Linking abstract analysis to concrete design:
A hierarchical approach to verify medical CPS safety

Anitha Murugesan'
anitha@cs.umn.edu

Michael Whalen*
whalen@cs.umn.edu

! Department of Computer Science and Engineering
University of Minnesota
200 Union St., Minneapolis, MN 55455, USA

ABSTRACT

Complex cyber-physical systems are typically hierarchi-
cally organized into multiple layers of abstraction in or-
der to manage design complexity and provide verifica-
tion tractability. Formal reasoning about such systems,
therefore, necessarily involves the use of multiple model-
ing formalisms, verification paradigms, and concomitant
tools, chosen as appropriate for the level of abstraction
at which the analysis is performed. System properties
verified using an abstract component specification in one
paradigm must then be shown to logically follow from
properties verified, possibly using a different paradigm,
on a more concrete component description, if one is to
claim that a particular component when deployed in
the overall system context would still uphold the sys-
tem properties. But, as component specifications at one
layer get elaborated into more concrete component de-
scriptions in the next, abstraction induced differences
come to the fore, which have to be reconciled in some
meaningful way. In this paper, we present our approach
for providing a logical glue to tie distinct verification
paradigms and reconcile the abstraction induced differ-
ences, to verify safety properties of a medical cyber-
physical system. While the specifics are particular to
the case example at hand — a high-level abstraction of a
safety-interlock system to stop drug infusion along with

*This work has been partially supported by NSF grants
CNS-0931931 and CNS-1035715.

This is a postprint of the paper appearing in the Proceedings of ICCPS’ 14,
April 12-14, 2014, Berlin, Germany. This is the author’s version of the
work. Not for redistribution.

Oleg Sokolsky?
sokolsky@cis.upenn.edu

Mats Heimdahl*
heimdahl@cs.umn.edu

Sanjai Rayadurgam?
rsanjai@cs.umn.edu

Insup Lee?
lee@cis.upenn.edu

2Department of Computer and Information Science
University of Pennsylvania
3330 Walnut St., Philadelphia, PA 19104, USA

a detailed design of a generic infusion pump — we be-
lieve the techniques are broadly applicable in similar
situations for verifying complex cyber-physical system
properties.

Keywords

Compositional verification, Model-based development,
Medical cyber-physical systems

1. INTRODUCTION

Modern medical systems increasingly involve an ar-
ray of interacting devices that communicate, coordinate
and control therapy delivery to patients. Critical safety
and efficacy properties of these cyber-physical systems
(CPS) are dependent not only on the individual com-
ponents’ behaviors, but also on the overall CPS archi-
tecture that determines how these components are ar-
ranged and interconnected. This system decomposition,
when formalized, can be profitably exploited in string-
ing together individual components’ properties to estab-
lish top-level system properties. However, verification
at the system level is likely to heavily abstract com-
ponent behaviors down to what is essential for showing
the system-level property. The component suppliers’ re-
sponsibility is then to show that a concrete realization of
a particular component indeed conforms to its abstract
specification used to establish critical system properties.

Such a top-down compositional approach to verifica-
tion is quite appealing — allocation of verification bur-
den parallels allocation of development burden. But, as
we descend down the system hierarchy, certain practi-
cal concerns surface that complicate the picture. First,
different specification formalisms, modeling notations,
and verification tools — the ones most appropriate for
the component being verified — are likely to be em-
ployed, which necessitates some logical glue to attach
the verification result of a lower-level component to its

abstract higher-level representation. Secondly, as de-
tails get progressively elaborated, abstraction induced
differences come to the fore which have to be somehow
reconciled.

In this paper, we describe such a compositional ap-
proach to verify safety properties of a closed-loop generic
patient-controlled analgesia infusion system. This pro-
totypical system includes a patient blood oxygen level
monitor whose output is constantly monitored by a su-
pervisory controller that can automatically command
the pump to terminate (pain medication) infusion, should
the oxygen-level fall below a critical threshold.

In prior works [23] [21], we have separately and in-
dependently described two approaches to respectively
verify (i) safety properties of the closed-loop system us-
ing timed automata models in UPPAAL that included
a physiological model of the patient in the loop, and
(ii) critical requirements of the infusion pump control
software using a compositional assume-guarantee rea-
soning approach on an AADL system architecture with
component behaviors elaborated in Simulink/Stateflow
models. A natural question then is whether these two
can be combined in some meaningful way such that the
particular infusion pump when used as part of closed-
loop system can be guaranteed to uphold critical safety
properties. We describe our present work here that af-
firmatively answers this question. We highlight the key
aspects of our approach for providing a logical glue to
tie distinct verification paradigms and for reconciling
the abstraction induced differences between the closed-
loop system and the infusion pump system. While the
specifics are particular to the case example at hand, we
believe the approach is broadly applicable in similar sit-
uations for verifying complex CPS system properties.

The rest of the paper is organized as follows. In Sec-
tion [I| we provide a brief overview of the the medical
system case study and the Generic Patient Controlled
Analgesic (GPCA) infusion pump. In Section [3| we de-
scribe the details of the hierarchical system modelling
using different tools and notations - timed automata for
the top level medical system, architectural design lan-
guage to represent the hierarchical architecture of the
system, and stateflow notation for modeling behavior of
the GPCA components. In Section 4] we explain the in-
dividual model verification using tools appropriate for
that modeling notation. We then demonstrate a for-
mal hierarchical system verification of the medical sys-
tem using the GPCA as a component. In the process
of formally bridging the differences, we followed certain
strategies and some limitations of the approach that we
discuss in Section 5} Following a brief discussion of re-
lated work in Section [6] we finally conclude this paper,
in Section [7} by summarizing our efforts, learning and
our next steps in this research direction.

2. SYSTEM OVERVIEW

2.1 Closed Loop System

We considered the clinical scenario of Patient Con-
trolled Analgesia (PCA). PCA is an approach to pain
control in post-operative patients, widely used in mod-
ern hospitals. A liquid pain medication, typically an
opiate such as morphine, is delivered by an infusion
pump that is equipped with a request button. The
pump delivers medication at a pre-defined low rate of
infusion, known as basal rate. Often, the basal rate is
insufficient to control pain. When the patient feels pain,
he or she can press the request button. The pump then
delivers an additional dose of medication, known as a

bolus, at a higher rate of infusion.
Pulse @
ﬁ Oximeter g w

Pa'ient Careg;?;i Alert Safety interlock
</ Y
<« B

PCA infusion pump

ik e
[t

Figure 1: Overview of the closed-loop system

A serious side effect of opioid medication is that an
overdose can lead to a respiratory failure that can re-
sult in the death of a patient. Sensitivity to the medi-
cation varies widely within the patient population, and
can also be affected by the patient state. Therefore, the
right balance between achieving pain control and avoid-
ing overdose is hard to achieve. For this reason, PCA
guidelines require the use of a sensor, typically a pulse
oximeter, that would allow the clinician to detect the
onset of respiratory problems. Pulse oximeters measure
SpOs, the blood oxygen saturation. Low oxygen satu-
ration indicates that the patient is breathing strongly
enough to supply lungs with oxygen. In the current
practice, the caregiver manually adjusts the pump set-
tings after the pulse oximeter raises an alarm. As the
caregiver is typically responsible for a number of pa-
tients, there may be a delay before he or she responds
to an alarm. For this reason, the quality of care may be
improved by a closed-loop system illustrated in Figure[]
where a safety interlock device continuously monitors
the pulse oximeter readings and stops the pump once a
pre-set threshold is crossed.

2.2 Generic Patient Controlled Analgesic In-
fusion Pump

Infusion pumps have been involved in many incidents
that have resulted in harm to the patient [1]. The US
Food and Drug Administration (FDA), through its In-
fusion Pump Improvement Initiative [1] has sought to
pro-actively promote the safe use of these devices by
establishing additional requirements for infusion pump
manufacturers.

Hospital

- Clinician
Pagent GPCA Notification

ooy Dj ““““““““““
<

Drug Reservoir

- === Data Flow
= Physical connection

Figure 2: GPCA Device

Network

In order to contribute to this initiative by provid-
ing an archetype of system development artifacts for
a Generic Patient Controlled Analgesia Infusion Pump
(GPCA) system, we modeled and verified an elaborate
generic PCA infusion pump, as shown in Figure[2] Un-
like the abstract PCA pump in the closed loop system,
the GPCA we considered is richer in functionality, such
as multiple modes of drug infusion, prescription valida-
tion, drug library, variety of system response to hazards
depending upon their severity, visual and aural notifica-
tions, logging capability, routine system checks etc. At
a high level, the GPCA primarily has three functions
(1) Deliver the drug based on the prescribed schedule
and patient requests, (2) Prevent hazards that may arise
during its usage by monitoring and notifying the clin-
ician of any hazardous conditions encountered and (3)
Respond to the commands received.

3. MODELING

Systems are naturally constructed in hierarchies and
models enormously help in the development process es-
pecially for critical systems. At higher levels of ab-
straction the concentration of modeling is to specify and
analyse the overall system functions and the component
details are heavily abstracted. But as the system is re-
fined, the focus shifts from the overall system functions
to the particular component functions. The notations
used to represent the system at the higher levels of ab-
straction may not be appropriate at lower levels. Also
some components of the system may be readily available

to be reused. Hence it is natural to choose different no-
tations to model and analyse the system at different
layers of abstraction. However, in most cases the mod-
elling and analysis efforts are kept isolated within the
layers of abstraction and there is often an informal no-
tion of correspondence. In this section we describe our
approach of modeling systems at different levels of ab-
straction, starting from the closed loop system till the
software of the GPCA, using varied modeling notations
and our attempt to formally relate them, so that their
analysis can be hierarchically connected.

3.1 Closed Loop System Modeling

The key patient safety questions that need to be an-
swered for the closed loop system is whether the pump
will always be stopped, and whether it will be stopped
quickly enough. There are several delay factors in the
control loop. First, human physiology imposes a delay
from the time the drug concentration reaches a dan-
gerous level and the time the effects of an overdose be-
comes apparent in the oxugen saturation levels. In mod-
eling the physiology, we utilize a simplified model of
pharmacokinetics of intravenous delivery of anesthetic
drugs presented in [5]. Second, there is a delay in the
pulse oximeter, which averages a number of samples in
a variable-size window to produce a reading [6]. Sensed
values and pump commands are transmitted over the
network, adding to the delay. Finally, the controller it-
self adds a processing delay to issue a command to the
pump.

In order to capture the essential functionality of the
closed-loop system and perform analysis of timing prop-
erties of the system, we modeled the system compo-
nents and interactions between them using UPPAAL [4].
An UPPAAL model is a collection of timed automata
that can communicate using synchronous channels and
shared variables. The architecture of the UPPAAL model
follows closely that of the system in Figure|[l} The PCA
infusion pump is represented by three automata, which
we discuss in more detail below. The model also in-
cludes an automaton representing patient physiology, an
automaton for the pulse oximeter, an automaton cap-
turing the logic of the safety interface, and a network
automaton. For details of the model, we refer the reader
to [23].

The three automata used to model the pump that
correspond to the three essential properties of the pump.
The first property states that Infusion cannot begin until
parameters of the infusion are configured and pump is
started by the caregiver. The second property specifies
basal rate delivery. It states that if the pump is not
stopped, it delivers medication with at least the basal
rate and otherwise the infusion rate is 0. Finally, the
third property specifies bolus delivery. It states that,

pca_rate = default_rate,

pump_stopped = false NW2PCA_clear ?

pump_programmed == true

running

CG2PCA_stop ? stopped n\w2pca_stop 2

pca_rate = 0,
pump_stopped = true

NW2PCA_clear ? pea_rate ==0
pca_rate >= 0 &&
pump_programmed =3 true
pump_programmed == true

pca_rate = 0,

NW2PCA_stop ? pump_stopped = tru

CG2PCA _start ?

(a) pca_rate = default_rate, pump_stopped = false

ca_rate + default_bolus_rate,

pea_rate := p
bolus_clock = 0
pump_stopped == false

bolusing

no_bolus (bolus_clock <= default_bolus_time)

P2PCA_bolus ?

pump_stopped == true P2PCA_bolus ?

bolus_clock >= default_bolus_time

and pump_stopped == false

bolus_clock >= default_bolus_time

pea_rate = default_rate and pump_stopped == true

Figure 3: Infusion pump model in UPPAAL: (a) Basal infusion control (b) Bolus control

once the bolus is requested, medication is delivered at
the bolus rate for the prescribed duration. The timed
automata corresponding to the latter two properties are
shown in Figure [3]

3.1.1 GPCA Architectural Modeling

As a part of another related initiative, we developed
and analysed a generic PCA (GPCA) pump software
model that is functionality superior to the PCA consid-
ered in the closed loop system model.

In the work described in this paper, our goal was to
perform formalized hierarchical reasoning of the closed
loop system as it refined to a functionally rich infusion
pump model having the GPCA software that was al-
ready modeled. However, in order to reason in a hierar-
chical fashion, we need a hierarchical model, such that
the abstractions are captured in the hierarchy. Hence we
built an architectural model of an infusion pump using
AADL. AADL notation supports descriptions of both
hardware and software components and their interac-
tions. AADL supports many of the constructs needed
to model embedded systems such as processes, threads,
devices (sensors and actuators), processors, buses, and
memory. Furthermore, it contains an extension mecha-
nism (called an anner) that can be used to extend the
language to support additional features, such as require-
ments modeling. Also the GPCA software model was al-
ready modeled using AADL. Hence we choose AADL to
build the hierarchical architectural model of an infusion
pump.

The graphical representation of the architecture is
shown in Figure The top most system in AADL,
PCA_Pump, have interfaces (inputs and outputs) that
match the PCA interfaces of the closed loop system
model (UPPAAL model). This was done so that there
the level of abstraction of the PCA_Pump in AADL is
same as the PCA of the closed loop system in UPPAAL
and the properties of the PCA_Pump in AADL are always
specified at the same level of detail as in the UPPAAL
model.

While modeling the interfaces we group the individ-
ual inputs and outputs based on different sources: such
as the PCA_Pump inputs, all infusion values from care-
giver/clinician are grouped as CAREGIVER_IN; all com-
mands to the pump are grouped as PUMP_CMDS_IN and
patient bolus inputs are grouped as PATIENT_IN. This
was done in order to simplify signal routing throughout
the model. This grouping of inputs was consistently
done for all components in all levels of system abstrac-
tion.

The architecture of the PCA_Pump component, consists
of typical infusion device components such as sensors
(GPCA_HW_Sensors), a controller/software component
(GPCA_SW) and actuators (GPCA_HW_Actuators). The
sensor component represents the device hardware that
receive inputs to the device and sense exceptional con-
ditions such as user interface, flow rate sensor etc. The
actuator component represents the device hardware that
is responsible for the drug flow out of the device and the
device display. The software component is responsible
for the system control. Since we already modeled a de-
tailed software model, we reused the GPCA_SW model.
In addition to the typical device components, we also
created interface components (GPCA_IP_Interface and
GPCA_OP_Interface) to match and route the inputs and
outputs between the abstract PCA_Pump and concrete
GPCA device.

From this point onwards, we refer to the high level
PCA_Pump as the abstract model and detailed GPCA
device model as the concrete model.

The concrete model has more inputs than the abstract
PCA_Pump model hence the interface component matches
some straightforward inputs, such as Pump_Stop of the

abstract model to Infusion_Cancel of the concrete model,

as well as suppress certain concrete model inputs so
that the behaviours of the concrete model not required
by the abstract model never occur. For example, the
concrete model implements a functionality of suspend-
ing infusion in response to a Infusion_Pause command

PCA_Pump.Impl

GPCA_IP_Interface

OF_CMD_IN
PRES_IN
PATIENT_IN

OP_CMD_OUT

PRES_OUT

PATIENT_OUT P
SENSOR_IN
SENSOR_OQUT
CONST_IN

DB _IN

CAREGIVER_IN GPCA Device
PUMP_CMDS_IN
BOLUS_CMD_IN
GPCA_HW _Sensors
OP_CMD_OUT P OP_CMD_IN
PRES_OUT po{——P» PRES_IN
GPCA_SW
PATIENT_OUT P PATIENT_IN

GPCA_SW_OUT I

GPCA_OP_Interface

PUMP_DISPLAY_OUT|
PUMP_DISPLAY_OUT P
DRUG_0OUT
DRUG_OUT P

GPCA_HW _Actuators

DRUG_QUT - DRUG_IN

- PUMP_DISPLAY N

PUMP_DISPLAY _OUT

GPCA_SW _IN

Figure 4: GPCA Device Architecture

from the clinician. However the abstract model does
not specify this functionality. Hence the interface sup-
presses the Infusion_Pause command to the device.
Similarly other inputs and system conditions of the con-
crete model that are not specified by the abstract model
are abstracted by the interfaces.

3.1.2 GPCA Software Architecture

As mentioned earlier in the paper, we reused an ex-
isting model of the software (GPCA_SW). The software
component (GPCA_SW) was by far the most complicated
component. Hence developing it as one monolithic com-
ponent was difficult to maintain as well as its verification
was not scalable [21]. Hence it was decomposed further
into sub-components as shown in Figure [5| To remove
clutter from the figure, we do not show connections from
the sub-components to the component boundary; the in-
puts and outputs of the subsystems are connected to the
inports and outports of the system with the same name.
This decomposition of the software was specified as an
implementation of the GPCA_SW component similar to
the decomposition of PCA_Pump. Once the GPCA_SW was
decomposed into sub-components, it was tractable for
analysis hence no further decomposition was necessary.
For details of the model, we refer the reader to [21].

3.2 Behaviorial Modeling

The architectural models just defines the structure of
components and their connections. They do not spec-
ify anything about the components behaviors. How-
ever, it was necessary to understand, analyse and verify
behaviors elaborately. In our opinion, AADL is gen-

erally not the most suitable and preferred notations
to model system behaviors. Hence for each of soft-
ware’s sub-component we modeled its detailed behavior
using MathWorks Simulink [2] and Stateflow [3] tool.
Simulink is a data flow graphical language for model-
ing and simulating dynamic systems (both the language
and the tool are referred to as Simulink). Stateflow is a
state-based notation used to model state machines and
flow charts (again, Stateflow also refers to the tool).
These tools are by far the most widely used notations
in industry and suits our modeling needs well. These
individual behavioral models allowed us to analyse and
verify the behaviors in a manageable fashion. For details
of the model, we refer the reader to [21].

4. VERIFICATION

Our strategy for verifying properties over models that
span multiple abstraction levels is depicted in Figure [f]
using the closed-loop infusion system as the case exam-
ple. The main idea is to use the notation and tools ap-
propriate for each abstraction level, decompose the sin-
gle verification problem into distinct verification tasks
for each level of abstraction, and finally tie together the
results in a logical fashion that is amenable to manual
review.

4.1 Verification Approach and Tools

For the verification effort of the GPCA model, we
used three different model checking tools. For the timed
automata model verification, we used UPPAAL model
checker. For the architectural verification, we used the

GPCA_SVW.Impl

or_cmD_in
b
SYS_STAT ALARM CONFIG
TES_'N OF CHIDN IM_IN IM_IN TLM_MODE_|
CONSTIN TLM_MODE_IN TLM_MODE_IN PRES_IN
PATIENT N - -
p- TLM_MODE_OUT SENSOR_IN SY¥S_MOM_IN OP_CMD_IN
iENSORJ CONST_IN LOGGING_IN DB_IN
CONFIG_IN OP_CMD_IN CONST_IN
consT IN -
- DB_IN SYS_STAT IN
SYS_STAT_OUT P
pB_IN il SENSOR_IN

CONFIG_OUT

M SYS MON LOG QUTPUT
TLM_MODE_IN TLM_MODE_IN TLM_MODE_IN TLM_MODE_IN
OP_CMD_IN S e Bl CONFIG_IN SYS_STAT IN
PATIENT_IN ALARM_IN ALARM_IN
CONFIG_IN SYS_STAT_IN COMFIG_IN
ALARM_IN IM_IN IN_IN

SYS_MON_IN
SYS_STAT_IN e _MON_|
LOG_IN
IM_OUT b GPCA_SW_OUT b

CONST_IN
SYS STAT N

CONFIG_IN

ALARKM_OUT P

GPCA_SW_oUT]
|

Figure 5: GPCA Software Architecture

Safety property to be verified

Pulse
/ Oximeter \
. Safety
Infusion
pump

(impue GPCA Device

UPPAAL on Timed
Automata

AGREE on AADL
\ Architectural Model

Output]

Sensors [GPCA Software][Actuarurs

J/

Design Verifier on
Simulink / Stateflow

Alarm [Infusion] Status
Manager

Figure 6: Multi-model verification

recently developed Rockwell Collins JKind tooﬂ For
the behavioral model verification, we used the Simulink
Design Verifier (SLDV) [19]. Both the JKind and SLDV
tools use k-induction [24] algorithms implemented on
top of a Satisfiability Modulo Theories (SMT) solver [12]
to reason about infinite-state models involving real (ra-
tional) numbers and bounded or unbounded integers.

4.2 Closed Loop System Verification

We proved two essential closed-loop safety properties.
The first one states that, once the patient’s blood oxy-
gen saturation level becomes lower than 90%, the pump
will eventually be stopped, expressed as an UPPAAL

query as samplebuffer < 90 -> PCAbasal.stopped. Here,

samplebuffer is a shared variable that represents the

! Available at: https://github.com/agacek/jkind

true oxygen saturation. Note that the invariant of the
stopped state in the PCAbasal automaton is pca_rate==0,
implying that no drug is entering the patient. The
second property takes into account the fact that the
stopped pump can be restarted manually by the care-
giver. We show that if the caregiver never restarts the
pump when the patient is in danger, the patient eventu-
ally recovers, with the oxygen saturation levels return-
ing to normal. This property is expressed as an UP-
PAAL query as samplebuffer < 90 -> samplebuffer
>= 91.

4.3 Reasoning about GPCA Architectural Mod-
els with AGREE

AADL is supported by a growing number of tools, in-
cluding tools that support editing and import/export of
AADL models, as well as tools that allow one to ana-
lyze different aspects of the model—correctness of the
connections, component resource usage within limits,
etc. However, AADL does not have a built-in means
of associating requirements with different components
within the architecture, nor does it have support rea-
soning about requirements.

To formally argue that the system satisfies its re-
quirements, assume-guarantee contracts [20] provide an
appropriate mechanism for capturing the information
needed from other modeling domains to reason about
system-level properties. In this formulation, guaran-
tees correspond to component requirements, and as-
sumptions correspond to the environmental constraints
that are used in verifying the component requirements.
A contract specifies precisely the information that is
needed to reason about the component’s interaction with
other parts of the system. Furthermore, the contract
mechanism supports a hierarchical decomposition of the

verification process that follows the natural hierarchy in
the system model.

In our work, we use AGREE framework [8] - a compo-
sitional reasoning framework based on assume-guarantee
contracts. AGREE is a plugin to the OSATE AADL
tool and adds support for requirements capture and for-
mal verification of the architectural models. In AGREE,
we use the past-time operator subset of past-time linear
temporal logic (PLTL) [17] to specify contracts. The
language is based on Property Specification Language
(PSL) [16] and defines a Lustre language [14] flavor for
the PSL Boolean layer expressions and definitions.

AADL distinguishes between a system, which describe
the input/output interface of an AADL aggregate, and
system implementations, which describe the internal struc-
ture of the system. Each system type may have several
implementations. We define requirements contracts in
a system because requirements are defined over the in-
put/output interface of the component and should not
be defined in terms of implementation details. However,
we perform proofs at the system implementation level,
where we can use the contracts of subcomponents and
their architectural relationship to establish system level
properties.

For each layer of the architecture, we establish, for
each implementation of a system, that the implemen-
tation meets the requirements of the system defined in
the layer. Transitively, we thus establish that the re-
quirements of the top-level system are proved given that
the properties of the lowest layer leaf-level components
are true. The structure of contracts is the same for
the subcomponents, though of course the interfaces and
properties are specialized to the functionality of each
subcomponent.

In order to formally link the closed loop PCA to the
architectural models, we recaptured the closed loop PCA
properties as AGREE contracts at the PCA_Pump level
in AADL.

Lets take an example to explain the hierarchical steps

An astute reader might have noticed the "true->" in the
property, which means the property is always true in the
first step. This was intensionally done, since we noticed
that using ’'pre’ in the first execution step returned ran-
dom value. . Hence in order to avoid complication in
specifying the property, we split the property into two,
where we first specify that the pump always starts (that
at the first execution step) in state at which flow is zero
and then starting the second step, the above mentioned
property holds. This was made just to make the prop-
erty writing straightforward.

In order for the above property of PCA_Pump to hold,
its components, should compositionally guarantee using
their properties. The GPCA_SW being a component of
PCA_Pump has much richer functionality than the func-
tionalities specified by PCA_Pump. Hence state mapping
between them was required to write GPCA_SW proper-
ties to guarantee PCA_Pump properties. Figure [7| shows
a high level representation of the states and its map-
ping between the systems. The state representation of
PCA_Pump was derived from the UPPAAL model and
that of GPCA_SW was derived from its behavioral speci-
fications. Similar to the state mapping, the transitions
from and to these states were also mapped. We discuss
the details of the mapping later in this paper.

In order to satisfy the PCA_Pump property, certain as-
sumptions were required at the PCA_Pump level to match
the abstractions. First of all, CAREGIVER_IN.Infusion_
Programmed - specifies if a valid prescription is already
programmed in the pump - was mapped to the concrete
model variable (PUMP_DISPLAY_QUT.Configured > 0)
that means the device holds a valid prescription. At the
PCA_Pump level, these were still abstract concepts since
the caregiver decides if the infusion is programmed by
looking at the pumps’s display and determining if it is
configured. Hence we state this as an assumption at the
PCA_Pump level.

Secondly, we mapped the ON->Programmed and Stopped
of the abstract model to IDLE state of the concrete

of verification. A closed loop level property for the PCA
informally states, Infusion cannot begin until parameters
of the infusion are configured and pump is started by
the caregiver. This requirement recaptured as AGREE

model hence the transitions (ON->Programmed) ->Running
triggered by (CAREGIVER_IN.Infusion_Start and CARE-
GIVER_IN.Infusion_Programmed) and the transition Stopped
-> Running triggered by (CAREGIVER_IN.Clear_Command)

contract is,

property no_infusion_start =
true -> pre(PUMP_DISPLAY_OUT.Current_System_Mode)=1
and (not (CAREGIVER_IN.Infusion_Start
and CAREGIVER_IN.Infusion_Programmed)) =>
(PUMP_DISPLAY_OUT.Current_System_Mode = 1);}

In the above formalism, the Current_System_Mode =
1 represents the current pump state (abstractly repre-
sented as mode 1) in which flow rate is always zero. The
pre (PUMP_DISPLAY_OUT.Current_System_Mode) repre-
sents the value of the variable from the previous step.

were assumed to imply each other.

Thirdly, GPCA_IP_Interface maps the abstract model’s
Infusion_Start input signal with the concrete model’s
Infusion_Initiate command. Finally the GPCA_SW
guarantees that,
property no_enter_therapy =

true ->

pre(GPCA_SW_OUT.Current_System_Mode) = 1
and not(OP_CMD_IN.Infusion_Initiate

and GPCA_SW_OUT.Configured > 0) =>
(GPCA_SW_0UT.Current_System_Mode = 1);

There were a few other component guarantees that

Programmed

Stopped

~ THERAPY
~ ACTIVE
' BASAL OTHER BOLUS
("? Mode=2 Mode=3

r -
‘ /PATIENT BOLUS
\ Mode=4
\\
PAUSED
Mode > 5

Figure 7: Abstract PCA and Concrete GPCA High level system state mapping

deal with mapping inputs and outputs that are not dis-
cussed here since its not a significant point of discussion.
Hence when we compositionally verified the PCA_Pump
property in AGREE, it was guaranteed using their com-
ponent guarantees and system assumptions.

At this point, the satisfaction of the properties were
only until the GPCA Device components level. As dis-
cussed in section the GPCA_SW was further decom-
posed into components. Hence the properties guaran-
teed by the GPCA_SW for the PCA_Pump has to be guar-
anteed by its sub-components. We performed another
level of AGREE reasoning in which now the GPCA_SW is
the top level system that has properties to be guaran-
teed (similar to the PCA_Pump) by its components (TLM,
ALARM, IM...) guarantees. For example, the prop-
erty of the GPCA_SW (property no_enter_therapy)),
is guaranteed by Infusion Manager(IM), Configuration
Manager (CONFIG), and Output (OUTPUT) component
guarantees. There were not as many assumptions and
abstraction mapping required for the property guaran-
tee between the GPCA_SW and its components since they
were already done as a part of another initiative. For
more details on the verification between the GPCA_SW
and its components, we refer the reader to [21].

44 SLDV

The required properties of the software components
captured in AGREE used to guarantee the GPCA_SW,
which in turn were used to guarantee the PCA_Pump.
However, in order to verify if the software components
captured in AGREE indeed hold, we used the detailed
behavioral model of each of these components built us-
ing Simulink/Stateflow and verified using Simulink De-

sign verifier that they satisfy their properties. The Simulink

Design Verifier requires all properties to be specified as
Boolean expressions in one of the available MATLAB
notations. Hence in our work, we recapture the re-
quired component properties in embedded Matlab - a
subset of the MATLAB computing language that sup-

ports efficient code generation for deployment in em-
bedded systems. For more details on the behaviorial
modeling verification, we refer the reader to [21].

S. DISCUSSION

In total, 7 PCA_Pump properties were proved in AGREE
that correspond to the abstract timed automata model
of the PCA. In order to guarantee these 7 system prop-
erties, there were 7 GPCA_IP_Interface properties and
11 GPCA_SW properties along with some auxiliary proper-
ties of the GPCA_HW_Sensors, GPCA_HW_Actuators and
GPCA_OP_Interface to pass through the input and out-
put signals. Similarly the 11 GPCA_SW properties were
in turn guaranteed by 4 properties in ALARM, 11 prop-
erties in IM and 6 properties in CONFIG, which are the
sub-components of GPCA_SW.

5.1 Matching Abstractions

To ensure that the infusion pump used in the closed-
loop system model simulates the concrete GPCA model,
the differences in the two abstractions had to be recon-
ciled by formally matching states, transitions and in-
puts. The concrete GPCA model has many inputs,
states and transitions that are not represented in the
abstract model. We addressed this by associating con-
crete infusion modes with abstract states of the infusion
pump, introducing a non-deterministic input in the ab-
stract model and adding environmental assumptions in
the concrete model.

First we established a mapping between states in the
abstract model of the infusion pump and the infusion
modes of the concrete GPCA model, as show in Fig-
ure [7} This enables restating properties specified in
terms of flow-rate constraints at the abstract level as
properties in terms of the infusion modes. The dif-
ferent GPCA infusion modes have specific associated
flow-rates that can be immediately verified for confor-
mance to flow-rate constraints. In this mapping, the
abstract states Stopped, ON and Programmed are asso-

ciated with the IDLE mode represented by the pred-
icate Current_System_Mode = 1; Running is associ-
ated with BASAL and OTHER BOLUS modes represented
by Current_System_Mode € {2,3}; and BOLUSING is as-
sociated with PATIENT BOLUS represented by Current_
System_Mode = 4. Note that there is no abstract state
associated with the PAUSED mode of the GPCA, which
denotes a temporary halt to infusion due to certain ex-
ceptional conditions identified by the alarm sub-system.

Certain environmental assumptions, to be discussed shortly,

are sufficient to guarantee that this mode is not reached
for the scenarios considered.

Second, the abstract closed-loop system modeled the
“stop” command to the pump as an exclusive input from
the supervisory control for oxygenation-level based safety-
interlock. However, realistically the operator may com-
mand the GPCA to stop at any time — one may view the
operator as an external monitor for exceptional condi-
tions, analogous to the internal monitor represented by
the ALARMS component. Unlike infusion pump alarms,
which are excluded from consideration at the abstract
level, the “stop” command was included in the origi-
nal abstract model, albeit for a restricted purpose. By
allowing the “stop” to occur non-deterministically, one
can easily simulate an externally commanded infusion
stoppage. The Pump_Stop input signal was made non-
deterministic in the abstract model to effect this change.

The GPCA monitors various exceptional conditions as
modeled by the ALARMS component and responds appro-
priately, some of which would include a temporary pause
to infusion. These alarms may be triggered by sensor
inputs such as air-in-line or internally computed condi-
tions such as empty-reservoir. Due to this, even a sim-
ple abstract property, Once the pump is started, unless
it is stopped, the drug flows at least at basal flow rate,
does not hold for the concrete model, because, the prop-
erty presupposes the absence of infusion-ending triggers
other than the stop command. In the closed-loop sys-
tem, the abstract infusion pump model rightly disre-
gards such details; at the abstract level, one is interested
in establishing essential system properties using a sim-
plified notion of an infusion pump. The responsibility
for stopping infusion for any reason can be pushed out
to the environment — in this case the pump operator can
be assumed to command infusion stoppage as necessary.
Therefore, when relating abstract infusion pump prop-
erties to a concrete realization of the pump, it is reason-
able to interpret those as being prefixed with a standard
caveat: “Absent exceptional pump conditions that inter-
nally trigger stoppage of infusion ...”. Of course, what
these exceptional conditions are would vary with partic-
ulars of the specific pump under consideration. In the
process of mapping the abstract infusion pump model
and its properties to the concrete GPCA, absence of

these internally triggered exceptional conditions is cap-
tured as a system assumption, (no_cancel_implies_-
no_stop_conditions). Such assumptions must then
be discharged using properties of the environment in
which the GPCA operates. In the present case, one has
to manually review these assumptions to ascertain that
those are acceptable caveats to the property of interest.
This is a desirable outcome, for it clearly calls attention
to what those exceptional conditions could be for the
specific GPCA device.

Finally, in the concrete model, there are more more
modes of active drug infusion than the ones specified
in the abstract model as shown in Figure[7] Originally
the abstract model’s property was, when the system is
started and not stopped, system infuses at BASAL flow
rate (when there is no patient bolus request). But the
concrete model switches between BASAL and OTHER BO-
LUS based on the prescription. There were multiple ways
to reconcile the differences. A straightforward approach
is to assume that there is no prescribed 0THER BOLUS.
However, this is not a reasonable assumption for the sce-
narios under consideration — the essential system prop-
erties must hold for any infusion scenario. Therefore, we
adopted an alternative route: the abstract property was
modified to state that system infuses at no less than the
BASAL flow rate”. With an assumption that any bolus
infusion delivers drug at a rate higher than the BASAL
flow rate, which is typically true of the problem do-
main, this change allows the possibility of multiple drug
delivery modes with different flow rates even when the
abstraction includes only a few specific modes explicitly.

Apart from these changes, some auxiliary properties
were required to guarantee that the concrete model’s
states and transitions that were not represented by the
abstract model are not reachable given the system as-
sumptions and the abstraction mapping. For exam-
ple, the concrete model has an additional state PAUSED
shown in Figure[7] Thus, an auxiliary property to show
that PAUSED is never reached under the given environ-
mental assumptions is needed.

In summary, the goal of this matching process aug-
mented with property verification is to justify the fol-
lowing claims:

1. Every abstract state, input and output in the ab-
stract infusion pump model has some matching
counterparts in the concrete model

2. States, inputs and outputs of interest in the con-
crete GPCA have some matching counterparts in
the abstract model

3. Transitions between such matched states on matched
inputs in the concrete GPCA model have a corre-
sponding matching transition in the abstract model
and the respective outputs match

—-- UPPAAL Property :if the pump is not stopped, it delivers medication with at least the basal rate

property infusion_continue =
true -> (pre(PUMP_DISPLAY_OUT.Current_System_Mode) >=
not (PUMP_CMDS_IN.Pump_Stop) =>
(PUMP_DISPLAY_OUT.Current_System_Mode >=
guarantee "infusion_continue":infusion_continue;

-- Map modes with flow rates.
guarantee "Mode 1":(PUMP_DISPLAY_OUT.Current_System_Mode
guarantee "Mode 2":(PUMP_DISPLAY_OUT.Current_System_Mode

(DRUG_OUT .Drug_Flow_Rate >= CAREGIVER_
guarantee "Mode 3":(PUMP_DISPLAY_OUT.Current_System_Mode = 3)

(DRUG_OUT .Drug_Flow_Rate >= CAREGIVER_
guarantee "Mode 4":(PUMP_DISPLAY_OUT.Current_System_Mode = 4)

2 and pre(PUMP_DISPLAY_OUT.Current_System_Mode) <= 4) and

2 and PUMP_DISPLAY_OUT.Current_System_Mode <= 4);

=> (DRUG_OUT.Drug_Flow_Rate = 0);
=>

IN.Normal_Infusion_Rate);

=>
IN.Normal_Infusion_Rate);
=>

(DRUG_OUT.Drug_Flow_Rate = CAREGIVER_IN.Bolus_Infusion_Rate);

-- Maps pump stop input of abstract model to Infusion cancel of concrete model

guarantee "Pump Stop means Infusion cancel"

-- sensor conditions that cause infusion to be stopped.
eq sensor_conditions_that_cause_pause:bool =

(PUMP_CMDS_IN.Pump_Stop <=> OP_CMD_OUT.Infusion_Cancel);

(SENSOR_OUT .Battery_Depleted or SENSOR_OUT.RTC_In_Error or SENSOR_OUT.CPU_In_Error or
SENSOR_OUT.Memory_Corrupted or SENSOR_OUT.Pump_Too_Hot or SENSOR_OUT.Watchdog_Interrupted or
SENSOR_OUT.Temp or SENSOR_OUT.Humidity or SENSOR_OUT.Air_Pressure or
SENSOR_OUT.Air_In_Line or SENSOR_OUT.Occlusion or SENSOR_OUT.Door_Open);

-- when there is no infusion cancel, then there is no sensor conditions causing infusion stop occurs.

property no_cancel_implies_no_stop_conditions =

not (OP_CMD_IN.Infusion_Cancel) => not(sensor_conditions_that_cause_pause);
assume "no_cancel_implies_no_stop_conditions" :no_cancel_implies_no_stop_conditions;

-- If there is no infusion cancel then there is no condition stopping infusion.

property no_cancel_implies_no_stop_conditions =
not (OP_CMD_IN.Infusion_Cancel) =>

not(infusion_end_conditions or any_alarms or OP_CMD_IN.Infusion_Inhibit);
assume "no_cancel_implies_no_stop_conditions" :no_cancel_implies_no_stop_conditions ;

-- If the system is in ACTIVE, and if there is no conditions to stop infusion,system will be in ACTIVE.

property in_active =
true ->

(pre (GPCA_SW_OUT.Current_System_Mode) >= 2 and pre(GPCA_SW_OUT.Current_System_Mode) <= 4) and

not (OP_CMD_IN.Infusion_Cancel) =>

(GPCA_SW_0UT.Current_System_Mode >= 2 and GPCA_SW_O0UT.Current_System_Mode <= 4);

guarantee "in_active": in_active;

Figure 8: Portions of AGREE properties at different layers of system abstraction

4. Unmatched concrete inputs do not occur given cer-
tain environmental assumptions

5. Unmatched concrete states are not reachable under
those environmental assumptions

Informally speaking, taken together these claims al-
low us to see the abstract infusion pump model as a
stand-in (simulation) for the concrete GPCA model un-
der the given environmental assumptions. Thus safety
properties that are established for a system model that
uses the abstract infusion pump as a component, in a
way that satisfies the environmental assumptions made
in the matching process, will be upheld when the con-
crete GPCA infusion pump is substituted in place of the
abstract pump.

5.2 Limitations

Our current approach to verification is restricted in
several ways. First, AGREE currently only handles
synchronous architectural models in which execution
proceeds in a deterministic discrete sequence of steps.
Second, AGREE can verify only invariants, so liveness
properties, cannot be specified in AGREE. In our expe-
rience, this is not as severe a limitation as it may seem,
since most systems are concerned with bounded liveness
in which an action must occur within a time interval
that can be written in AGREE.

The current analysis tools use rationals to model the
behavior of real numbers; However, most software is
implemented using floating point numbers. This can

lead to unsoundness in our analysis of software that uses
floating point arithmetic. Also, AGREE does not sup-
port trigonometric or non-linear functions. These can
be approximated in some cases, but many of the inter-
esting numeric properties of systems simply cannot be
specified.

6. RELATED WORK

Formal analysis of medical systems.

Modeling and analysis of closed-loop medical systems
have been primarily studied in the context of diabetes
care. Much attention is given to modeling patient phys-
iology and design of algorithms for glucose control; see,
for example, |26, [7]. However, we are not aware of any
studies, where evaluation of the closed-loop system is
tied to the modeling of medical devices that comprise
the system. A closed-loop safety interlock for PCA in-
fusion, similar to the one studied in this paper, has been
proposed in [9], however, the authors do not show any
analysis results. Similarly, the GPCA pump has been
used in a number of case studies that involved a vari-
ety of formal methods to model different aspects of the
pump behavior. In [18], code for a simple infusion con-
troller has been generated from UPPAAL-verified code.

Multi-formalism modeling.

In the context of multi-formalism modeling, work has
been done to develop frameworks to integrate models
specified using different formalisms. For example, The
Mébius approach [11], provides a comprehensive infras-
tructure to support interacting formalisms and solvers.
However the formalisms and solvers are required to be
described in terms of a predefined framework and only
those formalisms that can be mapped to the tool’s un-
derlying predefined common semantics can be used. Sim-
ilarly, The OsMoSys approach [25] and AToM? [10],
requires the formalism (restricted to graph based for-
malisms) to be defined in terms of an XML based meta-
language. The main drawback of these approaches is
requiring the formalism to be definable/mappable using
a common semantics/rules. This restricts the freedom
of the designer to the model in the notation that most
suitable for representing and analysing the system and
its components.

An important aspect of relating models in different
formalisms is the notion of time. Timed automata used
to model the closed-loop system use continuous time,
while behaviors of the AADL model rely on discrete
time. The usual way of reconciling the discrepancy be-
tween the notions of time is through discretization. A
number of techniques for discretization have been devel-
oped in the literature, such as [13] [15]. Our UPPAAL
model satisfies the conditions put forth in [22], which

guarantee that whenever a transition is enabled during
an execution, it can occur at an integer-valued time in-
stance. Thus, the model can be faithfully simulated in
discrete time.

7. CONCLUSION

When systems are composed from sub-systems, prop-
erties of the system must be assessed based on its com-
ponent properties and the composition. To reason about
such systems, no single analysis and modeling method
can successfully cope with all aspects of a system or its
components. Hence multiple notations and formalisms
are used. An approach to logically glue the diverse anal-
ysis of the system and its components is required to
reason about the system properties.

In this paper, we considered compositional verification
of a medical system at multiple levels of abstraction,
with different formalisms used at each level. We were
able to formally glue distinct verification paradigms by
leveraging the system’s hierarchical architectural decom-
position. We showed how properties proved for the sys-
tem components at the lower levels of abstraction can
be used to validate the more abstract models, ensuring
that properties proved at the higher levels of abstraction
remain satisfied.

While techniques used in this paper are specific to the
example at hand and to the formalisms used within the
case study, we believe that this work can form the ba-
sis for a general, scalable and practical approach to lay-
ered verification of properties in complex cyber-physical
systems. In order to fully realize the promise of this
approach, we are currently working to make the ap-
proach more systematic and eliminate the ad hoc as-
pects we used in this work. We are also making the
approach more general, allowing more formalisms be in-
corporated.

8. ACKNOWLEDGMENTS

We thank Andrew Gacek, Darren Cofer and John
Backes at Rockwell Collins for developing and improv-
ing JKind and AGREE. We also thank Miroslav Pajic
for helpful discussions on restructuring the model of the
closed-loop system.

9. REFERENCES

[1] Infusion Pumps. via the world-wide-web:
http://www.fda.gov/InfusionPumps.

[2] Simulink - simulation and model-based design. via
the world-wide-web:
http://www.mathworks.com/products/simulink/.

[3] Stateflow - environment for modeling state
machines. via the world-wide-web:
http://www.mathworks.com/products/stateflow/.

[4] G. Behrmann, A. David, and K. Larsen. A
tutorial on uppaal. In Formal Methods for the
Design of Real-Time Systems (revised lectures),
volume 3185 of LNCS, pages 200-237, 2004.

[5] B. W. Bequette, editor. Process control: modeling,
design, and simulation. Prentice Hall, 2nd edition,
2003.

[6] V. Chan and S. Underwood. A single-chip
pulsoximeter design using the MSP430. Technical
Report SLAA274, Texas Instruments, Nov. 2005.

[7] C. Cobelli, C. D. Man, G. Sparacino, L. Magni,
G. D. Nicolao, and B. P. Kovatchev. Diabetes:
Models, signals, and control. IEEE Reviews in
Biomedical Engineering, 2:54-96, 2009.

[8] D. D. Cofer, A. Gacek, S. P. Miller, M. W.
Whalen, B. LaValley, and L. Sha. Compositional
verification of architectural models. In A. E.
Goodloe and S. Person, editors, Proceedings of the
4th NASA Formal Methods Symposium (NFM
2012), volume 7226, pages 126-140, Berlin,
Heidelberg, April 2012. Springer-Verlag.

[9] P.-A. Cortes, S. M. Krishnan, I. Lee, and J. M.
Goldman. Improving the safety of
patient-controlled analgesia infusions with safety
interlocks and closed-loop control. In Proceedings
of the 2007 Joint Workshop on High Confidence
Medical Devices, Software, and Systems and
Medical Device Plug-and-Play Interoperability,
pages 149-150, 2007.

[10] J. De Lara and H. Vangheluwe. AToM?: A tool
for multi-formalism and meta-modelling. In
Fundamental approaches to software engineering,
pages 174-188. Springer, 2002.

[11] D. D. Deavours, G. Clark, T. Courtney, D. Daly,
S. Derisavi, J. M. Doyle, W. H. Sanders, and
P. G. Webster. The Mébius framework and its
implementation. Software Engineering, IEEE
Transactions on, 28(10):956-969, 2002.

[12] H. Ganzinger, G. Hagen, R. Nieuwenhuis,

A. Oliveras, and C. Tinelli. DPLL(T): Fast
decision procedures. In R. Alur and D. Peled,
editors, Proceedings of the 16th International
Conference on Computer Aided Verification,
CAV’04 (Boston, Massachusetts), volume 3114 of
Lecture Notes in Computer Science, pages
175-188. Springer, 2004.

[13] A. G6ll, A. Puri, and P. Varaiya. Discretization of
timed automata. In Proceedings of the 33°* IEEE
Conference on Decision and Control, pages
957-958, 1994.

[14] N. Halbwachs, P. Caspi, P. Raymond, and

D. Pilaud. The synchronous data flow
programming language LUSTRE. Proceedings of
the IEEE, 79(9):1305-1320, 1991.

[15] T. A. Henzinger, Z. Manna, and A. Pnueli. What
good are digital clocks? In Proceedings of ICALP
1992, volume 623 of LNCS, pages 545-558, 1992.

[16] IEEE. IEEE Std. 1850-2005. Property
Specification Language (PSL). IEEE, 2005.

[17) J. A. W. Kamp. Tense Logic and the Theory of
Linear Order. PhD thesis, UCLA, 1968.

[18] B. Kim, A. Ayoub, O. Sokolsky, I. Lee, P. Jones,
Y. Zhang, and R. Jetley. Safety-assured
development of the gpca infusion pump software.
In Proceedings of EMSOFT, 2011.

[19] Mathworks Inc. Simulink Design Verifier. Via the
world-wide-web:

http://www.mathworks.com/products/sldesignverifier.

[20] K. L. McMillan. Circular compositional reasoning
about liveness. Technical Report 1999-02, Cadence
Berkeley Labs, Berkeley, CA 94704, 1999.

[21] A. Murugesan, M. W. Whalen, S. Rayadurgam,
and M. P. Heimdahl. Compositional verification of
a medical device system. In ACM International
Conference on High Integrity Language
Technology (HILT) 2013. ACM, November 2013.

[22] M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, , and
R. Mangharam. From verification to
implementation: A model translation tool and a
pacemaker case study. In Proceedings of the 18"
IEEFE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2012), Apr. 2012.

[23] M. Pajic, R. Mangharam, O. Sokolsky, D. Arney,
J. Goldman, and I. Lee. Model-driven safety
analysis of closed-loop medical systems. Industrial
Informatics, IEEE Transactions on, PP:1-12,
2012. In early online access.

[24] M. Sheeran, S. Singh, and G. Stalmarck. Checking
safety properties using induction and a sat-solver.
In W. A. H. Jr. and S. D. Johnson, editors,
FMCAD, volume 1954 of Lecture Notes in
Computer Science, pages 108-125. Springer, 2000.

[25] V. Vittorini, M. Iacono, N. Mazzocca, and
G. Franceschinis. The osmosys approach to
multi-formalism modeling of systems. Software
and Systems Modeling, 3(1):68-81, 2004.

[26] S. Weinzimer, G. Steil, K. Swan, J. Dziura,

N. Kurtz, and W. Tamborlane. Fully automated
closed-loop insulin delivery versus semiautomated
hybrid control in pediatric patients with type 1
diabetes using an artificial pancreas. Diabetes
Care, 31(5):934-939, May 2008.

	Introduction
	System Overview
	Closed Loop System
	Generic Patient Controlled Analgesic Infusion Pump

	Modeling
	Closed Loop System Modeling
	GPCA Architectural Modeling
	GPCA Software Architecture

	Behaviorial Modeling

	Verification
	Verification Approach and Tools
	Closed Loop System Verification
	Reasoning about GPCA Architectural Models with AGREE
	SLDV

	Discussion
	Matching Abstractions
	Limitations

	Related work
	Conclusion
	Acknowledgments
	References

