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Abstract� We de�ne a new class of Kripke structures for the second�order ��calculus� and investi�
gate the soundness and completeness of some proof systems for proving inequalities �rewrite rules�
as well as equations� The Kripke structures under consideration are equipped with preorders that
correspond to an abstract form of reduction� and they are not necessarily extensional� A novelty
of our approach is that we de�ne these structures directly as functors A�W � Preor equipped
with certain natural transformations corresponding to application and abstraction �where W is a
preorder� the set of worlds� and Preor is the category of preorders�� We make use of an explicit
construction of the exponential of functors in the Cartesian�closed category PreorW � and we also
de�ne a kind of exponential

Q
��A

s�s�T to take care of type abstraction� However� we strive for
simplicity� and we only use very elementary categorical concepts� Consequently� we believe that
the models described in this paper are more palatable than abstract categorical models which re�
quire much more sophisticated machinery �and are not models of rewrite rules anyway�� We obtain
soundness and completeness theorems that generalize some results of Mitchell and Moggi to the
second�order ��calculus� and to sets of inequalities �rewrite rules��

�This research was partially supported by ONR Grant NOOO�������������
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� Introduction

In order to have a deeper and hopefully more intuitive understanding of various typed ��calculi
and their logical properties� it is useful to de�ne and study classes of models for these calculi�
Typically� given some typed ��calculus� we are interested in reduction or conversion properties of
this calculus� and the crucial properties of reduction and conversion are axiomatized by a proof
system for deriving equations or rewrite rules �for example� ��conversion�� Models will be useful
only if they are sound with respect to the given proof system� in the sense that provable equations
�or rewrite rules� must be valid� Then� models can be helpful for showing that a certain equation
M

�
� N is not derivable from a given set E of equations� it is su	cient to exhibit a model in which

all equations in E are valid and in which M
�
� N is falsi�ed� Conversely� we can better calibrate the

strength of a proof system if we can prove a completeness theorem� For example� we say that we
have strong completeness if we can show that for any set E of equations and any equation M

�
� N �

if M
�
� N is valid in every model of the equations in E� then M

�
� N is provable from E� Then� we

know that if M
�
� N is not a consequence of E� then there is a model of E that falsi�es M

�
� N �

One can also consider re�nements of strong completeness theorems where completeness is shown
for classes of models with certain required properties�

For the simply�typed ��calculus� models inspired by Henkin models 
�� were de�ned by Friedman


�� who proved a strong completeness theorem� as well as another interesting completeness theorem�
Plotkin 
��� and Statman 
���� 
���� also proved some re�nements of the strong completeness theorem
for the simply�typed ��calculus�

So far� we have assumed that the models under consideration have nonempty carriers for all
types� However� in computer science applications� the assumption that carriers are nonempty may
be unreasonable� because too restrictive� This fact was �rst observed by Goguen and Meseguer 
��
in the framework of many�sorted algebras� and later on� by Meyer� Mitchell� Moggi� and Statman

���� for the second�order ��calculus� The example of the polymorphic boolean type polybool is
particularly illuminating� Consider the type

polybool� � �X� �X � �X � X���

of polymorphic booleans � and de�ne the terms True� False� and Cond� as

True� � �X� �x�X� �y�X� x�

False� � �X� �x�X� �y�X� y�

Cond� � �b� polybool� b�

The terms True and False are the only �pure� closed terms of type polybool� and it is easy to
verify that the equations

Cond True Xxy
�
� x Cond False Xxy

�
� y

are provable� for any term X �

For any b� polybool� what about the equation

Cond True bXyy
�
� y ���






In fact� it can be shown that this equation does not follow from the previous one� This is
because there are models where ��� fails� e�g� when there are elements in polybool other than True�
False� for instance b � �polybool �the least element of a cpo� as in the usual cpo�based model� The
previous example suggets the following question�

Question� Is it consistent to assume that True and False are the only elements of polybool�

Ingenious contructions of Moggi and Coquand show that the answer is yes� Indeed� it can be
shown that there is a model of the polymorphic ��calculus in which polybool consists exactly of
two elements� In this model� ��� is valid� But� these models contain empty types � In fact� Meyer�
Mitchell� Moggi� and Statman 
��� showed that

In any �nontrivial� model of the polymorphic ��calculus with all types nonempty� equation ���
is not valid� In particular� there must be at least three elements of type polybool in such a model�

Breazu�Tannen and Coquand 
�� showed that these results can be extended to types of the form
� � �X� � � ��Xn� � � where � is a quanti�er�free type �in the sense that there is a model in which
elements of the type � are precisely those de�nable by the pure closed terms of type � i� models
have empty types��

Thus� models with empty types are indispensable� Unfortunately� empty types cause trouble
w�r�t� soundness and completeness� The �generic� model property also fails for models with empty
carriers� For example� consider the set E consiting of a the single equation

E � f � �x� �� �y� �� True
�
� �x� �� �y� �� Falseg�

Meyer� Mitchell� Moggi� and Statman 
��� proved that the theory of the class C of all models of
E �with empty carriers� is not equal to the theory of any single model�

In turn� the absense of the generic model property causes problems for completeness proofs� In
the traditional proof system w�r�t� models without empty types� we need the rule�

�� x� � �M�
�
� M�� �

� �M�
�
� M�� �

�nonempty�

provided that x �� FV �M��� FV �M���

But rule �nonempty� is not sound w�r�t� models with empty carriers� So� we can try to delete
rule �nonempty� from the traditional proof system� But then� we loose completeness �

Let �� and �� be the simply�typed terms

�� � �x� �� �y� �� x� �� � �x� �� �y� �� y�

and let f � ��� � � ��� �� Then�

� �x� �� �f���
�
� �x� �� �f���� ��� �� �
�

semantically implies
� f��

�
� f��� �� ���

�



However� the above implication cannot be derived in the traditional proof system without rule
�nonempty��

Meyer� Mitchell� Moggi� and Statman 
���� gave a complete proof system w�r�t� models with
empty carriers� However� reasoning in such a system is rather complicated� since it is necessary to
add new axioms

empty���� x� � � True
�
� False� polybool

and a new rule to reason by cases�

�� x� � �M
�
� N � � �� empty��� �M

�
� N � �

� �M
�
� N � �

�cases�

where x �� FV �M� � FV �N��

Also� to the best of our knowledge� a detailed completeness proof has not been published� Thus�
it appears that dealing with models with empty types is not such a simple matter� and that classical
models do not seem well suited�

Mitchell and Moggi 
�
� observed that after all� proof systems for typed ��calculi are intuition�
istic �in most cases�� and that the semantics in terms of Henkin�like models with possibly empty
carriers is just too classical in nature� in the sense that arguments where we assume that a carrier
is either empty or nonempty� may be used freely� Thus� Mitchell and Moggi suggested to consider
intuitionistic semantics such as Kripke�style semantics� Indeed� a Kripke�style semantics forces an
intuitionistic interpretation of the connectives� and extended completeness holds again for the usual
proof system� regardless of the fact that carriers may be empty� Also� in the Kripke semantics� for
any set E of equations� there is a Kripke model A such that� an equation M

�
� N is valid in A i�

M
�
� N is provable from E� Besides having the virtue that these desirable completeness properties

are regained in the Kripke semantics� from a categorical point of view� Kripke models are essentially
equivalent to arbitrary CCC�s� as sketched in Mitchell and Moggi 
�
�� However� this relationship
will not be considered in the present paper�

In this paper� we de�ne a new class of Kripke structures for the second�order ��calculus� and
investigate the soundness and completeness of some proof systems for proving inequalities �rewrite
rules� or equations� Actually� we consider a more general class of structures� Traditionally� only
models of conversion have been considered� However� we believe that models can also be used to
prove properties of the reduction relation� Thus� the Kripke structures considered in this paper
are equipped with preorders that correspond to an abstract form of reduction� and they are not
necessarily extensional� This approach allows us to consider models of sets of rewrite rules� as well
as sets of equations� We obtain soundness and completeness theorems that generalize some results
of Mitchell and Moggi 
�
� to the second�order ��calculus� and to sets of inequalities �rewrite rules��

Since the paper is quite technical� in order to help the reader sort out what is really new� which
di	culties had to be overcome� and where are the most important results of this paper� we provide
the following summary�

The new contributions are�

��� A construction of Kripke models of the second�order ��calculus� extending that of Mitchell and
Moggi for the simply�typed ��calculus�
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�
� The fact that these Kripke models are models of the reduction relation� and not just of the
conversion relation�

��� A clari�cation of the nature of extensionality�

��� Proof systems for rewrite rules as well as equations� and proofs of soundness and completeness
with respect to the new class of Kripke models �also� the generic model property��

Not surprisingly� the greatest di	culties were encountered in looking for an interpretation of
second�order types� Inspired by Breazu�Tannen and Coquand�s notion of a type algebra 
�� and a
model constuction in Gunter 
��� we eventually came up with the idea of the dependent product
D���A

s�s�T � We were stuck for quite a while� not having realized that D���A
s�s�T is really an

exponential� Once we realized that a functorial contruction was necessary� everything got unlocked�
We believe that our construction is quite elegant �although hard�core category scientists might have
preferred an invocation of the Yoneda lemma�� The construction of a generic model is not that
di�erent from that of Mitchell and Moggi� except that checking the details regarding polymorphic
types is quite involved� Similarly� the soundness proof is very tedious� but fairly standard�

Another point that gave us quite a bit of trouble is extensionality� It took us a long time to
realize that extensionality corresponds to the injectivity of some of the primitive operators involved
in the de�nition of models� Again� we believe that our solution is quite elegant� and sheds some
new light on the nature of extensionality�

Finding the proof systems for rewrite rules was fairly straightforward� but tuning the extension�
ality rules was a bit tricky� Contrary to proof systems for equations� extensionality rules are not
equivalent to 	�like rules� We also observed that the substitution rule cannot always be dispended
with �in the nonextensional case��

The most important sections of this paper are section �� where Kripke structures are de�ned�
section �� where the proof systems are de�ned� and section �� where the soundness and completeness
results are proved �lemma ���� lemma ��
� theorem �����

Although we were not expecting to use any category theory in this paper� we realized that
this was almost unvoidable in order to come up with the �right� concepts� In particular� we don�t
believe that we would have come up with the right notion of dependent product for interpreting
typed ��abstraction� if we had not known that categories of presheaves are Cartesian�closed� Thus�
we found it convenient to de�ne these structures directly as functors A�W � Preor equipped
with certain natural transformations corresponding to application and abstraction �where W is a
preorder� the set of worlds� and Preor is the category of preorders�� We make use of an explicit
construction of the exponential of functors in the Cartesian�closed category PreorW � and we also
de�ne a kind of exponential

Q
��A

s�s�T to take care of type abstraction� However� we only use
elementary categorical concepts� and we do not appeal to any fancy machinery�

Actually� categorical models of polymorphic ��calculi have been investigated by Seely 
��� and
Pitts 
���� Seely works with so�called PL categories� and obtains a soundness and completeness
theorem for the equational �	�theory of a version of the 
�order ��calculus� The completeness
theorem is a consequence of an equivalence of categories� We have no idea how to construct a
counter�example model� or whether this can be done at all� but we also have to admit that the
categorical machinery is well beyond our level of sophistication� Pitts gives a construction for
embedding a so�called 
T�C�hyperdoctrine into a topos model� This is achieved in two steps� the
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�rst one beeing a Grothendieck �bration construction� and the second one a Yoneda embedding�
Pitts does obtain a soundness and completeness theorem for the the equational �	�theory of the
second�order ��calculus� Again� we have to confess that the categorical machinery is well beyond
our level of sophistication� Nevertheless� in view of these two rather abstract constructions� we do
not see how explicit counter�example models could be obtained easily� With our class of models�
such counter�examples can be obtained rather easily by a quotient construction� Furthermore� we
can also handle nonextensional models� and rewrite rules� Considering the level of sophistication
required to handle equations with categorical models� we worry that constructing categorical models
of reduction could be really complicated� We view our work as a necessary preliminary step in
investigating models of reduction for the second�order ��calculus� more in a proof�theoretic spirit
than a categorical spirit� and we leave the more sophisticated categorical constructions as a challenge
to categorists�

In order to understand what motivated our de�nition of a Kripke structure for the second�order
��calculus� it is useful to review the usual de�nition of an applicative structure for the simply�typed
��calculus �for example� as presented in Gunter 
���� For simplicity� we are restricting our attention
to arrow types� Let T be the set of simple types built up from some base types using the constructor
�� Given a signature � of function symbols� where each symbol in � is assigned some type in T �
an applicative structure A is de�ned as a triple

h�A����T � �app
��� �����T � Consti�

where

�A����T is a family of nonempty sets called carriers �

�app��� �����T is a family of application operators � where each app��� is a total function
app��� �A��� � A� � A� �

and Const is a function assigning a member of A� to every symbol in � of type ��

The meaning of simply�typed ��terms is usually de�ned using the notion of an environment �
or valuation� A valuation is a function ��X �

S
�A����T � where X is the set of term variables�

Although when nonempty carriers are considered �which is the case right now�� it is not really
necessary to consider judgements for interpreting ��terms� since we are going to consider more
general applicative structures� we de�ne the semantics of terms using judgements� Recall that a
judgement is an expression of the form � � M � �� where �� called a context� is a set of variable
declarations of the form x�� ��� � � � � xn� �n� where the xi are pairwise distinct and the �i are types�
M is a simply�typed ��term� and � is a type� There is a standard proof system that allows to type�
check terms� A term M type�checks with type � in the context � �where � contains an assignment
of types to all the variables in M� i� the judgement � � M � � is derivable in this proof system�
Given a context �� we say that a valuation � satis�es � i� ��x� � A� for every x� � � � �in other
words� � respects the typing of the variables declared in ��� Then given a context � and a valuation
� satisfying �� the meaning 

� � M � ���� of a judgement � � M � � is de�ned by induction on the
derivation of � �M � �� according to the following clauses�



� � x� ���� � ��x�� if x is a variable�



� � c� ����� Const�c�� if c is a constant�



� �MN � � ��� � app��� �

� �M � ��� ������ 

� � N � ������

�





���x� ��M � ��� ����� � f � where f is the unique element of A��� such that app��� �f� a� �


�� x� � �M � � ���
x� � a�� for every a � A� �

Note that in order for the element f � A��� to be uniquely de�ned in the last clause� we
need to make certain additional assumptions� First� we assume that we are considering extensional
applicative structures� which means that for all f� g � A��� � if app�f� a� � app�g� a� for all a � A��
then f � g� This condition garantees the uniqueness of f if it exists� The second condition is more
technical� and asserts that each A� contains enough elements so that there is an element f � A���

such that app����f� a� � 

�� x� � �M � � ���
x� � a�� for every a � A��

Note that each operator app��� �A����A� � A� induces a function fun��� �A��� � 
A� � A� ��
where 
A� � A� � denotes the exponential of A� and A� �in this case� since we are in the category
of sets� the set of functions from A� to A� �� de�ned such that

fun��� �f��a� � app����f� a��

for all f � A��� � and all a � A� � Then� extensionality is equivalent to the fact that each fun��� is
injective� Note that fun��� �A��� � 
A� � A� � is the �curried� version of app��� �A����A� � A� �
and it exists because the category of sets is Cartesian�closed� For the category of sets� the fact that

A� � A� � is an exponential object is a triviality� but for more general categories� as this will be
the case when we de�ne Kripke structures �categories of presheaves�� the existence of exponentials
is no longer a trivial fact �but not a di	cult one��

The clause de�ning 

� � �x� ��M � ��� ����� suggests that a partial map abst��� � 
A� � A� � �
A��� � �abstracting� a function � � 
A� � A� � into an element abst��� ��� � A��� � can be de�ned�
For example� the function � de�ned such that ��a� � 

�� x� � �M � � ���
x� � a� would be mapped to


� � �x� ��M � ��� ������ In order for the resulting structure to be a model of ��reduction� we just
have to require that fun��� and abst��� satisfy the axiom

fun����abst��� ���� � ��

whenever � � 
A� � A� � is in the domain of abst��� � But now� observe that if pairs of operators
fun��� � abst��� satisfying the above axiom are de�ned� the injectivity of fun��� is super�uous for
de�ning 

� � �x� ��M � ��� ������

Thus� by de�ning a more general kind of applicative structure using the operators fun��� and
abst��� � we can still give meanings to ��terms� even when these structures are nonextensional� In
particular� our approach is an alternative to the method where one considers applicative structures
with meaning functions� as for example in Mitchell 
���� In particular� the term structure together
with the meaning function de�ned using substitution can be seen to be an applicative structure
according to our de�nition� In fact� this approach allows us to go further� We can assume that
each carrier A� is equipped with a preorder �� � and rather than considering the equality

fun����abst��� ���� � ��

we can consider inequalities
fun����abst��� ���� � ��

This way� we can deal with intentional �nonapplicative� structures that model reduction rather than
conversion� We learned from Gordon Plotkin that models of ��reduction �or �	�reduction� have

�



been considered before� in particular by Girard 
��� Jacobs� Margaria� and Zacchi 
��� and Plotkin

���� However� except for Girard who studies qualitative domains for system F� the other authors
consider models of the untyped ��calculus� In 
��� de�nition ���
� Girard de�nes a ��structure as a
triple D � hX�H�Ki consisting of

�i� a qualitative domain X �

�ii� a stable function H from X to X � X � and

�iii� a stable function K from X � X to X �

where X � X is the set of all traces of stable functions from X to X � Girard then shows
that a ��structure D models ��reduction if H 	 K 
 IdX�X � and that D models 	�reduction if
K 	H 
 IdX �note that the partial order 
 corresponds to the opposite of our ordering ��� Girard
also states that such structures have nice features� in particular because they can be approximated
by �nite ��structures�

The major di�erence with our approach is that the above models are intended for the untyped
��calculus�

In 
���� section �� Plotkin introduces a notion of model of ��reduction that he calls an ordered
��interpretation� After Mitchell 
���� Plotkin de�nes such a structure as a triple P � hP� �� 

������i�
where P is a partial order� � is a monotonic application operation ��P � P � P � and 

������ is a
meaning function� that maps terms and environments to P � and such that some obvious conditions
on 

����� hold� If the condition



�x�M ����� � a � 

M ����
x� � a���

holds� we say that P is a model of ��reduction� Plotkin then proceeds to show that such models are
sound and complete with respect to Curry�style type inference systems �also know as systems for F �
deducibility�� for various type disciplines� The main di�erence with our approach is that Plotkin�s
structures are models of the untyped ��calculus� and that meaning functions are an intrinsic part
of their de�nition� In our de�nition� the meaning function is not part of the de�nition� but it is
uniquely de�ned� For our purposes� this is a much more suitable approach�

We now show how to construct Kripke structures along the ideas sketched above� First� we
review Mitchell and Moggi�s de�nition 
�
�� The main new ingredient is that we have a preordered
set hW � vi� intuitively� a set of worlds� Then� a Kripke applicative structure is de�ned as a tuple

hW � v� �A�
w���T �w�W � �app

���
w �����T �w�W � �i�w��w�

���T �w� �w��Wi�

where�

W is a set of worlds preordered by v�

�A�
w���T �w�W is a family of �possibly empty� sets called carriers �

�app���w �����T �w�W is a family of application operators � where each app���w is a total function
app���w �A���

w � A�
w � A�

w�

i�w��w�
�A�

w�
� A�

w�
is a transition function� whenever w� v w��

�



Furthermore� certain conditions hold� making each A� into a functor fromW to Sets� and each
app��� into a natural transformation between the functors A��� � A� and A� � For example� we
have

i�w��w�
�app���w�

�f� a�� � app���w�
�i���
w��w�

�f�� i�w��w�
�a���

for all f � A���
w�

and all a � A�
w�
��

If we want to adapt this de�nition to give a more general de�nition in terms of the operators
fun��� and abst��� � we need to de�ne fun��� as the �curried� version of the natural transformation
app��� between the functors A��� �A� and A� � This is where we use a bit of category theory� Each
A� can be viewed as a functor A��W � Sets from the preorder W viewed as a category� and the
category of sets� and these functors together with the natural transformations between them form
a category� a presheaf category � which is known to be Cartesian�closed �see Mac Lane and Moerdijk

 ��� Furthermore� it is possible to give an explicit construction of the exponential 
A� � A� � �see
de�nition ���� between two functors A� and A� � and to de�ne fun as curry�app�� Then� it is easy
to de�ne a Kripke applicative structure in terms of the natural transformations fun��� and abst��� �

In order to deal with second�order types� �rst� we need to provide an interpretation of the type
variables� Thus� as in Breazu�Tannen and Coquand 
��� we assume that we have an algebra of types
T � which consists of a quadruple

hT��� 
T � T �� �i�

where T is a nonempty set of types� ��T � T � T is a binary operation on T � 
T � T � is a
nonempty set of functions from T to T � and � is a function �� 
T � T �� T �

We hope that readers will forgive us for using the same letter T to denote an algebra of types
and its carrier� Intuitively� given a valuation 
�V � T �where V is the set of type variables�� a type
� � T will be interpreted as an element 

���
 of T � Then� a second�order applicative structure is
de�ned as a tuple

hT� �As�s�T � �app
s�t�s�t�T � �tapp

�����T�T �i�

where

T is an algebra of types�

�As�s�T is a family of nonempty sets called carriers �

�apps�t�s�t�T is a family of application operators � where each apps�t is a total function
apps�t�As�t � As � At�

�tapp�����T�T � is a family of type�application operators � where each tapp� is a total function

tapp��A���� � T �
�
�A��s��s�T � such that tapp��f� t� � A��t�� for every f � A����� and

every t � T �

In order to de�ne second�order applicative structures using operators like fun and abst� we
need to de�ne the curried version tfun� of tapp��A����� T �

�
�A��s��s�T � For this� we de�ne

a kind of dependent product D���A
s�s�T �see de�nition ����� Then� we have families of operators

tfun��A���� � D���As�s�T � and tabst��D���As�s�T � A����� for every ! � 
T � T ��

Now� if we want to adapt the above de�nition to de�ne Kripke applicative structures� we
have to view A���� � T and

�
�A��s��s�T as functors� and tapp��A���� � T �

�
�A��s��s�T as

�Constants can be handled too� but for simplicity� they are dropped�

 



a natural transformation between them� Then� we need to de�ne some form of exponential of T
and

�
�A��s��s�T � Such an exponential can indeed be constructed as a functor

Q
��A

s�s�T de�ned
in terms of the dependent products D���A

s
w�s�T �see de�nition ����� We also need to show that

the functor
Q

��A
s�s�T satis�es a universal property analogous to the property satis�ed by the

functor 
As � At�� For this� we de�ne the set Nat��H � T�
�
�A��s��s�T � as the set of natural

transformations 	�H � T �
�
�A��s��s�T � such that� 	u�a� t� � A

��t�
u � for every a � Hu and every

t � T �see de�nition �� �� Then� we can prove a lemma �lemma ����� that shows that
Q

��A
s�s�T

is indeed a certain kind of exponential� Thus� at the level of presheaf categories� we have the
usual maps curry and uncurry that set up a �natural� bijection between Nat�H � F� G� and
Nat�H� 
F � G��� but also some maps curry� and uncurry� that set up a �natural� bijection
between the sets of natural transformations Nat��H � T�

�
�A��s��s�T � and Nat�H�

Q
��A

s�s�T ��

Armed with the de�nition of the functors 
As � At� and
Q

��A
s�s�T � and the natural trans�

formations fun� abst� tfun� and tabst� we can de�ne Kripke applicative structures �see de�nition
����� In fact� the de�nition also applies to the product and sum types� and to carriers As

w equipped
with preorders� This way� we can de�ne models of sets of rewrite rules� as well as models of sets of
equations�

The paper is organized as follows� Section 
 is a review of the syntax of the second�order typed
��calculus ���������� Section � contains a review of some elementary notions of category theory�
An explicit construction of the exponential of functors F�G�W � Preor� where W is a preorder�
and Preor is the category of preorders� is given� The dependent product

Q
��A

s�s�T is also de�ned�
Kripke pre�applicative structures are de�ned in section �� In section �� we show how to interpet
second�order ��terms using Kripke applicative structures� A number of proof systems for proving
inequalities �rewrite rules� and equations are de�ned in section �� Satisfaction and validity �in a
Kripke structure� is also de�ned� Some soundness and completeness results are proved in section
�� The results of section � are adapted to equations in section �� Section  contains the conclusion
and some suggestions for further research�

� Syntax of the Second�Order Typed ��Calculus ���������

In this section� we review quickly the syntax of the second�order typed ��calculus ���������� This
includes a de�nition of the second�order types under consideration� of raw terms� or the type�
checking rules for judgements� and of the reduction rules� For more details �on the subsystem
������� the reader should consult Breazu�Tannen and Coquand 
���

Let T denote the set of second�order types� This set comprises type variables X � type constants
k� and compound types �� � ��� �� � ��� �� " ��� and �X� �� It is assumed that we have a set
TC of type constants �also called base types of kind ��� We have a countably in�nite set V of type
variables �denoted as upper case letters X� Y� Z�� and a countably in�nite set X of term variables
�denoted as lower case letters x� y� z�� We denote the set of free type variables occurring in a type �
as FTV ���� We use the notation � for the kind of types� Since we are only considering second�order
quanti�cation over predicate symbols �of kind �� of arity �� this is super�uous� However� it will
occasionally be useful to consider contexts � in which type variables are explicitly present� since this
makes the type�checking rules more uniform in the case of ��abstraction and typed ��abstraction�
Thus� o	cially� a context � is a set fx�� ��� � � � � xn� �ng� where x�� � � � � xn are term variables� and

��



��� � � � � �n are types� We let dom��� � fx�� � � � � xng� As usual� we assume that the variables xj
are pairwise distinct� We also assume that x �� dom��� in a context �� x� �� Informally� we will
also consider contexts fX�� �� � � � � Xm� �� x�� ��� � � � � xn� �ng� where X�� � � � � Xm are type variables�
and x�� � � � � xn are term variables� with the two sets fX�� � � � � Xmg and fx�� � � � � xng disjoint� the
variables Xi pairwise distinct� and the variables xj pairwise distinct� We assume that X �� dom���
in a context �� X � �� For the sake of brevity� rather than writing typed ��abstraction as �X � ��M �
it will be written as �X�M �

It is assumed that we have a set Const of constants� together with a function Type�Const � T �
such that every constant c is assigned a closed type Type�c� in T � The set TC of type constants�
together with the set Const of constants� and the function Type� constitute a signature �� Let us
review the de�nition of raw terms�

De�nition ��� The set of raw terms is de�ned inductively as follows� every variable x � X is a
raw term� every constant c � Const is a raw terms� and if M�N are raw terms and �� � are types�
then �MN�� �M��� �x� ��M � �X�M � ���M�� ���M�� hM� Ni� inl�M�� inr�M�� and 
M� N �� are
raw terms�

We let FV �M� denote the set of free term�variables inM � Raw terms may contain free variables
and may not type�check �for example� �xx��� In order to de�ne which raw terms type�check� we
consider expressions of the form � �M � �� called judgements � where � is a context in which all the
free term variables in M are declared� A term M type�checks with type � in the context � i� the
judgement � �M � � is provable using axioms and rules summarized in the following de�nition�

De�nition ��� The judgements of the polymorphic typed ��calculus ��������� are de�ned by the
following rules�

� � x� �� when x� � � ��

� � c�Type�c�� when c is a constant�

�� x� � �M � �

� � ��x� ��M�� ��� ��
�abstraction�

� �M � ��� �� � � N � �

� � �MN�� �
�application�

� �M � � � � N � �

� � hM� Ni� �� �
�pairing�

� �M � � � �

� � ���M�� �
�projection�

� �M � � � �

� � ���M�� �
�projection�

� �M � �

� � inl�M�� �" �
�injection�

� �M � �

� � inr�M�� � " �
�injection�

� �M � ��� �� � � N � �� � ��

� � 
M� N �� ��" ��� �
�co�pairing�

��



�� X � � �M � �

� � ��X�M�� �X� �
���intro�

provided that X ��
S
x���	FTV ����

� �M � �X� �

� � �M��� �
��X �
���elim�

The reason why we do not o	cially consider that a context contains type variables� is that
in the rule ���elim�� the type � could contain type variables not declared in �� and it would be
necessary to have a weakening rule to add new type variables to a context �or some other mechanism
to add new type variables to a context�� As long as we do not deal with dependent types� this
technical annoyance is most simply circumvented by assuming that type variables are not included
in contexts�

Instead of using the construct case P of inl�x� �� � M j inr�y� �� � N � we found it more
convenient and simpler to use the slightly more general construct 
M� N �� where M is of type
� � � and N is of type � � �� even when M and N are not ��abstractions� This will be especially
advantageous for the semantic treatment to follow� Then� we can de�ne the conditional construct
case P of inl�x� ���M j inr�y� ��� N � where P is of type � " � � as 
�x� ��M� �y� ��N �P �

De�nition ��� The reduction rules of the system �������� are listed below�

��x� ��M�N �� M 
N�x��

���hM�Ni� �� M�

���hM�Ni� �� N�


M� N �inl�P � �� MP�


M� N �inr�P � �� NP�

��X�M�� �� M 
��X ��

The reduction relation de�ned by the rules of de�nition 
�� is denoted as ��� �even though
there are reductions other than ��reduction�� From now on� when we refer to a ��term� we mean a
��term that type�checks� In order to de�ne Kripke models for ���������� we need to review a few
concepts from category theory�

� Exponentials and Dependent Products in the Category Preor
W

In this section� we de�ne an algebra of polymorphic types� and review some elementary notions of
category theory� We give an explicit construction of the exponential of functors F�G�W � Preor�
where W is a preorder� and Preor is the category of preorders� We also de�ne the dependent
product

Q
��A

s�s�T � and show that this functor is a certain kind of exponential� if the right set of
natural transformations is considered�

De�nition ��� An algebra of �polymorphic� types is a tuple

hT�����"� 
T � T �� �i�

�




where T is a nonempty set of types �����"�T � T � T are binary operations on T � 
T � T � is a
nonempty set of functions from T to T � and � is a function �� 
T � T �� T �

We hope that readers will forgive us for using the same letter T to denote an algebra of types
and its carrier� Intuitively� given a valuation 
�V � T � a type � � T will be interpreted as an
element 

���
 of T �

We need to de�ne two categories of preorders�

De�nition ��� The category Preor is the category whose objects are preordered sets hW� vi� and
whose arrows f �W� � W� are monotonic functions �with respect to v� and v��� The category
Preorp is the category whose objects are preordered sets hW� vi� and whose arrows f �W� � W�

are monotonic partial functions �with respect to v� and v���

It is obvious that Preor and Preorp are categories� Given a monotonic function f �W� � W��
where W� and W� are preorders� we say that f is isotone i� f�w�� v f�w�� implies that w� v w��
for all w�� w� � W��

Any preordered set hW � vi can be viewed as the category whose objects are the elements
of W � and such that there is a single arrow denoted w� � w� from w� to w� i� w� v w�� We
will be interested in functors F �W � Preor� Such a functor assigns a preorder F �w� to every
w � W � and an arrow F �w� � w���F �w�� � F �w�� to every pair such that w� v w�� The
preorder F �w� is also denoted as hFw� �

F
wi� and the arrow F �w� � w�� is a monotonic function

denoted as iFw��w�
�Fw�

� Fw�
� The fact that F is a functor means that iFw�w � id� and that

iFw��w�
� iFw��w�

	 iFw��w�
� whenever w� v w� v w
�

Recall that a natural transformation 	�F � G between two functors F�G�W � Preor is a
family 	 � �	


