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Abstract. Naturally available optical materials are known to provide a wide
variety of electric responses, spanning from positive to negative permittivity
values. In contrast, owing to drastically modified conduction properties at the
microscopic level, at such high frequencies magnetism and conductivity are
very challenging to realize. This implies that extreme (high or low) values of
permittivity, although highly desirable for a wide range of optical applications,
are difficult to realize in practice. Here, we suggest the design of an engineered
resonant nanoparticle composed of two conjoined hemispheres, whose optical
response may be changed at will from an ideal electric conductor to an ideal
magnetic conductor. Near the nanoparticle internal resonant frequency, we
derive a closed-form solution that describes the electromagnetic response of
this nanoparticle, showing how its light interaction may become dramatically
dependent on the local field polarization, passing through all possible impedance
values (from zero to infinity) by a simple mechanical or polarization rotation.
Considering realistic frequency dispersion and loss in optical materials, we
further show that these concepts may be applied to different geometries, with
possibility for future experimental feasibility. We forecast various applications
of this geometry as an optical nanoswitch, a novel nanocircuit element and as a
building block for novel optical metamaterials.
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1. Introduction

Light interaction with plasmonic materials gives rise to many anomalous optical phenomena
based on localized plasmonic resonances, which have been the subject of studies over many
decades [1]. One such striking effect consists of the superlensing properties of a plasmonic
slab [2]: a planar layer with permittivity −ε0, with ε0 being the permittivity of free space,
may lead to super-resolved images in the near field, due to the excitation of localized surface
plasmons [3]. This effect may also be generalized to a pair of slabs with ‘complementary’
properties [4], i.e. oppositely signed permittivities and/or permeabilities, whose combined
plasmon resonance, supported at their common interface, induces resonant tunneling and super-
resolution.

Here, we analyze a different geometry that may exploit the localized resonance at the
internal interface between the ‘complementary’ plasmonic and non-plasmonic materials in order
to achieve a highly desirable, but conventionally difficult to realize [5], optical response. As
depicted in figure 1, it consists of the combination of two conjoined hemispheres with oppositely
signed permittivities. Around its internal resonant frequency, we derive in the following a
quasi-static closed-form expression that shows how its optical response may become, for the
same particle, both that of an ideal electric conductor and of an ideal magnetic conductor,
depending on the orientation of the impinging electric field. This leads to giant anisotropy
and the possibility of envisioning an optical nanoswitch that may shift its response from a
perfectly electric to a perfectly magnetic conducting particle (i.e. from short to open circuit)
at optical frequencies, despite lack of conductivity and magnetism in the involved materials
at these frequencies [5]. This effect may pave the way to an exciting possibility for realizing
extreme (high and low) tunable values of constitutive parameters at optical frequencies, for a
variety of applications of interest, spanning optical communications [6], cloaking [7, 8] and
optical nanocircuits [9]–[12].

2. Theoretical analysis

Consider the geometry of figure 1, i.e. a spherical nanoparticle of radius a, smaller than
the wavelength of operation λ0, composed of two conjoined hemispheres with different
permittivities εup and εdown, in a background with permittivity ε0. The impinging electric field
vector E0 is assumed to form a generic angle γ with respect to the z-axis. This problem does not
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Figure 1. Geometry of the problem and reference system. Two conjoined
spherical hemispheres are illuminated by a uniform electric field E0 lying in the
xz-plane and forming an angle γ with the z-axis.

allow an analytical closed-form solution in the general case, but it may be solved with numerical
methods.

Considering the mode-matching expansion in terms of spherical harmonics in each region
of figure 1, the problem may be solved numerically in the small-radii limit, which is of interest
here since a � λ0, as suggested in [13]. In the most general case, the electric potential may be
written in the different regions as

φ{ up
down

= E0 cos γ

∞∑
n=0

h

{ up
down

n cn (r/a)n Pn (cos θ)

−E0 sin γ

∞∑
n=0

h

{ up
down

n+1 dn (r/a)n P1
n (cos θ) cos ϕ,

φ0 = E0 cos γ

∞∑
n=0

bn (r/a)−n−1 Pn (cos θ) − E0 sin γ

∞∑
n=0

fn (r/a)−n−1 P1
n (cos θ) cos ϕ

−E0 cos γ (r/a) P1 (cos θ) + E0 sin γ (r/a) P1
1 (cos θ) cos ϕ,

(1)

where

hup
n =

{
1, n even,
εdown/εup, n odd

and hdown
n = 1, which results from imposing the boundary conditions on the x–y-plane, and

(r, θ, ϕ) are spherical coordinates referenced to the nanosphere center. The boundary conditions
on the surface of the sphere allow obtaining the unknown sets of coefficients bn, cn, dn and fn.
In particular, using the properties of the Legendre polynomials Pn and P1

n , one can write the
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following equations for bn, cn:
∞∑

n=0

bn

[
(−1)n+l(1 + n + lεrd) + ηl(1 + n + lεru)

]
Unl = −U1l

[
(−1)l(lεrd − 1) − ηl(lεru − 1)

]
,

∞∑
n=0

cn

[
(−1)n+l(1 + l + nεrd) + ηn(1 + l + nεru)

]
Unl = −U1l

[
1 − (−1)l

]
(l + 2),

(2)

where εru = εup/ε0, εrd = εdown/ε0 and Unl =
∫ 1

0 Pn(x)Pl(x) dx , which may be evaluated in
closed form [13]. An analogous pair of equations may be found for the coefficients fn

and dn, obtainable from equations (2) after the substitutions ηt → ηt+1 and Unl → U 1
nl =∫ 1

0 P1
n (x)P1

l (x) dx , respectively. By truncating the summation in each of these equations to a
given order Nmax and varying the order l from 0 to Nmax, four systems of equations are obtained,
from which it is possible to solve numerically for the unknown coefficients. The convergence
of these equations is generally assured, even if near the plasmonic resonances of the sphere (of
which the internal one arises for the symmetric case when εup = −εdown) the convergence may
become extremely slow and only granted for sufficiently large n [14].

Consider now the ideal lossless situation in which εup = −εdown, i.e. the spherical particle
supports an internal plasmonic resonance (notice that this is totally independent of the value of
the background permittivity ε0). In this special case, the equations for bn and fn reduce to

∞∑
n=0

bn

[
(1 + n + lεru) + (−1)n (1 + n − lεru)

]
Unl = 2lεruU1l, (3)

∞∑
n=1

fn

[
(1 + n) (−1 + (−1)n) − lεru (1 + (−1)n)

]
Unl = 2U1l . (4)

From equation (3), we can easily note that in this special case

b1 = 1 and bn = 0 ∀n 6= 1. (5)

Similar considerations apply to equation (4), implying

f1 = −1/2 and fn = 0 ∀n 6= 1. (6)

Since we are at the plasmonic resonance between the two hemispheres, it is not surprising
that the systems for the internal coefficients cn and dn do not properly converge. The reason for
this lack of convergence resides in the way in which equations (1) written, which assumes that no
electric sources are present inside the nanoparticle. The plasmon resonance, on the other hand,
weakens this condition, as it is confirmed by the fact that, when the possibility of having the term
with n = −1 in the summations for φup and φdown is assumed, the following extra conditions are
obtained after applying similar considerations as above in solving the corresponding systems of
equations:

c±1 = ±1/εru, d1 = −1, d−1 = −1/2, cn = dn = 0 ∀ |n| 6= 1. (7)

Despite the complexity of the boundary-value problem of figure 1, the simple conditions
(5)–(7) provide a closed-form expression for the potential in the different regions, valid in the
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limit εup = −εdown:

φ0 = E0 cos γ
[
(a/r)2

− r/a
]

cos θ − E0 sin γ
[

1
2 (r/a)−2 + r/a

]
sin θ cos ϕ,

φ{ up
down

= E0 cos γ
[
(a/r)2

− r/a
]

cos θ ε0/ε
{ up

down
− E0 sin γ

[
(a/r)2 /2 + r/a

]
sin θ cos ϕ,

(8)

where φ0 is the potential distribution in the background region, φup and φdown are the potentials
in the upper and lower hemispheres, respectively.

3. Discussion

Equations (8) contain interesting information about the anomalous electromagnetic behavior
of this resonant nanoparticle. We note that the total potential φ0 in the background region
does not depend on the specific values of εup = −εdown and it may be simply described by the
superposition of two terms, obtained for γ = 0 (E0 orthogonal to the interface between the two
hemispheres) and for γ = π/2 (E0 parallel to the interface), respectively. This resembles the
closed-form solution that we have derived for different purposes in an analogous cylindrical
geometry in [11], but now this is applied to a 3D resonant nanoparticle in spherical geometry.
For the first term, the potential is identically the same (i.e. zero) all over the surface of the
sphere, and the potential distribution is exactly equal to the one produced by a perfect electric
conducting homogeneous sphere. Conversely, the second term corresponds to the potential
distribution from a perfectly magnetic homogeneous sphere, even if the involved materials are
far from being conducting, nor magnetic.

The potential inside the nanosphere, on the other hand, is effectively produced and
sustained by two singular ‘virtual sources’, centered at the origin. The presence of these sub-
wavelength singularities, which are effectively the image of the ‘sources’ of the impinging plane
wave (more specifically the images of ‘point sources’ at infinity that generate the plane wave
excitation), is the result of the super-focusing properties of surface plasmons, in some sense
recalling analogous virtual singularities in the planar geometry [2]–[4].

Figure 2 shows the electric potential (top) and electric field distribution (bottom) in the
x–z-plane for a nanosphere with a = 10 nm, εup = −16 ε0, εdown = 16 ε0, which may represent,
respectively, silver and silicon, around 500 THz when neglecting losses (in the next section,
we will also take into account the material absorption). In this scenario γ = 0 (E0 ‖ ẑ) and the
surface of the nanosphere is equipotential, with electric field all orthogonal to it, as predicted
by equations (8). For an external observer, the nanoparticle behaves as a perfectly electric
conducting particle, with extremely large effective permittivity, even though no conductive
material is being employed at optical frequencies. Inside the nanoparticle, however, the field
is nonzero and a strong circulation of resonant displacement current is supported by the two
singular points (two negative charges for this geometry) located at the origin. The dual behavior
for the internal field, i.e. the presence of two positive charges at the origin, may be obtained by
flipping the particle by 180◦, i.e. by having εup = 16 ε0, εdown = −16 ε0. The field distribution
is consistent with the series resonance between a nanoinductor (plasmonic hemisphere) and
a nanocapacitor (dielectric hemisphere), as has been extensively discussed in [11] for the
analogous 2D geometry, interpreting the problem in terms of nanocircuit theory [9]–[11].
Consistent with a resonant circuit, an observer outside the particle would simply experience
the presence of a perfectly conducting object (i.e. short circuit), without possibly detecting the
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Figure 2. Orthogonal polarization: equivalence with a perfectly electric
conducting sphere. Electric potential (top) and electric field distribution (bottom)
on the x–z-plane for the geometry of figure 1 with εup = −16ε0, εdown = 16ε0 and
γ = 0. Darker (more red) colors correspond to larger potential values.

individual values of εup and εdown. However, the electric field inside the pair of hemispheres
concentrates towards the singular point at the origin. Although the field is of infinitely high
value (i.e. singular like) at the origin, and despite the presence of ‘virtual’ sources, it may be
verified that the surface integral of flux D over any closed surface surrounding the origin is
zero, proving that there is no real point charge at the origin and guaranteeing continuity of
displacement current.

By simply rotating the electric field by 90◦, the potential and electric field distributions are
dramatically modified, as reported in figure 3. Now the equipotential lines are all orthogonal
to the surface of the nanosphere and the electric field is tangential to it, exactly as if the
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Figure 3. Parallel polarization: equivalence with a perfectly magnetic conducting
sphere. Analogous to figure 2, but rotating the electric field to γ = 90◦.

nanoparticles were homogeneously filled by a perfectly magnetic conductor, with effective
permittivity identically zero. Inside the nanoparticle the resonant field circulation is sustained
by a virtual singular dipole at the origin, which is effectively the image of the ‘sources’ of
the impinging plane wave focused at the center of the nanoparticle with infinite resolution (in
this ideal situation in which losses are neglected). By duality, consistent with the discussion
in [11] for the 2D geometry, this situation is completely consistent with the resonance of two
nanoparticles interpreted as parallel combination of optical nanocircuit elements.

It is important to underline the giant anisotropy associated with this geometry, which
allows this resonant spherical particle to act in its entirety as an optical ‘nanoswitch’,
drastically changing its optical response from ‘short circuit’ (all the impinging displacement
current flowing into and out of the sphere) to ‘open circuit’ (all the impinging displacement
current avoiding entering the sphere), by the simple means of a mechanical rotation of 90◦
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(or corresponding rotation of polarization of the impinging electric field)3. This may have
important applications in the framework of optical nanocircuits [9, 10].

As a special case, it is interesting to notice that the same potential and field distributions
may be obtained with a simple hemisphere of permittivity −ε0. In this special situation, the
nanoparticle may enter into resonance with the surrounding ‘complementary’ hemisphere in
the background, as a sort of hemispherical superlens with its focus at the origin, supporting an
analogous effect of drastic dependence of its optical response on the orientation of E0.

The total electric field, evaluated as E = −∇φ from equations (8), satisfies the following
relations on the surface of the resonant nanosphere:

Eθ/Er |r=a = cos ϕ tan γ /2, Eϕ/Er |r=a = −sinϕ tan γ /(2 cos θ). (9)

This confirms that the two limiting cases analyzed in figures 2 (γ = 0) and 3 (γ = 90◦)
are characterized by normal and tangential electric fields with respect to the spherical surface,
analogous to a perfect electric and a perfect magnetic homogeneous sphere, respectively.
Equation (9) tells even more: it suggests that a rotation of the polarization of electric field (or of
the particle) would gradually generate a tunable collection of ‘intermediate’ stages between a
perfect electric and a perfect magnetic sphere, for which the angle between the electric field and
the normal to the sphere is interestingly proportional to tan γ . In some ways, the resonant sphere
smoothly changes its optical response as ‘seen’ by the impinging field, varying the effective
permittivity of the nanoparticle from 0 to ∞ as a function of the angle that the external electric
field vector forms with its internal plasmonic interface. This phenomenon may be of extreme
interest for a variety of optical applications, considering also the fact that such extreme values of
constitutive parameters are challenging to realize naturally in practice, especially at these high
frequencies [5, 6].

Figure 4 reports the cases of a hemisphere with εup = −ε0 (left column), and the case
with εdown = −ε0 (right) excited by a field with γ = 45◦. It is interesting to observe how the
equipotential lines and the electric field vectors form, in the x–z-plane, a constant angle with
the normal to the spherical surface in both cases (equal to the arctan 1

2 , following equation (9)),
even in the hemispherical region where there is no permittivity contrast with the background.
The potential distribution in the region r > a is the same in the two cases, even if, to match the
boundary conditions, the fields in the region r < a are reversed from one case to the other. The
image singularities at the origin are induced even in the region with ε = ε0, associated with the
supported plasmon resonance. For an external observer, the whole spherical surface in the x–z-
plane looks homogeneous, and the impinging displacement current is divided into two parts; one
flowing into and out of the sphere (related to Er ) and the other flowing to the outside (fringing)
region (related to Eθ and Eφ). In particular, the ratio between the current flowing through the
sphere and the one in the fringing field is locally determined, on the surface of the sphere, by
the ratio between radial and tangential components of the electric field, as described in closed
form in equation (9). This provides a novel form of field distribution on this spherical surface.

3 Clearly, the conventional definition of a ‘switch’ would require the presence of some from of nonlinearity in
the device, which would allow changing the state of the device from an ‘ON’ state to an ‘OFF’ state. Evidently,
the nanoswitch presented here does not possess this kind of functionality, but instead we are referring here to the
possibility of ‘short circuiting’ and ‘open circuiting’ the entire displacement current flow around the nanoparticle
possibly by a means of a mechanical rotation of the particle. In this sense, the nanodevice indeed acts as a
nanoswitch or a nanovalve in the framework of the optical nanocircuit paradigm [9, 10].
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Figure 4. The special case of a resonant hemisphere: oblique polarization.
Electric potential (top) and field distribution (bottom) on the x–z-plane for: (left)
εup = −εdown = ε0 and (right) εup = −εdown = −ε0. In both cases γ = 45◦.

One notes how this ratio is drastically modified by simply varying the angle γ , consistent with
the nanoswitch functionalities of this resonant plasmonic nanoparticle.

4. Towards the practical realization of a nanoswitch

In the previous sections, we have analyzed in detail the electromagnetic response of the
nanoswitch in the ideal resonant situation εup = −εdown, for which we have derived the closed-
form solution (8) of the quasi-static electromagnetic problem. Although this analysis is very
instructive and provides some useful insights into the anomalous response of this nanoparticle
in this ideally resonant case, in practice it may be difficult to exactly realize such resonant
condition, without using complex active inclusions. In any case, this condition may be achieved
at one single frequency. More realistically, one has to deal with the general dispersion and
presence of losses of the involved plasmonic materials.

The sensitivity of this resonance to losses and geometry imperfections may be modeled
in terms of the optical nanocircuit theory [9]. In particular, the presence of absorption and
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Figure 5. Robustness of the design: frequency mismatch and presence of losses.
Electric potential distribution analogous to figure 2(a) (γ = 0, panel (a)) and
figure 2(b) (γ = π/2, panel (b)), considering here realistic parameters for the
materials, i.e. silicon and silver at the free-space wavelength λ0 = 600 nm.

imperfections in the involved materials is expected to lower the resonant Q of this system and
smooth the singularities predicted by this lossless model. In figure 5, we have reported the
numerical simulation, obtained using the mode-matching technique (1), for the electric potential
distribution for the geometry of figures 2 and 3, but considering permittivity mismatch between
the two materials and including realistic losses. In particular, in our numerical evaluation we
have used εup = (−16.05 + i 0.44)ε0 and εdown = (15.89 + i 0.103)ε0, which are the reported
experimental values of permittivity for silver in [15] and silicon in [16] at the free-space
wavelength of λ0 = 600 nm. It may be clearly seen that the concepts described here in the
ideal (lossless) resonant limit are qualitatively preserved even when realistic losses and design
variations are introduced. The singularities at the origin are now ‘smoothed’ and ‘spread out’
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Figure 6. Silver and silicon nitride. Similar to figure 5, but using realistic
parameters for silver and silicon nitride at λ0 = 400 nm.

all over the hemispheres’ internal interface, due to these imperfections, but the giant anisotropy
and extreme parameters of these nanoparticles are still very well preserved. This ensures that
the extraordinary optical response of this resonant geometry is not limited to a single specific
frequency of operation for which the closed-form solution (1) is valid, but rather it is also
smoothly preserved over a certain bandwidth, which mainly depends, in this small-radii limit,
on the permittivity dispersion of the involved plasmonic materials. These results also prove that
the potential and field distributions indeed tend to the closed-form solution derived here (8) in
the ideally resonant case.

As a second setup of interest that may lead to a future practical experimental verification
of these concepts, in figure 6 we have reported the numerical simulation of a similar geometry,
but using silver and silicon nitride at λ0 = 400 nm. In particular, εup = 4.34 ε0 [17] and εdown =

(−4.35 + i 0.21)ε0. In this scenario, we have also reversed the position of the silver hemisphere
with respect to the impinging field as compared with figure 5, in order to verify the reversal of
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Figure 7. Resonant nanocube. Using the same materials and frequency as in
figure 5, but considering now a cubic geometry, simulated using a full-wave
simulation software package [18]. Snapshot in time of the electric field on the
E-plane for a cube with side l = 40 nm. Panel (a) corresponds to the series
excitation (γ = 0), whereas panel (b) corresponds to the parallel case (γ = π/2).
The colored half-cube is made of the dielectric material.

polarization of the virtual sources in the series excitation (figure 5(a)). It is evident that in this
setup the nanoswitch behavior is also very well preserved, despite the silver absorption and high
frequency of operation.

Finally, in order to move another step towards a practical realization of these findings, we
report in figures 7 and 8 the numerical simulations, obtained with full-wave finite difference
software [18], for two cubic geometries formed by combining together two half-cubes made
of the materials used in figures 5 and 6. Moreover, the wavelengths of operation are consistent
with figures 5 and 6. In figure 7, the side of the cube is l = 40 nm, in figure 8, l = 30 nm,
ensuring that in both simulations the nanocubes are subwavelength in size. It can be seen that
even in this different geometry, at its internal resonance the cube becomes highly anisotropic
and offers a behavior very similar to a perfectly electric conducting or a perfectly magnetic
conducting cube, depending on the orientation of the external electric field. In particular,
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Figure 8. Silver and silicon nitride nanocube. Similar to figure 7, but for the set
of materials and frequency of operation as in figure 6. In this case, l = 30 nm and
also here the colored half-cube is made of the dielectric material.

despite the sharp resonances associated with the corners of the plasmonic half-cube and for
the expected numerical noise associated with finite-difference time-domain numerical codes
dealing with plasmonic interfaces [14, 19], it is indeed evident that the electric field tends to
displace normal to the interfaces of the resonant cube in the series case and tangentially to it
in the parallel situation (respectively, panels (a) and (b) in figures 7 and 8). These simulations
fully take into account the realistic material losses and the frequency dispersion, as well as the
dynamic nature of the field excitation. Indeed, they confirm that the quasi-static results reported
in this paper are adequate and may be properly verified at optical frequencies using currently
available materials and technology.

5. Conclusions

We have presented here the design of an engineered resonant nanoparticle whose optical
response may be tuned at will from an ideal electric conductor to an ideal magnetic conductor.
We have derived an elegant closed-form solution that describes its electromagnetic response in
the quasi-static limit in the ideally resonant scenario, and we have confirmed these results with
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full-wave simulations considering realistic frequency dispersion and loss in optical materials,
as well as possible different geometries. Potential applications of these anomalous properties in
tailoring the frequency response of optical nanocircuits [12] may be envisioned. Moreover, the
possibility of realizing collections of these nanoparticles, effectively realizing perfect electric or
magnetic metasurfaces and/or tunable optical nanomaterials is forecasted. Their response may
be even tailored and tuned by the applied electric field polarization or by mechanically rotating
the nanoparticles (e.g. using optical tweezers), at frequencies for which metal conductivity is
usually absent or very low.
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