
ViteX : a Streaming XPath Processing System

Yi Chen, Susan B. Davidson and Yifeng Zheng

University of Pennsylvania, tel:(215) 573-2579 fax: (215) 898-0587
yicn@cis.upenn.edu, susan@cis.upenn.edu, yifeng@cis.upenn.edu

Abstract
We present ViteX, an XPath processing system on XML
streams with polynomial time complexity. ViteX uses a
polynomial-space data structure to encode an exponential
number of pattern matches (in the query size) which are re-
quired to process queries correctly during a single sequen-
tial scan of XML. Then ViteX computes query solutions
by probing the data structure in a lazy fashion without enu-
merating pattern matches.

1 Motivation
In many emerging applications such as stock market data,
sports tickers, electronic personalized newspapers, and
traffic information, data is presented as an XML stream.
Streaming XML query evaluation has therefore attracted a
lot of interest.

There are several requirements for query evaluation in
these streaming environments. First, only a single sequen-
tial scan of the data is allowed. Second, it is desirable to
incrementally produce and distribute query results to end
users before the data is completely received. Third, since
data streams can be large, a query processing algorithm
must scale well in terms of processing time and space.

However, these requirements present challenges in an
XML environment due to several features of query lan-
guages for XML (e.g. XPath) combined with the fact that
the data is recursive:� First, when descendant axis traversal is performed over
recursive XML data, a single XML node can have multiple
pattern matches to a subquery.

Consider query Q: //section[author]//table[position]//
cell and the sample XML data in figure 1. When we process
node � � � �

in line � , we find that there are � ways for � � � �
to match the subquery

 � � � � � �

 � � � � �
 � � � �

. Using the
line number of the start tag as a subscript to distinguish
XML nodes with the same tag, the pattern matches can be
denoted as � � � � � � � ! � � � � � " ! � � � � % '

, where �) + ! . ! / , 0)2 ! 4 ! 6 .� Different pattern matches to a subquery have different
satisfaction on query predicates. Only a match which sat-
isfies all predicates will contribute to the query solution.
However, since data is scanned sequentially, the satisfac-
tion of pattern matches may not be determined when the
subquery pattern match is found. We therefore need to
record subquery pattern matches to guarantee that correct
solutions are returned.

1.<book>
2. <section>
3. <section>
4. <section>
5. <table>
6. <table>
7. <table>
8. <cell> A </>
9. </table>
10. </table>
11. <position> B </>
12. </table>
13. </section>
14. </section>
15. <author> C </>
16. </section>
17.</book>

Figure 1: Sample XML data

For example, when we process line � , we are not
able to determine the predicate satisfaction of its � sub-
query pattern matches; therefore we need to record them.
Later on when we process line � , we find out that � � � � � 7
does not satisfy predicate 8 9 � � � � � � = , therefore pattern
matches � � � � � � � ! � � � � � 7 ! � � � � % '

, where �) + ! . ! / , do
not qualify � � � �

as a query solution and are removed.
The same happens for � � � � � A . Finally we find out that
match � � � � � � � B ! � � � � � C ! � � � � % '

satisfies both predicates,
and therefore qualifies � � � � %

as a query solution.

These challenges are not present in a non-streaming
XML query evaluation algorithm since predicates can be
checked immediately by randomly accessing XML nodes.
However, a streaming XML query evaluation algorithm
needs to record subquery pattern matches to ensure cor-
rectness. This could be done naively by explicitly storing
pattern matches, and enumerating them to test predicates.
However, the number of pattern matches can be exponen-
tial, and therefore the approach has a worst case complexity
which is exponential in the query size. By concisely storing
pattern matches and pruning the search space without enu-
merating all pattern matches, ViteX (a “vite”1 XPath pro-
cessing system) achieves time and space complexity which
is polynomial in the worst case for XPath [1] queries con-
taining child axes, descendant axes, wildcards and predi-
cates (denoted as D E G H I H H I J I K L N) on XML streams.

1“Vite” is French for “fast”.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

� � � � � 	 � � � � �� � � � �� � � � �

 " $% ' () * , - . /0 1 3 5 6 7
8 9 :; = > ? @ A B C D E F H I K L N OP Q R S T

U V W X YZ [] ^ _ `
a b d e fg i j k

Figure 2: Architecture of the ViteX system

2 Features of the ViteX System
ViteX system has several salient features:

1. ViteX achieves polynomial time complexity in both
data and query size for evaluating l n p q s q q s t s u v w
queries on streaming data.

2. The query processor TwigM can be constructed from
an XPath query in time which is linear in the size of
the query.

3. TwigM uses a compact data structure to encode pat-
tern matches concisely rather than storing them ex-
plicitly, and therefore requires a small amount of
memory. For example, experiments have shown that
the memory requirement of ViteX when processing
queries on a 75 MB Protein dataset [2] is stable at
1MB.

4. TwigM computes query solutions by probing the com-
pact data structure in a lazy fashion without comput-
ing pattern matches, therefore it is very efficient.

5. ViteX not only has good theoretical time complex-
ity but also works efficiently in practice on a variety
of queries and datasets. For example, experiments
with ViteX have shown that the XPath query //Pro-
teinEntry[reference]/@id executing on a 75MB Pro-
tein Dataset [2] only requires 6.02 seconds (including
4.43 seconds for SAX parsing).

3 System Design
The ViteX system is composed of four modules: an XPath
parser, a TwigM builder, an XML SAX parser and a TwigM
machine which is the query processor, as shown in figure 2.
The XPath parser takes an XPath query x as input and
generates a tree representation of the query. The TwigM
builder constructs a TwigM machine according to the input
query tree. The SAX parser takes an XML stream and out-
puts a sequence of SAX events. As SAX events stream in,
TwigM changes its state according to the current state and
the input event, and computes a set of XML fragments as
solutions to x .

3.1 TwigM Builder

TwigM can be built from the input query in linear time.
A machine node is constructed for each query node, and
they are organized in a tree structure corresponding to the

y z { | } ~

� � � � � � �

� � � � �

� � � � � � � � � � � �
Figure 3: An example

query. For example, the TwigM machine for query //sec-
tion[author]//table[position]//cell is presented in figure 3.
We create a machine node for each tag and wildcard in the
query. We connect the machine nodes by the edge to de-
note the relationship of nodes. A single-line denotes a child
axis (‘/’), and a double-line denotes a descendant axis (‘//’).
Each machine node has a stack associated with it to record
its state, which is initialized to be empty. The transition
functions of TwigM compute the status of the stacks ac-
cording to current status and the input SAX event.

3.2 TwigM machine

The key of TwigM is to use the stack of each machine node� to store the XML nodes that are solutions of the subquery
from the root of TwigM to � . A stack node is a triplet: the
level of the corresponding XML node, information about
the match status of its children in the query tree, and candi-
date query solutions. On a startElement(� � � ,

� � � � �
) event,

if � � � matches the name of machine node � , and
� � � � �

satisfies the axis denoted by � ’s incoming edge, we push
the current XML node information to � ’s stack. On an
endElement(� � � ,

� � � � �
) event, if � � � matches the name of� , and

� � � � �
equals the level of the top node in � ’s stack,

we pop the stack. Simultaneously, we bookkeep the match-
ing information and candidate solutions associated with the
popped node to the nodes in � ’s parent. By keeping track-
ing of matching information in a recursive fashion, a node
matching the root of TwigM ensures that the candidate so-
lutions associated with it are indeed query solutions.

Recall that there is potentially an exponential number
of pattern matches for an XML node which need to be
recorded to evaluate queries correctly during a single se-
quential scan of XML. If we were to enumerate all matches,
the complexity will be ¡ ¢ £ ¤ £ ¦ § ¦ ©

, where £ ¤ £ is the XML
data size and £ x £ is the query size. By encoding the pattern
matches in a compact way and probing pattern matches to
compute query solutions in a lazy fashion, TwigM achieves
a complexity of ¡ ¢ £ ¤ £ £ x £ ¢ £ x £ ¯ © ©

, where ¯ is the size
of candidate solutions.

References
[1] J. Clark and S. DeRose. XML Path language (XPath),

November 1999. http://www.w3.org/TR/xpath.

[2] Georgetown Protein Information Re-
source. Protein Sequence Database, 2001.
http://www.cs.washington.edu/research/xmldatasets/.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)

1084-4627/05 $20.00 © 2005 IEEE

