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ABSTRACT

NEURAL CORRELATES OF ADAPTIVE LEARNING IN THE CINGULATE CORTEX
Yin Li

Joshua I. Gold

Learning from experience is critical for adaptive decision-making. When the world
is unpredictable, the learning process itself must be adaptive. Outcomes that are
attributed to a fundamental change in the environment should have a large impact
on behavioral adjustment, whereas outcomes that are attributed to noisy, but
expected, fluctuations in an otherwise stable environment should be largely ignored.
There is growing interest in understanding the neural mechanisms of adaptive
learning. However, studies to date have primarily used functional magnetic
resonance imaging, which has limited temporal and spatial resolution. Relatively
little is therefore known about how the brain implements adaptive learning at the
level of individual neurons. Here, [ advance the thesis that two reciprocally
connected regions of the cingulate cortex—the anterior and the posterior cingulate
cortex—contribute to adaptive learning by encoding environmental context and by
encoding outcomes in a context-dependent manner. I support this thesis with
recordings from individual neurons in the ACC and the PCC in monkeys performing

an adaptive learning task.
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CHAPTER 1: INTRODUCTION

To make predictions about the future, we need to learn from our past. In an
uncertain world, however, individual experiences are only partially predictive about
future outcomes. A single cold winter does not dispel the notion of global warming.
A single poor quarterly earnings report does not mean long-term decline in a
company. And a single failed experiment does not discredit a graduate student's
thesis. In each of these examples, expected noisy fluctuations in outcomes limit our
interpretation of single experiences, and temper how much we should learn from
them.

Expectations about statistical regularities in our environment are critical for
appropriately interpreting experiences to adjust our beliefs and behaviors. This
form of context-dependent process is known as adaptive learning. In this
introduction, I review conceptual considerations regarding learning in probabilistic,
dynamic environments, and why adaptive learning is required. I then turn to two
areas in the cingulate cortex that may play a role in adaptive learning, with a focus
on neuroanatomic and neurophysiologic findings that may have bearings on

adaptive learning.



Learning in dynamic environments

To formalize the notion of "the extent of learning," let's first turn to
reinforcement learning (RL) theory, which was independently developed in
machine learning and animal psychology literature (Sutton and Barto, 1998).
According to the Rescorla-Wagner model of reinforcement learning, the expectation
at time t+1 is given by updating the pre-existing expectation at time ¢ (V) according
to the difference between the actual outcome (R;) and the pre-existing expectation
(V):

Vis1 = Ve+ ae(Re - Vo) (1)
where the difference R; - V1 is referred to as the prediction error (PE) and the
constant of proportionality a:is referred to as the learning rate. In classic learning
experiments, R is usually a reward outcome and V is the expected reward (also
known as the value) of a particular action or stimulus. However, the same
framework can also be applied to more abstract problems, such as inferring the
mean of a probability distribution (u) that gives rise to observable outcomes (R)
(Nassar et al., 2010).

In this framework, the learning rate serves to determine the relative
weighting (or influence) of the new outcome versus past experiences (aggregated in
terms of the pre-existing expectation). When the learning rate is 1, all of the weight
is placed on the most recent outcome (i.e., Vi+1 = R¢), whereas when the learning rate

is 0, all of the weight is placed on the pre-existing expectation and no learning takes



place (i.e., Vi+1 = Vi). For a constant learning rate between 0 and 1, the update
equation performs a weighted sum of all previous outcomes, with the largest weight
for the most recent outcome.

In order to ensure that V converges to the true reward rate rather than
continuing to fluctuate in response to new outcomes even after the average reward
rate has been learned, it is common in the machine learning literature to set the
learning rate to the inverse of the number of outcomes that have been observed
(Sutton & Barto, 1998). This procedure in essence takes an average of all the
outcomes in an environment. As more and more data is accumulated, new
information has decreasing influence on the expected reward rate of the
environment.

In the real world, however, we often don't know when the environment has
changed (and thus how many outcomes to average over). One solution for this
problem is suggested by the Pearce-Hall model of learning, in which the learning
rate itself depends on the absolute value of the prediction error (Pearce and Bouton,
2001). Such a model deals better with a dynamic environment because more
unexpected or "surprising” outcomes lead to a higher learning rate, allowing the
learner to also effectively discard past outcomes that are likely to be no longer
relevant. In other words, the Pearce-Hall model uses the magnitude of the
prediction error as a built in change-point detector.

A limitation of the Pearce-Hall model is that its conception of "surprise"” fails

to take into account the statistics of the environment. Consider, for example, a



monkey keeping track of how rewarding a fruit tree is. Finding no fruit when the
typical yield is consistently 5 pieces of fruit is a lot more surprising than if the
typical yield varies between 0 and 10 pieces of fruit, even if the average yield is 5
pieces of fruit both situations. How surprising an outcome is should thus depend on
not just the mean of the reward distribution, but also its variance, what is referred
to as "noise." It's the signal-to-noise ratio of a prediction error that matters for
detecting environmental changes, not just the absolute value.

Another aspect of the environment that affects the interpretation of an
outcome is the "volatility" of the environment. In a more volatile environment,
where changes happen frequently, an unexpected outcome is more likely to result
from a true change in the environment than if the environment were generally
stable. For the foraging example, if a monkey knows that trees at a particular
foraging site have a short life span, then finding 0 pieces of fruit should lead him to
abandon that tree. On the other hand, if trees were long-lived, then he should be
more persistent in returning to a tree that had yielded abundant fruit in the past.
Noise and volatility thus play opposite roles in determining how much an animal
should learn from the same prediction error: higher noise should suppress learning

from an outcome, whereas higher volatility should enhance it.

These notions of noise and volatility can be formalized with a Bayesian
framework that considers learning as a form of statistical inference. Estimating the

average reward rate is an inference problem in which the underlying state of the



environment (u or mean reward rate) is inferred from a noisy sequence of outcomes
(R) that provide evidence about the current state (Yu and Dayan, 2004; Courville et
al., 2006; Adams and MacKay, 2007; Behrens et al., 2007; Fearnhead and Liu, 2007;
Nassar et al., 2010, 2012; Wilson et al., 2013). In this framework, the pre-existing
expectation V; from Eq. 1 can be thought of as a prior with distribution P(u), the
outcome R; as the evidence with likelihood distribution P(R|u), and the updated
expectation V.1 as the posterior P(u |R). "Noise" is formalized as a type of
uncertainty about the outcome, related to the width of the likelihood distribution.
"Volatility" is formalized as a type of uncertainty about the prior, related to an
overall "offset" that affects the likelihood that on average the environment could be
in any other state. In reinforcement learning, the learning rate arbitrates between
the relative influence of new outcomes and pre-existing expectations. In Bayesian
learning, this arbitration occurs naturally as a function of the relative uncertainties
for the prior versus the likelihood, by way of Bayes theorem:

P(u |R) o< P(u) P(R|u). (2)
When outcomes are noisy (wide likelihood), more weight is placed on the prior, and
less learning occurs. When the average volatility is high, the prior is more uncertain,
and more weight is placed on the outcomes, increasing learning. Moreover, recent
changes in the environment also increase learning, since changes increase the
uncertainty of a learner in its estimate of underlying environmental state (leading to

wider priors). The Bayesian framework thus provides a principled means of



interpreting unexpected outcomes in a dynamic environment, and thus a normative
account of how to adjust the learning rate.

Various names have been used to partition these types of uncertainties in the
priors and likelihoods. In an influential review, Yu & Dayan (2005) coined the
phrases "expected"” and "unexpected uncertainties." Expected uncertainty arises
from known unreliability in the relationship between outcome and the underlying
state of the environment, and is thus related to noise. Unexpected uncertainty, by
contrast, arises from outcomes that violate existing expectations about an
environment, i.e., outcomes that are unexpected if the environment hadn't changed,
and is thus related to both the volatility of an environment and the signal-to-noise
ratio of an outcome. Yu & Dayan (2005) also noted, however, that expected
uncertainty can be further divided into uncertainty arising from "ignorance" (which
can be reduced by accumulating evidence) and "inherent stochasticity" in the task
(related to noise), that cannot be reduced. The uncertainty from "ignorance" has
been variously referred to as "estimation uncertainty" (Payzan-LeNestour et al.,
2013) and "relative uncertainty” (Nassar et al., 2010), whereas the irreducible
uncertainty has been referred to as "risk" (Bach and Dolan, 2012). Unexpected
uncertainty has also been termed "change-point probability” (Nassar et al., 2010),
"second-order uncertainty” (Bach and Dolan, 2012), and "surprise" (O’Reilly et al.,
2013). A cautionary note is that the mappings between these terms are not always

exact.



Regardless of what they are called, many recent studies have demonstrated
that humans and animals are sensitive to these various forms of uncertainties and
adapt learning accordingly (Gallistel et al., 2001; Daw et al., 2006; Behrens et al.,
2007; Nassar et al.,, 2010, 2012; O'Reilly et al., 2013; McGuire et al., 2014; Diederen
and Schultz, 2015). Behrens et al. (2006) found that human subjects adapted their
learning rates according to the volatility of the environment. Nassar et al. (2010)
found that human subjects adjusted their learning rates in a trial-by-trial fashion, as
a function of both how noisy the environment is and how long they have been in a
changed environment, which is related relative uncertainty. Diederen & Schultz
(2015) likewise found that the sensitivity human subjects to reward prediction
errors were scaled by reward variability. Even rodents are sensitive to
environmental statistics: rats that are used to a volatile environment detected
changes in reward contingencies more quickly than rats used to a stable
environment (Gallistel et al., 2001).

Despite the abundance of behavioral evidence, the neural substrates
underlying adaptive learning are poorly understood. The vast majority of the
adaptive learning literature have used functional magnetic resonance imaging to
probe the representation of these various forms of uncertainty and behavioral
adaptation. However, blood oxygenation level dependent (BOLD) signals measured
by functional imaging have limited spatial and temporal resolution (Logothetis,
2008). Moreover, BOLD signals do not map linearly onto neural responses

(Logothetis et al., 2001). To understanding how the brain represents and supports



adaptive learning, it is thus important to directly record from neurons in humans or
other animals as they perform adaptive learning. Below, I outline the rationale for

doing such recordings in the cingulate cortex.

The cingulate cortex and adaptive learning

The cingulate cortex consists of a vast sheath of gray matter in the medial
wall of the cerebral cortex that overlay the corpus callosum (Vogt and Pandya,
1987). The anterior cingulate cortex, which consists of Brodmann areas 24 and 32,
has long been implicated in high-order cognitive function, including cognitive
control and conflict-monitoring, pain and emotional processing, action selection and
reward processing, although its exact function remains hotly contested
(Ridderinkhof et al., 2004; Walton et al., 2007; Cole et al., 2009; Mansouri et al.,
2009; Rushworth et al.,, 2011; Shenhav et al., 2013; Silvetti et al., 2014). The
posterior cingulate cortex, which includes Brodmann areas 23 and 31, has
traditionally been designated a node of the default-mode network, based originally
on the striking activation of this area in functional imaging experiments when
subjects are not performing tasks, although more recent work have focused on its
role evaluating decision options and outcomes (McCoy et al., 2003; McCoy and Platt,
2005; Schacter et al,, 2007; Hayden et al., 2008; Heilbronner and Platt, 2013; Leech
and Sharp, 2013; Pearson and Platt, 2013). Several lines of evidence indicate that

both the ACC and the PCC are suitable substrates for adaptive learning.



Neuroanatomical connectivity indicate that both ACC and PCC are nodes of
highly connected hubs, allowing them to rapidly integrate sensory, motor and
affective signals (Vogt et al., 1979, 2006; Vogt and Pandya, 1987; Heilbronner and
Haber, 2014). In addition to their reciprocal connections with each other, both ACC
and PCC are connected to the orbitofrontal cortex, which is implicated in value
encoding, the dorsolateral prefrontal cortex, which is involved in working memory
and executive function, and the hippocampal formation, which plays a key role in
consolidation of long-term memory (Vogt and Pandya, 1987; Vogt and Gabriel,
1993; Heilbronner and Haber, 2014). The ACC is additionally connected to primary
and association motor cortices, whereas the PCC receives strong projections from
sensorimotor areas of the posterior parietal cortex (Vogt and Pandya, 1987;
Heilbronner and Haber, 2014).

The innervation of the cingulate cortex by neuromodulatory systems bears
special attention. Dopamine (DA), released by the midbrain neurons of the ventral
tegmental area and substantia nigra pars compacta, are thought to encode reward
prediction error signals that drive reinforcement learning (Schultz et al., 1997).
Norepinephrine (NE), released by the pontine nucleus locus coeruleus, is involved in
physiological arousal and has been proposed to signal unexpected uncertainty or
change-point probability (Yu and Dayan, 2004; Aston-Jones and Cohen, 2005;
Payzan-LeNestour et al., 2013). Acetylcholine (ACh), released by neurons in the
basal forebrain as well as the brainstem, is involved in attention and learning and is

thought to signal expected uncertainty or noise (Yu and Dayan, 2004; Lee and Dan,



2012). All three of these neuromodulatory systems send projections to the ACC
(Vogt et al., 1979; Porrino and Goldman-Rakic, 1982; Heilbronner and Haber, 2014).
Moreover, ACC is a primary cortical input to the locus coeruleus (Porrino &
Goldman-Rakic, 1982). The connectivity of the PCC to neuromodulatory systems is
less well documented, partly reflecting the relatively lesser attention that has been
paid to this caudal cingulate area. However, metabotropic receptors for dopamine,
acetylcholine and norepinephrine are all present in PCC (Palomero-Gallagher et al.,
2009). Fibers that terminate in the PCC stain positive for enzymes required for
catecholamines (DA and NE) and ACh biosynthesis, suggesting that PCC also receive
inputs from these three neuromodulatory systems (Heilbronner et al., 2014). The
ACC and PCC are thus well suited anatomically to integrate outcomes and contextual
cues in mediating adaptive choices.

Single-unit recordings from monkeys are also consistent with a role for ACC
and PCC in adaptive learning. Both regions encode actions and outcomes of actions,
with subpopulations of neurons that encode positive and negative outcomes,
prediction errors, and reward magnitude (McCoy et al., 2003; Amiez et al., 2005,
2006; Matsumoto et al., 2007; Hayden et al., 2008, 2009; Hayden and Platt, 2010;
Kennerley et al., 2011). In ACC, a subpopulation of neurons encodes the
surprisinginess of outcomes, regardless of whether it is positive or negative, which
may support a role in detecting environmental changes (Hayden et al., 2011). Both
regions also encode the outcomes of previous trials, potentially allowing these areas

to compare an outcome with the local statistics of rewards (Seo and Lee, 2007;
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Hayden et al., 2008; Bernacchia et al,, 2011; Kennerley et al., 2011). Finally, activity
of these areas predict behavioral switching on tasks where switching represent a
change in strategy or learning (Quilodran et al., 2007; Hayden et al., 2008).

Lesion experiments further highlight the importance of ACC and PCC in
adaptive behavior. Notably, monkeys with ACC lesions were able to learn from
errors on single trials, but could integrate feedback from across multiple trials to
maintain optimal choices (Kennerley et al., 2006). Muscimol inactivation of ACC led
to impaired performance in a probabilistic reversal task (Amiez et al., 2006).
Muscimol inactivation of PCC impaired the ability to learn arbitrary visuo-saccadic
associations when the expected rewards were low (but not when those rewards
were high), suggesting a context-dependent role for the PCC in learning
(Heilbronner and Platt, 2013).

Human neuroimaging studies have directly implicated ACC and PCC in
adaptive learning. ACC activity has been found to track volatility, change-point
probability, relative uncertainty, and model updating in subjects learning from
probabilistic, dynamic environments (Behrens et al., 2007; Krugel et al., 2009;
O’Reilly et al., 2013; McGuire et al., 2014). Moreover, ACC activity is stronger when
feedback is more indicative of reversal in reward contingencies in a probabilistic
reversal task, suggesting an adaptive coding function for the ACC (Jocham et al.,
2009). PCC has similarly been implicated in the signaling of change-point
probability and various forms of uncertainty (Payzan-LeNestour et al., 2013;

McGuire et al.,, 2014).
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In summary, neuroanatomical studies, recording and lesion experiments in
monkeys, and neuroimaging studies in humans are consistent with roles for the ACC
and the PCC in adaptive learning. Indeed, Pearson et al. (2011) has recently outlined
a model whereby the ACC encodes task-relevant variables that are then integrated
by the PCC to detect changes in the environment. Alternatively, the ACC and PCC
might each encode contextual variables that are needed to drive adaptive learning.
To test these hypotheses and better understand the contributions of the cingulate
cortex in adaptive learning, I recorded from single neurons in the ACC and the PCC
in two monkeys trained on a task developed by a previous graduate student in the
lab, Matt Nassar, in which optimal performance required adaptive learning. The

results of these experiments are presented in the main chapter of this dissertation.
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CHAPTER 2: ADAPTIVE ENCODING OF FEEDBACK BY THE

CINGULATE CORTEX DURING ADAPTIVE LEARNING

Yin Li, Matthew R. Nassar, Joseph W. Kable, Joshua I. Gold

Abstract

Effective error-driven learning in a dynamic environment must distinguish
between different sources of errors, such as those arising from fundamental change-
points that require behavioral adjustments versus those arising from noise that
should be ignored (Yu and Dayan, 2004; Courville et al., 2006; Adams and MacKay,
2007; Fearnhead and Liu, 2007; Nassar et al.,, 2010; Wilson et al., 2013). Despite
extensive evidence for representations of errors in the brain, little is known about if
and how these representations are modulated by information about the source of
the errors to guide effective learning behaviors. Here we show that individual
neurons in both the anterior (ACC) and posterior (PCC) cingulate cortex, which can
represent error-related feedback signals (McCoy et al., 2003; Behrens et al., 2007;
Matsumoto et al., 2007; Seo and Lee, 2007; Heilbronner and Platt, 2013), can also: 1)
encode contextual signals needed to distinguish different sources of those errors,
and 2) use those signals to adaptively modulate error encoding, particularly in the
PCC, in accordance with behavioral adjustments. We recorded from ACC and PCC

neurons of monkeys that used normative, adaptive learning strategies to perform a
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change-point task. Individual neurons in both regions were sensitive to error
feedback and the relative balance of noise and change-points that contributed to the
errors. Furthermore, in PCC but not in ACC, feedback encoding was adaptively
modulated by context in a manner consistent with behavioral adjustments, such that
errors related to change-points were enhanced relative to errors related to noise.
These results suggest that cingulate-mediated, adaptive encoding of feedback may

contribute to complex, adaptive learning behaviors.

Text

To examine the role of the cingulate cortex in adaptive learning, we recorded
from ACC and PCC neurons in two monkeys performing a novel change-point task.
The task required them to make a saccadic eye movement to predict the likely
location of a single, stochastically determined "reward target" from among a circular
array of ten visual targets, based on the outcomes of previous trials (Fig 1). The
monkeys performed this task under two different, explicitly cued, blockwise
conditions. In the zero-noise, high-change (“unstable”) condition, reward was
always paired with a single target that changed location relatively often (at a fixed
“hazard rate” of 0.4-0.45 per trial). Thus, feedback was highly reliable. The best
target to choose was always the previously rewarded target, even just after a change
point. In contrast, in the high-noise, low-change (“noisy”) condition, the location of

the reward target fluctuated around a relatively stable best target that changed less
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often (hazard rate=0.02). Thus, feedback was less reliable. Identifying the best
target required integrating noisy feedback information across trials and often
suppressing behavioral adjustments to small errors.

We analyzed the performance of the two monkeys from all sessions for which
we have neural recordings (n=93,278 trials over 67 sessions for monkey SP; 71,422
trials over 65 sessions for monkey AT). Overall, the monkeys chose the reward
target well above chance in both the unstable (49% for SP, 50% for AT) and noisy
(42% for SP, 43% for AT) condition. The monkeys tended to choose the best target
>50% of the time after just one trial after a change-point of the best target in the
unstable condition and within 5-6 trials in the noisy condition (Fig. 2a,d). In the
noisy condition, the monkeys reliably chose the best target more frequently than the
reward rate for that target (60%, blue lines in Fig. 2a,d,g) within 10-15 trials after
change-points and thus were not just choosing the most recent reward target or
matching reward probabilities (Sugrue et al., 2004; Lau and Glimcher, 2005).

Both monkeys used adaptive, feedback-driven strategies to solve the task.
They were more likely to switch choices after error versus correct feedback but did
not treat all error feedback equally (Fig. 2b,e). Switching was more common when
the spatial error magnitude (the distance from the reward target to the chosen
target) was large. Moreover, for a given spatial error magnitude, the monkeys were
less likely to switch in the noisy versus unstable condition. This difference was
largest for small spatial errors, which were more predictive of change-points in the

unstable versus noisy condition. Finally, for noisy trials, the monkeys were more
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likely to switch during times of subjective uncertainty about the environment, as
indexed by the variability of their choices (“choice entropy”) over the past ten trials
(Fig. 2¢,f).

These adaptive strategies, including sensitivity to noise condition and
uncertainty, are consistent with human behavior on comparable change-point tasks
and are predicted by normative (Bayesian) theory (Courville et al., 2006; Wilson et
al,, 2013; Gallistel et al., 2001; Daw et al., 2006; Behrens et al., 2007; Krugel et al.,
2009; Nassar et al.,, 2010, 2012; O'Reilly et al., 2013; McGuire et al., 2014; Diederen
and Schultz, 2015). The monkeys also exhibited non-normative tendencies to persist
in choosing the same target. Accordingly, a hybrid model with fully adaptive,
Bayesian learning plus persistent choices reproduced key features of the monkeys'
behavior, including a dependence on error magnitude, noise, and choice entropy
(Fig. 2g-i). This model provided a better fit to behavior than either a purely Bayesian
model (ABIC =-113.48 for SP, -121.77 for AT, paired t-test, p<0.001 for both) or a
standard, fixed-learning rate reinforcement learning model that also included the
same tendency to persist (ABIC =-479.89 for SP, -290.33 for AT, paired t-test,
p<0.001 for both).

To identify novel neural signals that underlie these adaptive strategies, we
targeted the ACC and PCC. Both encode feedback at the single-neuron and
population levels, and both are sensitive to relevant contextual information like
change-point probability and subjective uncertainty about the current state of the

environment at the population level (Vogt and Pandya, 1987; Ito et al., 2003;
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Pearson et al,, 2011; Heilbronner and Haber, 2014; Matsumoto et al., 2007;
Quilodran et al., 2007; et al., 2008; Heilbronner and Platt, 2013; Behrens et al.,
2007; Jocham et al., 2009; Payzan-LeNestour et al., 2013; Economides et al., 2014;
McGuire et al,, 2014). However, little is known about how the contextual
information is represented and combined with feedback information by single
neurons. We recorded the activity of 102 ACC units (n=67 from SP, 35 from AT) and
235 PCC units (75 from SP, 160 from AT) as the monkeys performed the change-
point task (Fig. 1b).

Units in both areas encoded categorical feedback (correct or error, Fig. 3a,f),
as reported previously (McCoy et al., 2003; Matsumoto et al., 2007; Quilodran et al.,
2007; Hayden et al., 2008; Heilbronner and Platt, 2013). They also encoded the
magnitude of the spatial error, a type of prediction error that strongly influenced
switching behavior (Fig. 3b,g). Both kinds of feedback signals were present in
similar fractions of units in both ACC and PCC (Fig. 3e,j), but they used different
encoding schemes. ACC neurons were divided roughly equally in terms of higher
firing rates for correct or error feedback or as a function of error magnitude (the
median regression coefficient in the early feedback epoch for feedback [-0.003] or
error magnitude [-0.056] did not differ significantly from zero, Wilcoxon signed-
rank test p=0.74 and 0.51, respectively). By contrast, PCC neurons were generally
more active for error trials (median feedback coefficient=-0.574, p<0.001) and

larger error magnitudes (median error magnitude coefficient =0.132, p<0.001).
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ACC and PCC units were also selective for the contextual factors needed to
evaluate the informativeness of the feedback for adaptive learning, including noise
condition and choice entropy (Fig. 3c-e,h-j). Whereas feedback signals appeared
transiently after the time of feedback onset, selectivity for noise condition and
choice entropy tended to be stable throughout each trial, even for individual
neurons (Spearman'’s correlation coefficient comparing regression coefficients in a
500-ms pre-fixation epoch and a 500-ms reward epoch for noise were 0.73 and 0.72
for ACC and PCC data, respectively, p<0.001 in both cases, and for choice entropy
were 0.59 and 0.60, respectively, p<0.001 in both cases). Encoding of context at the
single-unit level was heterogeneous, with no overall bias in encoding either noise
condition or choice entropy (the median regression coefficient for either factor in
the pre-fixation epoch did not differ significantly from zero for either ACC or PCC
data, p>0.22 in all cases). Thus, both ACC and PCC may play general roles in
representing a diversity of feedback- and context-related information needed for
adaptive learning.

Some individual ACC and PCC neurons also encoded combinations of factors
that were key to adaptive learning, with a more systematic and behaviorally
relevant representation in PCC. Specifically, the monkeys’ behavior showed a
(normative) decreased sensitivity to small errors in the noisy versus unstable
condition (Fig. 2h). Neural encoding of feedback in certain individual cingulate
neurons showed a similar effect. In the unstable condition, the example ACC unit in

Fig. 4a fired more for error trials than correct trials just after feedback onset and
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then more for correct trials a short time later. In the noisy condition, this same unit
exhibited an attenuated response to error trials in the early epoch and an
attenuated response to correct trials in the late epoch, consistent with the reduced
informativeness of feedback in the noisy condition. The example PCC unit in Fig. 4b
was more sensitive to error trials in the unstable versus noisy condition. Across the
population, these feedback-noise interactions were represented differently in ACC
and PCC. In the ACC, we found neurons with both enhancing and suppressing effects
of noise on feedback encoding (fraction of units with significant interactions
between feedback [correct vs error=1] and context [stable vs noisy] in the late
feedback epoch=0.118 [95% CI=0.062, 0.20]), with no systematic relationship
across the population (Fig. 4c,e,f). In the PCC, there also were examples of both
enhancing and suppressing interactions (fraction of significant units=0.0851
[0.0528, 0.128]). However, across the population in PCC there was a consistent and
systematic suppressive effect of noise condition on small errors (spatial
magnitude=1 or 2) in the late feedback epoch (Fig. 4d,g,h), mirroring the behavioral
effect of noise on switch (Fig. 2b,e).

These results suggest a selective role for PCC in integrating feedback and
noise condition to encode errors adaptively. This adaptive feedback encoding
mirrored the differential sensitivity of the monkeys to errors in the two noise
conditions, with higher sensitivity to small errors in the unstable versus noisy
condition. This sensitivity is consistent with the encoding of change-point

probability, which also distinguishes errors that arise from change-points versus
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noise, in BOLD PCC activation (Nassar et al., 2010, 2012; McGuire et al., 2014). Our
results are thus in broad agreement with previous proposals that a key function of
the PCC is to detect environmental changes (Pearson et al,, 2011) and show for the
first time how individual neurons encode key factors needed to carry out that
function effectively in a dynamic environment.

In ACC, feedback-noise interactions were more heterogeneous and may
reflect more diverse roles in error processing. Approximately half of these neurons
encoded feedback more weakly in the noisy condition and more strongly in the
unstable condition. This kind of encoding was similar to what we found for PCC and
is reminiscent of surprise signals that have been reported for ACC neurons (Hayden
etal., 2011). The remaining ACC neurons we found that were selective for these
feedback-noise interactions encoded feedback more strongly in the noisy condition.
This encoding may be related to conflict or cognitive control signals that have been
ascribed to ACC, because feedback is more ambiguous and thus difficult to interpret
in this condition (Sheth et al.,, 2012; Shenhav et al., 2013; Ebitz and Platt, 2015). The
mixed encoding scheme of ACC neurons may also reflect a general role in
representing feedback and contextual information that can be read out efficiently by
downstream areas in a task-specific manner (Rigotti et al., 2013), possibly including
the feedback-noise interactions represented in the PCC for this task.

More generally, further processing of these feedback- and context-related
representations by downstream areas appears to be necessary to solve the task. We

did not find consistent effects of high or low choice entropy (by median split) on
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feedback encoding in either brain area, even though the monkeys interpreted errors
differently according to choice entropy (Ho: slopes of ROC [correct vs. error=1] for
high- vs. low-choice entropy trials=1, p>0.05 by bootstrap for both ACC and PCC in
both early and late feedback epochs). Moreover, the firing rate of neurons in the two
areas were generally not predictive of whether the monkey would switch or not on
the subsequent trial: when a binary variable indicating whether the monkey
switched or stayed on the following trial was added as a co-regressor to a linear
regression model that already includes feedback and context terms, the fractions of
significantly predictive units were 0.088 [95% CI=0.041,0.161] in ACCand 0.111
[0.074,0.158] in PCC in the late feedback epoch.

Thus, the cingulate cortex encodes all of the feedback and contextual
variables necessary for adaptive behavioral adjustments in our task. However, this
region does not appear to be the final common pathway for the integration of
feedback with context to drive behavior. Neither ACC nor PCC integrated feedback
with subjective uncertainty (estimated by choice entropy), and neural activity in
ACC and PCC was not robustly predictive of the behavioral adjustment on the
subsequent trial. Other brain areas, such as the insula, orbitofrontal cortex, the
posterior parietal cortex, and even further downstream oculomotor planning areas,
may be more directly involved in the trial-by-trial adjustment of learning, as has
been suggested by neuroimaging studies (O’Reilly et al., 2013; McGuire et al., 2014;
Chau et al., 2015). Whether individual neurons in these brain areas encode or make

use of adaptive feedback processing remains to be tested.
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Methods

Subjects

Two adult male rhesus monkeys (Macaca mulatta) were used for this study.
All training, surgery, and experimental procedures were performed in accordance
with the National Institutes of Health's Guide for the Care and Use of Laboratory
Animals and were approved by the University of Pennsylvania Institutional Animal

Care and Use Committee.

Behavioral task

On each trial, the reward target was drawn probabilistically from a
distribution centered on the best target. The best target was selected uniformly
from the ten possible targets based on a change-point process governed by a flat
hazard rate. In the low-noise, high-hazard condition, the best target was rewarded
100% of the time and the hazard rate was 0.4-0.45 per trial. In the high-noise, low-
hazard condition (the "high noise" condition), the best target was rewarded 60% of
the time, with adjacent pairs of targets rewarded at 15% and 5%, and the hazard
rate was 0.02 per trial. Noise and hazard rate were counterbalanced to achieve
similar overall performance for the two task conditions. The two environments

were presented in blocks of 100-300 trials and cued explicitly by the color and size
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of the fixation point (large red disk for "low noise" and small gray disk for "high
noise").

Each trial began with the presentation of a central fixation point. The monkey
had 500 ms to acquire fixation, after which the ten-target array (radius 10° visual
angle) appeared. Monkeys needed to maintain fixation for a variable duration
(~500-1000 ms) until the fixation point disappeared, signaling the monkey to
indicate its prediction by making a saccadic eye movement to the predicted reward
target. After the monkey had indicated its choice, visual feedback was given
indicating the chosen target (center of the chosen target turned green) and the
reward target (a large white target was overlaid on top of the reward target). Visual
feedback was present for a variable duration (randomly chosen from 1200, 1350,
1500, 1650, and 1800 ms), during which time the monkey could freely view the
screen. After the feedback was extinguished, the screen went blank, and, if the
reward target had been chosen, the juice was delivered. The variable delay between
feedback onset and juice delivery allowed us to differentiate between the effects of
receiving feedback information and receive the juice reward itself.

Eye position was monitored using a video-based system (Eye-Link 2000; SR
Research) sampled at 1000 Hz. Visual stimuli were generated using the
Psychtoolbox (Brainard, 1997) and custom Matlab software and presented on an

LCD monitor (Viewsonic) located 60 cm from the monkey's eyes.
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Electrophysiology

Each monkey was implanted with a head holder and two recording cylinders
that targeted the ACC and PCC on either the left side (monkey SP) or the right side
(monkey AT). ACC cylinders were placed at Horsley-Clark coordinates 33 mm AP, 8
mm L for monkey SP and 43 mm AP, 8 mm L for monkey AT. PCC cylinders for both
monkeys were placed at 0 mm AP, 5 mm L, and tilted at an angle of 8.5 deg along the
ML plane to point downward toward the midline. For ACC recordings, we targeted
areas 32/24 along the dorsal bank of the anterior cingulate sulcus (~4-6 mm below
cortical surface). For PCC recordings, we targeted areas 31 and 23, in the posterior
cingulate gyrus (~7-11 mm below cortical surface). Both brain regions were
targeted using magnetic resonance imaging and custom software (Kalwani et al.,
2009) as well as by listening for characteristic patterns of white and gray matter
during recordings. Neural recordings were conducted using either single-contact
glass-coated tungsten electrodes (Alpha-Omega) or multicontact linear electrode
arrays (V-probe, Plexon) and a Multi-channel Acquisition System (Plexon). Spike

waveforms were sorted offline.

Behavioral analyses

Choice entropy, a measure of behavioral variability that reflects decision
uncertainty (Goiii et al.,, 2011; Takahashi et al.,, 2015), was computed using the
monkey's choices in the 10 trials leading up to and including the current trial to

generate an empiric probability distribution P(k) for each target k. Choice entropy,
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Hchoice Was then given, by analogy to entropy in information theory (Shannon, 2001),

by:
1
H goice =w§—P(k)log2(P(k)) (1)

where the 1/log2(10) term scales Hchoice between zero (minimally variable, if the
same target was chosen in the last ten trials) and one (maximally variable, if choices

were equally distributed among the ten targets).

Bayesian inference models

Optimal Bayesian inference in the change-point task involves computing the
posterior distribution over the best target u: on trial t after observing the t-th
reward target from the history of all reward targets xj, ..., X, P(u:|x1:). We developed
arecursive, online algorithm to compute this discrete posterior distribution
(Adams and MacKay, 2007; Behrens et al., 2007; Fearnhead and Liu, 2007; Nassar et
al,, 2010; Wilson et al.,, 2013). Let H be the flat hazard rate determining whether the
best target is the same as from the previous trial or repicked randomly from one of
the ten possible targets. The prior probability over the best targets on trial ¢t is then
given by a weighted sum of the posterior on the best target from the previous trial
and the flat uniform distribution, where H governs the weighting:

1
P(Mt le:t—l) = P(Mt—l |xl:t—1)(1 _H)+BH ] (2)

The posterior probability P(u:|x1::) after observing the t-th outcome x; is then given

by Bayes' Rule:
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P(xt |MI)P(MZ‘ Ixl:t—l)

P(u 1 x, )=
(M, xl.z) P(x,'xl:t—l)

: (3)

where P(x, |u,) is the known likelihood or noise distribution and P(x, Ix,, ) acts

as a normalization term. Substituting in Eq. 3 gives a recursive algorithm for
computing the posterior on the best target, given knowledge of the hazard H and the

noise distribution P(x, I u,):

P(x, M,)(p(ut_l Ix”_l)(l—H)+110H)

P(xt le:t—l) ’ (4)

P(Mt |x1:t) =

where P(u,_1x,,_) equals 1/10 for t=1.

For the fitted Bayes model, we assumed that the probability of picking target
k on the t + 1 trial was given by the softmax transformation of the posterior

probability on the t-th trial:

Pyoyes (Kot +1) = exp(/a’xP(/,L, = klxkl))/zexp([a’xP(ut = klxm))
k (5)

where S was an inverse-temperature term, with =0 resulting in all targets being
chosen with equal probability and higher g increasing the probability of picking the
most probable target. We modeled the (discrete) noise distribution after the von-

Mises distribution for circular variables (Fisher, 1995):

T b4
P(x, 1u,)= exp(l(cos(s(x, —yt)))/;exp(lccos(s(xt —‘ul)))

(6)
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where the parameter « is inversely related to the width of the distribution. The
fitted Bayes model had five free parameters (two noise-dependent hazard rates H,
two noise-dependent inverse-noise parameters k, and the inverse temperature term
p).

The hybrid Bayes model used exactly the same Bayesian inference algorithm
but with three additional terms that described the non-normative tendency of the
monkeys to persist in picking the same target (stay) after correct feedback (spos),
error feedback in the low-noise condition (Sneglow), and error feedback in the high-

noise condition (Sneghigh). The probability of picking target k on the t-th trial was

then given by:
P(k, t) = P(us-1=k |x1:-1)x(1-s) +s if k was chosen on the t - 1 trial (7)
P(k, t) = P(ue-1=k |x1::1)x(1-5) if k was not chosen on the t - 1 trial

where P(u:1=k |x1:-1) is the posterior on best targets as computed in Eq. 5 in the
standard Bayes model, and s is the noise- and feedback-dependent stay term that
enhances the probability of the monkey to choose the same target as the previous
trial. The hybrid Bayes model thus had seven free parameters (two noise-dependent
hazard rates H, two noise-dependent inverse-noise parameters k, and three noise-
and feedback-dependent stay terms s). Note that the hybrid model did not have an

additional inverse temperature term.
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Reinforcement-learning models

We applied a reinforcement learning (RL) model to the monkeys' trial-by-
trial choice behavior (Sutton and Barto, 1998). The value Vi(t) of a visual target k on
trial t was updated according to the following delta rule:

Vik(t+1) = Vi(t) + a(Rk(t) - Vi(t)) (9)
where Ry is 1 if target k was the reward target and 0 otherwise, and « is a learning
rate that differed for the two models as follows. The learning rate « differed
depending on whether or not k was the chosen target: the chosen target was
associated with an "experienced learning rate" and all non-chosen targets were
associated with a "fictive learning rate" (Hayden et al., 2009). The probability of
choosing target k, P(k), for our "hybrid" RL model was given by the softmax
transformation of Vi (as in Eq. 5) followed by choice heuristics (as in Egs. 7-8). The
hybrid RL model had six free parameters (two learning rates, 3, and three stay

terms s).

Model fitting and comparisons

All models were fit using Matlab's "fmincon" function to find values of free
parameters that maximized the likelihood of the monkeys' actual sequences of
choices for each session. To compare goodness-of-fit for the models while
accounting for differences in the number of free parameters, we used Bayesian
information criterion (BIC ;Burnham and Anderson, 2004):

BIC =-log L + mlogn, (10)
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where L is the likelihood of the monkey's choices given model parameters, m is the
number of model parameters (seven for hybrid Bayes, five for pure Bayes, six for

hybrid RL), and n is the number of trials. Lower BIC is associated with better fits.

Neural analyses

Neurons were included in the database for further analyses only if we
recorded =350 total trials, of which 2125 were low-noise trials and 2150 were high-
noise trials. This selection criterion yielded a database consisting of 102 units from
ACC (n=67 from SP, 35 from AT) of which 77 were considered high-isolation quality
single-units (n=49 from SP, 28 from AT), and 235 units from PCC (n=75 from SP,
160 from AT) of which 188 were considered high-isolation quality single-units
(n=58 from SP, 130 from AT). On average, 710 trials (308 low noise, 402 high noise)
were recorded for ACC units and 832 trials (329 low noise, 503 high noise) were
recorded for PCC units. Isolation quality did not affect our main conclusions (i.e.,
whether an effect is significant or not), so here we present analyses that include

both low- and high-isolation quality units.

Multiple linear regression

For our main regression analyses, we fit trial-by-trial firing rate, FR, of
individual neurons to the following equation:
FR = fo + p1*fdbk + f*errMag + fSz*noise + f4* Hchoice (11)
where fo-f4 are regression coefficients fit by Matlab's "glmfit," "fdbk" denotes

feedback on the current trial (0 = error, 1 = correct); "errMag" is the spatial error
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magnitude (mean-centered for error trials to decorrelate this regressor with respect
to fdbk); "noise" denotes the noise condition (0 = low noise, 1 = high noise); and
Hchoice is the choice entropy (mean-centered for each noise condition to decorrelate
this regressor with respect to noise). To determine whether neural on the current
trial predicts switching behavior on the subsequent trial, we added "switch" (0 =
switch, 1 = stay) as a coregressor. Significant selectivity was based on a nested F-test
comparing the full model with reduced models that lacked the individual terms
(equivalent to Student's t-test, p<0.05).

For the sliding-window analyses (Fig. 3e,j), we performed the above
regression for firing rates computed in 250-ms time bins advanced in 50 ms steps
from 2500 ms before feedback onset to 2500 ms after feedback onset. For epoched
analysis, we defined a pre-fixation epoch (500 ms before fixation point onset), an
early feedback epoch (250-750 ms after feedback onset), a late feedback epoch
(750-1250 ms after feedback onset), and a reward epoch (500 ms after feedback

offset, when reward would be delivered).

ROC-slope analyses

We estimated the strength of feedback encoding by computing receiver-
operator characteristic (ROC) indices based on the distributions of firing rates for
correct trials versus error trials (Fig. 4). To determine whether context (e.g., noise

condition or choice entropy) affected the strength of feedback encoding across the
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population of neurons, we related ROC indices for one context (e.g., high noise) to

another (e.g., low noise) using Deming regression, which is appropriate when there

is measurement error in both variables, and reported the slopes of the resulting
regression lines (Cornbleet & Gochman, 1979). To examine the effect of noise on
feedback encoding, we computed slopes separately for each error magnitude. To
examine the effect of choice entropy on feedback encoding, we computed slopes

only using trials from the noisy condition where the error magnitude was 0 or 1.
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Figure 2-1: Change-point task and recording sites.

a On each trial, the monkey chose one of ten targets with a saccade. Visual feedback
was then given for 1200-1800 ms, indicating the chosen target (small green dot)
and the reward target (large white disk). Juice was then delivered if the monkey
chose the reward target. b Structural MRI for monkey SP (~7 mm L), showing
recording chambers (shaded rectangles) and approximate recording locations
(dashed; determined as in {Kalwani et al 2009}). ¢ The two task conditions,
determined by: i) the hazard rate (H) governing the rate at which the best target
was repicked at random from among the ten targets and ii) the noise in the
distribution of reward probability as a function of distance from the best target. d
An example sequence of trials for monkey AT. Background color indicates the task
condition, as in c.
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Figure 2-2: Behavioral data from monkeys SP (a-c) and AT (d-f) and simulated
data from a hybrid Bayesian model (g-i).

a,d,g Fraction of trials picking the best target as a function of trials after change-
point, plotted separately for unstable (yellow) and noisy (blue) conditions. Dashed
lines indicate the fraction of trials in which the best target was rewarded for each
task conditions. b,e,h Probability of switching to a different target on the following
trial, per condition, as a function of the number of target locations between the
chosen target and the reward target. Switch probability depended on spatial error
magnitude (Spearman's p=0.62 for SP and 0.67 for AT, p<0.001 for both) and task
condition (partial Spearman's p accounting for spatial error magnitude=-0.15 for SP,
-0.10 for AT, p<10-16 for both), particularly for small errors (median difference for
errors of 1 and 2=-0.31 versus 3+ errors=-0.17 for SP, sign-rank test p<10-19; -0.24
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versus -0.09 for AT, p<10-19). Colors as in a. ¢,f,i Probability of switching in the noisy
condition as a function of choice entropy computed from the previous ten trials (not
including the first ten trials after change-points), plotted for different error

magnitudes. Switch rate depended on choice entropy (partial p, accounting for error

magnitude=0.21 for SP, 0.22 for AT, p<10-1° for both). In all panels, points/error
bars indicate mean/sem across trials.
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Figure 2-3: Cingulate selectivity for feedback and context.

a-d,f-i Example units from ACC (left column) and PCC (right column) illustrating
neural selectivity for: a,f feedback (correct versus error trials); b,g spatial error
magnitude; ¢,h task condition; and d,i choice entropy, grouped by quartiles (e.g.,
quartile 1 = 0-25 percentile) and only including trials from the noisy condition.
Thick lines/ribbons indicate mean/sem firing rates in 100-ms sliding windows.
Dashed vertical gray line indicates median time of saccade onset. e,j Population
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selectivity for ACC (n=102 units) and PCC (n=235 units) for the indicated task
variables, based on nested F-test with multiple linear regression computed on spike
counts in 250 ms bins stepped in 50 ms increments (p<0.05). All panels show data
aligned to feedback onset.
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Figure 2-4: Context-dependent feedback encoding.

a Example ACC unit, exhibiting negative feedback encoding in the unstable (no-
noise) but not the noisy condition in the early feedback epoch (first red arrow from
left) and positive feedback encoding that was attenuated in the noisy versus
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unstable condition in the late feedback epoch (second red arrow). b Example PCC
unit with negative feedback encoding that was attenuated in the noisy versus
unstable conditions. For a,b, only trials with spatial error magnitude of 0 (correct)
or 1 (error) were included. c,d Population activity in the late feedback epoch for
ACC (c) and PCC (d). ROC indices (ROCi) indicate whether neural activity was larger
for correct (ROCi>0.5) or error=1 (ROCi<0.5) trials, separately per unit (points) for
unstable and noisy trials. Filled symbols indicate units for which ROCi significantly
differs for unstable versus noisy trials (p<0.05 by permutation test). Black circles
indicate the example units in a and b. Best-fit lines for each monkey, as indicated,
have slopes <1 (p<0.05 by bootstrap) for PCC units, indicating that noise had a
suppressive effect on the strength of feedback encoding for these units. e,h
Summary of context-dependent feedback encoding for ACC (e,f) and PCC (g,h)
populations. Slopes of noisy versus unstable ROCi and corresponding 95%
bootstrap confidence intervals are plotted for each monkey and error magnitude, as
indicated, in the early- (250-750 ms, e,g) and late- (750-1250 ms fh) feedback
epochs. Filled symbols indicate conditions in which slopes deviated significantly
from unity (p<0.05 by bootstrap).
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Supplementary Figure 2-S1: Adaptive integration of feedback history.
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monkey switching for unstable (non-noisy) trials. For each spatial error magnitude

on the current trial (spatial errors of 3 and greater are grouped together as 3+),

behavior is separately plotted for different combinations of feedback history for up

to 3 trials back. In legend, 0 = error and 1 = correct such that 000 (blue) indicates
three consecutive error trials preceding the current trial whereas 001 (light blue)

indicates two consecutive error trials preceded by a correct trial. Error bars = SEM.

(B,F) Probability of the monkey switching for noisy trials, color coding as in (A,E).
(C,G) Logistic regression coefficients for the influence of previous error trials on
switching after the current trial in unstable trials. For each error magnitude, the
influence of error feedback from up to 10 trials back is plotted (going from left to
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right) from more recent to more distant trials. Positive coefficients imply that an
error from that many trials back promotes switching (above what is expected for
that particular error magnitude and noise condition). Error bars = 95% confidence
interval. Significantly non-zero coefficients are filled in. (D,H) Same conventions as
(C,G), but for noisy trials. These results indicate that the monkeys adaptively
integrated feedback across multiple trials when feedback was ambiguous (e.g., small
errors in noisy trials), but not when it was strongly predictive of change-points (e.g.,
large errors in noisy trials or any error in unstable trials).
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Supplementary Figure 2-S2: Model-based evidence for adaptive learning.

(A, B) Fitted learning rates from the noise-adaptive reinforcement learning model.
Experienced learning rates are used to update the value of the chosen target
whereas fictive learning rates are used to update the values of the nonchosen
targets. High-noise learning rates were lower than low-noise learning rates in every
session (for experienced learning rates: paired Student's t-test, p<10-4> for SP, p<10-
37 for AT; for fictive learning rates, p<10-33 for SP, p<10-2> for AT). White and gray
disks symbols indicate fits from behavioral sessions with monkey SP and AT,
respectively. (C) BIC values for the noise-adaptive reinforcement learning model
(noise-RL) were lower than BIC values for a fixed-learning rate reinforcement
learning model (fixed-RL) in 129 of 132 behavioral sessions, implying a better fit for
the noise-adaptive model. (D) BIC values for the fitted Bayes model were lower than
BIC values for the noise-adaptive RL model in every behavioral session. (E) BIC
values for a hybrid Bayes model with non-normative tendency to stay after wins and
losses were better than BIC values for the purely Bayes model in 118 of 132
behavioral sessions, indicating that the monkeys used a combination of normative

and non-normative strategies.
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Supplementary Figure 2-S3: Heterogeneity and bias in neural selectivity.

For each brain area and monkey, fraction of units with significant selectivity are
plotted separately for significant positive encoding (solid line) and negative
encoding (dashed line) for each listed factor, using same regression model as in
Figure 6. Small circles at the top each panel indicate time bins where fraction of
significant units are biased for either positive (open gray) or negative (filled black)
encoding (binomial test, Ho: proportion = 0.5, p<0.05). For feedback encoding (A,F)
and previous feedback encoding (E,]), positive encoding means firing more for
correct trials. For spatial error magnitude (B,G), positive encoding means firing
more for larger error magnitudes. For noise condition (C,H), positive encoding
means firing more for high noise trials. For choice entropy (H,I), positive encoding
means firing more for higher choice entropy.
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CHAPTER 3: CONCLUSIONS AND FUTURE DIRECTIONS

In the previous chapter, | showed that monkeys trained to make predictions
in a dynamic environment exhibit key features of adaptive learning, treating
feedback differently depending on environmental and internal contextual cues.
Neurons from both ACC and PCC encoded trial-by-trial feedback, contextual factors
needed to interpret the feedback, and context-modulated feedback signals. Here, I
discuss some of the implications of the study, relationship to other work, open

questions and ongoing/future work to address them.

Neural mechanisms for adaptive learning

We identified two potential mechanisms whereby ACC and PCC can
contribute to adaptive learning. First, individual ACC and PCC neurons encode
contextual cues that are important for adaptive interpretation of feedback. Such
contextual signals could be read out by other areas, such as the orbitofrontal cortex
or the dorsolateral prefrontal cortex, to influence the computation of option values
and policy selection (Lee and Seo, 2007; Rangel et al., 2008; Rushworth et al.,, 2011;
Cai and Padoa-Schioppa, 2012). Alternatively, these contextual cues could be jointly
computed in a distributed frontoparietal network or reflect coordinated input from
neuromodulatory systems, such as cholinergic and noradrenergic systems, which

are thought to broadcast expected and unexpected uncertainty, respectively (Yu
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and Dayan, 2004; Aston-Jones and Cohen, 2005; Payzan-LeNestour et al., 2013). It
has been proposed that ACC activity reflects volatility (Behrens etal., 2007;
Rushworth and Behrens, 2008). However, because of our task design, in which noise
and hazard rate were counterbalanced to minimize differences in difficulty between
the two noise conditions, we were unable to dissociate coding for noise versus
volatility.

Second, ACC and PCC neurons exhibit context-dependent modulation of
feedback encoding. In the case of PCC, the modulation of feedback by noise was
exactly of the form that would lead to adaptive response to errors in noisy
conditions. Such context-dependent feedback encoding could be a general
mechanism for adaptive learning in many brain areas. For example, in one
neuroimaging study, human subjects were exposed to monetary gains and losses in
a "win" context, where possible outcomes ranged from large monetary gain to no
gain, and a "lose" context, where possible outcomes ranged from no loss to large
monetary loss (Nieuwenhuis et al.,, 2005) . Reward-sensitive brain areas, including
the striatum, the prefrontal cortex, the cingulate, and the inferior parietal lobule,
were as responsive to the largest gain in the "win" context as they were to the lack
of loss in the "lose" context, suggesting that feedback signals were range-adapted.
Even dopaminergic neurons exhibit context-dependent prediction errors, a topic

that I will return to later.
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Whereas PCC neurons were relatively homogeneous in their responses, with
the majority of neurons firing more for error trials, larger spatial error magnitudes,
consistent with a role in change detection, ACC neurons were more heterogeneous
in the way they responded to change-points. The function of this heterogeneity is
unclear, although it has been hypothesized that mixed encoding of task variables can
be efficiently readout in downstream areas (Rigotti et al.,, 2013) . One possibility is
that ACC neurons also signaled change-points, but through shifts in ensemble
activity. Such a mechanism has been reported for the medial prefrontal cortex (a
homolog of the primate ACC) in rodents performing a reversal task (Karlsson et al.,
2012) . They found that the time at which rodents detected a change in reward
contingency was preceded by a change in the ensemble activity of medial prefrontal
neurons (which they referred to as a "network reset") while maintaining the overall
firing rate of the neural population. Such a network reset would not be detectable by
our single-cell recording technique. Toward the end of my recordings, I started to
use multi-contact recording electrodes. It would be interesting to see if shifts in
ensemble activity could be detected in these simultaneously recorded small
populations of ACC and PCC neurons. More generally, for large and heterogeneous
brain areas such as the cingulate cortex and complicated tasks such as the change-
point task where no two trials are exactly the same, large-scale, simultaneous
recording of dozens of neurons will likely yield novel insights about neural
computations of learning by leveraging the power of single-trial decoding strategies

(Cohen and Maunsell, 2010, 2011; Kiani et al., 2014; Kaufman et al., 2015) .
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Normative and non-normative behaviors

Behavior of the monkeys in the change-point task matched the qualitative
predictions of adaptive learning models: decreased sensitivity to errors in the high-
noise condition and increased sensitivity in regimes of high uncertainty. Moreover, a
Bayesian model fit behavior better than a reinforcement learning model with noise-
dependent learning rates, suggesting that the monkeys' behaviors were better
captured by a model that involves trial-by-trial adaptive learning. However, the
monkeys also behaved suboptimally. In the low-noise condition, when the monkeys
should have always switched in response to any error, they nevertheless stayed on a
substantial fraction of trials (~30% for both monkeys). In the high-noise condition,
by contrast, the monkeys switched more frequently than optimal for small errors
and stayed more frequently than optimal for large errors. Fitting the noise and
hazard rate parameters of the Bayesian model to the monkeys' trial-by-trial
behavior confirms that these suboptimal behaviors can be explained at least in part
by a mis-estimation of the statistics of the environment. The fit hazard rates were
higher and the fit noise widths were wider than those used by the generative
distribution. Similar mis-estimations of environmental statistics have also been
found in human subjects (Nassar etal., 2010) . Given that the monkeys were trained
for many months on this task, the mis-estimation of environmental statistics is

somewhat puzzling and may reflect underlying neurobiological constraints.
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Even accounting for any mis-estimation of environmental statistics, the
monkeys choice behavior were still influenced by non-normative factors. A model
that included both Bayesian inference and non-normative tendencies for the
monkeys to stay after wins and losses proved a better fit. However, we do not know
the precise factors that led to this non-normative behavior. One possibility is that
the problem is not with the inference (i.e., learning) but with the action selection.
Most implementations of reinforcement learning models consists of both a "Critic"
(which is involved in learning the values of various actions and stimuli) and an
"Actor," which is involved in choosing the right action given the value functions
(Sutton and Barto, 1998) . In our models, we have modeled the actor as simply a
soft-max transformation of the posterior on the best target. But it is possible that the
monkeys used a more complex or history-dependent policy. It's also possible that
the monkeys were doing a form of off-line policy updating, so that even when a
change-point had been detected, it is not immediately reflected in the action.

An alternative possibility is that the apparently non-normative behavior
reflects model-free reinforcement learning acting in concert with Bayesian model-
based learning mechanisms. This hypothesis is motivated in part by the observation
that the monkeys' behavior (Fig. 1A) exhibits features of both a simulated RL model
(Fig. 1B) and a Bayesian model (Fig. 1C). The hybrid model proposed in Chapter 2,
which contains additional terms that reflect fixed tendencies to repeat choices, is
shown in Fig. 3.1D for comparison. Most notably, the RL model "naturally” exhibits a

tendency to repeat choices, whereas the Bayes model does not. Such an idea is
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consistent with previous work indicating that both model-based Bayesian and
model-free RL systems can be operating simultaneously in human subjects and that
the relative uncertainty of the two systems can arbitrate between whether one or
the other is in control at any given time (Daw et al., 2005; Glascher et al., 2010; Lee
et al.,, 2014) . Ongoing collaboration with a postdoctoral fellow now at Columbia,
David Barack, is aimed at disentangling the relative influences of various learning

and choice models to more accurately capture the monkeys' strategies in this task.

Generality of the findings

Several factors potentially limit the generality of our findings to adaptive
learning in "the real world." First, steady-state performance on this complex task
required months of training for both monkeys. We do not know if the signals that
we observed in the cingulate cortex had been present from the beginning, or only
emerged after months of training as has been observed in certain types of
perceptual learning (Law and Gold, 2008) . Humans and animals often learn in
rapidly changing environments without the need to train extensively (although they
still need to learn or be instructed of the environmental statistics). It is not clear
whether or how learning about the task may have influenced the representation of
learning-related signals in ACC and PCC.

Second, the functional homology between human ACC and monkey ACC has

been the subject of some dispute. For example, conflict-related activity has long
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been found in human ACC, including single-unit recordings from human subjects,
but such activity has been much harder to find in the monkey ACC (Cole et al., 2009;
Mansouri et al., 2009; Silvetti et al., 2014) . Evidence for conflict-related activity in
monkey ACC has recently emerged, although only of a specific type, suggesting that
the conflict-related activity in ACC may be more restricted than in humans (Ebitz
and Platt, 2015) .

Third, ACC and PCC are large brain areas that are likely to exhibit significant
heterogeneity across its extent. Single-unit electrophysiology experiments likely
sample from slightly different portions of the cingulate in different studies and
different labs. Even between our two monkeys, we observed some differences in
neural activity for the same brain area, which may be related to differences in the
sampling of neurons or individual differences between the two monkeys. In this
respect, the ability to sample the entire brain (as in neuroimaging) can be quite
useful.

To address these concerns as well as to replicate our and previous findings,
we are collaborating with a graduate student in Joe Kable's lab, Arthur Lee, to
implement the same monkey task in human subjects. Interestingly, preliminary
results suggest that at least some human subjects also exhibit non-normative
tendencies to repeat choices in the high-noise condition. Ongoing work is aimed at
collecting a robust database of human subject behavior and brain scans to see if our

single-unit results replicate.
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Temporal dynamics of cingulate responses

We observed a number of interesting temporal dynamics in cingulate
responses that deserve further analysis and investigation. The overall latency to
feedback response ~500 ms was similar in both ACC and PCC. A dissociation
emerged, however, when positive and negative feedback were separately
considered. In ACC, positive encoding emerged first, at ~500 ms after feedback
onset, and this was followed by the emergence of negative feedback encoding at
~750 ms (Fig. 2A). By contrast, PCC exhibited the opposite pattern, with negative
encoding (~500 ms) preceding positive encoding at ~750 ms. The relative timing
remained the same when we considered the time to peak selectivity of positive or
negative encoding in the two areas (Fig. 2B). Simultaneous recordings from the two
areas, perhaps including local field potential activity, would be needed to confirm
this relationship. If confirmed, these preliminary results suggest that ACC and PCC
might receive different inputs. One possibility is that ACC receives an early positive
prediction error signal from ascending DA neurons, whereas PCC receives an early
negative prediction error signal from the habenula (Schultz et al., 1997; Bromberg-
Martin et al., 2010) . Given the reciprocal connectivity between ACC and PCC, the
later feedback responses could reflect reciprocal communication between the two
brain areas. Although highly speculative, this line of reasoning suggests that
analyzing cingulate responses separately for positive and negative encoding might

be useful.
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Within ACC, we also identified a number of neurons with striking temporal
dynamics related to the time of juice delivery. Recall that the task had imposed a
variable delay between feedback onset and juice delivery, such that the monkey
could anticipate approximately but not exactly when juice would be delivered. The
example neuron in Fig. 3A fired more for correct trials than error trials within ~250
ms after feedback onset. It then fired a phasic burst after feedback offset (and
reward onset) whose amplitude depended on the feedback duration. When
feedback duration was shorter than average (blue, cyan traces), the neuron fired
more strongly, whereas when the duration was shorter than average (yellow,
orange traces), the neuron fired more weakly. This response is reminiscent of the
temporal difference learning signal that has been observed in midbrain DA neurons
(Schultz et al,, 1997) .

The second example neuron, in Fig. 3B, exhibited ramping activity starting
around 1000 ms after feedback onset and persisted until ~200 ms after feedback
offset and reward onset, after which the neural response was sharply suppressed.
This response can be thought of as an reward expectancy response and bears
similarities to phasic ramping responses that have been previously reported for
ACC, although in that report, reward expectancy grew across multiple trials
(Shidara and Richmond, 2002) . Over our entire database of recordings, we
identified only a handful of neurons that exhibited these patterns, all of which were
in the ACC. Since only a few neurons were found, we did not analyze them any

further. However, it is tempting to speculate that the temporally discounted reward
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signal in Fig. 3A could be shaped by an antagonistic relationship with neurons
exhibiting the anticipatory ramping response in Fig. 3B.

An important future direction is therefore characterizing and modeling the
temporal dynamics of the cingulate responses to understand when and why context-
dependent signals emerge on a cell-by-cell basis. A number of computational models
have been proposed to describe temporal dynamics in the ACC (Alexander and
Brown, 2011; Silvetti et al., 2011) . Do these models adequately describe the

diversity of the neurons in ACC and PCC?

Task relevant and irrelevant surprise signals: relationship to the locus coeruleus

In the change-point task, we found that both ACC and PCC contained subsets
of cells that responded to the spatial error magnitude of the feedback, a form of
task-relevant surprise signal. In a related project (led by postdoc Sidd Joshi)
characterizing the relationship between pupil activity and various cortical and
subcortical areas (including ACC, PCC, and LC), we found that neurons in the two
areas also responded to unexpected auditory stimuli during fixation (Fig. 4).
Notably, cingulate responded included a phasic burst that peaked ~250 ms after
"beep"” onset and a more sustained response that lasted up to 1000 ms; the tone
itself was only 500 ms long. These findings suggest that cingulate neurons respond

to (1) both surprise signals that required learning (task-relevant) and surprise
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signals that were uninformative (task-irrelevant surprise signals), and (2) both
visual and auditory signals that are surprising (i.e., multimodal).

These task-irrelevant surprise signals have also been found in the locus
coeruleus, although with notably shorter duration of responses lasting < 500 ms
(Joshi et al., submitted). In human subjects performing an adaptive learning task,
playing a surprising (but task-irrelevant) auditory stimulus was found to evoke both
pupil responses and increased learning of task-relevant stimuli (Nassar et al., 2012)
. This was interpreted as having an effect on the locus coeruleus, which in turn
broadcast a surprise signal to the rest of the brain in the form of norepinephrine
release (Yu and Dayan, 2004; Aston-Jones and Cohen, 2005) . These sets of findings
suggest that one source of the surprise signals we found in ACC and PCC may be LC
activity. Alternatively, those signals may be computed in the cingulate cortex and
transmitted to the LC. Sidd Joshi, the same fearless postdoc who has already
ventured into the LC in two previous studies, is planning to imminently return to the

LC and the ACC for dual recordings to address some of these questions.

Adaptive coding of feedback: relationship to dopamine

Our results are consistent with the hypothesis that a subset of neurons in
ACC and PCC encode not just the prediction error, but one scaled by context-
dependent learning rates (i.e., the update signal). An alternative possibility,

however, is that the prediction error is already context-dependent and
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appropriately scaled within the mesolimbic dopamine signal when it arrives as an
input. Support for this view comes from single-unit electrophysiology experiments
in monkeys indicating surprisingly sophisticated encoding of prediction errors by
the DA system (Nakahara et al., 2003; Tobler et al., 2005; Bromberg-Martin et al.,
2010a) . In the first study to show context-dependent encoding of prediction errors
by dopamine neurons, Nakahara et al. (2003) found that when reward on one trial
predicted lack of reward on the next (because of probabilistic structure of the task),
DA neurons correctly decreased their expectation of reward on the trial following a
rewarded trial. By contrast, in a task where there was no such dependence, DA
neurons increased their expectation of rewards after each rewarded trial, consistent
with classic reinforcement learning theory. In another study, monkeys were cued
not just about the average magnitude and probability of juice rewards (i.e., expected
value), but also the range of rewards (Tobler et al., 2005). They found that the
prediction errors in midbrain DA neurons scaled with the range of expected reward
magnitudes. More recently, Bromberg-Martin et al. (2010) found that both midbrain
DA neurons and the lateral habenula (a major input) were sensitive not only to
experienced rewards but also inferred value of a non-rewarded target based on
task-specific statistical relationship between the rewarded and non-rewarded
target.

These findings defy a simple parsing of the brain's learning systems into a
mesolimbic model-free system and a cortical model-based system (Daw et al.,

2005). Indeed, recent neuroimaging work suggest that both the DA system and
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more "cognitive" networks, including the cingulate cortex, have access to context-
dependent or model-based reward signals (Nieuwenhuis et al., 2005; Daw et al.,
2011). In the case of our task, it would be extremely interesting to record from
midbrain DA neurons and the lateral habenula to examine the relationship between
subcortical and cortical encoding of prediction errors to see when and how context-

dependence emerges.

Concluding remarks

In an uncertain world where individual experiences are only partially
predictive of the future, adaptive learning allows subjects to rapidly adjust their
expectations according to the statistical context through which experiences are
interpreted. The results of my experiment show that the anterior and posterior
cingulate cortex encode correlates of the contextual cues needed to adjust this
interpretational process as well as context-dependent feedback signals that in some
cases reflect adaptive interpretation of feedback by monkeys. The causal role of ACC
and PCC and their relative contributions to adaptive learning remain to be
determined, but these results add to the growing evidence that the cingulate cortex

may play important roles in the adaptive adjustment of behavior through learning.
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Figure 3-1: Actual and simulated behavior on the change-point task.

(A) Heatmaps showing the frequency of the monkey's update (spatial difference
between choice on next trial and choice on current trial) for each signed spatial
error (spatial difference between reward target and choice on current trial) for low-
noise trials (top) and high-noise trials (bottom). Data is collapsed across all trials for
both monkeys. For (B-D), simulated model behavior using the median fit parameters
and the same sequence of outcomes experienced by the monkeys. (B) Simulated
behavior for RL model with six learning rates, three for each noise condition: a
"positive"” learning rate associated with the chosen target on correct trials, a
"negative" learning rate associated with the chosen target on error trials, and a
"fictive" learning rate associated with the non-chosen targets. This model also had
an inverse temperature term (total 7 free parameters). (C) Simulated behavior for
"pure" Bayes model with noise and hazard rates fitted to the monkey's behavior. (D)
Simulated behavior for "hybrid" Bayes model with fitted noise/hazard rates as well
as 1 win-stay and 2 noise-dependent lose-stay terms. The monkeys' behavior (A)
shares features of both RL (B) and Bayes models (C), especially in terms of a
tendency to "stay" on high-noise trials (horizontal "band" at update=0).
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Figure 3-2: Temporal dynamics of cingulate feedback responses.

Cumulative density functions for (A) the latency and (B) peak time of feedback
selectivity for ACC (left) and PCC (right) neurons. Selectivity based on linear
regression analysis computed on firing rates in 250-ms sliding windows in 50-ms
steps. A neuron must have at least 5 contiguous bins after feedback onset with
p<0.05 (Student's t-test) to be considered feedback-selective. (A) Latency computed
based on first time bin of at least 5 contiguous, selective time bins. Positive (red)
and negative (blue) encodings are plotted separately. A single neuron can contribute
to both curves. (B) Time to peak selectivity based on time when absolute value of
the t-statistic is maximum, subject to the 5 contiguous-bin criterion. For ACC,
positive encoding precedes negative encoding (two-sample Kolmogorov-Smirnov
test, p<0.05, for both A and B). For PCC, positive encoding follows negative encoding
(two-sample Kolmogorov-Smirnov test, p<0.05, for both A and B).
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Figure 3-3: Two example ACC neurons with reward expectation signals.

For both neurons, firing rate is plotted separately for error (left) and correct (right)
trials, for each feedback duration (from 1200 ms, blue to 1800 ms, orange). Arrows
indicate the time of juice delivery. (A) Positive feedback encoding neuron that
responds more strongly to feedback offset when it is earlier than average, and less
strongly to feedback offset when it is later than average, reminiscent of temporal
difference signal. (B) Positive feedback encoding neuron with ramping response
that begins ~1000 ms after feedback onset and is terminated within ~200 ms after
feedback offset, reminiscent of a reward anticipation signal.
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Figure 3-4: Cingulate neurons respond to surprising auditory stimuli.

Simultaneously recorded (A) pupil diameter (arbitrary units), (B) ACC response
(sps), and (C) PCC responses (sps) to an unexpected auditory tone ("beep") that was
presented on 25% of fixation trials in a single session for monkey SP.
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