fig. 2-1A). For a given CM, this relationship was strongest for 

sequences that were shorter than the length of the CM itself and indicated that shorter 

sequences were being penalized in a manner proportional to their deficiency in length. 

We also observed that larger CMs tended to produce lower scores on average, even when 

only considering sequences longer than the length of the CM (Fig. 2-1B). To normalize 

for these two length effects, we separately estimated the mean and standard deviation of 

scores for each combination of sequence length (between 10nt and 500nt) and CM, and 

used these parameters to produce Z-standardized scores (Z-scores) according to the 

length of the original sequence and the particular CM. Specifically, the Z-score Z for a 
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sequence of length l against CM c is calculated as Z = (x - µlc) / σlc, where x is the raw 

score and µlc and σlc are the mean and standard deviation, respectively, of the scores of 

sequences of length l against CM c. We applied this normalization to an independent 

dataset and found that this procedure greatly reduced the relationship between sequence 

length and score (Fig. 2-1C) and zero-centered the range of scores produced by each CM 

(Fig. 2-1D). 

 Although Rfam CMs model a wide variety of structures, there are several 

subgroups of CMs that are structurally related (e.g. microRNAs) that may therefore 

produce very similar scores for a given RNA sequence even if the sequence does not 

belong to the CM model families. In agreement with this, we observed correlation in the 

scores produced by several groups of CMs; for example, mir-70 (RF00833) and mir-355 

(RF00797) had a Spearman correlation of 0.72 in their scores against random sequences. 

These kinds of correlation over random sequences imply structural correlation of the 

models rather than biological correlation of the sequences and as such the model 

correlations are likely to distort the biological information from the ensemble of the CMs. 

To reduce our feature space to a set of independent axes, we first assessed the structural 

correlation of the CM models by measuring their length-normalized scores (Z-scores) 

over a randomly sampled set of 24,550 sub-sequences from the mouse and human 

transcriptome (see “Normalization of feature space” in Methods). We then performed 

principle components analysis (PCA) on the Z-scores, which resulted in an orthogonal set 

of axes (i.e., uncorrelated) ordered by the total variance explained by each coordinate. 

We selected the first 100 principle component axes as representing informative variation 
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(see “Normalization of feature space” in Methods) and used the loadings of these axes 

directions to construct our final feature space for subsequent measurements. Another 

view is to think of the loadings as a set of weights on the CM Z-scores that results in a 

100-dimensional RNA structure feature space. We refer to this space here as the RNA 

Empirical Structure Space (RESS). Each RESS coordinate is a weighted linear 

combination of the CM Z-scores; therefore, the RESS feature scores of a given sequence 

can be back transformed into individual CM Z-scores and analyzed in terms of Rfam 

models as demonstrated later in our Results section. The contributions of each CM to 

each RESS axis, as well as the correlations of each axis with GC content, CM length, and 

number of hairpins, are available on our supplementary website 

(kim.bio.upenn.edu/software/nofold.shtml).  

 

2.2.2 Suitability of the RESS for structure similarity analysis 

We first asked whether structurally similar sequences become grouped together 

when mapped to the RESS. As an initial test, we created three synthetic structures of the 

same length but with different numbers of hairpins (Fig. 2-2A) and generated sequences 

that had the appropriate base complementarity to form each of these structures. These 

sequences were generated randomly (but respecting pairing constraints; see “Synthetic 

structures” in Methods) to ensure that the members of each structure group were not 

trivially similar on the primary sequence level. We created 50 sequences for each 

structure and verified that, as expected, the sequences appeared random on the primary 

sequence level (25% average pairwise sequence identity). We scored the sequences 
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against the Rfam CMs and projected them into the RESS. As an initial assessment of the 

relative positioning of the sequences within the RESS, we visualized the sequences using 

PCA ordination of the 100-dimensional RESS coordinates (Fig. 2-2B). The different 

structural sequences formed three well-separated clusters along the first and second PC 

axes, indicating that the RESS mapped the sequences with similar structure closer 

together than sequences of different structure.  

 We next sought to define a distance measure that could be used within the RESS 

to identify structurally related sequences. An appropriate distance measure should assign 

a small distance between pairs of related structures and a larger distance between pairs of 

unrelated structure. To test this, we used our dataset of synthetic structure sequences to 

calculate distance measures on (1) pairs of sequences with the same structure, (2) pairs 

with different structure, and (3) pairs of completely random sequence. We found that 

Spearman distance (defined as one minus the Spearman correlation across RESS 

coordinates) worked well to distinguish the pairs of related structure from other types of 

pairs, and was a marked improvement over sequence identity alone (Fig. 2-2C) or 

Euclidean distance (see supplementary website). We therefore used this measure as the 

basis for identifying similar structures and clustering. 

 

2.2.3 Automated structural clustering for motif identification 

Towards the goal of identifying secondary structure motifs in large sequence 

datasets, we developed a pipeline for clustering sequences within the RESS and 

automatically extracting clusters with a sufficiently small diameter (calculated as the 
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average pairwise Spearman distance among the cluster members). We call this pipeline 

“NoFold” to highlight the fact that it does not use folding or alignment in the initial steps 

of sequence comparison and clustering. The overall steps of the pipeline are illustrated in 

Fig. 2-3 and explained in detail in the Methods. Briefly, input sequences were scored 

against the 1,973 Rfam CMs, normalized and mapped to the RESS, and clustered by 

average-linkage hierarchical clustering using Spearman distance as the distance measure. 

The resulting hierarchical tree was cut into all possible clusters with three or more 

members, and all non-overlapping clusters with a diameter below a certain threshold 

were extracted. The threshold was designed to control the false positive rate (FPR) and 

was derived from the distribution of cluster diameters that we observed when clustering 

randomly generated sequences. The threshold was set such that only about 5% of non-

structural clusters will have a small enough diameter to pass this filter. To improve the 

sensitivity of the method, we aligned and folded the sequences within each passing 

cluster using LocARNA and used this to train a new CM for each cluster (“cluster-

CMs”). We then used each cluster-CM to search the original sequence dataset for 

additional instances of the modeled structure, similarly to what has been done in 

GraphClust [23] and CMfinder [22]. When searching the dataset, sequences were allowed 

to match to multiple cluster-CMs, which can occasionally lead to substantial overlap 

between the final clusters. We therefore merged any clusters that overlapped by > 50% of 

their members. 

 To test the ability of NoFold to identify multiple structure motifs simultaneously, 

we created a dataset consisting of sequences from the seed alignments of 20 Rfam 
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structure families that varied widely in size and structure (Table 2-1). The sequences of 

each family were filtered such that no pair of sequences shared more than 75% sequence 

identity (after alignment), which resulted in an average sequence identity of 32-54% per 

family and a total of 978 sequences. We used this dataset to test NoFold under three 

conditions: (1) a basic test using the exact sequences reported by Rfam (“plain 

sequences”), (2) a test where 10-50nt of random sequence was added to both ends of 

every sequence (“embedded sequences”), and (3) a repeat of the first test but with the 

addition of 3,000 random, unrelated sequences matched to the di-nucleotide frequency 

and length distribution of the Rfam sequences (“plain sequences with background”). 

These last two tests were designed to emulate common, yet challenging situations in 

RNA structure analysis where the exact boundaries of the RNA structures are not known 

(test 2) or a large proportion of the sequences in the dataset do not contain an instance of 

a motif (test 3).  

We note that since the Rfam families used in these test datasets are also 

represented directly by CMs that form the basis of the RESS, this potentially makes 

clustering of these sequences easier for NoFold. To reduce this effect, we removed from 

the feature space the test family CMs and any CMs that appeared to be very similar to 

one of the test families. We did this by examining the Z-scores (before projection into the 

RESS) of each test family against all CMs and removing CMs with an average Z-score > 

3 for any family. Since the parameters used to calculate Z-scores are derived from a large 

sample of transcript sequences, a high Z-score for a given CM indicates that a sequence is 

more similar to that CM than what is typically observed. This procedure resulted in the 
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removal of 44 CMs (see “Rfam benchmark tests” in Methods for full list). We verified 

through linear discriminant analysis that the top discriminating CMs for this dataset were 

not related to the dataset families after this removal process. All Rfam tests were carried 

out using this modified feature space. 

We compared the performance of NoFold to GraphClust on the three test sets 

described above (Table 2-1). Default parameters were used for both methods, with the 

exception that sliding window generation was turned off for GraphClust so that full-

length structures would be clustered (we note that this may negatively affect the 

performance of GraphClust). We measured performance based on how well each family 

was reconstructed in the final set of clusters. In this context, we defined family sensitivity 

as the fraction of sequences from that family that were present in any cluster dominated 

by that family, and family precision as the fraction of sequences in clusters dominated by 

that family that actually belonged to that family. Both NoFold and GraphClust performed 

very well, but NoFold consistently detected more of the families and had a higher 

average sensitivity than GraphClust in all three tests. NoFold also had a slightly higher 

proportion of families that were detected in a single cluster rather than being split into 

multiple separate clusters (Fig. 2-4). Family sensitivity was not significantly correlated 

with the standard deviation of family sequence length (NoFold: r = -0.005, p = 0.98; 

GraphClust: r = 0.18, p = 0.45), indicating that the good clustering performance was not 

simply due to length similarity within families. Notably, both methods had very high 

precision (0.98-0.99) across all tests and did not return any clusters dominated by 

background sequences in the third test, indicating that these methods can appropriately 
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distinguish between clusters of related and unrelated structure. The test set where 

sequences were embedded in random flanking sequence proved to be the most difficult, 

resulting in an average sensitivity drop of about 0.15 for both methods. The performance 

drop for each family was significantly correlated with the length of the sequences in the 

family (Spearman correlation -0.53, p < 2.2e-16), indicating that detection of smaller 

structures was impacted the most. We note that although some of the test families were 

related to each other (e.g. RF00009, RF00010, and RF00011), both NoFold and 

GraphClust were generally able to separate these families into separate clusters. Overall, 

these results demonstrate that NoFold can simultaneously detect multiple structural 

motifs of different sizes with very high sensitivity and precision and is comparable to or 

exceeds the performance of the current state of the art software. 

 To verify that NoFold can perform well on structures that bear absolutely no 

evolutionary homology to CMs in the feature space, we additionally performed clustering 

on the sequences derived from the three synthetic structures described in the previous 

section. The results of this test for NoFold and GraphClust are summarized in Table 2-2. 

GraphClust detected all members of the 1-hairpin and 2-hairpin families, but did not 

detect the 3-hairpin structure. In contrast, NoFold detected all three structures with 

reasonable sensitivity. Most notably, the average precision of the NoFold clusters was 

much higher than the GraphClust clusters (0.81 vs. 0.53, respectively), suggesting that 

the use of information from Rfam CMs by NoFold improved clustering even though the 

synthetic structures were not members of any Rfam family. Upon individual inspection of 

the clusters, we found that the GraphClust clusters each contained a substantial mix of all 
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three structures, with a high degree of overlap between each cluster. For example, the 

largest cluster contained all 50 of the 1-hairpin sequences, but also contained 38 of the 2-

hairpin sequences and 18 of the 3-hairpin sequences. The NoFold clusters, in contrast, 

were generally much more specific to a single family, as is reflected in its higher 

precision. Although it is possible that fine-tuning some of the GraphClust parameters 

(such as the number of clustering iterations) may improve its performance in these tests, 

these results are meant to represent the “out-of-the-box” performance of each method. 

Altogether, these results demonstrate that NoFold can reliably detect structure motifs in 

the complete absence of sequence conservation or homology to the feature space.  

 Finally, we performed clustering on the entire Rfam database using a setup 

similar to a cross-validation analysis. Specifically, we grouped all 1,973 Rfam families 

into 10 subsets such that similar families were put into the same subset. This grouping 

was done by hierarchically clustering the CMs based on their scores against random 

sequences and then cutting the dendrogram to create exactly 10 clusters. The CMs in 

each cluster then determined which families were grouped together for the analysis (see 

“Rfam benchmark tests” in methods). For each subset, we extracted up to 15 sequences 

per family such that no pairwise sequence identity exceeded 75%. We removed any 

families with less than 3 sequences, resulting in a total of 937 families (6085 sequences) 

included across all subsets. We ran each subset separately through NoFold, removing any 

CMs from the feature space that had an average Z-score > 3 for any family, as described 

above. GraphClust was run for 25 iterations (10 clusters/iteration) on each subset. The 

average family sensitivity across the 10 subsets was 0.57 for NoFold and 0.55 for 



 

57 

 

GraphClust (0.51 and 0.55, respectively, when averaging directly across the families 

rather than the subsets). The lower sensitivity of both methods in this test reflects the 

inherent difficulty of this test compared to the 20-family test, as it requires the methods to 

separate many more families simultaneously, and each subset may contain several related 

families with similar structure. In addition, the performance of NoFold was likely 

impacted by the need to remove large portions of the feature space for each subset. The 

specificity of both methods remained high at 0.99. Full results of this analysis are 

available on our supplementary website. 

 

2.2.4 Application of NoFold to novel motif discovery 

 

Dendritic localization 

An important process in neurons is the localization of specific transcripts to the 

dendrites, which allows for local translation and spatially restricted synaptic remodeling 

[29–31]. Targeting of transcripts to the dendrites is thought to be mediated primarily by 

RNA binding proteins, which recognize cis-elements on the transcripts called dendritic 

targeting elements (DTEs). Under the assumption that some DTEs may be motifs that 

appear across multiple different transcripts, it should be possible to identify these motifs 

computationally. However, despite much work over the last 25 years to pinpoint such 

motifs, only a few have so far been found [32,33]. Given that almost all previous searches 

for DTEs have focused on primary sequence motifs, we asked whether it might instead be 

secondary structures that provide the common recognition element between transcripts. 
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We decided to apply NoFold to a dataset of known dendritically localized transcripts 

from rat to see if we could identify any structural motifs enriched in these sequences, 

which might explain their localization. 

To aid in the functional interpretation of novel motifs, we added several types of 

automatic annotations to NoFold. First, since we had already scored each sequence 

against all Rfam CMs in the first step of NoFold, we made use of this rich source of 

information in order to annotate each cluster with the Rfam families it most resembles. 

To do this, we calculated the average Z-score of the sequences in the novel cluster for 

each CM and reported the 10 CMs with the highest average Z-score. As mentioned 

previously, the parameters for calculating the Z-scores were derived from an independent 

sampling of transcript sequences, so a high Z-score (> 3) for a CM indicates that a 

sequence scored unusually well against that CM compared to the general transcriptome. 

Averaging Z-scores across a whole cluster tends to highlight the CMs that scored highly 

for multiple sequences in the cluster, suggesting a structural resemblance to the family 

modeled by these CMs. Although a high Z-score does not necessarily indicate functional 

homology, we have found it to be a useful first-pass annotation to guide deeper analysis. 

For additional annotation, we also created a multiple alignment and predicted a consensus 

structure for each final cluster using LocARNA. Using this alignment, we ran RNAz [34] 

with default parameters to obtain several statistics such as the structure conservation 

index (SCI). We note, however, that these statistics should be interpreted with caution 

because RNAz was trained on different window sizes and different types of alignments. 



 

59 

 

Finally, we automatically trained a new CM for each final cluster which can be used in 

the future to search additional databases for instances of the motifs.  

 As a first step towards identifying structural DTEs, we compiled a list of 211 

transcripts with experimental evidence for dendritic localization in rat neurons. From 

each transcript, we obtained from RefSeq (rn4) the 3’UTR sequence as well as the 

sequence of any cytoplasmically retained introns [35], which have previously been shown 

to harbor DTEs [36]. To focus our search on smaller structure elements, we used a sliding 

window approach to split each 3’UTR and intron sequence into several smaller segments. 

We have validated that the use of a sliding window still allows for good sensitivity of 

motif detection (see supplementary website). We created 50nt and 150nt sliding window 

sets for the retained intron and 3’UTR sequences of the dendritically localized transcripts 

and searched these regions for motifs using NoFold (Table 2-3). NoFold identified a total 

of 290 clusters (“motifs”) that contained three or more sequences. To test whether these 

motifs were enriched within dendritic transcripts, we created a background datasets 

consisting of introns or 3’UTRs (RefSeq, rn4) from non-dendritically localized 

transcripts and scanned this set for matches to the NoFold motifs (see “Dendritic 

localization dataset” in Methods). This was done using the cluster-CM for each motif in 

conjunction with the cmsearch program [27]. We compared the number of motif matches 

between the dendritic sequences and non-dendritic sequences and found a total of 213 of 

the motifs were significantly enriched in the dendritic transcripts (Fisher’s exact test, 

FDR-adjusted p < 0.05).  
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Previously, Buckley and colleagues found that a ~74nt hairpin structure within the 

retained introns of several dendritic transcripts was sufficient to confer dendritic 

localization in rat hippocampal neurons [36]. These structures were instances of the ID 

element, a type of rodent SINE retrotransposon element that likely arose from the 

dendritically-localized BC1 gene [37]. We asked whether the ID element structure was 

among the motifs found by NoFold in our intron sequences. We found two motifs in the 

50nt set (M28 and M51) and one motif in the 150nt set (M3) that had high sequence 

identity with the ID element, all of which were significantly enriched in the dendritic 

introns (Fisher’s exact test, FDR-adjusted p < 0.05). M3 was additionally predicted to 

form a highly similar structure to the ID hairpin (Fig. 2-5A). This cluster contained 

sequences overlapping 10 of the 12 BLAST hits for the ID element within the intron 

sequences (see “Dendritic localization dataset” in Methods), and additionally contained 

one extra instance of the ID element not found by BLAST. Although this extra sequence 

had low sequence identity with the ID hairpin sequence (59%), it was structurally 

conserved (SCI = 0.83) and was predicted to form a similar hairpin structure. Using the 

top ten CM list annotation generated by NoFold, we found that the tRNA CM was the top 

CM for M3 by average Z-score (Z = 4.87), which is not surprising given that the ID 

element and BC1 RNA are evolutionarily related to alanine tRNA. We note that despite 

this similarity, scanning the full length intron sequences with the tRNA CM using the 

traditional Rfam cmsearch only identified four instances of the ID element, highlighting 

the improved sensitivity that NoFold provides for motifs that are not directly modeled in 

Rfam.  
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In addition to the ID element, we also identified several motifs with similarity to 

known localization elements from Drosophila. Most strikingly, we found that 37 motifs 

were annotated as having the K10 transport/localization element CM (K10_TLS; 

RF00207) among their top ten best CMs, with five of these motifs having an average Z-

score > 5 and 28 having a Z-score > 3 for this CM. The K10_TLS is a 44nt hairpin 

structure that mediates localization of the K10 mRNA during Drosophila oocyte 

development [38]. The majority of our K10_TLS-like motifs were predicted to have a 

stem-loop consensus structure enriched with AU base pairs (72% AU-content on 

average), similar to K10_TLS (Fig. 2-5B), although primary sequence identity was low. 

Overall, these 37 clusters encompassed a total of 60 unique genes, which is 28% of the 

total genes in the datasets, and 28 of the clusters were significantly enriched in dendritic 

transcripts (Fisher’s exact test, FDR-adjusted p < 0.05). We also found nine motifs with 

another Drosophila localization structure, the Wingless localization element 3 (WLE3; 

RF01046), within their top ten CMs, although only one had an average Z > 3. To our 

knowledge, a role for these motifs has not yet been described in mammals. Additionally, 

we identified several potentially novel motifs with stable and conserved structure, such as 

hairpin motif M172, which is found in six dendritic transcripts, and double-hairpin motif 

M158, which is found in four transcripts (Fig. 2-5C). Full data on all identified motifs are 

available on our supplementary website.  

 

Non-canonical translation initiation sites 
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 Translation initiation can be altered by RNA structures that reveal or occlude a 

potential start codon [39,40] or recruit initiation factors and ribosomes to otherwise 

unfavorable initiation sites. Structures in this latter category include internal ribosome 

entry sites (IRES), cap-independent initiation enhancers [41], and certain hairpin-forming 

nucleotide repeats [42–44]. Two recent studies utilized ribosome profiling in combination 

with harringtonine [45] or lactimidomycin [46] treatment to capture the locations of 

initiating ribosomes across the entire mouse and human transcriptomes. Their results 

revealed that translation initiation at non-AUG codons—including both “near-AUG” 

codons and completely non-canonical codons—may be more common than previously 

thought. Although initiation at near-AUG sites in good Kozak context is thought to be 

possible through wobble base pairing of the methionine tRNA [47], it is unknown 

whether the traditional ribosome scanning mechanism can support initiation at 

completely non-canonical sites. Previously, certain IRES [48,49] and hairpin structures 

[42–44] have been shown to facilitate initiation at non-canonical codons, suggesting that 

RNA structures may play a central role in this phenomenon.  

 To determine if novel families of structure could be promoting initiation at these 

sites, we extracted and clustered 50nt of sequence immediately upstream of each non-

canonical translation initiation site (ncTIS) identified in humans by Lee et al. (2012). We 

discovered a total of 21 clusters, all of which were found to be significantly enriched 

upstream of ncTIS relative to non-ncTIS positions in the same transcripts. Several of 

these clusters score highly on average for CMs with translation-related functions, such as 

tRNA-like structures, upstream pseudoknot domains (UPD), and IRES. For example, the 
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top scoring CM for cluster T17 (Fig. 2-6) was the human heat shock protein 70 IRES (Z-

score = 3.8). Two tRNA-like structures (TLS), TLS-PK3 and TLS-PK2, were also within 

the top ten best CMs for this cluster (Z = 2.8 and 2.7, respectively). The sequences in 

cluster T1 (Fig. 2-6) scored highly against the CMs for two human IRES, the insulin-like 

growth factor II IRES (Z = 2.5) and the fibroblast growth factor-2 IRES (Z = 2.0). In 

addition, this cluster scored relatively highly against the tRNA-like TLS-PK4 (p = 8.9e-

9).  

The largest cluster we found contained six sequences belonging to histone subunit 

H4 genes, as well as one sequence belonging to heat shock protein 60. This cluster scored 

highly for the L-myc IRES and is predicted to form a small hairpin (Cluster T6, Fig. 2-6). 

Interestingly, H4 transcripts were recently shown in mouse to use an unusual mechanism 

for translational initiation that involves loading of ribosomes independently of the 5’ cap 

[50]. This process is thought to depend on two RNA structures, one that recruits the cap 

binding protein eIF4E and another that may help position the ribosome over the initiation 

site, similarly to an IRES. It has not yet been investigated whether this mechanism 

supports initiation at non-canonical initiation codons. Several other histone genes were 

found in other clusters, including two sequences from H2B in cluster T5 and two 

sequences of H3 in cluster T13. To our knowledge, initiation at non-canonical codons has 

not yet been investigated in these histone mRNAs. 

Altogether, these results suggest that NoFold is useful as a first-pass high-

throughput screen to identify the locations of recurring structural motifs in a dataset, 
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which can then be used to prioritize sequences for lower-throughput experimental 

analyses. 

 

2.3 Discussion 

We have described here a novel approach for clustering RNA secondary structures 

that uses comparison to empirical models to map RNA sequences to a structural feature 

space (the RESS). By scoring primary RNA sequences across a large number of Rfam 

CMs and treating the scores as geometric coordinates, the RESS allows interpolation and 

extrapolation across existing models to identify novel combinations of structural features 

modeled by the original Rfam CMs. We find that sequences from the same structure 

family tend to cluster within the RESS and that these clusters can be extracted from 

unrelated sequences using unsupervised methods with very high sensitivity and precision. 

We use our approach to identify 213 motifs enriched in dendritically localized transcripts 

in rat. We hypothesize that some of these motifs may play a functionally important role in 

dendritic localization given their enrichment within dendritic transcripts and, for several 

motifs, high scores for CMs related to localization.  

 Within the dendritic RNAs we identified a large number of clusters that scored 

highly against the K10_TLS CM. It is unclear whether these clusters represent distinct 

structure families or are subgroups of one larger structure family that might include 

K10_TLS. Early studies of the K10_TLS indicated that the size and shape of the structure 

were most important for localization and that most nucleotides in the stem and loop 

regions can be changed as long as they do not disrupt base pairing [38]. More recently, a 
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tertiary structure analysis of K10_TLS by NMR spectroscopy revealed that extensive 

purine stacking within the AU-rich stem region causes K10_TLS to take on an A’-form 

helix conformation with a widened major groove, and that this geometry is important for 

localization [51]. Although tertiary features such as this are not directly modeled by CMs 

and therefore may not be captured by our method, it is possible that the high AU content 

found in most of our K10_TLS-like motifs could allow them take on an A’-form helix 

and therefore be localized by a similar mechanism. As these results are still preliminary, 

additional experiments will be needed to verify these motifs and identify which proteins 

recognize them. 

Of the 21 structure clusters found upstream of human ncTIS, all contained seven 

or fewer sequences, indicating that no single structure accounts for a large portion of 

human non-canonical initiation. A possible complicating factor in this analysis is that 

initiation-promoting motifs do not necessarily occur immediately upstream of the ncTIS. 

Some IRES are located distally from the start codon and interact with the initiation site 

by pseudoknot formation [49]. This makes it difficult to find motifs specifically involved 

in non-canonical initiation, since one must link the distal motif with the ncTIS using 

either pseudoknot prediction, which is computationally intensive for long sequences, or 

direct experimental probing. Therefore, we expect that our analysis of only the regions 

upstream of ncTIS is an underestimation of the motifs involved in non-canonical 

initiation. In some cases, small hairpin structures located immediately upstream of 

initiation sites have been shown to help mediate pseudoknot interactions. The Cricket 

paralysis virus (CrPV) IRES, for example, utilizes a pseudoknot between an ncTIS and a 
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slightly upstream tRNA-like hairpin to cause translation initiation in the absence of 

initiation factors (including tRNA-Met) [48,49]. Hairpins such as this should be 

detectable by our analysis, provided they are within the 50nt upstream window used here, 

and in fact we did obtain several clusters with strong hits for tRNA-like structures and 

hairpins (e.g. cluster T17 in Fig. 2-6B). It is possible that as more ncTIS are discovered, 

more instances of these motifs will be found.  

 Beyond the experimental dataset considered here, there are many possible 

applications of NoFold. For example, to identify structures bound by a particular RNA-

binding protein, one could analyze sequences that are known to be bound by that protein 

to see if any common motifs emerge. A similar tactic could be applied to find motifs 

involved in splicing, RNA stability, and translational efficiency. The RESS itself could 

also be used directly as a feature space for supervised classification of RNAs, e.g. 

classification of unannotated non-coding RNAs into broad functional categories, as has 

been attempted using other types of features [52].  

We note that since the scoring process scales linearly with increasing dataset size, 

this approach is feasible for datasets up to several thousand sequences. Specifically, on 

one CPU core, a single 50nt sequence was scored in an average of 0.012s per CM, or 

~24s for the entire Rfam CM set. Since the scaling for increasing sequence lengths is 

quadratic, we generally recommend using sequences or sliding windows of < 300nt. We 

have implemented an option to parallelize the scoring process and several of the 

downstream steps of NoFold, which can greatly decrease runtime when the appropriate 

hardware is available. Runtime for the downstream steps of the NoFold process generally 
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depended on the number of clusters that passed the thresholds, but usually took 

substantially less time than scoring. Although the overall runtime of GraphClust was 

generally shorter than NoFold on a single core (3 minutes for GraphClust vs. 39 minutes 

for NoFold on a 100-sequence dataset), NoFold was sped up considerably when 

parallelized (4.2 minutes on 16 cores for the same dataset). In contrast, we observed that 

GraphClust did not always make use of all available cores (2.2 minutes on 16 cores for 

the same dataset). This appears to be dependent on the number of clusters that were 

actually found. 

An important limitation of our approach can arise from the use of empirical 

models to construct the feature space. An ideal set of empirical models should comprise 

all of the major structures of RNA such that any RNA structure can be placed “inside” 

the coordinates. By using all available models, we hoped to create such a feature space, 

but we do not have any guarantee. Another remaining limitation of our method is the 

detection of structures embedded in larger sequences. Here we used a sliding window to 

segment larger sequences to aid in detecting such structures, at the expense of some 

sensitivity. More sophisticated methods that might optimize for subsequence structures 

will yield improvements in this area. The development of alternate methods for 

segmenting large sequences will likely continue to improve the sensitivity of NoFold and 

other existing motif finders. Another avenue for improvement is in cluster delineation. 

Here we developed several data-driven criteria for cluster identification, but many other 

machine learning approaches may be applied to the basic concept of RESS.  
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An interesting future consideration will be the tailoring of different collections of 

empirical models to suit specific applications. Although here we used the entire set of 

Rfam v.10.1 CMs to define our feature space, different utility might be found using 

different subsets of CMs (or other models). As discussed in the introduction and results, 

the coordinate space established by the RESS using the CMs may be seen as a set of 

canonical models against which novel sequences are compared to assess their inter-

relationships. We hypothesize that if the models are at large scale (e.g., a sparse set of 

very different secondary structures), this is akin to having very coarse-grained models 

and such a subset of models (i.e., CMs) may be useful for large scale structure 

discrimination but not for fine-scaled differences. Alternatively, we hypothesize that a set 

of closely related CMs may help discriminate fine-scaled differences. Thus, future work 

may entail using different subsets of CMs and resulting RESS coordinates for different 

subgroups of structures.  

 

2.4 Methods 

 

Data and Software 

NoFold is available on our website, kim.bio.upenn.edu/software/nofold.shtml. 

Full clustering results and input datasets used in this study are also available on the site. 

 

Scoring of RNA sequences 

http://kim.bio.upenn.edu/software/nofold.shtml
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Sequences were scored against each of the 1,973 Rfam CMs (v.10.1) using the 

cmscore module of Infernal (v.1.0.2) with options “--search --a” [27].  

 

Normalization of feature space 

To obtain normalization parameters, a dataset was generated by extracting 

sequences of varying length from random locations within transcripts sampled from the 

whole mouse (UCSC, mm9) and human (RefSeq, hg19) transcriptomes. Any exactly 

identical sequences were removed. We included 50 sequences of each length in the range 

of 10-500nt in the dataset, for a total of 24,550 sequences. We used this dataset to obtain 

the parameters for normalization and standardization of the feature space that were used 

for all other datasets. First, for each CM, we estimated the mean and standard deviation 

of scores obtained by sequences of each length. We used these parameters to Z-score 

sequences in a length- and CM-dependent manner, as described in the text. Next, after 

normalizing the scores of the 24,550 sequences in this manner, we performed PCA (using 

prcomp in R) on the dataset to obtain a set of independent axes. We retained only the 

axes with an eigenvalue greater than 1.0 (Kaiser criterion), which yielded 124 axes. We 

rounded this down to the top 100 axes and recorded the loadings for these axes to use for 

future datasets. Finally, we recorded a set of parameters to re-standardize the 100 PC 

axes. All subsequent datasets were mapped to this normalized feature space (the RESS) 

using the parameters estimated here.  

 

Synthetic structures 
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We designed the following synthetic structures, which we show below in dot-

bracket notation (where matching parentheses represent paired bases and periods 

represent unpaired bases): 

1-hp: (((((((((((((((((((((((((((((((((.....))))))))))))))))))))))))))))))))) 

2-hp: (((((((((((((((((((((((.....)))))))))))))((((((((....)))))))))))))))))) 

3-hp: (((((((((((((((((((....)))))(((((.....)))))(((((....))))))))))))))))))) 

Two-dimensional representations of these structures are also shown in Fig. 2-2A. We 

randomly generated 50 sequences for each structure by generating complementary base 

pairs simultaneously (but randomly) as defined in the dot-bracket string. This ensured 

that each sequence had at least the potential to form the exact intended structure. Only 

Watson-Crick base pairs (A-U and G-C) were used. G-U wobble pairs were not used for 

simplicity. We did not require that the MFE structure be equivalent to the intended 

structure, although we note that the majority of the sequences did form the intended 

structure when folded by RNAFold. 

 To test distance measures, we generated all possible pairs of sequences from the 

same structure, different structures, or random sequences (which may or may not have 

stable structure). For each pair of sequences, we measured their percent sequence identity 

and their Spearman distance within the RESS, where Spearman distance is defined as one 

minus the Spearman correlation of the coordinates of the two sequences in the RESS. The 

random sequences were generated to have the same average di-nucleotide frequency as 

the structural sequences but had no particular structure. Average di-nucleotide frequency 

was matched by generating sequences according to a first-order Markov process where 
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the transition probability between each pair of nucleotides was estimated from the 

sequences of the original dataset. 

 

NoFold structure clustering pipeline 

A procedure to delineate robust RNA sequence clusters in the structural feature 

space was implemented as follows. Scored sequences were clustered by hierarchical 

clustering (average linkage using Spearman distance) using the fastcluster package [28] 

in R. Using a procedure similar to that described in [53], the resulting dendrogram was 

cut into all possible clusters of size three or greater and the average pairwise Spearman 

distance between cluster members was calculated for each cluster (cluster “diameter”); 

then any clusters with a diameter larger than an empirically derived threshold were 

removed (see Threshold Determination, below). Since cutting the dendrogram into all 

possible clusters results in many clusters that contain almost the same sequences, we 

implemented two filters for choosing non-overlapping clusters: a “sensitive” filter 

(optimized for picking larger clusters) and a “specific” filter (optimized for picking 

tighter clusters). In the sensitive filter, clusters are first ranked by their size (large to 

small) and then by their diameter (small to large). Clusters were then chosen in a greedy 

manner from first to last, throwing out any clusters that overlap with a previously chosen 

cluster. In the specific filter, clusters with three or more members were simply ranked by 

diameter (small to large) and then chosen greedily as above. We tested these two filters 

using sequences from the BRAliBase II benchmark datatset [11] and found that the 

specific filter produced fewer false positives but sometimes missed positive examples. To 



 

72 

 

improve the sensitivity of this mode without sacrificing specificity, we implemented an 

additional cluster-expansion step, where a new CM was trained for each cluster (“cluster-

CM”) based on the multiple alignment of the cluster sequences by LocARNA. These 

cluster-CMs were then used to pick up additional matches to the structure within the 

original sequence database using the cmsearch module of Infernal with options “--

toponly --glocal”. A sequence was counted as a hit for a given cluster-CM if it obtained a 

bitscore of at least log2(size of search database), or in the case of the dendritic and non-

canonical translation datasets, a bitscore of at least 10.  If any two expanded clusters 

overlapped by more than 50%, they were merged into one cluster. After cluster expansion 

and merging, each cluster was automatically annotated in several ways to help give 

insight into potential functions, as described in the text. RNAz was run using default 

parameters. 

 

Threshold determination 

 An empirical threshold for filtering clusters based on diameter (average pairwise 

Spearman distance) was calculated based on the distribution of cluster diameters that 

result from clustering random, unrelated sequences. Since the expected cluster diameter 

is dependent on the total number of sequences in the dataset being clustered, we 

separately calculated this threshold for different database sizes (usually rounding the 

database size to the nearest 100). For a given dataset size, we also calculated a separate 

threshold for each cluster size (where size refers to the number of cluster members), since 

clusters with more members tend to have larger diameters.  
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We created a dataset of 10,000 random 50nt sequences with the same average di-

nucleotide frequency as the mouse and human transcriptomes using a first-order Markov 

model as described in the “Synthetic Structures” section. Since these sequences were 

randomly generated, we do not expect them to share substantial structure. Sequences 

were scored and mapped to the RESS. To obtain the distribution of cluster diameters for a 

given dataset size, we used the following procedure: (1) a subset of the 10,000 sequences 

was picked at random to create a dataset of the desired size; (2) the subset was 

hierarchically clustered using Spearman distances and average linkage and all possible 

clusters were extracted from the resulting dendrogram; (3) the diameter of each cluster 

was calculated and recorded in separate lists based on the number of sequences in the 

cluster; (4) steps 1-3 were repeated enough times to obtain >10,000 observations of 

clusters of size three (this required more iterations for small datasets and fewer for large 

datasets). The result of this procedure was a distribution of cluster diameters for each size 

cluster. A “high-confidence” threshold for each cluster size was then defined as the 

distance at which 99% of the clusters of that size had a larger diameter than the threshold, 

and a “good-confidence” threshold was set at the 95% mark. At these thresholds, we 

would expect about 1% and 5% of structurally unrelated clusters to pass the thresholds, 

respectively. The 95% threshold was used for choosing clusters in all analyses described 

here. 

 

Rfam benchmark tests 
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RNA sequences were taken from the Rfam.seed file available on the Rfam FTP 

(v.10.1). This file contains sequences from the seed alignments of 1,973 Rfam families. 

We extracted the sequences for the first 20 Rfam families (RF00001-RF00020) and 

filtered each family so that no pair of sequences had more than 75% sequence identity. 

Sequence identity was calculated using the alignments specified in the Rfam.seed file, 

which is a multiple alignment of the whole family. Insertion characters (e.g. “.”) were 

therefore ignored if they were present in both sequences being compared. After the 

sequence identity filtering, all remaining sequences in the family were used as part of the 

benchmark, up to a maximum of 100 sequences per family. Family RF00014 (DsrA) had 

only one sequence left after filtering (of the original five) and was therefore replaced by 

RF00032 (Histone3), which was chosen because it is often used in the literature as a 

structure analysis benchmark family and is a particularly small structure. Altogether, this 

yielded a dataset of 978 sequences. All information about alignment was removed, 

including all non-nucleotide characters. We referred to this dataset as the “plain 

sequences”. We additionally generated an “embedded sequence” dataset and a “plain 

sequences with background” dataset. The embedded dataset was created by adding 10-

50nt (amount randomly chosen) of additional flanking sequence to both the 5’ and 3’ 

ends of each sequence in the plain dataset. The flanking sequence was matched to the 

average mono-nucleotide frequency of the plain sequence dataset. The background-

containing dataset consisted of the plain dataset with an additional 3,000 random 

sequences mixed in, such that the random sequences outnumbered the Rfam sequences 

~3:1. These sequences were generated to have the same average di-nucleotide frequency 
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as the plain dataset to ensure that di-nucleotide frequency alone was not sufficient to 

cause clustering of random sequences. Matching of the average di-nucleotide frequency 

was performed using a first-order Markov process, as described in the “Synthetic 

structures” section. 

 After scoring but before clustering, we examined the sequences of each family for 

particularly high scores against the feature space CMs. We identified all CMs that had an 

average Z-score > 3 (as calculated using the Z-score parameters described in the 

“Normalization of feature space” section) and removed these CMs from the RESS. This 

also required us to re-estimate the RESS PCA projection without these CMs. The full list 

of CMs that were removed is: 5S_rRNA, 5_8S_rRNA, U1, U2, tRNA, tRNA-Sec, 

Tymo_tRNA-like, mascRNA-menRNA, tmRNA, Vault, U12, Bacteria_large_SRP, 

Hammerhead_1, Hammerhead_3, RNaseP_nuc, RNase_MRP, RNaseP_arch, 

RNaseP_bact_a, RNaseP_bact_b, ACEA_U3, Fungi_U3, Plant_U3, U3, 6S, U4, U4atac, 

SNORD14, SNORD53_SNORD92, Archaea_SRP, Bacteria_small_SRP, DdR20, 

Fungi_SRP, Metazoa_SRP, Plant_SRP, Protozoa_SRP, CsrB, CsrC, PrrB_RsmZ, RsmY, 

mir-299, Y_RNA, ceN72-3, U5, Histone3. Linear discriminant analysis was performed 

using the MASS package in R, and the top loaded CM for each axis was examined 

manually. A list of the loadings obtained in this analysis is available on the 

supplementary website. 

 NoFold and GraphClust were run on each of the three datasets using default 

parameters, with the exception that sliding window generation was turned off for 

GraphClust to make the results more easily compared. It is possible that the use of a 
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sliding window with both approaches could improve performance. Although GraphClust 

has many parameters that could potentially be tuned to produce better results, we felt that 

the default parameters were reasonable for the purposes of this test. In particular, the 

default specifies that GraphClust will be run for two iterations and find up to 10 clusters 

per iteration, which is theoretically sufficient to identify the 20 expected clusters in this 

particular dataset. Our results should be interpreted as how each method performs “out-

of-the-box”, without tuning of parameters or use of a prioi knowledge of the size or 

number of motifs.  

 Rfam families were grouped for the cross-validation analysis by clustering all of 

the 1,973 CMs based on their scores against a large set of random transcripts (same 

dataset as described in “Normalization of feature space” above). Hierarchical clustering 

using Spearman distance and Ward linkage was used. The dendrogram was cut at a 

height such that exactly 10 clusters were created by the cut. The CMs in each cluster then 

determined which families were grouped together for the analysis. The reason for 

clustering the families in this way was to reduce the number of CM features that had to 

be removed for each analysis. GraphClust was set to run for 25 iterations (10 clusters per 

iteration) for this analysis to ensure enough clusters could be detected in each subset. 

NoFold was run using default parameters. 

 

Dendritic localization dataset 

Dendritic transcripts in rat hippocampal neurons were identified by in situ 

hybridization and soma-/dendrite-specific microarrays (unpublished data from J. Kim 
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lab). A transcript was called “dendritically localized” if it had high expression in the 

dendrites relative to the soma in either the in situ or microarray analysis, yielding 182 

dendritically localized transcripts. An additional 29 known dendritically localized 

transcripts in rodents were obtained from [54]. Sequences from the 3’UTR of these 

transcripts were obtained from RefSeq annotations (rn4) using the UCSC genome 

browser. If more than one 3’UTR was available for a given gene, only the longest 

sequence was used. Cytoplasmically retained intron sequence were identified in rat using 

RNA-seq [35] and those belonging to a dendritically localized transcript were used for 

the dataset. These sequences consisted only of the regions of the intron that were 

supported by reads, as described in [35]. Since intron and 3’UTR sequences are long and 

may contain multiple structures, we generated a sliding window datasets for each using a 

50nt window with a 35nt slide or a 150nt with a 105nt slide. Instances of the ID element 

within the intron dataset were identified by a BLASTn search of the full length retained 

intron sequences using the default parameters on the BLAST website [55]. 

As a background dataset, we identified a set of non-dendritically targeted 

transcripts based on their very low expression in dendrites relative to the soma from the 

microarray analysis. Introns and 3’ UTR sequences were extracted for a random subset of 

the top 1000 non-dendritic transcripts and processed as above to create background 

datasets of 10,000-30,000 windows for each analysis. The GC content of the background 

datasets was 44-48%, which was similar to the test sequences (43-45% GC). To test a 

motif for enrichment within the dendritically localized set, we generated a cluster-CM for 

each final motif using cmbuild [27] and used this to search the background dataset as well 
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as the original dataset. The number of hits in each dataset was used in a one-sided 

Fisher’s exact test for enrichment of hits in the dendritic set, and Benjamini-Hochberg 

multiple testing correction was applied using R. 

 

Translation initiation dataset 

The transcript positions of non-canonical translation initiation sites (ncTIS) in 

mouse and human were obtained from Lee et al. [46]. Codons were defined as ncTIS if 

they were neither AUG nor near-AUG codons but showed translation initiation through 

ribosome profiling analysis. Since multiple mapping of non-unique ribosome footprints 

was allowed in the original dataset, we removed any ncTIS that was surrounded by >20nt 

of sequence that was exactly identical to any other ncTIS. Such ncTIS mostly fell within 

repetitive elements. We extracted 50nt upstream of each remaining ncTIS, allowing the 

extracted sequences to overlap by no more than 25nt. If such an overlap occurred, only 

the first sequence was kept. If 50nt could not be extracted due to an ncTIS falling too 

close to the 5’ end, the 5’ end was buffered with random sequence. A background 

database for the enrichment analysis was created from 50nt upstream of random 

transcript locations that were not within 25nt of an ncTIS. Only transcripts that had 

observed expression in the ribosome profiling experiment were used to obtain 

background sequences.  

 

Figure generation 
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Plots were generated in R (www.r-project.org) using the ggplot2 package 

(ggplot2.org). Structure depictions were created using VARNA [56] based on consensus 

structure and sequence predictions from LocARNA. 
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Figure 2-1. Normalization of the empirical feature space.  

Examples of CM score characteristics before (A,B) and after (C,D) normalization, for 

sequences and CMs of length ≤ 500nt. (A) A representative example of the scores given 

to sequences of various lengths against a single CM, in this case tRNA. We consistently 

observe a relationship between sequence length and score that is most pronounced for 

sequences that are smaller than the size of the CM (73nt in this case, indicated by the 

dashed line). Gray lines show separate linear regression fits to the scores of sequences 

shorter or longer than 73nt, with slopes (m) indicated. (B) We additionally observed a 

relationship between the length of a CM and the average score that it produces. Average 
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score was calculated based only on sequences with a length longer than the CM. (C) The 

length- and CM-specific procedure to calculate Z-scores greatly reduced the relationship 

between sequence length and score on an independent dataset. Linear regression fit lines 

and slopes are indicated as in (A). (D) Using Z-scores greatly reduced the relationship 

between CM length and the average score produced by the CM, and the average score for 

all CMs was close to zero. 
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Figure 2-2. Structurally similar sequences are clustered together in the RESS.  

(A) Three synthetic structures designed for this analysis. (B) PCA of the structure 

sequences after projection to the RESS separates the sequences based on structure. (C) 

Distributions of the distances between pairs of related structure (“1-hp vs 1-hp”, “2-hp vs 

2-hp”, “3-hp vs 3-hp”), pairs of different structure (“Diff structs”), and pairs of random 

sequences (“Rand vs Rand”). Distance between pairs was calculated by Spearman 

distance (left panel) or sequence identity (right panel). Related structure pairs were 

closer, on average, than different or random pairs in the RESS. 
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Figure 2-3. Outline of the NoFold approach.  

The method does not require structure prediction or pairwise alignment of the input 

sequences for clustering, in contrast to existing methods. 
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Figure 2-4. Distribution of the number of separate clusters assigned to each Rfam 

family for a given test.  

Clusters were assigned to a family only if it was the dominant family within that cluster. 

The observations for all 20 families across all three tests are displayed. Most families 

were assigned to only one cluster per test, and the maximum number of clusters per 

family in any test was three. 
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Figure 2-5. Consensus structures of motifs that are enriched in dendritically 

localized transcripts.  

(A) A motif (M3) found within dendritic introns with high sequence and structure 

similarity to the ID element hairpin (inset). (B) Two motifs (M39, M103) with high 

average Z-scores for the K10 localization element (K10_TLS, inset) (M39, Z = 5.80; 

M103, Z = 5.47). Although sequence homology with K10_TLS was low, these motifs 

share the high AU content characteristic of K10_TLS. (C) Two examples of potentially 

novel structure motifs (M158, M172) found in dendritic 3’UTRs. 
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Figure 2-6. Potential translation initiation motifs.  

Examples of structures strongly enriched upstream of non-canonical translation initiation 

sites (ncTIS) that scored highly against IRES, tRNA, and tRNA-like CMs.  
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Table 2-1. Clustering sensitivity of NoFold and GraphClust for three test conditions 

on the Rfam benchmark dataset. 

 

     
 

Plain sequences 
 

Embedded sequences 
 Plain seqs with 

background 

Family Rfam ID #Seqs 
Avg  

% ID 

Avg Len 

± SD (nt) 

 
NoFold GraphClust 

 
NoFold GraphClust 

 
NoFold GraphClust 

5S_rRNA RF00001 100 49% 116 ± 5.2  1.00 1.00  0.20 1.00  1.00 0.99 

5_8S_rRNA RF00002 22 54% 149 ± 14.7  0.91 0.95  0.86 0  0.86 0.95 

U1 RF00003 20 48% 162 ± 5.3  0 0  0 0  0 0 

U2 RF00004 70 47% 188 ± 14.4  1.00 1.00  1.00 1.00  1.00 1.00 

tRNA RF00005 100 40% 73 ± 5.2  0.92 0.91  0.72 0  0.91 0.90 

Vault RF00006 52 50% 101 ± 13.5  0.96 0.94  0.50 0.94  0.94 0.96 

U12 RF00007 27 46% 165 ± 21.5  1.00 1.00  1.00 0.85  0.89 1.00 

Hammerhead_3 RF00008 13 45% 55 ± 9.3  0.85 0  0 0  0.85 0.92 

RNaseP_nuc RF00009 68 32% 303 ± 43.3  0.74 0.62  0.49 0.54  0.50 0.60 

RNaseP_bact_a RF00010 100 49% 360 ± 25.8  1.00 1.00  1.00 1.00  1.00 1.00 

RNaseP_bact_b RF00011 41 53% 357 ± 26.3  0 1.00  1.00 1.00  1.00 1.00 

U3 RF00012 38 41% 204 ± 30.8  0.92 0.92  0.87 0.95  0.82 0 

6S RF00013 86 38% 181 ± 11.6  0.98 0.90  0.77 0.60  0.79 0.99 

U4 RF00015 61 45% 145 ± 21.1  0.97 0.95  0.66 0.95  0.97 0.95 

SNORD14 RF00016 7 44% 110 ± 13.9  0 0  0 0  0 0 

Metazoa_SRP RF00017 17 45% 290 ± 33.3  0.94 0.94  0.94 1.00  0.94 0.94 

CsrB RF00018 7 53% 340 ± 18.0  1.00 0  1.00 0  1.00 0 

Y_RNA RF00019 24 47% 97 ± 10.5  1.00 1.00  0.96 1.00  1.00 1.00 

U5 RF00020 82 44% 117 ± 7.2  1.00 0.99  1.00 1.00  1.00 0.99 

Histone3 RF00032 43 45% 46 ± 0.4  0.86 0.65  0.26 0  0.79 0.91 

Background - 3000 25% 215 ± 102.0  - -  - -  0 0 

  
Avg sensitivity 0.80 0.74  0.66 0.59  0.81 0.76 

  
Avg precision 0.98 0.99  0.99 0.98  0.99 0.98 
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Table 2-2. Clustering sensitivity and precision of NoFold and GraphClust for the 

synthetic structure benchmark. 

 

     NoFold  GraphClust 

Family # Seqs Avg % ID 
Length 

(nt) 

 
Sensitivity Precision 

 
Sensitivity Precision 

1-hairpin structure 50 25% 71  0.70 0.80  1.00 0.39 

2-hairpin structure 50 25% 71  0.88 0.79  1.00 0.67 

3-hairpin structure 50 25% 71  0.58 0.85  0 - 

   
Average 0.72 0.81  0.67 0.53 
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Table 2-3. Summary of motifs identified in dendritic localization datasets. 

 
      # Motifs  

Dataset 
 

#Seqs Window size #Windows 
 

≥ 3 seq ≥ 5 seq ≥ 10 seq Enriched SCI > 0.5 
 

Dendritic transcripts: retained introns 
 

199 
50 nt 1,839 

 
89 13 2 73 33 

 
150 nt 727 

 
7 7 2 4 0 

 
            

Dendritic transcripts: 3'UTRs 
 

143 
50 nt 3,454 

 
186 24 0 126 87 

 
150 nt 1,127 

 
12 1 0 10 4 

 
            ≥ 3 seq, ≥ 5seq, ≥ 10 seq indicates the number motifs found in at least 3, 5, or 10 different sequence windows, respectively. 

Enriched motifs had p < 0.05 after FDR correction. 
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Chapter 3: Extending empirical structure spaces to 

protein fold recognition and function prediction 
 

 

 

Portions of this chapter will appear in the following article and are reproduced here under a 

Creative Commons Attribution 4.0 International License (CC-BY).  

Middleton, S.A., Illuminati, J., Kim, J. 2017. Complete fold annotation of the human 

proteome using a novel structural feature space. Scientific Reports (In press). 

 

 

3.1 Introduction 

Although protein sequences can theoretically form a vast range of structures, the 

number of distinct three-dimensional topologies (“folds”) actually observed in nature 

appears to be both finite and relatively small [1]: 1,221 folds are currently recognized in 

the SCOPe (Structural Classification of Proteins—extended) database [2], and the rate of 

new fold discoveries has diminished greatly over the past two decades. Nevertheless, 

extending the catalog of protein fold diversity is still an important problem and fold 

classifying the entire proteome of an organism can lead to important insights about 

protein function [3–5]. Large-scale fold prediction typically involves computational 

methods, and the computational difficulty of ab initio structure prediction has led to 
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template matching (e.g., using  methods such as HHPred [6]) as the most common 

method for predicting the structure. When sequence-based matching is difficult, other 

fold recognition approaches must be employed, such as protein threading. Threading-

based methods, especially those that combine information from multiple templates, have 

been among the most successful algorithms in recent competitions for fold prediction 

[7,8], but are bottlenecked by long run times. Machine learning-based methods have also 

been used, which can be designed either to recognize pairs of proteins with the same fold 

[9,10] or classify a protein into a fold [11,12]. Although these methods have shown 

promising results for a subset of folds, they have so far not been able to generalize to the 

full-scale fold recognition problem. This failure can mainly be attributed to the severe 

lack of training data available for most SCOPe folds, as well as the highly multi-class 

nature of the full problem, which requires distinguishing between over 1,000 different 

folds [12].   

 Here we introduce a method for full-scale fold recognition that integrates aspects 

of both threading and machine learning. At the core of our method is a novel feature 

space constructed by threading protein sequences against a relatively small set of 

structure templates. These templates act as “landmarks” against which other protein 

sequences can be compared to infer their location within structure space. We show the 

utility of this feature space in conjunction with both support vector machine (SVM) and 

first-nearest neighbor (1NN) classifiers, and further develop our 1NN classifier into a 

full-scale fold recognition pipeline that can predict all currently known folds. Applied to 

the entire human proteome, our method achieves 95.6% accuracy on domains with a 
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known fold and makes thousands of additional high-confidence fold predictions for 

domains of unknown fold. We demonstrate utility by inferring new functional 

information, focusing on RNA-binding ability. The structure and function annotations of 

the entire human proteome are provided as a resource for the community. 

 

3.2 Results 

3.2.1 The protein empirical structure space (PESS) 

Our approach is based on the idea of an empirical kernel [13], where the distance 

between two objects is computed by comparing each object to a set of empirical 

examples or models. We have previously applied this idea to RNA secondary structure 

analysis [14], and we show here that it can be adapted to proteins. The objects being 

compared are amino-acid sequences and the distance we would like to compute is 

similarity of tertiary structure. We selected a set of 1,814 empirical threading templates 

that describe the three-dimensional coordinates of atoms of proteins of known structures. 

We use only a small subset of known structures for our template library which we find 

sufficient to construct an informative structural distance function. Using the threading 

templates we mapped amino-acid sequences to a structural feature space, where the 

coordinates of each sequence reflect its threading scores against the templates (see 

Methods). We refer to this as the protein empirical structure space (PESS). Using the 

PESS, we trained a classifier to recognize every fold (Fig. 3-1). Since protein domains 

are the unit of classification in SCOPe, we applied this approach to protein domains as 

units rather than full proteins. 
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3.2.2 Fold recognition performance 

We tested the PESS in combination with 1NN or SVM classifiers (Fig. 3-2A & B) 

using three popular benchmarks from the TAXFOLD paper [12]. These benchmarks are 

designed to test the ability of a method to distinguish between increasing numbers of 

folds: 27 folds in EDD, 95 in F95, and 194 in F194. Each fold has at least 11 training 

examples. The accuracy of our classifiers are shown in Table 3-1 along with the results 

reported by several other published methods [12,15–19]. Our SVM classifier performed 

the best on all three benchmarks, with the exception of the EDD dataset, where the best 

performance was from the method of Zakeri et al. when it was used in combination with 

known Interpro functional annotations. Our 1NN classifier also performed very well on 

all three benchmarks, outperforming all but our SVM on F95 and F194. We note that 

some of these publications used slightly modified versions of the benchmarks, which may 

affect the comparison (see Methods for details). We next asked whether our method 

actually performed better than simply using the top-scoring template from our feature 

space. We found that directly using the fold of the top template resulted in 52.1, 56.4, and 

57.4% accuracy on EDD, F95, and F194 respectively. Therefore, using the threading 

scores as a feature space rather than for direct classification improved performance 

considerably. 

The benchmarks described above included only a subset of the 1,221 folds in 

SCOPe v.2.06. Recognizing all folds simultaneously is challenging; not only is it a highly 

multiclass problem, but it also suffers from a lack of training examples for a large 
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fraction of the folds. We focused on our 1NN classifier, which requires only a single 

training example per fold, to scale to the full fold recognition task. To train the classifier 

to recognize all folds, we downloaded domain sequences from the Astral database [2] 

corresponding to SCOPe (v.2.06) filtered to less than 20% pairwise identity, which we 

call SCOP-20. This dataset contains 7,659 sequences covering all 1,221 folds in classes 

“a” through “g”. The same 1,814 templates were used to extract features, as before. To 

create a separate test set, we also downloaded the SCOPe sequences filtered to 40% 

identity and then removed any overlap between this set and the SCOP-20 set. This 

resulted in 6,322 sequences in 609 folds, which we call the SCOP-40 dataset. Using 1NN 

classification, 97.6% of SCOP-40 domains were classified into the correct fold 

(precision=0.964, recall=0.95). Using a combined SVM+1NN classifier (see Methods) 

did not improve performance (acc=96.9%, precision=0.917, recall=0.938), indicating that 

the 1NN classifier alone is sufficient for good classification on this dataset. To create a 

more difficult test, we filtered the SCOP-40 set so all test examples had less than 25% 

identity with a training example. The classification performance remained strong 

(acc=96.2%, precision=0.947, recall=0.922). Finally, to rule out any biasing effect of 

redundancy between test examples and the 1,814 feature templates, we removed any 

SCOP-40 examples that had more than 25% identity with one of the templates (896 

examples). This had virtually no effect on the classification (acc=97.6%, 

precision=0.956, recall=0.951). 

Of the folds represented in the SCOP-20 training set, 86.5% (1,055) have fewer 

than 10 training examples, and almost half (605) are “orphan” folds with only one 
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training example. Accurate classification into these folds is expected to be particularly 

difficult due to the small amount of training data. To determine how well our method 

performs relative to the number of training examples, we calculated precision and recall 

separately for each fold based on the SCOP-40 classification results. Although 

performance on folds with fewer training examples was slightly worse overall, the vast 

majority of folds had perfect precision and recall, regardless of training size (Fig. 3-2B & 

C). Focusing specifically on orphan folds, for which classification should be most 

difficult, we found that 96.4% of the 275 training examples belonging to these folds were 

correctly classified, which was only slightly lower than the overall SCOP-40 accuracy. 

Thus, our method can accurately recognize folds even when there is a single training 

example.  

 

3.2.3 Proteome-scale fold prediction of human proteins 

The ability of the PESS to accurate recognize all folds with relatively little 

threading makes it well suited for classifying large, proteome-scale datasets. Here we 

applied our new method to predicting the fold of protein domains curated from the entire 

human proteome. Since the 1NN-only classifier performed better than the SVM+1NN 

combined classifier on the full-scale fold recognition test, we used the 1NN-only 

classifier to predict the folds of all human protein domains. 

An overview of our whole proteome fold classification pipeline is shown in 

Figure 3-3A. In contrast to SCOP-derived benchmarks, whole proteomes present several 

additional challenges for fold recognition. One of the major bottlenecks is the process of 
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segmenting whole proteins into domains, which is often slow and error-prone. We did not 

attempt to address this issue here, but instead make use of the existing domain 

segmentation of the human proteome performed by the Proteome Folding Project [5]. 

Another challenge is recognizing domains that do not belong in any of the known fold 

categories, e.g. due to segmentation errors, being disordered, or belonging to a previously 

undiscovered fold. To address this problem, we defined a distance threshold for 

classification based on the typical distance between a domain and its nearest neighbor 

when the true fold of the domain is not represented in the feature space (see Methods). 

When a query domain’s nearest neighbor is farther than this threshold distance, the 

domain is assigned to a “no classification” category (Fig. 3-3A).  

There were a total of 34,330 human domains with length greater than 30 residues 

in the Proteome Folding Project dataset, corresponding to 15,619 proteins. Of these, 

20,340 domains (59%) had a nearest neighbor within the distance threshold and were 

classified into an existing fold by our method. Only 128 of these domains were 

previously placed into a fold with high confidence by the Proteome Folding Project [5]. 

To test how well our predictions match with what is currently known about human 

protein structures, we used a blastp search against PDB to identify 2,211 human domain 

sequences with a “known” fold; that is, an identical or highly similar PDB entry with a 

SCOPe fold classification. Our classifier made a fold prediction for 1,873 (84.7%) of 

these domains, and 95.6% of these predictions exactly matched the known SCOPe fold.  

Overall, 757 of the 1,221 SCOPe folds had at least one human domain predicted 

by our method. The distribution of domains across folds was highly skewed, with the 
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majority of folds having only a few predicted domains and a small number of folds 

having many (Fig. 3-3B). This agrees with previous observations that domains are not 

evenly distributed in protein structure space [1,20]. The top 10 folds accounted for 38.9% 

(7,908) of the classified domains, and the most common fold (Beta-beta-alpha zinc 

fingers) alone encompassed 9.1% (1,853) of the fold predictions (Fig. 3-3C). A full list of 

fold predictions is available on our website (see “Data and Code Availability” in the 

Methods). 

 

Human RNA-binding proteins 

RNA-binding proteins (RBPs) are an important class of proteins that function in 

almost all aspects of RNA biology, including splicing, translation, localization, and 

degradation. It would be valuable to fully define which folds have potential RNA binding 

function and use this information to improve our annotations of RBPs. We obtained a list 

of 1,541 currently known RBPs in humans from a recent RBP census [21] and extracted 

the corresponding domains from our dataset. There were 1,816 domains with fold 

predictions, matching 243 different folds.  

Since not every domain in an RBP is expected to actually bind RNA, we first 

sorted these folds into “likely RNA-binding domain (likely RBD)” and “likely auxiliary” 

groups. The RBPs in the census were primarily identified based on hits to a list of Pfam 

families with RNA-binding function, so we defined the likely RBD folds as those with at 

least two RBP domains with a hit (E < 0.01) to this RNA-binding Pfam list. There were 

720 such domains which encompassed 78 different folds. The most common folds 
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included several with well characterized RNA-binding function, such as Ferredoxin-like, 

which includes the RNA recognition motif (RRM); Eukaryotic type KH-domain (KH-

domain type I); and dsRBD-like (Fig. 3-3D). Next, we defined the auxiliary folds as 

those with at least one RBP domain but fewer than two hits to the RNA-binding Pfam 

list. By this criteria, we identified 165 folds, the most common being the Cytochrome C 

fold (14 domains) and RING/U-box E3 ligase fold (12 domains). These folds are likely to 

represent other functions performed by the RBPs; however, we note that the lack of a 

Pfam match does not preclude RNA-binding function, so some of these auxiliary folds 

may in fact be RNA-binding. 

The RBP census contained 21 cases where a protein was known to bind RNA but 

the type of RBD was not yet identified. Using our method, we matched three of these 

RBPs to one or more of the likely-RBD folds established above. One of these RBPs was 

Fam120a (also called C9orf10), which was previously found to have RNA-binding 

activity at its C-terminal end, but the type of RNA binding domain was not determined 

[22]. Our method predicted a DNA/RNA-binding 3-helical bundle fold within the RNA-

binding region of this protein. Loosening the classification threshold slightly (NN 

distance ≤ 20) allowed us to identify potential RBDs for three more of the RBPs, 

including a partial Ferredoxin-like fold at the N-terminal of Int8 and a PABP domain-like 

fold in Int10. 

We next looked to see if there were any additional proteins represented in the 

likely-RBD folds that were not already annotated as being RBPs by the census. We found 

6,249 such proteins, which overlapped substantially with a recently published set of 
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6,657 novel RBP predictions by RBPPred (1,981 overlapping genes not previously 

annotated as RBPs)[23]. The ~2,000 concordant predictions by these two orthogonal 

methods more than double the number of previous RBP annotations [21]. We note that 

for many of our RBP predictions, we cannot confidently predict their RBP status based 

on fold alone because some of the likely-RBD folds have other functions besides RNA-

binding (e.g. some superfamilies of the Ferredoxin-like fold can be protein binding 

instead of RNA binding), which may explain some of the non-overlapping predictions 

between our method and RBPPred. Nonetheless, several of the likely-RBD folds appear 

to be highly enriched in known RNA-binding domains, suggesting that functional 

annotation transfer is possible for these folds. For example, of the 32 domains predicted 

by our method to have the KH-domain fold, only four did not have a hit to the RNA-

binding Pfam list, and of these, three were already known to be KH-domain RBPs based 

on the RBP census. The one domain that was not in the census was part of the Blom7 

protein (also called KIAA0907), which has an experimentally determined structure 

(PDB: 2YQR) that confirms structural similarity to the KH-domain, despite the lack of a 

Pfam match. A full list of our new RBP predictions and likely-RBD folds is available on 

our website (see “Data and Code Availability” in the Methods). 

 

Novel folds in the human proteome 

Each year at least a few new folds are added to SCOPe (e.g. 13 new folds were 

added in the latest release). As noted above, there were ~14,000 human protein domains, 

or ~40% of domains, that were not assigned to known folds. While some of these might 
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be due to problems of segmentation, we hypothesize many of them represent 

uncharacterized folds. As a preliminary analysis of potential novel folds in the human 

proteome, we extracted a set of human domains that were not close to any of our training 

examples (NN distance ≥ 30) and clustered them (Methods). This resulted in 36 clusters 

(Fig. 3-4A), which we examined for evidence of novel folds.  

We first looked for incorrect domain boundary prediction or errors of our 

prediction method. Many of the domains were unusually long (>500 residues) compared 

to the average domain in the training set (195 residues), suggesting that they may in fact 

be multiple domains. For example, there were four neighboring clusters that contained 

almost exclusively domains from the Cadherin family of proteins. Most of these domains 

were longer than 500 residues and overlapped multiple repeats of the Cadherin motif 

based on Pfam annotations. The Cadherin fold is modeled as a single repeat in SCOPe, so 

this is likely a case where fold classification failed due to improper domain definition. A 

similar problem was observed for six clusters containing domains from several different 

classes of ATP/GTP binding proteins, where each domain spanned multiple distinct Pfam 

annotations that are likely to represent separate folds. Overall, we found that 26 of the 

clusters were potentially the result of such segmentation errors. 

The largest cluster contained 208 domains, most of which were of a reasonable 

length (289 residues on average). On closer examination, we found that a large fraction of 

these domains were predicted to have a coiled coil structure. The SCOPe hierarchy places 

most coiled coil domains in a separate class (class H) that was not included in the training 

data. Therefore, this cluster can possibly be explained by the absence of the correct fold 
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within our training data, although it is not truly novel. Eight other neighboring clusters 

were also found to have predominantly coiled coil structure, indicating that these 

structures can potentially explain a substantial fraction of our unclassified domains. 

We also examined the un-clustered domains, which might be isolated examples of 

novel folds. One domain, the fourth predicted domain of the protein Limbin (residues 

775-1067), was found not to overlap any known Pfam, SCOP, or other structural 

annotation. Although this domain was located in the feature space in proximity to the 

coiled coil clusters (Fig. 3-4A), it is predicted to be only partially coiled coil (Fig. 3-4B). 

We performed a more thorough template search for this domain using HHPred [24], 

RaptorX [25], and SPARKS-X [26] webservers, but did not identify a significant 

template match. We therefore used the Robetta webserver [27] to create an de novo 

model for this domain, which shows a mostly alpha helix structure (Fig. 3-4C). Limbin is 

the protein product of the gene EVC2, which is involved in the hedgehog signaling 

pathway and is frequently mutated in Ellis-van Creveld syndrome [28,29]. Interestingly, 

one of the mutations linked to this disease is found within our domain of interest 

(Arg870Trp; rs137852928) [28], suggesting that this region is functionally important. 

Whether this region represents a truly new fold will require additional analysis, but 

overall these results support the idea that the PESS can be used to identify novel structure 

groups. 
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3.2.4 Finding missing hedgehog proteins in C. elegans 

The Hedgehog (Hh) signaling pathway plays an essential role in embryo 

development, cell proliferation, and tissue patterning in vertebrates and many 

invertebrates, including Drosophila [30]. Although many Hh-related genes have 

homologs in C. elegans, several key components of the pathway appear to be missing, 

including Smoothened (smo), Fused (fu), Suppressor of fused (Su(fu)), Cos2 (cos), and 

Hh itself. We asked whether we might be able to identify distant homologs to these 

missing genes using structural similarity search with the PESS.  

To perform a proteome-scale structural similarity search, we first obtained all 

proteins in the C. elegans proteome, split them into domains, and mapped them to the 

PESS (see Methods). Next we obtained the sequences of the missing Hh-related genes 

from Drosophila, manually split them into their known functional domains, and mapped 

these to PESS as well. For each Hh-related protein, we used its domains as “queries” to 

obtain the closest 500 C. elegans domains within the PESS, which should represent the 

most structurally similar sequences in the C. elegans proteome. We then filtered the 

domain lists for each query protein to identify any C. elegans proteins that appeared on 

all (or most) of the lists—that is, proteins that have structural similarity to all (or most) of 

the domains of the query. 

The closest matches for each of the Hh-related proteins are shown in Table 3-2. We 

found at least one potential structural match for each of the five query proteins. There are 

several promising results; for example, several serpentine receptors were found for 

Smoothened that also have similarity to its N-terminal domain, and several kinesin-like 
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proteins were found for Cos2 that also have distant similarity to its interaction domains. 

More work will be needed to verify whether these proteins function in the Hh pathway. 

These results demonstrate an alternative use of the PESS as a direct method for structural 

querying of whole proteomes, independent of the framework of SCOPe folds used for 

classification in the previous sections. 

 

3.3 Discussion 

 Here we have demonstrated the utility of an empirically derived structural feature 

space composed of threading scores (the PESS) for addressing the problem of fold 

recognition. The most important characteristics of such a multi-dimensional feature space 

are the ability to combine characteristics of multiple fold templates for fold recognition 

and the ability to potentially identify entirely novel folds through interpolation of the 

feature space. Many types of classifiers can be used in conjunction with this feature 

space; we showed here that linear SVM achieved good performance on benchmarks 

where at least 10 training examples were available per fold, and 1NN worked well in the 

more general case to recognize all known folds. We applied our method to the human 

proteome, predicted high confidence fold classifications for 20,340 domains, and showed 

that these predictions can be used to make functional inferences as illustrated by the class 

of RNA-binding proteins. A distinct advantage of the PESS is that it only requires a 

single training example per fold when used in conjunction with a 1NN classifier, 

allowing us to make predictions for all currently known folds in SCOPe. This is critical, 

since almost half of all SCOPe folds have only one training example in SCOP-20. 
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Another advantage of the 1NN classifier is that adding new training data does not require 

re-training the whole classifier, making it simple to update the model as new data become 

available.  

 One of the limitations of methods that rely on threading is the large amount of 

time the threading process takes. Threading against all PDB templates can take hours or 

even days per domain, depending on the computational resources available. In our 

method, we save time by only threading against representative templates. Nonetheless, 

threading is still the major time bottleneck, with a single average-sized (200 residue) 

domain taking 26 ± 2.5 minutes to thread against the 1,814 templates on one CPU core. 

To make this more feasible for genome-sized datasets, which typically have thousands or 

tens of thousands of domains, we have implemented an option for parallel processing of 

the input sequences. Another possible way to decrease the threading time would be to 

reduce the number of templates in our library. Preliminary results indicate that, 

depending on the classifier used, the feature space can be substantially reduced with only 

a minor impact on classification accuracy. In fact, given our framework, we hypothesize 

that we can create feature spaces at different scales such that threading can be applied in a 

hierarchical sequence. 

The relationship between the structure of macromolecules to their function is a 

key annotation principle for computational inference. As the number of solved examples 

increase, we hypothesize that data-driven feature extraction coupled with machine 

learning methods as in our method and also in methods like deep learning [31], will have 

high utility in extending whole genome/proteome annotations. 
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3.4 Methods 

 

Feature extraction and classification 

Features were created for each input sequence by threading the sequence against a 

library of 1,814 structure templates to produce a vector of 1,814 threading scores. These 

scores represent the compatibility of the sequence with each template structure. Each 

score is directly used as a numerical coordinate within the feature space, which we call 

the Protein Empirical Structure Space (PESS). Threading was done using CNFalign_lite 

from the RaptorX package v.1.62 [32,33]. This program outputs a raw threading score for 

each query-template pair that is calculated from the optimal alignment of the query 

sequence and the template [32,33]. The template library was the default library provided 

by RaptorX. These 1,814 templates represent a wide range of different structures with 

low redundancy, but do not necessarily represent all known folds.  

Training sequences were threaded against the templates and the resulting scores 

were normalized by z-standardization. Test sequences were threaded and normalized 

using the normalization parameters derived from the training sequences.  

We constructed fold predictors over the PESS using both a first Nearest Neighbor 

(1NN) classifier and Support Vector Machine (SVM) classifier. For the 1NN classifier, 

pairwise Euclidean distances between each training and testing sequence were calculated, 

and each test sequence was classified into a fold by finding the closest training neighbor 

and transferring its fold label to the test sequence. For the support vector machine (SVM) 
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classifier, a linear SVM was trained using the one-vs-all multiclass approach with the C 

parameter (which controls the penalization of misclassification during training) set to 

1/N, where N is the number of positive examples in a given fold.   

We also constructed a joint SVM+1NN classifier to assist in identification of fold 

classes with very small number of training examples. First, a linear SVM was trained as 

described above to recognize only folds that had at least 20 training examples (“large 

folds”). The remaining sequences in the training set (“small folds”) were combined into a 

single class labeled “other”, and this class was not used for classification. A separate 

1NN classifier was trained on only the small fold training examples. Classification was 

then done in two phases: first, all test examples were provided to the SVM, and any test 

example that received a positive confidence score (based on the signed distance from the 

hyperplane) was classified into whichever fold gave the highest confidence score; second, 

the examples that were not classified in the first step were passed to the 1NN model for 

classification.  

All classifiers were implemented in Python using the scikit-learn package [34]. 

 

Performance assessment 

 Prediction accuracy was calculated as the fraction of test examples that were 

classified into the correct fold. Precision (the number of true positives divided by the sum 

of the true and false positives) and recall (the number of true positive divided by the sum 

of the true positives and false negatives) were calculated separately for each fold and 

averaged across the folds. For both precision and recall, we excluded folds where the 
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denominator was zero for the SCOP benchmark (611 folds excluded for recall 

calculation; 618 folds excluded for precision calculation).  

 

Benchmark comparison to other methods 

 We obtained three benchmark datasets (EDD, F94, and F195) from the 

TAXFOLD paper [12]. Each benchmark contains only domain sequences longer than 30 

residues with less than 40% pairwise identity, but each contains a different number of 

folds: EDD contains 3397 sequences in 27 folds, F95 contains 6364 sequences in 95 

folds, and F194 contains 8026 sequences in 194 folds. Performance on each dataset was 

assessed using 10-fold cross validation, with SVM and 1NN classifiers trained and 

assessed as described above. We compared our results to the percent accuracies reported 

in recent publications that used these benchmarks with 10-fold cross validation. Some of 

these publications used modified versions of the benchmarks. Dehzangi et al., Saini et al., 

and Lyons et al. all used a version of EDD that had the same 27 folds, but 21 extra 

domains [15,16,18]. This is only a small fraction of the total number of domains in this 

dataset, so we do not expect this to have a major impact on the results. A more major 

modification was made by Wei et al., who used the same folds for EDD, F95, and F194, 

but updated the datasets to have 228, 427, and 499 extra domains, respectively [19]. 

Based on these numbers of added sequences, we estimate that the maximum performance 

of Wei et al. on the original TAXFOLD datasets would be no more than 98.8%, 89.2%, 

and 83.1%, respectively. However, since their new dataset still used the same cutoff for 
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pairwise similarity as the original (<40%), it is more likely that their results would be 

roughly the same for both datasets. Thus the results in Table 3-1 should be comparable. 

 

SCOP datasets and final classifier 

We downloaded domains from the SCOPe database v2.06 pre-filtered to less than 

20% pairwise identity by the Astral database (http://scop.berkeley.edu/astral/ver=2.06), 

which contained 7,659 domains covering all 1,221 folds in SCOP classes “a” through 

“g”. We call this dataset “SCOP-20”. We also downloaded the set pre-filtered to 40% 

identity and removed any domains that were also present in SCOP-20, resulting in 6,322 

sequences in 609 folds. We call this dataset “SCOP-40”. We note that almost all SCOP-

20 sequences were in SCOP-40 before this filtering, so the final test set has <40% 

pairwise identity with the training set. We trained a 1NN classifier as described above 

using the SCOP-20 dataset as training examples and tested the prediction performance 

using the SCOP-40 set. This classifier was used for all further fold recognition tasks, 

including the human proteome dataset.  

We created the training and test sets for the <25% identity test as follows. We 

downloaded SCOPe pre-filtered to 25% pairwise identity from Astral, and then identified 

the overlapping sequences with SCOP-20. These sequences were used for training (7327 

sequences). For sequences that did not overlap with SCOP-20, we used any that 

overlapped with SCOP-40 as the test set (1124). This ensured that no test example had 

more than 25% identity with a training example.  
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To remove redundancy between the SCOP-40 test examples and the 1,814 feature 

templates, we first obtained the original sequences used to generate the templates, which 

is included in the template file. We then performed a blastp search of the template 

sequences using all the SCOP-40 sequences as queries, and removed any SCOP-40 

examples that had more than 25% identity over at least 90% of their length with one of 

the template sequences. 

 

Human protein analysis 

Protein domain sequences for 94 species from the Proteome Folding Project [5] 

were downloaded from the Yeast Resource Center public data repository 

(http://www.yeastrc.org/pdr/pages/download.jsp). To obtain only human sequences, we 

filtered for protein identifiers marked as “NCBI NR” and had “[Homo sapiens]” in the 

description. There were a total of 34,330 human domains with length greater than 30 

residues, corresponding to 15,619 human proteins.  

We classified the domains using the SCOP-20-trained 1NN model with an 

additional distance threshold to filter out domains that do not belong in any of the 

represented folds. We determined the threshold nearest-neighbor distance for 

classification as follows: for each test sequence in SCOP-40, we calculated the nearest 

neighbor distance before and after removing all SCOP-20 training sequences that 

belonged to the same fold as the test sequence. We found that a distance threshold of 17.5 

provided a good balance between false positives and false negatives (FPR = 9.27%, FNR 
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= 9.49%). After classification with 1NN, only the domains with a nearest-neighbor 

distance below this threshold we considered confident fold predictions. 

Human domain sequences were mapped to PDB entries using a blastp search of 

PDB requiring that at least 75% of the sequence length had at least 90% identity with a 

PDB sequence to consider it a match. PDB matches were then mapped to SCOPe 

classifications using the dir.cla.scope.txt (v.2.06) annotation file downloaded from the 

SCOPe website.  

 

RNA-binding proteins 

A list of 1,541 known human RBPs was obtained from a recent review [21]. Gene 

names of the RBPs were matched up to the human protein GIs using the UniProt ID 

mapping tool, and 1,093 of the RBPs were matched to one or more domains (3,263 

domains total). This review also defined a list of 799 Pfam domains with functions 

related to RNA binding, which we used to filter the 3,263 RBP domains down to those 

that were most likely to be RNA-binding. Domains were assigned PfamA annotations 

using hmmscan (http://hmmer.org/). Both a “full-sequence” E ≤  0.01 and a “best 1” E ≤ 

0.1 was required for assignment. We compared our novel RBP predictions with the novel 

predictions from the RBPPred paper [23] on the gene level by mapping UniProt IDs to 

gene names for each list using the ID conversion tool on the UniProt website. Not all 

UniProt IDs could be mapped to a gene name. The final unique gene lists contained 6,589 

genes for RBPPred and 5,668 genes for our method, which we used to compute the 

overlap. 
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Novel folds 

 We extracted all human domains with a nearest neighbor distance ≥30 and 

performed t-SNE on the PESS projections of these domains using scikit-learn with 

parameters “perplexity = 10, init = ‘pca’, random_state=123”. Domains were then 

clustered using DBSCAN from scikit-learn with parameters “eps = 5, min_samples = 5”. 

Domains and clusters were manually examined for potential boundary prediction errors 

or previous structural annotations. 

 

C. elegans Hedgehog gene analysis 

We downloaded the canonical protein sequences for the Caenorhabditis elegans 

proteome from UniProt. Each protein was split into domains based on DomainFinder 

Gene3D predictions [[REF]]. If there were regions between, before, or after predicted 

domains that were longer than 30 aa but did not have a Gene3D prediction, we also 

included those. If a “filled in” region such as this was longer than 450 aa, we used a 

sliding window of 300 aa (slide = 150 aa) to break it into smaller pieces. The fold of each 

domain was predicted using the methods described above. Known Hh-related protein 

sequences from Drosophila melanogaster were downloaded from UniProt, manually split 

into domains based on literature annotations of functional domains, and mapped to the 

PESS as above.  

 

Data and Code Availability 
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 Benchmark datasets, training data, and all human fold and RBP predictions are 

available at http://kim.bio.upenn.edu/software/pess.shtml. The fold classification source 

code is freely available at the same website or at https://github.com/sarahmid/PESS. 
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Figure 3-1. Overview of PESS construction.  

Training sequences of known fold are threaded against a set of structure templates, and 

the resulting threading scores act as coordinates within a structural feature space (the 

PESS). A classifier can then be trained to recognize the subspace occupied by each fold 

in the PESS. Different colors indicate the fold of each sequence and are shown here only 

for visualization. 
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Figure 3-2. Classification and performance using the PESS.  

(A&B) Two different methods of classification using the PESS. Colored circles represent 

training examples within the PESS and are colored by fold. (A) In 1NN classification, the 

PESS distance between the query (gray circle) and all training examples is computed and 

the query is assigned to the fold of the nearest training example (dark gray arrow). (B) In 

1-vs-all SVM classification, the PESS distance between the query and each of the fold-

level hyperplanes (dotted lines) is computed, and the query is assigned to the fold that 
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gives the best score (dark gray arrow), based on signed distance from the fold’s 

hyperplane. (C) Precision and (D) recall measures were computed for each fold 

separately after 1NN classification using the PESS and plotted against the number of 

training examples for each fold. Marginal histograms show the distribution of folds along 

each axis. 
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Figure 3-3. Fold classification of the human proteome.  

(A) Overview of classification process. Full length human protein sequences were split at 

predicted domain boundaries to create one or more separate domain sequences per 

protein (Drew et al. 2011). Domain sequences were mapped to the PESS and classified 

by 1NN classification. A threshold was applied to the nearest neighbor distance (dotted 

circle), whereby only domains with a nearest neighbor closer than the threshold distance 

were classified. (B) PCA projection of fold centroids within the PESS, scaled by number 
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of human domains predicted to belong to that fold. Centroids were calculated based on 

the location of each fold’s training examples within the PESS and are colored by SCOP 

class. (C) Top ten folds by number of human domain predictions. (D) Top ten likely 

RNA-binding folds, ranked by number of confirmed RNA-binding domains (RBDs). 

Confirmed RBDs were determined based on matches to a curated list of RNA-binding 

related Pfam families. 
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Figure 3-4. Analysis of unclassified human domains.  
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(A) t-SNE projection of human domains with nearest-neighbor distance ≥ 30. Colors 

indicate cluster assignment by DBSCAN; unclustered domains are shown in black. 

Dotted lines show related groups of domains. (B) Overview of the EVC2 protein product, 

Limbin, and its known structure elements. The location of the domain with a putative 

novel fold is shown in yellow. (C) De novo structure model for part of the Limbin 

domain 4 creating using Robetta. 
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Table 3-1. Overall % accuracy on three benchmarks using 10-fold cross validation. 

Method EDD F95 F194 

Dehzangi et al.
a
 88.2 - - 

Saini et al.
a
 86.6 - - 

Lyons et al.
a
 93.8 - - 

Zakeri et al. 88.8 / 96.9
b 

- - 

Yang and Chen  90.0 82.4 79.6 

Wei et al.
c
 92.6 83.6 78.2 

This method – 1NN 90.6 84.6 82.5 

This method - SVM 95.7 91.9 90.5 
a
 Using a slightly modified EDD set with 21 additional domains (3418 total) (see Methods) 

b
 With Interpro functional annotations 

c
 Using modified versions of EDD (3625 domains), F95 (6791 domains), and F194 (8525) (see Methods) 
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Table 3-2. Putative structural matches to missing C. elegans Hh-related genes. 

Protein  Domains required to match Closest C. elegans matches 

Hedgehog 
N-terminal domain (hedge),  

C-terminal domain (hog) 

trpp-8, CELE_T28F3.5, fbxa-142, spt-5, 

tns-1, C41A3.1, lin-18, nmr-1, 

CELE_T21C9.6, CELE_F54B3.1, prx-1, 

sup-17, mtm-6, CELE_F46G10.2, 

C05D12.3, eef-2, CELE_F57C7.4 

Smoothened 

N-terminal domain,  

Frizzled domain, 

GPCR-like domain 

npr-30, srh-173, srw-139, tyra-3, srw-48, 

srw-124, fshr-1 

Fused 

Kinase domain,  

Central domain,  

Leucine-rich-repeat domain 

chs-2 

Suppressor  

of fused 

Suppressor of fused-like,  

Suppressor of fused C-terminal 

C41A3.1, plc-1, cec-9, CELE_F27C8.2, 

aph-2, age-1, CELE_T23E1.1, 

CELE_F59H6.5, glf-1, CELE_T08A11.1, 

ddo-3, gcy-25, rde-1, ntp-1, B0511.12, 

F52H2.6, CELE_Y61A9LA.10, let-19, 

drsh-1, ZK1067.4, CELE_W03A5.1, 

CELE_Y16E11A.2, CELE_F22E5.6, 

CELE_Y43F8B.19, CELE_Y7A5A.1, 

CELE_T05H10.1 

Cos2 

Kinesin-like domain,  

fu-binding domain,  

smo-binding domain 

unc-116, klp-18, klp-20, zen-4, klp-12, 

arc-1 
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Chapter 4: Structures and plasticity: analysis of 

dendritically targeted RNAs and the “local proteome” 
 

 
 

 

4.1 Introduction 

Neurons require local protein synthesis within the dendrites to produce long-lasting 

synaptic potentiation [1] (see also section 1.3.3 of this thesis). Importantly, in order for 

this local synthesis to occur, mRNAs must first be transported to the dendrites. Although 

RNA localization and local translation have been studied for over 20 years, there are still 

many aspects of these processes that remain unclear. In this chapter, I will address three 

open questions, outlined below, with a particular focus on the under-studied roles of 

RNA secondary structure and protein tertiary structure. 

 

Which RNAs are dendritically localized? 

Multiple studies have profiled RNAs that are localized to the dendrites using 

various methods [2–10]. Despite these efforts, there is still no firm consensus on the set 

of dendritically localized RNAs. Most recently, three studies used high-throughput RNA 

sequencing (RNA-seq) to identify dendritically-enriched RNAs in rodent neurons. First, 
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Cajigas et al. performed bulk RNA-seq on the neuropil (dendrite-rich) region of rat CA1 

hippocampal slices and predicted 2,550 dendritic RNAs [7]. Second, Ainsley et al. used 

epitope-tagged ribosomes that were expressed specifically in neurons (but not other brain 

cell types) to purify ribosome-bound RNA from mouse CA1 neuropil punches, predicting 

1,890 dendritic RNAs [8]. Most recently, Taliaferro et al. used a culture system where 

cells were grown on a porous membrane that allows processes to pass through, but not 

cell bodies, thus allowing them to collect and sequence processes with relative purity 

(similar to [5]) [10]. This allowed them to identify 778 dendritic RNAs (and more with 

isoform-specific localization). Although in theory RNA-seq studies such as these should 

produce a comprehensive picture of the dendritic transcriptome, each of these studies had 

experimental limitations that complicate the interpretation of the results. The Cajigas 

study was limited by the presence of non-neuronal and non-dendritic material in the 

neuropil, such as glia and interneurons, which make it difficult to pinpoint which RNAs 

came from neuronal dendrites. In addition, due to the filtering steps the authors used to 

remove suspected contaminating RNAs (including known nuclear-related genes), many 

true dendritic RNAs may have been removed. The Ainsley study, which was also 

performed with tissue slices, alleviated some of these concerns by increasing the 

specificity of the RNA capture for only neuronal dendrites. However, in gaining this 

specificity, Ainsley et al. may also have lost some sensitivity, since their method only 

captures ribosome-associated RNAs. Finally, the Taliaferro study—while free from 

concerns about tissue-related contamination—relied mostly on CAD and N2A cell lines 

for their results. Although these cell lines are derived from neurons and grow processes 
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when induced to differentiate, their degree of divergence from primary neurons is 

unclear.  

Due to these limitations, there is still ambiguity about which RNAs are present in 

the dendrites. Studies that are more specific in their capture of dendritic RNA are needed 

for primary cells. Although study of dendrites in vivo would be ideal (perhaps using 

spatially-precise capture techniques such as that described in [11] or large-scale 

fluorescent in situ hybridization (FISH)-based approaches [12–14]), even primary 

cultures would give valuable insight. Furthermore, since most studies have used bulk 

RNA sequencing of many cells at once, little is known about the variability of dendritic 

localization across single neurons. Given the heterogeneity already observed in neuronal 

RNA expression on the whole-cell level [15], it would not be surprising if there is 

variability of localization. In fact, very early studies have already demonstrated that 

individual dendrites of the same neuron can have different transcripts [2]. Further study 

of these questions is warranted.  

 

How are RNAs recognized for localization? 

If we take the RNA-seq studies described above at face value, then somewhere 

between 700 and 2,500 species of RNA are localized to the dendrites. Since the average 

neuron is estimated to express between 10,000 and 15,000 genes [11,15], it is clear that 

not all RNAs are localized. How then does the neuron perform this large scale sorting of 

RNAs that should and should not be dendritically targeted? Most evidence points to the 

following model: RNAs that are to be localized contain a cis motif—called a dendritic 
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targeting element (DTE)—which is recognized by a specific RNA binding protein (RBP). 

The RBP then mediates association with the transport machinery of the cell and causes 

localization [16]. There are probably several different DTEs and localization-mediating 

RBPs. However, given that there are currently only ~1,500 known RBPs in humans [17], 

of which only a small fraction probably participate in localization, it seems unlikely that 

each dendritic RNA is localized by a unique combination of DTE and RBP. Instead, 

multiple RNAs probably share the same or very similar DTEs and are transported by the 

same RBP. If this is true, then it should be possible to identify DTEs computationally by 

looking for sequence elements that are shared among multiple localized RNAs, and 

relatively absent in non-localized RNAs. Surprisingly, however, very few DTEs have so 

far been found using this method. Most known DTEs were instead identified using trial-

and-error experimental methods, and furthermore seem to be specific to just one or a 

small handful of localized RNAs.  

Why have DTEs been so elusive thus far? Two possible explanations stand out. 

First, most studies have focused exclusively on searching canonical 3’UTRs. Although 

this is historically where most localization elements have been found, especially in non-

neuronal contexts, there is growing evidence that other parts of the mRNA could be 

involved, such as cytoplasmically retained introns [18]. Recently, a study also identified 

over 2,000 previously unannotated distal 3’UTR isoforms, which were conserved 

between mouse and human and were mostly specific or upregulated in neuronal tissues 

[19]. It is unknown what role these alternative 3’ isoforms play in neurons, but an 

exciting possibility is that they contain localization signals. Thus far, these sequences 
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have not been included in the search for DTEs. A second possible explanation for the 

lack of known DTEs is that previous studies have not taken secondary structure 

sufficiently into account. Many of the known DTEs have an important structural 

component or appear to be completely structural in nature, but due to a lack of efficient 

algorithms for de novo structural motif discovery, this has not yet been systematically 

explored. The combination of a more complete database of localized RNA isoforms with 

structure-aware motif finding has great promise for identifying missing localization 

signals. 

 

What role do locally translated proteins play in long-term potentiation? 

 The presumed purpose of localizing so many RNAs to the dendrites—which 

requires energy expenditure on the part of the cell—is so that these RNAs can be locally 

translated in response to synaptic activation. A corollary of this is that the proteins 

produced during local translation (the “local proteome”) should play an important role in 

the processes following synaptic activation, particularly those that lead to long-lasting 

synaptic plasticity. This is supported by studies showing that inhibiting protein synthesis 

in the dendrites blocks late-phase long term potentiation (L-LTP) [1], and has been 

shown more specifically to be true for a small handful of individual locally translated 

proteins, such as CaMKIIα [20]. 

So far, however, very little is actually known about the specific role of each 

locally translated protein. Gene ontology (GO) analysis can provide a useful overview of 

functions enriched in a group, but the annotation is sometimes vague or incomplete for 
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individual proteins and can be susceptible to various biases [21]. As demonstrated in 

Chapter 3, protein structure prediction can help fill holes left by other types of annotation 

and lead to new functional insights. More specifically, there are several reasons to think 

that structure analysis might be particularly useful in the context of understanding the 

local proteome. Firstly, the post-synaptic density (PSD) and surrounding dendritic spine 

are highly structured formations that depend on a scaffold of interacting proteins for their 

function [22–24]. Central to these interactions are protein domains, which usually require 

a specific three-dimensional fold in order to function properly. Secondly, mutations 

linked to neuropsychiatric diseases have been found to be enriched in synaptic proteins in 

human and mouse, and several of these mutations appear to disrupt important structures 

[25,26]. A more complete picture of the structures of locally translated proteins will help 

both in functional understanding and mutation-impact analysis. 

 

Chapter overview 

 In this chapter, I use a combination of experimental and computational techniques 

to shed new light on the three questions outlined above. To address the first question—

which RNAs are localized to the dendrites?—I dissect individual neurons in primary 

culture to obtain somatic and dendritic subcellular compartments with high specificity. 

RNA-sequencing then allows for identification of poly-adenylated transcripts in each 

compartment. This sequencing is done on the single-cell level to enable direct 

comparison of the soma and dendrites from the same original cell, and allows for 

assessment of heterogeneity of RNA expression and localization across cells. I use this 
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dataset to identify dendritically enriched RNAs on both the gene and isoform levels, 

including the recently identified set of neuron-enriched distal 3’ UTR isoforms [19]. To 

address the second question—where are all the common DTEs?—I make use of this 

carefully defined set of localized sequences to perform a comprehensive search for RNA 

motifs that might be involved in localization. Using the method described in Chapter 2 

for de novo identification of RNA structure motifs, I identify several secondary structures 

enriched in the localized sequences compared to non-localized background, including 

two SINE-derived motifs. Finally, to address the third question—what role do locally 

translated proteins play in LTP?—I expand on existing gene-level annotations using 

domain-level protein structure information. I use the method described in Chapter 3 to 

predict the structural folds of all potential locally-translated proteins (as predicted by the 

localization of the RNA) and highlight several new pieces of information the structure 

predictions provide, including links to disease. Altogether, these results provide new 

insights into RNA localization and locally translated proteins in neurons and demonstrate 

the utility of including structure information in functional analysis of macromolecules. 

 

4.2 Results and Discussion 

4.2.1 Gene-level localization 

To compare the RNAs present in dendrites and somas of individual neurons, we 

manually separated the neurites (dendrites/axon) and soma of primary mouse 

hippocampal neurons using a micropipette and performed RNA-sequencing on each 

subcellular fraction such that we obtained neurite and soma transcriptome of the same 
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cell (Fig. 4-1). We note that the axon is generally small at this culture stage (~5% the 

volume of the dendrites) and thus is not expected to make up a large fraction of the 

neurite samples. Somas generally contained a wider variety of transcripts than their 

corresponding neurites, with an average of 9,206 and 5,827 genes expressed in each 

compartment respectively (Fig. 4-2A). As expected, the neurite-expressed genes were 

largely a subset of the soma-expressed genes of the same cell (Fig. 4-2B). Genes that 

show expression only in the neurites may represent strongly localized RNAs, which we 

will investigate further below. All soma and neurite samples expressed housekeeping 

genes and neuronal marker genes at high levels, especially pyramidal markers, with little 

expression of other brain cell type markers (Fig. 4-3C).  

To identify potentially localized RNAs, we used DESeq2 [27] to perform a 

differential expression analysis using a paired design, where soma and neurites of the 

same original cell were directly compared. DESeq2 reported 3,811 genes significantly 

more highly expressed in somas and 387 genes significantly higher in neurites (FDR 

corrected p ≤ 0.05) (Fig. 4-3A). Given their relatively higher expression in neurites 

compared to soma, these 387 genes are likely to be actively localized, and we therefore 

refer to them as localized genes (Table 4-1). Fifty six of these localized genes overlapped 

with a curated set of previously annotated dendritic RNAs from tissue and FISH (see 

“‘Known dendritic’ gene list” in Methods) (Fig. 4-3B) (p = 4.2e-15; odds ratio = 3.8; 

Fisher’s exact test). The localized RNAs were also strongly enriched for GO terms 

related to translation and mitochondria, consistent with previous reports [8–10], whereas 
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the somatic RNAs were enriched for functions related to the nucleus, including RNA 

splicing and chromatin organization (Fig. 4-3C). 

Differential expression analysis identifies genes that have a higher expression in 

one condition compared to another. However, in the case of RNA localization, we do not 

necessarily expect all localized RNAs to have higher expression in the neurites than the 

soma. This may be particularly important when expression is profiled on the single cell 

level, since factors such as bursting transcription and variable rates of localization can 

lead to high variability in the relative amounts of RNA in each compartment at the time 

of collection. Therefore, we additionally identified RNAs that were consistently present 

in the neurites across the profiled cells, since these RNAs are likely to have important 

neurite function even if they are not concentrated there relative to the soma. There were 

1,863 RNAs observed in at least 90% of the neurite samples (Table 4-2). These RNAs 

overlapped substantially with the curated list of dendritic RNAs (Fig. 4-4A) (472 

overlapping; p<2.2e-16; odds ratio=9.5; Fisher’s exact test), and included well-

characterized localizers such as Actb, Bdnf, Calm1, Dlg4, Grin1, and Map2. Theses 

RNAs also covered many of the same ontology functions as the gene-level localizer set, 

such as mitochondria and translation, but additionally were strongly enriched for a large 

number of synaptic and localization-related functions (Fig. 4-4B). Overall, these results 

suggest that on the single cell level, RNAs with important dendrite functions are often not 

localized to the point of having higher expression in the dendrites relative to the soma, 

but are nonetheless consistently present in the dendrites at a lower level. 

 



 

 

138 

 

4.2.2 Differential localization of 3'UTR isoforms 

Neurons express a large number of distal 3'UTR isoforms that are conserved 

between human and mouse [19]. The purpose of these alternative 3'UTRs in neurons is 

not well understood, but one possibility is that they play a role in subcellular localization. 

Under this model, one of the alternative 3'UTR sequences contains a localization signal, 

causing only the transcript copies that contain that UTR to be localized. This could allow 

the neuron to control the extent of localization of certain genes using co-transcriptional 

mechanisms that modulate the ratio of 3’UTR isoforms produced, such as alternative 

splicing or alternative cleavage and polyadenylation. A few specific examples of 

differentially localized 3’UTR isoforms have already been characterized [28], such as 

Bdnf [29,30]. The Taliaferro et al. study, mentioned in the introduction to this chapter,  

surveyed this phenomenon on a larger scale in brain-derived cell lines and cortical 

neurons and identified hundreds of cases of differential localization of alternative 3'UTR 

isoforms [10]. However, almost all of the results reported in this study were based on the 

cell lines rather than the primary cortical neurons, and the list of differentially expressed 

isoforms in the primary neurons was not made available (only the cell line-based list was 

provided). Furthermore, although correlations between the cell lines for alternative 

3’UTR usage was reasonable (RSpearman = 0.74), the correlation between the cell lines and 

the primary neurons was much lower (RSpearman = 0.35), suggesting that there may be 

substantial differences in isoform usage in primary neurons that is not reflected in the 

provided cell line results. Given the potential importance of alternative 3’UTR usage in 

dendritic localization, we sought to better define genes that have 3’-isoform-specific 
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neurite localization in primary neurons and provide a more extensive analysis of the 

characteristics of these isoforms than previously described. 

As a result of the single cell RNA amplification process, the majority of our 

sequencing reads map within 500nt of a 3' end (Fig. 4-5A), and we thus have high 

coverage of these regions for identifying expressed 3’UTR isoforms. As exemplified in 

Figure 4-5B, reads show a clear peak marking the 3’ ends of transcripts, allowing us to 

quantify 3’ isoforms separately as long as they are sufficiently distant. We quantified the 

expression of individual 3' isoforms based on the last 500nt of each isoform, merging any 

3' ends that were closer than 500nt into a single feature. We first observed that individual 

cells widely expressed multiple 3' isoforms per gene, with somas showing slightly more 

alternative expression than neurites on average (1.26 and 1.13 expressed 3'UTR isoforms 

per gene, respectively). When multiple isoforms were expressed, one isoform tended to 

be dominant, making up ~85% of the gene reads on average in both compartments.  

To compare differential isoform expression between soma and neurite, we limited 

the considered 3'UTR isoforms to only the top two most highly expressed isoforms per 

gene, which accounted for the vast majority of reads in most genes. The top two isoforms 

were labeled "proximal" (the more 5' isoform) or "distal" (the more 3' isoform), and 

isoform preference for each gene in each sample was summarized as the fraction of reads 

mapping to the distal isoform (distal reads divided by distal plus proximal reads), which 

we refer to as the distal fraction (DF). We focused our analysis only on multi-3'UTR 

genes that had at least 10 total reads in both the soma and neurites of at least five cells, 

which resulted in 3,638 considered genes. We note that alternative 3’UTRs can be 
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generated by two distinct mechanisms: alternative splicing, which generates alternative 

last exons (ALEs), or alternative cleavage and polyadenylation, which generates tandem 

UTRs (Fig. 4-5C). Therefore, we split our set of multi-3’UTR genes into ALE and 

tandem groups based on the relationship between the designated proximal and distal 

3’UTR for that gene. ALEs made up the majority of the considered multi-3’UTR genes 

(3,108 ALE versus 530 tandem).  

To identify 3’UTR isoforms that are differentially localized in neurites, we looked 

for genes that had consistent patterns of isoform preference across our cells. That is, we 

looked for cases where the change in distal fraction (ΔDF; defined as DFneurite – DFsoma 

and calculated separately for each soma-neurite pair) was in a consistent direction (+/-) 

across many cells (Fig. 4-5D). Using a Wilcoxon signed-rank test (p<0.1), we identified 

298 genes that met this criterion (Table 4-3). For clarity, we will refer to these 298 genes 

as the “isoform-level localizers”, and refer to the other localized genes identified in the 

previous section as the “gene-level localizers” and the “consistent neurite” sets. Most of 

the isoform-level localizers were ALE genes (249 ALE, 49 tandem), but neither type was 

significantly enriched in this group. Unlike the gene-level localizers and consistent 

neurite sets, the isoform-level localizers were not significantly enriched for particular GO 

functional categories, but they did overlap substantially with the curated list of 

previously-observed dendritic RNAs (69 overlapping; p<2.2e-16; odds ratio=6.8; 

Fisher’s exact test) (Fig. 4-5E). Only four of the isoform-level localizers overlapped with 

the gene-level localizers (mt-Rnr2, Rpl31, Rpl21, and Map2), indicating that gene-level 

and isoform-level localized genes are distinct sets. Approximately half of both the gene 
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and isoform sets overlapped with the consistently localized set (Fig. 4-5F). The lack of 

overlap between the gene-level and isoform-level localizers might reflect differences in 

the methods used to identify the two sets—for example, it is possible for a gene to have 

highly different isoform ratios in the soma and neurites and yet still have similar total 

gene-level counts in both compartments; in such a case, gene-level analysis would be 

unlikely to identify this gene as differentially localized, but isoform-level analysis could 

detect it. There might also be biological reasons for the low overlap between these two 

sets. Localization on the gene versus the isoform level represents a choice between 

wholesale versus partial localization of the total transcript pool for a given gene. Since 

partial localization of only certain isoforms requires additional steps of regulation during 

splicing and cleavage and polyadenylation, it might be that this mechanism is only 

utilized for genes where such partial localization is highly advantageous to the cell, as 

would be the case for genes with important roles in both the soma and dendrites. The fact 

that the isoform-level localizers were not enriched for any GO terms suggests that the 

proteins that fall into this category are functionally diverse, but despite the lack of 

enrichment, many of the individual GO annotations for these genes reflect functions that 

are likely to be important for both the soma and the dendrites—e.g. “ATP binding”, 

“endoplasmic reticulum”, and “protein transport”. More work will need to be done to 

understand the mechanisms and purpose underlying isoform-level localization. 

What are the characteristics of isoform preference in soma and neurites? First, we 

looked to see if the proximal or distal isoform was more likely to be localized to the 

neurites. For each gene, the neurite-preferred isoform was determined based on the 
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average ΔDF across cells, which is positive when the neurites prefer the distal isoform 

and negative when they prefer the proximal isoform (as illustrated in Fig. 4-5D). Among 

the 298 pairs of differentially localized isoforms, neurites preferred the distal isoform in 

64% of cases, which was independent of ALE/tandem status. This preference diverged 

significantly from expectation based on the full set of 3,638 multi-3’UTR genes, where 

neurites preferred the distal isoform in only 44% of cases (p=3.7e-13; odds ratio=2.4; 

Fisher’s exact test). Next, we examined the cell-to-cell variability of isoform preferences, 

particularly focusing on the differences in DF variability between somas and neurites. For 

each gene, the variance of DF was calculated separately for soma and neurite samples. 

Among the 298 genes with differentially localized isoforms, neurites were more variable 

than soma in only 39.9% of cases. Again, this preference diverged significantly from 

expectation based on the full set of multi-3’UTR genes, where neurites were more 

variable than somas in 70.6% of cases (p<2.2e-16; odds ratio=3.6; Fisher’s exact test). 

Figure 4-6 provides three representative examples of genes with these isoform patterns, 

showing the consistent preference for the distal isoform in the neurites compared to soma 

for multiple individual cells, and the lower variability of DF in the neurites compared to 

the somas. 

Based on these findings, we hypothesized that the isoform-level localizers might 

predominantly belong to a particular regulatory pattern that we call “selective neurites” 

(Fig. 4-7). In this pattern, a given gene has multiple expressed 3’UTR isoforms, both of 

which are present in the soma at variable ratios (which may be influenced by factors such 

as the amounts of particular splicing, polyadenylation, or localization factors in the cell at 
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the time of sampling, or how recently transcription of that gene last occurred). In the 

neurites, on the other hand, there is strong selection for only one of those isoforms, e.g. 

through preferential localization, which causes an enrichment of the favored isoform in 

the neurites in a consistent manner across cells. In support of this notion, we found that 

47 of the isoform-level localizers showed the pattern just described, whereas only 18 

showed the opposite pattern (where the soma is more selective). Furthermore, 39 of the 

47 were cases where the distal isoform was the one selected for in neurites, making this 

by far the most preferred pattern and consistent with the idea that localization motifs are 

gain-of-function for localized RNA. 

Finally, we looked to see how many of the neurite-preferred isoforms were among 

the ~2,000 new, distal 3’UTRs annotated recently by Miura et al. [19]. Thirty eight of the 

neurite-preferred isoforms overlapped this list, 12 of which were specific to hippocampal 

neurons in that study [19]. Two examples from this set of 38 are included in Figure 4-6 

(middle and bottom). We are in the process of validating several of these differential 

localization events experimentally using FISH. Overall, these results support the idea that 

neurons utilize alternative 3’UTRs to localize a subset of RNAs to the neurites.  

 

4.2.3 Dendritic targeting motifs 

 Having defined the set of RNA sequences that are localized to the dendritic 

compartment, including alternative and under-annotated 3’UTR isoforms, we can use this 

information to perform a comprehensive search for potential DTEs. We expect that a 

DTE should be a motif, either linear or structural in nature (or possibly both), that occurs 
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more frequently in the localized sequences than the non-localized sequences. We 

searched each set of localized RNAs separately (gene-level, isoform-level, and consistent 

neurite) to identify any differences between the sets. 

 

Linear motifs 

 First, we searched for instances of known RBP binding motifs using the HOMER 

software package [31,32].  RBP motifs were obtained in the form of positional weight 

matrices from the CISBP-RNA database [33], which contains experimentally determined 

binding RBP preferences based on RNAcompete [34]. Motifs were tested for enrichment 

using background datasets consisting of 3’UTRs from non-localized genes that were 

matched to the length distribution of the foreground set (see “Background datasets for 

motif enrichment” in Methods).  

After multiple test correction, only two RBP motifs were significantly enriched in 

the gene-level localizers (Rbm46 motif GAUGAU and Srsf3 motif AUCAWCG; adjusted 

p < 0.01, Hypergeometric test), and no motifs were significantly enriched in the isoform-

level localizers. The consistent neurite set was significantly enriched for 61 different RBP 

motifs (adjusted p < 0.01); however, each of these motifs was only slightly more 

common in the localized sequences than the background (odds ratio ≤ 1.5). Overall, the 

highest odds ratio by far was for Srsf3, mentioned above, which was 2.4 times more 

common in the gene-level localizers than background and occurred in 59 of the 387 genes 

in this set. The same Srsf3 motif also had the highest odds ratio in the consistent neurite 

set (1.5) and occurred in 265 of the 1,863 genes in this set. Srsf3 is a brain-expressed 
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splicing factor, and although no specific role for this RBP in neurons has been described, 

it was recently shown in mouse P19 cells to promote 3’UTR lengthening through distal 

polyadenylation site usage and promote nuclear export through recruitment of NXF1 

[35]. Therefore, one hypothesis could be that Srsf3 plays a role in the early steps of 

dendritic localization by promoting inclusion of alternative 3’UTR (theoretically 

containing DTEs) and by facilitating nuclear export. 

We next performed a de novo motif analysis using HOMER to see if any 

previously unidentified motifs were enriched in our sequences. Five to seven motifs were 

enriched in each set. The top motif in each set was as follows: in the gene-level 

localizers, the motif UUCGAU (p = 0.0001, odds ratio = 2.9, Hypergeometric test); in the 

consistent neurite set, the motif CCGCAA (p = 1e-7, odds ratio 1.7); and in the isoform-

level localizers, GUGGGU (p = 0.01, odds ratio = 1.2). One motif, CGCR, was found in 

all three sets, but was only slightly more common in localizers than background (odds 

ratio < 1.2). Based on these analyses, linear motifs—with the possible exception of the 

Srsf3 motif—do not appear to fill the role of the “common” DTEs that we hoped to find 

in the dendritically targeted genes. 

 

Structural motifs 

 As discussed in sections 1.3.4 and 4.1, there is a growing awareness of the 

importance of RNA structure in the process of dendritic localization. Until recently, there 

were no publically available tools for finding novel RNA secondary structure motifs that 

could handle large numbers of sequences, and thus there have been no large-scale surveys 
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of potential novel RNA structure DTEs, despite several mentions in the literature of how 

important such a survey would be [28,36,37]. Here, following up on the work described 

in Chapter 2, Section 2.2.4, we perform a de novo prediction of RNA structures enriched 

in dendritically localized 3’UTRs. 

 Since G-quaduplexes have been implicated previously in dendritic localization 

[38], we first searched our localized sequences for regions that could potentially form this 

structure. Identifying putative G-quaduplexes does not require special software, since 

they can be recognized as a linear sequence of four repeated units of (most commonly) 

three or more consecutive G’s, with each repeat separated by two to seven nucleotides of 

any kind. Using a regular expression representing this pattern, we searched for potential 

G-quadruplexes in the 3’UTRs of each localized gene as well as a background set of 

3’UTRs belonging to non-localized genes (length-matched to the localized 3’UTRs; same 

as previous section). G-quaduplexes were 2.0 times more common in the gene-level 

localized RNAs (p = 0.003, Fisher’s exact test), 1.9 times more common in the consistent 

neurite RNAs (p = 5.0e-12, Fisher’s exact test), and 1.7 times more common in the 

isoform-level localizers (not significant; p = 0.14, Fisher’s exact test) than the non-

localized background. Overall, 448 localized genes had at least one G-quadruplex. These 

results support a potential role for G-quaduplexes in dendritic RNA, but the fact that 

these structures occur frequently in non-localized sequences as well suggests that there 

are probably other unknown factors that determine the specificity of localization 

machinery for localized RNAs. Since there are some reports of FMRP binding G-

quaduplexes, it may be that these motifs play a role in translational repression of RNAs 
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during dendritic transport [39]. However, these reports are mixed [40] and will require 

further study. 

 Next, we applied our tool NoFold (Chapter 2) to identify novel structural motifs 

in these sequences. A total of 554 motifs were found that occurred in three or more 

localized sequences. Of these, 85 were significantly enriched compared to non-localized 

background sequences (p < 0.01, Fisher’s exact test), making them possible candidates 

for DTEs. Two motifs stood out as occurring in a large number of sequences (over 20 

unique genes each). Though more conserved on the structure level, the instances of these 

motifs had enough sequence similarity to suggest a common origin, e.g. a transposon. 

Using RepeatMasker [41], we identified these motifs as instances of the B1 and B2 SINE 

families, respectively, which are ~175nt retrotransposons that form long hairpin 

structures. 

 To verify that these SINEs are enriched in the localized sequences, we created 

covariance models (CMs) for B1 and B2 using their canonical sequences from 

RepeatMasker and predicted secondary structure from RNAfold [42]. Both elements 

were trimmed down to the structurally stable part of their secondary structure prior to CM 

creation: for B1, a small amount of unstructured sequence was trimmed from each end of 

the single stable hairpin; for B2, only the first hairpin was kept (first ~70nt) because the 

second predicted hairpin is less stable and may actually be partially single-stranded 

according to structure probing data [43]. Since CMs model both primary and secondary 

structure, they can identify instances of a structural sequence that is divergent on the 

sequence level, as long as the structure is conserved. We used the B1 and B2 CMs to scan 
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all the localized and non-localized sequences (length-matched; see Methods) and filtered 

out low-similarity matches based on bitscores. Structurally consistent B1 sequences were 

found 2.5 times more often in gene-level localizers (p = 0.00047, Fisher’s exact test), 1.8 

times more often in consistent neurite RNAs (p = 7.6e-7, Fisher’s exact test), and 1.9 

times more often in isoform-level localizers (not significant; p = 0.33, Fisher’s exact test) 

as compared to non-localized sequences. Structurally consistent B2 sequences were 

found 2.5, 1.9, and 5.7 times more often in the gene-level, consistent neurite, and 

isoform-level localizers respectively (p < 0.001, Fisher’s exact test). Overall, 255 and 165 

localized genes (out of 2,225 total) contained a structurally-consistent B1 or B2 match, 

respectively. These results verify that B1 and B2 SINE-related sequences are widespread 

and over-represented in localized RNAs, suggesting a possible role as DTEs. Notably, 

while gene-level localized RNAs had high frequencies of both B1 and B2 elements, 

isoform-level localized RNAs had a strong preference for only the B2 element. An 

interesting possibility is that each of these elements represents a different localization 

pathway, which could allow the neuron to separately regulate the localization of 

functionally-coherent groups of RNAs—i.e. a “post-transcriptional operon” [44]. We also 

found that 58 localized genes contained both B1 and B2 elements, indicating that some 

genes could be localized by both pathways.  

 How might B1 and B2 drive localization? Since these elements are predicted to 

have stable secondary structure, one possibility is that they are bound by RBPs that 

recognize double-stranded RNA (dsRBPs). One of the most well characterized dsRBPs in 

neurons is Staufen, which additionally has been implicated in dendritic localization in the 



 

 

149 

 

past. However, using the results of a recent survey of Staufen2-bound RNAs in rat 

hippocampal neurons [45], we found no significant enrichment of Staufen2 targets among 

the B1 or B2-containing RNAs, suggesting that they are localized by some other RBP or 

mechanism. Previously, another hairpin-forming SINE element (the ID element; derived 

from the dendritically-localized BC1 RNA) has been shown to cause dendritic 

localization in rat neurons [18,46]. In this case, two sub-motifs within the structure were 

shown to be particularly important for localization: a single nucleotide bulge (U) was 

required for nuclear export, and a GA kink-turn (GA-KT) motif was needed for 

localization to the distal dendrites [46,47]. It was found that the RBP hnRNP-A2, a likely 

dendritic localization mediator, bound to the BC1/ID element GA-KT motif [46,47] and 

to GA-KT motifs more generally [48]. Both B1 and B2 have regions where a GA-KT 

motif might be possible (Fig. 4-8). B2 additionally has a U-bulge, similar to the BC1/ID 

element (Fig. 4-8B). The A-G/G-A nucleotides that make up the putative GA-KT motifs 

are generally well conserved across the instances of B1 and B2 in the localized genes, 

despite high sequence variability in many other regions of the structure, suggesting that 

this region could indeed be important (Fig. 4-9). However, it is worth noting that this 

region is also conserved in the non-localized instances of B1 and B2, and thus may not be 

sufficient to induce localization. Future work will include experimental validation of the 

B1 and B2 elements as DTEs via expression constructs, which will allow us to test the 

importance of various sub-motifs for localization. 
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4.2.4 Functional analysis of the “local proteome” using structure information 

 To gain a better understanding of the structures and functions provided by locally 

translated proteins in the dendrites (the “local proteome”), we performed a domain-level 

tertiary structure prediction on the protein products of 1,930 localized mRNAs 

(combining the gene-level localizers, isoform-level localizers, and consistent neurite lists 

and excluding non-coding RNAs). A single “canonical” protein sequence was chosen to 

represent each localized RNA based on UniProt [49] annotations. Full length proteins 

were split into one or more domains (see Methods) and each domain was classified into a 

SCOP structural fold using our PESS pipeline, as described in Chapter 3. Of the 6,822 

input domains, 4,319 (63%) had a “high confidence” structure prediction (nearest 

neighbor distance less than 17.5), and an additional 2,428 (36%) had a “medium 

confidence” structure prediction (nearest neighbor distance between 17.5 and 30), for a 

total of 98.9% of domains with a prediction. Previously, some of these domains were 

structurally annotated by Gene3D, which uses hidden Markov models (HMMs) to detect 

matches to CATH superfamilies [50]. We were able to predict the fold of 2,005 

additional domains that were not previously annotated by Gene3D (high confidence 

threshold; 3,550 new predictions using the medium confidence threshold), demonstrating 

the increased sensitivity of using three-dimensional structure information to make fold 

predictions compared to linear models such as HMMs. 

 The most common folds in the local proteome were similar to what was observed 

in the overall human proteome in Chapter 3, with superfolds such as Beta-beta-alpha zinc 

fingers and Alpha-alpha superhelices being most common (Fig. 4-10). However, the local 
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proteome had a notably higher frequency of Single transmembrane helix, 

Immunoglobulin-like, and Ferredoxin-like folds (Fig. 4-10). To better assess the local 

dendritic proteome in the context of neuronally-expressed proteins as a whole, we 

repeated the structure prediction process described above for all genes expressed in at 

least half of the RNA-seq samples (including soma samples) to obtain a mouse “whole-

neuron proteome” structure set. The top folds of the whole-neuron proteome were very 

similar to the local dendritic proteome (Fig. 4-10). In addition, using the whole-neuron 

proteome as a background, we found that the local dendritic proteome was highly 

enriched for diverse folds (Figure 4-11A), including several related to cytoskeletal 

structure such as Spectrin repeats, actin-binding Profilin domains, and Tubulin nt-binding 

domains. Overall, 503 different folds were represented by at least one domain in the local 

dendritic proteome, covering almost the entire spectrum of folds expressed in the neuron 

as a whole (609 folds) (Figure 4-11B). This suggests that rather than being highly 

specialized, the local dendritic proteome encodes for a diversity of functions on par with 

the whole cell. This generally held true even when the local proteins were filtered to only 

those previously identified in other studies (based on the curated set of dendritic RNAs 

used in section 4.2.1), although the coverage of the structure space was more sparse (Fig. 

4-11C).  

To highlight some of the insight that can be gained through structure analysis, we 

selected several folds with important neuronal functions and assessed their representation 

within the locally translated set, which we describe below. 
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Synaptic functions 

The PDZ fold is one of the most well-characterized protein structures involved in 

the synapse because of the crucial role it plays in protein-protein interactions between the 

intracellular scaffolding of the spine and membrane-bound receptors as well as cell 

adhesion molecules [22]. There were 21 proteins in the local proteome set that contained 

at least one PDZ fold, with many containing more than one (Table 4-4). All 21 of these 

proteins were previously annotated as containing a PDZ domain by Gene3D, indicating 

that this fold has already been well characterized across proteins. Similarly, all eight of 

the predicted guanylate kinase (GK) domains and all 32 of the predicted SH3 domains—

both of which frequently co-occur with PDZ domains at the synapse [24]—were 

previously annotated (Table 4-4). These results demonstrate the specificity of our 

method, and also highlight the potential role of local translation as a source for these 

important scaffolding proteins. 

Many other folds had a mixture of both known and novel predictions. For 

example, we predicted 24 proteins to have the Pleckstrin homology (PH) domain, which 

is involved in membrane targeting through recognition of phosphatidylinositol. Twenty 

two of these proteins were already annotated as having a PH domain by Gene3D. The 

remaining two proteins were Nischarin (Nisch) and Sphingosin kinase 2 (Sphk2), which 

are both annotated as phosphatidylinositol-binding but had no annotated domain or 

structure. Thus, by using structure annotation, we were able to provide a specific domain 

annotation and location for a known function of these proteins. Another novel prediction 

was made for Capicua (Cic), a transcriptional repressor that interacts with Ataxin-1 and 
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plays a role in central nervous system development. We predicted this protein to have a 

previously-unannotated Tudor domain near its N-terminal. Tudor domains may play a 

role in stress granule formation through binding of methylated RGG motifs [51] and 

more generally are found in RNPs. This suggests potential new roles for Capicua beyond 

its known transcription-related functions. We highlight additional known and novel 

predictions for membrane-bending Bin-Amphiphysin-Rvs (BAR) domains and actin-

binding Calponin homology (CH) domains in Table 4-4. 

 

Membrane-bound 

Membrane-bound proteins play a variety of crucial roles at the synapse, including 

signal transduction, cell adhesion and anchoring, neurotransmitter reception, cation 

influx/efflux, and scaffolding. There were 274 proteins in our local proteome set with at 

least one high-confidence TM domain prediction (Table 4-5), and 111 additional proteins 

with a medium-confidence prediction. Many of these were already known, such as those 

predicted to have the gated ion channel fold, e.g. Gria1/2, Grin1/2b, Kcnh7, and Scn2a1. 

There were also several unexpected results, especially for the single transmembrane helix 

fold. This fold encompasses a variety of simple hydrophobic helices, and was predicted 

with high confidence in 187 proteins, many of which were not known to be membrane-

bound proteins. Further investigation revealed that for 39 of these proteins, the predicted 

TM domain occurred at the very beginning of the protein and corresponded to a signal 

peptide sequence (as predicted by SignalP [52]). Signal peptides often have similar 

characteristics as TM domains, which may explain why these domains were predicted to 
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have this fold. Since signal peptides are usually cleaved off during processing, it is 

important to note that some of these proteins may not be membrane-bound in their mature 

form.  

To better characterize the purpose of locally translated TM-containing proteins, 

we surveyed other structural domains predicted for those proteins. The most common co-

occurring folds included immunoglobulin-like beta-sandwiches (40 occurrences), which 

encompasses many cell adhesion structures such as cadherin; SH3-like barrels (29 

occurrences), which includes many protein-protein interaction structures; and protein 

kinase-like structures (11 occurrences). Overall, these results support the idea that there 

are numerous locally-translated membrane proteins, which are likely translated on-

demand during L-LTP to help stabilize the growing synapse, anchor intracellular 

scaffolds, and increase signal transduction through the synapse.  

 

RNA binding 

RBPs play crucial roles in localizing RNAs to the dendrites and in regulating their 

translation. But how many RBPs locally translated themselves? We surveyed the local 

proteome for predictions of folds that we previously identified as being associated with 

RBD function (see Chapter 3) and found 1,254 proteins with high confidence matches to 

one of these folds. Since some of these folds are not completely specific to RNA-binding 

function, we narrowed our focus to a set of 10 folds or superfamilies with a higher 

specificity for RNA-binding. There were 138 proteins with one or more domains 

matching these structures with high confidence (Table 4-6) and 77 with medium 
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confidence, demonstrating that a wide variety of RBPs may indeed be produced by local 

translation. Among this set were many well-known RBPs with neuronal functions and/or 

relationships to neuropsychiatric disorders, such as Atxn2, Stau1/2, Elavl2/3, Mbnl2, and 

Cpeb2.  

In addition, several of the predicted RBPs either were not previously known to be 

RBPs, or were known to bind RNA but did not yet have an annotated RBD. Two 

examples of the latter category were Dync1h1 (Cytoplasmic dynein 1 heavy chain 1), for 

which we predicted a Poly(A) binding protein (PABP) domain-like structure between 

residues 2,042 and 2,174; and Trub2 (Probable tRNA pseudouridine synthase 2), which 

we predicted to have a OB-nucleotide binding domain between residues 40 and 86, 

adjacent to the known catalytic domain. Looking into the medium-confidence 

predictions, we also found completely novel RBP predictions such as Mga (MAX gene-

associated protein), a transcription factor that we predicted to have a dsRBD-like fold 

(residues 563-862) downstream of the DNA-binding domain; and Akap11 (A-kinase 

anchor protein 11), a kinase-regulating protein that we predict to have a type I KH-

domain fold at the C-terminal (residues 1,501-1,894). 

 What might be the role of locally translated RBPs in establishing or maintaining 

synaptic potentiation? Dync1h1, mentioned above, is involved in retrograde transport in 

dendrites, so one possibility is that the translation of this protein in response to activation 

promotes transport of poly(A) RNA and other cargos back to the soma. These cargos, 

which might include transcription factors (TFs), could then in turn promote new 

transcription, which is also a requirement for L-LTP [53]. Related to this, TF mRNAs 
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have also been found to be dendritically localized in other studies [8,54], and are 

hypothesized to be translated in response to activation and then transported back to the 

soma to promote L-LTP-related transcription. We also find several known TFs among 

our localized RNAs, and additionally identified a handful of TF with a potential dual 

function as an RBP (e.g. Mga, Fubp1). Another possible role of locally translated RBPs is 

transient promotion of cytoplasmic splicing [55], as several of the predicted RBPs are 

splicing factors (e.g. Rbfox1/2, Elva12/3, Mbnl2, Fus). One hypothesis could be that the 

expression of these splicing-related RBPs during a “pioneer” round of local translation 

promotes splicing-out of cytoplasmically-retained introns in other local mRNAs to allow 

their translation. RBPs involved in RNA modification are also locally expressed, 

including Adarb1 (ADAR1) and Trub2. These RBPs could play a role in regulation of 

translation and RNA stability during L-LTP. ADAR1 is also known to modify several 

receptors and channel proteins that are important at the synapse, including glutamate 

receptor subunits. This editing has been shown to modulate the conductance properties of 

these channels and can affect LTP [56,57]. 

 

Using structure to understand disease 

 Knowledge of protein structure can greatly aid in understanding the relationship 

between mutations and disease. For example, structure information can improve 

predictions of which mutations in a protein will be deleterious, helping researchers 

prioritize mutations for experimental follow-up. In the cases where a disease-causing 

mutation has already been identified, structure analysis can provide insight into the 
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possible mechanism of action of the mutation, ranging from high-level information (e.g. 

finding that the mutation occurs in a likely RNA-binding domain) to fine-grained 

information (e.g. finding that the mutation disrupts a specific residue in a catalytic site). 

Given that our structural annotations for the local dendritic proteome covered many 

domains that previously did not have a structure prediction, there are likely many new 

insights that can be gained about disease by linking these structure predictions with 

existing mutation information. Here, we provide a first-pass analysis to identify cases 

where our new predictions are most likely to lead to new information about neurological 

disorders related to learning and memory, particularly those with potential relevance to 

humans. 

 Since we made over 3,500 new structure predictions for domains of the local 

dendritic proteome (i.e. those without a previous Gene3D prediction), we first filtered 

this set to those most likely to provide immediate insights. Using Mammalian Phenotype 

Ontology annotations [58], we filtered the ~3,500 domains to only those occurring in 

proteins annotated as being associated with abnormal synapse-, dendrite-, or memory-

related phenotypes. To further prioritize this list, we additionally filtered to just the 

domains that contained a pathogenic or likely-pathogenic non-synonymous variant in 

humans (using ClinVar annotations; see Methods). Together, these filtering steps resulted 

in 94 domains in 52 proteins that have new structure predictions and potential relevance 

to neurological disorders and human disease (Table 4-7). We note that since there are 

sometimes differences between human and mouse proteins (ranging from small insertions 

or deletions of amino acids to complete loss or gain of domains), the position of a 
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mutation in a human protein does not necessarily correspond to the same amino acid 

position in mouse, and thus the human mutation information should not be directly 

mapped onto a predicted mouse structure on the amino acid level. Nonetheless, since 

protein structure is generally highly conserved across evolution, it is reasonable to expect 

that on the whole-domain level, most structure predictions made in mouse will carry over 

to the corresponding protein domain in humans. Therefore, we expect that the mouse 

structure predictions listed in Table 4-7 can be used as a starting point for understanding 

the high-level functional consequences of human mutations. More generally, it should 

also be possible to use many of the new structures to predict the impact of mutations that 

are not yet known to be deleterious, e.g. by providing this information to tools such as 

PolyPhen [59] that can utilize structure information when available. 

 

4.3 Conclusions 

In summary, we have demonstrated here the application of subcellular RNA-

profiling and structure-based computational analysis towards the goal of understanding 

the “who”, “how”, and “why” of dendritic RNA localization. We identified a total of 

2,225 unique genes that were targeted to the neurites, including 298 genes for which only 

a subset of the expressed transcripts were localized, depending on their 3’UTR isoform. 

Many of these differentially localized 3’ isoforms were among the set of recently 

identified distal 3’UTRs expressed in neurons [19]. Using de novo RNA structure motif 

analysis, we identified several secondary structures enriched in the 3’UTRs of the 

localized RNAs, including two hairpin structures derived from B1 and B2 SINE 
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elements. Finally, we applied a sensitive protein fold prediction algorithm to make 

structural and functional predictions for the set of proteins that are putatively translated 

locally at the synapse. These results bring us closer to understanding the regulation of 

RNA targeting to the dendrites and the roles that localized RNAs play in synaptic 

plasticity. 

One limitation of this study is that it only surveys neurons at the basal state, rather 

than after synaptic stimulation. Several studies have shown that RNA localization 

changes after stimulation [60–63]; therefore, the set of neurite RNAs identified here may 

still be only a subset of the RNAs needed for LTP. There also may be important 

differences between neurons in culture and in vivo that would be missed in our analysis. 

We observed significant overlap between our localized set and a set of known localized 

RNAs derived partly from tissue-based studies conducted after fear conditioning (Fig. 4-

3B, 4-4A, 4-5E; also see Methods), suggesting a reasonable amount of concordance 

between basal primary cultures and post-stimulation tissue samples. Nonetheless, an 

important future direction will be to repeat the sub-cellular sequencing described here 

after stimulation. It will be particularly interesting to see if groups of RNAs that share a 

DTE undergo coordinated changes in localization post-activation, and conversely, if 

coordinated RNAs share any new DTEs. We further explore the implications and future 

directions of this work in the next chapter. 

 

4.4 Methods 
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Neuron culture and collection 

Hippocampal neurons from embryonic day 18 (E18) mice (C57BL/6) were 

cultured as described in [64] for 15 days. Isolated single neurons were selected for 

collection. A micropipette with a closed, tapered end was used to sever neurites from the 

cell body. A micropipette was used to aspirate the soma, which was deposited into a tube 

containing first strand synthesis buffer and RNase inhibitor and placed on ice. A separate 

micropipette was then used to aspirate the neurites, which were deposited into a separate 

tube as above. Samples were transferred to -80ºC within 30 minutes and stored there until 

first strand synthesis. Sixteen neurons (32 total samples) were collected from multiple 

cultures across multiple days. 

 

Single cell RNA amplification and sequencing 

ERCC spike-in control RNA was diluted 1:4,000,000 and 0.9uL was added to 

each tube. Poly-adenylated RNA was amplified using two or three rounds of the aRNA in 

vitro transcription-based amplification method, as described in [65]. The quality and 

quantity of the amplified RNA was verified using a Bioanalyzer RNA assay. Strand-

specific sequencing libraries were prepared using the Illumina TruSeq Stranded kit 

according to the manufacturer's instructions, except that the initial poly-A capture step 

was skipped because the aRNA amplification procedure already selects for poly-

adenylated RNA. Samples were sequenced on a HiSeq (100bp paired-end) or NextSeq 

(75bp paired-end) to an average depth of 25 million reads. Reads were trimmed for 

adapter and poly-A sequence using in-house software and then mapped to the mouse 
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genome (mm10) using STAR [66]. Uniquely mapped reads were used for feature 

quantification using VERSE [67]. The features used for each analysis are described 

below. 

 

Gene and 3'UTR definitions 

Three sources of gene annotations were combined to obtain a comprehensive 

definition of known 3’ ends: Ensembl genes (downloaded from UCSC, Dec 2015); 

UCSC genes (downloaded from UCSC, Dec 2015); and the set of ~2,000 new 3’UTRs 

determined by Miura et al. [19]. The 3’UTR regions of these annotations were used for 

quantification of reads, as will be described in more detail in the sections describing the 

gene-level and isoform-level analyses. 

 

Cell type marker genes 

Gene markers of pyramidal neurons and cardiomyocytes, as well as housekeeping 

genes, were obtained from [15]. Markers of other mouse brain cell types were obtained 

from [68]. 

 

“Known dendritic” gene list 

A list of 1,925 previously observed dendritic genes was compiled from three 

sources: in vivo ribosome-associated RNAs from mouse hippocampal neuropil punches 

(shown to be reasonably specific to pyramidal dendrites) [8]; FISH experiments in 

cultured primary mouse hippocampal neurons (C. Francis, personal communication); and 
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from general knowledge accumulated from the literature. The combined list was filtered 

to remove any genes that were not included in the input set of genes for quantification (as 

defined in “Gene and 3’UTR definitions”, above). 

 

Gene-level expression and localization 

A single 3’UTR feature was created for each gene by taking the union of all 

3’UTR regions for that gene (see Gene and 3’UTR definitions, above). Read counts were 

calculated for each gene based on how many reads mapped to this 3’UTR region. 

Quantification was done using VERSE with options “-s 1 -z 3 --nonemptyModified”. For 

differential expression analysis, we used only the genes that had at least one read in at 

least half (16) of the samples. Read counts were normalized based on size factors using 

the protocol built into DESeq2. Differentially expressed genes between the neurites and 

soma were identified using DESeq2 with a paired experimental design, which allowed us 

to directly compare the expression between the soma and neurite compartments of each 

individual neuron. A FDR corrected p ≤ 0.05 was used to identify significantly 

differentially expressed genes. The consistent neurite genes were identified separately 

based on having at least 1 read in at least 90% (i.e. 15 out of 16) of the neurite samples.  

GO functional enrichment of gene-level localizers and consistent neurite genes 

was calculated using the GOrilla webserver [69]. For gene-level localizers, the 

background set for GO analysis was all genes with at least one read in half the samples; 

for the consistent neurite genes, the background was all genes with at least one read in at 

least 15 samples (i.e. the input sets for each analysis).  
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Isoform-level expression and localization 

To quantify individual 3’ isoforms of genes, we used the last 500nt of each 3’ end 

for that gene as the isoform quantification feature. Any 3’ ends that were less than 500nt 

apart were merged together into a single quantification feature. Thus, the final set of 3’ 

isoform quantification features is non-overlapping. Isoform read counts were calculated 

by VERSE using the same parameters as above. Genes with only one expressed 3’ 

isoform were removed from further analysis to focus on alternative expression of 3’ 

isoforms.  

To identify the top two 3’ isoforms for each gene, the following procedure was 

used. For each gene in each sample, the fraction of reads mapping to each isoform was 

calculated (that is, the number of reads mapping to that isoform divided by the total reads 

for all isoforms of the gene). The fractions for each isoform were then summed up across 

samples (unless a sample had fewer than 10 reads total for that gene, in which case it was 

skipped) and the two isoform with the highest total per gene were considered the top two 

isoforms for that gene. The purpose of this process was to give each sample equal weight 

in the final decision of the top 3’UTR, while also excluding samples with too few reads 

to give a reliable estimate of the isoform fractions. This process was repeated for each 

gene with at least two expressed isoforms in the dataset. Then for each gene, whichever 

of the top two isoforms was more 5’ (as defined by the locations of their 500nt 

quantification features) was designated the “proximal” isoform, and whichever was more 

3’ was designated the “distal” isoform. Finally, for each gene in each sample, we 
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calculated the distal fraction (DF) as the fraction of reads mapping to the distal isoform 

divided by the total reads mapping to the distal and proximal isoforms.  

We defined the proximal and distal isoforms as being, relative to each other, 

generated by alternative splicing (i.e. they are ALEs) or alternative cleavage and 

polyadenylation (i.e. they are Tandem UTRs) by the following criterion: if the full length 

3’UTRs of a pair of isoforms were directly adjacent or overlapping, they were called 

tandem; otherwise, they were called ALEs. 

The differential localization of isoforms was determined based on the change in 

distal fraction between soma and neurites of the same original neuron. A non-parametric 

paired test of differences (Wilcoxon signed-rank test) was used to identify genes with 

consistent changes in distal fraction across samples. Only genes with at least five pairs of 

samples (where a “pair” means the soma and neurites from the same original neuron) 

where each member of the pair had at least 10 combined reads for the two isoforms were 

tested (3,638 genes), to ensure there was enough read- and sample-support to reliably 

identify these events. 

GO enrichment was done on the neurite-enriched isoforms as described in the 

previous section, using the input set of 3,638 genes as background. 

 

Background datasets for motif enrichment 

We generated a pool of “non-localized” background sequences based on the list of 

genes that were significantly higher expressed in the soma from the gene-level DESeq2 

analysis described above. We filtered this set to remove any overlap with one of the other 
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localized lists (i.e. the consistent neurite list and the isoform-level list) and any overlap 

with previously annotated dendritically localized genes (same list of curated “known” 

dendritic genes described above) in order to make this list as specific to non-localized 

genes as possible. Since motif frequency in a sequence can be related to sequence length, 

a background set should be matched as closely as possible to the length distribution of the 

foreground set when doing motif analysis. With this in mind, we created a length-

matched background set for each of the three localized gene lists as follows: (1) for each 

localized gene in the set, scan the pool of non-localized genes in order of their somatic 

specificity (starting with the most soma-specific, as indicated by its DESeq2 test 

statistic); (2) select the first non-localized gene encountered with a 3’UTR length within 

100nt of the localized gene’s 3’UTR length; (3) add the selected non-localized gene to 

the background set and remove it from the pool; (4) if no background gene can be found 

that meets the 100nt criteria, select whichever gene in the pool that has the most similar 

3’UTR length to the localized gene’s 3’UTR. Using this protocol resulted in background 

sets with highly similar length characteristics to the foreground set.  

 

RNA motif analysis 

Linear motifs were identified using the HOMER motif-finding suite [31]. De novo 

enriched motif searches were done using the script “findMotifs.pl” and set to look for 

either short motifs (4 or 6nt) or long motifs (8, 10, or 12nt). Enrichment of known RBP 

binding motifs was analyzed using the same script with option “-known” in combination 

with a custom set of positional weight matrices specifying binding preferences that was 
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downloaded from CISBP-RNA (version 0.6) [33]. A log-odds threshold for RBP motif 

matching was set for each motif separately based on the number of informative positions 

in the motif such that longer, more specific motifs had a higher log-odds threshold for 

calling a match. The background sets used for enrichment testing were the length-

matched non-localized sets described above. 

G-quadruplexes were identified by regular expression search using the “re” 

module in Python. The search pattern was '([gG]{3,}\w{1,7}){3,}[gG]{3,}', which 

requires three consecutive matches to the pattern “three or more G’s followed by 1-7 of 

any nucleotide” and then ending with a fourth set of three or more G’s. The background 

set was the same as described in the previous section. 

 De novo identification of enriched RNA secondary structures was performed 

using NoFold [70]. Sliding windows of 100nt (slide = 75nt) across the localized 

sequences were used for input. Background datasets were the same as described in the 

previous section and also converted to sliding windows with the same parameters.  

Matches to the B1 and B2 elements were found by creating a CM for each 

element based on its canonical sequence(s) downloaded from RepeatMasker [41] and its 

predicted MFE structure from RNAfold [42]. The sequences and structures used to create 

the CM are as follows: 

B1 sequence: 

GAGGCAGGCGGATTTCTGAGTTCGAGGCCAGCCTGGTCTACAGAGTGA

GTTCCAGGACAGCCAGGGCTACACAGAGAAACCCTGTCTC 

B1 structure: 
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((((((((....(((((((((((..(((...(((((.((........))..)))))...))).)))))...))))))...)))))))) 

B2 sequence: 

GCTGGTGAGATGGCTCAGTGGGTAAGAGCACCCGACTGCTCTTCCGAA

GGTCAGGAGTTCAAATCCCAGC 

B2 structure: 

(((((.((..((((((....((.(((((((......))))))))).........))).)))..))))))) 

 

Bitscore cutoffs for high-quality matches were set to 50 for B1 and 35 for B2 

based on the length of the model. Enrichment was computed using Fisher’s exact test 

based on the number of high quality matches in the localized set compared to the non-

localized background (same background as above). Only one match was counted per 

gene for the purposes of enrichment testing. 

 

Protein structure analysis 

For each predicted neurite RNA (gene-level localizers, consistent neurite, and 

isoform-level localizers), we obtained the canonical protein sequence, if any, from 

UniProt [49]. The canonical isoform is defined by UniProt to usually be the one that is 

most inclusive of exons/domains. We note that the protein sequence chosen does not 

necessarily correspond to the exact RNA isoform in the case of the isoform-level 

localizers. We refer to this protein set as the “local proteome”. We also obtained the 

canonical protein sequences for the full set of expressed genes in soma and neurite 
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samples (at least 1 read in at least 15 samples) to use as a background for comparison 

with the local proteome.  

Each protein was split into domains based on DomainFinder Gene3D predictions 

[50,71]. If there were regions between, before, or after predicted domains that were 

longer than 30 amino acids (aa) but did not have a Gene3D prediction, we also included 

those. If a “filled in” region such as this was longer than 450 aa, we used a sliding 

window of 300 aa (slide = 150 aa) to break it into smaller pieces, since domains are rarely 

larger than this. The fold of each domain was predicted using the method described in 

Chapter 3. A threshold of ≤ 17.5 was used to designate “high confidence” predictions, 

and a more lenient threshold of ≤ 30 was used to designate “medium confidence” 

predictions. 

Mammalian Phenotype Ontology (MP) annotations for mouse genes were 

downloaded from MGI [58]. MP terms related to synapse, dendrite, and memory 

phenotypes were identified by filtering the MP terms to those containing the following 

keywords: "synapse", "synaptic", "learning", "memory", "dendrite", "dendritic", and 

"potentiation". Human mutations were downloaded from ClinVar [72] and filtered to 

non-synonymous single-nucleotide variants marked as “pathogenic” or “likely 

pathogenic”. These mutations were transferred to mouse protein domains based on their 

amino acid position in the human protein (note: human and mouse amino acid positions 

are not expected match up exactly in all cases, so this should not be taken as a precise 

mapping of human mutations onto mouse structures, but rather as an indication of 

potential disease relevance for the predicted structure on the domain level). The mapping 
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between human and mouse orthologous proteins was obtained from the International 

Mouse Phenotyping Consortium website (http://www.mousephenotype.org/). 
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Figure 4-1. Sub-single cell profiling of soma and neurite RNA.  

Isolated single neurons are dissected to separate the soma and neurites, which are 

collected into separate tubes for RNA amplification and RNA-sequencing. 
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Figure 4-2. Overview of gene expression in individual soma and neurite samples.  
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(A) Number of genes expressed per sample with at least 10 reads. (B) Overlap of 

expressed genes (≥10 reads) between soma and neurites from the same original cell. (C) 

Marker gene expression for several brain cell types. Samples (columns) are indicated by 

their cell number and “s” for somas and “n” for neurites. As expected, pyramidal neuron 

markers were highly expressed. Cardiomyocte markers are included as a cell type very 

unlikely to be present in our cultures and/or confused for a neuron, in order to 

demonstrate that low/medium expression of other cell type markers is normal. 
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Figure 4-3. Differentially expressed genes between soma and neurites.  

(A) Mean gene normalized counts vs log fold change between neurites and soma. 

Significantly differentially expressed genes are shown in red. (B) Overlap between 

neurite-enriched genes and previously annotated dendritic genes. (C) Selected GO terms 

enriched in the soma- and neurite-enriched gene lists. 
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Figure 4-4. Consistently observed genes in the neurites.  

(A) Overlap between consistent-neurite genes and the known dendritic genes. (B) 

Selected GO terms enriched among the consistent-neurite genes. 
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Figure 4-5. Alternative 3’UTR isoform usage in neurons.  

(A) Distribution of distance from read ends to the nearest gene 3’ end. Most reads are 

within 500nt of the nearest end (dotted line). (B) Genome browser plots showing read 
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pileups over two genes. Reads show clear peaks marking the 3’ ends. (C) Definition of 

ALEs and Tandem UTRs. (D) Theoretical examples of genes with consistent changes in 

distal fraction (ΔDF) across cells, shown as paired plots. Somas and neurites from the 

same original cell are shown connected by a line. Consistently positive (left) or negative 

(right) ΔDF indicates differentially localized isoforms between the two compartments. 

(E) Overlap of differentially localized isoforms with the list of previously annotated 

dendritic genes. (F) Overlap between the three sets of neurite-localized genes (gene-level, 

consistent, and isoform-level). 
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Figure 4-6. Examples of genes with significantly differentially localized 3’ isoforms. 

Paired plots on the left show the DF for each soma-neurite pair (connected by gray lines). 

The genome browser plots on the right show the read pile-ups for somas (top track; black 
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peaks) compared to neurites (bottom track; gray peaks; reversed orientation) relative to 

the annotated gene models from Ensembl (middle track; red). The neurite-preferred 3’ 

isoform is indicated by a pink arrow, and the non-preferred isoform is indicated by a blue 

arrow. Note that for Uck2 and Ube2i, the neurite-preferred 3’ isoform is a new isoform 

from [19] and thus is not part of the Ensembl gene models. All genes shown are on the 

reverse strand and thus only reverse-strand reads are displayed. 
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Figure 4-7. The “selective neurite” regulatory pattern.  

A large number of differentially localized isoforms showed a pattern where the soma 

expressed both isoforms at varying levels, but the neurites are selective for only one 

isoform (top plots). This might be due to e.g. preferentially active transport of the distal 

isoform (bottom image). The number of genes showing each pattern is shown at the top 

of the distal fraction plots (out of the 47 showing the selective neurite pattern).  
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Figure 4-8. Potential GA-KT motifs formed by B1 and B2 SINE hairpins in 

localized genes.  

(A) Consensus structure for the B1 hairpin from a multiple alignment of matches among 

the localized genes. Structure was modified to show pairing of G-A/A-G at the putative 

GA-KT motif (dashed box). (B) Same as (A), but for the B2 hairpin. Arrow indicates the 

U-bulge, similar to the nuclear export signal found in the BC1 hairpin [46,47]. (C) 
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Comparison of the B1 and B2 putative GA-KT elements with the classic GA-KT and the 

one found in the BC1/ID element [46,47]. Structure images generated using Forna [73]. 
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Figure 4-9. Conserved structure and G-A/A-G pairs in B1 and B2 hairpins in 

localized genes.  

(A) Multiple alignment of instances of the B1 SINE hairpin found in localized genes. All 

matches from the gene-level list are shown. Arches show predicted paired bases and are 

colored by percent compatible canonical base pairs. G-A/A-G base pairs are non-

canonical and thus the arches for that pair are shown in brown. Boxes show the G-A/A-G 

positions in the alignment. (B) Same as (A), but for the B2 hairpin. Plots generated using 

R-chie [74]. 
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Figure 4-10. Comparison of the most common structural folds represented in 

different proteome sets.  

Folds labeled on the left correspond to the top folds in the human proteome, sorted by 

rank. The change in rank of each fold from the human proteome to the mouse local 

proteome (and from the local proteome to the whole-neuron proteome) is indicated by the 

shifted order of the colored circles, connected by lines. Numbers in circles represent the 

percent of domains predicted to have that fold in each proteome set. Only high-

confidence predictions were used to calculate rank and percentages. 
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Figure 4-10. Protein structures of the locally-translated proteome.  

(A) SCOP folds enriched in the locally translated proteins compared to the neuron-

expressed proteins as a whole. The number of predicted domains in the local proteome 
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for each fold is shown to the right of the bar. (B) Two-dimensional representation of the 

protein structure space occupied by neuronally-expressed protein domains. All 

neuronally-expressed protein domains are shown in gray in the background, and locally-

translated protein domains are shown in the forefront colored by predicted fold (note that 

multiple folds may have similar colors due to the large number of folds). Locally 

translated proteins cover most of the structure space spanned by the whole-neuron set. 

Projection generated by t-Distributed Stochastic Neighbor Embedding (tSNE) of the 

PESS coordinates of each input domain. (C) Same as (B), but overlaying only the local 

proteins that overlap the curated list of previously identified dendritic genes. 
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Table 4-1. Neurite-localized genes based on differential expression. 

2010016I18Rik Atad2 Fam101b Gm13339 Gm8730 Myeov2 Rpl29 Slc28a3 

2010107E04Rik Atp5e Foxp2 Gm13340 Gm9006 Ndnf Rpl31 Slc7a11 

2010109I03Rik Atp5j2 Fth1 Gm13341 Gm9843 Ndufa1 Rpl31-ps8 Slco1a1 

2810459M11Rik Atp5k Ftl1 Gm13421 Gm9901 Ndufa12 Rpl32 Slfn8 

4833422C13Rik Atp5l Gabra4 Gm13433 Gpc6 Ndufa2 Rpl34 Snhg10 

4930451C15Rik Atpif1 Gbp7 Gm13488 Gpr35 Ndufa4 Rpl35 Snhg6 

5031426D15Rik B430010I23Rik Gli3 Gm13722 Grcc10 Ndufa7 Rpl36a Sp110 

5830416I19Rik BC002163 Gltpd2 Gm13826 Gstm1 Ndufb11 Rpl37 Sparc 

8430431K14Rik BC051077 Gm10012 Gm13857 GU332589 Ndufb8 Rpl37a Srl 

9330159N05Rik BC069931 Gm10033 Gm14303 Hic2 Ndufb9 Rpl38 Sspn 

A430106G13Rik Bdnf Gm10059 Gm14450 Invs Ndufv3 Rpl38-ps2 Syt15 

A630089N07Rik Bola2 Gm10073 Gm14539 Itga1 Necab1 Rpl39 Tcte1 

Acnat2 Brsk1 Gm10076 Gm14586 Itga4 Nhsl2 Rpl39-ps Tfap2b 

Aco2 C130026I21Rik Gm10221 Gm14667 Itpr2 Nnat Rpl41 Tirap 

Acsm1 Casp4 Gm10222 Gm15393 Jund Nrgn Rplp0 Tmem242 

Adamts18 Ccdc141 Gm10263 Gm15462 Kcng3 Nsmf Rplp1 Tnfrsf19 

Adap2 Ccnd1 Gm10275 Gm15536 Kcnq5 Oaf Rplp2 Tomm7 

Agtrap Ccnd2 Gm10443 Gm16238 Kctd4 Oprd1 Rps10-ps2 Top2a 

AK007420 Ccni Gm10485 Gm16416 Kif1a Otc Rps11 Tor4a 

AK016170 Cd84 Gm10621 Gm16418 Kif5c Pate2 Rps12 Tpmt 

AK020987 Cdk15 Gm10689 Gm16432 Lcn2 Pcdh15 Rps12-ps5 Trim56 

AK037411 Chrdl1 Gm10712 Gm17529 Liph Pde1c Rps12-ps9 Trp63 

AK037687 Col27a1 Gm11249 Gm17821 Lypd1 Pde2a Rps16-ps2 Tulp1 

AK042206 Colec12 Gm11273 Gm2000 Malt1 Pdgfrl Rps17 Uba52 

AK048887 Cox4i1 Gm11343 Gm20469 Map1a Phpt1 Rps19 Ugt1a6a 

AK051864 Cox5b Gm11407 Gm20541 Map2 Plin3 Rps20 Uqcr10 

AK053962 Cox6a1 Gm11408 Gm22567 Mapk8ip1 Pole Rps21 Uqcr11 

AK079994 Cox6b1 Gm11410 Gm23134 Mavs Prlr Rps23 Uqcrh 

AK133261 Cox6c Gm11477 Gm23368 Mcf2l Prrg1 Rps23-ps Uqcrq 

AK134546 Cox7a2 Gm11478 Gm24105 Meis2 Prrx1 Rps24 Usmg5 

AK137566 Cox7b Gm11512 Gm24514 Mgst3 Psme2b Rps24-ps3 Vangl1 

AK142573 Cox7c Gm11531 Gm26461 Mir682 Ptpn14 Rps25 Vav3 

AK142864 Cox8a Gm11808 Gm26870 Mis18bp1 Ptprb Rps25-ps1 Wdr31 

AK147589 Ctdspl2 Gm11942 Gm26909 Mre11a Pvalb Rps26 Ybx1 

AK153988 Cyp26b1 Gm11956 Gm2830 Mrpl33 Rasgrp4 Rps26-ps1 Zbtb20 

AK154552 Dcdc2a Gm11960 Gm3550 mt-Rnr1 Rasl10b Rps28 Zfhx3 

AK156971 Ddc Gm12013 Gm4853 mt-Rnr2 Rbm47 Rps29 Zscan20 

AK162832 Ddx58 Gm12020 Gm4986 mt-Td Rmi2 Rps5 
 

AK163755 Dock8 Gm12034 Gm5963 mt-Te Romo1 Rpsa 
 

AK164124 DQ072386 Gm12155 Gm6265 mt-Tg Rorb Rpsa-ps10 
 

AK164323 Dtx3l Gm12295 Gm6378 mt-Th RP23-2C22.3 Sepw1 
 

AK169555 Dusp18 Gm12338 Gm6525 mt-Ti Rpl12 Serhl 
 

AK171391 E330033B04Rik Gm12517 Gm7331 mt-Tk Rpl12-ps1 Serpina3k 
 

AK190531 Ebf1 Gm12618 Gm7618 mt-Tl2 Rpl13a Serpine2 
 

AK206180 Egf Gm12778 Gm7866 mt-Tm Rpl19 Shank3 
 

Ankef1 Ern1 Gm12903 Gm8019 mt-Tp Rpl21 Slamf7 
 

Aox3 Esr1 Gm12936 Gm8129 mt-Tq Rpl21-ps12 Slc17a7 
 

Apbb1ip Etv4 Gm12976 Gm8292 mt-Ts1 Rpl21-ps8 Slc17a9 
 

Aqp4 Exo1 Gm13192 Gm8317 mt-Tt Rpl23a Slc22a15 
 

Arhgap31 Exph5 Gm13215 Gm8649 mt-Tw Rpl26 Slc23a1 
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Table 4-2. Consistently observed genes in the neurites. 

0610012G03Rik Cacng2 Elk1 Gnal Mrpl43 Ppp2r2c Sdhb Tusc3 

1110001J03Rik Cadm1 Elmo1 Gnao1 Mrpl51 Ppp2r5b Sdhc Txn1 

1110002L01Rik Cadps Elovl6 Gnaq Mrpl52 Ppp3ca Sdhd Txndc15 

1110008F13Rik Calm1 Elp5 Gnas Mrpl9 Ppp6c Sec11c Txndc16 

1110008P14Rik Calm2 Emc10 Gnb1 Mrps14 Pptc7 Sec23a Txnl1 

1110065P20Rik Calm3 Enah Gnb2l1 Mrps18a Prdx1 Sec23b Txnl4a 

1700020I14Rik Caly Enc1 Gng2 Msi2 Prdx2 Sec24a Uba52 

1700025G04Rik Camk2b Eno1 Gng3 Mt1 Prdx3 Sec62 Ubash3b 

1810043H04Rik Camk2d Eno2 Gnl1 Mt3 Prdx5 Sel1l Ubb 

2010003O02Rik Camk2g Enpp5 Gorasp2 Mtch2 Prelid1 Selk Ubc 

2010107E04Rik Camk2n2 Ensa Got1 Mtdh Prkaa2 Selm Ube2d2a 

2210016L21Rik Camkk2 Eny2 Got2 Mtf1 Prkaca Selt Ube2d3 

2410006H16Rik Camsap1 Epb4.1l1 Gpi1 Mtif2 Prkar1a Senp2 Ube2e2 

2410015M20Rik Camta1 Epb4.1l3 Gpm6a Mtmr9 Prkar1b Sept11 Ube2h 

2610017I09Rik Cand1 Epha5 Gpm6b mt-Rnr1 Prkca Sept3 Ube2l3 

2610507B11Rik Canx Epha6 Gpr162 mt-Rnr2 Prmt5 Sept5 Ube2m 

2700029M09Rik Capns1 Epm2aip1 Gprasp1 Mtss1l Prpf19 Sept7 Ube2n 

2700094K13Rik Capzb Epn1 Gpx1 mt-Td Prpf38b Sepw1 Ube2ql1 

2900011O08Rik Casc4 Eps15 Gpx4 mt-Te Prrc2b Serbp1 Ube2r2 

2900097C17Rik Caskin1 Erbb4 Grb10 mt-Th Prrc2c Serf2 Ube2z 

4932438A13Rik Cbx5 Erc1 Grcc10 mt-Ti Psap Serinc1 Ube3a 

5330434G04Rik Cbx6 Erlec1 Gria1 mt-Tm Psd Serinc3 Ubfd1 

5730455P16Rik Cby1 Etnk1 Gria2 mt-Tp Psma3 Serp2 Ubl3 

6030419C18Rik Ccdc104 Evl Grin1 mt-Tq Psma7 Set Ubl4 

6430548M08Rik Ccdc124 Ewsr1 Grin2b mt-Tt Psmb1 Setd7 Ubl5 

A030009H04Rik Ccdc127 Exoc5 Grin3a mt-Tw Psmb4 Sez6l2 Ubqln1 

A830010M20Rik Ccdc50 Exoc6b Grina Mvb12b Psmb7 Sfi1 Ubqln2 

A830039N20Rik Ccdc88a Exoc8 Grip1 Myeov2 Psmc3 Sfxn1 Ubr3 

Aak1 Ccnc F830016B08Rik Grk6 Myl12b Psmc5 Sfxn3 Ubxn2a 

Aar2 Ccnd2 Fabp3 Grlf1 Myl6 Psmd11 Sgta Uchl1 

Aars Ccni Fam115a Grm5 Myo5a Psmd2 Sh3bgrl3 Uck2 

Aasdhppt Ccny Fam120a Grpel1 Myt1l Psmd3 Sh3bp5l Ufc1 

AB347151 Ccpg1 Fam13c Gsk3b Naa60 Psmd4 Sh3gl2 Ufm1 

Abat Ccser2 Fam155a Gstm5 Nap1l5 Psmd8 Sh3glb2 Uhmk1 

Abca3 Cct2 Fam168a GU332589 Napa Ptchd4 Shank2 Uhrf1bp1l 

Abca5 Cct3 Fam168b Guk1 Napb Ptdss2 Shank3 Uhrf2 

Abce1 Cct8 Fam174a H2afz Nav1 Pten Shc3 Ulk2 

Abhd17a Cdadc1 Fam195b Habp4 Nav2 Ptges3 Shfm1 Ulk4 

Abhd6 Cdc37 Fam19a5 Hadhb Nav3 Ptma Sike1 Unc5c 

Abhd8 Cdc37l1 Fam210b Hapln1 Ncald Ptms Sipa1l1 Uqcc2 

Abi2 Cdc42 Fam219a Hars Ncam1 Ptp4a2 Ski Uqcr10 

Abr Cdc42bpa Fam49a Haus2 Ncaph2 Ptpn4 Skp1a Uqcr11 

AC149090.1 Cdc42se2 Fam63b Hcfc1r1 Ncl Ptpn5 Slc1a1 Uqcrb 

Acadsb Cdipt Fam73a Hcn1 Ncoa2 Ptprd Slc1a2 Uqcrc1 

Acat2 Cdk14 Fam73b Hdac5 Ncor1 Ptprs Slc22a17 Uqcrc2 

Aco2 Cdk16 Fam84a Hdac9 Ncs1 Pum2 Slc25a12 Uqcrfs1 

Acot7 Cdk4 Fam96b Hdgf Ndfip1 Pura Slc25a22 Uqcrh 

Acp1 Cdk5 Fasn Hdgfrp3 Ndn Purb Slc25a23 Uqcrq 

Acsl4 Cdk5r1 Fau Hdhd2 Ndrg3 Purg Slc25a3 Usf2 

Acsl6 Cdk5r2 Faxc Herc1 Ndrg4 Pvalb Slc25a4 Usmg5 

Acss2 Cdkn1b Fbxl16 Herc2 Ndufa1 Pvrl3 Slc25a5 Usp22 

Actb Cdr1 Fbxo21 Higd1a Ndufa10 Pxmp4 Slc25a51 Usp32 
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Actg1 Celf2 Fbxo9 Higd2a Ndufa11 Rab1 Slc2a13 Usp34 

Actr1a Celf4 Fbxw11 Hint1 Ndufa12 Rab10 Slc30a9 Usp50 

Acyp2 Cend1 Fbxw2 Hip1 Ndufa13 Rab11b Slc32a1 Vamp2 

Adam22 Cenpb Fdps Hjurp Ndufa2 Rab11fip4 Slc35f1 Vapa 

Adarb1 Cep97 Fem1b Hk1 Ndufa3 Rab12 Slc38a1 Vapb 

Adcy5 Cerk Fez1 Hmbox1 Ndufa4 Rab28 Slc3a2 Vcp 

Add1 Cfl1 Fgf12 Hmgb1 Ndufa5 Rab2a Slc48a1 Vdac1 

Add2 Cfl2 Fgf13 Hmgcs1 Ndufa6 Rab39b Slc4a1ap Vdac2 

Adipor2 Chchd10 Fgf9 Hn1 Ndufa7 Rab3a Slc6a1 Vegfb 

Adrbk2 Chchd2 Fh1 Hnrnpa1 Ndufa8 Rab3b Slc8a1 Vgf 

Aes Chchd6 Fign Hnrnpa2b1 Ndufab1 Rab3c Slfn8 Vps26b 

Aff4 Chd3 Fkbp1a Hnrnpa3 Ndufaf7 Rab5b Slirp Vps35 

Agap1 Chd4 Flrt2 Hnrnpab Ndufb10 Rab5c Slitrk5 Vps37a 

Agap3 Chl1 Foxg1 Hnrnpk Ndufb11 Rab6a Smap1 Vsnl1 

Agtpbp1 Chn1 Foxn3 Hnrnpu Ndufb2 Rab6b Smarca2 Vstm2a 

Ahcyl1 Chp1 Foxp1 Homer1 Ndufb3 Rabac1 Smdt1 Wac 

Ahcyl2 Chpt1 Frmpd4 Hras Ndufb4 Rabgap1l Smek2 Wasf3 

AI413582 Chst2 Fscn1 Hsbp1 Ndufb5 Rac1 Smim13 Wbp11 

AI593442 Chtop Fth1 Hsd17b12 Ndufb6 Rad21 Smim14 Wbp2 

Aig1 Churc1 Ftl1 Hsp90aa1 Ndufb7 Rad23a Snap25 Wdfy1 

Aip Cic Fto Hsp90ab1 Ndufb8 Ranbp1 Snap47 Wdfy3 

AK007420 Cisd1 Fubp1 Hspa4 Ndufb9 Rangap1 Snca Wdr13 

AK021280 Cited2 Fus Hspa4l Ndufc1 Rapgef4 Sncb Wdr18 

AK035770 Ckb Fut9 Hspa5 Ndufc2 Rasl10b Snf8 Wdr45b 

AK078656 Ckmt1 G3bp2 Hspa8 Ndufs1 Rbfox1 Snhg11 Wdr89 

Ak1 Clasp1 Gabarap Hspd1 Ndufs2 Rbfox2 Snhg6 Whsc1 

AK157302 Clcn3 Gabarapl1 Hspe1 Ndufs4 Rbm14 Snrpn Whsc1l1 

AK164124 Clec2l Gabarapl2 Huwe1 Ndufs5 Rbms3 Snx12 Wipi2 

AK181773 Clip3 Gabbr1 Hypk Ndufs6 Rbx1 Snx27 Wsb2 

AK182655 Clip4 Gabrb2 Id2 Ndufs7 Rc3h1 Socs2 Xiap 

AK186242 Clpb Gabrb3 Ide Ndufs8 Rc3h2 Sod1 Xpo7 

AK190531 Clpp Gabrg2 Idh3a Ndufv1 Reep5 Soga3 Xpr1 

AK196308 Clstn1 Gad1 Idh3b Ndufv2 Rell2 Sorbs2 Ybx1 

AK201505 Clta Gad2 Idh3g Ndufv3 Reln Sos2 Ykt6 

AK207499 Cltb Gan Ids Necab2 Rer1 Sox2ot Yod1 

AK208404 Cmip Gap43 Ier3ip1 Nedd4 Rfc5 Sparcl1 Ypel3 

AK217941 Cmpk1 Gapdh Ifngr2 Nedd8 Rfng Spats2l Ywhab 

Akap11 Cnbp Garnl3 Igfbp2 Nefh Rfx7 Sphk2 Ywhae 

Akap6 Cnih2 Gas5 Immt Nefl Rgs7bp Spin1 Ywhag 

Akr1a1 Cnot4 Gatad1 Impa1 Nefm Rhbdd2 Spock2 Ywhah 

Aktip Cntn1 Gatsl2 Impact Nek7 Rheb Spred2 Ywhaq 

AL591209.1 Coa3 Gbas Ina Nell2 Rhot1 Sprn Ywhaz 

Aldh5a1 Col4a4 Gclm Inpp4a Nemf Rims1 Spryd7 Zbtb20 

Aldoa Comt Gcsh Inpp5f Nenf Rmnd5a Sptan1 Zbtb4 

Alkbh6 Copa Gda Ip6k1 Nfe2l1 Rnasek Sptbn1 Zbtb7a 

Alyref Cope Gdap1 Ipo5 Nfia Rnd2 Sptbn2 Zc3h15 

Amd2 Cops6 Gdi1 Ipo7 Nfib Rnf10 Sqstm1 Zc3h7b 

Amph Coq10a Gfod1 Ipp Nfix Rnf130 Srcin1 Zcchc17 

Anapc11 Coro1c Gfpt1 Ireb2 Nfkb2 Rnf14 Srebf2 Zcchc18 

Anapc16 Coro2b Ggps1 Irf2bpl Ngfrap1 Rnf157 Srgap3 Zcrb1 

Anapc5 Cox14 Ghitm Isca1 Nipsnap1 Rnf165 Srp14 Zeb2 

Angel2 Cox17 Gid8 Itsn1 Nisch Rnf187 Srp72 Zfand5 

Ank1 Cox4i1 Glo1 Jmjd8 Nkiras1 Rnf208 Srr Zfp260 

Ank2 Cox5a Glrb Jph4 Nlgn1 Rnf44 Ssh2 Zfp60 

Ank3 Cox5b Gls Jund Nlgn2 Rnf5 Ssr1 Zfp931 

Ankfy1 Cox6a1 Gm10012 Kansl1 Nmd3 Rnf7 St13 Zfr 

Anp32a Cox6a2 Gm10039 Kbtbd2 Nme1 Robo2 St8sia3 Zmat3 
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Ap1s1 Cox6b1 Gm10053 Kbtbd3 Nme2 Rogdi Stam Zmynd11 

Ap1s2 Cox6c Gm10073 Kcmf1 Nme7 Romo1 Stau2 Znrf1 

Ap2b1 Cox7a2 Gm10076 Kcna1 Nmnat2 Rora Stk11 Zwint 

Ap2m1 Cox7a2l Gm10086 Kcna2 Nmt2 RP23-199B2.4 Stk25 Zyg11b 

Ap2s1 Cox7b Gm10123 Kcng3 Nnat Rpgrip1 Stmn1 
 Ap3m1 Cox7c Gm10136 Kcnh7 Nop10 Rpl10 Stmn2 
 Ap3s1 Cox8a Gm10169 Kcnq1ot1 Nop58 Rpl10a Stmn3 
 Ap3s2 Cpe Gm10175 Kctd16 Nos1ap Rpl10a-ps1 Stox2 
 Ap4s1 Cpeb2 Gm10186 Kctd17 Npc2 Rpl10-ps3 Stx1b 
 Apba1 Cplx1 Gm10221 Kdm2a Npepps Rpl11 Stxbp1 
 Apbb1 Cpsf6 Gm10222 Kif1a Npm1 Rpl12 Sub1 
 Apc Crbn Gm10240 Kif1b Nrxn1 Rpl13 Sult4a1 
 Aplp1 Crk Gm10250 Kif21a Nrxn2 Rpl13a Sumo1 
 Aplp2 Crlf2 Gm10263 Kif21b Nrxn3 Rpl14 Supt4a 
 Apopt1 Crmp1 Gm10275 Kif3a Nsf Rpl15 Suv420h1 
 App Crtac1 Gm10288 Kif3c Nsg1 Rpl17 Sv2a 
 Appl1 Cs Gm10443 Kif5a Nsg2 Rpl17-ps5 Svop 

 Araf Csdc2 Gm10689 Kif5b Nsmf Rpl18 Swi5 
 Arap2 Csde1 Gm11223 Kif5c Nt5dc3 Rpl18a Sybu 
 Arcn1 Csf2ra Gm11249 Klc1 Ntan1 Rpl18-ps1 Syn1 
 Arel1 Csnk1d Gm11273 Klc2 Ntrk2 Rpl18-ps2 Syn2 
 Arf1 Csnk1g1 Gm11343 Klf13 Ntrk3 Rpl19 Syncrip 
 Arf3 Csnk2a1 Gm11361 Klf7 Nucks1 Rpl19-ps11 Syngr1 
 Arf4 Csrnp3 Gm11407 Klf9 Nudc Rpl21 Synj1 
 Arf5 Cst3 Gm11410 Klhdc10 Nudcd3 Rpl21-ps8 Synj2bp 
 Arfip2 Ctage5 Gm11477 Kmt2e Nudt19 Rpl22 Syt1 
 Arhgdia Ctbp1 Gm11478 Kpna6 Nudt21 Rpl22l1 Syt11 
 Arhgef4 Ctdspl2 Gm11512 Kras Nudt3 Rpl23 Taf10 
 Arhgef9 Ctnnb1 Gm11633 Krtcap2 Nudt4 Rpl23a Taf13 
 Arl2bp Ctnnbip1 Gm11808 Lamp1 Nufip2 RPL24 Tanc2 
 Arl3 Ctsb Gm11942 Lamp2 Nus1 Rpl26 Taok1 
 Arl4c Cuedc2 Gm11966 Lamtor1 Nxf1 Rpl27 Taok3 
 Arl5a Cux1 Gm12141 Lamtor4 Nyap2 Rpl27a Tatdn1 

 Arl5b Cxx1a Gm12191 Large Oat Rpl28 Tax1bp1 
 Arl6ip1 Cxx1b Gm12254 Larp1 Oaz1 Rpl28-ps1 Tbc1d24 
 Arl8a Cxx1c Gm12337 Lars2 Oaz2 Rpl29 Tbca 
 Armc1 Cyb5b Gm12338 Lbh Ociad2 Rpl3 Tbcb 
 Armcx1 Cycs Gm12350 Ldha Ogdh Rpl30 Tceb1 
 Armcx2 Cyfip2 Gm12481 Ldhb Ogfrl1 Rpl30-ps10 Tceb2 
 Arnt2 Cyhr1 Gm12497 Letm1 Olfm1 Rpl31 Tcf12 
 Arpc1b D17Wsu104e Gm12715 Lgr5 Opa1 Rpl31-ps8 Tcf4 
 Arpc2 D17Wsu92e Gm12903 Lhfpl4 Opa3 Rpl32 Tcte1 
 Arpc5 D3Bwg0562e Gm12918 Lhx6 Osbpl2 Rpl34 Tef 
 Arpc5l D3Ertd254e Gm12976 Lias Oscp1 Rpl34-ps1 Tex2 
 Arrb1 D5Ertd579e Gm13186 Limk1 Otc Rpl35 Tfg 
 Arx D8Ertd738e Gm13192 Lin7a Otub1 Rpl35a Tfrc 
 Asns Dab1 Gm13339 Lman2 Oxct1 Rpl35a-ps2 Thra 
 Asph Dact3 Gm13340 Lmo4 Oxr1 Rpl36 Thy1 
 Asxl2 Dbi Gm13341 Lpgat1 Pabpc1 Rpl36a Timm10 

 Atf2 Dcaf10 Gm13456 Lphn1 Pabpn1 Rpl36a-ps1 Timm10b 
 Atf5 Dcaf7 Gm13488 Lrrc4b Pacsin1 Rpl37 Timm13 
 Atg12 Dcdc2a Gm13680 Lrrc4c Pafah1b1 Rpl37a Timm17a 
 Atn1 Dclk1 Gm13826 Lsamp Paip2 Rpl38 Timm17b 
 Atox1 Dctn2 Gm14088 Lsm12 Pak7 Rpl38-ps1 Timm8b 
 Atp13a2 Dctn3 Gm14165 Lsmd1 Palm Rpl38-ps2 Tlcd1 
 Atp1a3 Dcun1d5 Gm14303 Luc7l2 Pam Rpl39 Tma7 
 Atp1b1 Dda1 Gm14305 Lynx1 Papola Rpl39-ps Tma7-ps 
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Atp2a2 Ddah1 Gm14326 Lyrm9 Parp6 Rpl3-ps1 Tmem130 

Atp5a1 Ddx1 Gm14399 Macf1 Parva Rpl4 Tmem132b 

Atp5b Ddx3x Gm14450 Maf Pbx1 Rpl41 Tmem135 

Atp5c1 Ddx5 Gm14539 Mafg Pcbp2 Rpl5 Tmem14c 
 Atp5d Deaf1 Gm14586 Maged1 Pcdh17 Rpl6 Tmem151b 

Atp5e Deb1 Gm14633 Magee1 Pcif1 Rpl7 Tmem167 

Atp5f1 Def8 Gm14794 Magi1 Pcmt1 Rpl7a Tmem170b 

Atp5g1 Degs2 Gm15421 Map1a Pcmtd1 Rpl8 Tmem178b 

Atp5g2 Dennd5a Gm15427 Map1b Pcsk1n Rpl9 Tmem179 

Atp5g3 Dennd5b Gm15459 Map1lc3a Pdcd5 Rpl9-ps6 Tmem184c 

Atp5h Desi1 Gm15487 Map1lc3b Pdcd6 Rplp0 Tmem234 

Atp5j Dgcr6 Gm15500 Map2 Pde11a Rplp1 Tmem242 

Atp5j2 Dgkg Gm15501 Map2k2 Pde4a Rplp2 Tmem245 

Atp5k Dhx15 Gm15536 Map2k4 Pde4d Rprd2 Tmem256 

Atp5l Dhx9 Gm15772 Map3k10 Pdgfa Rps10 Tmem258 

Atp5l2 Diras1 Gm15920 Map3k12 Pdha1 Rps10-ps2 Tmem259 

Atp5o Disp2 Gm16418 Map4 Pdhx Rps11 Tmem29 

 Atp6ap1 Dlc1 Gm1673 Map7d1 Pdpk1 Rps11-ps1 Tmem30a 

Atp6ap2 Dld Gm17257 Mapk1 Pdxk Rps12 Tmem41b 

Atp6v0a1 Dlg2 Gm17383 Mapk10 Pea15a Rps12-ps9 Tmem50b 

Atp6v0d1 Dlg4 Gm1821 Mapk3 Pebp1 Rps13 Tmem55a 

Atp6v0e2 Dlgap1 Gm2000 Mapk6 Peg3 Rps13-ps1 Tmem55b 

Atp6v1a Dlgap2 Gm23134 Mapk8ip1 Pfdn1 Rps13-ps2 Tmem59l 
 Atp6v1b2 Dlgap4 Gm2382 Mapk8ip3 Pfdn2 Rps14 Tmem66 
 Atp6v1c1 Dlst Gm24105 Mapk9 Pfdn5 Rps15 Tmod2 
 Atp6v1d Dlx1os Gm26384 Mapre1 Pfkm Rps15a Tmsb10 
 Atp6v1e1 Dlx6os1 Gm26461 Mapre2 Pfkp Rps15a-ps6 Tmsb4x 
 Atp6v1f Dmd Gm26582 Mapt Pfn1 Rps16 Tmx4 
 Atp6v1g1 Dnaaf2 Gm26631 March5 Pfn2 Rps16-ps2 Tnks2 
 Atp6v1g2 Dnajb14 Gm26870 Marcks Pgam1 Rps17 Tnpo1 
 Atp9a Dnajb6 Gm26909 Mau2 Pgam1-ps2 Rps18 Tnrc6a 
 Atpif1 Dnajc27 Gm26924 Mbd5 Pggt1b Rps19 Tom1l2 
 Atxn1 Dnajc5 Gm2830 Mbnl2 Pgk1 Rps19-ps6 Tomm20 

 Atxn10 Dnajc6 Gm2962 Mboat7 Pgk1-rs7 Rps2 Tomm40l 
 Atxn2 Dner Gm3244 Mcf2l Pgp Rps20 Tomm5 
 Atxn7l3b Dnmt3a Gm3362 Mctp1 Phactr1 Rps21 Tomm6 
 AU019823 Dock8 Gm3550 Mdga2 Phactr3 Rps23 Tomm7 
 Auh Dos Gm4117 Mdh1 Phb Rps23-ps Top1 
 AY036118 Dpp3 Gm4149 Mdh2 Phpt1 Rps24 Tox4 
 B230219D22Rik Dpp8 Gm4459 Me3 Phyhipl Rps24-ps3 Tpi1 
 B3gat1 DQ690118 Gm4707 Mea1 Phykpl Rps25 Tpm1 
 B3gat2 Drap1 Gm4735 Mecp2 Pi4ka Rps25-ps1 Tppp 
 B4galt6 Drg1 Gm4853 Med13 Pigq Rps26 Tpt1 
 Baalc Dtna Gm5121 Mef2c Pik3ca Rps26-ps1 Tpt1-ps3 
 Bag1 Dtx3 Gm5384 Meg3 Pip4k2b Rps27a Trak1 
 Basp1 Dusp8 Gm5436 Megf11 Pip5k1a Rps28 Trappc13 
 BC002163 Dvl1 Gm5506 Mff Pip5k1c Rps29 Trappc2l 
 BC005537 Dvl3 Gm5514 Mfn2 Pitpna Rps3 Trerf1 
 BC021618 Dync1h1 Gm5526 Mga Pitpnc1 Rps3a1 Trim2 

 BC029214 Dync1li2 Gm5566 Mgll Pja2 Rps4x Trim32 
 BC029722 Dynll1 Gm5601 Mgrn1 Pkp4 Rps5 Trim35 
 BC031181 Dynll2 Gm5805 Mgst3 Plekhb2 Rps6 Trim37 
 BC069931 Dynlrb1 Gm5844 Mia3 Plin3 Rps6kb1 Trim44 
 Bcar1 Dynlt1a Gm5963 Mical2 Plxdc2 Rps6-ps4 Trim8 
 Bcas2 Dynlt1-ps1 Gm6136 Mid1 Pmpca Rps7 Trim9 
 Bcat1 Dynlt3 Gm6180 Mien1 Pmvk Rps8 Trip4 
 Bcl11a Dzank1 Gm6222 Mif Pnkd Rps9 Trnp1 
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Bcl11b E330033B04Rik Gm6265 Minos1 Pnpla8 Rpsa Trove2 

 Bcl2l2 Edf1 Gm6378 Mir703 Poldip2 Rpsa-ps10 Trp53bp1 
 Bdh1 Eef1a1 Gm6444 Mit1/Lb9 Polr1d Rpusd4 Trp53inp2 

Bdnf Eef1a2 Gm6472 Mkln1 Polr2g Rraga Trpc4ap 
 Becn1 Eef1b2 Gm6807 Mkrn1 Polr2l Rtcb Trpm3 
 Bend6 Eef1g Gm6822 Mlf2 Polr2m Rtn1 Trub2 
 Bex1 Eef2 Gm6977 Mllt11 Polr3h Rtn2 Tsc22d1 
 Bex2 Efcab2 Gm7312 Mmd Pomp Rtn3 Tsc22d2 
 Bicd1 Efhd2 Gm7331 Mmp16 Ppargc1a Rtn4 Tsn 
 Bnip3l Ehd3 Gm7536 Mmp24 Ppargc1b Rufy3 Tsnax 
 Bola2 Eid1 Gm8129 Morf4l2 Ppdpf Rundc3a Tspan13 
 Braf Eif1 Gm8292 Mpc1 Ppia Rusc1 Tspan3 
 Brd2 Eif1b Gm8430 Mpc1-ps Ppig Rwdd4a Tspan7 
 Brd4 Eif3f Gm8566 Mpc2 Ppip5k1 Sap18 Tspyl4 
 Brd7 Eif3h Gm8623 Mpnd Ppm1e Sar1a Ttbk2 
 Bre Eif3i Gm8730 Mpp3 Ppm1h Sbk1 Ttc3 
 Bri3bp Eif3k Gm9385 Mpv17l Ppme1 Sc4mol Ttc7b 

 Brk1 Eif4a1 Gm9703 Mrfap1 Ppp1cb Scamp5 Ttc9b 
 Brox Eif4a2 Gm9769 Mrp63 Ppp1r12a Scd2 Ttl 
 Brsk1 Eif4e Gm9790 Mrpl10 Ppp1r1a Scn1b Ttll7 
 Btbd1 Eif4e2 Gm9800 Mrpl17 Ppp1r1c Scn2a1 Tuba1a 
 Btf3 Eif4g2 Gm9843 Mrpl27 Ppp1r2 Scn2b Tubb2a 
 Bzw1 Eif4g3 Gm9846 Mrpl30 Ppp1r7 Scn8a Tubb2b 
 Bzw2 Eif4h Gmfb Mrpl33 Ppp1r9b Scoc Tubb3 
 C530008M17Rik Eif5a Gna12 Mrpl34 Ppp2ca Scrt1 Tubb4a 
 Cabp1 Elavl2 Gnai1 Mrpl36 Ppp2cb Sdha Tubb5 
 Cacnb4 Elavl3 Gnai2 Mrpl42 Ppp2r1a Sdhaf2 Tulp4 
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Table 4-3. Genes with differentially localized 3’UTR isoforms. 

2410004B18Rik Capzb Galntl6 Mrpl21 Ppp3cb Slmo1 

2700029M09Rik Cbx5 Glud1 Mrpl52 Prkacb Snap91 

6430548M08Rik Ccdc47 Gm14204 Mrps23 Prkar1a Snrpa1 

A530058N18Rik Ccl27a Gm15459 Mrps33 Prpf38b Snrpb 

A830018L16Rik Ccndbp1 Gnai1 Mrps35 Psma6 Snx27 

Aak1 Cd99l2 Gnao1 Mrps7 Psmb2 Spag9 

Abhd16a Cdc123 Gnb1 Mtch1 Psmc4 Srp72 

Abi1 Cdc42 Gps1 mt-Rnr2 Psmd14 Srrm1 

AC149090.1 Cdh13 H2afy Myl12b Ptprd Stau1 

Acly Cetn2 Haghl Nav2 Purg Stk39 

Acss2 Chka Hdac5 Ncam1 Rab11a Suclg1 

Actg1 Chmp3 Hint3 Ncbp2 Rab11fip2 Sv2a 

Actr2 Cnbp Hnrnpm Ndrg4 Rab21 Syt11 

Ahcyl2 Cnot6l Hnrnpu Ndufa10 Rab3a Taf10 

Amdhd2 Cog7 Hsd17b12 Ndufa9 Rab4b Taf11 

Amfr Commd7 Hsp90aa1 Nsg2 Rabgap1l Tbc1d14 

Amph Copg1 Hspa8 Nudc Rac1 Tbcel 

Ank2 Cops6 Ift57 Nudt21 Rad23a Tfg 

Ankfy1 Csnk1d Inpp4a Nudt3 Ranbp1 Timm10b 

Anp32e Csnk2b Inpp5e Nxf1 Rasa1 Tm7sf2 

Ap2a2 Cul1 Itpa Nxph1 Rbm17 Tmem126a 

Ap2m1 Cxxc4 Jtb Ociad1 Rbm25 Tmem59 

Ap3b2 Cyb5 Kalrn Ociad2 Rbms3 Tpm3 

Apbb2 Cycs Kcnq2 Ogdh Rer1 Tsnax 

Arfgap1 D4Wsu53e Kpna1 Olfm1 Rheb Ttc14 

Arid1a Dctn3 Lamtor2 Opcml Rpl15 Tusc3 

Arid2 Dctn5 Ldha Oxct1 Rpl21 Uba1 

Arl1 Dhdds Lrrc4c Paf1 Rpl27a Ube2e3 

Arl16 Dhx30 Lsm3 Paip2 Rpl31 Ube2i 

Asnsd1 Dos Lyrm5 Pank1 Rpl5 Ube2j2 

Atp5a1 Drg1 Lysmd4 Papolg Rps15a Ube4b 

Atp5f1 Dync1i2 Maged2 Pccb Rtfdc1 Ubfd1 

Atp5g1 Dynll2 Map1lc3b Pcdh7 Rufy3 Ublcp1 

Atp5h E2f6 Map2 Pcgf5 Sap30l Uck2 

Atp6v1b2 Ehmt2 Map2k4 Pcmt1 Schip1 Uhrf2 

Atxn7l3b Eif2ak1 Map4 Pcmtd1 Scoc Unc5c 

Bach1 Emc4 Mapk8ip2 Pcna Sdha Uqcrc2 

BC003331 Emc7 Mast1 Pdpk1 Sec14l1 Vamp2 

BC005537 Enah Megf11 Pdrg1 Sec24a Vapb 

Bcas2 Esf1 Mettl2 Peg3 Selk Vma21 

Bcl11a Evi5l Mfap3l Pgk1 Sept11 Vps45 

Bdh1 Fam171a1 Minos1 Pigk Sept2 Wasf3 

Bex1 Fam229b Mkln1 Pitpnm1 Shisa5 Wdr45b 

Bloc1s1 Fam81a Mllt11 Pja2 Skp1a Wipi2 

Blzf1 Farsa Mlx Plcb1 Slc1a1 Wsb2 

Bsg Fbxo31 Mocs2 Pmpcb Slc25a11 Yif1b 

Btf3 Fbxo44 Mpc1 Polr2m Slc25a3 Ywhae 

Cacfd1 Fgd4 Mpv17l Ppdpf Slc25a5 Znrf1 

Calm3 Flot2 Mrpl10 Ppid Slc25a51 

 Camk2b Fscn1 Mrpl13 Ppm1h Slc4a3 
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Table 4-4. Local proteome: predicted structures commonly found in synaptic 

proteins. 

SCOP Structure name Predicted proteins 

b.36 PDZ domains 

Apba1, Dlg2, Dlg4, Dvl1, Dvl3, Frmpd4, Gorasp2^, 

Grip1, Limk1, Lin7a, Magi1, Mast1, Mpp3, Ppp1r9b, 

Ptpn4, Rims1, Shank2, Shank3, Sipa1l1, Snx27, Synj2bp 

c.37.1.1 
Nucleotide and nucleoside 

kinases [includes GK] 

Cacnb4, Cmpk1^, Dlg2, Dlg4, Hnrnpu^, Mpp3^, Ndufa10, 

Stxbp1^ 

b.34.2 SH3 domains 

Abi1, Abi2, Amph, Arhgef4, Arhgef9, Bcar1, Cacnb4, 

Caskin1, Crk, Dlg2, Dlg4, Itsn1, Kalrn, Map3k10, 

Mapk8ip1, Mapk8ip2, Mcf2l, Mia3, Mpp3, Pacsin1, 

Rasa1, Rusc1, Sh3gl2, Sh3glb2, Shank2, Shank3, Sorbs2, 

Sptan1, Srgap3, Stam, Ubash3b, Vav3 

b.55.1.1 PH domains 

Abr, Adap2, Apbb1ip, Arap2, Arhgef4, Arhgef9, Cadps, 

Cdc42bpa^, Elmo1, Exoc8, Fgd4, Kalrn, Kif1a, Kif1b, 

Mcf2l, Nisch*^, Pdpk1, Psd, Rasa1, Sos2, Sphk2*^, 

Sptbn1, Sptbn2, Vav3 

b.34.9.1 Tudor domains A830010M20Rik*, Cic*, Slc25a12*, Trp53bp1 

a.238 BAR domains 
Amph, Appl1, Arfip2, Cog7*^, Dync1h1^, Exoc6b*^, 

Macf1*^, Mtss1l^, Pacsin1*^, Sh3gl2, Smarca2*^ 

a.40 CH domains 

Camsap1, Ccdc88a*, Dmd, Macf1, Mapre1, Mapre2, 

Mical2, Nav2, Nav3, Parva, Parva^, Sptbn1, Sptbn2, 

Stxbp1^, Vav3 

* new annotation (compared to Gene3D) 
^ medium-confidence prediction (nearest neighbor distance ≤ 30); all others are high confidence (nearest neighbor distance ≤ 17.5) 
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Table 4-5. Local proteome: predicted transmembrane structures. 

SCOP Structure name Predicted proteins 

f.1 
Toxins' membrane 

translocation domains 
Bcl2l2, Wdfy3* 

f.3 
Light-harvesting complex 

subunits 
Bnip3l*, Ntrk3* 

f.13 
Class A G protein-coupled 

receptor (GPCR)-like 
Atp6v0a1*, Gabbr1*, Gpr162, Lgr5, Oprd1, Svop 

f.14 Gated ion channels 
D3Bwg0562e, Gabrb3, Gria1, Gria2, Grin1, Grin2b, Hcn1, 

Kcnh7, Kcnq5, Ndfip1*, Scn2a1, Scn8a 

f.17 Transmembrane helix hairpin 

Acsl6*, Ankfy1*, Atp5g1, Atp5g2, Atp5g3, Atp6v0e2*, 

Atp9a*, Cadm1*, Canx*, Cd84*, Chrdl1*, Emc4*, Epha6*, 

Ern1*, Gbp7*, Gm15487, Higd1a*, Higd2a*, Kcna1, Kcna2, 

Kcng3, Kcnq5, Krtcap2*, Lman2*, Lpgat1*, Mdga2*, 

Ppp2r5b*, Ptprd*, Rnf5*, Romo1*, Sec62*, Slc3a2*, 

Slitrk5*, Tmem14c*, Tmem167*, Tmem256*, Tmem258*, 

Ube2j2*, Ugt1a6a*, Vma21*, Vps35* 

f.19 Aquaporin-like Aqp4, Palm 

f.21 
Heme-binding four-helical 

bundle 

Agtrap*, Kcnq2, Sdhc, Sdhd, Slc22a15, Slc4a3*, 

Tmem170b*, Tmem50b* 

f.23 Single transmembrane helix 

AI413582*, AY036118*, Abhd6*, Acsl4*, Ahcyl1, Anapc5*, 

Aplp2*, Arel1*, Armcx1*, Armcx2*, Atp1a3*, Atp1b1, 

Atp2a2*, Atp5j2*, B3gat1*, B3gat2*, Bcl2l2*, Bdnf*, Bsg*, 

Caly*, Ccpg1*, Cd84*, Cd99l2*, Cdadc1*, Cdh13*, Celf2*, 

Celf4*, Cend1*, Chd3*, Chd4*, Chp1, Chst2*, Clec2l*, 

Clip3*, Cnot6l*, Cntn1*, Comt*, Coro1c*, Cox4i1, Cox6a1, 

Cox6a2, Cox6c, Cox7a2, Cox7a2l, Cox7b, Cox7c, Cox8a, 

Crlf2*, Crtac1*, Csf2ra*, Cyb5*, Cyb5b*, Dlc1*, Dner*, 

Egf*, Elavl2*, Elmo1*, Enpp5*, Epha5*, Epha6*, Erbb4, 

Exo1*, Fam115a, Fam155a*, Fam174a*, Flrt2*, Foxp2*, 

Gabrb2*, Gabrg2*, Gdap1*, Gli3*, Gltpd2*, Gria1*, Gria2*, 

Grin3a*, Herc1*, Herc2*, Hsd17b12*, Hspa5*, Huwe1*, 

Ids*, Ier3ip1*, Itga1, Itga4*, Kcna1, Kcna2, Kcng3, Kcnq2*, 

Kcnq5, Klf9*, Lman2*, Lrrc4b*, Lrrc4c*, Lsamp*, Lypd1*, 

Macf1*, Mavs*, Mdga2*, Megf11, Mfap3l*, Mia3*, Mkrn1*, 

Mpc1*, Mpc2*, Mrpl9*, Myo5a, Ndufa1*, Ndufa4*, 

Ndufa9*, Ndufb2*, Ndufb3*, Ndufb8*, Ndufc1*, Ndufc2*, 

Nenf*, Nlgn1*, Nlgn2*, Nrxn1*, Nrxn2*, Nrxn3*, Ntrk2*, 

Ntrk3*, Opcml*, Pam*, Pcmtd1*, Pdgfrl*, Pigk*, Pitpnm1*, 

Plin3*, Pnkd*, Ppm1h*, Ppp2r5b*, Psd*, Ptprb*, Ptprs*, 

Pum2*, Pvrl3*, Rbm47, Rhot1*, Rnf130*, Robo2*, Rps2*, 

Rtn2*, Scn2a1*, Sec11c*, Sel1l*, Selt*, Serp2*, Serpina3k*, 

Sez6l2*, Slc22a15*, Slc25a12, Slc25a23*, Slc30a9*, Slc4a3, 

Slco1a1*, Slitrk5*, Smdt1*, Smim13*, Sparc*, Sparcl1*, 

Spock2*, Srl*, Synj2bp*, Syt15*, Tef*, Tmx4*, Tnrc6a*, 

Tomm20*, Tomm6*, Tor4a*, Tsc22d2*, Tusc3*, Txndc15*, 

Ubqln2*, Ugt1a6a*, Ulk2*, Unc5c*, Uqcr10, Uqcr11, 

Uqcrfs1, Uqcrq, Usmg5*, Usp34*, Wdfy3*, Xpo7*, Zeb2* 

f.27 14 kDa protein of cytochrome Uqcrb 
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bc1 complex (Ubiquinol-

cytochrome c reductase) 

f.28 

Non-heme 11 kDa protein of 

cytochrome bc1 complex 

(Ubiquinol-cytochrome c 

reductase) 

Uqcrh 

f.32 

a domain/subunit of 

cytochrome bc1 complex 

(Ubiquinol-cytochrome c 

reductase) 

Grin3a* 

f.35 
Multidrug efflux transporter 

AcrB transmembrane domain 
Disp2, Ptchd4 

f.42 Mitochondrial carrier 
Gda, Slc25a11, Slc25a12, Slc25a22, Slc25a23, Slc25a3, 

Slc25a4, Slc25a5, Slc25a51 

f.45 
Mitochondrial ATP synthase 

coupling factor 6 
Atp5j* 

f.49 
Proton glutamate symport 

protein 
Slc1a1, Slc1a2 

f.51 Rhomboid-like Slc17a9, Slc22a15, Slc22a17, Svop 

f.53 ATP synthase D chain-like Atp5h*, Gm10250*, Sptbn2 

f.56 MAPEG domain-like 
Abca5*, Cnih2*, Kcng3, Mgst3, Rabac1*, Sc4mol*, 

Timm17a*, Timm17b* 

f.57 MgtE membrane domain-like Disp2, Slc28a3* 

f.58 MetI-like 
Abca5*, Atp9a*, Mboat7*, Mmd*, Slc17a7, Slc23a1*, 

Slc28a3*, Slc2a13, Slc7a11*, Sv2a, Tlcd1* 

f.59 
Cation efflux protein 

transmembrane domain-like 
Slc30a9 

 
* new annotation (compared to Gene3D) 

All predictions shown are high confidence (nearest neighbor distance ≤ 17.5) 
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Table 4-6. Local proteome: predicted RNA-binding structures. 

Fold Desc Predicted proteins 

a.144 PABP domain-like Dync1h1*, Pabpc1 

a.217 Surp module (SWAP domain) Zc3h7b* 

b.38 Sm-like fold Atxn2, Lsm3, Lsmd1, Snrpb, Snrpn 

b.40.4 OB-fold; Nucleic acid binding 

Ccdc141, Cmip, Csdc2, Csde1, Dlst, Dnaaf2*, Eif5a, 

Gm10263, Pdgfrl, Polr2g, Polr3h, Rapgef4, Rpl6, Rps11, 

Rps23, Rps28, Trub2*, Ttc14, Ybx1, Zcchc17 

d.265 Pseudouridine synthase Rpusd4, Trub2 

d.41 alpha/beta-Hammerhead Aox3, Mocs2, Rpl10 

d.50 dsRBD-like Adarb1, Dhx9, Rps2, Stau1, Stau2 

d.51 
Eukaryotic type KH-domain 

(KH-domain type I) 
Fubp1, Hnrnpk, Pcbp2 

d.58.7 
Canonical RNA binding 

domain (RBD) [RRM] 

Alyref, Celf2, Celf4, Cnot4, Cpeb2, Cpsf6, Eif4h, Elavl2, 

Elavl3, Ewsr1, Fus, G3bp2, Hnrnpa1, Hnrnpa2b1, Hnrnpa3, 

Hnrnpab, Hnrnpm, Msi2, Ncbp2, Ncl, Nxf1, Pabpc1, 

Pabpn1, Ppargc1a, Ppargc1b, Rbfox1, Rbfox2, Rbm14, 

Rbm17, Rbm25, Rbm47, Rbms3, Slirp, Syncrip, Tnrc6a, 

Uhmk1, Zcrb1 

g.66 CCCH zinc finger Mbnl2, Mkrn1, Rc3h1, Rc3h2, Zc3h15, Zc3h7b 

 
* new annotation (compared to Gene3D) 

All predictions shown are high confidence (nearest neighbor distance ≤ 17.5) 
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Table 4-7. New structure predictions for domains with pathogenic variants in 

humans and memory/synapse-related phenotypes. 

 

Gene Domain Fold Prediction Phenotypes 

App 712-770 [g.41] - Rubredoxin-like abnormal learning/memory/conditioning;abnormal long term 

object recognition memory;abnormal long term 
potentiation;abnormal long term spatial reference 

memory;abnormal spatial learning;abnormal spatial reference 

memory;abnormal spatial working memory;abnormal synapse 
morphology;reduced long term potentiation 

App^ 452-671 
[a.151] - Glutamyl tRNA-

reductase dimerization domain 

Arx 396-564 
[g.88] - Intrinsically disordered 

proteins 

abnormal associative learning;abnormal spatial learning 

Arx^ 1-326 
[a.8] - 
immunoglobulin/albumin-

binding domain-like 

Asns 530-561 [a.118] - alpha-alpha superhelix 
abnormal long term object recognition memory;abnormal short 

term object recognition memory 

Atp13a2^ 1-194 
[d.14] - Ribosomal protein S5 
domain 2-like 

abnormal spatial learning;decreased memory-marker CD4-
positive NK T cell number 

Atp1a3 264-330 
[f.23] - Single transmembrane 

helix abnormal CNS synaptic transmission;abnormal miniature 

inhibitory postsynaptic currents;abnormal spatial learning 
Atp1a3 386-423 [g.24] - TNF receptor-like 

Bdnf 1-134 
[f.23] - Single transmembrane 

helix 

abnormal CNS synaptic transmission;abnormal dendrite 

morphology;abnormal dendritic spine morphology;abnormal 

excitatory postsynaptic potential;abnormal inhibitory 
postsynaptic currents;abnormal synaptic plasticity;impaired 

synaptic plasticity;reduced long term potentiation 

Braf 268-486 
[g.37] - beta-beta-alpha zinc 
fingers 

abnormal associative learning;abnormal long term object 

recognition memory;abnormal Purkinje cell dendrite 
morphology;abnormal spatial learning;reduced long term 

potentiation 

Brd7^ 257-651 [a.7] - Spectrin repeat-like 

abnormal dendrite morphology;abnormal long term object 

recognition memory;abnormal short term object recognition 
memory;impaired spatial learning 

Ctnnb1 1-134 
[b.108] - Triple-stranded beta-

helix 

abnormal spatial reference memory;abnormal synaptic vesicle 

clustering;reduced long term potentiation 

Dcdc2a^ 223-475 
[g.3] - Knottins (small 

inhibitors, toxins, lectins) 

abnormal short term object recognition memory;abnormal 

spatial learning;abnormal spatial working memory 

Dmd 2128-2172 
[a.4] - DNA/RNA-binding 3-
helical bundle 

abnormal neuromuscular synapse morphology 

Dmd 3082-3113 
[a.4] - DNA/RNA-binding 3-

helical bundle 

Dmd 1775-1813 
[a.4] - DNA/RNA-binding 3-

helical bundle 

Dmd 1377-1436 [a.60] - SAM domain-like 

Dmd 241-341 
[b.108] - Triple-stranded beta-

helix 

Dmd 671-723 
[b.108] - Triple-stranded beta-
helix 

Dmd 1968-2000 [b.34] - SH3-like barrel 

Dmd 905-944 
[d.198] - Secretion chaperone-
like 

Dmd 3286-3490 
[g.39] - Glucocorticoid receptor-

like (DNA-binding domain) 
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Dnajc5^ 93-198 [a.74] - Cyclin-like 
abnormal neuromuscular synapse morphology;abnormal PNS 

synaptic transmission 

Dnajc6 1-68 [a.118] - alpha-alpha superhelix 
abnormal synaptic vesicle number;abnormal synaptic vesicle 
recycling 

Dnajc6^ 387-806 
[g.39] - Glucocorticoid receptor-

like (DNA-binding domain) 

Dnmt3a 419-637 [g.44] - RING/U-box 

abnormal neuromuscular synapse morphology;decreased 

effector memory CD8-positive, alpha-beta T cell 
number;decreased effector memory CD8-positive, alpha-beta T 

cell number 

Dtna 555-746 
[d.198] - Secretion chaperone-

like 
abnormal neuromuscular synapse morphology 

Erbb4 980-1308 [d.92] - Zincin-like enhanced long term potentiation 

Gad1^ 1-209 [a.26] - 4-helical cytokines 
abnormal excitatory postsynaptic potential;abnormal inhibitory 

postsynaptic currents 

Gdap1 116-188 
[a.6] - Putative DNA-binding 

domain 
abnormal neuromuscular synapse morphology 

Gdap1 300-358 
[f.23] - Single transmembrane 

helix 

Gdi1 334-447 
[c.3] - FAD/NAD(P)-binding 
domain 

abnormal excitatory postsynaptic currents;abnormal excitatory 

postsynaptic potential;abnormal spatial working 
memory;abnormal synaptic glutamate release;abnormal 

synaptic vesicle number;decreased synaptic glutamate release Gdi1 78-118 
[d.16] - FAD-linked reductases, 

C-terminal domain 

Gnas^ 1-300 
[g.3] - Knottins (small 

inhibitors, toxins, lectins) 

abnormal spatial learning;abnormal spatial working 
memory;enhanced long term potentiation 

Gnas^ 301-600 
[g.3] - Knottins (small 
inhibitors, toxins, lectins) 

Gnas^ 151-450 
[g.39] - Glucocorticoid receptor-

like (DNA-binding domain) 

Grin2b 914-1213 [a.118] - alpha-alpha superhelix abnormal AMPA-mediated synaptic currents;abnormal 

associative learning;abnormal CNS synaptic 
transmission;abnormal dendrite morphology;abnormal dendritic 

spine morphology;abnormal discrimination learning;abnormal 

excitatory postsynaptic currents;abnormal excitatory 
postsynaptic potential;abnormal 

learning/memory/conditioning;abnormal long term object 

recognition memory;abnormal miniature excitatory 
postsynaptic currents;abnormal NMDA-mediated synaptic 

currents;abnormal object recognition memory;abnormal spatial 

learning;abnormal spatial reference memory;abnormal spatial 
working memory;abnormal synapse morphology;abnormal 

temporal memory;absence of NMDA-mediated synaptic 

currents;enhanced long term potentiation;fast extinction of fear 
memory;impaired synaptic plasticity;reduced long term 

potentiation 

Grin2b 1064-1482 
[g.39] - Glucocorticoid receptor-

like (DNA-binding domain) 

Grin2b^ 764-1063 
[f.23] - Single transmembrane 

helix 

Hcn1^ 1-147 
[a.80] - post-AAA+ 

oligomerization domain-like 

abnormal learning/memory/conditioning;abnormal motor 

learning;abnormal spatial learning 

Ids 425-552 
[d.19] - MHC antigen-
recognition domain 

abnormal spatial working memory 

Ids 1-39 
[f.23] - Single transmembrane 

helix 

Kcna1 412-495 
[g.39] - Glucocorticoid receptor-

like (DNA-binding domain) 

abnormal CNS synaptic transmission;abnormal inhibitory 

postsynaptic currents;abnormal PNS synaptic 
transmission;abnormal synaptic transmission 

Kif1a^ 1203-1578 

[b.2] - Common fold of 

diphtheria toxin/transcription 

factors/cytochrome f 
abnormal synaptic vesicle clustering;abnormal synaptic vesicle 

number 

Kif1a^ 1053-1352 [b.40] - OB-fold 
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Kif1b^ 1093-1392 
[b.1] - Immunoglobulin-like 

beta-sandwich 

abnormal synaptic vesicle number 
Kif1b^ 1243-1542 

[b.2] - Common fold of 

diphtheria toxin/transcription 
factors/cytochrome f 

Kif1b^ 1393-1699 [d.3] - Cysteine proteinases 

Kif1b^ 643-942 [d.43] - EF-Ts domain-like 

Mapk8ip1^ 1-300 
[g.3] - Knottins (small 

inhibitors, toxins, lectins) 
abnormal NMDA-mediated synaptic currents 

Mapt 301-733 
[g.37] - beta-beta-alpha zinc 
fingers 

abnormal dendrite morphology;abnormal long term object 
recognition memory;abnormal motor learning;abnormal spatial 

learning;abnormal spatial working memory;enhanced spatial 

learning;reduced long term potentiation Mapt^ 1-300 
[g.3] - Knottins (small 

inhibitors, toxins, lectins) 

Mbd5^ 1-300 [d.169] - C-type lectin-like abnormal associative learning;abnormal dendrite 
morphology;abnormal excitatory postsynaptic 

currents;abnormal excitatory postsynaptic potential;abnormal 

learning/memory/conditioning;abnormal long term object 
recognition memory;abnormal miniature excitatory 

postsynaptic currents;abnormal miniature inhibitory 

postsynaptic currents;abnormal motor learning;abnormal spatial 
learning;abnormal synaptic vesicle number;decreased CNS 

synapse formation;reduced long term potentiation 

Mecp2^ 196-484 
[g.3] - Knottins (small 

inhibitors, toxins, lectins) 

Mecp2^ 1-66 
[g.39] - Glucocorticoid receptor-
like (DNA-binding domain) 

Mfn2 314-363 
[a.6] - Putative DNA-binding 

domain 

abnormal Purkinje cell dendrite morphology Mfn2 1-84 [a.60] - SAM domain-like 

Mfn2^ 430-694 
[a.211] - HD-domain/PDEase-

like 

Mid1 496-680 
[b.29] - Concanavalin A-like 
lectins/glucanases abnormal learning/memory/conditioning;abnormal motor 

learning 
Mid1^ 216-380 [a.7] - Spectrin repeat-like 

Nfkb2 850-899 
[g.39] - Glucocorticoid receptor-

like (DNA-binding domain) 

abnormal myeloid dendritic cell morphology;abnormal spleen 

follicular dendritic cell network;decreased dendritic cell 

number;decreased myeloid dendritic cell number;increased 

plasmacytoid dendritic cell number 

Ntrk2 376-530 
[f.23] - Single transmembrane 

helix 

abnormal avoidance learning behavior;abnormal dendrite 
morphology;abnormal excitatory postsynaptic 

potential;abnormal learning/memory/conditioning;abnormal 

long term potentiation;abnormal Purkinje cell dendrite 
morphology;abnormal spatial learning;abnormal spatial 

working memory;abnormal synapse morphology;impaired 

synaptic plasticity;reduced long term potentiation 

Otc 1-31 [d.92] - Zincin-like 
abnormal dendrite morphology;abnormal spatial 
learning;abnormal spatial reference memory;abnormal spatial 

working memory 

Pafah1b1 1-100 

[a.221] - Lissencephaly-1 

protein (Lis-1, PAF-AH alpha) 
N-terminal domain 

abnormal spatial learning 

Pnkd 1-116 
[f.23] - Single transmembrane 

helix 

abnormal synaptic dopamine release;abnormal synaptic 

transmission 

Psap 394-436 [a.118] - alpha-alpha superhelix 

reduced long term potentiation 
Psap^ 1-58 [g.24] - TNF receptor-like 

Pten 354-403 
[g.37] - beta-beta-alpha zinc 
fingers 

abnormal CNS synaptic transmission;abnormal dendrite 
morphology;abnormal dendritic spine morphology;abnormal 

excitatory postsynaptic currents;abnormal excitatory 

postsynaptic potential;abnormal miniature excitatory Pten 283-313 [g.5] - Midkine 
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postsynaptic currents;abnormal Purkinje cell dendrite 

morphology;abnormal synapse morphology;abnormal synaptic 

depression;abnormal synaptic transmission;abnormal synaptic 
vesicle number;impaired spatial learning 

Pura^ 1-321 
[d.198] - Secretion chaperone-

like 
decreased CNS synapse formation 

Reln 3135-3228 
[b.121] - Nucleoplasmin-

like/VP (viral coat and capsid) 
abnormal short term spatial reference memory 

Rims1^ 704-1003 
[g.3] - Knottins (small 
inhibitors, toxins, lectins) 

abnormal CNS synaptic transmission;abnormal excitatory 
postsynaptic currents;abnormal excitatory postsynaptic 

potential;abnormal inhibitory postsynaptic currents;abnormal 

post-tetanic potentiation;impaired synaptic plasticity;reduced 
long term potentiation 

Robo2 1164-1470 [a.118] - alpha-alpha superhelix 

abnormal Purkinje cell dendrite morphology Robo2 864-1163 
[f.23] - Single transmembrane 

helix 

Robo2^ 1014-1313 
[g.3] - Knottins (small 

inhibitors, toxins, lectins) 

Scn8a 1468-1518 [d.372] - YqaI-like 

abnormal neuromuscular synapse morphology Scn8a^ 417-750 [d.58] - Ferredoxin-like 

Scn8a^ 980-1200 [d.6] - Prion-like 

Shank3 531-568 [b.72] - WW domain-like abnormal CNS synaptic transmission;abnormal dendritic spine 
morphology;abnormal excitatory postsynaptic 

currents;abnormal excitatory postsynaptic potential;abnormal 

long term object recognition memory;abnormal miniature 
excitatory postsynaptic currents;abnormal miniature inhibitory 

postsynaptic currents;abnormal motor learning;abnormal object 

recognition memory;abnormal spatial learning;abnormal spatial 
reference memory;abnormal synapse morphology;abnormal 

synaptic transmission;decreased excitatory postsynaptic current 

amplitude;decreased post-tetanic potentiation;decreased 
synaptic depression;impaired learning;impaired spatial 

learning;impaired synaptic plasticity;reduced long term 

potentiation;reduced NMDA-mediated synaptic currents 

Shank3^ 963-1262 
[g.39] - Glucocorticoid receptor-

like (DNA-binding domain) 

Shank3^ 1113-1412 
[g.39] - Glucocorticoid receptor-

like (DNA-binding domain) 

Slc6a1^ 151-599 
[f.13] - Class A G protein-
coupled receptor (GPCR)-like abnormal inhibitory postsynaptic currents;abnormal object 

recognition memory;abnormal spatial working memory 
Slc6a1^ 1-300 

[f.21] - Heme-binding four-

helical bundle 

Stxbp1^ 324-361 [a.43] - Ribbon-helix-helix abnormal synaptic transmission 

Syn1^ 393-706 
[g.37] - beta-beta-alpha zinc 

fingers 

abnormal CNS synapse formation;abnormal excitatory 

postsynaptic potential;abnormal inhibitory postsynaptic 

currents;abnormal synaptic vesicle clustering;abnormal synaptic 
vesicle recycling;delayed CNS synapse formation;increased 

synaptic depression 

Synj1^ 1-300 [b.50] - Acid proteases 

increased synaptic depression 

Synj1^ 151-513 
[c.55] - Ribonuclease H-like 

motif 

Tcf4^ 151-556 
[g.3] - Knottins (small 

inhibitors, toxins, lectins) 
abnormal associative learning;impaired spatial learning 

Tcf4^ 1-300 
[g.39] - Glucocorticoid receptor-
like (DNA-binding domain) 

Thra 376-492 
[a.4] - DNA/RNA-binding 3-

helical bundle abnormal object recognition memory;abnormal Purkinje cell 

dendrite morphology 
Thra 1-51 

[g.3] - Knottins (small 

inhibitors, toxins, lectins) 
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Ube3a 721-755 
[b.108] - Triple-stranded beta-

helix abnormal dendrite morphology;abnormal 

learning/memory/conditioning;abnormal long term 
potentiation;abnormal motor learning;abnormal spatial 

learning;reduced long term potentiation 

Ube3a^ 151-499 [a.288] - UraD-like 

Ube3a^ 1-300 
[d.389] - Menin N-terminal 

domain-like 

 
^ medium-confidence prediction (nearest neighbor distance ≤ 30); all others are high confidence (nearest neighbor distance ≤ 17.5) 

All are new annotations (compared to Gene3D) 
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Chapter 5: Conclusions and future directions 
 

 

 

 

The incorporation of structure information into routine bioinformatics analysis 

has been hindered by a lack of tools that can analyze structure on a large scale. In this 

thesis, I described two novel methods for characterizing macromolecular structure that 

utilize the idea of empirical feature spaces to improve accuracy and scalability. I then 

applied these methods to address long-standing open questions in neuron biology 

regarding localization and translation in the dendrites, which has significance for our 

understanding of long-term potentiation and learning and memory. These results include 

findings that would have been more difficult to obtain without structure analysis, 

including the identification of B1 and B2-derived hairpin structures in localized 3’UTRs, 

and new predictions RBPs and RNA binding domains (RBDs) among locally-translated 

proteins. Altogether, this work demonstrates the utility of structure-based analysis of 

macromolecules and provides two scalable methods to implement such analyses in 

standard bioinformatics pipelines. In the discussion below, I highlight some important 

avenues for follow-up work, including areas where structure-based analysis of RNA and 

protein could be particularly fruitful. 
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Role of alternative 3’UTRs in RNA localization 

Neurons clearly have special RNA localization needs compared to other cell 

types. Their unique morphology—long, extended processes that can be many times the 

length of the soma—combined with an extensive need for local translation means that 

neurons must transport a wide variety of RNAs long distances from their origination 

point in the nucleus. In Chapter 4, we found almost 300 genes with alternative 3’ 

isoforms where one isoform was consistently more dendritically localized than the other. 

There are several reasons why the use of alternative 3’UTRs is an attractive model for 

how neurons might regulate localization. Firstly, it provides the neuron with a mechanism 

for localizing only a subset of the transcripts of a given gene. This is potentially critical 

for any genes where the RNA and/or protein is needed in the soma in addition to the 

dendrites. Secondly, localizing only a subset of gene isoforms allows neurons to 

potentially regulate the localization of RNAs using co-transcriptional mechanisms, such 

as controlling the level of splicing factors that promote inclusion/exclusion of the 

localized isoform. Finally, alternative 3’UTRs theoretically have the potential to provide 

an element of tissue-specificity to localization, since cell types that have no need to 

localize a particular RNA can simply not express the localized isoform. However, in 

contrast to this idea, we did not observe a high level of tissue-specificity among the 

neurite-targeted 3’ isoforms. Specifically, of the 38 neurite-targeted isoforms we 

identified that were among the new 3’UTRs annotated by Miura et al. [1], only 12 were 

specific to hippocampal neurons according to the Miura data. The other 26 isoforms were 

found in at least one of the other mouse tissue types profiling in that study, which 
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included spleen, liver, thymus, lung, and heart [1]. This suggests that regulation of 

alternative 3’UTR usage may not be the main mechanism of generating tissue-specific 

localization. Another way that tissue-specific localization might be achieved is through 

the regulated expression of the trans factors needed for localization, e.g. certain RBPs or 

transport components. Overall, more work is needed to determine how differentially 

localized 3’ isoforms are regulated in neurons. It will be interesting to see if any other 

structural motifs can be found in the RNAs that might play a role in regulating splicing 

patterns, such that a neuron can trigger the inclusion or exclusion of DTE-containing 3’ 

exons, depending on its localization needs. 

 

RBPs in dendritic localization 

Although we focused our attention here on identifying the cis elements involved 

in dendritic localization—i.e. linear and structural DTEs found on the RNA itself—the 

RBP trans factors that bind these elements are likely to be just as important for a full 

understanding of RNA localization. RBPs appear to be hotspots for mutations associated 

with neuropsychiatric disorders [2,3], including several with putative roles in 

localization, suggesting that errors in RNA localization could be major mechanism 

underlying disease. A more complete understanding of the interactions between 

localization-mediating RBPs and the DTEs they bind is therefore needed. Several 

experimental methods are now being used to profile these interactions transcriptome-

wide, such as crosslinking immunoprecipitation (CLIP)-based methods to identify the 

RNAs bound by specific RBPs [4–6], peptide nucleic acid (PNA)-assisted identification 
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of RBPs (PAIR) to identify the RBPs associated with a specific RNAs [7], as well as 

methods that profile protein-bound RNA more broadly [8]. Although these methods 

reveal which RNAs are RBP-bound and sometimes even the location of the binding sites, 

they usually only provide limited information about the motifs recognized by the RBP. 

Often only a short, degenerate linear motif is identified (e.g. “YGCY” for Mbnl1 [9] and 

“UCAY” for Nova [10]). More sophisticated tools for determining binding motifs that 

incorporate both sequence and structure will need to be applied to fully capture the 

binding preferences of RBPs (this will be discussed further below). In order to make 

useful predictions about mutations that could disrupt the interaction between localization-

mediating RBPs and their targets, we will need more accurate models of the structure of 

both the RBP binding domain(s) and the RNA binding site. In addition, a more complete 

definition of which RBPs are involved in localization will help focus such studies. 

 

Neo-functionalization of transposable elements 

The results of the RNA structure motif analysis in Chapter 4 suggested that B1 

and B2 SINE elements could play a role in localization in mouse neurons. Such neo-

functionalizations of transposable elements have been described previously in several 

other contexts, and are hypothesized to be one of the major sources of new functional 

genomic elements [11–15]. In particular, as mentioned previously, it had been shown that 

another type of SINE called the ID element—derived from the dendritically-localized 

ncRNA BC1—caused localization of RNAs to the dendrites in rat [16–18]. Interestingly, 

however, this localization was not reproduced in mice [19,20], suggesting that it could be 
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a rat-specific innovation. Supporting this hypothesis is the fact that ID elements have 

undergone greater expansion in rat compared to mouse, with over 100x more instances in 

rat [17]. In the same study, it was found that B2 elements did not cause dendritic 

localization in rat [17]. Localization ability of B1 and B2 elements have not yet been 

experimentally tested in mouse, but given the divergence of functionality observed for ID 

elements between rodents, a similar divergence for B1 and/or B2 elements should not be 

ruled out. The possibility of analogous, yet non-homologous elements performing similar 

roles in different species has been noted before, both for transposons and non-transposon 

motifs [14,21]. Therefore, it is worth investigating whether a similar analogous-but-not-

homologous relationship exists for ID elements and B1/B2 elements in the context of 

dendritic localization. 

If B1/B2 elements drive dendritic localization in mice and ID elements drive 

localization in rats, what element might fill this role in humans? Several lines of evidence 

point to Alu elements being a likely candidate. Alu elements are primate-specific SINE 

retrotransposons that make up almost 11% of the human genome [22]. They are 

originally derived from 7SL RNA, which is part of the signal recognition RNP and plays 

a role in the processing and localization of proteins with signal peptides. In humans, Alu 

elements show “exonization” activity, where an Alu element within an intron becomes an 

exon via activation of the cryptic splice sites contained in the Alu sequence [22]. Relevant 

to our previous discussion of the role of alternative 3’UTRs in localization, it has also 

been found that Alu elements located downstream of a gene can generate new alternative 

3’UTRs by alternative splicing or alternative cleavage and polyadenylation, and 
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furthermore, that these Alu-derived 3’UTRs tend to be tissue specific [15]. Most notably 

of all, a potential role for an Alu-derived element in dendritic localization has already 

been described: BC200, a ncRNA that likely originated from an Alu element, shows 

dendritic localization patterns highly similar to BC1 RNA in rodents [23]. Since no 

homolog of BC1 has been found in humans, BC200 is often described as the primate 

“analog” of BC1. Alu elements appear to fill analogous roles for other types of rodent 

SINEs as well, including mouse B2 SINE RNA in repression of Pol II during heat shock 

[24]. Overall, there appear to be many points of convergence between these different 

classes of SINE elements in mouse, rat, and human, despite their distinct evolutionary 

origins and extensive species-specific expansions and insertions. Further exploration of 

the potential role of Alu elements in human dendritic localization will be an important 

area for future work. 

 

Function of locally translated proteins in L-LTP 

A crucial remaining question is what role individual locally translated proteins 

play in long-lasting synaptic potentiation. Part of the difficulty of answering this question 

is the need to ensure that any method used to block the translation of an RNA is specific 

to the RNA in question and only affects RNA in the dendrites—the somatic translation 

should be left intact. For CaMKIIα, this was accomplished by deleting the region of the 

3’UTR that contained the DTE, thus blocking local translation via abolishing 

localization. With better definition of DTEs, it will become possible to perform this sort 
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of analysis across more RNAs and with greater specificity—i.e. removing only the DTE 

rather than large regions of the 3’UTR.  

Another interesting question is when proteins are locally translated. Are certain 

subsets translated constitutively? How long after synaptic activation does local translation 

of different RNAs occur? Is there any sequential order to the translation of different 

RNAs after synaptic activation? Methods that monitor translation in real time with spatial 

precision will be helpful to answer these questions [25,26]. Real-time translation data has 

been reported for a handful of specific RNAs so far [27–31], and it will be particularly 

interesting to see local translation profiled on a larger scale. 

 

Beyond neurons: other applications of structure analysis 

Macromolecular structure plays an important role in all tissues and cellular 

pathways, and thus there is no shortage of areas where large-scale structure-based 

analysis can shed new light. For mRNAs, any co-regulated group of transcripts likely 

shares a common motif that is recognized by the regulating RBP, and many of these 

motifs are likely to have structural characteristics. Structure-aware de novo motif finding 

tools such as NoFold can be applied to these transcripts to identify binding motifs. 

Examples could include identification of structure motifs in the 3’UTR that increase or 

decrease mRNA stability, structures that promote exon inclusion or exclusion, or 

structures that enhance or repress translation.  

For proteins, fast and sensitive methods for predicting tertiary structure from 

amino acid sequence will continue to be of vital importance as the number of protein 
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sequences in databases grows. Although some structural folds are relatively easy to 

identify using linear information (e.g. HMM-based methods like Gene3D and Pfam), 

other folds are so diverse on the sequence level that they can sometimes only be 

identified using higher-order structure information (e.g. threading-based methods). An 

example of this is the Piwi domain—an RNA endonuclease structure found in the PIWI 

and Argonaut families of proteins, among others. The Piwi domain has a conserved 

structure, but the sequences that form this structure are highly diverse [32,33] (see also 

the CATH entry for this structure: [34]), making it difficult to identify based on sequence 

alone. Structural feature spaces such as the PESS are well suited for classification tasks 

such as this. The PESS can also be used as a rapid structure-based query system, as 

demonstrated with the hedgehog-related proteins in Chapter 3. In this framework, a 

whole proteome that has already been mapped to the PESS can be quickly queried for the 

closest structural matches to a domain of interest. Although the initial set up of the 

whole-proteome database is time consuming (requiring threading all domains in the 

proteome against the 1,814 templates, as described in Chapter 3), this step only needs to 

be performed once. Thereafter, all “queries” to the database require only threading of the 

query, and then a rapid nearest neighbor-based search of the PESS to retrieve the closest 

matches. We have already created PESS databases for the human and C. elegans 

proteomes, as well as a large portion of the mouse proteome (neuronally-expressed 

genes), and so queries to these proteomes are already possible. 

 

Remaining challenges for structure prediction 
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The ability to predict the RNA motifs bound by RBPs with high accuracy is a 

major area of future improvement. An ideal method would include primary, secondary, 

and tertiary structure information, since all of these levels can be important for 

determining the affinity of an RBP for a particular RNA. Furthermore, future methods 

need to more fully take into account the way in which RBPs bind. Typically, an RBP 

contains multiple RBDs, each of which bind relatively weakly to their target motifs, and 

it is the combination of multiple bound RBDs that give an RBP its specificity and 

strengthens the interaction with the RNA [35]. For example, RNA recognition motif 

(RRM) RBDs typically recognize only 4-8nt, often with some degree of ambiguity of the 

exact recognition motif [36]. In order to gain greater specificity, most RBPs with RRM 

domains contain multiple such domains [35]. The implication is that in order to fully 

characterize the binding preferences of an RBP, one must look for multiple motifs. To 

make matters even more complicated, it is likely that the space between the motifs on the 

RNA is also important for recognition. The particular spacing needed will depend on the 

relative orientation and flexibility of the RBDs within the RBP: if two RBDs have a 

relatively short linker sequence between them, they may be fairly rigid and require a very 

specific distance between the two RNA motifs for binding; on the other hand, if two 

RBDs have a long, flexible linker between them, they could be more tolerant to the 

spacing between the RNA motifs. RNA structure and flexibility may also need to be 

taken into account. As a final layer of complexity, there are many cases where structural 

conformations change during binding. In this type of binding, called “induced fit”, the 

RNA or RBP (or both) starts off in one conformation—typically a flexible or disordered 
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state—and then changes in structure upon binding [37]. An example of this is the 

“zipcode” RNA motif and its RBP partner, ZBP1, which are involved in dendritic 

localization of β-actin RNA. Initially, the region of the β-actin RNA that contains the 

zipcode sequence exists in an unfolded state, but then takes on more stable secondary 

structure by looping around ZBP1 [38]. Altogether, the interactions between RNA and 

RBPs are clearly complex and will require sophisticated tools to predict with accuracy in 

a reasonable amount of time. In the meantime, methods that aid in predicting secondary 

structure motifs of RNA and tertiary structural folds of RBPs bring us a step closer to a 

complete picture. 

In terms of protein structure prediction, one of the greatest challenges still 

remaining is accurate prediction of domain boundaries based on protein sequence. 

Segmenting a protein into domains is the first step of many protein structure prediction 

methods, and is particularly crucial (and particularly difficult) when there is little 

sequence similarity between the query and any structurally solved protein. Improper 

domain segmentation was one of the major sources of low-confidence predictions in our 

classification of the human proteome (Chapter 3). Improvements in this area will be key 

for higher quality predictions downstream. 

 

Conclusion 

Macromolecules can only be fully understood if they are considered in the context 

of both their sequence and structural characteristics. In this thesis, I have demonstrated 

several ways that computational structure analysis can lead to new insights and make 
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testable predictions, and more generally help make sense of the huge amount of sequence 

data that is now commonplace in genomics experiments. There are still many 

improvements that can be made, and experimental follow up will often be needed to 

verify predictions. Nonetheless, there is little doubt that structure analysis tools that can 

handle large-scale datasets will be instrumental to the field of genomics as it continues to 

mature.
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