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We describe a multispeckle dynamic light scattering technique capable of resolving the motion of
scattering sites in cases that this motion changes systematically with time. The method is based on
the visibility of the speckle pattern formed by the scattered light as detected by a single exposure of
a digital camera. Whereas previous multispeckle methods rely on correlations between images, here
the connection with scattering site dynamics is made more simply in terms of the variance of
intensity among the pixels of the camera for the specified exposure duration. The essence is that the
speckle pattern is more visible, i.e., the variance of detected intensity levels is greater, when the
dynamics of the scattering site motion is slow compared to the exposure time of the camera. The
theory for analyzing the moments of the spatial intensity distribution in terms of the electric-field
autocorrelation is presented. It is tested for two well-understood samples, a colloidal suspension of
Brownian particles and a coarsening foam, where the dynamics can be treated as stationary and
hence can be benchmarked by traditional methods. However, our speckle-visibility method is
particularly appropriate for samples in which the dynamics vary with time, either slowly or rapidly,
limited only by the exposure time fidelity of the camera. Potential applications range from
soft-glassy materials, to granular avalanches, to flowmetry of living tissue. © 2005 American
Institute of Physics. �DOI: 10.1063/1.2037987�

I. INTRODUCTION

Dynamic light scattering �DLS� is a powerful tool for
probing motion within samples of physical, chemical, bio-
logical, and medical interest.1–7 The physical basis is that the
frequency spectrum of the scattered light is Doppler broad-
ened according to the velocities of all the scattering sites.
The shape of the spectrum reveals the nature of the motion,
for example, whether it is ballistic or diffusive; the charac-
teristic width of the spectrum reveals the rate of the motion,
for example, the root-mean-squared speed or the diffusion
coefficient. If the sample is nearly transparent, so that inci-
dent photons scatter at most once, then the spectrum can be
resolved versus scattering angle in order to probe collective
motion at different length scales. This is the single-scattering
regime. By contrast, if the sample is opaque so that incident
photons scatter off many sites before exiting the sample, then
any wavevector dependence is lost. The art of DLS in this
regime is known as diffusing-wave spectroscopy.8–11

Conceptually, the most straightforward approach to DLS
is to measure the frequency spectrum directly, for example
using a Fabry–Perot interferometer with a very narrow band
pass. However, it is more common in practice to deduce the
spectrum by an interference technique, in which the scattered

light is collected over an area comparable to one speckle spot
�spatial-coherence length�. The motion of the scattering sites
causes corresponding changes in the speckle pattern, and
hence large fluctuations in the detected intensity. These fluc-
tuations are quantified by the temporal intensity autocorrela-
tion function, which is simply related to the frequency spec-
trum under certain conditions �below�. This is known as
intensity- or photon-correlation spectroscopy �PCS�. One ad-
vantage of PCS is that digital correlators are commercially
available that can compute the intensity autocorrelation over
many decades in delay time, for example, 10 ns to 100 s.
One disadvantage of this approach is that the temporal fidel-
ity is limited by the necessity of sampling over many corre-
lation times to build up statistical weight. This makes them a
poor choice for studying systems with dynamics changing on
time scales of seconds or faster. Interferometers are useful
for large frequency shifts, but do not sport an equally impres-
sive dynamic range. Given the breadth of applications of
DLS, it is perhaps not surprising that the essential equiva-
lence of information available from interferometric and
correlation-based approaches to DLS is not universally
recognized.12

In order to ensure simple connection between the inten-
sity autocorrelation and the frequency spectrum of the scat-
tered light, several conditions must be met: �a� There must be
many uncorrelated scattering sites or regions; �b� the extent
of the motion must be sufficiently great as to fully randomize
the speckle pattern; and �c� the scattering site dynamics must
not vary over the time scale of the measurement. The first
criterion holds if the sample and scattering volume are suf-
ficiently large; this does not represent a fundamental restric-
tion. The second criterion holds if the sample is fluid or if the
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scattering sites are bound only loosely to a fixed average
location. The third criterion holds if the sample is in thermal
equilibrium, or if the sample is in a stationary state in which
both the external energy input and the microscopic dynami-
cal response do not fluctuate. Thus, the conditions �a–c� for
conventional single-detector PCS to apply are not overly re-
strictive. It is possible to verify whether these conditions
hold through measurement of higher-order temporal intensity
correlations,13 which can be processed from the raw intensity
versus time data stream simultaneously with the second-
order intensity autocorrelation.

There are many systems where some of the above con-
ditions do not hold and conventional single-detector PCS
does not apply. The kinetics of phase separation, gelation,
and aggregation are examples of long-standing interest, in
which the dynamics progressively change with time.14 These
processes can be treated as stationary only if the evolution is
slow compared to the time scale over which the intensity
autocorrelation decays. The broad class of soft-glassy mate-
rials comprise another example where the dynamics change
with time.15 Furthermore, just as for the gelation problem,
the scattering sites can become more tightly bound with age,
so that after a certain point the speckle pattern no longer
fully randomizes. And lastly, dynamics in granular materials
usually cannot be studied with traditional PCS, for example,
because the input of energy is vibratory or because the re-
sponse is intermittent avalanche-like flows.16

Multispeckle DLS techniques have been introduced as a
useful remedy in such situations where traditional single-
detector PCS methods do not apply.17,18 The approach is to
compute the temporal autocorrelation function for each pixel
of a digital camera, and then to average together the results.
Since there are many pixels, and hence many speckles, it is
no longer a requirement that motion within the sample cause
the speckle pattern to fully randomize. And since the large
number of pixels can significantly reduce the time needed to
acquire good signal to noise, it is easier to study evolving
dynamics. However, it still remains a challenge to implement
multispeckle DLS. A prohibitive difficulty is that commercial
multispeckle devices do not exist. A limiting difficulty is
either that vast quantities of data must be stored for postpro-
cessing, or that real-time processing must be made suffi-
ciently fast. Further difficulties arise from the use of charge
coupled devices as light sensing elements. Hardware and
software advances continue to be reported in the technical
literature.19–26

In this article, we supply full details and demonstration
of a multispeckle DLS technique we dub speckle-variance
spectroscopy27 or speckle-visibility spectroscopy �SVS�.28

Our approach is to characterize motion within a sample in
terms of the visibility of the speckle pattern formed with
scattered light for a single exposure of a digital charge
coupled device �CCD� or complementary metal-oxide-
semiconductor �CMOS� camera. We begin by introducing
appropriate notation and the experimental apparatus in the
context of the more usual multispeckle DLS. Then, we de-
scribe the theoretical underpinnings of SVS, and give ex-
amples for common types of scattering site dynamics. Our
theory contradicts a widely cited prediction obtained in the

context of laser-speckle photography.29 Next, crucially, we
demonstrate the validity of our theory by experiments on
well-known samples. Finally, we discuss experimental con-
siderations for successful implementation of DLS with a
digital camera.

II. PHOTON-CORRELATION SPECTROSCOPIES

We begin with prerequisite theoretical and experimental
background materials necessary for the next sections on
SVS.

A. Theory

In all DLS experiments, light from a coherent source
enters a sample. Some portion scatters, and some fraction of
the scattered light reaches a photodetector. Ignoring constant
factors, the detector reports a signal proportional to the light
intensity, I�t�=E�t�E*�t�, where the electric field E�t� is a
superposition of many fields representing many photon tra-
jectories. The acquired intensity can be an analog signal, or it
can be a bitstream with each pulse representing a different
detected photon. Ultimately, the quantity of interest is either
the power spectrum �E����2 or its Fourier transform: The
temporal electric-field autocorrelation function. We denote
the absolute normalized temporal electric field autocorrela-
tion as

g1��� � ��E�t�E*�t + ����/�E�t�E*�t�� , �1�

where � is the delay time. In traditional PCS, the average
�¯� is taken over a range of times tstart� t� tstop. By defini-
tion, g1��� decays from one to zero as � ranges from zero to
infinity. The characteristic time scale for the decay is the
reciprocal of the characteristic width of the power spectrum.
If the power spectrum is symmetric and centered around �o,
then the normalized �but not absolute� electric-field autocor-
relation function is g1���ei�o�. For example, a Lorentzian
power spectrum �E����2�1/ �Dq2+ ��−�o�2� and an expo-
nential field autocorrelation function g1���=exp�−Dq2�� cor-
respond to light of incident frequency �o scattered by wave
vector q from diffusing particles; the diffusion coefficient D
could be extracted from measurement of either the power
spectrum or the field autocorrelation.

In single-detector PCS, the electric-field autocorrelation
function is deduced from measurement of the normalized
intensity autocorrelation function,

g2��� � �I�t�I�t + ���/�I�2. �2�

This is straightforward only if the three conditions discussed
in the Introduction are all met. If �a� the electric field is the
superposition of many independent scattered fields and if �b�
the field autocorrelation decays to zero over a time scale
much shorter than the duration of the measurement, then the
Central Limit Theorem implies that E�t� is a Gaussian-
distributed complex variable with zero mean. Intuitively, the
total field E�t�=	Ei�t� at some instant of time, t, may be
evaluated graphically by phasor addition. If there are enough
independent scattering regions, then each term in the sum
constitutes one step in a random walk in the complex plane.
Many such random walks will be sampled, and hence the
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distribution of values of E�t� over the course of the measure-
ment will be Gaussian, if g1��� fully decays to zero over a
shorter time scale than the measurement duration. If the field
distribution is Gaussian, then temporal correlations of the
form �E�t�E*�t�E�t+�1�E*�t+�1�E�t+�2�E*�t+�2�¯ � can be
expressed as a sum of products of field autocorrelations. For
example, the normalized intensity autocorrelation is a four-
order field correlation that reduces to

g2��� = 1 + ��g1����2, �3�

where ��1 is a number determined by the ratio of detector
size to speckle spot size. This is widely known as the Siegert
relation. A detailed derivation of the Siegert relation, the
value of �, and analogous results for third- and fourth-order
temporal intensity correlations, are given in Ref. 13. To
briefly summarize, the method of PCS is to measure g2���
and to extract g1��� using Eq. �3�. Subsequent connection is
then to be made between g1��� and scattering site dynamics,
depending on details of the illumination and detection geom-
etry and on the optical properties of the sample.

In multispeckle PCS methods, the intensity autocorrela-
tion is measured at each pixel of a digital camera and the
results are averaged together.17–24,26 By virtue of the large
number of pixels, the combined statistics of all the detected
fields is now Gaussian even if the field autocorrelation never
decays to zero. A similar advantage can be achieved with a
single detector by slowly translating or rotating the
sample,30,31 or by passing the light through a second
sample.32 In effect, statistics are sampled by an ensemble
average over many speckles rather than by a time average for
a single speckle. Thus, the Siegert relation, Eq. �3�, may be
invoked even more generally for multispeckle PCS than for
single-detector PCS.

As an aside, the violation of the Siegert relation in
single-detector PCS due to nonrandomization of the detected
electric field is sometimes said to be due to nonergodicity of
the sample. This is a misnomer and can lead to confusion.
The ergodicity of dynamics within the sample, and the er-
godicity of the field statistics for the detected light, are dis-
tinct issues that may or not be related.

B. Experiment

We now apply the above multispeckle PCS technique to
a suspension of diffusing Brownian particles. This serves as
a starting point from which to demonstrate SVS, since all
measurement and sample hardware carry over without
change.

The sample consists of 653 nm diameter polystyrene
spheres �Duke Scientific� suspended in water at a volume
fraction of 10%. It is poured into a glass beaker, diameter
6 cm, to a depth of 2.4 cm, then sealed. Light from a Coher-
ent Verdi V5 NdYVO4 laser, wavelength �=532 nm, is ex-
panded and directed almost normal to the bottom of the
sample beaker with a Gaussian spot size of a=1.25 cm. The
outpower of the laser is held fixed, and the illumination in-
tensity is reduced as needed by use of neutral density filters.
See the schematic diagram in Fig. 1. According to Mie scat-
tering theory for dilute independent spheres,33 the scattering
length specifying the exponential attenuation of a beam is

ls=24 �m, and the average cosine of the scattering angle is
g=0.90. Therefore, about ten scattering events are required
to randomize the photon propagation direction, and the trans-
port mean-free path is l*= ls / �1−g�
240 �m. Thus, our
sample has an opaque white appearance, and we operate in
the multiple scattering regime known as diffusing-wave
spectroscopy �DWS�.

In order to perform multispeckle DWS, a portion of the
backscattered light leaving the bottom of the sample is re-
flected by mirror into a Basler-160 digital line scan CCD
camera. This device has 1024 pixels, each 10 �m	10 �m
and 8-bits deep, and can capture images at a maximum rate
of 58 kHz. Except for the mirror and a 532 nm line filter,
there are no other optics. The sample-to-camera distance is
adjusted to about d=30 cm. This gives a speckle size of s

d� /a=13 �m, and a ratio of pixel to speckle areas of
Apixel /Aspeckle
0.6. The camera is interfaced to a personal
computer equipped with a National Instruments PCI-1422
card, and is programmed using LABVIEW.

As a benchmark reference to compare with our SVS
technique, our operating procedure is to record the intensity
levels in all 1024 pixels for a total of 2 s in increments of
20 �s; the entire data set thus consists of 102.4 million
8-bit values. The laser intensity is adjusted so that the aver-
age gray-scale value is 40. When the laser is blocked, the
signal drops to a “dark count” gray-scale value of 3.5. The
first step in the analysis is to subtract the dark count and
divide by the average remaining signal, thus giving the nor-
malized intensity time trace I�t� / �I� for each pixel. A portion
of such a trace for one pixel is displayed in Fig. 2. As the
colloidal particles diffuse, the intensity level at a pixel indeed
fluctuate strongly; here, it is seen to vary between about 0.4
and 4 times the average.

The observed intensity fluctuations in Fig. 2 display
structures lasting over a range of time scales. As is done in
multispeckle PCS, this behavior may be quantified by the
normalized intensity autocorrelation, g2��� defined by Eq.
�2�, which we compute directly for each pixel and then av-
erage together. According to the Siegert relation, Eq. �3�, the
zero-time intercept is g2�0�=1+�. Extrapolating g2��� data
to �=0 gives �=0.34, which is consistent with the ratio of
pixel to speckle areas. Invoking the Siegert relation, we de-
duce the normalized field autocorrelation �g1����, and plot its
square in Fig. 2. Finding the value of � is often referred to as
the issue of normalization. Note that the square of g1��� is
simply the intensity autocorrelation displayed dimension-

FIG. 1. Experimental apparatus for performing both multispeckle DLS and
SVS on an opaque colloidal suspension. The orientation of the array of
pixels is horizontal, perpendicular to the plane of the drawing.
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lessly on a scale ranging from 1 to 0. Thus, the time scales of
structure in the intensity time trace can be compared directly
with features in the decay of �g1����2. Indeed the decay is
very fast initially, reflecting the fast fluctuations in I�t�. The
later-time decay is slower, reflecting the longer-lived fluctua-
tions evident in Fig. 2 as drift in a local average of the
intensity.

The above measurement of g1��� may be compared with
the predictions of DWS. In the backscattering geometry, with
equivalent plane-wave in/plane-wave out illumination and
detection, the theory of DWS �Ref. 10� predicts g1���

exp�−
�6� /�o�, where typically 1.5�
�2.5 and where
�o�1/ �Dk2� is the characteristic time for a particle to diffuse
a distance 1/k=� / �2�n� where n is the index of refraction.
For our sample, the predicted decay time is �o=6.1 ms. The
stretched-exponential form of g1��� reflects the broad length
distribution of possible photon paths that contribute to the
signal. It also reflects a subtle breakdown of diffusion and
continuum approximations for short path lengths.34,35 The
value of 
, but not the stretched-exponential form, is particu-
larly sensitive to the treatment of short paths and can thus be
affected by the polarization states, boundary reflectivities,
and propagation directions for the incoming and outgoing
photons.36–38 Taking the value 
=1.28, somewhat lower than
expectation, we obtain an excellent fit to the data as shown
by the dashed curve in Fig. 2. Thus we pronounce our
sample, apparatus, dataset, and multispeckle analysis meth-
ods as sound. For demonstration of SVS in a later section,
the value of 
 will not be important; we only need a sample
with known g1���.

III. SPECKLE-VISIBILITY SPECTROSCOPY

In this section we develop the theory of SVS. The un-
derlying principle of SVS is illustrated in Fig. 3, which dis-
plays intensity vs pixel number for four different exposure
times, T, of the camera. The shortest exposure in Fig. 3, T
=2	10−5 s, is shorter than the decay time of g1���; there-

fore, the speckle appears static and large intensity differences
are registered from pixel to pixel. For longer and longer ex-
posures, the visibility of this speckle pattern progressively
fades. This is because the intensity at each individual pixel
fluctuates during the exposure and is averaged over the ex-
posure time. In the limit of a very long exposure time in
comparison to the decay time, each pixel approaches the
same mean intensity value and there is no variation among
the pixels. Indeed, the longest exposure in Fig. 3, T=2
	10−2 s, is longer than the decay time of g1���; here, many
speckles are sampled at each pixel over the duration of the
exposure, and each pixel registers a value close to the aver-
age. The very essence of SVS is, thus, to quantify the vis-
ibility of the speckle pattern in terms of moments of the
distribution of intensities registered by all the pixels for a
given exposure duration, and to relate this to the absolute
normalized electric field autocorrelation function g1���. A
subsequent connection with scattering site dynamics can then
be made as per usual DLS practice in either single- or
multiple-scattering limits.

Before carrying out the theoretical aspects of this pro-
gram, we note that our method is not without precedent.
Perhaps the first is a calculation39 and experimental
verification40 of the distribution for the photocurrent as mea-
sured by one detector as a function of integration time. An-
other precedent is “laser-speckle photography,”29 in which
the blurring of speckle in a laser-illuminated scene is taken
as a signature of motion.6,7 The latter is now being applied to
cerebral blood flow, in particular.41–44 Part of our contribu-
tion here is to simplify and generalize the work of Refs. 39,
and to correct a mistake in the widely cited work of Ref. 29.

A. Variance

The variance of intensity across the pixels is a simple
way to quantify the visibility of the speckle pattern formed at
the imaging array. For a given exposure, each pixel reports a
signal that is proportional to the total number of photons it
receives. Thus, the signal at pixel i is proportional to the time
average of the intensity trace Ii�t�:

FIG. 2. An example of intensity vs time in one pixel �left� and the normal-
ized intensity autocorrelation function �g1����2= ��I�0�I���� / �I�2−1� /�
�right�, for light backscattered from an opaque colloidal suspension. The
intensity autocorrelation is directly computed from the full time trace, which
consists of 105 points in 20 �s time increments for each of the 1024 pixels
in the line scan CCD camera. The normalization factor �=0.34 was ob-
tained by extrapolating the unnormalized intensity autocorrelation to zero
delay time. The suspension consists of 653 nm diameter polystyrene spheres
in water, at a volume fraction of 10%. The theory of DWS predicts g1���
�exp�−
�6t / to� where to=1/Dk2=6.1 ms. The fit to this form �dashed
curve� gives 
=1.3.

FIG. 3. Intensity vs pixel number, i.e., the profile of the speckle pattern in
the plane of the CCD camera, for the same colloidal suspension and optical
configuration as in Fig. 1. The exposure durations T differ by successive
factors of 10, as labelled. Since the speckles change with time, as shown in
Fig. 2, their visibility is smaller for longer exposures. This is the essence of
SVS.

093110-4 Bandyopadhyay et al. Rev. Sci. Instrum. 76, 093110 �2005�



Si,T = 

0

T

Ii�t��dt�/T , �4�

where t=0 defines the beginning of the exposure and T is the
duration of the exposure. The data returned by the camera,
for a single exposure, consists of the set �Si,T� where the
index i ranges from 1 to the total number N of pixels. All
quantities of interest are to be computed from the N members
of this set. For example, the nth moment of the distribution of
pixel signals is

�In�T = 	
i=1

N

�Si,T�n/N , �5�

where the subscript T is a reminder that the result depends on
the exposure duration. Note that these moments represent an
ensemble average over pixels for a fixed time interval.

To compute the variance, we focus on the first two mo-
ments of the signal distribution. The first moment is simply
the average intensity, �I�=	i=1

N Si,T /N, which is independent
of the exposure duration. The second moment is the average
over pixels of the quantity

�Si,T�2 = 

0

T 

0

T

Ii�t��Ii�t��dt�dt�/T2. �6�

Since this is an ensemble average, the Siegert relation Eq. �3�
may be invoked: �Ii�t��Ii�t���= �I�2�1+��g1�t�− t���2�, giving
an intermediate result for the second moment as

�I2�T = �I�2

0

T 

0

T

�1 + ��g1�t� − t���2�dt�dt�/T2. �7�

The first term in the integral is one; the second term can be
reduced to a single integral by recognizing that g1�t� is usu-
ally an even function. We now define a normalized variance,
and finish the calculation:

V2�T� �
1

�
��I2�T/�I�2 − 1� ,

=

0

T 

0

T

�g1�t� − t���2dt�dt�/T2,

=

0

T

2�1 − t/T��g1�t��2dt/T . �8�

This is the fundamental equation of SVS. The top line is a
definition; it quantifies speckle visibility on a scale of 0–1 in
terms of the first two moments of the distribution of pixel
signal data, �Si,T�, returned for a given exposure of duration
T. The middle line is an intermediate step that holds even if
g1�t� is not even. The bottom line is where contact usually is
to be made between measurement and the underlying nor-
malized electric-field autocorrelation. Evidently the variance
is a weighted-average of �g1�t��2 over the exposure interval
0� t�T, with heavier weighting for shorter t. This weight-
ing reflects the distribution of possible time differences
within an exposure.

B. Higher-order moments

The distribution of pixel signals is typically skewed to-
ward higher values, as seen for example in Fig. 3; therefore,
it is not Gaussian and cannot be fully specified by just the
value of the variance. Hence, we repeat the calculation lead-
ing to the fundamental equation of SVS, Eq. �8�, but now for
higher-order moments. The results can be useful for diagnos-
ing problems with the experimental apparatus, for deducing
the normalization constant �, and for better testing trial
forms of g1�t� for unknown samples.

We define reduced moments of the pixel signal distribu-
tion as

vn�T� � �In�T/�I�n − 1. �9�

These are larger for shorter exposures, and vanish for long
exposures in the limit that the speckle is no longer visible.
While dimensionless, these moments are not normalized in
the sense that their values depend on the number of speckles
per pixel through �. Hence, we use a lower-case “vn�T�” for
reduced moments defined in Eq. �9�, to contrast with the
upper-case “V2�T�” for the normalized second moment de-
fined in Eq. �8�. Now the task is to compute an ensemble
average over pixels i for quantities of form

�

0

T dt1

T



0

T dt2

T
¯ 


0

T dtn

T
Ii�t1�Ii�t2� ¯ Ii�tn��

i

. �10�

Invoking third- and fourth-order Siegert relations,13 and as-
suming that g1�t� is even, we arrive at

v2�T� = 2�

0

T dt

T
�1 − t/T��g1�t��2,

v3�T� = 3v2�T� + 12�2

0

T dt1

T



t1

T dt2

T
�1 − t2/T�

	g1�t1�g1�t2�g1�t2 − t1� , �11�

v4�T� = 6v2�T� + O��2�

The reduced second moment is recognized as v2�T�
=�V2�T�. The third and fourth reduced moments, by con-
trast, contain terms that are not proportional to �; therefore,
their dependence on the number of speckles per pixel cannot
be normalized away by a simple division.

Note that for very short exposure times, the reduced mo-
ments approach

vn�0� = �1 + ���1 + 2�� ¯ �1 + �n − 1��� − 1, �12�

which is a well-known result describing the moments of
static speckle patterns.13,45 For long exposure times, the re-
duced moments vanish as
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v2�T� → 2�

0

�

�g1�t��2dt/T ,

v3�T� → 3v2�T� ,

v4�T� → 6v2�T� . �13�

No matter what the form of g1�t�, the final decay of the
moments goes as vn�T��1/T. This is a consequence of the
heavy weighting of g1�t� near t=0.

C. Examples and precedents

Here, we consider the intensity moments predicted by
the above formalism for several forms of g1��� of experimen-
tal interest. Normalized variance predictions for five special
cases are collected in Table I. The first three of these cases
are plotted vs exposure time in Fig. 4. Note that the decay of
V2�T� versus T is slower than that of g1��� versus �; further-
more, the long-time decay is always V2�T��1/T, as ex-
plained by Eq. �13�. This feature allows the characteristic
time scale for the decay of g1���, which is equivalent to the
characteristic broadening of the power spectrum, to be ex-
tracted even when it is a decade or more faster than the
bandwidth of the camera.

The only case for which we have analytically computed
both second and third moments of the pixel signal distribu-
tion is for a Lorentzian spectrum or, equivalently, for an
exponential field autocorrelation g1���=exp�−
��. This cor-
responds to single-scattering from a sample with diffusive
dynamics and to DWS in backscattering from a sample with
random ballistic dynamics. For the former, the linewidth or
decay rate is 
=Dq2, where D is the diffusion coefficient and
q is the magnitude of the scattering vector; for the latter, the
decay rate is 

4��v /� where �v is the root-mean squared
average random speed and � is the wavelength of light in the
medium. For this example, the reduced second and third mo-
ments are

v2�T� = �
e−2x − 1 + 2x

2x2 ,

�14�

v3�T� = 3v2�T� + 6�2 �1 + x�e−2x − 1 + x

2x3 ,

where x=
T is the product of decay rate and exposure time,
as per the notation in Table I.

The normalized variance for the special case of a Lorent-
zian spectrum, given in Eq. �14�, appeared nearly thirty years
ago as Eq. �50� of Ref. 39. It was subsequently tested experi-
mentally in Ref. 40. This supports our theory of SVS, which
seems both simpler and more general than that of Ref. 39.
Our approach applies for any form of g1���, not just for a
Lorentzian spectrum, and it also accounts for any number of
speckles per pixel. To our knowledge, Eq. �11� has not pre-
viously appeared in the literature.

The special case of a Lorentzian spectrum was also con-
sidered in Ref. 29, which is widely cited as a founding paper
in the field of laser-speckle flowmetry. There the visibility of
a speckle pattern is quantified by “speckle contrast:”

K�T� � �T/�I� , �15�

where �T is the standard deviation of the set of intensities as
measured over an exposure of duration T. This quantity
equals the square root of our reduced variance, K�T�
=�v2�T�. The quoted result for a Lorentzian spectrum, Eq.
�9� of Ref. 29 and Eq. �13� of a more recent review,7 would
give v2�T� as the following unweighted average of �g1����2

over the exposure interval:



0

T

�g1�t��2dt/T =
1 − e−2x

2x
, �16�

where x=
T as before. This conflicts with Eq. �14� here, and
with Eq. �50� of Ref. 39, due to absence of the factors � and
2�1− t /T� in Eq. �8�. The latter mistake of Ref. 29 is that the
variance is taken as a single integral of �g1����2 over the
exposure window 0���T, rather than as a double integral
where �= t1− t2 ranges over possible time differences within
the window. The former mistake is that the value of �, in
effect, is taken as one; this is correct only if both the pixel
size is infinitesimal compared to speckle size and if just one
polarization mode is detected. A sampling of papers that in-
voke Eq. �9� of Ref. 29 simultaneously match pixel size to
speckle size but neglect an unknown visibility reduction that

FIG. 4. Comparison of �g1����2 and V2�T�, for three types of scattering site
dynamics, as labelled. According to prediction, Eq. �8�, the latter is a
weighted average of the former.

TABLE I. Normalized variance predictions, computed from Eq. �8�, for
various forms of the normalized electric-field autocorrelation function,
g1���. The first example, g1���=exp�−
��, corresponds to single scattering
from sites with diffusive dynamics and to DWS in backscattering for a
sample with ballistic dynamics. The second example, g1���=exp�−�
��,
corresponds to DWS in backscattering for a sample with diffusive dynamics.
The third example, g1���=exp�−�
��2�, corresponds to single-scattering for
a sample with ballistic dynamics. These three cases are plotted versus ex-
posure time in Fig. 4. The fourth and fifth examples correspond to DWS in
transmission for samples with diffuse and ballistic dynamics, respectively.
These forms are too intractable to compute for general exposure times.

g1�x=
�� V2�x=
T�

exp�−x� �e−2x−1+2x� / �2x2�
exp�−�x� ��3+6�x+4x�e−2�x−3+2x� / �2x2�
exp�−x2� �e−2x2

−1+�2�x erf��2x�� / �2x2�
�6x / sinh �6x ��3� /x
1.202/x, x�1

�6x2 / sinh �6x2 ��4 /54/x
1.343/x, x�1
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results. The combined error introduced by the incorrect
weighting and the neglect of � depend on details of the ex-
periment, but can easily exceed a factor of 10. Hence, these
issues may well contribute to the inability in the field of
laser-speckle flowmetry to make reproducible quantitative
connection between speckle visibility and blood flow speed.

IV. DEMONSTRATION OF SPECKLE-VISIBILITY
SPECTROSCOPY

In this section, we both demonstrate the SVS technique
and compare the experimental results with theoretical predic-
tions of the previous section.

A. Colloidal particles

Our first sample is the same opaque colloidal suspen-
sion, probed by diffusely backscattered light with the same
optical setup, as previously in Figs. 2 and 3. For this sample,
the speckles fluctuate due to diffusion of the particles. Now
we measure the second, third, and fourth moments of the
distribution of pixel signals, Eq. �5�, and reduce the results to
dimensionless form as per Eq. �9�. This is done for many
different exposure times T, with results shown versus T in
Fig. 5. These reduced moments appear to approach a con-
stant for short exposures, and to decay according to Eq. �13�
as 1/T for long exposures.

To compare with expectation, we first note that v2�T� is
a weighted average of ��g1����2 over the exposure interval,
Eq. �11�. Therefore, we also include data for the latter as
presented previously in Fig. 2. Recall that the functional
form for the field autocorrelation is g1���=exp�−�
�� with

=6
2 /�o=1623 s−1. Evidently v2�T� and ��g1����2 extrapo-
late to the same value at short times, �=0.34. But while
g1��� decays more rapidly, v2�T� decays more slowly in ac-
cord with the heavy short-time weighting in the average
across the exposure interval, Eq. �11�. This qualitative agree-
ment with expectation also can be made quantitative. Indeed,
the two solid curves in Fig. 5 are generated by numerical
integration of g1��� data according to our SVS predictions of
Eq. �11�. As a check, the numerical prediction for v2�T�
matches the analytic prediction given in Table I. The predic-

tions for both v2�T� and v3�T� match the reduced moment
data very well, with no adjustable parameters.

Finally, we compare with expectation based on the mis-
taken formalism of Ref. 29. Introducing the correct factor of
� and taking the field autocorrelation as g1���=exp�−�
��,
the prediction for v2�T� would be



0

T

��g1�t��2dt/T = �
1 − �1 + 2�x�exp�− 2�x�

2x
, �17�

where x=
T. This is plotted as a dashed curve for 

=1623 s−1 and �=0.34, as known from the intensity autocor-
relation data. Evidently, the formalism of Ref. 29 does not
correctly predict speckle variance.

B. Foam

As another example, we collect SVS data for light dif-
fusely transmitted through an aqueous foam of thickness L
=1 cm �Gillette Foamy Regular�. The optical setup is similar
to the colloid experiments, except that the camera is moved
opposite to the side upon which the laser light is incident.
For this experiment, the speckles fluctuate due to sudden
avalanche-like rearrangements of bubbles within small local-
ized subvolumes.46 Such dynamics are driven by the coars-
ening process, whereby small bubbles shrink and large
bubbles grow in order to lower the total interfacial surface
energy.47 Since the sample is far from equilibrium, and the
dynamics evolve with time, we restrict data collection to a
narrow time window centered at 100 min after production.
Here, the average bubble diameter is D
60 �m, the
transport-mean-free path is �*
3.5D, and the average time
between rearrangements at each scattering site is �o
20 s.47

The volume of foam sampled by the collected photons is
sufficiently great that the speckle pattern is in continuous
motion. The field correlation function takes the same form
as for DWS in transmission from a sample of diffusing
particles, g1���=�6
� / sinh �6
�. The first cumulant or
initial decay rate is expected to be 
= �L /�*�2 /�o


�1 cm/0.02 cm�2 / �20 s�=125 s−1. This understanding is
supported by both single-detector46–49 and multispeckle50,51

DLS experiments.
Our results for the second- and third-reduced moments

of the distribution of pixel signals are shown in Fig. 6. For

FIG. 5. Reduced moments of the speckle pattern vs the exposure duration T,
for light diffusely backscattering from an opaque colloidal suspension. In-
tensity autocorrelation data and fit from Fig. 2 are included for comparison.
The solid curves for n= �2,3� are generated numerically from the g1��� data
in Fig. 2 according to our theory of SVS, Eq. �11�. The dotted lines represent
the expected long-exposure behavior, vn�T��1/T of Eq. �13�. The dashed
curve is Eq. �17�, �the expectation for v2�T� based on the formalism of
Ref. 29�.

FIG. 6. Reduced moments of the speckle pattern vs the exposure duration,
T, for light diffusely transmitted through an opaque aqueous foam of thick-
ness L=1 cm. The solid curves represent numerical integration of the known
field autocorrelation function, g1���=�6
� / sinh �6
�, according to the pre-
scription of Eq. �11�. The best fit is attained for �=0.19 and 
=121 s−1.
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short exposures both v2�T� and v3�T� approach a constant,
from which we extrapolate to zero to find �=0.19. For
longer exposures, the moments become smaller as the
speckle pattern fluctuates more extensively during the expo-
sure. To model this, we numerically integrate the field corre-
lation function g1���=�6
� / sinh �6
�, according to the
SVS prescription of Eq. �11�. Taking the first cumulant as

=121 s−1, close to expectation, we obtain a satisfactory fit
to both v2�T� and v3�T� data as shown.

V. EXPERIMENTAL CONSIDERATIONS

This final section provides guidance on the optimal de-
sign of an SVS experiment. Many of the issues and the rec-
ommendations, are identical for other types of DLS experi-
ment. Throughout, we shall assume that statistics are not
limited by lack of photons. In this case, it is advantageous to
double the laser power and to place a polarizer in front of the
detector. While this does not change the average detected
intensity, it does improve the contrast in intensity levels at
the plane of the detector, and hence the signal to noise, since
each polarization mode forms an independent speckle pat-
tern. Therefore, throughout, we shall assume that polarized
detection is employed.

A. Optics

First, we consider the geometry of illumination and de-
tection. Let a be the size of the region from which emerging
light is collected. For single-scattering experiments, this
could be controlled by the diameter of the incident beam or
the length it travels within the sample. For multiple-
scattering experiments it could be controlled by the beam
diameter or the sample thickness. The value of a can also be
affected by use of lenses or apertures between the sample
and the detector. This is an important parameter because the
angular size of the speckle, in the far field, is approximately
� /a just as in a diffraction experiment. Thus, if the detector
is located a distance d away from the source of the collected
light, then the speckle size or spatial correlation length is
approximately s=d� /a.

Imagining that � /a is fixed, and that the light intensity
can be adjusted at will, we now seek to optimize the distance
d at which to place the detector. If d is too small, then the
number Ns of speckles at each pixel will be large and the
intercept, or maximum contrast, �=v2�0�= �I2� / �I�2−1, will
be small. The best case in terms of contrast is �→1 �or �
→1/2 for unpolarized detection�. In the opposite extreme, if
d is too large then each speckle will span many pixels and
the statistics of ensemble averaging will be poor. Overall, the
figure of merit to be maximized is thus ��Ns, the product of
maximum contrast times the spread in number of speckles
per pixel.

To find the optimal detector location by maximizing the
figure of merit requires knowing � as a function of Ns. We do
this by Monte Carlo simulation, calculating the second inten-
sity moment across a specified area for speckle patterns gen-
erated at random with the correct statistical properties. Re-
sults for �, as well as for the figure of merit ��Ns, are
plotted versus Ns in Fig. 7. As expected, �→1 for small Ns

and �→1/Ns for large Ns. The figure of merit achieves a
maximum where the speckle size nearly matches the pixel
size, Ns=1. As Fig. 7 demonstrates, an experiment is within
about 10% of optimum if the intercept lies within the range
0.3���0.7 �or 0.15���0.35 for unpolarized detection�.
Thus, a good strategy is to adjust the detector location until
this criterion is met, keeping the illumination optics fixed. It
is well known that pixel and speckle sizes should be
matched, but to our knowledge specific guidelines in terms
of the measurable intercept have not been published.

B. Light intensity

Now, we consider the optimal average intensity level, as
controlled by choice of laser power. To beat photon-counting
number fluctuations and dark-count subtraction error, this
power should be as great as possible. However, high power
can result in the clipping of a signal for bright speckles that
exceed the maximum gray-scale level of the detector. This
effect introduces an error whereby the measured intensity
moments are shifted systematically to lower values. In the
opposite extreme, for low laser power, the detected intensity
levels are binned coarsely over too few gray-scale levels.
This effect introduces an error whereby the moments are
shifted systematically to higher values. Two other effects can
introduce systematic error at low laser power. One source is
dark counts. For example, the pixels of our CCD camera
report fluctuating gray-scale values of either 3 or 4, with a
time average of 3.5, when there is no illumination. The other
source of error is that the gray-scale levels are reported at the
lower edge of the bin, i.e., 0–255 for an 8-bit camera like
ours. For example, an actual signal level lying in the range
5�S�6 is reported as a gray-scale level of 5.

To investigate these effects, we again turn to Monte
Carlo simulation. At first, we restrict attention to an 8-bit
detector with a pixel size of three speckles. This gives �

0.3, and hence corresponds well with our colloid experi-
ments. In Fig. 8, we display results for the systematic error in
the first four moments as a function of average intensity
level. The top plot is for an ideal detector, with zero dark
counts, with signal levels taken at the lower edge of the bins,
�0,1,2,…,255�. Higher intensity levels are “clipped” to a
value of 255. The fraction of pixels that must be clipped is

FIG. 7. The intercept or maximum speckle contrast, �=v2�0�= �I2� / �I�2−1,
and the figure of merit ��Ns to be maximized in design of experiment, as a
function of the number Ns of speckles per pixel. An experiment with polar-
ized detection is within about 10% of optimal if the intercept lies in the
range 0.3���0.7.
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plotted on the right-hand axis. At higher average intensity
levels, where clipping occurs, the intensity moments fall be-
low their correct values. At lower average intensity levels,
where digitization issues occur, the intensity moments rise
above their correct values. The middle plot shows that the
latter can be mitigated to a large extent by taking the signal
level at the center of the bin. In other words, intensity mo-
ments are much more accurate if an offset of 1 /2 is added to
each reported signal, so that possible levels are now
�0.5,1.5,2.5,…,255.5�. The bottom plot shows the effect of
dark counts, as simulated by randomly adding 3 or 4 to the
analog signal. This choice mimics the conditions of our col-
loid experiments. To mitigate both dark counts and lower-
edge binning effect, we now subtract 3.5 from each pixel
value. Effectively, this introduces a ±1 statistical error in
pixel values, which broadens the distribution and causes
higher than expected moments, as seen by a comparison of
Figs. 8�b� and 8�c�. Under the operating conditions of our
colloid experiment, �I�=40, we use Fig. 8�c� to estimate that
the systematic error in our SVS data due to the combined
effects of clipping, digitization, and dark-count effects being
less than 0.25%.

We now repeat the simulations for different numbers of
speckles per pixel, assuming an 8-bit camera with zero dark
counts. Plots of error versus average gray-scale level are
used to identify a safe operating range, where the error in the
variance is less than 0.1%. Recommended gray-scale levels
are shown as a function of intercept, �, in Fig. 9. Once an
optimal value of � is achieved, for example by adjusting the

detector location per the previous subsection, the laser power
should be adjusted according to this plot. Photon-counting
and dark-count errors can be minimized by operating at the
upper end of the safe range.

C. Normalization factor, �

The perceived contrast of the intensity levels in a
speckle pattern is reduced progressively as the pixel size in-
creases relative to speckle size. To eliminate this effect, so
that the remaining speckle contrast can serve as a quantita-
tive probe of scattering site motion during the exposure win-
dow, the intercept ��v2�0�=limT→0��I2�T / �I�2−1� must be
accurately determined. One approach, employed in our col-
loid and foam experiments above, is to collect data for many
exposure times and to extrapolate the variance results to T
=0. This is satisfactory only if the dynamics are both station-
ary and sufficiently slow compared to the fastest speed of the
camera. Obviously, another approach is needed for systems
with fluctuating dynamics, where each individual exposure is
to be analyzed in terms of scattering site motion at that par-
ticular moment in time. This was the case for our first re-
ported application of SVS, where we probed grain motion as
a function of phase in a vibratory oscillation cycle.28 There,
we had the luxury of being able to turn off the shaking and to
measure the contrast of the static speckle pattern under ab-
solutely identical illumination and detection conditions.

Here, we introduce an alternative method, whereby the
value of � can be eliminated from consideration altogether.
The idea is to analyze not just one exposure, but rather some
number m of successive exposures all of duration T. The first
step is to find the variance for each of the exposures, and to
average the results together, giving v2�T�. The second step is
to add together the m exposures pixel by pixel, and to com-
pute the variance for the resulting “synthetic exposure” of
duration mT, giving v2�mT�. These two variances depend on
the value of �, but their ratio does not:

FIG. 8. Simulated accuracy of SVS signals, due to errors introduced by an
8-bit digital camera, as a function of average gray-scale level. For high
average intensities, the brightest pixels are clipped to a gray-scale level of
255; the fraction of pixels that must be clipped is shown on the right-hand
axis. The top plot shows results for moments computed directly from the
returned grayscale levels �0,1,2,…,255�. The middle shows how the accu-
racy is improved dramatically if pixel values are offset by +1/2, which
corresponds to the center of the gray-scale bin. The bottom plot differs from
the middle plot by inclusion of random dark counts, which are accounted for
by subtraction. Note that the error scales in �b� and �c� are ten times smaller
than the scale in �a�.

FIG. 9. Recommended average intensity levels for an 8-bit digital camera,
as a function of the intercept �=v2�0�; the corresponding pixel area is la-
belled in units of average speckle area. If the average intensity is too low,
then error occurs due to digitizing the intensity crudely into a small number
of bins. If the average intensity is too high, then error occurs due to clipping
of the high-intensity tail of the distribution. The vertical bars indicate the
range over which these effects cause less than a 0.1% error in the variance.
For n-bit cameras, the lower limit does not change but the upper limit scales
with the number of grayscale levels.
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v2�mT�
v2�T�

=



0

mT

�1 − t/�mT���g1�t��2dt/m



0

T

�1 − t/T��g1�t��2dt

. �18�

The left-hand size is thus measured, and contact with scat-
tering site motion is made by calculation of the right-hand
side for the field autocorrelation of interest. The predicted
forms in Table I can be used directly. For short exposures or
slow dynamics, the variance ratios in Eq. �18� approach 1.
For long exposures or fast dynamics, the variance ratios in
Eq. �18� approach 1/m. As a specific example, the variance
ratio for the case of a Lorentzian spectrum, g1���=exp
�−
��, takes the form

v2�mT�
v2�T�

=
e−2mx − 1 + 2mx

�e−2x − 1 + 2x�m2 , �19�



1 +

12 + 2m + 2m2

15�1 + m�
x +

3 − 2m + 3m2

15�1 + m�
x2

1 +
2 + 2m + 12m2

15�1 + m�
x +

3 − 2m + 3m2

15�1 + m�
mx2

,

�20�

where x=
T as before. The second line is a rational approxi-
mation that is correct to O�x3� and approaches 1/m for long
exposures. It can be inverted by solution of a quadratic equa-
tion. An additional advantage to this synthetic exposure
method is that drift in laser power or detector gain, and CCD
or CMOS noise that is correlated over successive exposures,
are all automatically cancelled.

This synthetic exposure variance ratio method is now
illustrated for the same coarsening foam as in Fig. 6. Here,
the foam is 6 h old, and we employ an optical geometry
whereby photons are both introduced and collected through
the same 1 mm diameter aperture. This reduces the volume

of foam sampled by the detected photons, and ensures that
only one rearrangement event is probed at a given time. Tra-
ditional DLS methods do not apply in this regime. An ex-
ample rearrangement event is captured by SVS in Fig. 10.
While the bubbles remain in a fixed location, the speckle is
nearly static and the variance ratios are nearly 1. While the
bubbles move, the speckle fluctuates and the variance ratios
drop below 1. According to the theory of DWS, the spectrum
is Lorentzian with linewidth 

4��v /�, where �v is the
root-mean-squared ballistic speed of the rearranging bubbles.
Analyzing the variance ratio data using Eq. �20� gives nearly
identical linewidths for four different synthetic exposures,
m= �2,4 ,8 ,16�, as shown in the bottom plot of Fig. 10. This
good agreement further supports our theoretical and experi-
mental methods of SVS. It also demonstrates how rapidly
varying dynamics may now be measured.
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