
Typed Intermediate Languages

Stephen Tse

Abstract

Programs written in a typed language are guaranteed to satisfy the safety properties
of the type system without runtime checks. A type system for an intermediate language
allows static verification of safety properties independent of source languages, and opens
up opportunities for advanced compiler optimizations.

This paper surveys three major intermediate languages: Java bytecode, typed as-
sembly language and proof-carrying code. Java bytecode requires minimal type an-
notation but sophisticated verification algorithms. Typed assembly language permits
low-level constructs such as registers and instruction blocks, yet still enforces control-
flow safety and memory safety. Proof-carrying code provides a general framework for
any safety properties definable in a meta-logical framework.

We motivate the use of typed intermediate languages, illustrate the type systems
of the three languages mentioned above with examples, and compare their tradeoffs
of expressiveness versus complexity. Additionally, we assess the impact of the three
languages and identify research directions for future work.

1 Introduction

Performance, safety, and extensibility are three basic requirements for most software systems.
The design and implementation of a programming language must consider these requirements
so that programs can be executed at the maximal speed, programmers can express the safety
properties to be enforced, and extensions can be seamlessly integrated.

Safety, or security in general, is particularly important for distributed computing: when
users download a browser applet or use foreign function interfaces, the extension should not
crash the host computer. An intermediate language for specifying these extensions should
remain general, allowing implementations from different languages and compilers and at the
same time permitting low-level optimizations for performance. That is, the design for an
intermediate language must also take expressiveness into account.

Stephen Tse (stse@cis.upenn.edu)
Survey report for PhD qualifying exam (WPE-II).
Last update: May 25, 2004.

1

Hardware protection has been the traditional approach to ensure safety: memory spaces
are isolated between processes and an illegal memory access generates a segmentation fault.
Although hardware can make use of the precise state and the dynamic context of the program
for protection, programmers can specify protection only per memory page and hardware
must switch kernel contexts while running multiple processes. This safety policy is far too
coarse-grained and the context switch is too expensive for high-level programming. Instead,
software-based fault isolation [98] inserts runtime checks into the binary code and allows
program extensions run in the same process space of the main program. Hardware is then
free to schedule and execute instructions of both the main program and the extensions in
the same kernel context, while this sandbox model still guarantees the safety of the main
program from an illegal memory access of the extensions.

Typed languages Modern software engineering demands static guarantee of program
safety. A buggy program for spacecraft should be rejected by a compiler, instead of causing
a runtime segmentation fault in space. A type system for a programming language is a
tractable formal method for proving the absence of certain program behaviors by approxi-
mating the runtime values of expressions [78]. That is, unlike hardware or software protection
at run time, a type system is used as a program analysis to guarantee safety properties at
compile time.

Since programs that are statically verified do not need as many runtime checks, typed
languages allow code to achieve the maximal performance. High-level abstractions such as
idioms in functional and object-oriented programming can be expressed as type systems,
rather than as restrictions on hardware registers. Furthermore, there are security policies
such as information flow [96, 86] that can be enforced only by program analysis but not by
execution monitoring [85].

Intermediate languages Programs written in typed languages obey the safety properties
of the type system—as long as the compiler is correct. In 1962, McCarthy described compiler
correctness as “one of the most interesting and useful goals for the mathematical science of
computation” [53]. The SPIN operating system [13], for example, employs a single trusted
compiler along with cryptographic signatures to ensure safety of kernel extensions. However,
as Necula and Lee [69] conclude, the technology to prove the correctness of an optimizing
compiler is still lacking.

Instead of a certified compiler that produces only correct code, program safety can still be
achieved with a certifying compiler that produces a proof certifying the safety of generated
code [17, 69]. During linking, the code and the certificate are verified against the safety poli-
cies, and hence the code will run without type-errors. The motivation is that the complexity
of proof verification is in general lower than that of theorem proving [65]. Compared to a
realistic optimizing compiler, a verifier can be designed to be simple and small. Note that,
as long as the certified code passes the verifier and the verifier is correct, the correctness
of a certifying compiler no longer needs to be trusted. This leads to our last criterion for
language design: minimal trust of computing base [86].

2

A typed intermediate language exploits the idea of certifying compilation such that code
from each intermediate stage of the compiler can be verified with a type system [59]. If
types are preserved during compilation, the typing derivation of the program in the last
stage can serve as a proof that the program is safe. A typed intermediate language also
allows different source languages to share the same compiler backend or the same virtual
machine. Furthermore, compilers can use types to perform more aggressive optimizations
such as loop transformations and array bounds-check elimination [89, 93, 69].

Overview This paper studies the tradeoffs of different intermediate languages in terms of
complexity and expressiveness of their type systems. For the following three intermediate
languages, we survey the related papers and explain their verification algorithms or typing
rules: Java bytecode, typed assembly language, and proof-carrying code.

Java bytecode is designed to be compact for distributed computing and yet supports
high-level constructs such as threads, garbage collection, and object-oriented programming.
In Java bytecode verification: algorithms and formalizations [50], Leroy reviews bytecode
verification algorithms and puts them into a common framework of dataflow analysis. Sec-
tion 2 summarizes Leroy’s paper and gradually introduces the concepts of formal methods,
from abstract interpretation, dataflow analysis, to model checking.

Typed assembly language (TAL) has a RISC-style instruction set but a high-level type
system. In From System F to typed assembly language [62], Morrisett et al. develop such
a type system that guarantees control-flow and memory safety. In addition, they show
that TAL’s type system is expressive enough to preserve types during translation of the
polymorphic lambda calculus (System F) and yet permits low-level optimizations such as
register allocation, instruction selection, and instruction scheduling. Section 3 formally shows
how the type system enforces the control-flow safety and illustrates its expressiveness by
translating a program in System F to TAL.

Proof-carrying code (PCC) allows binary code to carry proofs of arbitrary policies. In
Proof-carrying code [66], Necula proposes such a new architecture of typed intermediate
language in which a meta-logical framework is used to specify safety properties as well as to
represent the safety proof in the code. Section 4 discusses safety properties as enforceable
security policies and implements control-flow safety in a logical framework as an example of
PCC.

Section 5 and 6 concludes with a high-level comparison of the three languages in term
of the design criteria above. Historically, TAL was developed after PCC, but in this paper
we present PCC after TAL so that we can describe the general framework from concrete
examples.

2 Java bytecode

“Formal methods will never have any impact until they can be used
by people who don’t understand them.” — Tom Melham

3

Java bad been designed to be a programming language for writing browser applets but
soon became a popular language for general purposes [7]. The language has brought many
important language designs such as employing a strong type system for the Java source
language and for its virtual machine bytecodes into the mainstream. Programmers, who do
not need to understand the soundness theorem or the verification algorithm, can depend on
the type system to ensure safe execution of Java programs. The success of the language
in industry consolidates the application of type systems as a lightweight formal method in
diverse programming domains, ranging from smartcards to servlets [50].

The Java Virtual Machine (JVM) is a stack-based abstract machine with registers for
accessing method parameters and local variables [51]. An important feature of the JVM is
its specification of the following safety properties of bytecode execution:

1. Type safety: instructions must receive arguments of expected types.

2. Stack safety: the stack must not underflow or overflow.

3. Register safety: indices to method parameters and local variables must be valid.

4. Address safety: branch and jump addresses must be valid.

5. Initialization safety: registers and objects must be initialized before use.

A JVM implementation can enforce these properties by dynamic checks during interpre-
tation. For performance and static guarantees, although some checks such as array bound
checks, null pointer checks, access control checks are still necessary, most realistic JVMs
perform bytecode verification to statically ensure safety once and for all before execution.

In Java bytecode verification: algorithms and formalizations [50], Leroy reviews different
algorithms and puts them into a common framework of dataflow analysis. This section
summarizes Leroy’s paper and describes the algorithms based on abstract interpretation,
dataflow analysis, and model checking.

2.1 Abstract interpretation

Instead of values, a type-level abstract interpreter uses types to simulate the execution of
instructions at a coarser level. Given the types of JVM instructions and those of class
methods, such an abstract interpreter can quickly approximate the runtime behavior of a
program without executing it. The motivation behind abstract interpretation is its dynamic
correctness: if a program satisfies a safety property during abstract interpretation, so will it
during the actual execution.

Let us explain the concepts of abstract interpretation with the program in Figure 1.
On the left is a complete Java program for the factorial function f(x) = x × f(x − 1)

with f(0) = 1. On the right is the fragment of the compiled bytecode for f, where the first
column indicates the program location (method offset) and the second column contains JVM
instructions and their arguments. We annotate the instructions after the % symbol.

4

class Main { Method int f(int)
static int f (int x) { 0 iload_0 % x

if (x == 0) 1 ifne 6 % if (x!=0)
return 1; 4 iconst_1 % 1

else 5 ireturn % return 1
return x * f(x-1); 6 iload_0 % x

} 7 iload_0 % x
} 8 iconst_1 % 1

9 isub % x-1
10 invokestatic <int f(int)>
13 imul % x*f(x-1)
14 ireturn % return x*f(x-1)

Figure 1: Factorial function in Java source and bytecode

The instruction iload 0 loads an integer value from register 0 (which is x here) to
the operand stack, and iconst 1 pushes an integer constant 1 to the operand stack. The
instruction ifne 6 branches to location 6 if the operand is zero and ireturn finishes the
method with an integer. isub and imul are for integer subtraction and multiplication. The
instruction invokestatic <int f(int)> invokes the static method f, whose both argument
and return have type int.

We can specify the dynamic semantics of the instructions above in term of changes to
the operand stack S and the register file R as follows:

iconst n : S # R −→ S, n # R

iload r : S # R, r 7→ n −→ S, n # R, r 7→ n

isub : S, n1, n2 # R −→ S, n1 − n2 # R

imul : S, n1, n2 # R −→ S, n1 × n2 # R

invokestatic <t m(t1, . . . , tn)> : S, v1, . . . , vn # R −→ S, v # R if v = m(v1, . . . , vn)

Here S is a linear list of values and we use S, n to represent the new stack of S with the value
n pushed on top. R is finite mapping from indices to values and we use R, r 7→ n to specify
that r is a valid register of value n. We write ε for the empty stack or the empty register
file. We use this loose notation for definitions just to explain abstract interpretation; in
Section 3.1, we will define the syntax and the semantics more formally for a similar system.
The semantics of control transfer instructions (ifne and ireturn) are described in the next
subsection.

Now we can compare the rules above for the actual execution with the following rules for
abstract interpretation:

iconst n : S # R −→ S, int # R

5

iload r : S # R, r :int −→ S, int # R, r :int

isub : S, int, int # R −→ S, int # R

imul : S, int, int # R −→ S, int # R

invokestatic <t m(t1, . . . , tn)> : S, t ′
1, . . . , t

′
n # R −→ S, t # R if t ′

1 < :t1, . . . , t
′
n < :tn

For abstract interpretation, S becomes a list of types and R a finite map from indices to
types, instead of values. From the types of the instruction, the result type of iconst, iload
and isub must be int. Similarly, the parameter and return types of method invocation can
be determined from the instruction arguments (<t m(t1, . . . , tn)>) without executing the
method.

The rules above specify the following safety properties of execution: (1) for iload r,
register r must be an integer (R, r : int), (2) for isub and imul, the top two operands
must both be integers (S, int, int), and (3) for invokestatic, the actual argument types
(t ′

1, . . . , t
′
n) from the operand stack must be subtypes (t ′

1 < :t1, . . . , t
′
n < :tn) of the formal

argument types (t1, . . . , tn) from the method signature. In addition, the register indices
must be valid and the stack must not underflow.

Note that we specify type errors by the absence of rules such that if a program is in a
state with no rule to apply, then the program does not pass the bytecode verification and will
be rejected. By the dynamic correctness of abstract interpretation, a program that passes
the verification will satisfy the safety properties above in the actual execution.

2.2 Dataflow analysis

The abstract interpretation checks the safety properties only for straight-line codes. To
account for control transfer instructions, however, we need to use dataflow analysis to model
non-linear executions in the control-flow graph.

When the execution is linear, the input state (stack and register file) of an instruction
is the output state of the preceding instruction. The initial state of a method, written
as ε # t1, . . . , tn,>, . . . ,>, is an empty stack (ε) and register file with types of method
parameters (t1, . . . , tn) and with the top type > for uninitialized local variables.

When the execution is non-linear, we must consider the output states of all possible
predecessors of an instruction, not just that of the immediate preceding instruction. The
idea of dataflow analysis is to merge all the output states by taking the least upper bound
(lub) of their types: for example, if both classes C1 and C2 extend C0, and if a register
from one predecessor instruction has type C1 and that from another has C2, then the merged
output state has type C0 = lub(C1, C2) in that register. We merge two stacks pointwise and
check if both stacks have the same size, and similarly for the register file.

More formally, a dataflow analysis is specified by a set of dataflow equations. We write
I(`) for the instruction at program location `, write IN(`) for the input state of the instruc-
tion at `, and write OUT(`) for the output state. In particular, IN(0) specifies the input
state at the beginning of the method. The dataflow equations for bytecode verification are:

I(`) : IN(`) −→ OUT(`)

6

class Main { Method void f() with [(0,4,Exception,8)]
static void f () { 0 iconst_0 % 0

int x, y; 1 istore_0 % x=0
try { 2 jsr 14
x = 0; 5 goto 17

} finally {} 8 astore_2 % catch (Exception e)
y = x; 9 jsr 14

} 12 aload_2 % Exception e
} 13 athrow % throw e

14 astore_3 % return address = 5
15 ret 3
17 iload_0 % x
18 istore_1 % y = x
19 return

Figure 2: Exception handling in Java source and bytecode

IN(`) = lub{OUT(` ′) | ` ′ ∈ PRED(`)}
IN(0) = ε # t1, . . . , tn,>, . . . ,>

where PRED(`) is the set of predecessors of instruction at `. We can readily compute PRED(`)
from the target addresses of control transfer instructions. The equations can then be solved
by fixpoint iteration [63], and the verification succeeds if there exists some solution.

Subroutines The dataflow analysis above, however, does not work for programs with
subroutine instructions jsr (jump to subroutine) and ret (return from subroutine). A
subroutine is similar to a method invocation, but the stack and register file of the caller
are shared with the callee. Exception handling try . . . finally in Java is compiled into
subroutines because the exception table of the method is set up with target locations inside
the same method.

Consider the program in Figure 2. This example illustrates a typical compilation of ex-
ception handling into subroutines. Here we have four blocks in the bytecode that correspond
to the try block, the implicit catch block, the finally block, and the last statement in the
Java source. The key point is to illustrate that the try block and the catch block share the
same subroutine for the finally block but the two blocks do not initialize the same set of
variables.

Let us first explain the detail of the compilation. Instructions at 0-1 correspond to
the try block, while those at 14-15 correspond to the finally block. The instruction
jsr 14 pushes the return address, which is 5 in this example, to the stack and jumps to
14. Inside the finally block, the return address is first saved to register 3 so that the
instruction ret will use it later for returning control. Instructions at 8-13 correspond to the

7

implicit catch block that first saves the exception object into register 2 (astore 2), calls the
finally block (jsr 14), and re-throws the exception (aload 2 and athrow). Each method
has an exception table enumerating the scope and the type of exceptions: in our example,
[(0, 4, Exception, 8)] indicates that if an exception is raised between 0-4 and the exception
is a subclass of Exception (that is, any exception), then the control is transferred to the
catch block at 8.

The first challenge in analyzing programs with a subroutine is to determine the successor
instructions of the subroutine. Since the return address for instructions jsr and ret is
stored in the stack and register file as a first-class value, there seems to be no syntactic way
to associate the return address with the jsr/ret pair. The second challenge is that both
the try block and the catch blocks call the subroutine for the finally block, leading to
precision loss of stack and register file types after merging. In the example, x is initialized in
the try block (R(0) = int) but not in the catch block (R(0) = >) and thus their merged
type is uninitialized (R(0) = >). Even though register 0 is not used in the finally block,
the type information is lost when the control flows to the finally block and comes back:
the instruction iload 0 at 17 for y = x does not pass the verification because R(0) = >.

Polyvariant analysis One solution is to extend the dataflow analysis for subroutines to
be context-sensitive such that instructions inside the subroutines are analyzed differently per
call site, without merging the states of the callers. This approach is also called polyvariant
bytecode verification as the state S # R at each program location is now parameterized by
the subroutine call stack C, which is also called a contour. A dataflow equation at ` becomes
I(`) : IN(`; C) −→ OUT(`; C ′).

In our example, we will analyze instructions at 14-15 in the call stack C = 5 and again in
C = 12, where 5 and 12 are the return addresses after jsr, giving the output state OUT(15; 5)

with R(0) = int, and another output state OUT(15; 12) with R(0) = >. That is, we do not
merge the two states to have R(0) = > as before, and allow the instructions after 5 to use
the initialized register 0.

More formally, for the instruction jsr ` at `1 followed by an instruction at `2 in the call
stack C, the equation is:

IN(`; C, `2) = S, RA(`2) # R if OUT(`1; C) = S # R

The equation says that the analysis pushes `2 to C and pushes RA(`2) to the operand stack
S, where RA(`2) is the type representing the return address at `2. Note that RA(`2) is a
singleton type, which contains the same amount of information at the type level as at the
value level [8]. On the other hand, for the instruction ret n at `1 in C, the equation is:

IN(`2; C) = OUT(`1; C
′, `2, C) = S # R, n :RA(`2)

The equation says that, from the return address `2 at register n, the analysis pops the call
stack C ′, `2, C at `1 until the address `2 to get C, and then propagate the output state at `1

back to the input state at `2 in C.

8

2.3 Model checking

The contour-based polyvariant algorithm above successfully verifies subroutines without
knowing their structures, but the algorithm may keep too many states per program lo-
cation. In fact, the termination of the algorithm is not guaranteed and there exist programs
that cause the verification to loop [50].

Based on model checking, the last algorithm here handles subroutines yet remains decid-
able. The intuition behind model checking is to explore all reachable states of the abstract
interpreter. We first define the successor relation ` | S # R −→ ` ′ | S ′ # R ′ for the transition
function I(`) : S # R −→ S ′ # R ′ in Section 2.1:

` | S # R −→ ` ′ | S ′, R ′ if I(`) : S # R −→ S ′ # R ′ and ` ′ ∈ SUCC(`)

` | S # R −→ ⊥ if I(`) : S # R 6−→
where SUCC(`) is the set of successors of instruction at ` and where ⊥ represents the “stuck”
state in abstract interpretation. We then compute all reachable states by fixpoint iteration
of the successor relation with the initial state 0 | ε # t1, . . . , tn,>, . . . ,> (similar to the
IN(0) in Section 2.2). The verification succeeds if the closure of reachable states does not
include ⊥.

For instance, the successor relation for instructions jsr and ret are:

` | S # R −→ ` ′ | S, RA(` + 3) # R if I(`) = jsr ` ′

` | S # R −→ ` ′ | S # R if I(`) = ret r and R(r) = RA(` ′)

` | S # R −→ ⊥ if I(`) = ret r and R(r) 6= RA(` ′)

because the size of instruction jsr ` ′ is always 3. Applying the algorithm on the example in
Figure 2, the closure will include the following transitions and states. We can then deduce
that the instruction y = x at 18 will not reach ⊥.

2 | ε # 0 :int −→ 14 | RA(5) # 0 :int

9 | ε # 2 :Exception −→ 14 | RA(12) # 2 :Exception

14 | ε # 0 :int, 3 :RA(5) −→ 5 | ε # 0 :int, 3 :RA(5)

14 | ε # 2 :Exception, 3 :RA(12) −→ 12 | ε # 2 :Exception, 3 :RA(12)

Note that the number of reachable states are finite since the number of program locations
`, the sizes of the stack S and register file R with distinct types t are all fixed. Therefore,
the algorithm always terminates.

2.4 Discussion

Schmidt [84] formalizes the idea that a dataflow analysis is a model checking of abstract inter-
pretations, providing a common framework for bytecode verification algorithms. Leroy [50]
also surveys many other variants of dataflow analyses for bytecode verification [35, 83, 18, 49,
72, 33, 90, 46, 11] and their formalizations in computer proof systems such as Coq [28] and

9

Isabell [74]. Bytecode verification can also be formulated as a type-checking problem such
that the set of equations of a dataflow analysis algorithm corresponds to a type inference
algorithm [91, 32, 33].

Coglio [18] claims that the algorithm based on model checking in Section 2.3 is the most
precise static analysis as it considers all execution paths but does not compute expression
values. To improve the exponential time complexity of the algorithm, Leroy [50] uses widen-
ing functions to merge equivalent states into the same class and proves that the widening
algorithm is sound and complete with respect to the original algorithm.

The difficulty and complexity of Java bytecode verification comes as a price from the
design of the type system and the desire to keep the bytecode compact. The size requirement
is critical in distributed computing and small devices such as Java smartcards, but the
requirement limits on the amount of type information in the bytecode. Leroy [49] argues
that, by using off-card code transformations to normalize branch structures and register
allocations in bytecode, his on-card verification algorithm simplifies the fixpoint equations
and takes much less working memory.

Future research of Java bytecode verification aims to establish more advanced static
properties such as resource bounds on memory usage or running time of applets [25, 41].
Moreover, the JVM checks access control dynamically with stack inspection [99]; recent
work [42, 80, 9, 31, 10] employs type systems to statically verify such information flow.
Another direction is to adapt the results to the closely related technologies, C] and CIL [55,
56].

3 Typed assembly language

“When bad languages do good types...” — Anonymous [79]

Traditionally, type systems have been designed for high-level languages such as ML [47,
57] and Haskell [44] to provide programmers with abstraction and type safety. Low-level
languages such as C and assembly languages are considered “bad” in the sense that their
type systems, if any, are not strong enough to guarantee even basic safety properties. New
type systems with high-level safety properties, however, have been retrofitted into these low-
level languages. In From System F to typed assembly language [62], Morrisett et al. develop
a typed assembly language (TAL) that guarantees control-flow and memory safety.

Furthermore, TAL’s type system is expressive enough to preserve types during the trans-
lation of the polymorphic lambda calculus (System F). That is, the type system at such low
level is still enforcing high-level language abstractions such as functions and polymorphism.
With the type information during compilation, compilers can perform many aggressive opti-
mizations such as continuation passing [26], closure conversion [58], unboxing [48], subsump-
tion elimination [21], and region inference [14]. Also, experience [93, 69] shows that typed
intermediate languages are useful in debugging complicated optimizations.

TAL’s instruction set is based on RISC so that primitives can be used together to sup-
port different programming paradigms and to permit low-level optimizations such as reg-

10

prod : mov r3, 0; % initialize result
jmp loop %

loop : bz r1, done % branch if r1 == 0

add r3, r3, r2 % r3 = r3 + r2

add r1, r1,−1 % r1 = r1 − 1

jmp loop %
done : jmp r4 % return

Figure 3: Product function in TAL-0

ister allocation, instruction selection, and instruction scheduling. In contrast, the CISC-
style instruction set of Java bytecode presumes a Java-like source language with heavy-
weight object-oriented and threading constructs. For instance, a JVM does not have tail-
recursive calls, polymorphism, or lightweight closures to efficiently support functional pro-
gramming [12, 54, 87]. On the other hand, many JVM instructions are very complex and
prohibit optimizations at the bytecode level: the instruction invokevirtual in Java byte-
code needs to load appropriate classes, dispatch the virtual method, set up a call frame
(new stack and register file), install appropriate exception handlers, and restore the envi-
ronment upon return. Most virtual machines need to employ just-in-time compilation to
optimize bytecode into native machine code, but such compilation is not type-preserving or
verified [1, 92].

In this section, we formally define the syntax and semantics of a subset of TAL and show
how control-flow safety is enforced. We then illustrate the expressiveness of its type system
by translating a program in System F to TAL while keeping type information along all steps.
The presentation and the examples are taken from Morrisett’s papers [62, 60].

3.1 TAL-0 and control-flow safety

Control-flow safety, like address safety in Section 2, ensures that a program does not jump
to arbitrary machine addresses but only to well-defined entry points. Control-flow safety
additionally enforces the type safety of the stack and register file at those entry points. We
will present the language TAL-0 [60], a subset of TAL without memory management, and
show how its type system enforces control-flow safety.

The following is the formal syntax of TAL-0 in BNF:

Operands v ::= r | n | `

Instructions i ::= mov r, v | add r, r, v | bz r, v

Blocks I ::= jmp v | i; I

Heap H ::= ε | H, ` 7→ I

Register file R ::= ε | R, r 7→ n | R, r 7→ `

To simplify the presentation, only three instructions are supported: (1) mov r v moves

11

jmp ` | H # R −→ H(`) | H # R (E-JmpL)
jmp r | H # R −→ H(R(r)) | H # R (E-JmpR)

mov r1, `; I | H # R −→ I | H # R, r1 7→ ` (E-MovL)
mov r1, n; I | H # R −→ I | H # R, r1 7→ n (E-MovN)
mov r1, r2; I | H # R −→ I | H # R, r1 7→ R(r2) (E-MovR)

add r1, r2, n; I | H # R −→ I | H # R, r1 7→ R(r2) + n (E-AddN)
add r1, r2, r3; I | H # R −→ I | H # R, r1 7→ R(r2) + R(r3) (E-AddR)

bz r1, `; I | H # R −→ H(`) | H # R if R(r1) = 0 (E-BzL)
bz r1, r2; I | H # R −→ H(R(r2)) | H # R if R(r1) = 0 (E-BzR)
bz r1, v; I | H # R −→ I | H # R if R(r1) 6= 0 (E-Bnz)

Figure 4: Evaluation rules for TAL-0

operand v into register r, (2) add r1, r2, v adds the value of r2 and v, and puts the result
into r1, and (3) bz r v branches to operand v if r is zero. An operand can be a register r,
an integer n, or a program location `. A special instruction jmp v unconditionally jumps to
operand v and is used to delimit an instruction block. Similar to the stack and register file
in Section 2.1, heap H maps locations to instruction blocks while register file R maps indices
to integers or locations. We write I | H # R for the machine state with instruction block I,
heap H and register file R.

As an example, Figure 3 shows the product function written in TAL-0. The code assumes
that the inputs are in registers r1 and r2, the output in r3, and the continuation in r4.
In other words, r4 holds the location to jump to when the program finishes computing
r3 = r1 × r2.

The dynamic semantics of TAL-0 are specified by the evaluation rules of the form
I | H # R −→ I ′ | H ′ # R ′, as shown in Figure 4, which says that machine state I | H # R

steps to state I ′ | H ′ # R ′. Note that not all possible machine states have an evaluation rule:
for example, there is no rule for jmp n; I | H # R (jumping to an integer) or for add r1, r2, `

(adding locations). We will next use a type system to rule out these “stuck” states in the
dynamic semantics such that a well-typed program always progresses with some evaluation
rule until halting.

The static semantics of TAL-0 are specified by the types and typing rules in Figure 5. We
use int as the base type such that the typing rule H # R ` n : int (T-Int) says that, under
any heap type and any register file type, the integer literal n has the integer type int. Here
H and R are type contexts that map location ` or register r to type t (T-Lab and T-Reg).
Note that we use the meta-variable H for both the actual heap of code during evaluation and
the heap type context during typing, and similarly R for register file. When values and types
are used in the same rule, we use the convention that H0, R0 refer to values and H, R to types
(T-Heap, T-Regs and T-State).

For instruction i, we use its precondition on register file type R1 and its postcondition
on register file type R2 under the heap type H to assign the type R1 →R2 (T-Mov, T-Add and

12

Operand types t ::= int | R | α | ∀α.t
Heap types H ::= ε | H, ` :t
Register file types R ::= ε | R, r :t

Operand typing H # R ` v : t
Instruction typing H ` i : (R→R)
Block typing H ` I : t
Heap typing ` H0 : H
Register file typing H ` R0 : R
State typing ` (I | H0 # R0) : H # R

H # R ` n : int (T-Int)

H # R ` ` : H(`) (T-Lab)

H # R ` r : R(r) (T-Reg)

H # R ` v : ∀α. t1

H # R ` v : t1[α 7→ t2]
(T-Inst)

H # R ` v : t
H ` mov r, v : (R→R, r :t)

(T-Mov)

H # R ` r2 : int H # R ` v : int
H ` add r1, r2, v : (R→R, r1 :int)

(T-Add)

H # R ` r : int H # R ` v : R
H ` bz r, v : (R→R)

(T-Bz)

H # R ` v : R
H ` jmp v : R

(T-Jmp)

H ` i : (R1 →R2) H ` I : R2

H ` i; I : R1
(T-Seq)

H ` I : t
H ` I : ∀α. t

(T-Gen)

∀` ∈ dom(H). H ` H0(`) : H(`)
` H0 : H

(T-Heap)

∀r ∈ dom(R). H # ε ` R0(r) : R(r)
H ` R0 : R

(T-Regs)

` H0 : H H ` R0 : R H ` I : R

` (I | H0 # R0) : H # R
(T-State)

Figure 5: Types and typing rules for TAL-0

13

T-Bz). For instruction block jmp v or i; I, we check if the postcondition R2 of an instruction
of type R1 →R2 matches the precondition R1 of the next instruction (T-Jmp and T-Seq). A
machine state I | H0; R0 is well-typed if its instruction block I, heap H0, and register file R0

are all well-typed (T-State). We type-check heap and register file pointwise for locations or
registers in their typing domains (T-Heap and T-Reg). Note that a heap is checked under
the assumption of its own heap type because its instruction blocks can be mutually recursive
(that is, code at `1 can jump to `2, which may jump back to `1).

Polymorphic types There remain two types (α and ∀α.t) and two typing rules (T-Gen
and T-Inst) to be explained. They are for universal quantification, or parametric polymor-
phism. We will use an example to give the intuition behind how polymorphic types are
important in type-checking the control transfer of instructions blocks.

Consider a program for computing 2 × 3 written as jmp prod | r1 7→ 2, r2 7→ 3, r3 7→
0, r4 7→ halt # H0 where halt is the location of code to halt the execution and H0 is the
product function in Figure 3. We want to show that the program type-checks under the
following heap and register file types:

H = prod :R, loop :R, done :R

R = r1 :int, r2 :int, r3 :int, r4 :(∀α. r1 :int, r2 :int, r3 :int, r4 :α)

For example, the typing derivation for H ` bz r1, done : (R→R) is

H # R ` r1 : int
T-Reg

H # R ` done : R
T-Lab

H ` bz r1, done : (R→R)
T-Bz

as R(r1) = int and H(done) = R. Derivations for other parts of the program are similar,
except that for the last instruction jmp r4. We need to prove that H # R ` r4 : R (T-Jmp).
But this requires proving that R(r4) = R, which has no solution in a simple type system.
With polymorphic types, we can generalize the type of r4 to be a type variable α such that
H # R ` r4 : (∀α. r1 :int, r2 :int, r3 :int, r4 :α) (T-Gen). Only at the instruction jmp r4 is
the polymorphic type instantiated to be (∀α. r1 :int, r2 :int, r3 :int, r4 :α)[α 7→ R] = r1 :

int, r2 :int, r3 :int, r4 :R (T-Inst).
The following soundness theorem [60] guarantees that if a program type-checks statically,

its execution will never get “stuck”.

Theorem 1 (TAL-0 soundness)

1. Preservation: If ` (I | H0 # R0) : H # R and I | H0 # R0 −→ I ′ | H ′
0 # R ′

0, then
` (I ′ | H ′

0 # R ′
0) : H # R. That is, a well-typed program keeps its type during evaluation.

2. Progress: If ` (I | H0 # R0) : H # R, then either I = jmp halt or I | H0 # R0 −→
I ′ | H ′

0 # R ′
0 for some I ′, H ′

0, R
′
0. That is, a well-typed program progresses with some

evaluation rule until halting.

14

3.2 Translation from System F

Polymorphic lambda calculus (System F) [34, 81] is a formalism for functional programming
languages with universal quantification. The type system of System F is expressive enough
to encode the pure subset of modern languages such as ML and Haskell. In order to illustrate
the expressiveness of TAL’s type system, we will show how a source program in System F is
translated into TAL while the type information is preserved along the translation.

Let us rewrite the factorial function in Figure 1 to compute the factorial of 6 in System
F:

(λf (x :int). ifz x 1 (x× (f (x − 1)))) 6

We write λf (x1 :t1, . . . , xn :tn). e for a recursive function named f with typed parameters
x1 :t1, . . . , xn :tn and body expression e. The expression ifz e1 e2 e3 branches to e2 or e3

depending whether if e1 is zero. A function of type t1 → . . . → tn → t takes arguments of
type t1, . . . , tn and returns a result of type t. The factorial function, for example, has type
int→int. We write function applications such as f (x−1) and (λf . . .) 6 by juxtaposition.

The intuition behind the translation is to decompose System F’s primitives such as func-
tion applications, local functions and automatic memory management into TAL’s primitives
such as jumps, heap and register file.

Continuation passing The first step is to make all continuations explicit by passing
continuation as an argument to the function and, instead of returning to the outer context,
by calling the continuation when the function is done. For example, the factorial function
above becomes

(λf (x :int, k :int→void).

ifz x (k 1)

let x0 = x − 1 in

f x0 (λf1 (x1 :int). let x2 = x× x1 in k x2))

6 (λf2 (x2 :int). halt x2)

We introduce a primitive halt e that stops the program with the result e (which is x2

here). The factorial function f now takes continuation k as an additional argument and calls
k 1 for the base case when x = 0. When x 6= 0, we recursively call f with x − 1 and the
continuation f1 that multiplies the result so far, x1, with the input x.

We also introduce let-bindings to specify the order of computation. Compared to f (x−

1) . . . in System F, the expression let x0 = x− 1 in f x0 . . . first computes x− 1 and calls f
with this value. We will see how a sequence of let-bindings and function calls can be readily
translated into assembly code. Furthermore, we write the type of f2 to be int → void

to emphasize that the function does not return any value. Similarly, f now has the type
int→(int→void)→void.

15

let f = λ(e :<>, x :int, k :t0).
ifz x
(let (α, kk) = unpack k in
let e0 = prj1 kk in
let k0 = prj2 kk in
let x0 = 1 in
k0 e0 x0)

(let e0 = <x, k> in
let kk0 = <e0, f1> in
let k0 = pack (<int, t0>, kk0) :t0 in
let x0 = x − 1 in
f e0 x0 k0

in
let f2 = λ(e :<>, x :int).
halt x

in

let f1 = λ(e :<int, t0>, x :int).
let x0 = prj1 e in
let k0 = prj2 e in
let x1 = x0 × x in
let (α, kk0) = unpack k0 in
let e1 = prj1 kk0 in
let k1 = prj2 kk0 in
k1 e1 x1

in
let main = λ().
let e0 = <> in
let kk0 = <e0, f2> in
let k0 = pack (<>, kk0) :t0 in
let x0 = 6 in
f e0 x0 k0

in
main ()

Figure 6: Factorial function after closure passing (where t0 = ∃α. α→int→void)

Closure passing The second step is to lift local functions that access lexical variables from
their enclosing functions to be global functions. In our example, after continuation passing,
the factorial function contains the local function λf1 (x1 : int). let x2 = x × x1 in k x2,
which accesses x and k in the enclosing function f. The intuition behind closure passing
(or, closure conversion [6]) is to translate a local function such that it takes an additional
parameter e as an environment of lexical variables and accesses those variables explicitly
through the environment.

Figure 6 shows the factorial function after closure passing. The function f on the left
column puts x and k into environment e0 as a tuple of values e0 = <x, k> such that f2 on the
right column will project out x0 and k0 as needed. Since all functions are global definitions
now, we can define them with top-level let-bindings. We also write the computation f 6 f2

explicitly as the function main.
Separating lexical variables from code, however, complicate the types of continuations.

Before closure passing, both f1 and f2 have type int → void and thus the continuation
parameter k of f has type int→void. Now, with the extra environment parameter, f1 has
type <int, t0> → int → void while f2 has type <> → int → void, where t0 the type for
the continuation. Similar to using universal quantification in the last subsection, we need
to abstract the environment type from the continuation type. But we also need to pack the
additional type information <int, t0> into t0, so that we can type check with the actual
environment type after unpacking the continuation.

The solution is to use existential quantification that encapsulates extra type information

16

to be inspected at the call site. In Figure 6, f packs the type information <int, t0> with the
continuation kk0 = <e0, f1> for the recursive call while main packs <> with kk0 = <e0, f2>.
To use the continuation, we unpack to find out its type information α in additional to its
value kk by the new let-binding expression let (α, kk) = unpack k in. The continuation
parameter k of f can now have the existential type t0 = ∃α. α→int→void.

Memory allocation The remaining step of translating the factorial function into TAL
is to do register and heap allocation. We assume that an integer or a location fits into
a register, but a tuple (such as a continuation or an environment) requires heap storage
through explicit allocation.

Figure 7 shows the complete code for the factorial function in TAL, annotated with
corresponding lines of code in Figure 6. To support automatic memory management for
memory safety, TAL introduces an instruction malloc r : t to allocate heap space large
enough for type t and store the pointer into register r. Memory safety ensures that locations
to heap are always valid. malloc can be implemented by linking to a conservative garbage
collector [15]. For example, the instruction block f0 (the first branch of ifz) contains the
translation of let e0 = <x, k> in: we first allocate space with malloc r4 :<int, t1>, and then
initialize fields with store r4[0], r2 and store r4[1], r3, assuming that r2 = x and r3 = k.

Two additional instructions pack r1, (t1, r2) : t2 and unpack (α, r1), r2 are for direct
translation of let x1 = pack (t1, x2) : t2 and let (α, x1) = x2. These two instructions
simply annotate existential types in type-checking and can be implemented as mov.

3.3 Discussion

Typed assembly language is a form of proof-carrying code (see the next section), but it
provides a fully automatic procedure for generating certified code. TAL starts with a well-
typed program in a high-level language such as System F and transforms its types as a proof
of safety, instead of re-constructing it as in bytecode verification of Java or theorem proving
of PCC. TAL’s semantics is so close to the machine code that TAL may as well be called a
typed target language, instead of a typed intermediate language.

Morrisett et al. [62] formally define the semantics of the intermediate language after
continuation passing and after closure passing, allowing compilers to aggressively optimize
between any of the translation steps. Furthermore, their simplified typing rule for polymor-
phic closure conversion is a significant contribution over the previous approach [58].

The idea of assigning polymorphic types to continuations is also used in type-checking
subroutines in Java bytecode [73]. Other than solving the recursive type equations of contin-
uations and register files, polymorphism provides a least upper bound for register file types
at merge points of a control-flow graph (see Section 2.2) [37, 60]. Alternatives are subtyping
or recursive types, but Morrisett et al. [60] argues that polymorphism has other advantages
such as specifying calling convention for registers. For example, an instruction block of type

∀α1. (r1 :α1, r2 :(∃α2. (α2, (r1 :α1, r2 :α2))))

17

f : λ(r1 :<>, r2 :int, r3 :t1). % let f = λ(e :<>, x :int, k :t0).
bnz r2, f0 % ifz x
unpack (α, r3), r3 % let (α, kk) = unpack k in
load r1, r3[0] % let e0 = prj1 kk in
load r4, r3[1] % let k0 = prj2 kk in
mov r2, 1 % let x0 = 1 in
jmp r4 % k0 e0 x0

f0 : λ(r1 :<>, r2 :int, r3 :t1). % let f0 = λ(e :<>, x :int, k :t0).
malloc r4 :<int, t1> % let e0 = <x, k> in
store r4[0], r2 %
store r4[1], r3 %
malloc r3 :t2 % let kk0 = <e0, f1> in
store r3[0], r4 %
store r3[1], f1 %
pack r3, (<int, t1>, r3) :t1 % let k0 = pack (<int, t0>, kk0) :t0 in
sub r2, r2, 1 % let x0 = x − 1 in
jmp f % f e0 x0 k0

f1 : λ(r1 :<int, t1>, r2 :int). % let f1 = λ(e :<int, t0>, x :int).
load r3, r1[0] % let x0 = prj1 e in
load r4, r1[1] % let k0 = prj2 e in
mul r2, r3, r2 % let x1 = x0 × x in
unpack (α, r4), r4 % let (α, kk0) = unpack k0 in
load r1, r4[0] % let e1 = prj1 kk0 in
load r5, r4[1] % let k1 = prj2 kk0 in
jmp r5 % k1 e1 x1

f2 : λ(r1 :<>, r2 :int). % let f2 = λ(e :<>, x :int).
mov r1, r2 % halt x
halt %

main : λ(). % let main = λ().
malloc r4 :<> % let e0 = <> in
malloc r3 :<<>, (r1 :<>, r2 :int)> % let kk0 = <e0, f2> in
store r3[0], r4 %
store r3[1], f2 %
pack r3, (<>, r3) :t1 % let k0 = pack (<>, kk0) :t0 in
mov r2, 6 % let x0 = 6 in
jmp f % f e0 x0 k0

Figure 7: Factorial function in TAL (where t0 = ∃α. α → int→ void, t1 = ∃α. (α, (r1 :

α, r2 :int)), and t2 = <<int, t1>, (r1 :<int, t1>, r2 :int)>)

18

where α1 and α2 are fresh and r2 contains the continuation, must be parametric in α1 [97].
This means that the instruction block can use register r1 for holding other values, but the
block must save and restore the register upon return (callee-saves registers).

Extended type systems based on TAL’s have been developed to guarantee secure infor-
mation flow [16], or power consumption in grid computing [95]. Other research directions
include using dependent types or refinement types [102, 100, 101] to expose array-bound
checks for optimizations, or formalizing memory management [24, 75, 94] with a typed
garbage collection.

4 Proof-carrying code

“The fundamental problem addressed by a type theory is to insure
that programs have meaning. The fundamental problem caused by
a type theory is that meaningful programs may not have meanings
ascribed to them. The quest for richer type systems results from
this tension.” — Mark Mannasse

Both Java bytecode and typed assembly language enforce control-flow safety and memory
safety, but each has a predefined type system for a fixed set of safety properties. Every quest
for a richer type system to allow more optimizations or security guarantees requires new
definitions of syntax, semantics, and policies as well as new proofs of soundness theorems
and verification algorithms.

In Proof-carrying code (PCC) [66], Necula proposes a new architecture of typed interme-
diate language in which a meta-logical framework is used to specify safety properties as well
as to represent the safety proof in the code. The motivation is that, with this architecture,
(1) arbitrary safety properties can be expressed in a systematic manner, (2) different theo-
rem proving techniques can be employed depending on applications, and (3) a single, simple
verification algorithm can be used for all systems.

This section discusses PCC’s architecture of policies, provers and verifiers, and illustrates
how control-flow safety can be expressed in a logical framework.

4.1 Policies, provers and verifiers

Throughout the paper we have informally described various policies and properties such as
control-flow safety and memory safety. Schneider [85] formally defines them as follows:

• security policy: a predicate on all executions (e.g., information flow).

• security property: a predicate on one execution.

• safety property: a predicate for the absence of an event on a finite prefix of one execu-
tion (e.g., control-flow, memory access).

19

• liveness property: a predicate for the presence of an event on a finite prefix of one
execution (e.g., termination, resource release)

Schneider also proves that only safety properties can be enforced by execution moni-
toring and security policies in general must be verified by static analysis [85]. Alpern and
Schneider [2] on the other hand formally prove that the combination of safety property and
liveness property is equivalent to security property.

Necula [66] observes that arbitrary safety properties can be formalized in the first-order
logic as preconditions and postcondition on functions. Automatic theorem provers such as
Floyd-style [30] verification condition generators [66], symbolic evaluations [69, 64], or type
systems [62] can then express the static guarantee for the safety properties of the program
as a proof in the first-order logic. Finally, safety verification amounts to proof checking in
the same logic.

This setup places no restrictions on memory management or array bounds-checking unlike
Java bytecode or TAL. On the other hand, there does not exist a complete algorithm for
constructing proofs of arbitrary properties in PCC.

4.2 Logical framework

We will now give a concrete example of PCC architecture in which the safety properties are
expressed as typing rules, proofs expressed as typing derivations, and verification expressed
as type-checking.

The Edinburgh Logical Framework (LF) [39] is a meta-language for high-level specifica-
tions of programming languages and logics. LF can express target languages in the first-order
predicate logic. Also, through the higher-order abstract syntax [76], a target language can
use LF’s alpha-equivalence and beta-reduction instead of implementing its own parser and
substitution function.

Let us consider again the control-flow safety of TAL-0. Figure 8 lists its specification
in Twelf (a modern LF implementation [77]), which corresponds closely to its formal de-
scription in Section 3.1. A type in the target language is represented by a type constant
of kind type in Twelf: registers (r), integers (n), labels (`), operands (v), instructions
(i), blocks (I), heaps (H0), and register files (R0). We then define instances of operands
(vr, vn, vl), instructions (mov, add, bz), blocks (jmp, seq), heaps (H0nil, H0cons), and regis-
ter files (R0nil, R0consn, R0consl). In Twelf we need to use explicit tagging names (vr r for
register operands instead of simply r) and unique tagging names (H0nil and R0nil instead
of simply ε). Similarly, we define types (t), heap types (H), and register file types (R) and
their instances (int, tr, all, Hnil, Hcons, Rnil, Rcons). There is no type variable α because
we use Twelf’s variable bindings and substitutions for the polymorphic types, which are now
written as all : (t→t)→t.

A typing rule of the target language is represented by a type constructor of higher kind
in Twelf: operand typing (vt), instruction typing (it), block typing (It), heap typing (Ht),
register file typing (Rt), and machine state typing (St). Each typing rule is specified in the
style of logic programming and corresponds closely to the rule in Figure 5, except Ht which

20

r : type.
n : type.
l : type.
v : type.
i : type.
I : type.
H0 : type.
R0 : type.

vr : r -> v.
vn : n -> v.
vl : l -> v.

mov : r -> v -> i.
add : r -> r -> v -> i.
bz : r -> v -> i.
jmp : v -> I.
seq : i -> I -> I.

H0nil : H0.
H0cons : H0 -> l -> I -> H0.
R0nil : R0.
R0consn : R0 -> r -> n -> R0.
R0consl : R0 -> r -> l -> R0.

t : type.
H : type.
R : type.
int : t.
tr : R -> t.
all : (t -> t) -> t.
Hnil : H.
Hcons : H -> l -> t -> H.
Rnil : R.
Rcons : R -> r -> t -> R.

vt : H -> R -> v -> t -> type.
it : H -> i -> R -> R -> type.
It : H -> I -> t -> type.
Ht : H -> H0 -> H -> type.
Rt : H -> R0 -> R -> type.
St : I -> H0 -> R0 -> H -> R -> type.

tint : vt H1 R1 (vn N1) int.
tlab0: vt (Hcons H1 L1 T1) R1 (vl L1) T1.
tlab1: vt (Hcons H1 L1 T1) R1 V1 T2
<- vt H1 R1 V1 T2.

treg0: vt H1 (Rcons R1 R2 T1) (vr R2) T1.
treg1: vt H1 (Rcons R1 R2 T1) V1 T2
<- vt H1 R1 V1 T2.

tinst : vt H1 R1 V1 (T1 T2)
<- vt H1 R1 V1 (all T1).

tmov : it H1 (mov R1 V1) R2 (Rcons R2 R1 T1)
<- vt H1 R2 V1 T1.

tadd : it H1 (add R1 R2 V1) R3 (Rcons R3 R1 int)
<- vt H1 R3 (vr R2) int
<- vt H1 R3 V1 int.

tbz : it H1 (bz R1 V1) R2 R2
<- vt H1 R2 (vr R1) int
<- vt H1 R2 V1 (tr R2).

tjmp : It H1 (jmp V1) (tr R1)
<- vt H1 R1 V1 (tr R1).

tseq : It H1 (seq I1 I2) (tr R1)
<- it H1 I1 R1 R2
<- It H1 I2 (tr R2).

tgen : It H1 I1 (all [T1] T2)
<- It H1 I1 T2.

H0find : H0 -> l -> I -> type.
hf0 : H0find (H0cons H1 L1 I1) L1 I1.
hf1 : H0find (H0cons H1 L1 I1) L2 I2
<- H0find H1 L2 I2.

theap0 : Ht H1 H2 Hnil.
theap1 : Ht H1 H2 (Hcons H3 L1 T1)
<- H0find H2 L1 I1
<- It H1 I1 T1
<- Ht H1 H2 H3.

R0find : R0 -> r -> v -> type.
rf0n : R0find (R0consn R1 R2 N1) R2 (vn N1).
rf0l : R0find (R0consl R1 R2 L1) R2 (vl L1).
rf1n : R0find (R0consn R1 R2 N1) R3 V1
<- R0find R1 R3 V1.

rf1l : R0find (R0consl R1 R2 L1) R3 V1
<- R0find R1 R3 V1.

tregs0 : Rt H1 R1 Rnil.
tregs1 : Rt H1 R1 (Rcons R2 R3 T1)
<- R0find R1 R3 V1
<- vt H1 Rnil V1 T1
<- Rt H1 R1 R2.

tstate : St I1 H1 R1 H2 R2
<- Ht H2 H1 H2
<- Rt H2 R1 R2
<- It H2 I1 (tr R2).

Figure 8: Control-flow safety in Twelf

21

now takes an additional argument of the original heap so that instruction blocks can be
checked mutual-recursively. Also, we need to use explicit list lookup (H0find and R0find

instead of simply H(`) or R(r)) and to use capital letters for logical variables (such as H1

and R1 in rule tint).
We can now type-check H1 | bz r1, done : R1 →R1 in Twelf, as we have done manually in

Section 3.1, by this additional code:

prod : l. loop : l. done : l.
r1 : r. r2 : r. r3 : r. r4 : r.
R1 = Rcons (Rcons (Rcons (Rcons Rnil r1 int) r2 int) r3 int) r4 (all [T] tr

(Rcons (Rcons (Rcons (Rcons Rnil r1 int) r2 int) r3 int) r4 T)).
H1 = Hcons (Hcons (Hcons Hnil prod (tr R1)) loop (tr R1)) done (tr R1).
%query 1 1 it H1 (bz r1 (vl done)) R1 R1.

Here we first instantiate prod, loop, done as labels and r1, r2, r3, r4 as registers. We need to
cons up the list of heap and register file types (H1 and R1) in such a verbose way as there is
no polymorphism in Twelf to define syntactic sugar (ε and comma) for the list operator [5].
The command %query 1 1 it H1 (bz r1 (vl done)) R1 R1 asks Twelf to verify that there is
exactly one derivation for the instruction typing. The first argument of the command means
at least one and the second argument means at most one derivation.

The complete program of product function in Figure 3 can be encoded in a similar fash-
ion1. However, type checking for the whole program will not terminate in Twelf because the
typing rules are not syntax-directed [60]. In particular, we need an explicit type instantiation
for operands v[t] in T-Inst; but we will skip the technical development here.

The following theorem [39] justifies the use of LF type checking of terms as a validity
checking of proofs in the target language.

Theorem 2 (LF representation adequacy) There are bijections between terms, types
and typings in the target language and those in LF. Hence a typing derivation in LF implies
a valid proof in the target language.

4.3 Discussion

Necula [66] lists safe packet filters [67] as an compelling application of PCC. Previous ap-
proaches for such a kernel extension either use interpreters with restricted policies and expen-
sive context switches, or insert run-time checks with no static guarantee. Moreover, PCC’s
speed is impressive [67], outperforming BSD Packet Filter architecture [52] by 10 times, safe
packets in SPIN operating system [13] by 2 times, and software-based fault isolation [98] by
30%. Other applications of PCC include certifying compilers for Java [20, 19] and for a safe
subset of C [69]. The most serious drawback of PCC is the proof size [65], but recent work
has led to efficient representation and validation of proofs [68, 71].

1http://www.cis.upenn.edu/~stse/til/main.elf

22

Twelf can also express higher-order predicate logic and provides checks for output argu-
ment mode, induction termination, and case totality [82, 77]. With these facilities, meta-
theorems of the target languages can be encoded in Twelf, including determinacy, unique-
ness, termination, progress and preservation. Appel et al. [5] propose such a foundational
approach of including meta-theorems as well as safety proofs along with the binary. Foun-
dational proof-carrying code [4, 38] and foundational typed assembly languages [22] reduce
the trusted computing base to a simple LF verifier with direct mappings of semantics to
concrete machine architectures.

5 Comparison

In previous sections, we have discussed and compared the technical details of Java bytecode,
typed assembly language, and proof-carrying code. Here we summarize the discussion by
giving a high-level comparison of the three languages in term of the tradeoffs of complexity
and expressiveness as well as other design criteria. We also briefly address the impact and
the future work of these languages.

Complexity and performance Java bytecode verification and TAL’s type checking are
both decidable. The decidability of PCC’s type checking depends on the decidability of
the type system being encoded. But we are also concerned with the time and the space
complexities of the checking algorithms because they add overheads to the running time of
the program. In some applications, the code size dominates other design criteria, especially
when we need to distribute the code over network or download the code in a smartcard
with severe memory constraint. Another important factor is the language complexity: if
a language is loosely defined and is packed with nonorthogonal features, we must be more
cautious in implementing and proving soundness of the language.

For Java bytecode, its static semantics is informally defined in The Java Virtual Machine
Specification and only later reformulated in more formal ways by researchers [50]. Proving
the safety of bytecode amounts to solving dataflow equations in the verification algorithm.
Solving such equations may take exponential time. Therefore, even though the bytecode is
very compact for distribution, bytecode verification can be expensive. Since Java bytecode
requires only the basic type annotations for method parameters and register files, it is rela-
tively easy for a Java compiler to generate Java bytecode. The complexity, however, is shifted
to the bytecode verifier in the JVM, which has to rediscover the structures and the invariants
of subroutines. Java bytecode relies heavily on just-in-time compilation for good execution
performance, but the overhead of compilation as well as the inflexibility of bytecode make it
difficult to achieve the fast speed of generated code in an assembly language.

TAL, in contrast, is formally defined with a set of typing and evaluation rules. These
rules are syntax-directed and hence we can easily check the safety of TAL code in linear time.
The checking algorithm is as simple as recursively matching the code with the corresponding
rules. Moreover, TAL’s type system employs well-studied constructs such as universal types
and existential types, leading to a high confidence in the soundness of the language. TAL’s

23

instructions are very close to the machine instructions and thus, other than overhead of the
garbage collector, TAL can enjoy the raw performance of the machine. For instance, TAL
allows multiple calling conventions to be specified so that programmers can tailor the code
for speed in a particular machine architecture. But all basic blocks in TAL requires type
annotations for the register files. This requirement may lead to large code for programs with
lots of branches and loops. Extended type checking algorithms for TAL allow some type
annotations to be omitted at the cost of longer verification time to reconstruct them before
verification [36].

PCC’s meta-language is formally defined and proved to be sound. Verifying PCC code
may involve higher-order unification for reconstructing terms and types. We can require PCC
to be fully annotated so that the checking will be syntax-directed and can be done in linear
time. PCC achieves as good execution performance as TAL. Type systems encoded in PCC
can easily be tailored to express low-level policies such as memory layout and array-bounds
information in order to utilize specific optimizations of a particular machine. Nevertheless,
as a result of making the language, the code, and the proof all expressible in one framework,
PCC faces many engineering challenges of representing and validating the proofs with a low
space overhead.

Expressiveness and extensibility On the other side of the tradeoff, we want an in-
termediate language to be expressive in a way that it has enough primitives to efficiently
encode different high-level languages. At the same time, the type system of the language
must enforce the abstraction in the source language such that type safety in the intermediate
language implies type safety in the source.

Java bytecode has many modern language features such as objects, threads and memory
management to facilitate high-level programming in an object-oriented style. Despite the
claim of language independence of JVM, the bytecode language has limited support for other
programming paradigms. For example, Java bytecode does not have primitives for efficient
encodings of tail-recursive calls, polymorphism, or closures for functional programming.

TAL strikes a balance between expressiveness and complexity by allowing low-level prim-
itives such as registers and jumps while still keeping its type system simple. We can readily
translate high-level language like System F into TAL and we can perform register allocation
and instruction scheduling with the fully annotated instruction blocks. However, TAL puts
the burden on programmers to declare types, making TAL more suitable as a common inter-
mediate language of compilers rather than a programmer-friendly source language. Also, it is
worth investigating to see if adding objects or exceptions to TAL will significantly complicate
its type system [61].

PCC is a highly extensible framework for specifying other intermediate languages. Each
language in PCC can specify its own type system, unlike the fixed type systems of Java
bytecode and TAL. Achieving the maximal expressiveness, PCC allows arbitrary policies to
be specified and requires only a single verifier. It delegates all the work of proving safety to
an external theorem prover.

24

Safety and minimal trust All of the three intermediate languages enforce the basic
safety properties including type, control-flow, and memory safety. They all require a garbage
collector at runtime for safe memory management.

Java bytecode specifies these policies in the transition function of abstract interpretation
and in the successor relation of model checking. A real JVM also checks for stack safety to
prevent stack underflow or overflow and for initialization safety to ensure that registers and
objects must be initialized before use. However, a just-in-time compiler inside the JVM may
bypass these checks or generate unsafe native code for performance. This means that the
trust of the computing base for Java bytecode comprises the safety policies, the bytecode
verifier as well as the just-in-time compiler. Note that, compared to the simple verifiers and
the runtime systems of TAL and PCC, the verifier and the just-in-time compiler are much
more complex systems.

TAL specifies the safety policies in the typing rules, which may also be extended to check
for initialization safety. PCC allows encodings of type systems that express the same set of
safety policies, as well as low-level policies such as memory-layout safety and array-bounds
safety. The trust of the computing base for TAL and PCC includes only the policies and
the verifiers. The verifiers for both TAL and PCC can be made very simple at the cost
of verbose type annotations. As discussed earlier, tradeoffs can be made between space for
annotation and time for verification by doing type reconstructions in TAL and PCC. But the
type reconstruction algorithms also increase the trust of the computing base. Depending on
applications, users can pick their spot in the tradeoff spectrum of performance versus trust
in TAL and PCC.

Impact and future works Java brings the modern language technologies into main-
stream, fundamentally changing the programming practice in industry. TAL and PCC put
together results from logics, type theory, formal methods, and compiler techniques, to lay
the foundation for further research of intermediate languages. They also energize the field of
language design and implementation for more secure programs. In particular, there are lots
of refinements and applications of the basic PCC and TAL including Foundational proof-
carrying code [4], Enforcing high-level protocols in low-level software [27, 29], Cyclone: a
safe dialect of C [43], CCured: type-safe retrofitting of legacy code [70], and many ongoing
research projects [40, 88, 3, 23, 45].

There may not be an immediate commercial demand for TAL or PCC, but the two
intermediate languages can readily be used as a formal interface for compiler backends or
virtual machines. For example, most JVMs need to employ just-in-time compilation for
performance, but such compilation is not type-preserving or verified. A commercial JVM
can be compiled to TAL to guarantee type safety while enjoying TAL’s high performance.
In the extreme, PCC can also be used, minimizing the trust of the computing base from an
optimizing JVM, to TAL’s type checker, to an unified verifier of PCC.

25

6 Conclusion

In this paper, we have motivated the use of typed intermediate languages, explained the type
systems of three influential languages, and compared their tradeoffs of expressiveness versus
complexity. We emphasize performance, safety, extensibility, expressiveness, static guaran-
tee, and minimal trust as the important design criteria of typed intermediate languages. The
main contribution of this paper is presenting the intuitions behind these type systems with
examples and summarizing the technical details of the original papers. Additionally, we have
assessed the impact of the three languages and identified research directions for future work.

References

[1] Ali-Reza Adl-Tabatabai, Michal Cierniak, Guei-Yuan Lueh, Vishesh M. Parikh, and
James M. Stichnoth. Fast, Effective Code Generation in a Just-In-Time Java Compiler.
In ACM Conference on Programming Language Design and Implementation, 1998.

[2] Bowen Alpern and Fred B. Schneider. Defining Liveness. Information Processing
Letters, 1985.

[3] Andrew Appel, Edward Felten, and David Walker. Secure internet programming.
http://www.cs.princeton.edu/sip.

[4] Andrew W. Appel. Foundational Proof-Carrying Code. In IEEE Symposium on Logic
in Computer Science, 2001.

[5] Andrew W. Appel and Amy P. Felty. A Semantic Model of Types and Machine In-
stuctions for Proof-Carrying Code. In ACM Symposium on Principles of Programming
Languages, 2000.

[6] Andrew W. Appel and Trevor Jim. Continuation-Passing, Closure-Passing Style. In
ACM Symposium on Principles of Programming Languages, 1989.

[7] Ken Arnold, James Gosling, and David Holmes. The Java Programming Language.
Addison Wesley, 2000.

[8] David Aspinall. Subtyping with Singleton Types. In Computer Science Logic, 1994.

[9] Anindya Banerjee and David A. Naumann. Secure Information Flow and Pointer
Confinement in a Java-like Language. In Computer Security Foundations Workshop,
2002.

[10] Anindya Banerjee and David A. Naumann. Using Access Control for Secure Infor-
mation Flow in a Java-like Language. In Computer Security Foundations Workshop,
2003.

26

[11] David Basin, Stefan Friedrich, and Marek Gawkowski. Bytecode Verification by Model
Checking. Journal of Automated Reasoning, 2003.

[12] Nick Benton, Andrew Kennedy, and George Russell. Compiling Standard ML to Java
Bytecodes. In ACM International Conference on Functional Programming, 1998.

[13] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gun Sirer, Marc E.
Fiuczynski, David Becker, Craig Chambers, and Susan J. Eggers. Extensibility, Safety
and Performance in the SPIN Operating System. In ACM Symposium on Operating
Systems Principles, 1995.

[14] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From Region Inference to von
Neumann Machines via Region Representation Inference. In ACM Symposium on
Principles of Programming Languages, 1996.

[15] Hans-Juergen Boehm and Mark Weiser. Garbage Collection in an Uncooperative En-
vironment. Software - Practice and Experience, 1988.

[16] Eduardo Bonelli, Adriana Compagnoni, and Ricardo Medel. SIFTAL: A Typed As-
sembly Language for Secure Information Flow Analysis, 2004. Unpublished.

[17] Alessandro Cimatti, Fausto Giunchiglia, Paolo Pecchiari, Bruno Pietra, Joe Profeta,
Dario Romano, Paolo Traverso, and Bing Yu. A Provably Correct Embedded Verifier
for the Certification of Safety Critical Software. In Computer Aided Verification, 1997.

[18] Alessandro Coglio. Simple Verification Technique for Complex Java Bytecode Subrou-
tines. In ECOOP Workshop on Formal Techniques for Java-like Programs, 2002.

[19] Christopher Colby, Peter Lee, and George C. Necula. A Proof-Carrying Code Archi-
tecture for Java. In Computer Aided Verification, 2000.

[20] Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Mark Plesko, and Kenneth
Cline. A certifying compiler for Java. In ACM Conference on Programming Language
Design and Implementation, 2000.

[21] Karl Crary. Foundations for the Implementation of Higher-Order Subtyping. In ACM
International Conference on Functional Programming, 1997.

[22] Karl Crary. Toward a foundational typed assembly language. In ACM Symposium on
Principles of Programming Languages, 2003.

[23] Karl Crary and Greg Morrisett. Typed Assembly Language Compiler. http://www.

cs.cornell.edu/talc.

[24] Karl Crary, David Walker, and J. Gregory Morrisett. Typed Memory Management
in a Calculus of Capabilities. In ACM Symposium on Principles of Programming
Languages, 1999.

27

[25] Karl Crary and Stephanie Weirich. Resource Bound Certification. In ACM Symposium
on Principles of Programming Languages, 2000.

[26] Olivier Danvy and Andrzej Filinski. Representing Control: A Study of the CPS Trans-
formation. Mathematical Structures in Computer Science, 1992.

[27] Robert DeLine and Manuel Fahndrich. Enforcing High-Level Protocols in Low-Level
Software. In ACM Conference on Programming Language Design and Implementation,
2001.

[28] Gilles Dowek and Christine Paulin-Mohring. The Coq Project. http://coq.inria.fr.

[29] Manuel Fahndrich and Robert DeLine. Adoption and Focus: Practical Linear Types
for Imperative Programming. In ACM Conference on Programming Language Design
and Implementation, 2002.

[30] Robert W. Floyd. Assigning meanings to programs. Mathematical Aspects of Computer
Science, 1967.

[31] Cedric Fournet and Andrew D. Gordon. Stack inspection: theory and variants. In
ACM Symposium on Principles of Programming Languages, 2002.

[32] Stephen N. Freund and John C. Mitchell. A Formal Framework for the Java Bytecode
Language and Verifier. In ACM Conference on Object Oriented Programming Systems
Languages and Applications, 1999.

[33] Stephen N. Freund and John C. Mitchell. A Type System for the Java Bytecode
Language and Verifier. Journal of Automated Reasoning, 2003.

[34] Jean-Yves Girard. Interpretation Functionelle et Elimination des Coupures dans
l’Arithmetique d’Order Superieure. PhD thesis, Universite Paris VII, 1972.

[35] Allen Goldberg. A Specification of Java Loading and Bytecode Verification. In ACM
Conference on Computer and Communications Security, 1998.

[36] Dan Grossman and J. Gregory Morrisett. Scalable Certification for Typed Assembly
Language. In Types in Compilation, 2000.

[37] Masami Hagiya and Akihiko Tozawa. On a New Method for Dataflow Analysis of Java
Virtual Machine Subroutines. In Static Analysis Symposium, 1998.

[38] Nadeem A. Hamid, Zhong Shao, Valery Trifonov, Stefan Monnier, and Zhaozhong Ni.
A Syntactic Approach to Foundational Proof-Carrying Code. In IEEE Symposium on
Logic in Computer Science, 2002.

[39] Robert Harper, Furio Honsell, and Gordon D. Plotkin. A Framework for Defining
Logics. In IEEE Symposium on Logic in Computer Science, 1987.

28

[40] Robert Harper, Peter Lee, and Frank Pfenning. The Fox Project. http://www.cs.

cmu.edu/~fox.

[41] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. In ACM Symposium
on Principles of Programming Languages, 2002.

[42] Thomas P. Jensen, Daniel Le Metayer, and Tommy Thorn. Verification of Control
Flow based Security Properties. In IEEE Symposium on Security and Privacy, 1999.

[43] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney, and Yanling
Wang. Cyclone: A Safe Dialect of C. In Usenix Annual Technical Conference, 2002.

[44] Simon Peyton Jones. Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press, 2003. http://www.haskell.org.

[45] Assaf Kfoury and Joe Wells. The Church Project. http://types.bu.edu.

[46] G. Klein and M. Wildmoser. Verified Bytecode Subroutines. Journal of Automated
Reasoning, 2003.

[47] Xavier Leroy. The Ocaml Programming Language. http://caml.inria.fr.

[48] Xavier Leroy. Unboxed Objects and Polymorphic Typing. In ACM Symposium on
Principles of Programming Languages, 1992.

[49] Xavier Leroy. Bytecode verification on Java smart cards. Software - Practice and
Experience, 2002.

[50] Xavier Leroy. Java Bytecode Verification: Algorithms and Formalizations. Journal of
Automated Reasoning, 2003.

[51] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison
Wesley, 1999.

[52] Steven McCanne and Van Jacobson. The BSD Packet Filter: A New Architecture for
User-level Packet Capture. In USENIX Winter, 1993.

[53] John L. McCarthy. Towards a Mathematical Science of Computation. In IFIP
Congress, 1962.

[54] Gary Meehan and Mike Joy. Compiling Lazy Functional Programs to Java Bytecode.
Software - Practice and Experience, 1999.

[55] Microsoft. ECMA-334: C] Language Specification. European Computer Manufacturers
Association, 2002.

[56] Microsoft. ECMA-335: Common Language Infrastructure. European Computer Man-
ufacturers Association, 2002.

29

[57] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997. http://www.smlnj.org.

[58] Yasuhiko Minamide, J. Gregory Morrisett, and Robert Harper. Typed Closure Con-
version. In ACM Symposium on Principles of Programming Languages, 1996.

[59] Greg Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon University, 1995.

[60] Greg Morrisett. Advanced Topics in Types and Programming Languages, chapter Typed
Assembly Language. MIT Press, 2004.

[61] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Frederick
Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. TALx86: A Realistic
Typed Assembly Language. In ACM SIGPLAN Workshop on Compiler Support for
System Software, 1999.

[62] J. Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. From System F
to Typed Assembly Language. In ACM Symposium on Principles of Programming
Languages, 1998.

[63] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, 1997.

[64] George Necula. Advanced Topics in Types and Programming Languages, chapter Proof-
Carrying Code. MIT Press, 2004.

[65] George C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University,
1997.

[66] George C. Necula. Proof-Carrying Code. In ACM Symposium on Principles of Pro-
gramming Languages, 1997.

[67] George C. Necula and Peter Lee. Safe Kernel Extensions Without Run-Time Checking.
In Operating Systems Design and Implementation, 1996.

[68] George C. Necula and Peter Lee. Efficient Representation and Validation of Proofs.
In IEEE Symposium on Logic in Computer Science, 1998.

[69] George C. Necula and Peter Lee. The Design and Implementation of a Certifying
Compiler. In ACM Conference on Programming Language Design and Implementation,
1998.

[70] George C. Necula, Scott McPeak, and Westley Weimer. CCured: type-safe retrofitting
of legacy code. In ACM Symposium on Principles of Programming Languages, 2002.

[71] George C. Necula and Shree Prakash Rahul. Oracle-based checking of untrusted soft-
ware. In ACM Symposium on Principles of Programming Languages, 2001.

30

[72] Tobias Nipkow. Java Bytecode Verification. Journal of Automated Reasoning, 2003.

[73] Robert O’Callahn. A Simple, Comprehensive Type System for Java Bytecode Subrou-
tines. In ACM Symposium on Principles of Programming Languages, 1999.

[74] Larry Paulson and Tobias Nipkow. The Isabelle Project. http://www.cl.cam.ac.uk/
Research/HVG/Isabelle.

[75] Leaf Petersen, Robert Harper, Karl Crary, and Frank Pfenning. A type theory for
memory allocation and data layout. In ACM Symposium on Principles of Programming
Languages, 2003.

[76] Frank Pfenning and Conal Elliot. Higher-Order Abstract Syntax. In ACM Conference
on Programming Language Design and Implementation, 1988.

[77] Frank Pfenning and Carsten Schurmann. The Twelf Project. http://www.twelf.org.

[78] Benjamin Pierce. Types and Programming Languages. MIT Press, 2002.

[79] Benjamin C. Pierce. Types and Programming Languages: The Next Generation. In
IEEE Symposium on Logic in Computer Science, 2003.

[80] Francois Pottier, Christian Skalka, and Scott F. Smith. A Systematic Approach to
Static Access Control. In European Symposium on Programming, 2001.

[81] John C. Reynolds. Towards a Theory of Type Structure. In Symposium on Program-
ming, 1974.

[82] Ekkehard Rohwedder and Frank Pfenning. Mode and Termination Checking for
Higher-Order Logic Programs. In European Symposium on Programming, 1996.

[83] Eva Rose and Kristoffer Rose. Lightweight Bytecode Verification. In OOPSLA Work-
shop on Formal Underpinnings of Java, 1998.

[84] David A. Schmidt. Data Flow Analysis is Model Checking of Abstract Interpretations.
In ACM Symposium on Principles of Programming Languages, 1998.

[85] Fred B. Schneider. Enforceable Security Policies. ACM Transactions on Information
and System Security, 2000.

[86] Fred B. Schneider, J. Gregory Morrisett, and Robert Harper. A Language-Based
Approach to Security. In Informatics, 2001.

[87] Bernard P. Serpette and Manuel Serrano. Compiling scheme to JVM bytecode: : a
performance study. In ACM International Conference on Functional Programming,
2002.

[88] Zhong Shao. The Flint Project. http://flint.cs.yale.edu.

31

[89] Zhong Shao and Andrew W. Appel. A Type-Based Compiler for Standard ML. In
ACM Conference on Programming Language Design and Implementation, 1995.

[90] Robert F. Stark and Joachim Schmid. Completeness of a Bytecode Verifier and a
Certifying Java-to-JVM Compiler. Journal of Automated Reasoning, 2003.

[91] Raymie Stata and Martin Abadi. A Type System for Java Bytecode Subroutines. In
ACM Symposium on Principles of Programming Languages, 1998.

[92] Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito, Hideaki Komatsu, and Toshio
Nakatani. A Dynamic Optimization Framework for a Java Just-In-Time Compiler. In
ACM Conference on Object Oriented Programming Systems Languages and Applica-
tions, 2001.

[93] David Tarditi, J. Gregory Morrisett, P. Cheng, C. Stone, Robert Harper, and Peter
Lee. TIL: A Type-Directed Optimizing Compiler for ML. In ACM Conference on
Programming Language Design and Implementation, 1996.

[94] Joseph Vanderwaart and Karl Crary. A typed interface for garbage collection. In ACM
Types In Languages Design And Implementation, 2003.

[95] Joseph C. Vanderwaart and Karl Crary. Foundational Typed Assembly Language
for Grid Computing. Technical Report CMU-CS-04-104, Carnegie Mellon University,
2004.

[96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A Sound Type System for Secure
Flow Analysis. Journal of Computer Security, 1996.

[97] Philip Wadler. Theorems for Free! In Functional Programming Languages and Com-
puter Architecture, 1989.

[98] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
Software-Based Fault Isolation. In ACM Symposium on Operating Systems Principles,
1993.

[99] Dan S. Wallach and Edward W. Felten. Understanding Java Stack Inspection. In
IEEE Symposium on Security and Privacy, 1998.

[100] Hongwei Xi. Imperative Programming with Dependent Types. In IEEE Symposium
on Logic in Computer Science, 2000.

[101] Hongwei Xi and Robert Harper. A Dependently Typed Assembly Language. In ACM
International Conference on Functional Programming, 2001.

[102] Hongwei Xi and Frank Pfenning. Eliminating Array Bound Checking Through Depen-
dent Types. In ACM Conference on Programming Language Design and Implementa-
tion, 1998.

32

