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[1] Bed form evolution remains dynamic even in the special case of steady, uniform flow.
Data from the sandy, braided North Loup River, Nebraska, show that roughness features
on the channel bottom display a statistical steady state and robust scaling that are
maintained through the collective interactions of transient (short-lived) bed forms.
Motivated by such field data, and laboratory observations of bed form growth, we develop
a nonlinear stochastic surface evolution model for the topography of bed load dominated
sandy rivers in which instantaneous sediment flux explicitly depends on local elevation
and slope. This model quantitatively reproduces laboratory observations of initial
growth and saturation of bed forms from a flat surface, and also generates long-term
dynamical behavior characteristic of natural systems. We argue that the variability in
geometry and kinematics of bed forms in steady flow, and the existence of roughness at all
wavelengths up to the largest dunes, are a consequence of the nonlinear relationship
between sediment flux and topography, subject to noise.
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1. Introduction

[2] The nonlinear dependence of sediment transport on
surface topography produces a bewildering array of pat-
terns, from ripples at the centimeter scale to river networks
and depositional fans at a basin scale. A natural way to
characterize such patterns involves measuring static geo-
metrical properties, spatial correlations, and scaling laws
that may be exhibited between physical parameters of the
system [e.g., Rubin, 1992; Dodds and Rothman, 2000].
Landscapes are dynamic (i.e., variable in time); however,
the study of their transient behavior is hindered by the slow
rate of evolution of most geological systems. Although
surface evolution equations are naturally time dependent,
the dynamical predictions of erosional landscape models
[see, e.g., Willgoose et al., 1991; Howard, 1994; Pelletier,
1999] are difficult to test. A geomorphological transport
system that exhibits both transient behavior on observable
timescales and statistically robust geometrical properties
allows strong tests of models, and provides a window into
fundamental pattern formation mechanisms in sedimentary
systems. Trains of bed forms in sand-bedded rivers are one
example of such a system.
[3] While bed form classification schemes, such as dis-

tinguishing ripples from dunes [e.g., Ashley, 1990], may be
useful in describing some aspects of bed form behavior,
they belie the continuum of scales of topography that make
up a sand-bedded channel. Indeed, there is theoretical
[Hino, 1968], laboratory [Hino, 1968; Nordin, 1971], and
field evidence [Levey et al., 1980; Nikora et al., 1997] that
roughness of all wavelengths exists below the scale of the
largest dunes. Further, bed forms in natural systems change
dimensions continuously as they migrate downstream. The

internal dynamics of a train of bed forms manifests itself as
variability in bed form height, length, and migration rate
(celerity), and in bed form deformation, even when the
topography is developing under steady and uniform macro-
scopic flow conditions [van den Berg, 1987; Gabel, 1993;
Mohrig, 1994; Leclair, 2002]. Although great progress has
been made in the understanding of instability and bed form
growth from a flat surface [e.g., Smith, 1970; McLean,
1990], current models cannot describe the long-time behav-
ior of a train of finite amplitude bed forms.
[4] Increasingly sophisticated measurements of the flow

field over rigid topography [e.g., Nelson et al., 1993;
McLean et al., 1994; Maddux et al., 2003a, 2003b] have
demonstrated the influence of topography on turbulence
production and bed stress. There is now little doubt that the
most accurate model of bed form evolution will eventually
come from detailed numerical solution of the Navier-Stokes
equations [e.g., Shimizu et al., 2000], coupled to some force
balance on sand grains and sediment continuity. Currently,
however, the modeling of fluid flow over arbitrary (and
rapidly deforming) topography is a formidable challenge.
Moreover, a fully coupled fluid-sediment-topography model
would be sufficiently complex that it could not easily serve
as an exploratory tool for understanding fundamental
aspects of sand bed evolution.
[5] At present, an incomplete understanding of how

irregular bed topography controls turbulence production
and how this turbulence affects local sediment transport
precludes development of a bed form evolution model from
first principles. Several models have been proposed that are
fundamentally discrete and stochastic, with sediment trans-
port represented by simple rules [e.g., Tufillaro, 1993;
Werner, 1995; Niño et al., 2002]. Self-organization of bed
forms in such models is robust, and in some cases many
different bed form shapes may be reproduced by variation
of coefficients or transport rules [Werner, 1995]. While
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these models have been effective in illustrating how micro-
scopic disorder can create macroscopic order [see Tufillaro,
1993], their abstract nature prevents quantitative compari-
son to natural systems. Sediment transport in such models is
essentially represented as stochastically driven directed
diffusion. A family of deterministic continuum models for
eolian ripple formation has been proposed by physicists
based on phenomenological descriptions [e.g., Terzidis et
al., 1998; Prigozhin, 1999; Valance and Rioual, 1999] or
conservation and symmetry principles [e.g., Csahók et al.,
2000], but these approaches do not allow the interpretation
of coefficients in terms of measurable physical quantities
[see Csahók et al., 1999]. Many more models for eolian
ripples have been proposed in the literature, with behavior,
limitations, and caveats similar to those described above.
[6] In bed load dominated systems, it is well established

that topography exerts a first-order control on sediment flux.
In particular, Gomez et al. [1989] have linked instantaneous
sediment flux qs directly to the passage of bed forms,
showing that the majority of variance in qs may be
explained by topography. Gomez and Phillips [1999] found
that the highest-frequency variations in qs, however, cannot
be related directly to the passage of bed forms, and
interpreted them as representing high-dimensional chaos
(deterministic uncertainty) in the transport system.Motivated
by these findings, and by documented time evolution of bed
forms in the North Loup River, Nebraska, we develop a
model including both a deterministic surface evolution
equation based on parameterization of bed stress in terms
of local topography and stochastic fluctuations in sediment
flux. In this paper we focus on qualitative behavior not
captured in the previously mentioned models for bed form
evolution, and perform a preliminary analysis of temporal
and spatial scaling with comparisons with empirical data. In
a future work we will report more quantitative comparisons
to field data.

2. River Data

[7] We present here topographic data capturing bed form
evolution in time and in space that are derived from low-
altitude aerial photography of the braided North Loup River,
Nebraska [Mohrig, 1994; Mohrig and Smith, 1996], which
has a bed consisting of well-sorted medium sand (Trask
sorting coefficient = 1.32; median grain diameter, d50 =
0.31 mm). Time-lapse images taken with a camera sus-
pended beneath a tethered helium-filled balloon were con-
verted into topographic maps (Figure 1a), where the gray
scale pixel intensity was transformed into water depth using
the Beer-Lambert law [Soo, 1999] calibrated to numerous
surveyed points within the channel. The spatial (down-
stream and cross-stream, or x- and y-directions, respectively)
resolution is known to be 0.02 m from image pixel size,
while we estimate vertical resolution to be �0.01 m from
analysis of sequential bed form profiles. Observations
shown here were taken with an interval of 1 min for a
period of 1 hour, covering a section of the river of 30 m �
15 m. Approximately constant river stage ensured that flow
was essentially steady over the observation period, so the
observed variability and adjustments of bed form geometry
and migration rate were caused by internal dynamics of the
sediment-fluid interface. A complete statistical description
of channel-bottom topography, and the method developed to

measure this topography, will be the focus of a later paper.
Here we present salient properties of bed evolution in the
North Loup River that we believe are representative of
sand-bedded rivers in general, and these observations serve
to motivate the development of a new mathematical de-
scription for the dynamics of bed forms in bed load
dominated sandy rivers.
[8] It is convenient to examine elevation along one

dimension (i.e., 1-D profiles in the downstream direction)
to observe changes in cross-sectional geometry, and our data
show that all downstream profiles at a given snapshot in
time are statistically identical (as determined by scaling
methods presented below) and therefore justify a 1-D

Figure 1. North Loup River topography extracted from
images. Flow is from left to right for this and all figures.
(a) Plan view snapshot in time of channel bottom, where
brightness corresponds to water depth. Dashed line repre-
sents location of profiles in Figures 1b and 1c. (b) Sequential
streambed profiles, shown every 120 s with vertical offset to
allow visualization. (c) Space-time plot of sequential
streambed profiles shown every 60 s, with elevation
represented by brightness. Bed form crests and troughs are
light and dark, respectively. Color scale is that same as in
Figure 1a.
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analysis. Sequential profiles stacked in time (Figure 1b)
show that bed forms are not translation-invariant. While
large-scale bed features remain recognizable over the dura-
tion of observation (40 min), individual bed forms are
observed to split into smaller features, merge to form larger
features, spontaneously form on the stoss side of larger
features, and disappear in the lee slope of larger features.
We see then that bed forms are inherently transient objects,
such that the river bottom remains dynamic even in steady
flow. Individual bed forms become unrecognizable after
migrating one to two wavelengths, similar to observations
of sand dunes in rivers in eastern Europe by Nikora et al.
[1997] and laboratory dunes observed by Leclair [2002].
[9] Rather than subjectively identify and define individ-

ual bed forms from a profile, the series of elevations in a
profile is treated as a random function [see Nikora et al.,
1997], and its variability is characterized as roughness. A
simple and common measure of roughness is the root mean
square of elevation on the interface, sometimes referred to
as the interface width, w [Barabási and Stanley, 1995]:

w ¼ 1

N

XN
i¼1

hi � hð Þ2
" #1=2

; ð1Þ

where N is the number of observations, h is bed elevation,
and the over bar represents an average over the domain
considered. For reference, the average bed form height for a
profile from the North Loup River is about 2 times the
measured value of w for that profile.
[10] The scaling of w with observed length or ‘‘window

size,’’ l, contains information about the size distribution of
roughness elements, and is often found to exhibit a power
law over some range for rough interfaces:

w � la; ð2Þ

where a is the roughness exponent, characterizing the
scaling of elevation fluctuations [see Barabási and Stanley,
1995; Dodds and Rothman, 2000]. For North Loup River
profiles, we determine w for every box of the smallest
window size, which is twice the data resolution or 0.04 m.
We then take the average of all w values to obtain a
characteristic roughness for that window size. This
procedure is repeated for sequentially larger window sizes,
up to one half the size of the observation domain (�15 m); a
similar analysis was performed by Nikora and Hicks [1997].
An example result is shown in Figure 2, which plots the
characteristic interface width against window size for
downstream profiles at a snapshot in time. There are several
features worthy of note. First, there is a scale-invariant
regime in which a power law relationship holds between w
and l, where the slope of the line in the scaling regime is the
roughness exponent. Second, there is a gradual rollover of
the interface width with window size at the transition
between the lower scaling regime and the upper saturation
regime. This transition occurs at a length equal to the
characteristic wavelength of the largest dunes; the asso-
ciated transition length and interface width values are lx and
wx, respectively (Figure 2). Repeating this analysis of w for
profiles taken at different times but at the same location
yields the same values for a, lx and wx, suggesting the
scaling of roughness elements is stationary. Taken together,

these results show that despite the transience of individual
topographic elements, the river bottom maintains a
statistical steady state in terms of roughness.
[11] The riverbed displays a continuum of scales of

topography up to the wavelength of the largest features,
as represented by the power law relationship between w and
l, and no clear distinction can be made between ripples and
dunes. A similar conclusion is reached by computing the
power spectra of bed profiles (not shown), which contains
equivalent information about roughness scaling. These
results are not unique to the North Loup River; similar
findings have been reported in the laboratory [Hino, 1968;
Nordin, 1971] and field [Levey et al., 1980; Nikora et al.,
1997] and may be the rule in sand-bedded systems, rather
than the exception. The two regimes present in Figure 2,
power law roughness growth and saturation, may be indic-
ative of different organizing physical processes. In many
interface problems such as crystal growth, the scale-invari-
ant regime is generated by internal dynamics of the interface
itself, while saturation occurs due to ‘‘finite size effects,’’
where growth is limited by the size of the container [see
Barabási and Stanley, 1995]. In the case of bed forms, scale
invariance may be due to the local sediment transport
physics, while maximum dune size is controlled by bound-
ary conditions such as water depth or background shear
stress.
[12] Qualitatively, the existence of many scales of topog-

raphy may be understood from examining the temporal
evolution of topography in successive profiles (Figure 1c).
The largest dune features translate by the motion of smaller
bed forms on their backs. These smaller features spontane-
ously form on a dune back, then grow in amplitude as they
migrate across the dune back before disappearing in the
subsequent trough (as discussed by Jain and Kennedy
[1974], Nikora et al. [1997], and Gomez and Phillips
[1999]). The appearance, growth, and disappearance of
bed forms maintains a constant distribution of channel
roughness, and this process is a fundamental organizing

Figure 2. Example of North Loup River spatial scaling of
roughness for 20 downstream profiles, averaged at a
snapshot in time. Interface width grows as a power law in
the scaling regime, with the slope equal to the roughness
exponent a; equation is a best fit linear regression to log-log
data. Growth rolls over at the transition length lx, with
corresponding roughess value, wx. Error bars represent one
standard deviation.
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principle that should be reproduced by a model of sand-bed
evolution.

3. Model Development

[13] We seek an intuitive, physically realistic, continuum
model capable of reproducing both the instability of a flat
sand bed subjected to a shear flow, and the longtime
evolution of dynamic topography. We focus on bed forms
built from a unimodal distribution of particle sizes moving
primarily as bed load because this sediment flux can be
treated as responding instantaneously to changes in the
flow field without accruing significant error. We hypothe-
size that the detailed structure of the fluid flow field is not
important for determining temporal and spatial scaling, and
hence we can write a ‘‘local growth model’’ [Barabási and
Stanley, 1995; Dodds and Rothman, 2000] for the evolu-
tion of the sediment-fluid interface; this hypothesis is tested
below. This said, the three main ingredients to our model
are (1) a relationship between sediment flux and local bed
elevation; (2) the dependence of sediment flux on local
flow strength (here characterized by bed shear stress, t);
and (3) the dependence of flow strength on local topogra-
phy. The first model condition is simply a statement of
mass conservation:

@h
@t

¼ � 1

1� pð Þ
@qs
@x

; ð3Þ

where t is time, p is porosity, and qs is sediment flux with
dimensions L2/T. The second condition takes the form of a
power law relationship between sediment flux and boundary
shear stress:

qs ¼ mtn; ð4Þ

where n is generally 1.5 [Meyer-Peter and Müller, 1948]
but may vary up to 2.5 [Fernandez-Luque and van Beek,
1976] and m can vary between 5.7 and 12 depending on the
rate of sediment transport [Wiberg and Smith, 1989].
Equation (4) could also be written in terms of an excess
stress above that value required for initiation of grain
motion; our intent here, however, is simply to write down
the most generic representation of the governing equations.

[14] Our third model condition relates the local boundary
shear stress to the local bed topography. Specifically, it
relates shear stress to bed elevation and bed slope as

t xð Þ ¼ tb 1þ A
h
hh i

þ B
@h
@x

� �
; ð5Þ

where hhi is the spatially averaged depth of flow at the
beginning of a run, tb is the background boundary shear
stress associated with hhi, h is vertical distance of a point on
the local sediment-fluid interface from the mean elevation,
and A and B are coefficients (Figure 3). This equation for
stress in terms of local topography may be considered a
Taylor expansion, where higher-order spatial derivatives
have been neglected. Relating local bed stress to local bed
elevation was first proposed by Exner [1925], who noted
that conservation of fluid mass required an increase in the
vertically averaged velocity over the top of an arbitrary two-
dimensional bump and derived an explicit relationship
between bed stress and topography by relating bed stress to
the square of vertically averaged fluid velocity. Neglecting
higher-order terms (i.e., h/hhi � 1), Exner [1925] found
that

t xð Þ ¼ tb 1þ 2
h
hh i

� �
: ð6Þ

[15] Smith [1970] and Engelund [1970] were the first to
propose that the magnitude of local shear stress is also a
function of the local bed slope. Smith [1970] argued that the
relationship between local bed slope and local bed stress is a
consequence of the fluid inertia. Moving water is not easily
deflected, and as a result, steep adverse slopes put relatively
high velocity fluid closer to the bed, producing larger values
of bed stress [see also Nelson et al., 1993]. Equation (5)
simply sums the contributions of relative bed elevation (6)
and slope to arrive at a value for bed stress at every site on
the bed. The predicted variation of bed stress over topog-
raphy using (5) is consistent with measured bed stress over
static dunes in the laboratory [Nelson et al., 1993; McLean
et al., 1994].

3.1. One-Dimensional Surface Evolution Equation

3.1.1. Exner’s Equation
[16] Combining equations (3), (4), and (6) gives the

result,

@h
@t

¼ � qsh i 2n

hh i 1� pð Þ 1þ 2
h
hh i

� �n�1 @h
@x

; ð7Þ

a nonlinear wave equation describing surface evolution. The
explicit dependence of advection on bed elevation means
that points of higher elevation move faster. Exner [1925]
used (7) to explain why bed forms become skewed with
downstream transport [see Smith, 1970]. An angle-of-repose
condition must be added to this equation to stop the lee
surfaces of bed forms from oversteepening unrealistically.
The nonlinear wave equation (7) is neutrally stable, i.e.,
perturbations neither grow nor decay in amplitude with
time. While this lack of instability renders (7) inadequate as

Figure 3. Definition sketch of the model shown in oblique
perspective, with coordinate axes displayed. The mean
elevation of the sediment-fluid interface (channel bottom) is
shown by the dashed line, which is defined as h = 0 and
used as the datum for mean water depth, hhi. Elevations
above and below this line are positive and negative,
respectively.
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a general bed form evolution model, (7) serves as a useful
point of departure for our elaboration described next.
3.1.2. New Surface Evolution Equation
[17] Equations (3), (4), and (5) represent our complete

model system in one dimension. Combining them, we arrive
at a new surface evolution equation for sand-bedded
channels:

@h
@t

¼ � qsh i n

1� pð Þ
A

hh i
@h
@x

þ B
@2h
@x2

� �
1þ A

h
hh i þ B

@h
@x

� �n�1

:

ð8Þ

The simple addition of a slope-dependent contribution to
bed stress produces a surface evolution equation that is quite
different from Exner’s equation (7). Equation (8) contains
not only a nonlinear advection term, but also a nonlinear
diffusion term. The diffusion term may change sign in this
formulation, and negative diffusion leads to the growth of
perturbations on the surface.
[18] A formal stability analysis of (8) is beyond the scope

of this paper, and here we only provide a qualitative
discussion of the bed instability following Smith [1970]
and McLean [1990]. From (3) we may write

@h
@t

¼ � 1

1� pð Þ
@qs
@t

@t
@x

: ð9Þ

Since @qs/@t is always positive, it is the shear stress
gradient that determines the sign of @h/@t, and hence
whether the bed undergoes erosion or deposition. Because
sediment deposition occurs downstream of the stress
maximum, a perturbation on the streambed may cause
another bump to grow downstream of it, ultimately leading
to a train of finite-amplitude bed forms. When elevation is
small, the stress maximum is upstream from the crest of a
bump, causing the bump to continue growing. As elevation
becomes large, the stress maximum shifts to the elevation
maximum and deposition no longer occurs on the crest;
growth ceases.
3.1.3. Stochastic Form
[19] High-frequency fluctuations in sediment flux are a

direct consequence of turbulence-aided sediment transport
[Nelson et al., 1995; Gomez and Phillips, 1999; Schmeeckle
and Nelson, 2003; Sumer et al., 2003]. While fluctuations in
instantaneous bed stress may be modeled deterministically
in a fluid-mechanical model, we treat this variability as
stochastic and explore its morphodynamic importance by
addition of a noise term. The stochastic surface evolution
equation then reads

@h
@t

¼� qsh i n

1� pð Þ
A

hh i
@h
@x

þ B
@2h
@x2

� �

� 1þ A
h
hh i

þ B
@h
@x

� �n�1

þ z x; tð Þ; ð10Þ

where z(x, t) is Gaussian-distributed low-amplitude white
noise, although the time evolution of (10) turns out to be
insensitive to the details of z (x, t). A stochastic partial
differential equation like (10) can produce long-range
spatial correlations on the interface even when the term

describing interface growth or transport is entirely local in
origin [Rubin, 1992; Barabási and Stanley, 1995].

3.2. Two-Dimensional Surface Evolution Equation

[20] Our surface-evolution equation can be made two-
dimensional through inclusion of a lateral diffusion term.
The principle transport direction is still downstream, while
lateral sediment transport has a magnitude dependent on the
cross-stream (y-direction) slope [Murray and Paola, 1997;
Hersen, 2004]. In essence, sediment flux is calculated as
one-dimensional downstream slices which are coupled to
neighboring slices via the lateral diffusion of sediment. A
deterministic form of the two-dimensional model then
consists of (8) plus a lateral diffusion term

@h
@t

¼� qsh i n

1� pð Þ
A

hh i
@h
@x

þ B
@2h
@x2

� �

� 1þ A
h
hh i þ B

@h
@x

� �n�1

þ D
@2h
@y2

; ð11Þ

where D is the lateral diffusivity constant (units L2/T). Note
that this treatment of lateral sediment transport is identical
to equation (10) of Hersen [2004] and similar to the explicit
slope-dependent transport used by Murray and Paola
[1997]. This approach makes the assumption that the
fundamental transport mechanisms occur in the downstream
direction, and that cross-stream sediment flux depends
linearly on slope; it is the simplest formulation consistent
with observation [e.g., Parker, 1984]. A stochastic form of
the two-dimensional model simply consists of (11) plus a
noise term,

@h
@t

¼� qsh i n

1� pð Þ
A

hh i
@h
@x

þ B
@2h
@x2

� �
1þ A

h
hh i þ B

@h
@x

� �n�1

þ D
@2h
@y2

þ z x; y; tð Þ: ð12Þ

Equation (12) is our new anisotropic ‘‘local growth
equation’’ for depositional systems. We expect the applic-
ability of (12) to be general, but it may be made specific by
calibration of coefficients to a particular situation. In order
to realistically simulate the morphodynamics of a train of
subaqueous bed forms, several additional ingredients are
required for numerical implementation and are discussed
next.

3.3. Numerical Method

[21] We explore the dynamical behavior of our model
system by solving discrete versions of equations (3), (4),
and (5) at every location on the 2-D grid, where i and j
represent the x and y grid positions, respectively. Boundary
conditions used are periodic in the downstream direction
and zero flux in the cross-stream direction. Grid size is
100 � 50 cells. Larger domain sizes were explored, but did
not have any significant effect on model results. The initial
condition for model runs is a flat, horizontal surface seeded
with elevation perturbations of very low amplitude pro-
duced as white noise. Values for grid spacing Dx (equal in x
and y directions), time step Dt, water depth hhi, all coef-
ficients and background shear stress, tb, are specified at the
beginning of a model run; the exponent n = 1.5 for all
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simulations. At a given time step, the following sequence of
operations is performed:

ti; j ¼ tb 1þ A
hi; j
hh i

þ B
hi;j � hi�1; j

Dx

� �
; ð13Þ

ti;j ¼
ti; j;� 0

0;< 0

8<
: ; ð14Þ

qai; j ¼
E

hi; j � hiþ1; j

Dx

� �2

� tan qcð Þ2
� �

hi; j � hiþ1; j

Dx

� �
;

hi; j � hiþ1; j

Dx

� �
> tan qc

0;
hi; j � hiþ1; j

Dx

� �
� tan qc

8>><
>>: ;

ð15Þ

qsi;j ¼ mtni;j þ qai;j þ zi;j; ð16Þ

Dhi; j ¼� Dt

1� pð ÞDx qsi; j � qsi�1; j

� �
þ DtD

Dxð Þ2
hiþ1; j þ hi�1; j þ hi; jþ1 þ hi; j�1 � 4hi; j

� �
: ð17Þ

Equation (13) computes bed stress using an upwind scheme
for slope, and (14) makes all negative bed stresses zero,
crudely mimicking the shadow zone of low transport
occurring immediately downstream from a bed form lee
face. In order to prevent oversteepening of lee surfaces, we
employ a version of the grain-avalanching proxy as
presented by Hersen [2004]. If the downwind-calculated
slope exceeds the critical angle qc, then an additional
‘‘avalanche flux’’ is computed using (15). If the chosen
value for coefficient E is sufficiently large, any slope that
builds to an angle > qc relaxes instantaneously at the next
time step. Equation (16) determines the sediment flux at
each grid point by summing the contributions from local
bed stress, avalanching, and noise; the noise term is zero for
deterministic model runs. Finally, (17) finds elevation
change using a 1-D, upwind version of the sediment

continuity equation. The second term on the right-hand side
of (17) is a diffusion term, solved by calculating the discrete
2-D Laplacian of the elevation field, and scaled using a
diffusivity D, which represents the importance of lateral
coupling of sediment transport. Although the explicit
diffusion term in (12) is for the y-direction only, in our
numerical implementation (17) we add an explicit 2-D
diffusive term which serves the additional purpose of
numerical dissipation [Press et al., 1988], helping to smooth
the elevation field to enhance numerical stability.
[22] The choice of coefficients for bed stress and sedi-

ment transport relations is presently unconstrained. In
practice, A and B could be estimated empirically from
laboratory observations of bed stress over topography, while
cross-stream sediment transport could be treated in a more
rigorous manner using an explicit method such as Parker
[1984]. Values for m may be selected from the literature.
Varying coefficients affects the growth rate and amplitude
of bed features but does not greatly affect temporal or
spatial scaling. Here we are interested in whether the
general equations (13)– (17) can produce a variety of
dynamical behavior observed in laboratory and field set-
tings, so coefficients were selected such that the contribu-
tions of elevation and slope to the total bed stress are
approximately equal, and cross-stream sediment transport
is a small fraction of the downstream flux (see Table 1). We
will perform future experiments to estimate these coeffi-
cients. Grid spacing and time step values were selected from
considerations of numerical stability and computation time.

4. Results

4.1. Deterministic Model (Z = 0)

[23] Numerically solving (13)–(17) with appropriately
chosen coefficients (Table 1) reproduces growth and satu-
ration of bed forms from a perturbed flat surface, and
evolving bed forms display nonuniform geometries charac-
teristic of natural topography (Figure 4). Additionally,
celerity is roughly inversely related to bed form height,
and merging of bed forms occurs due to varying migration
speeds (as in experiments by Coleman and Melville [1994])
in a manner similar to models of eolian ripple development
[Caps and Vandewalle, 2001; Prigozhin, 1999; Schwämmle
and Herrmann, 2004]. In contrast to these previous eolian
models where the coarsening of bed forms continues until
there is only one bed form in the model domain, the steady
state solution of our model consists of a train of bed forms.
Steady state for model output is verified by computing a,
wx, and lx at several different times to ensure there is no
systematic drift.
[24] Cross-stream diffusion provides sufficient coupling

to generate sinuous-crested bed forms whose width occu-
pies the entire model domain (Figure 4a). Crest-line termi-
nations, or defects, are observed to migrate through the
system faster than the bed forms, as postulated by Werner
and Kocurek [1997] and seen in previous numerical simu-
lations [Caps and Vandewalle, 2001; Yizhaq et al., 2004]. In
contrast to Werner and Kocurek [1999; see also Werner,
1999] who treat bed form crest lines and defects as
independent dynamical variables, crest lines and defects in
our model arise naturally from the local coupling of
sediment transport to topography, and so are a consequence

Table 1. Model Parameters Used for All Runsa

Parameter D S

Dx 0.1 0.2
Dt 0.005 0.002
A 4.3 4.3
B 4.3 4.3
D 0.025 0.025
E 1 1
z 0 0.1(randn)
tb 0.07 0.07
hhi 1 1
m 1 1
n 1.5 1.5
qc [�] 34 34
p 0.4 0.4

aSee equations (13)– (17). Boundary conditions are periodic in the
downstream (x) direction and zero flux in the cross-stream (y) direction; the
noise term z = 0.1(randn), where ‘‘randn’’ represents a random variable
having a normal distribution with zero mean and variance of one. D and S
refer to model runs where D means deterministic and S means stochastic.
Units are arbitrary unless specified.
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rather than a cause of the dynamics. In the deterministic
scenario, z = 0 for t > 0, nonuniform transient evolution
occurs because of the spatial noise inherited from initial
conditions. At long time, the bed forms evolve toward
uniform, straight-crested features. In other words, the final
state of the deterministic model is a static state (in a
Lagrangian frame), with only one scale of topography.
[25] The growth of bed roughness with time can be

quantified by calculating the interface width of downstream
profiles over the entire model domain for each time step
using (1). To facilitate comparison with previous data,
interface width and model time are scaled by their respective
equilibrium values, or the values corresponding to saturation
of roughness growth. Several authors [e.g., Baas, 1994;
Niño et al., 2002] have found experimentally that bed form
growth is fit well by an exponential function of the form

w

weq

¼ 1� e
�g t

teq ; ð18Þ

where g = 6 provides a good fit to most data [see also
Nikora and Hicks, 1997] and the subscript eq denotes
equilibrium values. Equation (18) with g = 6 provides an
excellent fit to the growth of bed roughness for the
deterministic model (Figure 5a), implying the essential

dynamics of bed form development are captured in the
model. In another set of experiments reported by Nikora
and Hicks [1997], a power law relationship was observed:

w

weq

¼
t
teq

� �b
; t < teq

1; t � teq

8><
>: ; ð19Þ

where b, the growth exponent (as given by Barabási and
Stanley [1995]), was found to be 0.28 under the laboratory
conditions examined. This power law relation does not fit
the deterministic model data, a topic we return to below.
[26] The general model behavior is not very sensitive to

changes in values of the coefficients. The bed form insta-
bility is present if B is positive, and sinuous-crested bed
forms develop as long as there is a weak lateral coupling via
diffusion. We verified numerically that spatial and temporal
scaling are unaffected by varying coefficients; only growth
rate and amplitude of bed features change.

Figure 4. Deterministic model (run D, Table 1) evolution.
(a) Oblique view snapshot of transient evolution of bed
surface, at time = 1500Dt. (b) Profile down the centerline
of the 2-D model domain, showing growth of bed forms
from a flat surface. Compare to Figure 4 of Coleman and
Melville [1996]. Profiles are plotted every 20Dt from zero
up to time = 1500Dt.

Figure 5. Growth of roughness in time from a flat surface,
calculated from averaging all downstream profiles at each
time step, for (a) deterministic and (b) noisy simulations.
Dotted line is the exponential growth relation (18) in the
text with g = 6, while the dashed line is the power law
growth relation (19) with b = 0.28. Interface width and time
are scaled by their respective equilibrium values; see text for
details. Relations (18) and (19) were derived from flume
studies and were not fit to model data.
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4.2. Stochastic Model

[27] Addition of noise has a profound influence on bed
form dynamics and spatial scaling. Low-amplitude noise
(run S; see Table 1) produces growth of bed roughness from
a flat surface that is well fit by Nikora and Hicks’s [1997]
power law relation (19), as seen in Figure 5b. In other words,
the presence of noise shifts the development of roughness
from an exponential to a power law trajectory, and ultimately
increases the saturation amplitude of bed features.
[28] From a cursory glance it is apparent that bed forms of

many scales coexist on the fully developed model interface
(Figure 6) with 2-D morphology that compares well to bed
forms measured in the North Loup River (Figure 1a). Stacked
sequential profiles from the model at steady state show bed
forms that are continuously varying in shape (Figure 6b),
with the emergence and disappearance of bed forms being an
ongoing process. Perhaps the most notable aspect of the
stochastic model results is their qualitative similarity to
steady state dynamics observed in the river data. Sequential
profiles generated by the model clearly show larger dune-like
topography mantled with smaller ripple-like topography that
spontaneously emerges in the troughs of the larger forms and

rapidly moves over their stoss sides (Figure 6c). The ripple-
like forms grow in amplitude as they migrate across the stoss
sides of the larger bed forms, only to be absorbed by the lee
faces of the larger forms. This disappearance of the smaller
bed forms provides the mass that causes the larger forms to
migrate downstream. As observed for river dunes, modeled
bed forms become unrecognizable after migrating one to two
wavelengths downstream.
[29] We compare the spatial roughness scaling of our

noisy model to data from the North Loup River using
equations (1) and (2), where w and l are normalized by
their transition values wx and lx, respectively (Figure 7).
The roughness exponent for the model, computed over the
scaling regime, is 0.56, in reasonable agreement with the
North Loup River. More important, the form of the rough-
ness scaling curve from the North Loup River is reproduced
by our noisy model results (Figure 7). In particular, the
existence of a large dominant wavelength, and a continuum
of scales below that wavelength, along with the long
crossover to saturation, are captured by the model.

5. Discussion

[30] The striking difference in dynamical behavior be-
tween deterministic and noisy simulations provides insight
into the importance of transport fluctuations in determining
bed roughness properties. To gain an understanding of the
physical processes controlling temporal growth of rough-
ness, we compare sediment transport conditions of two
experimental studies. Transport stage is defined as T =
y/yc, where y = tb/[(rs � rf) d50 g] is the dimensionless
shear stress, yc is the critical value for initiation of
motion of grains, rs and rf are the sediment and fluid
density, respectively, and g is acceleration due to gravity.
The exponential growth of bed roughness corresponds to
low transport stage, while power law growth occurs at
high transport stage. Niño et al. [2002] conducted all
experiments in the range 2 < T < 3.3, and their bed form
growth curves (see their Figure 10) are close to the
exponential relation (18). Flume runs reported by Nikora

Figure 6. Stochastic model topography (run S, Table 1)
where roughness is in statistical steady state; compare to
Figure 1. (a) Plan view snapshot. (b) Sequential profiles
shown every 1500Dt. (c) Space-time plot of sequential
profiles shown every time step.

Figure 7. Example of spatial scaling of roughness for
stochastic model (run S) and North Loup River at statistical
steady state using a downstream profile at a snapshot in
time; w and l are normalized by their transition values. See
caption of Figure 2 for explanation; note linear scale. Inset
is the same data plotted on a log-log scale. No calibration
was performed to match model with river data.
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and Hicks [1997] span the range 9 < T < 30 and display
the power law growth described by (19). Larger T cer-
tainly corresponds to larger fluctuations in sediment flux
from direct influences of turbulence on bed load transport,
and from suspended sediment transport where fluctuations
in fluid stress have a greater influence.
[31] The match of deterministic and stochastic model runs

to the empirical exponential and power law growth rela-
tions, respectively, implies that in some sense the equations
are capturing the features of sediment transport relevant to
bed form evolution. Exponential growth of roughness in
time is generally predicted for linear instabilities, while
power law growth is a generic process of noisy interfaces
[Barabási and Stanley, 1995]. The effect of noise in our
model is to induce more rapid bed form growth early on,
such that large roughness amplitude is achieved rapidly and
hence the nonlinearity governs growth. Coleman et al.
[2005] fit power law growth relations to data over a range
3.4 < T < 32.9. In reality, there is likely a gradual transition
between exponential and power law growth such that the
respective relations are two end-members in a spectrum.
Indeed, numerical experiments with very low amplitude
noise (not shown here) exhibit roughness growth interme-
diate between exponential and power law.
[32] At long time, deterministic simulations evolve to-

ward a steady state of uniform, periodic, straight-crested bed
forms, i.e., a static steady state. Once the sediment flux field
is exactly in phase with topography, evolution stops and the
cross-stream diffusion ensures that all lateral variability
disappears. This final state is not representative of trains of
dunes in natural rivers. The longtime evolution of stochastic
model runs consists of a bed that is continuously varying,
but in statistical steady state. The mechanistic explanation
for this phenomenon is that noise creates small perturbations
on the streambed that allow the growth of instabilities from
the governing equations. The growth of new bed forms is
balanced by the disappearance of bed forms in the troughs of
larger features. The bed remains continuously dynamic
because the sediment flux can never be exactly in phase
with topography, and hence nonuniform divergences in
sediment flux force continuous adjustments of bed forms.

6. Conclusions

[33] The model results obtained here are for a uniform
sediment size on a freely deformable surface (i.e., no non-
erodible areas exist on the bed). Pattern formation in this
model is robust, as evidenced by the lack of sensitivity to
model coefficients. Robustness of pattern formation implies
that the details of fluid flow may not be important for a first-
order description of the bed dynamics. In other words, the
sediment-fluid interface has an internal dynamic that is
independent of the details of the system, and allows for a
geometric description of its evolution.
[34] There is much to explore in the dynamics of our

model system (13)–(17), and the analyses presented here
are meant only to demonstrate the promise of this approach.
A great advantage of the model is its flexibility, which will
allow examination of unsteady flow and complex boundary
conditions in order to address issues relevant to river
management. The fluid enters into the problem only through
a small, interpretable set of coefficients that may be related
to measured quantities. Equations (13)–(17) represent a

unified model for subaqueous bed form dynamics because
they provide a description of bed form initiation, develop-
ment, and steady state behavior. Further, bed forms of
different scales arise from the same fundamental transport
processes. Variability in the geometry and kinematics of bed
forms is a consequence of the deterministic relationship
between sediment flux and topography, and noise.
[35] Modeled bed forms are self-organized in the sense that

large-scale features arise from a completely local description
of bed evolution, i.e., bed forms are produced from inter-
actions between adjacent grid points in the model. Measure-
ments of fluid flow around static bed forms show that
topography can generate long-range disturbances in the flow
field, in the form of turbulence production and coherent flow
structures [Nelson et al., 1993; McLean et al., 1994; Best et
al., 1997; Maddux et al., 2003a, 2003b]. While the flow
structure undoubtedly influences sediment transport, nonlo-
cal effects introduced by turbulent fluid flow may be of
second-order importance in determining the large-scale struc-
ture of the streambed. At the very least, this modeling
approach shows that a completely local, geometric descrip-
tion of topographic evolution can generate realistic bed form
dynamics, and even quantitatively model bed form growth
(Figure 5) and spatial scaling (Figure 7). The presence of
uncorrelated noise is sufficient to induce a dynamic steady
state comparable to natural rivers. These results suggest that
the presence of turbulence is important in terms of a pertur-
bation source, but the structure of turbulence may be less
important in terms of transport [Sumer et al., 2003] and bed
form dynamics. A systematic numerical exploration of the
structure (distribution) of noise and its influence on model
behavior is necessary to address this issue but is beyond the
scope of this paper. We have observed no effect on scaling
when the stochastic term is changed from Gaussian to
uniformly distributed white noise.
[36] An improved understanding of bed form evolution is

required to predict the stage-discharge relationship in sand-
bedded rivers [e.g., Allen, 1973; Levey et al., 1980] and also
to interpret bed form geometry from preserved cross beds in
the stratigraphic record [Jerolmack and Mohrig, 2005].
Dunes and ripples determine the flow resistance in sandy
channels because they are the principle roughness elements
on the bed. The manner in which bed forms adjust in space
and in time determines, to a large extent, the cross-sectional
geometry of a channel, because bottom roughness adjusts
much more rapidly than channel width. The model presented
here can be used to explore the response of a channel bottom
to changes in sediment transport conditions. In future work
we will calibrate the model to field and laboratory data.
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