A MODEL FOR THE TWO-PHASE BEHAVIOR OF FLUIDS
IN DILUTE POROUS MEDIA

JAMES P. DONLEY, REBECCA M. NYQUIST and ANDREA J. LIU
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA
90095

ABSTRACT

Experiments show that the coexistence region of a vapor-liquid system or binary liquid
mixture is dramatically narrowed when the fluid is confined in a dilute porous medium such
as a silica aerogel. We propose a simple model of the gel as a periodic array of cylindrical
strands, and study the phase behavior of an Ising system confined in this geometry. Our
results suggest that the coexistence region should widen out at lower temperatures, and
that the narrowness observed near the critical point may be a fluctuation-induced effect.

INTRODUCTION

Simple liquids and many binary liquid mixtures exhibit phase separation below a
critical temperature. When they are confined in dilute porous media such as silica gels,
however, their phase behavior is dramatically altered. For example, Wong and Chan
showed that the vapor-liquid coexistence curves of *He and nitrogen are shifted to lower
temperatures and higher densities, and are narrowed by factors of order 15 or more[1].
In addition, Zhuang and Cannell recently found that the coexistence curve of the binary
isobutyric acid/water mixture is greatly narrowed when a silica gel is present[2]. The fact
that two vapor-liquid systems and a binary liquid mixture show the same behavior when

confined in dilute gels suggests some degree of universality in the phenomenon. However,
it is highly surprising that a small amount of impurity in the form of a dilute gel can have

such a pronounced effect on the phase diagram.

In this work, we propose a simple model that permits analytical treatment and appears
to capture the observed behavior. Previous theoretical approaches have concentrated on
the effects of disorder in the gel structure by modeling the system as a random field Ising
model[3], and have failed to reproduce the observed narrow coexistence curve. In contrast
to the random field approach, we neglect disorder and instead focus on the effects of
strong surface-fluid interactions, which preferentially attract one phase over the other to
the surface of the gel strands. To capture aspects of the gel structure without including
disorder, we model the porous medium as a periodic array of cylindrical strands. A dilute
silica gel, with volume fraction between 1-5%, is a fractal network of thin strands up to
some crossover length, {;, typically between 20-100 nm, and is random at larger length
scales[4]. By modeling this structure as a periodic system, we neglect disorder as well as
the fractal character of the structure[5], but we preserve the characteristic mesh size £, as
the lattice spacing of the periodic network, and we retain the fact that the internal surface
is correlated into strands of nonzero radius a. The model reproduces a narrow coexistence
region near the critical point, in qualitative agreement with the experimental results. At

15
Mat. Res. Soc. Symp. Proc. Vol. 407 © 1996 Materials Research Society

Downloaded from https://www.cambridge.org/core. University of Pennsylvania Libraries, on 13 Oct 2017 at 17:15:26, subject to the
Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1557/PROC-407-15


https://www.cambridge.org/core/terms
https://doi.org/10.1557/PROC-407-15
https://www.cambridge.org/core

lower temperatures, however, we find that the coexistence region widens abruptly. This
prediction prcvides a challenge to experiments.

THEORY AND ANALYSIS

The specific model porous medium that we have studied is an hexagonal array of
infinitely long thin cylinders of radius a, which represent gel strands, spaced at a distance
¢ apart. We take advantage of the proximity to a critical point to make use of univer-
sality and to couch the problem in terms of the Ising model. Thus, we picture the space
in between strands as filled with a lattice of spins that can point either up or down, and
that are coupled by nearest-neighbor ferromagnetic interactions. We follow previous work
in the wetting literature by assuming that each cylindrical surface exerts a local surface
field, H;, that prefers spins at the surface to point up[6]. In addition, there is a uniform
magnetic field, H, applied to all spins. The interesting regime is where H favors spins to
point down, in opposition to Hy; if both H and H; favor up-spins, then the system will lie
in the single-phase region with most spins pointing up(7]. We make the further approxi-
mation of coarse-graining the system and using Landau-Ginzburg theory to solve for the
magnetization as a function of position, m(7). The main advantage of our periodic model
is that the magnetization profile is also spatially periodic. In addition, the magnetization
is independent of z, the coordinate along the axial direction of the strands. It is therefore
sufficient to solve for m(7) in the two-dimensional hexagonal unit cell. Finally, we adopt
the Wigner-Seitz approximation, replacing the hexagonal unit cell by a circular one of the
same area. Thus, the final geometry that we solve is a circular annulus, where the inner
radius is the strand radius a and the outer radius b is related to the distance between
strands &, by b(£:) = £,:3'/4/+/27. In order to ensure continuity of the derivative of m(7),
the radial derivative of the magnetization at the boundary of the unit cell must be zero.
The free energy functional to be minimized is

b m
fml = u(m) + [ dr(o/)| Fo(m(r) - Hm) + 32CGEE ] @)

where H is the uniform magnetic field and « is a molecular length related to the interaction
range. The surface free energy 2, is a function of the magnetization at the surface of the
strand at r = a:

1
Qs(ms) = ’"Hlms - igmga (2)

where H; is the surface field and ¢, the surface enhancement parameter, is typically neg-
ative to reflect the fact that spins at the surface have fewer neighbors than those in the
bulk[6]. Finally, the bulk free energy is

1 1
fB(m) = Et’l’n2 + -4-Um4, (3)

where u > 0 sets the width of the coexistence curve of the pure system. The parameter ¢ is
proportional to the reduced temperature (T'—T,)/T.. When H is negative, the minimum of
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the bulk free energy lies at a negative value of m. Thus, Eq. 1 represents the competition
of three effects: the surface term favors a high positive magnetization near the strand
because Hy is positive, the bulk free energy favors a negative magnetization away from
the strand because H is negative, and the square gradient term favors gradual spatial
changes in the magnetization. Minimization of Eq. 1 yields a second-order, nonlinear
differential equation for m(r) that we solve numerically, using a relaxation method[8]. We
then compute the average magnetization m = 2 f: drrm(r)/(b* — a®). The resulting m vs.
H isotherms are used to construct the coexistence curve.

The results of the analysis are shown in Fig. 1, where we have plotted the phase
diagram in the magnetization-temperature plane. The solid line represents the coexistence
curve of the pure system, while the dashed line is the coexistence curve of the system
confined in a 4%-volume-fraction periodic gel. Note that the presence of the gel causes the
critical point to shift to higher magnetization, m. > 0, and lower temperature, t, < 0. The
shift towards higher magnetization results from the preference of the surface for up-spins,
while the shift towards lower temperature results from the competition between the surface
field, H; > 0, and the bulk magnetic field, H < 0, which discourages long-range order. This
qualitative shift of the critical point to higher m and lower ¢ is consistent with experimental
results, but there are significant differences. For example, the dashed coexistence curve in
Fig. 1 is much wider than the experimentally observed coexistence curve. The second and
more significant difference lies in the position of the new coexistence curve. The right edge
of the dashed curve in Fig. 1 falls outside the bulk coexistence curve, while the right edge
of the experimental curve falls well inside the bulk coexistence curve[1].

The fact that a mean field treatment of the periodic model fails to yield a narrow
coexistence curve may indicate that fluctuations are important. Experimental evidence
also points in this direction. The narrow coexistence curves observed experimentally in
the confined vapor-liquid [1] and binary liquid [2] systems lie well inside the critical region
of the corresponding pure systems. Thus, mean field theory provides a poor approximation
to the equation of state of the pure system in the temperature regime of the experiments.

Widom scaling represents the simplest way to include fluctuation effects; it is a phe-
nomenological generalization of mean field theory that incorporates the effects of fluctua-
tions on the equation of state by using renormalized exponent values[9]. The approach has
been useful to several other problems involving inhomogeneous composition profiles, such
as the vapor-liquid interface near the critical point[10] and the critical adsorption profile
near a planar surface[11]. According to Widom scaling, one simply replaces the bulk free
energy in Eq. 3 with the more general form

1 1
fB(m) = ;t|m|z + ;”|m|y7 (4)

where y > 2 and # > 2. The resulting critical exponents can be expressed in terms of z
and y: for example, the coexistence curve exponent is 8 = 1/(y — ), and the correlation
length exponent is v = 1(y — 2)/(y — =) [12]. The choice z = 3, y = 6 yields the exponent
values § = 1/3, v = 2/3, which are are close to the three-dimensional Ising estimates:
B ~0.33, v ~ 0.63.

The results of using Eq. 4 with ¢ = 3 and y = 6 on our periodic model are
strikingly different from the mean-field results. The phase diagrams in the temperature-
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magnetization plane and field-temperature plane are shown in Fig. 2. There are now two
critical points crowning two narrower coexistence curves (a ”double hump”). Below a triple
point, marked ¢; in Fig. 2, we recover the usual wide two-phase coexistence region. The
triple point in the t — m diagram corresponds to the point at which two arms branch off in
the H —t diagram, the left-hand hump in the ¢ —m plane corresponds to the lower arm and
the right-hand hump corresponds to the upper arm in the H — ¢t diagram. We note that,
although each phase may be represented in terms of a single average magnetization m as
in Fig. 2, the phases are actually inhomogeneous, with high positive magnetization near
the strands and lower magnetization between strands. Last, if the field H; is decreased
below a critical value Hj., the double hump disappears, leaving a single narrow hump with
a shoulder. When H; is decreased further the shoulder disappears, and the single coex-
istence curve widens and moves upwards to approach the bulk coexistence curve. Since
the double-hump only exists if Hy is sufficiently strong, it can be viewed as a result of the
strong surface interaction and the high surface-area/volume ratio in the periodic porous
medium.

The physical origin of the double-hump behavior lies in the balance of effects that
determine the shapes of the profiles. As stated above, an equilibrium profile is produced
by a competition between the surface field H, bulk field H, and terms contributing to
the interfacial energy. Increasing the exponent v decreases the cost to form interfaces and
thus alters the balance between these three effects.

Our prediction in Fig. 2 may be consistent with experimental results, which are
limited to a small region near the critical point. The experimental data may represent the
top of the left hump, and the right hump may exist only at temperatures below the range
of the existing data. This possibility remains to be tested by experiments. Note that the
width of the left-hand coexistence region is still only roughly a factor of 3 times smaller
than the bulk coexistence curve, as compared to the experimentally observed factor of 15.
Part of the remaining discrepancy may be due to the fractal nature of the gel, or the form
of the surface interaction, which here we have crudely modeled as a contact interaction.

SUMMARY

In summary, we have shown that an Ising system confined in a dilute array of cylindri-
cal strands shows unexpectedly rich phase behavior that may be consistent with puzzling
experimental results. In particular, we find a phase diagram with two narrow coexistence
curves, with two critical points, or a narrow coexistence region with a shoulder. Although
experiments have observed that the coexistence region is extremely narrow near the critical
point, our results imply that the coexistence region should widen at lower temperatures, be-
low the range of existing data. The unusual behavior that we have predicted is markedly
different from the phase behavior of the pure, unconfined system, and results from the
strong surface interaction and the high surface-area/volume ratio of the porous medium.
Both surface and bulk effects contribute to the phase behavior. The importance of both
surface and bulk effects is characteristic of true mesoscopic systems such as near-critical
fluids confined between two plates or in cylindrical pores. In such systems, however, the
correlation length for composition fluctuations in the fluid is limited by the plate spacing
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Fig. 1 The mean-field coexistence curve of the periodic model (dashed) for a 4%-volume-
fraction gel with H; /kpT = 2, g/kpT = —1 and u = 1. The coexistence curve of the pure
system (solid) is shown for comparison.

0.05 FTf"]‘ LN I S B A R B S e M B Bt I S A R I B B ',

r ' ' ]

[ 0 ]

0.025 %1} ] R

2| cr :

t oL ]

-0.025 [ 1

: ]

-0.05 [ ]

L ; ]

g ) ]

'0.075 PR S S S WO ST R AN U AT SO S TN VW B S T
-1 -0.5 — 0 0.5

m

Fig. 2 The coexistence curve (dashed) of the periodic model calculated using Widom
scaling under the same conditions as in Fig. 1. There are two critical points and a triple
point at a reduced temperature ¢;. The coexistence curve of the pure system (solid), also
calculated using Widom scaling, is shown for comparison. Inset: The corresponding phase
diagram in the H — t plane showing the forked coexistence line (dashed); the coexistence
line of the pure system at H =0, t > 0 (solid) is shown for comparison.
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or pore size. In the case of a dilute porous medium, the fluid occupies nearly all of the
sample volume, so there are no complicating finite-size effects. Thus, a near-critical fluid
in a dilute porous gel is an illuminating example of a macroscopic, fully three-dimensional
system that displays mesoscopic behavior. Support of the Petroleum Research Fund and
Exxon Education Fund is gratefully acknowledged.
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