Institute for Research in Cognitive Science

Kripke Models and the (In)equational
L ogic of the Second-Order
L ambda-Calculus

Jean Gallier

University of Pennsylvania
3401 Walnut Street, Suite 400C
Philadelphia, PA 19104-6228

September 1995

Site of the NSF Science and Technology Center for
Research in Cognitive Science

IRCS Report 95-25

Kripke models and the (in)equational logic of
the second-order A-calculus

Jean Gallier*
Department of Computer and Information Science
University of Pennsylvania
200 South 33rd St.
Philadelphia, PA 19104, USA

e-mail: jean@saul.cis.upenn.edu

August 23, 1995

Abstract. We define a new class of Kripke structures for the second-order A-calculus, and investi-
gate the soundness and completeness of some proof systems for proving inequalities (rewrite rules)
as well as equations. The Kripke structures under consideration are equipped with preorders that
correspond to an abstract form of reduction, and they are not necessarily extensional. A novelty
of our approach is that we define these structures directly as functors A:W — Preor equipped
with certain natural transformations corresponding to application and abstraction (where W is a
preorder, the set of worlds, and Preor is the category of preorders). We make use of an explicit
construction of the exponential of functors in the Cartesian-closed category Preor”V, and we also
define a kind of exponential []g(A®)ser to take care of type abstraction. However, we strive for
simplicity, and we only use very elementary categorical concepts. Consequently, we believe that
the models described in this paper are more palatable than abstract categorical models which re-
quire much more sophisticated machinery (and are not models of rewrite rules anyway). We obtain
soundness and completeness theorems that generalize some results of Mitchell and Moggi to the
second-order A-calculus, and to sets of inequalities (rewrite rules).

*This research was partially supported by ONR Grant NOOO14-93-1-1217.

1 Introduction

In order to have a deeper and hopefully more intuitive understanding of various typed A-calculi
and their logical properties, it is useful to define and study classes of models for these calculi.
Typically, given some typed A-calculus, we are interested in reduction or conversion properties of
this calculus, and the crucial properties of reduction and conversion are axiomatized by a proof
system for deriving equations or rewrite rules (for example, 3-conversion). Models will be useful
only if they are sound with respect to the given proof system, in the sense that provable equations
(or rewrite rules) must be valid. Then, models can be helpful for showing that a certain equation
M = N is not derivable from a given set F of equations: it is sufficient to exhibit a model in which
all equations in I are valid and in which M = N is falsified. Conversely, we can better calibrate the
strength of a proof system if we can prove a completeness theorem. For example, we say that we
have strong completeness if we can show that for any set F of equations and any equation M = N,
if M = N is valid in every model of the equations in F, then M = N is provable from F. Then, we
know that if M = N is not a consequence of F, then there is a model of E that falsifies M = N.
One can also consider refinements of strong completeness theorems where completeness is shown
for classes of models with certain required properties.

For the simply-typed A-calculus, models inspired by Henkin models [7] were defined by Friedman
[2], who proved a strong completeness theorem, as well as another interesting completeness theorem.
Plotkin [14] and Statman [17], [18], also proved some refinements of the strong completeness theorem
for the simply-typed A-calculus.

So far, we have assumed that the models under consideration have nonempty carriers for all
types. However, in computer science applications, the assumption that carriers are nonempty may
be unreasonable, because too restrictive. This fact was first observed by Goguen and Meseguer [5]
in the framework of many-sorted algebras, and later on, by Meyer, Mitchell, Moggi, and Statman
[10], for the second-order A-calculus. The example of the polymorphic boolean type polybool is
particularly illuminating. Consider the type

polybool: =VX. (X — (X — X)),
of polymorphic booleans, and define the terms True, False, and C'ond, as
True:= AX. dz: X. Ay: X. z,

False:= A X. Az: X. dy: Xy,
Cond: = Ab: polybool . b.

The terms T'rue and False are the only (pure) closed terms of type polybool, and it is easy to
verify that the equations

Cond True Xzy =z Cond False Xxy =y

are provable, for any term X.

For any b: polybool, what about the equation

Cond TruebXyy =y (1)

In fact, it can be shown that this equation does not follow from the previous one. This is
because there are models where (1) fails, e.g. when there are elements in polybool other than True,
False, for instance b = Lpsypoor (the least element of a cpo) as in the usual cpo-based model. The
previous example suggets the following question:

Question: Is it consistent to assume that True and False are the only elements of polybool?

Ingenious contructions of Moggi and Coquand show that the answer is yes. Indeed, it can be
shown that there is a model of the polymorphic A-calculus in which polybool consists exactly of
two elements. In this model, (1) is valid. But, these models contain empty types. In fact, Meyer,
Mitchell, Moggi, and Statman [10] showed that

In any (nontrivial) model of the polymorphic A-calculus with all types nonempty, equation (1)
is not valid. In particular, there must be at least three elements of type polybool in such a model.

Breazu-Tannen and Coquand [1] showed that these results can be extended to types of the form
0 =VYX;...VX,. 7, where 7 is a quantifier-free type (in the sense that there is a model in which
elements of the type o are precisely those definable by the pure closed terms of type ¢ iff models
have empty types).

Thus, models with empty types are indispensable. Unfortunately, empty types cause trouble
w.r.t. soundness and completeness! The “generic” model property also fails for models with empty
carriers. For example, consider the set E consiting of a the single equation

E={vAx:0. Ay:7. True = Az: 0. \y: 7. False}.

Meyer, Mitchell, Moggi, and Statman [10] proved that the theory of the class C of all models of
F (with empty carriers) is not equal to the theory of any single model.

In turn, the absense of the generic model property causes problems for completeness proofs. In
the traditional proof system w.r.t. models without empty types, we need the rule:

Ixiov My = Msy:o
FDMlz'leO'

(nonempty)

provided that = ¢ FV(M;)U FV(Ms).

But rule (nonempty) is not sound w.r.t. models with empty carriers! So, we can try to delete
rule (nonempty) from the traditional proof system. But then, we loose completeness!

Let 71 and w9 be the simply-typed terms
T = Ax:0. Ay 0.8, To = Ax:0.Ay:0.y,
and let f:(oc — 0 — o) — 0. Then,
pAz:o. (fr) = Azio. (frz): (0 — 0) (2)

semantically implies

> fr = frg:o. (3)

However, the above implication cannot be derived in the traditional proof system without rule
(nonempty).

Meyer, Mitchell, Moggi, and Statman [10], gave a complete proof system w.r.t. models with
empty carriers. However, reasoning in such a system is rather complicated, since it is necessary to
add new axioms

empty(o),x: o> True = False: polybool

and a new rule to reason by cases:

I'Nazio> M = N:7 T,empty(c)p M = N:7
' M=N:1

(cases)

where @ ¢ FV(M)U FV(N).

Also, to the best of our knowledge, a detailed completeness proof has not been published. Thus,
it appears that dealing with models with empty types is not such a simple matter, and that classical
models do not seem well suited.

Mitchell and Moggi [12] observed that after all, proof systems for typed A-calculi are intuition-
istic (in most cases), and that the semantics in terms of Henkin-like models with possibly empty
carriers is just too classical in nature, in the sense that arguments where we assume that a carrier
is either empty or nonempty, may be used freely. Thus, Mitchell and Moggi suggested to consider
intuitionistic semantics such as Kripke-style semantics. Indeed, a Kripke-style semantics forces an
intuitionistic interpretation of the connectives, and extended completeness holds again for the usual
proof system, regardless of the fact that carriers may be empty. Also, in the Kripke semantics, for
any set F of equations, there is a Kripke model A such that, an equation M = N is valid in A iff
M = N is provable from F. Besides having the virtue that these desirable completeness properties
are regained in the Kripke semantics, from a categorical point of view, Kripke models are essentially
equivalent to arbitrary CCC’s, as sketched in Mitchell and Moggi [12]. However, this relationship
will not be considered in the present paper.

In this paper, we define a new class of Kripke structures for the second-order A-calculus, and
investigate the soundness and completeness of some proof systems for proving inequalities (rewrite
rules) or equations. Actually, we consider a more general class of structures. Traditionally, only
models of conversion have been considered. However, we believe that models can also be used to
prove properties of the reduction relation. Thus, the Kripke structures considered in this paper
are equipped with preorders that correspond to an abstract form of reduction, and they are not
necessarily extensional. This approach allows us to consider models of sets of rewrite rules, as well
as sets of equations. We obtain soundness and completeness theorems that generalize some results
of Mitchell and Moggi [12] to the second-order A-calculus, and to sets of inequalities (rewrite rules).

Since the paper is quite technical, in order to help the reader sort out what is really new, which
difficulties had to be overcome, and where are the most important results of this paper, we provide
the following summary.

The new contributions are:

(1) A construction of Kripke models of the second-order A-calculus, extending that of Mitchell and
Moggi for the simply-typed A-calculus.

(2) The fact that these Kripke models are models of the reduction relation, and not just of the
conversion relation.

(3) A clarification of the nature of extensionality.

(4) Proof systems for rewrite rules as well as equations, and proofs of soundness and completeness
with respect to the new class of Kripke models (also, the generic model property).

Not surprisingly, the greatest difficulties were encountered in looking for an interpretation of
second-order types. Inspired by Breazu-Tannen and Coquand’s notion of a type algebra [1] and a
model constuction in Gunter [6], we eventually came up with the idea of the dependent product
Dllg(A®)ser. We were stuck for quite a while, not having realized that DIlg(A®)ser is really an
exponential. Once we realized that a functorial contruction was necessary, everything got unlocked.
We believe that our construction is quite elegant (although hard-core category scientists might have
preferred an invocation of the Yoneda lemma). The construction of a generic model is not that
different from that of Mitchell and Moggi, except that checking the details regarding polymorphic
types is quite involved. Similarly, the soundness proof is very tedious, but fairly standard.

Another point that gave us quite a bit of trouble is extensionality. It took us a long time to
realize that extensionality corresponds to the injectivity of some of the primitive operators involved
in the definition of models. Again, we believe that our solution is quite elegant, and sheds some
new light on the nature of extensionality.

Finding the proof systems for rewrite rules was fairly straightforward, but tuning the extension-
ality rules was a bit tricky. Contrary to proof systems for equations, extensionality rules are not
equivalent to n-like rules. We also observed that the substitution rule cannot always be dispended
with (in the nonextensional case).

The most important sections of this paper are section 4, where Kripke structures are defined,
section 6, where the proof systems are defined, and section 7, where the soundness and completeness
results are proved (lemma 7.1, lemma 7.2, theorem 7.3).

Although we were not expecting to use any category theory in this paper, we realized that
this was almost unvoidable in order to come up with the “right” concepts. In particular, we don’t
believe that we would have come up with the right notion of dependent product for interpreting
typed A-abstraction, if we had not known that categories of presheaves are Cartesian-closed. Thus,
we found it convenient to define these structures directly as functors A: W — Preor equipped
with certain natural transformations corresponding to application and abstraction (where W is a
preorder, the set of worlds, and Preor is the category of preorders). We make use of an explicit
construction of the exponential of functors in the Cartesian-closed category Preor”V, and we also
define a kind of exponential [J4(A%)ser to take care of type abstraction. However, we only use
elementary categorical concepts, and we do not appeal to any fancy machinery.

Actually, categorical models of polymorphic A-calculi have been investigated by Seely [16] and
Pitts [13]. Seely works with so-called PL categories, and obtains a soundness and completeness
theorem for the equational gn-theory of a version of the w-order A-calculus. The completeness
theorem is a consequence of an equivalence of categories. We have no idea how to construct a
counter-example model, or whether this can be done at all, but we also have to admit that the
categorical machinery is well beyond our level of sophistication. Pitts gives a construction for
embedding a so-called 2T’ AC-hyperdoctrine into a topos model. This is achieved in two steps, the

first one beeing a Grothendieck fibration construction, and the second one a Yoneda embedding.
Pitts does obtain a soundness and completeness theorem for the the equational gn-theory of the
second-order A-calculus. Again, we have to confess that the categorical machinery is well beyond
our level of sophistication. Nevertheless, in view of these two rather abstract constructions, we do
not see how explicit counter-example models could be obtained easily. With our class of models,
such counter-examples can be obtained rather easily by a quotient construction. Furthermore, we
can also handle nonextensional models, and rewrite rules. Considering the level of sophistication
required to handle equations with categorical models, we worry that constructing categorical models
of reduction could be really complicated. We view our work as a necessary preliminary step in
investigating models of reduction for the second-order A-calculus, more in a proof-theoretic spirit
than a categorical spirit, and we leave the more sophisticated categorical constructions as a challenge
to categorists.

In order to understand what motivated our definition of a Kripke structure for the second-order
A-calculus, it is useful to review the usual definition of an applicative structure for the simply-typed
A-calculus (for example, as presented in Gunter [6]). For simplicity, we are restricting our attention
to arrow types. Let 7 be the set of simple types built up from some base types using the constructor
—. Given a signature > of function symbols, where each symbol in ¥ is assigned some type in 7,
an applicative structure A is defined as a triple

((A%)oeT, (aPP”")o,reT, Const),
where

(A%),e7 is a family of nonempty sets called carriers,

T

(app”7)o,re1 is a family of application operators, where each app®” is a total function

appCT,T:ACT—>T >< ACT — AT;
and Const is a function assigning a member of A% to every symbol in 3 of type o.

The meaning of simply-typed A-terms is usually defined using the notion of an environment,
or valuation. A valuation is a function p: X' — (A%)se7, where X' is the set of term variables.
Although when nonempty carriers are considered (which is the case right now), it is not really
necessary to consider judgements for interpreting A-terms, since we are going to consider more
general applicative structures, we define the semantics of terms using judgements. Recall that a
judgement is an expression of the form I' > M:o, where I', called a context, is a set of variable
declarations of the form zq:04,...,2,:0,, where the x; are pairwise distinct and the o; are types,
M is a simply-typed A-term, and o is a type. There is a standard proof system that allows to type-
check terms. A term M type-checks with type o in the context I' (where I' contains an assignment
of types to all the variables in M) iff the judgement I'> M:o is derivable in this proof system.
Given a context I', we say that a valuation p satisfies I' iff p(x) € A° for every z:0 € I' (in other
words, p respects the typing of the variables declared in I'). Then given a context I' and a valuation
p satisfying I', the meaning [I' > M:o]p of a judgement I' > M: o is defined by induction on the
derivation of I' > M: o, according to the following clauses:

[L'va:o]p=p(z),if z is a variable;
[I'>c:o]p= Const(c), if ¢ is a constant;

[> MN:1]p=app” ([I'> M:(c — 1)]p, [I'> N:c]p),

[I'>Az:0.M: (0 — 7)]p = f, where f is the unique element of A7 such that app””(f, a) =
[T,z: 0> M:7]p[a: = a], for every a € A°.

Note that in order for the element f € A°~7 to be uniquely defined in the last clause, we
need to make certain additional assumptions. First, we assume that we are considering extensional
applicative structures, which means that for all f,g € A7, if app(f, a) = app(g, a) foralla € A°,
then f = ¢g. This condition garantees the uniqueness of f if it exists. The second condition is more
technical, and asserts that each A% contains enough elements so that there is an element f € A7
such that app?7(f, a) = [I',z: 0> M:T]p[z: = a], for every a € A°.

Note that each operator app””: A7 X A — A7 induces a function fun”7: A777 — [A7 = A7],
where [A7 = A7] denotes the exponential of A7 and A" (in this case, since we are in the category
of sets, the set of functions from A? to A7), defined such that

fun”’(f)(a) = app”’(f, a),

for all f € A°~7, and all @ € A°. Then, extensionality is equivalent to the fact that each fun”” is
injective. Note that fun”": A°~7 — [A7 = A7] is the “curried” version of app”™: A77 "X A7 — AT,
and it exists because the category of sets is Cartesian-closed. For the category of sets, the fact that
[A7 = A7] is an exponential object is a triviality, but for more general categories, as this will be
the case when we define Kripke structures (categories of presheaves), the existence of exponentials
is no longer a trivial fact (but not a difficult one).

The clause defining [I'> Az: 0. M: (0 — 7)]p suggests that a partial map abst”":[4A7 = A7| —
A7 “abstracting” a function ¢ € [A? = A7] into an element abst?7(¢) € A7, can be defined.
For example, the function ¢ defined such that p(a) = [I',z: 0> M: 7]p[z: = a] would be mapped to
[I'>Az:o. M: (0 — 7)]p. In order for the resulting structure to be a model of §-reduction, we just
have to require that fun”” and abst”” satisfy the axiom

fun?’(abst? 7 (¢)) = ¢,

whenever ¢ € [A” = A7] is in the domain of abst””. But now, observe that if pairs of operators
fun”’, abst?” satisfying the above axiom are defined, the injectivity of fun®" is superfluous for
defining [I'> Az: 0. M: (0 — 7)]p.

Thus, by defining a more general kind of applicative structure using the operators fun®” and
abst””, we can still give meanings to A-terms, even when these structures are nonextensional. In
particular, our approach is an alternative to the method where one considers applicative structures
with meaning functions, as for example in Mitchell [11]. In particular, the term structure together
with the meaning function defined using substitution can be seen to be an applicative structure
according to our definition. In fact, this approach allows us to go further. We can assume that
each carrier A is equipped with a preorder <7, and rather than considering the equality

fun”’ (abst?7(¢)) = ¢,

we can consider inequalities
fun”’ (abst?7 (¢)) = .

This way, we can deal with intentional (nonapplicative) structures that model reduction rather than
conversion. We learned from Gordon Plotkin that models of 3-reduction (or B7-reduction) have

been considered before, in particular by Girard [4], Jacobs, Margaria, and Zacchi [8], and Plotkin
[15]. However, except for Girard who studies qualitative domains for system F, the other authors
consider models of the untyped A-calculus. In [4], definition 1.12, Girard defines a A-structure as a
triple D = (X, H, K') consisting of

(i) a qualitative domain X,
(ii) a stable function H from X to X = X, and
(iii) a stable function K from X = X to X,

where X = X is the set of all traces of stable functions from X to X. Girard then shows
that a A-structure D models f-reduction if H o K C Idy_ x, and that D models n-reduction if
KoH C Idx (note that the partial order C corresponds to the opposite of our ordering <). Girard
also states that such structures have nice features, in particular because they can be approximated
by finite A-structures.

The major difference with our approach is that the above models are intended for the untyped
A-calculus.

In [15], section 3, Plotkin introduces a notion of model of f-reduction that he calls an ordered
A-interpretation. After Mitchell [11], Plotkin defines such a structure as a triple P = (P,-,[-](+)),
where P is a partial order, - is a monotonic application operation -: P x P — P, and - is a
meaning function, that maps terms and environments to P, and such that some obvious conditions

on [](+) hold. If the condition

[\, M1(p) - a = [M](ple: = a]).

holds, we say that P is a model of 3-reduction. Plotkin then proceeds to show that such models are
sound and complete with respect to Curry-style type inference systems (also know as systems for F-
deducibility), for various type disciplines. The main difference with our approach is that Plotkin’s
structures are models of the untyped A-calculus, and that meaning functions are an intrinsic part
of their definition. In our definition, the meaning function is not part of the definition, but it is
uniquely defined. For our purposes, this is a much more suitable approach.

We now show how to construct Kripke structures along the ideas sketched above. First, we
review Mitchell and Moggi’s definition [12]. The main new ingredient is that we have a preordered
set (W, C), intuitively, a set of worlds. Then, a Kripke applicative structure is defined as a tuple

<W7 C, (AZ;)CTET,IUEV\U (appZ;T)U,TET,wEV\}v (iful,wQ)UET,w1,w2€W>7

where,
W is a set of worlds preordered by C,
(AZ)oeT wew is a family of (possibly empty) sets called carriers,

(appd))o,reT wew is a family of application operators, where each app” is a total function
appy T AYTT XAG — AL

w

[

. o o - .
Uy Ay, — Al 18 @ transition function, whenever wy C ws.

Furthermore, certain conditions hold, making each A” into a functor from W to Sets, and each
app?’ into a natural transformation between the functors A°~7 x A% and A7. For example, we
have

iZul,wQ(appZ;;—(fv a)) = appZ)’;—(ZZ}l_:Z)Q(f)7 iful,wg(a))7
for all f € A777 and all a € A, !

If we want to adapt this definition to give a more general definition in terms of the operators

%7 as the “curried” version of the natural transformation

fun’” and abst?”, we need to define fun
app?” between the functors A°~7 x A% and A7. This is where we use a bit of category theory. Fach
A? can be viewed as a functor A°: W — Sets from the preorder W viewed as a category, and the
category of sets, and these functors together with the natural transformations between them form
a category, a presheaf category, which is known to be Cartesian-closed (see Mac Lane and Moerdijk
[9]). Furthermore, it is possible to give an explicit construction of the exponential [A7 = A7] (see
definition 3.5) between two functors A7 and A7, and to define fun as curry(app). Then, it is easy

to define a Kripke applicative structure in terms of the natural transformations fun®” and abst?’.

In order to deal with second-order types, first, we need to provide an interpretation of the type
variables. Thus, as in Breazu-Tannen and Coquand [1], we assume that we have an algebra of types
T, which consists of a quadruple

<T,—>7 [T = T],V>,

where T' is a nonempty set of types, —:T x T" — T is a binary operation on T, [T = T] is a
nonempty set of functions from 7" to 7', and Y is a function V:[T' = T] — T.

We hope that readers will forgive us for using the same letter 7' to denote an algebra of types
and its carrier. Intuitively, given a valuation #:V — T (where V is the set of type variables), a type
o € T will be interpreted as an element [o]é of T'. Then, a second-order applicative structure is
defined as a tuple

(T, (A*)ser, (apP™")sier, (tapp®)oer—17)s
where
T is an algebra of types;
(A®)ser is a family of nonempty sets called carriers,

(app®')ster is a family of application operators, where each app®’ is a total function
app®!: A7 x A® — Al

(tapp@)@e[T_}T] is a family of type-application operators, where each tapp® is a total function
tapp®: AY®) x T — H(ACD(S))SeT, such that tapp®(f, t) € A% for every f e AY®) and
everyt € T.

In order to define second-order applicative structures using operators like fun and abst, we
need to define the curried version tfun® of tapp®: AY(®) x T — H(ACD(S))SeT. For this, we define
a kind of dependent product Dllg(A®)ser (see definition 3.8). Then, we have families of operators
tfun®: AV(®) Dllg(A®)ser, and tabst®: Dllg(A®)ser — AY(®) for every & € [T = T].

Now, if we want to adapt the above definition to define Kripke applicative structures, we
have to view AY(®) x T" and [J(A®®)),er as functors, and tapp®: AY® x T — [[(A%®)),er as

1Constants can be handled too, but for simplicity, they are dropped.

a natural transformation between them. Then, we need to define some form of exponential of T
and [[(A®®)),cr. Such an exponential can indeed be constructed as a functor [[(A*)ser defined
in terms of the dependent products DIlg(As,)ser (see definition 3.8). We also need to show that
the functor []g(A®)ser satisfies a universal property analogous to the property satisfied by the
functor [A* = A']. For this, we define the set Natg(H x T, [T(A®®)),er) as the set of natural

transformations n: H X T — H(ACD(S))SeT, such that, n(a,t) € A?f(t), for every @ € H, and every
t € T (see definition 3.9). Then, we can prove a lemma (lemma 3.11) that shows that [[4(A%)ser
is indeed a certain kind of exponential. Thus, at the level of presheaf categories, we have the
usual maps curry and uncurry that set up a (natural) bijection between Nat(H x F, G) and
Nat(H, [F' = G]), but also some maps curryg and uncurryg that set up a (natural) bijection
between the sets of natural transformations Natg(H x T, [[(A%®),er) and Nat(H, [[g(A%)ser).

Armed with the definition of the functors [A* = A'] and [[g(A®)ser, and the natural trans-
formations fun, abst, tfun, and tabst, we can define Kripke applicative structures (see definition
4.1). In fact, the definition also applies to the product and sum types, and to carriers A%, equipped
with preorders. This way, we can define models of sets of rewrite rules, as well as models of sets of
equations.

The paper is organized as follows. Section 2 is a review of the syntax of the second-order typed
A-caleulus A=Y Section 3 contains a review of some elementary notions of category theory.
An explicit construction of the exponential of functors F,G: W — Preor, where W is a preorder,
and Preor is the category of preorders, is given. The dependent product []g(A%)ser is also defined.
Kripke pre-applicative structures are defined in section 4. In section 5, we show how to interpet
second-order A-terms using Kripke applicative structures. A number of proof systems for proving
inequalities (rewrite rules) and equations are defined in section 6. Satisfaction and validity (in a
Kripke structure) is also defined. Some soundness and completeness results are proved in section
7. The results of section 7 are adapted to equations in section 8. Section 9 contains the conclusion
and some suggestions for further research.

2 Syntax of the Second-Order Typed A-Calculus ATV

In this section, we review quickly the syntax of the second-order typed A-calculus A= HY) This
includes a definition of the second-order types under consideration, of raw terms, or the type-
checking rules for judgements, and of the reduction rules. For more details (on the subsystem
/_*’VZ)), the reader should consult Breazu-Tannen and Coquand [1].

Let 7 denote the set of second-order types. This set comprises type variables X, type constants
k, and compound types (¢ — 7), (6 X 7), (6 4+ 7), and VX. 0. It is assumed that we have a set
TC of type constants (also called base types of kind x). We have a countably infinite set V of type
variables (denoted as upper case letters X,VY,7), and a countably infinite set A" of term variables
(denoted as lower case letters x, y, z). We denote the set of free type variables occurring in a type o
as F'T'V (o). We use the notation x for the kind of types. Since we are only considering second-order
quantification over predicate symbols (of kind x) of arity 0, this is superfluous. However, it will
occasionally be useful to consider contexts I' in which type variables are explicitly present, since this
makes the type-checking rules more uniform in the case of A-abstraction and typed A-abstraction.
Thus, officially, a context I' is a set {zy:04, ..., ¥,:0,}, where 2y, ..., 2, are term variables, and

10

o1,...,0, are types. We let dom(I') = {z1,...,2,}. As usual, we assume that the variables z;
are pairwise distinct. We also assume that z ¢ dom(I') in a context I',z: 0. Informally, we will
also consider contexts {Xqi:x, ..., X;ix, 21101, ..., @i 0.}, where Xq,..., X, are type variables,
and z1,...,x, are term variables, with the two sets {Xy,..., X,,} and {zy,...,2,} disjoint, the
variables X; pairwise distinct, and the variables z; pairwise distinct. We assume that X ¢ dom(I)
in a context I', X:%. For the sake of brevity, rather than writing typed A-abstraction as AX:%. M,
it will be written as AX. M.

It is assumed that we have a set Const of constants, together with a function Type: Const — T,
such that every constant ¢ is assigned a closed type Type(c) in 7. The set T'C' of type constants,
together with the set Const of constants, and the function Type, constitute a signature 3. Let us
review the definition of raw terms.

Definition 2.1 The set of raw terms is defined inductively as follows: every variable 2 € X' is a
raw term, every constant ¢ € Const is a raw terms, and if M, N are raw terms and o, 7 are types,
then (MN), (M7), Aa:o. M, AX. M, m(M), mo(M), (M, N), inl(M), inr(M), and [M, N], are

raw terms.

Welet F'V(M) denote the set of free term-variables in M. Raw terms may contain free variables
and may not type-check (for example, (zz)). In order to define which raw terms type-check, we
consider expressions of the form I' > M: o, called judgements, where I' is a context in which all the
free term variables in M are declared. A term M type-checks with type ¢ in the context I' iff the
judgement I' > M: o is provable using axioms and rules summarized in the following definition.

Definition 2.2 The judgements of the polymorphic typed A-calculus A=Y are defined by the
following rules.
I'va2:0, whenz:0 €,

I'>c: Type(c), when ¢ is a constant,

Ixiovo M:T

bstracti
I's(Az:0. M):(c —7) (abstraction)
I'sM:(c —7) I'bN:o (application)
application
To(MN): 7 PP
I'sM:0 T'vbN:T (pairing)
airin
I's(M, Ny:oxr P g
I'oM:oxT (ection) I'sM:oxT (ection)
—— (projection _— rojection
I'sm(M):o pros I'>m(M): T pros
I's M:o o I'o M:7 o
(injection) (injection)

I'>inl(M):o+ 7

I'sM:(c—6) I'>N:(1—0)
I's[M, Nj:(c+71) — ¢

I'sinr(M):o+ 7

(co-pairing)

11

I'N'X: x> M:0
I's(AX.M):VX.0
r FTV(7);

(V-intro)

provided that X ¢ |

T:TE

e M:VX.o
I's(Mr):0[7/X]

(V-elim)

The reason why we do not officially consider that a context contains type variables, is that
in the rule (V-elim), the type 7 could contain type variables not declared in I', and it would be
necessary to have a weakening rule to add new type variables to a context (or some other mechanism
to add new type variables to a context). As long as we do not deal with dependent types, this
technical annoyance is most simply circumvented by assuming that type variables are not included
in contexts.

Instead of using the construct case P of inl(z:0) = M | inr(y:7) = N, we found it more
convenient and simpler to use the slightly more general construct [M, N], where M is of type
o — 6 and N is of type 7 — ¢, even when M and N are not A-abstractions. This will be especially
advantageous for the semantic treatment to follow. Then, we can define the conditional construct
case P of inl(z:0)= M | inr(y:7) = N, where P is of type o + 7, as [Az:0. M, Ay: 7. N]|P.

Definition 2.3 The reduction rules of the system A~ are listed below:

(Az:o. M)N — M[N/z],
w1 (M, N)) — M,
ma((M, N)) — N,

[M, N]inl(P) — MP,
[M, N]inr(P) — NP,
(AX.M)r — M[r/X].

The reduction relation defined by the rules of definition 2.3 is denoted as —p (even though
there are reductions other than g-reduction). From now on, when we refer to a A-term, we mean a
A-term that type-checks. In order to define Kripke models for /_*’X""’VZ), we need to review a few
concepts from category theory.

3 Exponentials and Dependent Products in the Category Preor’”

In this section, we define an algebra of polymorphic types, and review some elementary notions of
category theory. We give an explicit construction of the exponential of functors F,G: W — Preor,
where W is a preorder, and Preor is the category of preorders. We also define the dependent
product [[(A®)ser, and show that this functor is a certain kind of exponential, if the right set of
natural transformations is considered.

Definition 3.1 An algebra of (polymorphic) types is a tuple

<T7—>7 ><7+7 [T :> T]7v>7

12

where T is a nonempty set of types, —, X, +:T x T'— T are binary operations on T, [T = T] is a
nonempty set of functions from 7" to 7', and Y is a function V:[T' = T] — T.

We hope that readers will forgive us for using the same letter 7' to denote an algebra of types
and its carrier. Intuitively, given a valuation #:V — T, a type o € 7 will be interpreted as an
element [o]é of T'.

We need to define two categories of preorders.

Definition 3.2 The category Preor is the category whose objects are preordered sets (W, C), and
whose arrows f: W7 — W, are monotonic functions (with respect to C; and Cy). The category
Preor, is the category whose objects are preordered sets (W, C), and whose arrows f: Wy — W,
are monotonic partial functions (with respect to Ty and Cy).

It is obvious that Preor and Preor, are categories. Given a monotonic function f: W, — Wy,
where Wy and W, are preorders, we say that f is isotone iff f(wy) C f(wz) implies that wy C wy,
for all wy,wy € Wi,

Any preordered set (W, L) can be viewed as the category whose objects are the elements
of W, and such that there is a single arrow denoted w; — wy from wy to wq iff wy C wy. We
will be interested in functors F: W — Preor. Such a functor assigns a preorder F(w) to every
w € W, and an arrow F(w; — wy): F(wy) — F(wy) to every pair such that wy T wy. The
preorder F'(w) is also denoted as (F,, <), and the arrow F(w; — wj) is a monotonic function

denoted as iith:le — F,,. The fact that F' is a functor means that iiw = id, and that
.F .F .
=1

wivs = Yoy s © Ty Whenever wy £ wy C ws.

Recall that a natural transformation 7: F* — G between two functors F,G: W — Preor is a
family = (n

