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ABSTRACT 
 

IDENTIFYING A NOVEL VULNERABILITY AT THE INTERSECTION OF COPPER 

HOMEOSTASIS AND GLYCOLYTIC METABOLISM IN HEPATOCELLULAR CARCINOMA 

Caroline I. Davis 

Dr. Donita C. Brady 

Hepatocellular carcinoma (HCC), the most common primary liver cancer, of which 

~800,000 new cases will be diagnosed worldwide this year, portends a five-year survival 

rate of merely 17% in patients with unresectable disease. This dismal prognosis is due, 

at least in part, from the late stage of diagnosis and the limited efficacy of systemic 

therapies. As a result, there is an urgent need to identify risk factors that contribute to 

HCC initiation and provide targetable vulnerabilities to improve patient survival.  While 

myriad risk factors are known, elevated copper (Cu) levels in HCC patients and the 

incidence of hepatobiliary malignancies in Wilson disease patients, which exhibit 

hereditary liver Cu overload, suggests the possibility that metal accumulation promotes 

malignant transformation. Here we found that expression of the Cu transporter genes 

ATP7A, ATP7B, SLC31A1, and SLC31A2 were significantly altered in liver cancer 

samples and were associated with elevated Cu levels in liver cancer tissue and cells. 

Further analysis of genomic copy number data revealed that alterations in Cu transporter 

gene loci correlates with poorer survival in HCC patients. Genetic loss of the Cu importer 

SLC31A1 (CTR1) or pharmacologic suppression of Cu decreased the viability, 

clonogenic survival, and anchorage-independent growth of human HCC cell lines. 

Mechanistically, CTR1 knockdown or Cu chelation decreased glycolytic gene expression 

and downstream metabolite utilization and as a result forestall tumor cell survival after 

exposure to hypoxia, which mimics oxygen deprivation elicited by transarterial 

embolization, a standard-of-care therapy used for patients with unresectable HCC. 

Taken together, these findings established an association between altered Cu 

homeostasis and HCC and suggest that limiting Cu bioavailability may provide a new 

treatment strategy for HCC by restricting the metabolic reprogramming necessary for 

cancer cell survival. 
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CHAPTER 1: INTRODUCTION TO HEPATOCELLULAR CARCINOMA AND 
COPPER HOMEOSTASIS 
 

Overview 

 Hepatocellular carcinoma is the most prevalent type of liver cancer that is 

typically discovered at an advanced stage of disease. Several risk factors influence both 

the onset and progression of this malignancy. Importantly, the liver serves as a nexus for 

multiple metabolic processes, from metal homeostasis to lipid synthesis. In this chapter, 

we will present background information about hepatocellular carcinoma and consider the 

relevance of copper (Cu) homeostasis in this pathology.  Accordingly, Cu chelation 

therapy will also be discussed as a suitable treatment modality for various disease 

contexts. Understanding that healthy liver generates an oxygen gradient as blood 

circulates from the hepatic artery to the portal vein, and that a similar oxygen gradient 

exists within the tumor microenvironment, the fundamentals of hypoxia and HIF signaling 

will also be reviewed. Building upon these principles, the Cu dependencies that arise 

from a lack of oxygenation will be discussed in detail. Taken together, this chapter will 

provide the pertinent background information critical to connecting cancer metabolism to 

Cu dyshomeostasis in hepatocellular carcinoma.  

Introduction to Hepatocellular Carcinoma and Liver Metabolism 

Hepatocellular Carcinoma (HCC) as a Liver Cancer Subtype   

Approximately 43,000 Americans will receive diagnoses of liver & intrahepatic 

bile duct cancer this year, while nearly 30,000 Americans will succumb to this disease. 

Although trends indicate an improvement from recent years, the five-year relative 

survival rate is approximately 18%, increasing only to 33% when considering localized 
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cases alone (Siegel et al., 2020). Primary liver cancer is broadly defined as cancer that 

originates from the liver, and can be further categorized into the following distinct 

subtypes: angiosarcoma, hepatoblastoma, cholangiocarcinoma, and hepatocellular 

carcinoma. Angiosarcoma is a rare, aggressive form of liver cancer that develops from 

the endothelial cells that constitute the inner lining of blood vessels within the liver 

(Gaballah et al., 2017). Like angiosarcoma, hepatoblastoma is another rare form of liver 

cancer that affects mainly children and is thought to be an outcome of inherited 

syndromes, congenital anomalies, and uncommon risk factors (Spector & Birch, 2012).  

In contrast, cholangiocarcinoma, also referred to as bile duct cancer, represents 

between 10-20% of newly diagnosed liver cancers in the US, and arises from epithelial 

cells that the line bile ducts which surround the liver (Razumilava & Gores, 2014; Rizvi et 

al., 2018). The last subtype, hepatocellular carcinoma (HCC), constitutes the greater 

remainder of liver cancer cases as it accounts for nearly 75% of new diagnoses (Siegel 

et al., 2020). Unfortunately, most HCC cases are diagnosed at late stage due to 

asymptomatic progression in early stages and to a lack of surveillance for populations at 

risk (Sanyal et al., 2010; Simmons et al., 2019). Therefore, considering the relatively 

high incidence of disease, poor prognosis, and frequency of recurrence, we decided to 

focus our attention to this form of liver cancer.  

Briefly, genetic lineage tracing suggests that HCC arises from hepatocytes (Mu 

et al., 2015). These cells comprise the majority, more than 70%, of all cells in the liver 

and carry out many intricate processes, including glycogenolysis, glycolysis, 

gluconeogenesis, and lipogenesis, depending on their lobular location (Linden et al., 

2018; Si-Tayeb et al., 2010). Compared to other organs of the digestive tract, the liver is 

relatively quiescent as the turnover time for liver parenchyma is around 8-12 months 

(Alison & Lin, 2011; Furuyama et al., 2011). Although fully differentiated hepatocytes 
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maintain the ability to regenerate the liver for normal homeostatic activities, these cells 

may divide upon acute injury or stress stimuli (Malato et al., 2011). Interestingly, when 

damaged hepatocytes are unable to replicate, hepatocyte progenitor cells (HPCs) may 

serve as a reservoir of fresh cells. Importantly, recent studies indicate that the oncogenic 

status and type of stress imposed will dictate the propensity of hepatocytes to form 

HCCs, as well as the fate of HPCs to form benign lesions (Tummala et al., 2017). 

Understanding that different stressors initiate different genetic alterations that propagate 

tumorigenesis, it is imperative to discuss the pre-existing conditions and mutations 

associated with HCC.  

Underlying Risk-Factors and Mutational Status in HCC 

 Understanding that the five-year survival rate decreases with increasing tumor 

size and stage, examining the underlying etiologies and subsequent changes in genetic 

landscape is pivotal to navigating treatment regimens (G. Wu et al., 2018). Importantly, 

HCC tends to develop from cirrhosis that arises due to chronic necroinflammation linked 

to several risk factors (Fig 1.1). Chronic viral hepatitis infections are the most common 

pre-existing conditions observed in HCC patients worldwide. Hepatitis B Virus (HBV) is 

most prevalent in Asian and African countries, representing nearly 70% of all HCC 

patients, while Hepatitis C Virus (HCV) is more common in Western nations (H. seok 

Kim & El-Serag, 2019; Torre et al., 2015). Interestingly, aflatoxin exposure or HBV-HCV 

co-infection amplify the risk of developing HCC (Qian et al., 1994; Zampino et al., 2015). 

Although viral etiologies are major contributors to the global incidence of HCC, the 

presence of alcoholic and non-alcoholic fatty liver disease (NAFLD) that prelude HCC 

continue to rise in the United States (D. L. White et al., 2017). Because major factors 

that comprise metabolic syndrome promote the progression to NAFLD, the increase in 
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NAFLD-associated HCC may be explained by the parallel increased prevalence of 

obesity and type II diabetes in adults (Palmer & Toth, 2019). While less commonly 

observed, Wilson Disease (WD), which is characterized by aberrant liver Cu 

accumulation resulting from genetic alterations in the ATP7B gene, constitutes an 

additional predisposing factor that influences HCC pathogenesis (Reyes, 2008).  

To complement the etiological factors underlying HCC, the mutational landscape 

associated with these specific etiologies may be useful in uncovering molecular 

mechanisms. Notably, a gene expression profiling study revealed that G→T 

substitutions are the most frequently observed mutations in HCC patients (Guichard et 

al., 2012). However, for alterations to the telomerase reverse transcriptase (TERT) 

promoter observed in nearly half of analyzed HCC tissue samples- many of which have 

an underlying HBV infection-  G→A mutations are often observed (Nault et al., 2013; 

Totoki et al., 2014). These nucleotide changes provide sites for E-twenty-six 

transcription factor binding, and thus, drive the enhancement of TERT expression. Other 

frequently mutated genes are the DNA-binding tumor suppressor TP53 and the gene 

encoding the cell-cell adhesion protein β-catenin, CTNNB1. In HCC, most mutations to 

TP53 are missense mutations that reduce DNA binding capabilities, while mutations to 

CTNNB1 usually result in constitutive activation of β-catenin to augment tumor 

invasiveness (J. S. Lee, 2015). Even though these genes are often associated with HBV 

or HCV infection in a background of cirrhosis, their mutations are almost always mutually 

exclusive (Ahn et al., 2014). Lastly, loss-of-function or frame-shift mutants of ARID1A 

and ARID2, chromatin remodeling factors within the AT-rich interaction domain family, 

represent more than 10% of the HCC mutational landscape and appear in patients with 

a chronic HCV infection (J. S. Lee, 2015). These remodeling factors are part of an 

essential complex that regulates DNA accessibility through the insertion of histone 
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protomers, and thus, loss of function impedes activity of downstream transcriptional or 

DNA repair machinery (Lin et al., 2014). Although mutational status is helpful to 

informing therapeutic decisions, changes between the metabolism of normal liver and 

that in HCC must also be considered.  

Glycolytic Metabolism in Healthy Liver and HCC Contexts 

Since the liver serves as a central hub for several homeostatic processes, it is 

not surprising that metabolic rewiring occurs to favor cancer cell survival. Under 

physiological conditions, the liver is responsible for the catabolism and anabolism of 

lipids, amino acids, and carbohydrates. More specifically, de novo lipogenesis, 

cholesterol synthesis, β-oxidation, protein synthesis, gluconeogenesis, and glycolysis all 

occur within the liver (De Matteis et al., 2018). While lipid and amino acid metabolism 

are also hijacked during tumorigenesis, reprogramming of glucose metabolism is 

arguably the most crucial pathway in driving HCC proliferation and survival. Specifically, 

the breakdown of glucose through glycolysis produces pyruvate, which may be 

converted to lactate or channeled towards the tricarboxylic acid (TCA) cycle for ATP 

production and fatty acid synthesis. Furthermore, glycolytic intermediates serve as 

branch points to other metabolic pathways, such as the pentose phosphate pathway or 

serine biosynthesis pathway, that are pivotal in replenishing intracellular redox potential, 

providing nucleotide precursors, and generating substrates for post-translational 

modifications (Lewis et al., 2014; Pacold et al., 2016). In normal physiology, hepatocytes 

maintain a balance between glycolysis and gluconeogenesis by adjusting fluxes in 

response to fed or fasted states. However, to support the overall increase in metabolic 

demand of rapidly proliferating cells, HCCs favor a characteristic shared amongst many 
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cancer types: a unidirectional flux through glycolysis to result in increased glucose 

uptake and lactate production (De Berardinis & Chandel, 2016).  

To drive flux through glycolysis, alterations in protein expression manifest and 

subsequently distinguish HCC from normal hepatocytes. Notably, the glucose uptake 

transporter, GLUT1, is the main form expressed in HCC. This expression contrasts the 

isoform that is typically observed in hepatocytes: the bidirectional glucose transporter 

GLUT2 (Karim et al., 2012). To breakdown glucose through the first commitment step, 

there is a concomitant upregulation in the high-affinity glucose kinase Hexokinase 2 and 

suppression of the low-affinity isoform Hexokinase 4 (Guzman et al., 2015). A similar 

shift from aldolase B to aldolase A is observed further downstream (Castaldo et al., 

2000; Y. Wang et al., 2011). Lastly, a switch from the pyruvate kinase liver isoform (PKL) 

to the pyruvate kinase muscle isoform 2 (PKM2) and elevated LDHA expression solidify 

the conversion to lactate and simultaneous regeneration of NAD+ (C. C.-L. Wong et al., 

2014). Moreover, to accompany the upregulation of these glycolytic enzymes, 

suppression of key gluconeogenic enzymes, particularly fructose-1,6-bisphosphatase 

and phosphoenolpyruvate carboxykinase, further promote unidirectional flux through 

glycolysis by restricting the reverse flux towards gluconeogenesis  (B. Wang et al., 

2012). Taken together, HCC cells establish genetic adaptations that modify the flux of 

metabolites, particularly glycolytic metabolites, to propagate and sustain 

hepatocarcinogenesis.  

 

Collectively, the mutational landscape, underlying etiologies, and metabolic alterations 

form a triad of factors that are imperative to generating and improving HCC therapies, as 

current treatments often incite an aggressive relapse or recurrence.  
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 Current Diagnostics & Therapies for HCC Patients 

 In order to select the appropriate treatment modality, a clear diagnosis must be 

established by integrating a combination of clinical, radiological, and laboratory 

procedures. Since early stages of HCC malignancy are often asymptomatic, most 

patients display signs of disease only after progressing to advanced stage. Simple 

clinical presentations include erythrocytosis, thrombocytosis, dyspnea, hypoglycemia, 

and jaundice due to obstruction generated by the tumor (Attwa & El-Etreby, 2015).   To 

dissect clinical symptoms, physicians must select the appropriate image-guided modality 

(Fig 1.2). Radiologically, an abdominal ultrasound is generally the first line in HCC 

detection, as it is used during routine surveillance for patients with a background of 

cirrhosis. This method has the capacity to detect suspicious lesions less than 1 cm in 

size (Bhosale et al., 2006). For pronounced tumors, hepatic arteriography is the image 

modality that has the optimal sensitivity and accuracy for highlighting patterns of 

vascularization within tumors between the sizes of two to five centimeters (Ikeda et al., 

1994; Ohki et al., 2013).   Alternatively, multiphase perfusion computed tomography 

takes advantage of contrast dye phasing to determine location of tumors, and hence, is 

most appropriate for patients that have undergone loco-regional therapy (Bruix et al., 

2001). Despite reasonable sensitivity, selectivity, and accuracy of the previously 

mentioned radiological image modalities, occasionally images lack a well-defined 

consensus. In such cases, physicians may recommend a percutaneous liver biopsy to 

clarify poorly resolved masses (Heimbach et al., 2018). With a significant elevation of 

alpha-fetoprotein and Dickkopf-1 displayed in the serum signature of numerous HCC 

patients, laboratory exams provide evidence to support a primary diagnosis, and  thus, 

should also be implemented during the course of treatment (Shen et al., 2012; Vibert et 
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al., 2010). Additionally, pathological scoring procedures are implemented to determine 

the stage of the disease and inform the choice of therapy. In practice, clinicians use the 

Barcelona Clinic Liver Cancer staging system to evaluate the size and location of liver 

tumors, and to determine the extent to which HCC has affected liver function and the 

patient’s overall well-being (Heimbach et al., 2018). Upon completion of clinical, 

radiological, and laboratory analysis, a confirmed diagnosis requires a discussion 

surrounding treatment options.  

Treatment interventions at early stage disease include curative procedures such 

as surgical resection or orthotopic liver transplantation (OLT). Importantly, morphological 

selection parameters governed by the Milan criteria dictate whether a patient is an 

appropriate candidate for OLT or surgery (Mazzaferro et al., 1996). However, OLT may 

not be feasible due to donor shortages or intolerance of immunosuppressants, while 

surgical resection is not appropriate for patients with multiple or large tumors. In specific 

cases where the patient displays early stage HCC but is not a candidate for OLT or 

resection, hepatologists may recommend either radio, cryo, or microwave ablation. 

During radiofrequency ablation, tumor tissue electrodes are inserted locally to destroy 

tumor tissue and achieve clean margins upon heating to 55°C (Lencioni & Crocetti, 

2007). This technique contrasts cryoablation, which relies on freeze-thaw intervals 

propelled by argon or helium gas, or microwave ablation, which delivers more than 

900kHz of electromagnetic frequency (Lencioni et al., 2010). Importantly, as most HCC 

tumors are discovered at intermediate or late phase, patients are frequently directed to 

alternative, palliative treatments. Such treatments may include percutaneous ethanol 

injections, transarterial embolization (TAE), transarterial chemoembolization (TACE), or 

systemic therapy with small molecule inhibitors. Notably, the current standard-of-care 

treatment for patients with intermediate disease is TAE/TACE. During this procedure, 
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interventional radiologists insert a catheter into the patient’s groin and flow glass or 

gelatin microsphere beads, coated with chemotherapeutic agents like doxorubicin, that 

block tumor blood supply to promote tumor regression (Lencioni et al., 2010). Despite a 

strong initial response, time-to-progression may occur in as little as  five months (Arizumi 

et al., 2017). Lastly, the most common first-line small molecules approved for advanced 

stage HCC is the RAF-VEGFR-PDGFR multikinase inhibitor Sorafenib (Sanoff et al., 

2016). For patients that progress on Sorafenib treatment, oncologists refer to the 

administration of Regorafenib, a second-line systemic chemotherapeutic agent approved 

for HCC management (Bruix et al., 2017).   Due to the lack of effective targeted 

treatment options, especially for patients with advanced stage HCC, the therapeutic 

landscape must continue to expand to improve overall patient outcome. To provide a 

unique angle to cancer treatment, subsequent chapters will detail our approach to HCC 

therapy: targeting copper homeostasis.  

Metal Properties and Physiological Roles of Copper  

Copper as a Transition Metal 

 Copper (Cu) is a redox active transition metal that is essential for many aspects 

in biology and chemistry.  Found within the d-block of the periodic table, Cu displays 

characteristic chemical properties of transition metals including the existence of multiple 

oxidation states, the ability to form complexes, and the presence of different colored 

compounds (Flowers et al., 2019). Generally, ligand coordination follows Lewis acid-

base principles, where the central metal ion acts as a Lewis acid by accepting electrons 

donated by atoms acting as the Lewis base. Depending upon whether the reduced 

cuprous (Cu1+) or oxidized cupric (Cu2+) ion is present, multiple coordinate covalent 

bonds may be formed. Specifically, cupric ions tend to coordinate between four to six 
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ligands, whereas cuprous ions have the capacity to bind two to four ligands. 

Consequently, the diverse ligand coordination to cupric ions usually results in square 

planar or square pyramidal geometries, which starkly contrasts the linear, trigonal 

planar, or tetrahedral geometries created by cuprous ion coordination (Balamurugan et 

al., 2001; Rorabacher, 1999). Due to the covalent nature of these interactions, many 

biologically relevant Cu-ligand binding affinities are within the femtomolar to sub-

femtomolar range (Z. Xiao et al., 2011). Importantly, desirable chemical properties make 

Cu a robust catalyst in many organic synthesis reactions, including Carbon Azide-Alkyne 

Cycloadditions, to produce biological or pharmacological agents (Kimber et al., 2019). 

Moreover, these chemical properties are largely responsible for the evolution of Cu as a 

quintessential co-factor in biological processes.  

As the cytosol of a mammalian cell cultivates a reducing environment with a pH 

~7.2, it is not surprising that most intracellular Cu exists in the cuprous state. Although 

redox cycling between Cu1+ and Cu2+ is possible, the cell uses a combination of 

cuproenzymes and chaperones to prevent the generation of free radical species 

resulting from Fenton chemistry (Wardman & Candeias, 1996). Aberrant regulation of 

redox cycling fosters uncontrolled protein aggregation, which ultimately drives various 

pathologies. Well characterized examples of such disease contexts are evidenced by β-

Amyloid aggregation in Alzheimer’s disease or α-synuclein-derived Lewy bodies found in 

Parkinson’s disease (Chung et al., 2010; Stelmashook et al., 2014).  Briefly mentioned 

above, coordinate ligands will differ depending upon the presence of Cu1+ or Cu2+ metal 

centers. Although ligation with donor hydroxyl or carboxyl groups is conceivable, cupric 

ions tend to form contacts with the nitrogen atoms in the imidazolate ring of histidine 

(His) side chains. In contrast, cuprous ions have a strong preference for sulfur groups 

and thus form interactions with the side chains of cysteine (Cys) or methionine (Met) 
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residues. Interestingly, the thiolate in the Cys side chain is redox active and may form 

protein crosslinks upon oxidation (Sesham et al., 2013). Considering the interplay 

between redox status and pH, metal coordination with His or Cys depends on pH as 

imidazolate and thiolate groups have pKas of ~6 or ~8.3, respectively (Yousef & Angel, 

2020). Conversely, ligation by Met thioester groups, with no accessible protons, is pH 

independent. Given the biochemical uniqueness of these ligands, Cu-binding pockets 

have evolved to support protein function by incorporating these ligands accordingly.  

Multiple Cu-binding sequences or motifs exist to accommodate a protein’s 

function in either transport, delivery, or catalysis. Notable examples of such motifs are 

observed in the high-affinity Cu transporter 1 (CTR1), the antioxidant protein 1 (ATOX1), 

or the cellular respiration cytochrome c oxidase (CcO). Importantly, CTR1 transports the 

majority of intracellular Cu into the cytoplasm of a mammalian cell. To facilitate Cu 

acquisition, two Met rich motifs (MGMSYM and MMMMPM, where M, G, Y, and P 

represents methionine, glycine, tyrosine, and proline, respectively) and two His rich 

motifs (HSHH and HHH, where H and S represent histidine and serine, respectively) are 

present within the extracellular N-terminus region (J. Jiang et al., 2005). Within the 

transmembrane domain, a MXXXM motif (where X represents any amino acid) supports 

movement through the ion channel-like “gate”, after which a HCH motif from the 

intracellular C-terminus tail coordinates Cu entry into the cytoplasm (De Feo et al., 2009; 

Kahra et al., 2016). Functioning primarily as a delivery protein, ATOX1 ligates Cu 

through the MXCXXC motif in a mechanism to safely transport Cu to the trans-Golgi 

network (Arnesano et al., 2002). Lastly, the mitochondrial electron transfer chain (ETC) 

relies on the multi subunit complex IV, also known as CcO, to generate a proton gradient 

for downstream ATP synthesis. To initiate electron flow, the catalytic subunits leverage 

the sequential redox power of two Cu centers, CuA and CuB, to promote the flow of 



12 
 

electrons toward the ATP synthase. The two Cu ions in the CuA center are ligated by two 

His, two Cys, and a Met residue for ease of surface accessible. Conversely, the 

coordination site of the CuB center comprises of three His residues to keep Cu deeply 

buried within the active site (Ishigami et al., 2017; Scott, 1995). Collectively, these 

examples not only illustrate the diversity in Cu binding motifs but introduce a highly 

regulated transport and delivery system. 

Regulation of Copper Trafficking and Homeostasis 

Considering the detrimental consequences of the Fenton reaction, mammalian 

cells have developed an intricate transport system to effectively import, deliver, and 

export Cu with minimal intracellular recoil (Fig 1.3). The extracellular space fosters an 

oxidative environment that maintains cupric ions; however, most intracellular machinery 

require cuprous ions for function. Thus, a member of the six-transmembrane epithelial 

antigen of the prostate (STEAP) family of metalloreductases must reduce cupric ions 

prior to their cellular import (Ohgami et al., 2006). Following reduction, cuprous ions are 

transported into the cytoplasm via the ubiquitously expressed, high-affinity Cu specific 

transporter 1, CTR1 (Kuo et al., 2001; J. Lee et al., 2001). A balance between 

subcellular localization and vesicular recycling mitigates Cu influxes through CTR1 (Guo 

et al., 2004; Michael J. Petris et al., 2003). Interestingly, unlike ATP-driven Cu efflux 

pumps, CTR1 relies on the action of diffusion to move Cu through its ion pore. Despite 

being the major Cu importer, CTR1 is not the sole facilitator of Cu influx as cells have 

adapted multiple compensatory mechanisms. Particularly, the divalent metal transporter 

1 (DMT1), the transporter primarily responsible for intracellular iron uptake and 

endosomal iron efflux, may import Cu upon iron deficiency (X. Wang et al., 2016). 

Although loss of CTR1 manifests in embryonic lethality, genetic depletion of both CTR1 
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and DMT1 results in a complete suppression of Cu uptake (Kuo et al., 2001; Lin et al., 

2015). Additionally, discovered as a homolog of CTR1 through sequence similarity, Cu 

transporter 2 (CTR2) is postulated to mobilize vesicular Cu by stimulating uptake from 

endosomes into the cytoplasm (Öhrvik et al., 2013; Van Den Berghe et al., 2007).   

Once inside of the cytoplasm, cuprous ions are immediately sequestered by Cu 

chaperones or antioxidant response proteins to facilitate Cu delivery to various 

subcellular compartments. Notably, Cytochrome c oxidase copper chaperone (COX17) 

mediates delivery to the mitochondria, where Cu incorporation is required for proper 

CcO activity. Prior to insertion into the CuA site, the synthesis of CcO 1/2 (SCO1/2) 

exchanges Cu with COX17 and participates in the metalation of CcO (Banci et al., 

2008). CcO functions as a multiunit complex, and thus, requires COX17, SCO1/2, and 

other COX cochaperones for complex assembly and activation (Carr & Winge, 2003). In 

parallel, the Cu chaperone for Cu,Zn Superoxide Dismutase (SOD) 1 (CCS)  transfers 

Cu to SOD1 for subsequent superoxide disproportionation activity (Bakavayev et al., 

2019). Working alongside SOD1 to combat radical species, metallothioneins (MT) 

proteins and glutathione (GSH) peptides scavenge free Cu to prevent lipid oxidation of 

cellular membranes. Furthermore, considering their critical roles in antioxidant response, 

MT expression and GSH production are induced upon increases in Cu concentration 

(González et al., 2008; Muller et al., 2007). Lastly, for trafficking to the trans-Golgi 

network (TGN), ATOX1 shuttles Cu to the P-Type ATPase transporters ATP7A and 

ATP7B (Walker et al., 2004). Through a series of conformational changes initiated by 

metal binding, ATP7A/B facilitate Cu passage through the TGN lumen and into transport 

vesicles or secretory cuproenzymes. Although ATP7A is primarily expressed in the brain 

and intestine while ATP7B is almost exclusive to the liver, both Cu ATPases are 

localized at the TGN membrane under normal, physiological conditions (Lutsenko et al., 
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2007). However, upon sensing Cu excess, ATP7A translocates to the basolateral edge 

of the cell to promote Cu efflux through vesicular secretion. Conversely, ATP7B 

responds to elevated Cu levels by translocating to the apical membranes to foster Cu 

excretion through bile (Hernandez et al., 2008). Beside incorporation into the 

fundamental proteins associated with its homeostatic regulation, Cu maintains pivotal 

roles not only as a traditional metal cofactor, but as a novel signaling molecule.  

Copper as a Static Cofactor 

From a historical perspective, transition metals like Cu, Fe, and Zn, have been 

functionally categorized as structural or catalytic cofactors. As mentioned previously, the 

evolutionarily conserved respiratory enzyme, CcO, utilities the redox properties from two 

distinct Cu sites to proceed with electron transfer (Andreini, Bertini, et al., 2008). To 

mitigate respiratory damage arising from CcO activity, SOD enzymes require Cu for 

disproportionation of superoxide (Carroll et al., 2004). Without Cu insertion, impaired  

catalytic activity and distorted structural conformation will likely ensue. Beyond energy 

metabolism in mitochondria, Cu remains integrated across various metabolic sectors. As 

a core enzyme of the catecholamine biosynthesis pathway, Dopamine-β-

monooxygenase (DBH) catalyzes the hydroxylation of dopamine to generate 

norepinephrine. To complete this conversion, two Cu atoms, CuM and CuH, bridge 

together the interface of two domains within the catalytic core. Once in close proximity, a 

molecule of dioxygen binds the reduced CuM and enables dopamine hydroxylation while 

simultaneous transferring electrons to the CuH center (Vendelboe et al., 2016). DBH thus 

highlights a context where Cu acts as both a catalytic and a structural cofactor. Likewise 

the multicopper ferroxidase ceruloplasmin (CP) exhibits a similar dual functionality as it 

congregates at the intersection of Cu and Fe homeostasis. Estimated to represent 
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between 70-90% of Cu-binding serum proteins, CP carries multiple Cu ions that will be 

used in catalyzing the oxidation of Fe, thus enabling Fe-binding to its respective 

transport protein transferrin (Z. L. Harris et al., 1998; Pfeiffer, 2011). In a similar regard, 

hephaestin provides Cu-dependent ferroxidase activity during Fe efflux from enterocytes 

within the small intestine.  

Aside from direct connections to metabolism, cuproenzymes provide 

intermediates necessary for cell structure and integrity. Namely, lysyl oxidase (LOX), a 

member of the Cu-requiring amine oxidase family, catalyzes the oxidative deamination 

of lysine residues to generate aldehyde species that cross-link to form extracellular 

matrix proteins corresponding to elastin and collagen (X. Zhang et al., 2018). A patch of 

buried His residues tightly coordinate the catalytic Cu ion to promote contacts with the 

lysyl tyrosylquinone substrate, while serving to protect this metal from the deleterious 

effects of surface exposure (Vallet et al., 2019). Parallel assessments may be formed 

surrounding the rate-limiting pigmentation enzyme, tyrosinase. Utilizing a pair of Cu ions, 

CuA and CuB, within its flexible active site, tyrosinase confers both hydroxylation activity 

during the conversion of L-tyrosine to L-3,4-dihydroxyphenylalanine and subsequent 

oxidation activity to form L-dopaquinone (Matoba et al., 2006). Downstream reactions 

spontaneously form melanin, which constitutes the principle metabolite produced by 

melanocytes (Lerner & Fitzpatrick, 1950). Importantly, mutations to the residues which 

line Cu-binding sites in LOX or tyrosinase will not only compromise structural stability 

and Cu-loading, but abrogate catalytic activity (V. S. Lee et al., 2019; Tsai & Lee, 1998). 

Although these examples outline well-defined roles for cuproproteins, Cu participates in 

an emerging paradigm where transition metals may act as dynamic cellular signals.  
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Copper as a Novel Labile Signal 

Bioinformatic approaches approximate that one percent of the eukaryotic 

genome encodes for proteins with Cu-binding capability, suggesting that the current list 

of known Cu-binding proteins is drastically incomplete (Andreini, Banci, et al., 2008). To 

further refine this list, recent studies have uncovered novel roles for Cu as a labile 

signaling molecule. One paramount discovery was revealed when intracellular Cu levels 

were found to alter conformation, stabilization, and activity of an apoptotic protein, the X-

linked inhibitor of apoptosis (XIAP). Specifically, several Cys residues in XIAP become 

saturated upon Cu accumulation, which in turn, induces a conformational change that 

both diminishes caspase-3 inhibitory activity and accelerates protein degradation (Mufti 

et al., 2006). Interestingly, subsequent studies identified the SOD1 chaperone CCS as 

the likely Cu delivery modality for XIAP, and surprisingly, demonstrated that XIAP 

modifies CCS  through ubiquitination to enhance the Cu delivery activity to SOD1 (G. F. 

Brady et al., 2010). Furthering the connection between apoptosis and intracellular Cu, 

recent work by Kim et al. established a synergy between the inhibition of specific BCL2 

apoptotic proteins and the suppression of bioavailable Cu via TTM in the context of 

mutant melanoma (Y. J. Kim et al., 2020). Distinct from cell death pathways like 

apoptosis, Cu has novel functions within cell proliferation and survival pathways.  

Riveting studies conducted by Turski et. al uncovered that Cu stimulates the 

kinase activity of the Ras/mitogen-activated protein kinase (MAPK) kinase 1 (MEK1), 

while chelation by TTM blocks this Cu-dependent phosphorylation (M. L. Turski et al., 

2012).  Elaborating on these findings, further studies illuminated the malevolent 

implications of Cu signaling when genetic ablation of CTR1 or disruption of the Cu-MEK1 

interaction  diminished MAPK signaling and tumorigenic properties in BRAFV600E -driven 
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lung cancer (D. C. Brady et al., 2014). A recent discovery from our laboratory has 

identified the essential autophagic UNC-51-like kinases (ULK1/2) as targets of Cu 

regulation. Here, Cu was found to directly bind to the ULK1/2, and furthermore, a 

decrease in ULK1/2 kinase activity was observed in the presence of a Cu chelator in 

vitro (Tsang et al., 2020). Moreover, these studies suggest that Cu regulates autophagy 

through modulation of ULK1/2 in BRAFV600E-driven lung adenocarcinoma. In contrast to 

enzymatic activation, another study demonstrated that Cu-binding directly inhibits the 

cyclic nucleotide phosphodiesterase activity of phosphodiesterase 3B (PDE3B) in cyclic-

AMP dependent lipolysis. By competing for the low affinity Mg2+ binding site, Cu+ 

elevation translated to increased cAMP and glycerol production (Krishnamoorthy et al., 

2016). Another notable example of Cu-mediated negative regulation may be observed 

from the potassium ion channel KCa3.1. Researchers found that histidine 

phosphorylation antagonizes the Cu-mediated suppression of the KCa3.1, resulting in 

enhanced cytokine production in CD4+ T cells (Srivastava et al., 2016). Shifting from ion 

channels to epigenetics, seminal findings by Attar et al. demonstrate that the histone H3-

H4 tetramer, a previously established core element of DNA nucleosomes, confers Cu 

reductase activity (Attar et al., 2020). Collectively, pivotal discoveries, akin to the 

examples above, not only mark the foundation towards defining the Cu proteome, but 

perhaps, support the discovery of novel targets that underlie previously undruggable 

pathologies.  

Pathological States Associated with Dysfunctional Copper Homeostasis 

Despite the many instances as an enzymatic or structural cofactor, genetically 

induced deficiencies in or excess of intracellular Cu directly or indirectly underscore 

different disease states. Failure to maintain intracellular Cu level at steady state 
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accentuates the dual essentiality and cytotoxicity features of this metal. Genetic 

deficiencies in the high-affinity Cu transporter CTR1 result in embryonic lethality (Kuo et 

al., 2001).  Conversely, mutations to the Cu efflux ATPases ATP7A and ATP7B result in 

Menkes (MD) and Wilson disease (WD), respectively (Peter C. Bull et al., 1993; Nyasae 

et al., 2007). Although both disorders are consequences of rare genetic inheritances, 

these conditions have differing manifestations that corresponds to their tissue-specific 

expression. Specifically, ATP7A expression is concentrated to the brain and the 

intestine, thus, patients with MD present with developmental regression, behavioral 

abnormalities, kinky hair, and intestinal malabsorption. As ATP7B expression occurs 

almost exclusively in the liver, and mutations or deletions to this transporter reduce Cu 

biliary excretion from hepatocytes. Therefore, it is not surprising that WD patients 

present with anemia, jaundice, cirrhosis, and in most cases, Kayser-Fleisher rings. 

Unlike MD, which has no specific treatments and typically results in premature death, 

clinicians implement Cu chelation therapy to combat the Cu accumulation observed in 

WD (Brewer, 2003).  

Although MD and WD are direct implications of aberrant Cu homeostasis, a 

multitude of disorders occur as indirect consequences of Cu misincorporation. Instances 

of neurological conditions such as Alzheimer and Parkinson’s disease are thought to 

arise from Cu-induced ROS (Stelmashook et al., 2014). Multiple studies reveal that 

oxidized Cu2+ promotes aggregation of β-amyloid, the protein responsible for the 

neurotoxicity underlining Alzheimer’s disease, into degradative-resistant plaques  (Dai et 

al., 2006; Miller et al., 2006; Nguyen et al., 2014; Sarell et al., 2009).  In a similar regard, 

free Cu2+ ions exhibit a dual malice in the development of Parkinson’s disease. In 

particular, these ions appear to alter the structural conformation of α-synuclein, a major 

contributor to the onset of Parkinson’s disease, and then propagate these misfolded 
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proteins to aggregate into toxic Lewy bodies (Paik et al., 1999; Rose et al., 2011; 

Uversky et al., 2001). Although α-synuclein is largely concentrated at synaptic vesicles 

and may participate in regulation of dopamine release, its general function is not well 

understood. However, a study by Davies and colleagues elucidated a novel function of 

α-synuclein as a Cu-dependent ferrireductase (Davies et al., 2011). In contrast to 

Alzheimer’s and Parkinson’s diseases, the lack of Cu metalation present in several SOD 

mutants emerges as a determinant cause of familial amyotrophic lateral sclerosis (ALS) 

(Sheng et al., 2013). Indeed, the structural misfolding of SOD in familial ALS truly 

highlights the significance of Cu misappropriation in neurodegenerative disease 

initiation.   

In recent years, growing incidences of metabolic disorders in the US expose an 

intricate connection to dysfunctional Cu homeostasis. As rates of obesity and type II 

diabetes continue to rise, an increased prevalence of non-alcoholic fatty liver disease 

(NAFLD) and non-alcoholic steatohepatitis (NASH) has emerged (Palmer & Toth, 2019). 

By clinical definition, NAFLD manifests when lipid accumulates in the liver, whereas 

NASH develops because of recurrent cycles of NAFLD-induced inflammation and 

scarring. Preclinical studies denote an elevation of serum cholesterol and triglycerides 

when rats were exposed to a Cu-deficient diet (Church et al., 2015). These findings are 

supported by longstanding molecular work where an increase in localization of the sterol 

regulatory element binding proteins 1 & 2 (SREBP-1/2) occurs upon Cu deficiency (Tang 

et al., 2000). When intestinal tissue from rats on a copper-deficient diet was genetically 

profiled using a microarray, Tosco et al. documented a transcriptional downregulation of 

genes within Acyl-CoA pathway and simultaneous upregulation in plasma cholesterol 

components (Tosco et al., 2010). Consistent with data from molecular and animal 

studies, clinical investigations revealed a greater risk of hepatic injury in pediatric 
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populations that present with low circulating Cu and CP levels due to  insufficient dietary 

Cu (Laitinen et al., 1989; Nobili et al., 2013). Interestingly, further lines of evidence 

suggest that Cu availability influences MAPK signal transduction in MAPK-driven cancer, 

cytokine signaling in atherosclerosis development, and cellular prion protein-folding in 

prion diseases (D. C. Brady et al., 2014b; Mitteregger et al., 2009; W. J. Zhang & Frei, 

2003). While Cu, Fe, and Zn exhibit significant and individual applications across 

biology, several functional observations outline an intersection between the 

homeostasis, trafficking, and metabolism of these metals.  

The Relationship between Copper, Iron, and Zinc Homeostasis 

Evidently, transition metals have a pronounced and interrelated role in biology. 

Zn remains redox inactive but stabilizes protein structure, while the redox activity of 

metals Cu and Fe propels many electron transfer reactions. When further considering 

their similarities in redox chemistry, it is not surprising that Cu and Fe share transport 

and delivery mechanisms starting with their entry into the cell. Specifically, the well-

established Fe transporter DMT1 exhibits active Cu transport, as several studies have 

demonstrated that DMT1 knockdown reduces Cu uptake (Arredondo et al., 2003a; 

Espinoza et al., 2012) and that DMT1 overexpression increases Cu uptake during Fe 

deficiency (L. Jiang et al., 2013; X. Wang et al., 2016). Conversely, multiple studies 

revealed that Cu excess was sufficient to diminish the mRNA expression of DMT1 (Gao 

et al., 2014; Tennant et al., 2002). Beyond intracellular import, further examples of the 

Cu-Fe linkage may be observed within the circulatory system. Two notable examples 

that highlight this codependence are the ferroxidases ceruloplasmin (CP) and 

hephaestin (HEPH). As indicated in their names, both CP and HEPH are enzymes 

responsible for the Cu-dependent oxidation of Fe2+ to Fe3+ (Vulpe et al., 1999). 
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Interestingly, three mononuclear and one trinuclear Cu-binding sites that are buried 

within CP were identified by X-ray crystallography (Zaitseva et al., 1996). Importantly, 

lack of adequate dietary Cu not only ceases CP ferroxidase activity in animal models but 

also diminishes protein abundance, further suggesting that Cu provides an additional 

structural element  (Broderius et al., 2010). In contrast, excessive Cu in the presence of 

Fe deprivation raises CP protein levels and enhances ferroxidase activity upon Cu 

loading (Ranganathan et al., 2011).  Unlike CP which functions as the major Cu delivery 

protein in serum, its homologue HEPH lies wedged between the basolateral membrane 

of enterocytes (Frazer et al., 2001; Vulpe et al., 1999).  Moreover, by analyzing existing 

CP crystal structures, structural modeling analysis of human HEPH by Syed and 

colleagues uncovered that the characteristic beta fold and Cu-binding sites of CP are 

conserved in HEPH (Syed et al., 2002). Critically, a colon cancer line subjected to Cu 

deprivation in vitro demonstrated a significant reduction in HEPH activity and synthesis, 

a result that matched observations from mice fed a Cu-deficient diet (H. Chen et al., 

2006). Taken together, these studies further emphasize the pivotal role of Cu in 

providing stability, structure, and function to quintessential ferroproteins.    

 In contrast to its supplementary role in maintaining Fe homeostasis, Cu, in 

tandem with Zn, constitute the basis for antioxidant response proteins. Namely, the free 

radical scavenging protein SOD1 and the metal detoxification family of metallothioneins 

(MTs) require both Cu and Zn to either initiate function or upregulate expression. Before 

driving catalysis of ROS, SOD1 first requires a cooperative endeavor between Cu and 

Zn to fold properly. In a multi-step reaction, Zn2+ ions first serve to coordinate the folding 

of major Cu ligands, and then transition to the Zn binding pocket upon completion of 

global protein folding (Leinartaitè et al., 2010). Although the affinity for SOD1 is roughly 

~7000-fold higher for Cu than for Zn, the sequential folding permits appropriate ion 
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metalation that yields a remarkably stable overall structure (Trumbull & Beckman, 2009). 

Intriguingly, diminished affinity for Zn, as observed in numerous SOD1 mutants, 

substantiates the clinical connection between dysfunctional SOD1 and development of 

ALS (Crow et al., 1997). To complement the cell-preserving functions of SOD1, metal 

scavenging MTs are upregulated to sequester free Cu or Zn ions. These small molecular 

weight metalloproteins form clusters around transition metals that would otherwise 

induce ROS via Fenton chemistry (L. Alvarez et al., 2012). Notably, the apparent 

dissociation constant KCu for Cu+ to MT is ~ 4.1x1016 while the KZn for Zn2+ is 1.8x1011 

(Banci et al., 2010; Namdarghanbari et al., 2010). Thus, under conditions of Cu 

overabundance, Zn ions are displaced from Zn-MT proteins and bind to the metal-

response element (MRE) transcription factor-1 to induce expression of apo-MT (Günther 

et al., 2012). Essentially, MTs serve as biological metal buffers to ensure that cellular 

metal content approaches physiological homeostasis.  

Akin to Fe, Zn may compete with Cu for intestinal absorption, and therefore the 

Cu/Zn ratio should be closely monitored in patients with chronic Cu deficiency (E. D. 

Harris, 2001). Seminal work has established that the crossroads of dysfunctional Cu and 

Zn homeostasis potentiates neurological diseases. In addition to direct roles in 

propagating amyloid-β aggregation, the faulty release of labile pools of Zn or Cu ions 

alter the plasticity of synaptic clefts, leading to negative modulation of neurotransmitters 

involved in Alzheimer’s disease (Dodani et al., 2014; Sensi et al., 2009). Despite the cell-

intrinsic programing that occurs in response to super-physiological metal levels, 

pharmacological interventions can be useful to further enhance this response.   

Copper Chelators in Treatment of Disease 
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Copper Chelators in Research and the Clinic 

Metal chelation is often implemented to effectively modulate the bioavailability of 

transition metals in cells. This strategy is particularly useful for studying the purpose of 

metals in a biological system or as a therapeutic modality for curing disease. When 

investigating the functional significance of Cu in cell biology, the well-established Cu 

chelator bathocuproine disulfonate (BCS) is used to selectively target cuprous ions 

(Patel et al., 1997; Rapisarda et al., 2002). This agent may additionally bind cupric ions 

and generate a geometry that drives their reduction. However, once Cu ions reach the 

Cu1+ state, the chelation properties of BCS prevent further redox cycling (Patel et al., 

1997; Seng et al., 2009). Despite the two sulfonate groups that promote its solubility in 

water, the charged nature of BCS makes it membrane impermeable and should 

therefore be used to restrict Cu outside of cells (Rasoloson et al., 2004; Z. Xiao et al., 

2004). For studies investigating the intracellular role of Cu1+, the hydrophobic chelator 

neocuproine may be used as a suitable cell-permeable alternative (Bhat et al., 2007; 

Kumcu et al., 2009).  

Moving from bench to bedside, Cu chelators embrace a translational role in 

medicine. To treat Cu overload resulting from a plethora of diseases, clinicians may 

select from multiple well-studied Cu chelators. Interestingly, D-penicillamine (D-pen) was 

the first orally administered Cu chelator that proved successful in alleviating Cu 

accumulation in WD patients (Peisach & Blumberg, 1969; Yarze et al., 1992). Notably, 

D-pen contains sulfhydryl, amino, and carboxylate functional groups that permit 

chelation of both cupric and cuprous ions. Upon chelation, D-pen reduces cupric ions to 

cuprous ions while simultaneously forming disulfide bonds from oxidized thiol groups 

(Kato et al., 1999). Despite its selectivity for Cu ions, D-pen may additionally chelate Zn 
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as both animal and patient studies have denoted a D-pen induced Zn-deficiency after 

treatment (Cossack & Bouquet, 1986; Fieten et al., 2013). Unfortunately, D-pen has 

been reported to induce nephrotoxicity in a subset of WD patients (Walshe, 1969). 

Therefore, the acylic amino chelator trientine has been substituted in cases where 

adverse effects manifest. In contrast to the multiple functional groups present in D-pen, 

trientine harnesses the chemistry of amino nitrogen donors to preferentially coordinate 

Cu2+ ions yielding a femtomolar dissociation constant (Lu, 2010). The resulting square-

planar geometry promotes a conformation that can effectively inhibit Cu,Zn SOD activity 

and compete with serum albumin for Cu binding (Brown et al., 2009; Sarkar et al., 1977).  

With respect to metabolism, trientine both enhances the rate of urinary Cu excretion, in a 

similar regard to D-pen, and reduces intestinal adsorption to generate Cu deficiency with 

minimal drug toxicities (Lu, 2010; Pfeiffenberger et al., 2018). Despite the success of 

trientine regimens for WD, the relevance of tetrathiomolybdate (TTM) has been explored 

in recent years. A phase III clinical trial demonstrated that TTM was more effective than 

trientine in WD patients presenting with neurological symptoms (Brewer et al., 2006). 

TTM is an inorganic chelator that forms polymetallic clusters when Cu moieties are 

ligated by thiolate ligands (George et al., 2003). Similar to the abovementioned 

chelators, TTM exerts a high affinity for Cu (Kd ~ 10-19) and exists as a TTM-Cu-albumin 

tripartite complex in serum (Christian Rupp & Weiss, 2019; Suzuki et al., 1995). 

Remarkedly, TTM demonstrates the capacity to de-copper MT and Cox17 proteins in 

vitro (Smirnova et al., 2018), and can interfere with Cu exchange from Atx1 to its target 

protein Ccc2a (H. M. Alvarez et al., 2010). As TTM-complexed Cu is no longer bioactive, 

the tripartite complex is packaged into bile and excreted from the liver into the intestines. 

Even though TTM is well-tolerated in WD patients, it is important to note that excessive 

molybdenum is toxic and thus should be dosed accordingly (Vyskočil & Viau, 1999). 
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Outside of these Cu chelators, the small molecules inhibitors elesclomol and disulfiram, 

which chelate cupric ions, have attracted attention for their multifunctional indications 

and will be discussed in further detail in the following section.  

Copper Chelation Therapy for Multiple Indications 

The Cu chelators D-pen, trientine, and TTM were designated as primary treatments 

for Wilson disease, an inherited disorder where mutations in the Cu exporter ATP7B 

prompt aberrant Cu accumulation in the liver. Interestingly, mutations to the Cu efflux 

pump ATP7A, another member of the P1B-subfamily of P-Type ATPases, manifest in the 

X-linked inherited condition Menkes disease (MD) (Telianidis et al., 2013). This disorder 

induces a Cu deficiency in both the brain and the serum, impairing Cu delivery to 

cuproenzymes vital to cell structure and metabolism. Unlike Wilson disease, Cu 

chelating agents, including thiuram, dithiocarbamate, and lipoic acid, used to treat MD 

act as ionophores and facilitate Cu transport across blood-brain barriers (Horn et al., 

2019). Beyond their initial indications for treatment of genetic disease, Cu chelating 

agents have been repurposed as alternative or supplemental therapies for malignant 

conditions varying from cardiovascular disease to cancer. In a rat model of vascular 

injury, TTM was shown to blunt the release of the cytokine IL-1α and the growth factor 

FGF1 following balloon-induced injury of the carotid artery (Mandinov et al., 2003). 

These findings complement a preclinical investigation where doxorubicin-induced 

increases in the cytokines TNF-α, IL-1β, and IL-2, were abrogated in a mouse model of 

cardiac toxicity after TTM administration (Hou et al., 2005). With respect to vascular 

inflammation, molecular and pre-clinical studies have demonstrated that TTM 

administration inhibits both mRNA expression and serum levels of ICAM-1,VCAM-1, and 

TNF-α, which are key modulators in the development of atherosclerotic lesions (Wei et 
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al., 2011, 2012, 2014). Moreover, Cu chelation proved successful in mitigating the 

effects of adjuvant-induced inflammatory arthritis in rats, as TTM attenuated expression 

of the angiogenesis growth factor VEGF and impeded clinical hallmarks of rheumatoid 

arthritis (Omoto et al., 2005). In addition to direct mediation of the inflammatory 

response, the Cu chelator 2,3,2-tetraamine (tet) ablated the lipopolysaccharide-induced 

production TNF-α, IL-1β, and IL-6 cytokines to suppress human monocyte activity, while 

tet-mediated Cu deficiency reduced expression and production of IL-2 in human T-

lymphocytes (Hopkins & Failla, 1997; Huang & Failla, 2000). Unsurprisingly, the lack of 

proinflammatory markers upon Cu chelation reduces subsequent signaling to limit 

fibrotic development, as evidenced by diminished pulmonary fibrosis or liver fibrosis in 

either bleomycin-induced or bile-duct ligation murine models, respectively (Brewer et al., 

2003; Song et al., 2008).  Taken together, these findings illustrate the importance of Cu 

chelation as a modality to restrict both activated and unsolicited immune responses. 

Considering that several of the abovementioned growth factors and cytokines lie at the 

axis of angiogenesis and immunity, it is not surprisingly that there is a growing interest in 

the repurposing of Cu chelators as potent anti-cancer therapeutics.  

Although not carcinogenic itself, multiple studies have demonstrated that Cu 

supplementation at moderate to high doses can increase cellular proliferation in rodent 

models of mammary, pancreatic, or lung cancer (D. C. Brady et al., 2014; Ishida et al., 

2013; Skrajnowska et al., 2013). Despite proliferation number of factors influencing 

proliferative potential, the formation of blood vessels that supply nutrients to the tumor is 

a large contributing factor. Accordingly, Cu chelation has been demonstrated to hinder 

this process, referred to as angiogenesis. A simple study illustrated this concept by 

dramatically hindering the proliferative and survival capacity at multiple doses of TTM in 

human umbilical venous or arterial endothelial cells (Carpenter et al., 2007). With 
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respect to the angiogenic dependency in cancer, trientine suppressed 

neovascularization, microvessel density, and IL-8 production in murine xenograft models 

of HCC and fibrosarcoma (Hayashi et al., 2007; Moriguchi et al., 2002; Yoshii et al., 

2001). A subsequent study confirmed these findings in xenograft models of colorectal 

cancer when researchers demonstrated that trientine could block tumor 

neovascularization in addition to inhibiting tumoral VEGF and IL-8 expression (Yoshiji et 

al., 2005). Mirroring these results, TTM dosed in both transgenic and xenograft murine 

models of breast cancer were able to curtail microvessel density. Notably, this study 

began to uncover the connection between Cu and NFkβ signaling as it pertains to 

angiogenesis, since nanomolar doses of TTM could suppress NFkβ-dependent 

transcription and protein abundance (Pan et al., 2002). A mechanistic follow-up 

investigation using breast carcinoma cells further defined the Cu/NFkβ signaling axis, as 

TTM treatment depleted proangiogentic mediators and attenuated invasiveness and 

motility in vitro while reducing tumor kinetics and metastasis in vivo. Imperatively, both of 

these findings  phenocopied observations made after genetic manipulations were made 

to the NFkβ pathway (Pan et al., 2003).  Preclinical murine models of head and neck 

squamous cell carcinoma demonstrated that a 30% Cu deficiency induced by TTM was 

sufficient to significantly reduce microvessel density and tumor volume (Cox et al., 

2001). Together, these preclinical findings substantiate the evidence behind the use of 

Cu chelation in anticancer clinical studies.   

Likely due to its favorable toxicity profile, TTM has been selected as either a primary 

or adjuvant therapy in several human cancer trials. An early phase I clinical trial 

assessed the effects of TTM dosage in patients with metastatic solid tumors revealed 

that patients who achieved a clinical Cu deficiency did not progress (Brewer et al., 

2000b). Following this study, a phase II clinical trial was conducted with advanced-stage 
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kidney cancer patients. In addition to TTM being well tolerated, serum measurements 

revealed a significant reduction in of proangiogenic markers relative to baseline. 

Moreover, the presence of stable disease in these patients speaks to the cytostatic, 

instead of cytotoxic, nature of TTM (Redman et al., 2003). Years later, a trial that 

recruited patients with operative esophageal cancer observed a survival benefit when a 

two year TTM adjuvant therapy was administered following transhiatal esophagectomy 

(Schneider et al., 2013). An additional study that enrolled late-stage or triple-negative 

breast cancer patients found that oral administration of TTM could significantly diminish 

endothelial progenitor cells (EPC) and prevent relapse in patients that sustained a mild 

Cu-deficiency (S. Jain et al., 2013). These promising findings prompted another phase II 

clinical trial in breast cancer patients with the same staging criteria, and intriguingly, 91%  

of stage II-III patients and 67% of stage IV patients remained EPC biomarker and event-

free after two years on TTM adjuvant therapy (Chan et al., 2017).  

Despite the clinical success of Cu chelation therapy, the underlying biology of the 

target cancer must be carefully considered to avoid negative outcomes.  For example, 

even though elimination of myelosuppression and normalized functional liver outputs,  a 

phase II clinical trial in human glioblastoma multiforme patients revealed that no 

significant survival benefit was evident after penicillamine treatment (Brem et al., 2005). 

In a phase II trial with hormone refractory prostate cancer patients, TTM administration 

failed to reduce angiogenic markers and unsurprisingly, resulted in progressive disease 

status in more than 75% of patients (Henry et al., 2006). In a multi-agent pilot study 

conducted in metastatic colon cancer patients, a cycling regimen of TTM, irinotecan, 5-

flurouracil (5-FU), and leucovorin rendered an unsettling overall response rate of 25% 

despite being well-tolerated (Gartner et al., 2009). Taken as a whole, these studies 

illuminate the importance of understanding the underlying biology of the target tumor, as 
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the tumoral niche influences a tumor’s metastatic potential. Learning from these clinical 

studies,  Cu chelation may be best served in micro cancers that have defined  genetics, 

metabolism, vascularization, and bodily location.  

Outside of traditional Cu chelators, Cu ionophores have also worked their way into 

the clinic. In particular, the Cu ionophores disulfiram (DS) and elesclomol have garnered 

attention as alternatives to conventional chemotherapeutics. Due to its inhibition of 

aldehyde dehydrogenase, DS emerged in the 1950’s with FDA approval as a treatment 

for chronic alcoholism (Skrott et al., 2017). When this carbamoyl derivative dimerizes 

and becomes reduced, the resultant sulfur anions can bind to metal ions including Cu 

(II). This reactivity has been postulated to generate ROS, a feature which partially 

contributes to the cytotoxicity reported with DS (Tawari et al., 2015). Moreover, several 

mechanistic studies illustrated an NF-kB-dependent cytotoxicity in multiple cancer types.  

Colorectal cancer cell lines treated with DS exhibited a block in NF-kB pathway induction 

and an enhancement in the cytotoxicity of 5-FU when used in combination with DS (W. 

Wang et al., 2003). Interestingly, melanoma cells with different stages, but not 

melanocytes, showed both significant reductions in cell viability and elevations in Cu 

content in response to DS treatment (Cen et al., 2004). In vitro experiments using 

patient-derived myeloma and leukemia cells demonstrated that the presence of DSF or 

DSF in combination with CuCl2 could activate caspases and induce a potent cell death 

(Conticello et al., 2012).  

Following these promising findings, a pilot trial in men with non-metastatic recurrent 

prostate cancer was initiated but yielded rather disappointing results. Notably, DS failed 

to provide a survival benefit and was not well-tolerated in this patient cohort (Schweizer 

et al., 2013). In light of these results, more recent studies have proposed 

nanoencapsulation of DS as it allows for more targeted cytotoxicity with less adverse 
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effects (Tawari et al., 2015). Other studies have provided evidence that inhibiting 

autophagy enhances DS potency against non-small cell lung cancer (X. Wu et al., 2018) 

and that DS treatment reduced tumor burden in xenograft models of multiple myeloma 

(Jin et al., 2018). By mining epidemiological data sets combined with empirical 

biophysical observations,  a landmark study revealed that cancer patients taking DS had 

a lower risk of cancer-related death and that the functional DS-Cu complex inhibited the 

essential NPL4 segregase, which is involved in stress-response pathways   

(Skrott et al., 2017). Despite these compelling findings, whether disulfiram should be 

used prophylactically to prevent recurrent cancer in first-time diagnosis patients is still a 

question under investigation.  

Conversely, elesclomol is a carbohydrazide-based small molecule designed to 

selectively target cancer cells by rapidly triggering oxidative stress in mitochondria to 

induce apoptosis (Kirshner et al., 2008). Biophysical studies have shown that elesclomol 

binds to Cu (II) in a 1:1 molar ratio and potentiates hydroxyl radicals in an indirect 

fashion (Hasinoff et al., 2014). In addition to entering cells in complex with Cu (II), the 

complex is directed immediately to the mitochondria (Nagai et al., 2012). In pursuit of 

defining a mechanism of action, Blackman et al. provided evidence that elescomol 

affects electron transport chain (ETC) function as growth defects and mitochondria 

functional outputs manifested in S. cerevisiae treated with elescomol or harboring loss of 

ETC functional components (Blackman et al., 2012).  Although a complete mechanism 

of action has yet to be defined, a recent study discovered that FDX1, a mitochondrial 

reductase critical to iron-sulfur cluster synthesis, is a novel target of elescomol (Tsvetkov 

et al., 2019). Building on this mechanism, cell lines and xenograft models of Ewing 

sarcoma exhibited sensitivity to enhanced to elesclomol when expressing SOX6, a 

transcription factor critical to endochondral ossification (Marchetto et al., 2020). In 
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human trials,  a landmark phase II clinical trial in metastatic melanoma patients 

uncovered that the combination of elescomol and paclitaxel significantly increased the 

median disease-free progression and substantially raised the median overall survival (S. 

O’Day et al., 2009). While the SYMMETRY study, a subsequent phase III clinical trial 

with similar treatment arms, was terminated early due to an anticipated imbalanced 

mortality in the paclitaxel group upon survival analysis, it did reveal that LDH levels are 

an indication of prognosis in late stage melanoma patients lacking previous therapies (S. 

J. O’Day et al., 2013). More recently, a small dose-escalation study was initiated in 

patients with acute myeloid leukemia to assess the toxicity of elescomol, and suggested 

that a dose of 400mg/m2 or higher was well-tolerated as a monotherapy for AML patients 

(Hedley et al., 2016). Collectively,  targeting Cu transport and delivery in cancer 

effectively mediates inflammatory regulators, angiogenesis factors, and ROS generation 

to lessen the tumorigenic properties associated with aggressive behavior and metastatic 

potential. 

Hypoxia and Copper Metabolism  

Introduction to Hypoxia  

Oxygen (O2) is a universal requirement for mammals. As the ultimate electron 

acceptor of the ETC, a sufficient supply of O2 is necessary to complete aerobic 

respiration (M. Liu et al., 2020; Semenza, 2007). Without an adequate supply or 

distribution of O2, cells must initiate a cascade of transcriptional, metabolic, and signal-

transduction related reprogramming in order to adapt to reduced oxygenation (Muz et 

al., 2015). Although several protein factors mediate the hypoxic response, the hypoxia-

inducible factors (HIF) provide a key foundation as they act as the master regulators to 

drive many associated response pathways. Importantly, the HIF subfamily falls within the 
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basic helix-loop-helix (bHLH) Per/Arnt/Sim (PAS) family of transcription factors. For 

transcriptional function, the O2-responsive subunit, HIF-alpha (α), heterodimerizes with 

the constitutively expressed HIF-beta (1β) subunit (J.-W. Lee et al., 2004) to bind 

Hypoxia Response Elements (HRE) of a target gene and initiate transcription 

(Schönenberger & Kovacs, 2015). The HIF-α subunits have multiple isoforms: HIF-1α, 

HIF-2α, or HIF-3α, and either isoform can bind to the HIF-1β subunit. While the HIF-3α 

subunit is relatively understudied, there is an abundance of literature surrounding 

molecular and regulatory mechanisms of the HIF-1α and HIF-2α subunits. Notably, the 

HIF-α subunits are degraded in an O2-responsive fashion by the von Hippel-Lindau 

(VHL) E3 ubiquitin ligase, which is recruited to HIF-α through a hydroxylation moiety 

modified by the O2-, 2-oxogluterate-, and Fe-dependent prolyl hydroxylase (PHD) 

enzymes (Bruick & McKnight, 2001; Keith et al., 2012). Akin to PHD enzymes, the factor 

inhibiting HIF (FIH) is another 2-oxogluterate and Fe-dependent dioxygenase that 

hydroxylates an asparagine residue to prevent recruitment of  transcriptional 

coactivators p300 and CBP (Kaelin, 2008).  Thus, under oxygen-replete conditions, HIF-

α is targeted for degradation to the 26S proteasome. Conversely, under acute or chronic 

hypoxic stress, PHD enzymatic activity becomes inhibited enabling the stabilization and 

subsequent translocation of HIF-α to the nucleus to induce hypoxia-responsive target 

genes (M. Liu et al., 2020).   In addition to hypoxic conditions, HIF-α may be stabilized in 

response to excess of tricarboxylic acid cycle intermediates fumarate or succinate, which 

compete for substrate  binding with 2-oxogluterate, or as a result of isocitrate 

dehydrogenase mutations that reduce cytoplasmic 2-oxogluterate levels (Losman & 

Kaelin, 2013; Thompson, 2009).  

Several lines of evidence have identified a number of HIF target genes across 

multiple biological pathways. Of note, genes associated with glycolysis, angiogenesis, 
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erythropoiesis, cellular proliferation, migration & invasion, and Fe metabolism are 

induced upon decreased oxygenation. To drive glucose metabolism, glycolytic enzymes 

such as HK, ENO1, ALDOA, GAPDH, PKM, and LDHA,  as well as solute transporters 

GLUT1 and MCT1, are upregulated (Eales et al., 2016; Miranda-Gonçalves et al., 2016; 

Nishimura et al., 2017). Subsequently, hypoxic-mediated exhaustion or poor perfusion of 

nutrients will lead to upregulation of pro-angiogenic factors, thus promoting the formation 

of new blood vessels (Semenza, 2012). Although most hypoxic responses are mediated 

through HIF-1,  seminal findings by Kapitsinou et al. demonstrated that erythropoiesis 

and expression of erythropoietin, a protein key to red blood cell production, is modulated 

by HIF-2 during hypoxia in renal cells (Kapitsinou et al., 2010). While reduced O2 

increases the likelihood of cell cycle arrest, upregulation of insulin-like growth factor 

binding proteins (IGFBP) and transforming growth factor-β1 (TGF-β1) stimulate cell 

growth and proliferation across multiple cell types (Y. Jiang et al., 2007; Minchenko et 

al., 2015; C. Rupp et al., 2015). To stimulate an oncogenic-like reprogramming, hypoxia 

enhances the expression of motility factors  AMF, WNT2, WNT5A, and c-Met to promote 

migration, invasion, and metastatic potential of cancer cells (Eckerich et al., 2007; Hara 

et al., 2006; Niizeki et al., 2002; C. Rupp et al., 2015). As with glycolysis, Fe 

homeostasis represents another sector of metabolism that is modulated in response to 

hypoxia. Specifically, reduced tissue oxygenation represses  transcription of hepcidin, a 

small antimicrobial peptide that inhibits Fe transport, while simultaneously inducing 

transcription of transferrin (Tf), Tf receptor (TfR), heme oxygenase 1 (HO-1), and 

ceruloplasmin (Cp), each which facilitate  either ferric-ion delivery, Tf internalization, 

heme/Fe  recycling, or Fe delivery through the serum (Q. Liu et al., 2012; Motterlini et 

al., 2000; Mukhopadhyay et al., 2000; Rolfs et al., 1997; Tacchini et al., 1999). Because 

Cp plays dual roles in Fe and Cu metabolism as a ferroxidase enzyme and serum Cu-
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carrier, it has provided a gateway for further investigation of regulatory elements on the 

hypoxia-Cu homeostasis axis.   

Interplay between Hypoxia, HIF Proteins, and Copper Homeostasis  

Namely, a landmark paper demonstrated that HIF-1α is Cu regulated as CuCl2 

supplementation was sufficient to induce HIF-1α nuclear localization and protein 

stabilization, resulting in  increased HRE-dependent reporter activity and expression of 

HIF-1 target genes (Martin et al., 2005). Following this finding, an independent research 

group evaluated the hypothesis that Cu is required for HIF-1 activation in hepatoma cells 

by performing gene expression and protein interaction assays in the presence of a Cu 

chelator, tetraethylenepentamine (TEPA), under hypoxic conditions. In addition to 

confirming Cu-dependent alterations in HRE-dependent reporter activity and hypoxia-

responsive genes, TEPA treatment prevented  the interaction between HIF-1α and p300, 

a critical component of the HIF-1 transcriptional activation complex (Feng et al., 2009). 

Similarly, experiments conducted with CuSO4 concentrations upwards of 200 µM were 

sufficient to elevate VEGF, HIF-1α, and G-protein estrogen receptor (GPER) mRNA 

upon hypoxia, while reciprocal experiments with TEPA-mediated chelation abrogated 

this hypoxia-associated transcription. Moreover, conditioned culture medium from breast 

cancer cells treated with excessive CuSO4  supplementation elicited an elevation in 

VEGF protein levels sufficient to stimulate downstream tube vessel formation and cell 

migration (Rigiracciolo et al., 2015). Furthermore, a clinical investigation involving serum 

from patients with either HCC, cirrhosis, chronic hepatitis, or non-diseased liver identified 

an important role for Cu in the activation of HIF-1α as it pertains to 

hepatocarcinogenesis. Serological assessments uncovered a significant positive  

correlation between HIF-1α and circulating Cu levels, while observing a negative 
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correlation between HIF-1α and Zn concentrations. Another correlation was established 

between elevated HIF-1α and Cu levels and hepatocarcinogenic progression. 

Imperatively, HIF-1α was present only within  the tumors of HCC patients, and 

completely absent from normal liver tissue or from in patients with liver cirrhosis or 

chronic hepatitis (Himoto et al., 2016). However, further refinement of the Cu-HIF-1α  

hypothesis has indicated a cell-type specific and perhaps a gene specific phenomenon. 

Evidence to support this notion stems from the observation that expression of HIF-1 

regulated genes VEGF, GAPDH, LDH, GLUT1, and BCL2/adenovirus E1B 19kDa 

protein-interacting protein 3 (BNIP3) but not insulin-like growth factor 2 (IGF-2), were 

diminished in the presence of TEPA in human embryonic vein endothelial cells 

(HUVEC). Using a series of ChIP-PCR and luciferase reporter assays, an in depth 

investigation in HUVEC revealed that TEPA-mediated Cu suppression  was sufficient to 

block HIF-1α binding to HREs in some but not all hypoxia-responsive genes  (X. Liu et 

al., 2018; Z. Zhang et al., 2014). To complement these discoveries, TTM treatment not 

only prevented the accumulation of HIF-1α and VEGF protein and the expression of 

GLUT1 and PDK1 mRNA transcripts, but inhibited Complex IV activity such that oxygen 

consumption rate was reduced  in models of human endometrial or ovarian cancer cells 

(K. K. Kim et al., 2015). In line with previous findings, a recent RNA-seq profiling 

experiment identified the downregulation of metabolic transcripts PFKL and ENO1 in 

addition to GAPDH in the presence of high concentrations (50 µM) TEPA prior to acute 

hypoxia exposure (Z. Wu et al., 2019).  

Although connections between HIF-1α and Cu have been well-documented, work 

by several research groups have reported an interplay between HIF-2α and Cu 

homeostasis. An increase in total protein expression of solute transporters DMT1, 

GLUT1, and CTR1 was observed under hypoxia in Caco-2 cells. Additional exploration 
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uncovered a parallel increase in CTR1 transcripts and Cu uptake, yet, this effect was 

significantly reversed in the presence of pharmacological suppression or genetic 

inhibition of murine Hif-2α (Pourvali et al., 2012). Several studies focused in rat 

duodenum describe a necessary role HIF-2α-mediated regulation of Cu homeostatic 

genes in the context of anemia. In particular, induction of Atp7a expression in the 

background of Fe deficiency brought into question whether Hif-2α played a role. 

Sequence analysis of the promoter region identified several HREs that were deemed 

essential for Hif-2α binding as revealed by ChIP assays (Xie & Collins, 2011). 

Subsequent studies illuminated this regulation further when the transcription factor Sp1 

was identified as a required piece to the Hif-2α transactivation puzzle under hypoxic 

stress in an anemic background (Xie & Collins, 2013). In contrast to anemia caused by 

genetic factors, mice with anemia as a consequence of a Cu-deficient diet had elevated 

expression of Hif-2α and Fe transport genes. When intestinal Hif-2α was removed from 

these mice via tissue specific knock out,  an absence of gene induction was observed 

under the abovementioned nutrient context (Matak et al., 2013). In addition to the 

genetic regulation established between Cu and HIF-α subunits, the hypoxic-dependent 

effects of Cu-driven cell biology are an area of current exploration. 

Despite the transcriptional studies providing rationale for elevated Atp7a 

expression upon hypoxic conditions, additional work has focused on characterizing 

these downstream consequences. Acute exposure to hypoxia was sufficient to increase 

expression of Atp7a and localize it to cytoplasmic vesicles within murine macrophages, 

which accompanied an increase in 64Cu uptake likely via increased CTR1 expression (C. 

White et al., 2009a). In a MEF model transformed with oncogenic H-RAS, Zhu et al.  

knocked out Atp7a to uncover that these cells conferred a unique growth sensitivity to 
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both hypoxia and ROS, which translated to reduced tumorigenesis in xenograft models 

(Zhu et al., 2017). Lung tissue from mouse models of pulmonary hypertension displayed 

significant increases in mRNA expression of Atp7a, Ctr1, and Lox and decreases in 

Atox1, Ccs, and Sod1. Unsurprisingly, these transcriptional escalations corresponded to 

a rise in CTR1 and LOX protein abundance upon hypoxia and enhanced LOX activity to 

significantly improve cell motility and migration (Zimnicka et al., 2014). One feature 

consistent amongst these investigations was the increase in Cu uptake from either 

tumoral or hypoxic-treated conditions (C. White et al., 2009b; Zhu et al., 2017; Zimnicka 

et al., 2014). Cu may be present as either the 63Cu or the 65Cu isotope, and simple 

experiments in HepG2 cells confirm that an enrichment of  65Cu parallels the elevation of 

total Cu levels after hypoxic treatment (Bondanese et al., 2016). Clinical pertinence was 

demonstrated when ICP-MS analysis from serum of breast or colorectal cancer patients 

discovered that the  65Cu/63Cu ratio could predict mortality earlier than traditional clinical 

biomarkers (Télouk et al., 2015). Cancer patients also demonstrated higher total serum 

Cu content and higher Cu/Zn ratios than healthy peers. Taken together, there is 

sufficient evidence to indicate that the relationship between Cu homeostasis and hypoxia 

extends beyond simple transcriptional modifications.   

Thesis Objectives 

Despite a substantial body of literature supporting the notion that Cu 

concentrations in HCC cells deviate from their hepatocyte progenitors, there is a lack of 

clarity surrounding the underlying molecular features that drive these Cu-specific 

differences. Additional literature indicates that HCC cells implicate a transcriptional and 

metabolic program that favors a glycolytic metabolism, a stark contrast to the 

metabolism of normal hepatocytes, which in turn supports HCC oncogenicity. Moreover, 
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common embolic procedures used to treat HCC induce a hypoxic microenvironment that 

further drives a reliance on glucose metabolism. Considering these factors, the primary 

hypothesis of this thesis project was that Cu acts as an important contributor to HCC 

tumorigenesis and to HCC glycolytic metabolism.  To address this hypothesis, this 

project aimed to answer the questions that follow. What impact will Cu availability have 

in regulating HCC tumorigenic properties? To what extent does Cu influence HCC 

metabolism within a hypoxic environment? In Chapter 2, we uncovered the relevance of 

Cu to HCC tumorigenic properties by utilizing both genetic and pharmacological 

approaches to suppress Cu bioavailability. In Chapter 3, we began to elucidate a 

molecular mechanism by presenting evidence that Cu regulates crucial components of 

HCC glycolytic reprogramming upon hypoxic stress. Finally, in Chapter 4, we delve 

further into the mechanism behind the Cu-mediated regulation of glycolysis, and 

additionally discuss the future directions of the project. Collectively, this thesis project 

serves to close the gap in knowledge regarding Cu modulation of HCC glycolytic 

metabolism and its tumorigenic properties while highlighting a novel therapeutic purpose 

for Cu chelators.      

 

 

 

 

 

 

Chapter 1 Figures 
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Figure 1.1 Risk Factors for the Development of HCC. Of the above etiologies, chronic 
hepatitis viral infection and chronic alcoholism are the most frequently observed 
predisposing factors for HCC development. In developed nations, non-alcoholic fatty 
liver disease is rapidly becoming a major contributor to the incidence of HCC. Although 
less prevalent, inherited genetic disorders have been reported to impact liver 
carcinogenesis. Interestingly, Aflatoxin B1, a mycotoxin produced by the Aspergillus 
flavus fungus found in molded peanuts, is a predisposing factor that increases HCC risk 
in patients with an existing hepatitis infection.  Importantly, the onset of cirrhosis is the 
factor unifying these vastly different etiologies, and without appropriate clinical 
surveillance or medicinal interventions, patients remain vulnerable to the development of 
HCC.   
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Figure 1.2 Current Therapies for the Treatment of HCC. Although a continuously 
advancing landscape, the above therapies are commonly implemented to combat HCC. 
A small percentage of early stage patients may be eligible for liver resection or 
orthotopic liver transplantation, which are curative therapies that have low rates of 
recurrence. Conversely, many HCC patients are diagnosed late-stage and must receive 
palliative care, which generally requires image guidance to accurately define the tumor. 
Of interest, transarterial embolization (TAE) is a minimally-invasive, image-guided 
technique that uses microsphere beads to selectively or super selectively block the 
blood vessels that supply nutrients and oxygen to the tumor. In certain cases, these 
microsphere beads may be coated in a chemotherapeutic, in addition to an embolizing 
agent. Unfortunately, the chemotherapies designated for HCC are only minimally 
effective at prolonging survival. The first line small molecule inhibitors Sorafenib and 
Levantinib increase survival by approximately three or seven months, respectively. In the 
event that patients fail to respond to these therapies, Regorafenib, another multikinase 
small molecule, or Nivolumab, a monoclonal antibody that blocks the programmed 
death-1 (PD-1) receptor, may be administered.  
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Figure 1.3 Cu Homeostasis in the Cell. Upon reduction, Cu1+ enters the cell through 
the high-affinity Cu importer CTR1. Once inside the cytoplasm, Cu is bound by 
numerous Cu chaperones (blue concave polygons) and safely delivered to multiple 
subcellular compartments including the trans-Golgi network (TGN), mitochondria (light 
pink polygon), and endosomal vesicles within the cytoplasm. CTR2, a homolog of CTR1, 
functions to mobilize Cu stores from vesicular compartments into the cytoplasm from 
when intracellular Cu levels are low. ATP7A/B are located at the TGN and function to 
transport Cu for metalation of newly synthesized cuproproteins. Under conditions of Cu 
excess, ATP7A/B translocate to the plasma membrane to facilitate Cu transport out of 
cells.    
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CHAPTER 2: ALTERED COPPER HOMEOSTASIS UNDERLIES SENSITIVITY 
OF HEPATOCELLULAR CARCINOMA TO COPPER CHELATION 
 

This Chapter has been reformatted from a submission for publication to Metallomics:  

Davis, C.I., Gu, X., Kiefer, R.M, Ralle, M., Gade, T.P., and Brady, D.C. Altered copper 

homeostasis underlies sensitivity of hepatocellular carcinoma to copper chelation. 

Metallomics. Accepted, October 2020.  

Overview 

HCC represents an alarming global healthcare problem with an increasing 

incidence. Current treatment strategies for HCC demonstrate limited efficacy because 

each is agnostic to molecular and genetic features of the disease. Although significant 

elevation of the transition metal Cu has been associated with HCC, the contribution of 

Cu to hepatocarcinogenesis is not well understood. Specifically,  numerous studies have 

reported a correlation between elevated serum or intra-tumoral Cu levels and HCC 

status. However, these studies fail to provide molecular characteristics or mechanistic 

details to substantiate these clinical observations. Here, we present an analysis of 

altered Cu transporter expression in HCC that elucidated a unique Cu-dependent 

vulnerability necessary for tumorigenesis. These findings uncover a clinically tractable 

alternative treatment to combat HCC by repurposing Cu chelators.  

Introduction 

 Liver cancer represents the second and the sixth leading cause of cancer-related 

death in men and women, respectively (Siegel et al., 2019). HCC accounts for 80% of 

liver cancer cases in the world (Altekruse et al., 2014), and pre-existing conditions 

associated with cirrhosis, such as hepatitis B viral infection, chronic hepatitis C virus 
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infection, non-alcoholic fatty liver disease, hereditary hemochromatosis, and Wilson 

disease contribute to HCC onset (El-Serag, 2011). Genomic alterations within HCC, 

irrespective of etiologic risk factor, emphasize the heterogeneous nature of the disease 

and thus, advances in molecular medicine targeting the genetic mutations underlying 

HCC have been unsuccessful (Schulze et al., 2015). Intriguingly, case studies of 

patients with Wilson Disease, which harbor germline mutations in the gene encoding the 

P-type ATPase ATP7B (P C Bull et al., 1993; Tanzi et al., 1993), demonstrate that 

persistently elevated levels of intracellular Cu impair liver function such that HCC results 

as a complication (Iwadate et al., 2004; Kumagi et al., 2004, 2005; Thattil & Dufour, 

2013).  Beyond the extensive research from both Wilson disease patients and animals 

that supports a connection between excessive Cu accumulation and hepatobiliary 

malignancies (Huster, 2014; Huster et al., 2007; Pfeiffenberger et al., 2015), multiple 

clinical investigations observed elevated serum (Attia et al., 2019; El Fotouh et al., 2012; 

Poo et al., 2003; Porcu et al., 2018) and intratumoral (Ebara et al., 2000, 2003; Jie et al., 

2007) Cu levels in liver cancer patients. Notably, Cu lies at a unique intersection 

between chemistry and biology, as Cu-driven redox chemistry is required for a multitude 

of biological programs. To minimize oxidative damage, Cu homeostasis is a highly 

regulated process, beginning when Cu enters the cell through the essential copper 

transporter 1, CTR1 (Kuo et al., 2001; J. Lee et al., 2001). CTR1 is the predominant 

high-affinity Cu transporter at the plasma membrane, while its low-affinity homolog, 

CTR2, localizes and facilitates transport from vesicular compartments into the cytoplasm 

(Bertinato et al., 2008; Van Den Berghe et al., 2007). To complement Cu influx via 

CTR1, cells are also equipped with Cu efflux machinery. Specifically, the P-type 

ATPases ATP7A and ATP7B are membrane-bound transport pumps that function to 

export cytosolic Cu in an ATP-dependent fashion (Nyasae et al., 2007; Pase et al., 
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2004). The importance of maintaining a balance between Cu influx and efflux is clear 

given that  deletions in CTR1 lead to embryonic lethality, while mutations in ATP7A and 

ATP7B manifest in Menkes or Wilson disease, respectively. Interestingly, emerging 

evidence indicates that regulation of Cu homeostasis coincides with other cellular 

processes, from lipid metabolism (Krishnamoorthy et al., 2016) to cellular proliferation 

(Michelle L Turski & Thiele, 2009). Our lab has discovered that Cu can enhance 

oncogenic signaling in the MAPK pathway via a direct interaction with MEK1 and MEK2, 

resulting in a Cu dependency in mutant BRAFV600E positive melanoma (D. C. Brady et 

al., 2014b). Similarly, Cu is required for the activity of the autophagic kinases ULK1 and 

ULK2 and autophagosome formation downstream of ULK1 and ULK2 is sensitive to  

fluctuations in Cu availability (Tsang et al., 2020). Collectively, these findings create a 

molecular foundation that directly links Cu homeostasis to deregulated signal 

transduction events that drive pathological conditions.  However, the contribution of Cu 

to intrinsic and extrinsic cellular mechanisms necessary for liver tumorigenesis and 

resistance driven by treatment-mediated metabolic reprogramming in HCC patients 

remains unclear.  

In the current study, we sought to bridge this gap by taking a bioinformatic 

approach utilizing publicly available cancer genome datasets. We evaluated the 

expression of Cu homeostasis genes, namely those facilitating Cu transport such as 

ATP7A, ATP7B, SLC31A1, which encodes CTR1, and SLC31A2, which encodes CTR2, 

across HCC and normal tissue samples. From this analysis, we identified significant 

alterations in the aforementioned Cu transporter genes, and further, found that copy 

number variations in the Cu transporters correlated with poorer survival and disease-free 

progression, and was associated with increased Cu levels. Given  the importance of Cu 

modulation in disease management, the manipulation of Cu homeostasis has been 
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previously exploited as an alternative cancer therapy through the usage of various Cu 

chelating agents (D. C. Brady et al., 2014b; Brewer et al., 2000a; Chan et al., 2017; Pan 

et al., 2002a). We explored the relevance of perturbed Cu availability, through genetic 

ablation of CTR1 or pharmacologic inhibition via tetrathiomolybdate (TTM), in HCC. Here 

we demonstrate that targeting Cu homeostasis exposes a unique vulnerability in HCC, 

as we discovered Cu-dependent contributions to hepatic tumorigenic properties.  

Methods 

Data Mining 

ATP7A, ATP7B, SLC31A1, or SLC31A2 mRNA expression in normal or tumor liver 

tissue samples was obtained from the Gene Expression across Normal and Tumor 

tissue (GENT2) web-based genome database (http://gent2.appex.kr/gent2/, Korean 

Research Institute and Biotechnology). A total of 1095 patients and 1089 samples 

across six hepatocellular adenoma or carcinoma data sets [Memorial Sloan Kettering 

(MSK), Clin Cancer Res 2018; INSERM, Nat Genet 2015; MSK, PLOS One 2018; AMC, 

Hepatology 2014; RIKEN, Nat Genet 2012; The Cancer Genome Atlas (TCGA), 

Firehorse Legacy] were selected for query from cBioportal for ATP7A, ATP7B, 

SLC31A1, or SLC31A2 copy number alterations and patient survival data. For overall 

survival plot, n = 13 patients with altered copy number of Cu transporters and n = 594 for 

patients with unaltered copy number Cu transporters. For disease-free progression, n = 

11 patients with altered copy number of Cu transporters and n = 545 for patients with 

unaltered copy number Cu transporters. 

 

ICP-MS Sample Preparation of Human HCC Cell Lines and Rat Liver Tissue  

http://gent2.appex.kr/gent2/
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Human HCC cell lines were seeded at 2.0 x 106 cells in 100mm dishes. After incubation 

for 48 hours at 21% O2, cells were washed twice and harvested with 1X Phosphate 

Buffered Saline.  Cell pellets were collected by centrifugation at 2,000 xg  for 5 minutes, 

and were flash-frozen in a dry ice-ethanol bath prior to storing at -80°C. HCC tumors and 

adjacent liver tissues were harvested from the livers of Wistar rats subjected to the 

Dietylnitrosamine-induced (DEN) diet according to an established protocol (Kiefer et al., 

2017). Tissue samples were harvested, weighed, flash-frozen in a dry ice-ethanol bath, 

and immediately stored at -80°C.  All samples were processed by the PADLS New 

Bolton Center Toxicology Laboratory in the School of Veterinary Medicine at the 

University of Pennsylvania. 

 

X-Ray Fluorescence Microscopy 

For XFM experiments 10 µm sections were transferred to Ultralene®, a XFM compatible 

window material, mounted on in-house developed lucite sample holders and air-dried. 

XFM data were collected on beamline 2-ID-E at the Advanced Photon Source (APS), 

Argonne National Laboratory, Argonne, IL. The incident X-ray energy was tuned to 10 

keV using a Si-monochromator and focused with a Fresnel zone plate. X-ray 

fluorescence was collected using an energy dispersive 4-element detector (Vortex ME-4, 

SII Nanotechnology, Northridge, CA). Raster scans were collected in fly-scan mode, 

using 1 µm x 1 µm step size with 200 msec dwell time per point. 2-dimensional 

elemental maps were created by extracting, background subtracting, and fitting the 

fluorescence photon counts at each point using the program MAPS(Vogt et al., 2003). 

The fluorescent counts were transformed into µg/cm2 using calibrated X-ray standards 

(AXO products, Dresden, Germany). Quantitative analysis was performed by extracting 

the fluorescent spectra and fitting and quantifying them against the calibration standards 
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as mentioned above. Area concentrations were converted into volume concentrations 

using the tissue thickness of 10 µm under the assumption that the X-ray beam fully 

penetrated the sample. 

Cell Lines & Cell Culture  

SNU387, SNU398, and SNU449 HCC cell lines and human plateable hepatocytes, 5-

Donor were obtained from the American Type Culture Collection (ATCC) and 

ThermoFisher Scientific, respectively. Parental cell lines were cultured in Roswell Park 

Memorial Institute (RPMI 1640, Gibco) Media and supplemented with 10% v/v fetal 

bovine serum (FBS, GE Lifesciences), 100 U/mL penicillin, and 100 g/mL streptomycin 

(Gibco). SNU398 and SNU449 cell lines stably expressing the pLKO.1puro constructs 

were maintained as above supplemented with 5g/mL puromycin (Invitrogen). SNU398 

and SNU449 were stably infected with lentiviruses derived from the pLKO.1 plasmid 

(see plasmids below) using established protocols. Unless specified, all cell lines were 

maintained in a humidified Heracell (ThermoFischer Scientific) incubator set to 37°C and 

5% CO2. MycoAlert® mycoplasma test detection kit (Lonza, LT07-418) was used to test 

for mycoplasma contamination.  

Immunoblot Analysis 

The indicated HCC cell lines were washed with cold 1x Phosphate-buffered Saline 

(PBS), and lysed in cold RIPA buffer supplemented with 1x EDTA-free Halt™ protease 

and phosphatase inhibitor cocktail (ThermoFisher Scientific, #78441). Total protein was 

quantified using the BCA assay (Pierce, # PI23228), where sample concentrations were 

interpolated to a BSA standard curve. Equivalent amounts of lysate were resolved by 

SDS-PAGE using lab established protocols, and protein was detected using the 
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following antibodies (dilution, catalog#, manufacturer): rabbit anti-CCS (1:2000, 20141, 

Santa Cruz) or mouse anti-β-actin (1:5000, 3700, Cell Signaling Technologies (CST)), 

followed by detection with one of the following horseradish-peroxidase-conjugated 

secondary antibodies: goat anti-mouse IgG (1:4000, 7076, CST) or goat anti-rabbit IgG 

(1:4000, 7074, CST) using SignalFire ECL (CST, # 6883S) detection reagents.  

Plasmids 

pLKO.1puro lentiviral shRNA plasmids were obtained from High-Throughput Screening 

Core at the University of Pennsylvania to express: nontargeted control (shSCR), human 

CTR1 target sequence #1 5’-GATGCCTATGACCTTCTACTT-3’ (shCTR1#1), or human 

CTR1 target sequence #2 5’-CGGTACAGGATACTTCCTCTT-3’ (shCTR1#2).   

RT-qPCR  

To examine the expression of Cu transporter genes, 3.0 x 105 cells of the indicated HCC 

cells were seeded into 60mm dishes. Sixteen hours post-seeding, cells were treated with 

the indicated concentrations of TTM and/or were moved to hypoxic conditions for 48 

hours. To isolate RNA, cells were harvested in TRIzol™ reagent (Invitrogen, #15596018) 

and RNA was extracted following manufacturer’s protocol. Purified RNA was reverse 

transcribed (RT) into cDNA using the Applied Biosystems™ Taqman™ Reverse 

Transcription Reagents (Applied Biosystems, # N8080234) and corresponding protocol. 

Subsequent cDNA was loaded onto a clear 384-well plate (Genesee, #24-305) and 

quantified on a ViiA 7 Real-Time PCR System with standard protocols using the 

following Taqman™  probes: Hs00163707_m1 to detect human ATPase copper 

transporter A (ATP7A), Hs01075310_m1 to detect human ATPase copper transporter B 

(ATP7B), Hs00977266_g1 to detect human SLC31A1 (CTR1), Hs00156984_m1 to 
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detect human copper transporter 2 SLC31A2 (CTR2), and Hs00427620_m1 to detect 

human TATA-binding proteins (TBP). The Δ2-Ct or comparative ΔΔCt method was used 

as described previously(Schmittgen & Livak, 2008) to analyze mRNA after transcript 

levels were normalized to TBP. For validation of CTR1 knock-down, cells transduced 

with shRNA targeting CTR1 were harvested and processed as above upon selection 

with puromycin, and then assayed for relative CTR1 expression following the procedure 

above. 

Reagents 

The Cu chelator TTM (#323446) and the crystal violet (# C0775-100G) used for colony 

staining were purchased from Sigma-Aldrich.  

Clonogenic Assay 

SNU398 and SNU449 cell lines stably expressing indicated constructs were seeded at 

3.0 x 103 cells per well in six-well plates. After incubation for seven days, cells were 

washed once with 1X Phosphate Buffered Saline (PBS) and stained with 1mL of a 

crystal violet staining solution (0.5% w/v crystal violet (CV), 20% v/v methanol, distilled 

water) for 15 minutes. After 15 minutes, all wells were washed three times with distilled 

water to minimize background staining. CV stained colonies were imaged using a 

ChemiDoc Touch Imagining System (Bio-Rad). To quantify colony abundance, stained 

cell colonies were dissolved in a 10% acetic acid solution for 30 minutes at room 

temperature, and extracted CV was measured at an absorbance of 590nm in a plate 

reader (Synergy, BioTek). For TTM treatments, cells were treated 24 hours after seeding 

with either a vehicle or a final indicated concentration of TTM for seven days and then 

processed as mentioned above.  
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Measurement of Cell Proliferation with Trypan Blue 

SNU398 and SNU449 cell lines stably expressing the indicated constructs were seeded 

at 1.5 x 104 cells per well in a six-well plate on Day 0. Proliferation curves using cell lines 

stably expressing indicated constructs in the presence or absence of TTM were 

performed at identical times. On Day 1, DMSO or TTM treatment was added to a final 

concentration of 25 M. Cell counts were performed every other day by washing cells 

with 1x PBS, detaching cells with 0.05% Trypsin (Gibco, #25300054). Cells were then 

resuspended in an equal volume of complete DMEM, and centrifuged at 1000xg for 5 

mins. Following aspiration of media, cell pellets were then resuspended in identical 

volumes of complete DMEM. Cell counting was performed using an automated cell 

counter (Invitrogen Cell Countess II) by taking an aliquot of cell culture and diluting 1:1 

with 0.4% Trypan Blue Solution (Life Technologies/Invitrogen, #15250061) before plating 

on and reading with a hemocytometer.  

Anchorage-Independent Growth on Ultra-Low Attachment Plates 

SNU398 and SNU449 cell lines stably expressing the indicated constructs were seeded 

at 2.0 x 103 cells per well in a 96-well clear flat bottom ultra-low attachment plates 

(Corning, #3474) on Day 0. For the TTM-treated groups, indicated concentrations of 

TTM were added 16 hours post-seeding. On Day 5, cells were imaged using an EVOS 

XL Core Imaging System brightfield microscope with a x10 dry objective. The mean 

number of spheroids (cells) per field was quantified by a researcher blinded to the 

genetic manipulations or TTM treatment groups using Fiji software 

(https://imagej.net/Fiji). Data was normalized to the respective control (shSCR) or 

vehicle-treated (DMSO) control group.  
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Measurement of ATP Using CellTiter-Glo ® Viability Assay  

SNU398 and SNU449 cell lines stably expressing indicated constructs were seeded in 

triplicate at 5.0 x 102 cells per well in 96-well white walled flat bottom plates (Fisher 

Scientific, #655098) or 96-well clear flat bottom ultra-low attachment plates for IC50 

determinations in anchorage-dependent (2D) or anchorage-independent (3D) conditions, 

respectively. Sixteen hours post-seeding, indicated concentrations of TTM were added 

to appropriate wells and cells were incubated for 72 hours. Cell viability was assessed 

using the CellTiter-Glo® Luminescent (Promega, #G7572) or 3D (Promega, #9682) Cell 

Viability Assay for 2D or 3D conditions, respectively, following the manufacturer’s 

protocol. Normalized %ATP values were calculated by normalizing the raw luminescent 

values of wells containing the vehicle (DMSO) to wells containing each dose of TTM. To 

determine the IC50 values, the data was transformed using the nonlinear fit of Log(TTM) 

versus normalized response (%ATP Normalized to DMSO) with a variable slope function 

in GraphPad Prism8 software.   

Statistical Analysis  

Data are reported as mean +s.e.m. Each sample size (n) represents biologically 

independent experiments or fields of view. For biologically independent experiments, 

data was collected from three independent experiments unless otherwise specified 

within the figure legend. For fields of view, data presented are from 9 fields of view taken 

from three biologically independent experiments. Statistical significance was determined 

using an unpaired one- or two-tailed Student’s t-test, a Mantel-Cox test, a one-way or 

two-way ANOVA followed by Dunnett’s or Tukey’s multiple comparisons test, where 
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significance was defined as P <0.05. All statistical analysis was performed in GraphPad 

Prism 8 software.  

Results 

Expression of Cu Transporters is Dysregulated in Hepatocellular Carcinoma 

Clinical measurements of transition metals demonstrated that HCC tumors 

exhibit elevated Cu levels when compared to normal liver tissue (Ebara et al., 2003) and 

higher serum Cu levels correlate with the presence of cirrhosis or HCC (Porcu et al., 

2018). In agreement, Wilson disease patients accumulate Cu in the liver and exhibit 

cirrhosis and thus, have a higher propensity to develop HCC. To further investigate 

these clinically relevant observations that connect Cu to HCC development (Iwadate et 

al., 2004; Kumagi et al., 2004, 2005; Thattil & Dufour, 2013),(Ebara et al., 2003),(Porcu 

et al., 2018), we examined the expression of Cu influx and efflux transporters across 

human liver cancer and normal liver tissue utilizing the Gene Expression database of 

Normal and Tumor tissues 2 (GENT2). We found that mRNA expression of both Cu 

transporters SLC31A1 and SLC31A2, along with the Cu exporter ATP7B was 

significantly lower, while the mRNA expression of the Cu exporter ATP7A was 

significantly higher in liver cancer (Fig. 2.1a,b). Intrigued by this finding, we investigated 

the relationship between patient survival and copy number alterations of Cu transporter 

loci in six HCC patient data sets in cBioPortal. Although a small cohort, HCC patients 

with copy number alterations of Cu influx or efflux transporters had a significantly worse 

outcome with respect to overall survival and likelihood of recurrence (Fig. 2.1c,d). Taken 

together, these data suggest that Cu transport into or out of the cell is dysfunctional in a 

subset of HCC patients. Consistent with clinical findings, we observed elevated Cu 

levels in HCC tumors compared to adjacent liver tissue collected from a DEN-induced 
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rat model of HCC using inductively coupled plasma mass spectrometry (ICP-MS) (Fig. 

2.2a). Closer examination of the Cu concentration in the rat liver tumor tissue with X-Ray 

Fluorescence Microscopy (XFM), revealed heterogeneous Cu concentration. In an 

example shown in Figure 2.2b from HCC rat tumor tissue, Cu was localized to highly 

concentrated focal areas of approximately 10 to 15µm diameter that exceeded 5mg/g 

(~80mM), while the average concentration across the scan was 40µg/g (~60µM). To 

establish a model that is more amenable to genetic and pharmacologic perturbations, we 

measured total intracellular Cu levels using ICP-MS from a panel of human HCC cell 

lines (Fig. 2.2c). In agreement with the rodent model data, HCC cell lines exhibited 

significant elevation in Cu levels when compared to a primary hepatocyte line, HMCPP. 

Recognizing that Cu transporters mediate cellular Cu influx and efflux, we investigated 

whether there was evidence of differential Cu transporter expression as measured by 

quantitative PCR (qPCR) (Fig. 2.2d).  Interestingly, mRNA expression of ATP7B, 

SLC31A1, and SLC31A2 was significantly lower in HCC cells, which parallels the 

observations made from patient genomic data sets (Fig 2.1a,b). Further, elevated Cu 

levels were confirmed by lower protein expression of CCS, which is degraded in a Cu-

dependent fashion (Graham F. Brady et al., 2010), in all of the HCC cell lines when 

compared to normal hepatocytes (Fig. 2.2e), suggesting that HCC cells accumulate 

excess Cu levels that may contribute to oncogenic properties.  

 

Genetic Depletion of CTR1 Diminished HCC Tumorigenic Properties 

To interrogate whether these increased Cu levels are essential for HCC 

tumorigenic properties, we generated stable genetic knockdown of CTR1 with two 

independent short-hairpin RNAs (shRNA) targeting the SLC31A1 gene in both SNU398 
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and SNU 449 cells, as measured by qPCR (Fig. 2.2a,b). Disruption of CTR1 significantly 

reduced the proliferation of SNU398 and SNU449 cells (Fig. 2.3c,d). In addition to 

cellular proliferation, colony formation of SNU398 and SNU449 cells when plated at low 

density, a property that distinguishes tumorigenic cells from healthy cells, was 

dependent on CTR1 expression (Fig. 2.3e,f). Furthermore, patients with HCC may 

develop metastases which requires detachment from the extracellular matrix and 

invasion into nearby organs (Zimmermann, 2016). Thus, to complement our findings of 

reduced HCC proliferation and colony formation in the context of CTR1 deficiency, ultra-

low attachment (ULA) polystyrene plates were used to evaluate the effects of CTR1 

depletion on anchorage-independent growth in SNU398 and SNU449 cells. Knockdown 

of CTR1 significantly diminished the anchorage-independent growth of SNU398 and 

SNU449 cells (Fig. 2.4a,b). Taken together, these findings demonstrate that HCC cell 

lines depend on Cu transport via CTR1 for proliferation, colony formation, and 

anchorage-independent growth, suggesting that altered Cu availability contributes to 

hepatocarcinogenesis.  

TTM Treatment Attenuated HCC Proliferation and Anchorage-Independent Growth 

The repurposing of TTM, a Cu-specific chelator used in the treatment of Wilson 

disease, has been explored as a cancer therapy in several contexts (D. C. Brady et al., 

2017; Brewer et al., 2000a; Chan et al., 2017; Cox et al., 2001). Mechanistically, 

preclinical studies and phase I/II clinical trials suggest that Cu-dependent components of 

the tumor microenvironment (Chan et al., 2017), oncogenic kinase signaling pathways 

(D. C. Brady et al., 2014a, 2017; Tsang et al., 2020), and metabolic pathways (Ishida et 

al., 2013)  mediate sensitivity to TTM (Chan et al., 2017; Pan et al., 2002a). Considering 

that HCC tumors are well-vascularized (Fodor et al., 2019) and demonstrate amplified 
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receptor tyrosine kinase signaling (Schulze et al., 2015), as well as a dependency on 

glycolytic metabolism (Amann et al., 2009; H. Wu et al., 2019), we hypothesized that 

disruption of Cu accessibility through pharmacological interventions would diminish HCC 

tumorigenic properties. To begin evaluating this hypothesis, SNU398 and SNU449 cells 

were treated with increasing concentrations of TTM and then cell viability was measured 

using a high-throughput luminescent-based assay that detects ATP. TTM treatment 

decreased ATP, and thus viability of SNU398 and SNU449 cells, in a dose-dependent 

manner (Fig. 2.5a-c). To determine whether TTM would remain as efficacious in 3D 

cultures, the IC50 of TTM-treated SNU398 and SNU449 cells seeded in ULA plates was 

determined (Fig. 2.5d-f). Interestingly, there was nearly a two-fold and three and a half-

fold increase in the IC50 concentration of TTM from 2D to 3D cultures in SNU398 cells 

and SNU449 cells, respectively (Fig. 2.5c,f). This finding is in agreement with other 

observations that HCC cells grown in 3D have enhanced drug-resistance and 

aggressiveness as compared to their 2D counterparts (Jung et al., 2017). In accordance, 

when treated with TTM at a concentration at or above the IC50, SNU398 and SNU449 

cells still exhibited reduced proliferation as measured by trypan blue exclusion staining 

(Fig. 2.6a,b). Moreover, when cultured with increasing concentrations of TTM in 

anchorage-independent conditions, spheroid formation was significantly reduced in 

SNU449 cells and trended downwards in SNU398 cells (Fig. 2.6c,d). Collectively, these 

results are early indications that Cu chelation through TTM may be effective in reducing 

the properties that comprise HCC tumorigenesis.   

Discussion 

In the present study, we highlighted Cu homeostasis as a targetable vulnerability 

within HCC and provided early evidence to suggest Cu chelation as a supplemental 
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treatment option for patients with this disease. The mining of publicly available, cancer 

genomic data sets uncovered several features that may explain the consistent clinical 

findings of elevated Cu levels across HCC patients. We demonstrated that dysregulation 

of Cu homeostasis, through altered expression of Cu transporter genes, correlated with 

unfavorable outcomes in HCC patients. In support of this data, Cu transporter 

expression in a panel of human liver cell lines reflected these observations. While the 

SLC31A1 (CTR1) levels were decreased in both human liver tumor tissues and cell 

lines, which suggests HCC tumors could be Cu deficient, Cu levels were significantly 

elevated in rat liver tumors and several human HCC cell lines that aligned with reduced 

CCS protein abundance. Thus, we have demonstrated utilizing both molecular and 

genetic approaches that Cu levels are indeed elevated in the context of liver cancer and 

this marked increase is associated with reduced mRNA expression of SLC31A1, 

SLC31A2, and ATP7B, suggesting that increased Cu content of HCC tumors may be 

driven by the loss of ATP7B instead of the downregulation of SLC31A1 (CTR1) and 

SLC31A2 (CTR2). Alternatively, cancer cell lines increase nutrient scavenging in the 

form of micropinocytosis (Aubert et al., 2020), which was recently proven to be a 

mechanism for cancer cells to acquire Cu and could be responsible for the increased Cu 

levels in HCC cell lines and tumor tissue. However, future studies must be conducted to 

further investigate this concept.   To the best of our knowledge, this study is the first to 

identify a relationship between the expression of Cu transporter genes and prognosis in 

HCC patients. These results support previous studies that described Cu levels as 

significantly higher in both patient serum (Attia et al., 2019; El Fotouh et al., 2012; Poo et 

al., 2003; Porcu et al., 2018) and resected tumors (Ebara et al., 2000, 2003; Jie et al., 

2007). Considering the trend of poorer disease-free survival for HCC patients with 

altered Cu transporter copy number (Fig. 2.1d), and a previous report where small 
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tumors (<35 mm) yielded high Cu levels that correlated positively with differentiation 

status of the tumor (Ebara et al., 2003), it is likely that Cu homeostasis contributes more 

to hepatocarcinogenesis than to HCC progression. Even though our findings reveal 

dysfunctional Cu transport and provide essential insights toward the development of 

alternative therapeutics in the treatment of HCC, further molecular studies are needed 

define the role of cuproproteins in the pathogenesis of HCC. 

In addition, we demonstrated that CTR1 is necessary for cellular proliferation, 

clonogenic survival, and anchorage-independent growth of HCC cell lines. These results 

complement experiments performed by Porcu et al., where transient knockdown of 

CTR1  reduced cell viability, cell cycle progression, and cell migration in human 

immortalized hepatic progenitor or hepatoma cells, while treatment with CuSO4 slightly 

enhanced these properties (Porcu et al., 2018).  Although the authors suggested that 

MYC is responsive to Cu levels, whether other transcriptional regulators mediate these 

Cu-dependent responses remains to be determined. However, elementary proof may lie 

in the correspondence between MYC target genes and microarray data that revealed an 

upregulation in genes associated with cell growth, cell migration, angiogenesis, and 

small GTPase mediated signal transduction upon exposure to high concentrations of 

CuSO4  in HepG2 cells (Min et al., 2009). Taken together, protein factors that regulate 

the above processes, such as the frequently mutated TERT, β-Catenin, or p16, may 

influence Cu-dependent responses and represent important targets for future studies. In 

parallel, we demonstrated that treatment with the Cu specific chelator TTM inhibits HCC 

tumorigenic properties. Although animal studies in HCC have not yet been performed 

using TTM, an early study of HCC tumor xenografts showed that Cu chelation with 

trientine, another Cu chelator, can induce apoptosis and reduce tumor volume (Yoshii et 
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al., 2001). Despite this preclinical study that explored Cu chelation as a treatment option 

for HCC (Yoshii et al., 2001), the efficacy of Cu chelation in combination with the 

standard-of-care therapies, TAE and TACE, has yet to be investigated. Thus, future 

studies involving the use of ischemic culture conditions, which are characterized growth 

at 1% O2 in the presence of low FBS, glucose, and glutamine concentrations, should be 

conducted to decipher the Cu-dependent sensitivities upon minimal oxygenation versus 

nutrient deprivation.  
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Chapter 2 Figures 

 

 

Figure 2.1 Aberrant Cu homeostasis is observed in liver cancer and specifically in 
HCC. (a) Scatter dot plot with bar at mean +s.e.m. of mRNA expression of ATP7A, 
ATP7B, SLC31A1 (CTR1), and SLC31A2 (CTR2) from normal and tumor liver tissue 
samples from the online, open-access database GENT2. Statistical analysis was 
performed using an unpaired, two-tailed Student’s t-test. *P < 0.0332,**P < 0.0021, ***P 
< 0.0002, ****P < 0.0001. (b) Summary table of mRNA expression data shown in (a). (c 
and d) Kaplan-Meier analysis of overall survival (c) and disease-free progression (d) with 
median (dashed black lines) from HCC patients with either altered (solid red lines) or 
unaltered (solid black lines) copy number of Cu transporter genes mentioned in (a) and 
(b). For overall survival plot, n = 25 patients with altered and n = 582 for patients with 
unaltered copy number of Cu transporter genes. For disease-free progression, n = 20 
patients with altered expression and n = 536 for patients with unaltered copy number of 
Cu transporter genes. Results were compared using a Mantel-Cox test. *P < 0.0332,**P 
< 0.0021. 
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Figure 2.2 Aberrant Cu homeostasis is observed in rat HCC tumors and HCC cell 
lines.  (a) Scatter dot plot of inductively coupled plasma mass spectrometry (ICP-MS) 
detection with bar at mean Cu (µg/g dry weight) from HCC tumors or adjacent liver 
tissue from rats per sample dry weight ± s.e.m. n = 8 adjacent liver tissue or n = 14 HCC 
tumors. Results were compared using an unpaired, one-tailed t-test . (b) XFM elemental 
distribution for Cu of a representative tumor section. The sections was scanned with 1 
µm spot size in x and y. Elemental concentrations are shown using false coloring (red 
temperature, logarithmic scale). (c) Scatter dot plot of ICP-MS detection with bar at 
mean Cu (µg/g dry weight) from human liver cell lines per sample dry weight ± s.e.m. 
n = 3 biologically independent samples. Results were compared using a one-way 
ANOVA followed by a Tukey’s multiple-comparisons test where *P < 0.0332. (d) Scatter 
dot plot with bar at mean +s.e.m. of Δ2-Ct normalized quantitative PCR (qPCR) 
expression of ATP7A, ATP7B, SLC31A1, and SLC31A2  mRNA from normal liver cells 
(HMCPP) or HCC cell lines (SNU387, SNU398, SNU449)  (e) Immunoblot detection of 
CCS or β-Actin from normal liver cells (primary hepatocytes) or HCC cell lines (SNU398, 
SNU449, or SNU387). n = 1 biologically independent experiment.  
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Figure 2.3 Loss of the major Cu transporter CTR1 reduces tumorigenic properties 
of HCC. (a and b) Scatter dot plot with bar at mean +s.e.m. of normalized quantitative 
PCR (qPCR) expression of CTR1 mRNA from SNU398 (a) and SNU449 (b) HCC cell 
lines stably expressing shRNA against CTR1 or a non-targeting scramble sequence 
(SCR). n = 1 biologically independent experiment performed in technical triplicate. (c and 
d) Non-linear fit to the exponential growth equation of cellular proliferation from SNU398 
(c) and SNU449 (d) HCC cell lines expressing shRNA against CTR1 or SCR. n = 3 
independent biological experiments, with each experiment plated in technical triplicate. 
Statistical analysis was performed using a two-way ANOVA followed by Dunnett’s 
multiple comparison test. (e and f) Representative images (left) of crystal violet stained 
colonies from SNU398 (e) and SNU449 (f) HCC cells expressing shRNA against CTR1 
or SCR, and scatter dot plot (bottom) of mean absorbance of extracted crystal violet at 
590 nm +s.e.m. of crystal violet staining from three independent experiments plated in 
technical triplicate. The results were compared using a one-way ANOVA followed by 
Dunnett’s multiple comparison test. *P < 0.0332, **P < 0.0021, ***P < 0.0002, ****P < 
0.0001. 
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Figure 2.4 Loss of CTR1 reduces anchorage-independent growth in HCC.               
(a and b) Representative images of anchorage-independent growth in ultra-low 
attachment plates in SNU398 (a, left) or SNU449 (b, left) cell lines stably expressing 
shRNA against CTR1 or SCR, with the normalized mean number of spheroids per field 
of view represented as a scatter dot plot for SNU398 (a, right) and SNU449 (b, right) 
from n = 9 fields of view per condition from three independent biological experiments. 
Data was analyzed using a one-way ANOVA followed by Dunnett’s multiple comparison 
test *P < 0.0332, **P < 0.0021, ***P < 0.0002, ****P < 0.0001. 10x magnification, scale 
bar = 400 µm. 
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Figure 2.5 TTM, a Cu specific chelator, hinders anchorage-dependent and 
anchorage-independent growth. (a and b) Relative CellTiter-Glo® cell viability + s.e.m. 
of SNU398 (a) or SNU449 (b) HCC cells treated with the indicated concentrations of 
TTM upon plating in anchorage-dependent (2D) conditions. n = 2 independent biological 
experiments, with each experiment plated in technical triplicate. (c) Bar graph of TTM 
IC50 values from (a) and (b) + s.e.m. (d and e) Relative CellTiter-Glo 3D® cell viability + 
s.e.m. of SNU398 (d) or SNU449 (e) HCC cells treated with the indicated concentrations 
of TTM upon seeding into ultra-low attachment (3D) plates. n = 3 independent biological 
experiments, with each experiment plated in technical triplicate. (f) Bar graph of TTM 
IC50 values from (d) and (e) + s.e.m. 
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Figure 2.6 TTM reduces cellular proliferation and spheroid formation in HCC cells.  
(a and b) Non-linear fit to the exponential growth equation of cellular proliferation from 
SNU398 (a) and SNU449 (b) cell lines, seeded side-by-side with cells in Fig. 2.3c and 
2.3d, except treated with 25 µM TTM. n = 3 independent biological experiments, with 
each experiment plated in technical triplicate. Statistical analysis was performed using a 
two-way ANOVA followed by Dunnett’s multiple comparison test. ****P < 0.0001. (c and 
d) Representative images of anchorage-independent growth in ultra-low attachment 
plates in SNU398 (c, top) or SNU449 (d, top) cell lines treated with the indicated 
concentration of TTM, with the normalized mean number of spheroids per field of view 
represented as a scatter dot plot for SNU398 (c, bottom) and SNU449 (d, bottom) from n 
= 9 fields of view per condition from three independent biological experiments. Data was 
analyzed using a one-way ANOVA followed by Dunnett’s multiple comparison test *P < 
0.0332, **P < 0.0021, ***P < 0.0002, ****P < 0.0001. 10x magnification, scale bar = 400 
µm. 
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CHAPTER 3: HYPOXIA IN COMBINATION WITH THE GENETIC 
SUPPRESSION OR PHARMACOLOGICAL INHIBITION OF CU IMPORT 
RESTIRCTS HCC METABOLISM 
 

This Chapter has been reformatted from a submission for publication to Metallomics:  

Davis, C.I., Gu, X., Kiefer, R.M, Ralle, M., Gade, T.P., and Brady, D.C. Altered copper 

homeostasis underlies sensitivity of hepatocellular carcinoma to copper chelation. 

Metallomics. Accepted, October 2020.  

Overview 

Among the available palliative treatments, TAE or TACE prevail as the favored 

embolic techniques that interventional radiologists implement when patients present with 

advanced stage HCC. During this procedure, microsphere beads may be coded in a 

chemotherapeutic agent to contribute to cancer cell toxicity. Alternatively, patients may 

be recommended for oral administration of a systemic chemotherapeutic, depending 

upon several pre-disposing factors. TTM is an FDA-approved Cu chelation agent for the 

use in mitigating Cu overload in Wilson disease patients, and has shown success as an 

anti-cancer agent in preclinical and clinical trials of head and neck, breast, and skin 

cancers. Thus, it is plausible that the combination of TTM with TAE or TACE may be an 

alternative to prevent refractory disease in HCC. To molecularly dissect this concept 

using conditions that recapitulate the poorly perfused, embolic-induced 

microenvironment, the following chapter provides evidence of a novel vulnerability at the 

intersection of Cu metabolism and glucose metabolism in HCC.   

Introduction 
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Like most cancers, surgical therapies (resection and liver transplantation) and 

locoregional procedures (radiofrequency ablation) are an effective first line of treatment 

for localized HCC, with five-year survival rates of up to 60 to 70% (Bruix & Sherman, 

2011). Unfortunately, the majority of HCC cases are diagnosed at late stage with only 

20% of patients meeting criteria for curative intervention, and the treatment options for 

intermediate and advanced disease are limited (Terzi et al., 2014). Specifically for 

intermediate or advanced stage HCC, locoregional therapies including, transarterial 

embolization (TAE) and transarterial chemoembolization (TACE) (Bruix & Sherman, 

2011), which take advantage of obstructing tumor blood supply with or without  local 

chemotherapy, or systemic therapy with sorafenib (Llovet et al., 2008; Sanoff et al., 

2016), a small molecule multikinase inhibitor, provide limited survival benefits. If first line 

therapies fail,  second line chemotherapies such as Regorafenib or Nivolumab may be 

used, though these therapies do not reduce the likelihood of recurrence. Although 

obstruction of tumor blood flow limits the delivery of oxygen and nutrients to promote 

cancer cell death, surviving cells contribute to recurrent HCC following TAE or TACE 

(Gade et al., 2017; Paul et al., 2011; Perkons et al., 2019; Terzi et al., 2014), The local 

hypoxic environment induced by TAE and TACE stabilizes the oxygen sensitive master 

transcription factor, hypoxia inducible factor 1 (HIF-1), which upregulates numerous 

genes in  pro-survival pathways, including angiogenesis, migration, invasion,  Fe 

metabolism and glucose metabolism, essential for cancer cell adaptation (Xu et al., 

2014). Critically, HCC exemplifies a unidirectional switch to a glycolytic metabolism as 

compared to normal hepatocytes (Hay, 2016). Thus, there is a great need to discover 

unique cellular and molecular features of HCC that can be exploited as novel 

approaches to treat advanced disease and limit resistance. In this work, we demonstrate 

that the genetic suppression or pharmacologic depletion of  bioavailable Cu is sufficient 
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to lessen hypoxia-induced glycolytic metabolism and  impede resultant HCC tumorigenic 

properties. 

Methods 

ICP-MS Sample Preparation of Human HCC Cell Lines 

Human HCC cell lines were seeded at 2.0 x 106 cells in 100mm dishes. After incubation 

for 48 hours in either 21% O2 or 1% O2, cells were washed twice and harvested with 1X 

Phosphate Buffered Saline.  Cell pellets were collected by centrifugation at 2,000 xg  for 

5 minutes, and were flash-frozen in a dry ice-ethanol bath prior to storing at -80°C. All 

samples were processed by the PADLS New Bolton Center Toxicology Laboratory in the 

School of Veterinary Medicine at the University of Pennsylvania. 

Cell Culture 

SNU398, and SNU449 HCC cell lines r were obtained from the American Type Culture 

Collection (ATCC). Parental cell lines were cultured in Roswell Park Memorial Institute 

(RPMI 1640, Gibco) Media and supplemented with 10% v/v fetal bovine serum (FBS, GE 

Lifesciences), 100 U/mL penicillin, and 100 g/mL streptomycin (Gibco). SNU398 and 

SNU449 cell lines stably expressing the pLKO.1puro constructs were maintained as 

above supplemented with 5g/mL puromycin (Invitrogen). SNU398 and SNU449 were 

stably infected with lentiviruses derived from the pLKO.1 plasmid (see plasmids below) 

using established protocols. Unless specified, all cell lines were maintained in a 

humidified Heracell (ThermoFischer Scientific) incubator set to 37°C and 5% CO2. For 

hypoxic cell culture, cells were maintained at 37°C and 1% O2 in Whitley H35 

Hypoxystation (Don Whitley Scientific). MycoAlert® mycoplasma test detection kit 

(Lonza, LT07-418) was used to test for mycoplasma contamination. 
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Plasmids 

pLKO.1puro lentiviral shRNA plasmids were obtained from High-Throughput Screening 

Core at the University of Pennsylvania to express: nontargeted control (shSCR), human 

CTR1 target sequence #1 5’-GATGCCTATGACCTTCTACTT-3’ (shCTR1#1), or human 

CTR1 target sequence #2 5’-CGGTACAGGATACTTCCTCTT-3’ (shCTR1#2).   

RT-qPCR  

To examine the expression of Cu transporter and glycolytic genes upon hypoxia, 3.0 x 

105 cells of the indicated HCC cells were seeded into 60mm dishes. Sixteen hours post-

seeding, cells were treated with the indicated concentrations of TTM and/or were moved 

to hypoxic conditions for 48 hours. To isolate RNA, cells were harvested in TRIzol™ 

reagent (Invitrogen, #15596018) and RNA was extracted following manufacturer’s 

protocol. Purified RNA was reverse transcribed (RT) into cDNA using the Applied 

Biosystems™ Taqman™ Reverse Transcription Reagents (Applied Biosystems, # 

N8080234) and corresponding protocol. Subsequent cDNA was loaded onto a clear 384-

well plate (Genesee, #24-305) and quantified on a ViiA 7 Real-Time PCR System with 

standard protocols using the following Taqman™  probes: Hs00163707_m1 to detect 

human ATPase copper transporter A (ATP7A), Hs01075310_m1 to detect human 

ATPase copper transporter B (ATP7B), Hs00977266_g1 to detect human SLC31A1 

(CTR1), Hs00156984_m1 to detect human copper transporter 2 SLC31A2 (CTR2), 

Hs00761782_s1 to detect human pyruvate kinase muscle isoform  (PKM), 

Hs01378790_g1 to detect human lactate dehydrogenase A (LDHA), Hs00892681_m1 to 

detect human glucose transporter 1 (GLUT1), and Hs00427620_m1 to detect human 

TATA-binding proteins (TBP). The comparative ΔΔCt method was used to analyze 

mRNA after transcript levels were normalized to TBP.  
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Reagents 

The Cu chelator TTM (#323446) and the crystal violet (# C0775-100G) used for colony 

staining were purchased from Sigma-Aldrich.  

Clonogenic Assay 

SNU398 and SNU449 cell lines stably expressing indicated constructs were seeded at 

3.0 x 103 cells per well in six-well plates. For TTM treatments, cells were treated 24 

hours after seeding with either a vehicle or a final indicated concentration of TTM for 

seven days. For hypoxia (1% O2) exposures, cells were seeded in normoxic (21% O2) 

conditions for 24 hours, and then moved to the hypoxic condition where pre-equilibrated 

hypoxic media was applied for the remainder of the seven-day incubation time. After 

incubation for seven days, cells were washed once with 1X Phosphate Buffered Saline 

(PBS) and stained with 1mL of a crystal violet staining solution (0.5% w/v crystal violet 

(CV), 20% v/v methanol, distilled water) for 15 minutes. After 15 minutes, all wells were 

washed three times with distilled water to minimize background staining. CV stained 

colonies were imaged using a ChemiDoc Touch Imagining System (Bio-Rad). To 

quantify colony abundance, stained cell colonies were dissolved in a 10% acetic acid 

solution for 30 minutes at room temperature, and extracted CV was measured at an 

absorbance of 590nm in a plate reader (Synergy, BioTek).  

Measurement of Glucose Consumption and Lactate Production  

To determine relative glucose consumption and lactate production, 3.0 x 105 cells of the 

indicated HCC cells were seeded into 60mm dishes (GenClon, #25-260). Approximately 

16 hours post-seeding, cells were treated with indicated concentrations of TTM for 48 

hours. For hypoxic conditions, cells were moved to the hypoxic condition where pre-
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equilibrated hypoxic media was applied for the 48-hour incubation time. Both spent 

media, collected upon completion of the incubation time, and fresh media, collected at 

the start of the experiment, were harvested from cell cultures, and following a brief 

centrifugation (500 x g for five minutes), supernatant was transferred to a fresh 

Eppendorf tube, flash frozen on an ethanol-dry ice bath, and stored at -80°C until further 

processing. Glucose consumption and lactate production were measured using a 

YSI2950 immobilized enzyme analyzer from YSI Life Sciences. Prior to sample analysis, 

the linearity of the analyzer was calibrated using standards from the 

manufacturer. Metabolite consumption or production was calculated following the cell 

number area under the curve normalization as previously described. (M. Jain et al., 

2012)  Briefly, metabolite consumption is defined as v = V(x fresh medium – x spent medium)/A, 

where v is glucose consumption or lactate production, V is the culture volume used, x is 

the metabolite concentration, and A is the cell number area under the curve. A is 

obtained by integrating the final cell count and doubling time across the duration (time) 

of the experiment. Initial and final cell counts used to determine A were obtained using 

an automated cell counter.  

Results 

Genetic Loss of CTR1 under Hypoxic Conditions Hinders HCC Metabolism 

Intriguingly, HCC cells adapt to accommodate the larger energy demands 

required for rapid growth and proliferation. HCC cells reprogram their glucose 

metabolism (Hay, 2016) to fulfill these requirements at baseline and upon stress induced 

by the hypoxic environment driven by the metabolic zonation of the liver (Kang et al., 

2018) and treatment-induced ischemia through TAE/TACE (Gade et al., 2017; Kung-
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Chun Chiu et al., 2019; Perkons et al., 2019; C. C. L. Wong et al., 2014). In the latter, 

oxygen-depleted conditions stabilize HIF-1, which induces the transcription of genes in 

multiple hypoxia response pathways. In particular, HIF-1 elevates the mRNA expression 

of genes that encode critical glycolytic proteins, such as glucose importer 1 (GLUT1), 

pyruvate kinase muscle isoform (PKM), and lactate dehydrogenase A (LDHA). It has 

been well-established that cells under hypoxia survive by relying on glycolytic 

metabolism to produce ATP. However, questions remain regarding the effects of Cu 

depletion in a hypoxic environment, which more closely recapitulates the glycolytic state 

of HCC cells under standard-of-care TAE and TACE treatment. Given the requirement 

for elevated intracellular Cu levels in HCC cells (Ebara et al., 2003), we investigated 

whether Cu depletion would alter the metabolic flexibility of HCC cells under hypoxic 

conditions. To address this question, SNU398 or SNU449 cells harboring stable genetic 

knockdown of CTR1 were exposed to hypoxic (1% O2) or normoxic (21% O2) conditions 

and evaluated for expression of key glycolytic genes (Fig 3.1a,b). As predicted, 

exposure to hypoxia for 48 hours significantly induced expression of the glycolytic genes 

PKM, GLUT1, and LDHA. However, mRNA knockdown of CTR1 significantly blocked the 

hypoxia-mediated increase in GLUT1 transcripts, while also reducing PKM or LDHA 

transcripts in SNU398 or SNU449 cells, respectively. These findings that reduced CTR1 

expression decreases the hypoxia-dependent transcription of several glycolytic genes 

suggest that this response is partly Cu-dependent. In parallel to monitoring glycolytic 

gene expression upon hypoxic exposure, we investigated whether hypoxia  would alter 

Cu transporter expression in a similar fashion to that previously observed in  human 

pulmonary arterial smooth muscle cells (Zimnicka et al., 2014), murine macrophages (C. 

White et al., 2009), or rodent intestinal epithelial cells (Xie & Collins, 2011). Similar to 

previous work, hypoxia exposure significantly elevated transcription of ATP7A, but only 
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illustrated modest changes in SLC31A1, SLC31A2, and ATP7B across both cell lines 

(Fig. 3.2a,b). Notably, this response was further enhanced in the presence of reduced 

CTR1 upon hypoxic exposure. Following the trends in the transcriptional data, glucose 

consumption and lactate production increased upon exposure to hypoxia but significantly 

decreased upon stable knockdown of CTR1 in SNU398 and SNU449 cells (Fig. 3.3c,d). 

To examine the functional consequences of a Cu-dependent alteration in metabolic 

rewiring, we assessed whether SNU398 or SNU449 cells deficient in CTR1 could 

survive in a hypoxic environment (Fig. 3.4a,b). While CTR1 knockdown alone was 

sufficient to significantly reduce clonogenic survival, this effect was further accentuated 

under hypoxic conditions after seven days. Taken as a whole, a sustained reduction in 

CTR1 is sufficient to alter the glycolytic metabolism required to propel the tumorigenic 

properties of HCC cells undergoing hypoxic stress.    

Hypoxia in Combination with TTM Treatment Curtailed HCC Metabolism  

To determine whether Cu chelation would alter metabolic flexibility in HCC, SNU 

398 and SNU449 cells treated with TTM were exposed to hypoxic or normoxic 

conditions and expression of key glycolytic genes was evaluated (Fig. 3.5a,b). As 

expected, exposure to hypoxia induced the robust and significant transcription of PKM, 

GLUT1, and LDHA genes (Fig. 3.5a,b). However, treatment with TTM revealed a 

significant Cu-dependent reduction in PKM, GLUT1, and LDHA when compared to 

hypoxia treatment alone in SNU398 cells, while trending similarly in SNU449 cells (Fig. 

3.5a,b). These results agree with a previous study from Feng and colleagues (Feng et 

al., 2009) that demonstrated that the Cu and Zn chelator tetraethylenepentamine (TEPA) 

could suppress HIF-1 transcriptional activity and the subsequent expression of hypoxia-

responsive genes. Akin to the transcriptional findings from CTR1 knock down lines, TTM 
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treatment induced a variable expression pattern in Cu transporter genes across the two 

HCC cell lines, but significantly increased ATP7A  mRNA transcripts upon hypoxia 

exposure alone (Fig. 3.6a,b). Next, to assess whether differential oxygen tensions foster 

differential Cu uptake, we measured intracellular Cu levels using ICP-MS analysis from 

SNU398 and SNU449 cells after exposure to hypoxia (1% O2) for 48 hours. Accordingly, 

intracellular Cu levels were significantly elevated upon hypoxic conditions in SNU398 

cells and trended upwards in SNU449 cells (Fig. 3.6c,d). These data support the idea 

that hypoxia induces differential Cu utilization within HCC cells.    

Importantly, both glucose consumption and lactate production aligned with the 

transcriptional findings, as these measurements significantly diminished upon the TTM-

hypoxia combination compared to hypoxia exposure alone (Fig. 3.7a,b). Hence, these 

observations indicate that pharmacologic reductions in Cu availability hinder the 

reprogramming of glucose metabolism in HCC. Finally, to evaluate whether targeting 

intracellular Cu levels within a hypoxic environment will change HCC tumorigenic 

properties, we assessed the ability for TTM-treated SNU398 and SNU449 cells to 

survive under hypoxia upon seeding at low density. TTM treatment alone significantly 

blunted clonogenic growth in a dose-dependent manner and when combined with 

hypoxic conditions (Fig. 3.8a,b). Taken together, these results support the notion that 

limiting Cu availability within a uniform hypoxic microenvironment works to restrict both 

glucose metabolism and survival ability of HCC cells.  

Discussion 

Importantly, we demonstrated that hypoxia in combination with CTR1 deficiency 

attenuated HCC glycolytic metabolism and tumorigenic properties. Importantly, the liver 
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is one of few organs that maintains an oxygen gradient, however, liver cancers seem to 

nurture a remarkedly hypoxic environment (Brooks et al., 2004; Leary et al., 2002).  

Hypoxia is a known driver of oncogenesis and  regulates processes including epithelial-

to-mesenchymal transition (Higgins et al., 2007), angiogenesis (Du et al., 2008), and 

invasion (Krishnamachary et al., 2003).  Considered in conjunction, manipulating Cu 

availability may therefore represent a useful approach for modulating one or more of 

these hypoxic-dependent responses which shape tumorigenesis in HCC. 

Here we provide evidence that TTM reduces the hypoxia-induced expression of 

glycolytic genes, which in turn, reduces both glucose utilization and lactate excretion. 

Based on previous work, several molecular phenomena may further support the 

contribution of our findings. Firstly, HCC cells exhibit “metabolic flexibility”, where 

glucose metabolism is reprogrammed in response to increased demand for biological 

building blocks required of rapidly proliferating cells or stress associated with the nutrient 

deprivation induced by TAE or TACE (Perkons et al., 2019). Key elements of liver 

rewiring include upregulation of GLUT1, LDHA, and PKM, which drive flux through 

glycolysis and towards lactate production (Hay, 2016). Additionally,  the consistent 

upregulation of  ATP7A upon hypoxia suggests that liver rewiring may even extend to 

the reprogramming of  trace metal metabolism. Moreover, metabolic flexibility can 

influence the angiogenic properties of tumors under hypoxia.(Sonveaux et al., 2012) In 

linking angiogenesis to metabolism, Végran and colleagues provided evidence to assert 

that lactate is sufficient to promote tumor angiogenesis through the lactate/NF-kB/IL-8 

axis (Végran et al., 2011). In accordance with these studies, our data suggest that TTM 

may reduce tumorigenic properties in the context of hypoxia by significantly  blocking 

glucose consumption and lactate production, which constrains vascularization. 
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Secondly, findings from Martin et al. and Feng et al. demonstrate that Cu contributes to 

the regulation of HIF-1α. Specifically, excessive Cu in the presence of hypoxia resulted 

in a Cu-dependent enhancement of both HRE-reporter activity and mRNA expression of 

hypoxia-responsive genes, while Cu chelation with TEPA suppressed these outputs by 

blocking HIF-1α-mediated interactions (Feng et al., 2009; Martin et al., 2005). Thus, 

another explanation may be that Cu merely functions to inhibit the upstream negative 

regulators of HIF-1α, perhaps by competing with iron for binding to prolyl-4-hydroxylases 

(PHD) enzymes. Finally, while the concentration of TTM required to reduce the 

tumorigenic properties of HCC cell lines was in the micromolar range, Cu chelation could 

improve outcomes with locoregional therapies like TACE in which chemotherapy and 

embolic are applied directly to the tumor vasculature. In conclusion, this work provides 

genetic evidence of disrupted Cu homeostasis in the context of HCC. Moreover, we 

have provided a foundation for further exploration of TTM treatment in HCC. Specifically, 

future studies will focus on the combination of TTM with standard-of-care locoregional 

therapy, as this pairing may prove a suitable strategy to combat the recurrence observed 

in a majority of HCC patients. 

Chapter 3 Figures 
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Figure 3.1 Genetic loss of CTR1 under hypoxic conditions reduces glycolytic gene 
expression. (a and b) Scatter dot plot with bar at mean +s.e.m. of normalized 
quantitative PCR (qPCR) mRNA expression of glycolytic genes from SNU398 (a) and 
SNU449 (b) cells stably expressing shRNA against CTR1 or a non-targeting scramble 
sequence (SCR) with exposure to hypoxic (1% O2) for conditions for 48 hours. n = 3 
biologically independent experiments performed in technical duplicate. Statistical 
analysis was performed using a one-way ANOVA followed by Tukey’s multiple 
comparison test. *P < 0.0332, **P < 0.0021, ***P < 0.0002, ****P < 0.0001.   
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Figure 3.2 Genetic loss of CTR1 under hypoxic enhances ATP7A expression. (a 
and b) Scatter dot plot with bar at mean +s.e.m. of normalized quantitative PCR (qPCR) 
mRNA expression of Cu transporter genes from SNU398 (a) and SNU449 (b) cells 
stably expressing shRNA against CTR1 or a non-targeting scramble sequence (SCR) 
with exposure to hypoxic (1% O2) for conditions for 48 hours. n = 3 biologically 
independent experiments performed in technical duplicate. Statistical analysis was 
performed using a one-way ANOVA followed by Tukey’s multiple comparison test. *P < 
0.0332, **P < 0.0021, ***P < 0.0002, ****P < 0.0001.   
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Figure 3.3 Genetic loss of CTR1 under hypoxic conditions blunts glucose uptake 
and lactate production. (a and b) Scatter dot plot with bar at mean +s.e.m. of glucose 
consumption (left) or lactate production (right) rates from SNU398 (c) and SNU449 (d) 
cells stably expressing shRNA against CTR1 or a non-targeting scramble sequence 
(SCR) with exposure to hypoxic conditions for 48 hours. n = 3 biologically independent 
experiments performed in technical duplicate. Statistical analysis was performed using a 
one-way ANOVA followed by Tukey’s multiple comparison test. *P < 0.0332, **P < 
0.0021, ***P < 0.0002, ****P < 0.0001.   
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Figure 3.4 Genetic depletion of CTR1 diminished clonogenic survival upon 
hypoxia exposure. (a and b) Representative images (left) of crystal violet stained 
colonies from SNU398 (a) and SNU449 (b) cells stably expressing shRNA against CTR1 
or a non-targeting scramble sequence (SCR) in normoxic (21% O2) or (1% O2)  hypoxic 
conditions for seven days and scatter dot plot (right) of mean absorbance of extracted 
crystal violet at 590 nm +s.e.m. of crystal violet staining from three independent 
experiments plated in technical triplicate. Statistical analysis was performed using a one-
way ANOVA followed by Tukey’s multiple comparison test. *P < 0.0332, **P < 0.0021, 
***P < 0.0002, ****P < 0.0001.   
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Figure 3.5 Hypoxic conditions in combination with TTM alter glycolytic gene 
expression. (a and b) Scatter dot plot with bar at mean +s.e.m. of normalized 
quantitative PCR (qPCR) mRNA expression of glycolytic genes from SNU398 (a) and 
SNU449 (b) cells upon treatment with 10 µM or 25 µM TTM or exposure to hypoxic (1% 
O2) conditions for 48 hours. Representative n of three biologically independent 
experiments performed in technical triplicate. Statistical analysis was performed using a 
one-way ANOVA followed by Tukey’s multiple comparison test. *P < 0.0332, **P < 
0.0021, ***P < 0.0002, ****P < 0.0001. 
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Figure 3.6 Hypoxic conditions in combination with TTM induce ATP7A gene 
expression and Cu uptake. (a and b) Scatter dot plot with bar at mean +s.e.m. of 
normalized quantitative PCR (qPCR) mRNA expression of Cu transporter genes from 
SNU398 (a) and SNU449 (b) cells upon treatment with 10 µM or 25 µM TTM or 
exposure to hypoxic (1% O2) conditions for 48 hours. Representative n of three 
biologically independent experiments performed in technical triplicate. Statistical analysis 
was performed using a one-way ANOVA followed by Tukey’s multiple comparison test. 
*P < 0.0332, **P < 0.0021, ***P < 0.0002, ****P < 0.0001. (c and d) Scatter dot plot of 
ICP-MS detection with bar at mean Cu (µg/g dry weight) from SNU398 (c) and SNU449 
(d) HCC cell lines exposed to normoxic or hypoxic conditions.  n = 6 biologically 
independent experiments performed and statistical analysis was performed with a 
paired, two-tailed student t-test *P = 0.0257. 
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Figure 3.7 Hypoxia in combination with TTM restricts HCC glycolytic metabolism. 
(a and b) Scatter dot plot with bar at mean +s.e.m. of glucose consumption (left) or 
lactate excretion (right) rates from SNU398 (a) and SNU449 (b) cells upon treatment 
with 10 µM or 25 µM TTM or exposure to hypoxic conditions for 48 hours. n = 3 
biologically independent experiments performed in technical duplicate. Statistical 
analysis was performed using a one-way ANOVA followed by Tukey’s multiple 
comparison test. *P < 0.0332, **P < 0.0021, ***P < 0.0002, ****P < 0.0001.  
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Figure 3.8 TTM attenuated clonogenic survival upon hypoxia exposure. (a) 
Representative images of crystal violet stained colonies from SNU398 (top) and   
SNU449 (bottom) HCC cells treated with vehicle (DMSO) or increasing concentrations of 
TTM in normoxic (21% O2) or hypoxic conditions for seven days of three independent 
experiments plated in technical triplicate. (b) Scatter dot plot of mean absorbance of 
extracted crystal violet at 590 nm +s.e.m. of crystal violet staining experiments in (a). 
Statistical analysis was performed using a one-way ANOVA followed by Tukey’s multiple 
comparison test. *P < 0.0332, **P < 0.0021, ***P < 0.0002, ****P < 0.0001. 
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Figure 3.9 Altered copper homeostasis underlies sensitivity of HCC to copper 
chelation. In glycolytic-addicted HCC cells, bioavailable Cu fuels oncogenic pathways 
that drive tumorigenesis. Intriguingly, genetic manipulation or pharmacologic inhibition of 
intracellular Cu diminishes hypoxia-induced glycolytic metabolism and attenuates HCC 
tumorigenic properties.   
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CHAPTER 4: FUTURE DIRECTIONS FOR INVESTIGATING THE LINK 
BETWEEN CU HOMEOSTASIS AND CELLULAR METABOLISM IN HCC 
 

Overview 

After discovering that HCC cells increase tumoral Cu uptake, and that depleting 

Cu availability results in reduced glycolytic output in HCC cells, several questions remain 

unanswered. In light of the upregulation of ATP7A and downregulation of ATP7B, CTR1, 

and CTR2 transcripts in HCC cells, what is the mechanism for Cu accumulation by these 

cells? Considering the modest Cu-dependent reductions in glycolytic gene expression, 

hypoxia-induced glycolytic metabolite utilization was greatly reduced in HCC cells. 

Although these transcriptional changes may contribute to the downstream effects, it is 

more probable that a Cu-dependent regulation exists within glycolysis at the biochemical 

level. These data beg the question: what glycolytic protein or upstream factor regulating 

a glycolytic protein have the potential to be modified by Cu? Despite preliminary 

experiments that uncovered a unique vulnerability under hypoxic conditions, nutrient 

deprivation in combination with a hypoxic environment would further recapitulate the 

microenvironment of HCC tumor cells exposed to TAE/TACE treatment. Thus, potential 

experiments distinguishing the essentiality of Cu under low oxygenation versus nutrient 

deprivation will be discussed. Most excitingly, the question of whether TTM will add a 

survival benefit to patients receiving TAE/TACE still remains to be answered. Therefore, 

we will describe a study design for a preclinical undertaking on the use of Cu chelation in 

combination with TAE treatment.   

Defining the Mechanism for Cu Uptake by HCC Tumors  
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 Importantly, we provided evidence from a DEN-induced rat model of HCC 

illustrated that HCC tumors exhibit elevated levels of total intracellular Cu when 

compared to adjacent liver parenchyma.  This evidence was further corroborated by Cu 

levels measured from primary hepatocytes and HCC cell lines. Our findings validate 

those previously described in the literature, however, this Cu phenomenon is not only 

limited to HCC since significant elevations in Cu levels have been observed in both 

serum and tissue of breast, ovarian, stomach, and colorectal cancer patients (Gupte & 

Mumper, 2009). These observations draw attention to an intriguing question: is elevated 

Cu the cause of carcinogenesis or are malignant cells adapting such that high 

intracellular Cu is simply the consequence? Thus, we propose several narrower lines of 

investigation that, if answered, may solve this over-arching “cause-versus-consequence” 

question.  

In trying to explain our findings, we monitored the mRNA expression of Cu 

exporters ATP7A and ATP7B as well as the Cu importers CTR1 (SLC31A1) and CTR2 

(SLC31A2) (Fig. 2.2d). Because HCC cells downregulated CTR1, CTR2, and ATP7B in 

comparison to normal hepatocytes, the question of increased Cu uptake becomes more 

complex since transcriptional evidence would suggest that the factors mediating Cu 

export and Cu import are both reduced. Therefore, more experiments exploring the 

regulation of Cu transporters must be performed to determine a complete mechanism. 

One may begin with a simple experiment where Cu transporter protein expression is 

compared between HCC cell lines and normal hepatocytes. Based on these results, 

protein stability of differentially expressed Cu transporters may be examined by applying 

cycloheximide, an inhibitor of translation, to hepatocytes and HCC cells at various time 

points  (Buchanan et al., 2016). In addition to determining if protein abundance is 

sufficient to support Cu uptake, experiments should be conducted to observe the 
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subcellular localization or trafficking of Cu transporters. For example, the Cu-ATPase 

ATP7A, which shows expression across all tissues, translocates from the trans-Golgi 

network to the plasma membrane when Cu concentrations are elevated (M. J. Petris et 

al., 1996).  The ATP-requiring Cu transporter pump ATP7B demonstrates differential 

localization in response to Cu levels as it is present in the trans-Golgi network at 

physiological concentrations but fuses to endolysosomal compartments or vesicles that 

localize to apical membranes to remove excess Cu (Hasan et al., 2012). CTR2 localizes 

to vesicular compartment membranes to import Cu into the cytosol as a response to Cu 

shortage (Rees et al., 2004). To determine whether Cu transporter subcellular 

localization differs between normal hepatocytes and HCC cells, ATP7A or ATP7B may 

be visualized through immunofluorescence microscopy in tandem with protein markers 

for the plasma membrane, TGN, and endosomes. To validate these visualizations, an 

orthogonal technique such as subcellular fractionation followed by immunoblot should 

also be conducted. To determine whether there is a redistribution of Cu in HCC cells 

compared to hepatocytes precursors, recent advances in direct elemental analysis via 

ICP-MS from soluble, insoluble, and membrane-bound subcellular compartments would 

provide this insight (Genoud et al., 2017). To measure the rate of Cu uptake, HCC cells 

may be supplemented with radiolabeled 64Cu, chased at several time points, and 

processed for analysis by ICP-MS. Moreover, the Cu+-specific fluorescent sensor CF4 

would also be helpful in visualizing labile pools of Cu across cellular compartments (T. 

Xiao et al., 2018). Taken together, these proposed experiments should provide details 

surrounding the regulation of Cu uptake in carcinogenic versus healthy liver cells.   

Interestingly, a similar pattern of expression was discovered in HCC patients, 

however, an upregulation of ATP7A accompanied these changes. However, the 

biological consequence of this increase is not clear. ATP7B is the major isoform 
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expressed in adult hepatocytes, however, ATP7A expression occurs in liver tissues 

during embryogenesis and trace levels are detected in adult liver (Lenartowicz et al., 

2010). Considering this in conjunction, perhaps HCC cells are either adapting a more 

embryogenic-like transcriptional program or the HCC tumor cells sampled resemble a 

cancer stem cell or hepatocyte progenitor phenotype. If differences in Cu levels cannot 

be attributed to differential expression, abundance, or localization of Cu transporters, 

then this would suggest an alternative Cu import mechanism. Recent findings from 

mutant KRAS colorectal cancer (CRC) revealed that these cells modulate Cu import via 

macropinocytosis (Aubert et al., 2020). HCC cells scavenge nutrients by internalizing 

exosomes released by neighboring cells through multiple modes of endocytosis 

including macropinocytosis (R. Chen et al., 2019). Thus, to test if HCC cells facilitate 

intracellular Cu delivery through this non-canonical form of Cu import, it should first be 

confirmed that HCC cells enhance macropinocytic uptake (relative to hepatocytes) by 

measuring the uptake of tetramethylrodamine (TMR)-conjugated dextran in the presence 

or absence of the macropinocytic inhibitor 5-(N-ethyl-N-isopropyl) amiloride (EIPA). If 

HCC cells respond with increased rates of TMR uptake, measurements of Cu availability 

should be conducted. Namely, the Cu-dependent degradation of CCS should be 

measured via immunoblot, and the mean fluorescence of the ratiometric FRET Cu 

sensor FCP-1 should be imaged and quantitated with confocal fluorescence microscopy. 

In addition to macropinocytosis intersecting with Cu metabolism, shared Cu-Fe transport 

proteins may also influence Cu uptake. A recent study implicated STEAP4 as a promoter 

of colon tumorigenesis through a mechanism where enhanced Cu uptake activates NF-

kB signaling to inhibit apoptosis and drive metastasis in the presence IL-17 (Liao et al., 

2020). Through a series of molecular techniques and omics-based approaches, the 

major Fe transporter DMT1 was highly expressed in and pivotal to the tumorigenesis of 
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CRC (Xue et al., 2016). Moreover, evidence from esophageal adenocarcinoma patient 

samples demonstrated overexpressed DMT1 transporter mRNA, and showed significant 

immunoreactivity for TfR1 and DMT1 in Barrett’s metaplasia but not normal esophageal 

tissue (Boult et al., 2008). From the GENT2 cancer genomic data set, we observed an 

increase in STEAP2 expression, and a decrease in STEAP3 and STEAP4 expression 

(Fig 4.1a), while also observing a significant increase in DMT1 expression in liver cancer 

(Fig 4.1b). Of particular note, DMT1 functions as a physiologically relevant Cu+ importer 

in addition to its function as an Fe importer (Arredondo et al., 2003). Hence, future 

studies surrounding the role of Fe/Cu shared delivery systems may be helpful to define 

their contributions to aberrant Cu concentrations observed in HCC.  

Methods 

Data Mining 

STEAP1, STEAP2, STEAP3, STEAP4, and DMT1  mRNA expression in normal or tumor 

liver tissue samples was obtained from the Gene Expression across Normal and Tumor 

tissue (GENT2) web-based genome database (http://gent2.appex.kr/gent2/, Korean 

Research Institute and Biotechnology). A total of n = 215 normal and n = 517 tumor liver 

tissue samples were used for analysis.   

Determining the Glycolytic Enzyme(s) Responsible for the Metabolic 

Sensitivity Observed When Cu Availability is Reduced 

Introduction  

A key finding from this thesis project was that the hypoxia-induced glycolytic 

utilization in HCC cells was diminished in the presence of a Cu chelator or through a 

genetic block in Cu import. Although previously thought to function as a structural or 

http://gent2.appex.kr/gent2/
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catalytic cofactor, recent work has described a role for Cu as a signaling molecule 

important for modulation of neuronal circuit spontaneous activity (Dodani et al., 2014), 

enhancement of oncogenic MAPK signaling (D. C. Brady et al., 2014; M. L. Turski et al., 

2012), and inhibition of a cyclic-AMP (cAMP) dependent lipolysis enzyme 

(Krishnamoorthy et al., 2016). In light of these findings and those presented in Chapters 

2 & 3 of this thesis,  we sought to further investigate the Cu-mediated regulation of 

glycolysis by determining if a novel interaction exists between Cu and glycolytic 

enzymes, or their upstream mediators, in both non-transformed and cancerous liver 

cells. To begin to dissect this question, we performed an insilico screen using the 

publicly available Basic Local Alignment Search Tool (BLAST) from the National Center 

for Biotechnology Information (NCBI) to identify kinase sites that matched the predicted 

MEK1/2 Cu-binding sites. Additionally, we conducted an extensive literature review to 

determine whether information linking kinases and Cu had been published previously. 

This search acknowledged that several metabolic kinases were Cu-binding, and of 

particular interest, that the kinase pyruvate kinase muscle isoform (PKM) was at the 

forefront. More specifically, a study characterized the Cu and Zn metalloproteomes from 

human hepatoma lines using an Immobilized Metal Affinity Chromatography (IMAC) 

screen approach (She et al., 2003). Whole cell extract was applied to either  Cu or Zn 

loaded columns, and followed by an on-column tryptic digest after which the eluent was 

subjected to tandem MS to identify peptide sequences. Upon peptide mapping, PKM1/2 

was one of a several metabolic enzymes that was identified (She et al., 2003). This 

group identified a putative N-terminal HXXHXXH motif within PKM1/2, and then 

speculated that this motif had potential Cu-binding capabilities. Preliminary data from our 

lab and others demonstrates that Cu may also interact with PKM1/2 at cysteine 

residues, some of which lie near key structural components of PKM1/2.  Taking these 
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findings into account, we asked: what exactly is PKM1/2 and how does if function in 

biology?  

PKM1/2 are splice isoforms resulting from a mutual exclusive alternative splicing 

event of the PKM gene. Both isoforms catalyze the transphosphoryation between 

phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP) to yield pyruvate and ATP. 

Pyruvate in the cytosol can be converted into lactate via lactate dehydrogenase (LDH), 

or can be transported into the mitochondria where it can be converted into acetyl-CoA 

via the pyruvate dehydrogenase complex (PDH) or oxaloacetate via pyruvate 

carboxylase (PC). Understanding that the pyruvate generated from this final step in 

glycolysis serves as the center of carbon metabolism, it is critical to regulate the 

pyruvate kinase (PK) step. Of note, the PKM2 enzyme has been implicated in metabolic 

reprogramming of HCC. Specifically, the PKM2 isoform is inherently less active than the 

PKM1 isoform, which is constitutively expressed as a tetramer (Vander Heiden et al., 

2010). On the contrary, PKM2 may exist as a monomer, dimer, or tetramer depending 

upon the metabolic needs of the cell. Association between the dimeric and tetrameric 

states is highly regulated by several site-specific post-translational modifications 

including acetylation (Lv et al., 2011) and phosphorylation (Hitosugi et al., 2009), which 

function to inhibit its enzyme activity in these contexts. Further regulation by upstream 

glycolytic intermediates or byproducts such as fructose-1,6-bisphosphate (FBP) 

(Dombrauckas et al., 2005) or serine (Chaneton et al., 2012) allosterically activate PKM2 

to form the fully active tetramer. These multiple layers of regulation have proved crucial 

to understanding the role of PKM2 in the context of cancer metabolism, as this enzyme 

was previously regarded as a metabolic “housekeeping” protein.  
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However, a landmark paper in Nature demonstrated an exclusive expression of 

PKM2 and simultaneous absence of PKM1 in cancerous or transformed cell lines 

(Christofk et al., 2008). Moreover, the authors demonstrated that tumor burden and 

tumor volume increased significantly in mice genetically engineered to exclusively 

express PKM2 when compared to mice exclusively expressing PKM1. In addition to the 

cancers characterized by Christofk et al., preferential expression of PKM2 is commonly 

observed in HCC as PKM2 overexpression is associated with poor prognosis (Z. Chen 

et al., 2015; Hu et al., 2015) and early recurrence in HCC patients (Tai et al., 2016; C. 

C.-L. Wong et al., 2014). Although one preclinical study explored Cu chelation as a 

treatment option for HCC (Yoshii et al., 2001), the role of Cu chelation in combination 

with the standard-of-care therapy, TACE, has yet to be elucidated. Understanding that: 

a) TACE therapy drives a hypoxic-induced metabolic reprograming, b) PKM2 is a key 

factor underlying HCC tumorigenesis,  and  c) Cu has been previously implicated in the 

tumorigenesis of other cancers,  targeting PKM2 through its interaction with Cu may 

elucidate a context-specific, novel vulnerability that may be effective in limiting the 

recurrence of HCC in patients after TACE treatment.  

HCC Cells Depend on PKM2 for Tumorigenic Properties as PKM2 Expression is 

Associated with Unfavorable Outcomes in Liver Cancer Patients 

Imperatively, the contribution of physiological Cu levels to glycolytic metabolism 

in HCC patients and the molecular mechanism that may underlie this proposed link 

remains unclear. Before investigating the Cu-mediated role of PKM2 regulation in 

glycolysis, we first sought to validate the relevance of PKM2 to HCC development and 

tumorigenesis. Exploring the publicly available cancer genome database GENT2, we 

evaluated the mRNA expression of PKLR, the PK isozyme predominantly expressed in 
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normal liver tissue and red blood cells, and PKM, the PK isoform preferentially 

expressed by cancers including HCC (Mendez-Lucas et al., 2017; C. C.-L. Wong et al., 

2014).  We observed that expression of PKM was significantly higher in liver cancer, 

while PKLR expression was significantly reduced (Fig 4.2a). Following these results, we 

interrogated the relationship between liver cancer patient survival and level of RNA 

expression of PKM using the TCGA Pan Cancer Atlas data set obtained from the protein 

web-based platform The Human Protein Atlas (Fig 4.2b). Patients were categorized as 

having high or low PKM expression if PKM expression exceeded or fell below the 9.62 

FPKM (median expression, number fragments per kilobase of exon per million reads), 

respectively. Strikingly, liver cancer patients that expressed high levels of PKM had a 

significantly worse survival outcome when compared to patients with low PKM 

expression as demonstrated by a median survival of ~30 months compared to ~60 

months in the low PKM expression group. To complement these transcriptional findings, 

we further explored PKM protein expression in normal and tumor liver tissues deposited 

in The Human Protein Atlas. Importantly, immunohistochemical analysis confirmed 

elevated expression of PKM from liver cancer tissue but did not detect expression in 

normal hepatocytes (Fig 4.2c). Taken together, the combined results of these genomic 

and proteomic open-access cancer databases align with previous reports of an 

unfavorable association between  PKM2 expression and HCC tumorigenesis and 

metastasis (Hu et al., 2015; W. R. Liu et al., 2015; C. C.-L. Wong et al., 2014). To start 

uncovering a molecular mechanism that would connect Cu content to PKM2 regulation 

in HCC, we validated PKM2 protein expression by immunoblot from either primary 

hepatocytes (HMCPP) or established HCC cell lines (SNU398, SNU449, SNU387). 

Remarkably, we observed a complete absence of PKM2 expression in the hepatocytes, 

and moreover, did not detect PKLR expression in the HCC lines (Fig 4.2d). Additionally, 
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the enhanced human Telomerase Reverse Transcriptase (TERT) expression reported 

from a  large proportion of HCCs that harbor mutations in the TERT promoter region was 

recapitulated (S. E. Lee et al., 2016). To investigate whether these HCC cell lines 

depend on PKM2 to promote tumorigenesis, stable genetic knockdown of PKM2 were 

generated by screening SNU398 cells that were stably transduced with a panel of 

independent short-hairpin RNAs (shRNA) against PKM (Fig 4.2e). After selecting the 

shPKMs that most efficiently depleted PKM2, it was interrogated whether disruption of 

PKM2 would alter the proliferative ability of HCC cells. In line with previous findings, 

genetic depletion of PKM2 significantly reduced the proliferation of SNU398 (Fig 4.2f). 

Aside from cellular proliferation, clonogenic survival of SNU398 cells was dependent on 

PKM2 expression (Fig 4.2g). Collectively, these results demonstrate that HCC cells rely 

on PKM2 for to sustain tumorigenic properties including proliferative capability and 

clonogenic survival.  

PKM2 Interacts with a Cu-Charged Resin 

After highlighting the critically of PKM2 to HCC viability, the next question to 

answer was whether PKM2 could bind to the transition metal Cu. To confirm the mass 

spectrometry analysis from the metal-ion screen conducted by She et al., immobilized 

metal affinity chromatography was performed by applying whole cell extract (WCE) from 

mouse embryonic fibroblasts (MEFs) to either Cu2+, Fe3+, or Zn2+ charged resins (Fig 

4.3a). Immunoblot analysis detected enrichment of both MEK1, a known Cu binding 

protein, and PKM2 in the eluent from a Cu-charged resin, but not from those of Fe or Zn 

charged resins. Evidently, PKM2 forms multiple, well-characterized protein-protein 

interactions with several transcription factors and oncogenes (Liang et al., 2017; Luo et 

al., 2011; Yu et al., 2013; Zhao et al., 2018), thus, to determine if PKM2 forms a direct 
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interaction with Cu, recombinant human PKM2 (rPKM2) applied to iminodiacetic acid 

beads preloaded with Cu2+ (Fig 4.3b). Affinity purification of rPKM2 from the Cu column 

specifically suggests that a direct interaction exists between Cu and PKM2. Similar to 

the results obtained from MEF WCE, rPKM2 was not enriched after incubation with other 

divalently-charged resins, suggesting that PKM2 binds Cu selectively. Taken together, 

these affinity purifications revealed a surprising yet unique interaction between a 

previously established static metal cofactor and a glycolytic enzyme favorably expressed 

in cancer.    

Location of Predicted Cu-Binding Residues Provide Insight for Novel Regulation  

 Previous work identified that PKM1/2 interacts with Cu through the histidine 

motif that is present in both the PKM1 and PKM2 isoforms (She et al., 2003). 

Importantly, ligation of Cu by the same number of histidine residues has been observed 

in the crystallographic structures of essential Cu-binding enzymes Cu,Zn-SOD1 and 

CCO (Tainer et al., 1982; Tsukihara et al., 1995). Interestingly, an unbiased reactivity-

based protein profiling screen showed that several cysteine residues of PKM (Fig 

4.4a,b) are differentially occupied in a Cu-dependent manner (Chang Lab, unpublished 

data). Coordination of Cu through CC motifs is a phenomenon previously observed in 

the copper chaperone COX17, which relies on these cysteine residues for proper Cu 

transfer to other cochaperones (Banci et al., 2008).  Although evidence demonstrates 

that PKM2 interacts with Cu potentially through motifs that are conserved in 

cuproproteins, the residues that are required for binding have yet to be characterized. 

Furthermore, the oligomeric state of PKM2 has been shown to influence its catalytic 

activity (Chaneton et al., 2012; Dombrauckas et al., 2005; Hitosugi et al., 2009; Lv et al., 

2011), and subsequently altering regulation of glycolytic metabolism. After inspection of 
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a crystallographic structure of PKM2 (Fig 4.4c, PDB: 4B2D), several of the proposed Cu 

binding residues (Fig 4.4a) lay near important structural features of PKM2. For example, 

Cys 423 and Cys 424 are two residues that are included in the alternative exon specific 

to PKM2. This region forms the dimer-dimer inter subunit contact region, and subtle 

differences in these amino acids account for the differences in allosteric effector binding 

observed between PKM1 and PKM2. Additionally, Cys 152 is found within the flexible B 

domain that closes upon the active site during transphosphorylation. Although the 

allosteric regulation of PKM2 is well-characterized, whether Cu allosterically regulates 

PKM2 from a distant site or directly in the active site is unknown.   

Thus, to interrogate the functional relevance of Cu-binding to PKM2, recombinant 

human PKM2 constructs harboring site-specific mutations at the histidine or cysteine 

residues (Fig 4.4a) proposed to interact with Cu via site-directed mutagenesis must be 

generated. After initial purification, metal pull-down assays followed by immunoblot 

analysis to assess the Cu-binding ability of each PKM2 mutant should be performed. We 

would expect that mutations to amino acids that are interacting with Cu will show a 

complete loss or a reduced ability to bind to a Cu-charged resin.  To corroborate this  

mutagenesis strategy, direct incorporation of Cu in both wild-type and mutant PKM2 

constructs using ICP-MS will be obtained. If these data collectively suggest that there 

may be multiple Cu binding pockets present, dialysis of wild-type PKM2 against a range 

of copper chloride (CuCl2) concentrations will be executed to determine the Cu:PKM2 

binding stoichiometry. To establish the impact of Cu-binding on PKM2 enzymatic activity, 

the Kinase-Glo® assay kit may be repurposed to measure the pyruvate kinase activity of 

each mutant by determining the value for maximal velocity (Vmax) and the Michaelis 

constant (Km) in the presence or absence of Cu as compared to wild-type. Additionally, 

we would expect to observe a reduction of pyruvate kinase activity for the PKM2 mutants 
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that lack the relevant Cu-binding residues. Taken together, these proposed experiments 

will elucidate where Cu binds to PKM2 and provide specifics regarding the contribution 

of this interaction to PKM2 catalytic function. 

Cu Availability Reduces PKM2 Tyrosine Phosphorylation 

 Several well-established protein partners and metabolites bind to PKM2 and 

serve to allosterically activate or inhibit PKM2 function. Additionally, a number of post-

translation modifications (PTM) act directly to also enhance or reduce PKM2 activity, 

where usually the latter is favored in cancer cell metabolism  (Prakasam et al., 2018). 

Thus, we questioned whether Cu would contribute to the PTM-mediated regulation of  

PKM2. To answer this question, the PhosphoSitePlus database was used to observe 

putative PTM sites on PKM2.  Upon inspection of known PTMs  (Fig 4.5a), 

phosphorylation was most frequently detected with over 50 phosphorylation sites 

reported on PKM2. Interestingly, the phosphorylation at tyrosine 105 (Tyr105) was the 

most well characterized (Fig 4.5a, indicated by a red star).  Specifically,  this FGFR1-

mediated phosphorylation inhibits PKM2 function by forcing a closed conformation that is 

less flexible and amendable to FBP binding, thus reducing pyruvate kinase activity 

(Hitosugi et al., 2009; Kalaiarasan et al., 2014). Considering this point of regulation,  we 

assessed the effect of reduced intracellular Cu on PKM2 phosphorylation at Tyr105 via 

immunoblot analysis  from  MEFs that were genetically null for Ctr1 or MEFS where the 

human WT CTR1 transporter was re-expressed (Fig 4.5b). Additionally, the effect of Cu 

chelation was assessed in these rescue MEFs using a Cu1+-specific Cu chelator, BCS, 

as well as TTM. Interestingly,  phosphorylation at Tyr105 was reduced in conditions with 

reduced levels of bioavailable Cu. A possible hypothesis explaining this finding could be 

that a population of PKM2 exists already as a dimer  in cells with diminished Cu 
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bioavailability, thus,  already rendering PKM2 inactive. Preliminary cross-linking 

experiments in the same cellular system demonstrate that MEFs with physiological Cu 

accessibility have PKM2 that exists mainly as a tetramer (data not shown). However, in 

MEFs with either pharmacologically or genetically suppressed intracellular Cu levels, a 

dimeric PKM2 species appears, further supporting the notion that Cu withdrawal may 

push PKM2 into an inactive state. In light of these results, it is necessary to confirm that 

upstream regulators of PKM2 phosphorylation, such as FGFR1, are not Cu-dependent. 

Collectively, these data suggest a novel Cu-dependent role in the regulation of PKM2. 

To corroborate these studies as well as further the mechanistic rationale for these 

observations, future in vitro biochemical, like those described in the previous section, as 

well as biophysical studies must be performed to elucidate the role of Cu in PKM2 

tetramer:dimer:monomer equilibrium and the PKM2 enzymatic function that results.  

Methods 

Data Mining 

PKM and PKLR  mRNA expression in normal or tumor liver tissue samples was obtained 

from the Gene Expression across Normal and Tumor tissue (GENT2) web-based 

genome database (http://gent2.appex.kr/gent2/, Korean Research Institute and 

Biotechnology). A total of n = 215 normal and n = 517 tumor liver tissue samples were 

used for analysis. A total of 347 samples from the Pan-Cancer Atlas dataset from The 

Cancer Genome Atlas (TCGA) was selected for analysis from The Human Protein Atlas 

(THPA) for PKM  mRNA expression and patient survival data. For survival plot, n = 177 

patients with high expression and n = 170 patients with low expression of PKM, where 

expression below cut-off value of 9.62 FPKM (median expression) categorized patients 

as low expression and values above 9.62 were categorized with high expression. 

http://gent2.appex.kr/gent2/
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Representative immunohistochemical staining for PKM from normal liver and liver 

cancer tissue were observed from the open-access, web-based database 

(https://www.proteinatlas.org/ENSG00000067225-PKM/pathology/liver+cancer). Post-

translational modifications of PKM2 were viewed and adapted  from querying PKM2 in 

the PhosphoSite Plus database (CST, https://www.phosphosite.org/homeAction.action).  

Cell lines & cell culture  

Cell culture SNU387, SNU398, and SNU449 HCC cell lines and human plateable 

hepatocytes, 5-Donor were obtained from the American Type Culture Collection (ATCC) 

and ThermoFisher Scientific, respectively. Parental cell lines were cultured in Roswell 

Park Memorial Institute (RPMI 1640, Gibco) Media and supplemented with 10% v/v fetal 

bovine serum (FBS, GE Lifesciences), 100 U/mL penicillin, and 100 ug/mL streptomycin 

(Gibco). SNU398 and SNU449 cell lines stably expressing the pLKO.1puro constructs 

were maintained as above supplemented with 5ug/mL puromycin (Invitrogen). SNU398 

and SNU449 were stably infected with lentiviruses derived from the pLKO.1 plasmid 

(see plasmids below) using established protocols. Mouse embryonic fibroblasts (MEF) 

lines used were derived as described previously (D. C. Brady et al., 2014). MEF lines 

were cultured in Dulbecco’s Modified Eagle Medium (DMEM high glucose, Gibco), 100 

U/mL penicillin, and 100 ug/mL streptomycin (Gibco). MEF lines reconstituted with the 

human CTR1 transporter were cultured as above with the addition of 5ug/mL Blasticidin 

(Gibco). Unless specified, all cell lines were maintained in a humidified Heracell 

(ThermoFischer Scientific) incubator set to 37°C and 5% CO2. MycoAlert® mycoplasma 

test detection kit (Lonza, LT07-418) was used to test for mycoplasma contamination. 

Immunoblot analysis 

https://www.proteinatlas.org/ENSG00000067225-PKM/pathology/liver+cancer
https://www.phosphosite.org/homeAction.action
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Immunoblot analysis was performed following a previously described protocol with slight 

modifications (Davis et al., 2020). Protein from whole cell lysate was detected using the 

following antibodies (dilution, catalog#, manufacturer): mouse anti-β-actin (1:5000, 3700, 

Cell Signaling Technologies (CST)), mouse anti-MEK1 (1:2000, 2352, CST) rabbit anti-

PKLR (1:1000, NBP1-32314, Novus Biologicals), rabbit anti-PKM1 (1:1000, 7067, CST), 

rabbit anti-PKM2 (1:3000, 4053, CST), rabbit-anti-Phospho(Tyr105)-PKM2 (1:1000, 

3827, CST), rabbit anti-Telomerase reverse transcriptase (TERT) (1:1000, ab32030, 

Abcam),   followed by detection with one of the following horseradish-peroxidase-

conjugated secondary antibodies: goat anti-mouse IgG (1:4000, 7076, CST) or goat anti-

rabbit IgG (1:4000, 7074, CST) using SignalFire ECL (CST, # 6883S) detection 

reagents.  

Plasmids 

pLKO.1puro lentiviral shRNA plasmids were obtained from High-Throughput Screening 

Core at the University of Pennsylvania to express: nontargeted control (shSCR) or 

sequences targeted against human PKM obtained from The RNAi Consortium (TRC) 

shRNA library (shPKM#1,shPKM#2, shPKM#3, shPKM#4, shPKM#5). The pWZLblasti-

CTR1WT and pWZLblasti vector generated as previously described (D. C. Brady et al., 

2014). pETDUET-6xHIS-TEV-PKM2 was created by subcloning human PKM2 cDNA into 

the pETDUET-6xHIS-TEV empty vector.  

Measurement of cell proliferation with trypan blue 

Cell proliferation was measured as previously described (Davis et al., 2020).  SNU398 

cells stably expressing the indicated constructs were seeded at 1.5 x 104 cells per well in 

a six-well plate on Day 0. Cell counts were performed every other day by washing cells 
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with 1x PBS, detaching cells with 0.05% Trypsin (Gibco, #25300054). Cells were then 

resuspended in an equal volume of complete RPMI, and centrifuged at 1000xg for 5 

mins. Following aspiration of media, cell pellets were then resuspended in identical 

volumes of complete RPMI. Cell counting was performed using an automated cell 

counter (Invitrogen Cell Countess II) by taking an aliquot of cell culture and diluting 1:1 

with 0.4% Trypan Blue Solution (Life Technologies/Invitrogen, #15250061) before plating 

on and reading with a hemocytometer.  

Clonogenic assay 

Clonogenic survival was measured as previously described (Davis et al., 2020). SNU398 

cells stably expressing indicated constructs were seeded at 3.0 x 103 cells per well in 

six-well plates. After incubation for seven days, cells were washed once with 1X 

Phosphate Buffered Saline (PBS) and stained with 1mL of a crystal violet staining 

solution (0.5% w/v crystal violet (CV), 20% v/v methanol, distilled water) for 15 minutes. 

After 15 minutes, all wells were washed three times with distilled water to minimize 

background staining. CV stained colonies were imaged using a ChemiDoc Touch 

Imagining System (Bio-Rad). To quantify colony abundance, stained cell colonies were 

dissolved in a 10% acetic acid solution for 30 minutes at room temperature, and 

extracted CV was measured at an absorbance of 590nm in a plate reader (Synergy, 

BioTek).  

PKM2 Purification 

Human recombinant PKM2 (rPKM2) was purified from a previously established protocol 

(Tsang et al., 2020), see Protein purification section.  

Metal affinity chromatography experiments 
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Metal pulldown assays were performed as previously described (M. L. Turski et al., 

2012). Briefly, 20 µg of MEF whole cell extract was incubated in 

radioimmunopreciptation assay (RIPA) buffer containing 10 µl of Profinity IMAC resin 

(Bio-Rad) charged with Cu, Zn, or Fe or without metal for 30 minutes at 4°C.  For 

pulldown assays requiring rPKM2, 500 ng of rPKM2 was incubated in HEPES buffer 

(see Protein purification section) as described above. Samples were washed 4x in 500 µl 

HEPES buffer prior to elution and then prepared for SDS-PAGE analysis followed by 

immunoblot detection as performed above.   

PKM2 Crystal Structure  

The tetrameric human PKM2 crystal structure was downloaded, examined, and modified 

from the publicly available structural biology database Protein Data Bank (PDB) from a  

previously deposited structure, PDB: 4B2D, (Chaneton et al., 2012).  

Statistical analysis  

Data are reported as mean +s.e.m. Each sample size (n) represents biologically 

independent experiments. Data was collected from three independent experiments 

unless otherwise specified within the figure legend. Statistical significance was 

determined using an unpaired two-tailed Student’s t-test, a Mantel-Cox test, a one-way 

ANOVA followed by Dunnett’s or Tukey’s multiple comparisons test, where significance 

was defined as P <0.05. All statistical analysis was performed in GraphPad Prism 8 

software.  

Distinguishing the Role for Cu under Oxygen Deplete versus Nutrient & 

Oxygen Deplete (Ischemic) Conditions 
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Our findings from Chapter 3 revealed a Cu-dependent impairment of the 

metabolic flexibility of HCC cells under hypoxic stress upon reduced Cu accessibility. 

These nominal findings contribute to elucidating the mechanism behind the TAE-induced 

metabolic reprogramming that occurs from surviving residual cells. However, it is 

important to note that during TAE or TACE, the microsphere beads administered 

obstruct blood flow to the tumor, causing a serve restriction in both oxygen and nutrient 

availability. Although our previous results under reduced oxygen tension illuminate a Cu-

sensitivity, whether a Cu-sensitivity exists after the combination  of nutrient and oxygen 

deprivation, referred to as ischemia, remains to be elucidated. Thus, we performed 

several experiments to begin to investigate whether ischemic conditions conferred a 

unique Cu-dependency. When HCC cells, SNU398 were exposed to ischemia [hypoxia 

(1% O2) and nutrient deprivation (1% FBS, 1mM glucose, 1mM glutamine)] for 48 hours, 

mRNA expression of GLUT1, HK2,  and LDHA significantly increased in comparison to 

normoxic (1% O2) conditions. However, upon addition of 25 µM TTM, a Cu-dependent 

attenuation in ischemia-induced transcription of  GLUT1 and LDHA manifested (data not 

shown). Additionally, we evaluated whether ischemic conditions would elicit changes in 

Cu homeostasis gene expression by measuring mRNA transcripts of ATP7A, ATOX1, 

CCS, CTR1, and CTR2 via RT-qPCR. Akin to observations made under hypoxic 

conditions, an ischemic-induced elevation was observed only in ATP7A transcripts, 

however, this response was blunted with supplementation of 25 µM TTM. Together, 

these findings suggest that reduced Cu accessibility restricts the transcript-level 

metabolic rewiring of HCC cells after exposure to TAE-mimic conditions. These results 

are promising leads, however, there are still  many questions left to answer. Specifically, 

what effects will Cu depletion have on metabolite utilization, namely glucose 

consumption or lactate excretion, within an ischemic environment in HCC cells? 
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Moreover, does Cu chelation via TTM mediate a differential metabolic sensitivity in HCC 

cells under ischemic conditions as compared to hypoxic conditions alone? Further 

studies must be performed to provide molecular insight towards distinguishing the 

sensitivity mediated by hypoxic stress versus that evoked by nutrient deprivation. To 

meticulously determine the differences between these conditions, it will be necessary to 

conduct experiments where HCC cells are treated in normoxic, hypoxic, or ischemic 

conditions in the presence or absence of TTM. HCC cells then may be harvested and 

examined for expression of Cu homeostatic and glycolytic genes, while cultured media 

may be collected and analyzed to determine rates of glucose consumption and lactate 

excretion. To complement these experiments, a genetic approach where HCC cells are 

transduced with several independent shRNAs against CTR1 may be effective to 

orthogonal confirm a potential Cu-dependency within ischemic conditions.   

However, in light of the promising findings in Chapter 3, future studies should 

also be conducted to determine whether Cu chelation in combination with TACE 

provides a survival advantage in an established in vivo rat model of HCC (Fig 4.6). Here, 

we provide a provisional plan for a preclinical study to investigate whether Cu chelation 

will be advantageous during TACE. Following methods previously established by the 

Gade laboratory (Gade et al., 2015), chemical induction of autochthonous HCC will be 

achieved over a 12-week period through oral administration of 0.01% Diethylnitrosamine 

(DEN), a carcinogen commonly used to induce HCC (Ha et al., 2001). HCC tumors will 

be visualized with magnetic resonance (MR) imaging before and after TACE treatment. 

Rats with tumors >0.5 cm in diameter will be selected for treatment with TACE. Four 

cohorts of 10 rats each will be established: a) no treatment group b) selective TACE c) 

selective TACE and a low dose of TTM (5 mg/kg body weight) d) selective TACE and a 

high dose of TTM (25 mg/kg body weight).  TTM dosing will be based on that required to 
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chelate hepatic Cu from rat models of WD (Ogra & Suzuki, 1998). Leveraging the 

expertise of the Gade laboratory, TACE will be performed as previously described with 

slight modification (Gade et al., 2015). A daily subcutaneous injection of meloxicam, an 

inhibitor of proteins involved in HCC cell migration and invasion, will be dosed at 2 ug/kg 

body weight for group b,c,d for 3 days following embolization (Li et al., 2016). 

Additionally, a single orthotopic injection of TTM at 5 mg/kg or 25 mg/kg will be applied 

to group c or group d, respectively, once a day for one week following TACE treatment. 

Tumor regression will be assessed by MR imaging and by tumor volume (cm3). Percent 

overall survival will be determined from Kaplan-Meier plots for each group. It is predicted 

that rats in either group c or group d would have the best outcome, which would be 

demonstrated by greater percent survival compared to rats from treatment group b. 

Tumors and adjacent surrounding liver parenchyma will be excised and subjected to 

immunohistological analysis to assess the degree of tumor hypoxia via HIF1-α levels 

and tumor necrosis via Hematoxylin and Eosin (H&E) staining. The staining from group 

c & d would likely reveal increased percent necrosis if Cu chelation provides a 

therapeutic advantage, which would also be reflected in a corresponding decrease in 

tumor volume. Since HIF-1α should be induced upon TACE treatment, elevated levels of 

HIF-1α from groups b,c,d compared to control group a are anticipated. To determine 

the efficiency of Cu chelation, immunoblot for the copper chaperone for SOD1 (CCS) 

(Bertinato et al., 2003) or measurement of serum ceruloplasmin (Cp) oxidase activity, 

which is used to assess reduced levels of circulating Cu (Broderius et al., 2010), should 

be performed. Following effective Cu chelation, I would expect to observe elevated 

levels of CCS from HCC tumor tissue and reduced levels of Cp oxidase from the serum 

of rats in groups c and d. These biological read-outs may be corroborated with the 



106 
 

direct assessment of intracellular Cu and molybdenum, an indicator of TTM content, 

levels through ICP-MS measurements. Taken together, these experiments will illuminate 

whether the combination of TACE with TTM will provide a survival advantage by limiting 

the drug resistance evoked from residual HCC cells. 

Chapter 4 Figures 
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Figure 4.1 Varied expression of genes shared in Cu and Fe homeostasis in liver 
cancer. (a and b) Scatter dot plot with bar at mean +s.e.m. of mRNA expression of 
STEAP1, STEAP2, STEAP3, STEAP4, and DMT1 (b) from normal (n = 215) and tumor 
(n = 517) liver tissue samples from the online, open-access database GENT2. Statistical 
analysis was performed using an unpaired, two-tailed Student’s t-test. *P < 0.0332,**P < 
0.0021, ***P < 0.0002, ****P < 0.0001. 
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Figure 4.2 HCC cells depend on PKM2 for tumorigenic properties as PKM2 
expression is associated with unfavorable outcomes in liver cancer patients (a) 
Scatter dot plot with bar at mean +s.e.m. of mRNA expression of PKM and PKLR from 
normal (n = 215) and tumor (n = 517) liver tissue samples from the online, open-access 
database GENT2. Statistical analysis was performed using an unpaired, two-tailed 
Student’s t-test. ****P < 0.0001. (b) Kaplan-Meier analysis of overall survival with median 
(dashed black lines) from HCC patients with either high (solid red lines) or low (solid 
black lines) mRNA expression of PKM. For overall survival plot, n = 177 patients with 
high PKM expression and n = 170 for patients with low PKM expression. Results were 
compared using a Mantel-Cox test. P <0.0001. (c) Representative 
immunohistochemistry staining of PKM in normal liver (left) and liver cancer (right) 
tissues. IHC was extracted and adapted from the online, open-access database The 
Human Protein Atlas. (d) Immunoblot detection of PKM2, PKLR, hTERT, or β-Actin from 
normal liver cells (HMCPP) or HCC cell lines (SNU387, SNU398, SNU449) previously 
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screened in (Davis et al., 2020). (e) Immunoblot detection of PKM2 and β-Actin from 
SNU398 cell lines stably expressing shRNA against PKM2 (indicated as PKM#1-5) or a 
non-targeting scramble sequence (SCR). (f) Non-linear fit to the exponential growth 
equation of cellular proliferation from SNU398 cells expressing shRNA against PKM2 or 
SCR. n = 3 independent biological experiments, with each experiment plated in technical 
triplicate. Statistical analysis was performed using a two-way ANOVA followed by 
Dunnett’s multiple comparison test, ****P < 0.0001. (g) Representative images (left) of 
crystal violet stained colonies from SNU398 cells expressing shRNA against PKM2 or 
SCR, and scatter dot plot (right) of mean absorbance of extracted crystal violet at 590 
nm +s.e.m. of crystal violet staining from three independent experiments plated in 
technical triplicate. The results were compared using a one-way ANOVA followed by 
Tukey’s multiple comparison test. *P < 0.0332, **P < 0.0021, ***P < 0.0002, ****P < 
0.0001. 

 

 

 

 

 

Figure 4.3 PKM2 interacts with a Cu-charged resin. (a and b) Immunoblot analysis of 
affinity-purified total PKM1 (T-PKM1), total PKM2 (T-PKM2), and total MEK1 (T-MEK1) 
obtained from mouse embryonic fibroblasts (MEFs) whole cell extract (WCE) (a) and 
from purified recombinant PKM2 (b) from resins loaded with indicated metals. Selected 
immunoblots are representative of at least 3 independent experiments.  
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Figure 4.4 The location of several predicted Cu-binding residues may provide 
insight for novel regulation of PKM2. (a) List of candidate residues predicted to be 
involved in the PKM2-Cu interaction. (b) Domain map of PKM2 that includes the active 
site (ACS), the isomerization domain (ISCD), the allosteric site (AS), and the nuclear 
localization sequence (NLS). Bolded arrows represent the location where potential Cu-
binding histidine (H) or cysteine (C) residues are located. (c) Adapted crystal structure 
[PDB: 4B2D, (Chaneton et al., 2012)] of tetrameric PKM2 bound to the allosteric 
regulator Fructose-1,6-Bisphosphate (FBP) and serine (S). Red box insert depicts the 
two C residues, encoded within the alternative exon, that lie on the dimer-dimer 
interface. Blue box insert represents the three H residues which reside within the co-
factor (Mg2+) binding site. Distinct colors (orange, green, magenta, periwinkle) depict 
each monomeric unit within the tetramer. Within each monomer, the red spheres in the 
C-lobe represent the FBP, blue spheres in A-lobe represent a serine residue, the teal 
sticks represent H or C residues of interest, and yellow spheres represent the Mg2+. 
 
 

 



111 
 

 

 

 

Figure 4.5 Cu availability reduces PKM2 tyrosine phosphorylation. (a) 
Representative post-translational modification map of human PKM2, adapted from 
PhosphoSitePlus® online database. Blue circles represent phosphorylation, green 
circles represent acetylation, orange-brown circles represent ubiquitylation, and all other 
modifications are represented by dark grey circles. A red star marks the phosphorylation 
event at Tyrosine105. (b) Immunoblot detection of Tyrosine105 phosphorylated PKM2 
(P-PKM2),  total PKM2 (T-PKM2), and β-Actin from MEFs, wild-type for the CTR1 
transporter, that were treated with either vehicle (DMSO), 500 µM BCS, or 10 µM TTM  
for 48 hours. Representative immunoblot from n = 4 independent experiments.  
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Figure 4.6 In vivo study design of TACE in combination with TTM as a potential 
treatment for advanced stage HCC.  
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