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ABSTRACT 

A CHEMICAL-GENETIC SCREEN FOR IDENTIFYING SUBSTRATES  

OF THE ER KINASE PERK 

Nancy L. Maas 

J. Alan Diehl 

 

     Cells constantly encounter changing environments that challenge the ability to adapt 

and survive. Signal transduction networks enable cells to appropriately sense and respond 

to these changes, and are often mediated through the activity of protein kinases. Protein 

kinases are a class of enzyme responsible for regulating a broad spectrum of cellular 

functions by transferring phosphate groups from ATP to substrate proteins, thereby 

altering substrate activity and function. PERK is a resident kinase of the endoplasmic 

reticulum, and is responsible for sensing perturbations in the protein folding capacity of 

the ER. When the influx of unfolded, nascent proteins exceeds the folding capacity of the 

ER, PERK initiates a cascade of signaling events that enable cell adaptation and ER 

stress resolution. These signaling pathways are not only essential for the survival of 

normal cells undergoing ER stress, but are also co-opted by tumor cells in order to 

survive the oxygen and nutrient-restricted conditions of the tumor microenvironment. Not 

surprisingly, PERK signaling is known to influence a variety of pro-tumorigenic 

processes. Therefore, from a purely biological standpoint as well as from a clinical 

perspective, it is important to understand this critical cell adaptive pathway in greater 

detail through identifying its interacting partners and thereby elucidating additional 

downstream signaling branches. 
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     Prior to the work described herein, only three direct PERK substrates had been 

identified. Using chemical-genetic screening techniques, we have generated a significant 

list of putative PERK substrates, several of which have been confirmed as PERK 

substrates in vitro. These preliminary results suggest new connections between known 

UPR pathways, as well as entirely novel signaling branches downstream of PERK. This 

work will provide a solid foundation for launching future PERK-related discovery 

studies. 
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CHAPTER ONE 

                                                   INTRODUCTION 

 

1.1 The Unfolded Protein Response  

The endoplasmic reticulum (ER) is a highly specialized organelle that governs the 

synthesis, folding, and maturation of approximately 30% or more of total cellular protein 

(Shimizu & Hendershot, 2007). It is composed of multiple layers of stacked cisternae, 

within which proteins are co-translationally folded and modified by N-linked 

glycosylation and disulphide bonds. The ER is far from a simple, passive folding 

environment, however. It is in fact highly dynamic, equipped with signal transduction 

networks that closely monitor protein folding efficiency and respond to environmental 

changes that challenge ER homeostasis. When the influx of unfolded, nascent proteins 

exceeds the folding capacity of the ER, this imbalance is sensed by ER stress sensors that 

initiate a cascade of events aimed at restoring homeostasis. This adaptive response is 

termed the Unfolded Protein Response (UPR). Limitation of nutrients and oxygen have a 

direct impact on the efficiency of protein folding in the ER, and are classical inducers of 

this signaling pathway. Not only does the UPR regulate ER homeostasis in normal cells 

experiencing such stress, but strong evidence also suggests that tumor cells can co-opt the 

cytoprotective aspects of this response in order to survive the hypoxic, nutrient-restricted 

conditions of the tumor microenvironment.                                                                                           

1.1.1 Signal transduction in response to ER stress 

The UPR is mediated by three primary ER stress sensors: (PKR)-like ER kinase 

(PERK), inositol-requiring gene 1 (IRE1), and activating transcription factor 6 (ATF6), 
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all of which are embedded in the ER membrane (Figure 1.1). Under homeostatic 

conditions, the ER chaperone GRP78/BiP associates with the luminal domain of each of 

these these three effectors thereby inhibiting their activation (Bertolotti et al, 2000; Shen 

et al, 2002). Upon ER stress, accumulating unfolded proteins require increased chaperone 

activity resulting in GRP78/BiP titration. PERK and IRE1 are thus released, triggering 

their activation by permitting oligomerization and trans-autophosphorylation (Bertolotti 

et al, 2000). Release of GRP78/BiP from ATF6 exposes an ATF6 Golgi localization 

signal, leading to its translocation and activation by proteolytic cleavage (Shen et al, 

2002). 

     Current evidence supports a model wherein the immediate effects of UPR activation 

are cytoprotective and PERK is pivotal for cell adaptation to ER stress.  PERK 

phosphorylates the eukaryotic translation initiation factor eIF2α, which inhibits general 

protein synthesis and lowers the protein load (Harding et al, 1999; Shi et al, 1998). Also 

important for ER stress resolution is the PERK-dependent downregulation of cyclin D1 

through eIF2α. Inhibition of cyclin D1 synthesis triggers a G1 cell cycle arrest, thereby 

reducing cellular biosynthetic needs and providing a window during which to re-establish 

ER homeostasis (Brewer et al, 1999). In addition to limiting protein influx through 

eIF2α, PERK directly phosphorylates the transcription factor Nrf2, which contributes to 

cell survival through maintaining redox homeostasis. In unstressed cells, Nrf2 is held in 

an inactive state through binding the cytoskeletal anchor protein Keap1. With ER stress, 

PERK phosphorylates Nrf2, triggering its release from Keap1. This facilitates 

translocation of Nrf2 to the nucleus, where to it regulates the expression of detoxifying 

enzymes and thereby protects cells from oxidative damage (Cullinan et al, 2003). 
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Through PERK, there is also a selective upregulation of certain factors, notably the bZIP 

transcription factor ATF4. ATF4 induces expression of pro-survival genes involved in 

protein folding, redox homeostasis, and amino acid metabolism (Harding et al, 2003; 

Hetz et al, 2013). Following prolonged or acute ER stress, ATF4 also targets the pro-

apoptotic transcription factor GADD153/CHOP (Tabas & Ron, 2011). CHOP expression 

leads to cell death, suggesting a unique role for PERK in cell fate determination. 

IRE1 provides important adaptive signals through activation of the X-box protein 1 

transcription factor (XBP-1). IRE1 endoribonuclease activity is responsible for 

processing XBP-1 via a splicing mechanism that shifts the reading frame to encode a 

stable, active transcription factor (XBP-1s) (Calfon et al, 2002; Lee et al, 2002; Yoshida 

et al, 2001). XBP-1 target genes include key factors involved in protein folding, ER-

associated degradation (ERAD), and ER expansion under stress (Acosta-Alvear et al, 

2007; Lee et al, 2003). IRE1 RNase activity also contributes to ER stress resolution 

through regulated IRE1-dependent decay (RIDD) of mRNA (Hollien & Weissman, 

2006). This pathway in conjunction with PERK-dependent translational repression may 

serve to reduce the influx of ER-bound proteins during ER stress. 

Contributing to the adaptive transcriptional program, ATF6 transduces signals from 

the endoplasmic reticulum to the nucleus via its cytosolic bZIP domain. Following 

proteolytic processing in the trans-Golgi, the cleaved form of ATF6, ATF6(N), is 

released to translocate to the nucleus where it targets ERAD components as well as XBP-

1 itself (Yamamoto et al, 2007; Yoshida et al, 2001).             
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1.1.2 Oncogenic UPR signaling 

Provided the cytoprotective effects of the UPR during stress, it is not surprising that 

cancer cells might co-opt the UPR for tumor perpetuation.  As tumor cells begin to 

proliferate and expand into surrounding tissue, there is an ever-increasing demand for 

nutrients and oxygen. This quickly exceeds the capacity of existing tissue vasculature to 

support such demand, creating an environment of glucose and oxygen restriction that 

challenges tumor expansion. These conditions impinge on the proper folding and 

maturation of secreted proteins in the ER, which is immediately sensed by the three ER 

stress sensors. The ensuing response enables tumor cell adaptation and survival.  

     Consistent with the idea that UPR signaling supports tumorigenesis, major UPR 

mediators are often upregulated in cancer and have been implicated in critical stages of 

cancer progression (Hetz et al, 2013; Ma & Hendershot, 2004). The overexpression of 

IRE1 and ATF6, as well as of the ER chaperones GRP78/BiP, GRP94, and GRP170 in a 

variety of cancer types offers a case in point (Fernandez et al, 2000; Shuda et al, 2003; 

Tsukamoto et al, 1998). Functionally, UPR signaling contributes to a broad spectrum of 

cancer-related processes including cell survival, migration, metastasis, autophagy, 

angiogenesis, and chemotherapeutic resistance. The importance of this response has been 

demonstrated through genetic and chemical-based manipulation of UPR components in 

tumor models in vivo. Recent work exploring the effect of XBP-1 and PERK deletion are 

prime examples of the requirement for ER stress signaling in tumor growth (Bi et al, 

2005; Bobrovnikova-Marjon et al, 2010; Romero-Ramirez et al, 2004). Paradoxically, 

both PERK and IRE1 have also been suggested to contribute to tumor suppression (Auf 

et al, 2010; Denoyelle et al, 2006; Donze et al, 1995; Perkins & Barber, 2004; 
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Ranganathan et al, 2008; Sequeira et al, 2007). These observations suggest that the 

contribution of UPR signaling to tumorigenesis is highly context-dependent, and 

underscores the need for more clearly defining UPR signaling branches and their 

underlying molecular mechanisms. 

 

1.2 PERK signaling in normal cells and in neoplastic progression 

     As one of the master regulators of the ER stress response and a key pro-survival 

effector, PERK has received considerable attention in the context of tumor 

initiation/progression. It has been characterized for its role in tumor growth, cell 

migration, metastasis, angiogenesis, survival of ECM-detached cells, and the epithelial-

mesenchymal transition (Avivar-Valderas et al, 2013; Avivar-Valderas et al, 2011; Bi et 

al, 2005; Blais et al, 2006; Bobrovnikova-Marjon et al, 2010; Feng et al, 2014; Mujcic et 

al, 2013; Nagelkerke et al, 2013) (Figure 1.2). In light of these pro-tumorigenic effects, 

there has been significant interest in developing cancer therapeutics that target PERK 

activity, and in defining the molecular mechanisms that underlie PERK function. These 

studies have not only begun to explore the multi-faceted nature of PERK in 

tumorigenesis, but have also highlighted the critical contribution of PERK to pancreatic 

beta cell fitness and survival. 

1.2.1 Normal PERK activity supports pancreatic function and skeletal development 

     Early studies first suggested a link between PERK and skeletal/pancreatic  

development through correlating PERK loss-of-function mutations with the incidence of 

Wolcott-Rallison syndrome (Delepine et al, 2000). This rare genetic disorder is 
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characterized by early-onset insulin-dependent diabetes, skeletal dysplasia, growth 

retardation, and hepatic dysfunction (Julier & Nicolino, 2010).   

     The requirement for PERK in pancreatic beta cell fitness and survival was later 

demonstrated through studies utilizing chemical PERK inhibitors (Atkins et al, 2013; 

Harding et al, 2012), and genetic mouse models in which PERK was either 

conventionally excised (Harding et al, 2001; Zhang et al, 2002), or excised postnatally 

(Gao et al, 2012). PERK excision resulted in apoptotic loss of insulin-secreting beta cells 

and acinar tissue (Gao et al, 2012; Zhang et al, 2002); beta cell loss was presumably 

triggered by an accumulation of misfolded proinsulin and mediated through activation of 

the remaining UPR branches (Gao et al, 2012). PERK-deficient mice experienced 

compromised glucose homeostasis that quickly led to hyperglycemia. These symptoms 

occurred regardless of age at PERK excision (Gao et al, 2012), suggesting that PERK 

function is not only required during early beta cell development but also for adult tissue 

homeostasis. Consistent with these reports, PERK inhibition via small molecule 

inhibitors also resulted in aberrant insulin maturation in Min6 beta cells as well as rat 

pancreatic islets (Harding et al, 2012), and led to degeneration of both islet and acinar 

cells accompanied by a 50% decrease in pancreas weight in mice (Atkins et al, 2013).  

     PERK is also required for normal neonatal skeletal development, as suggested by the 

multiple skeletal dysplasias exhibited in Rallison-Wolcott syndrome in humans, and the 

recapitulation of such symptoms in PERK-deficient mice (Julier & Nicolino, 2010; Wei 

et al, 2008; Zhang et al, 2002). Further investigation of the osteopenic phenotype in 

PERK-/- mice revealed poor differentiation and expansion of osteoblasts, and abnormal 

retention of procollagen I in the ER (Wei et al, 2008). Type I collagen is normally 
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secreted by mature osteoblasts, and is required for proper bone formation. Since PERK is 

required for appropriate ER-Golgi trafficking (Gupta et al, 2010), it is not surprising that 

lack of adequate PERK activity would result in failure to transport and secrete collagen, 

and that this would lead to severe osteopenia. 

1.2.2 PERK promotes tumor cell proliferation and survival 

     Deletion of PERK, ATF4, or Nrf2, or mutation of the PERK-mediated eIF2α 

phospho-site were demonstrated to have deleterious effects on cell survival following 

chronic ER stress in cell culture (Bi et al, 2005; Cullinan et al, 2003; Harding et al, 2000; 

Ye et al, 2010). Consistent with these observations, tumor growth was significantly 

impaired with PERK excision in ectopic and orthotopic tumor models (Bi et al, 2005; 

Bobrovnikova-Marjon et al, 2010). Furthermore, mammary gland-specific PERK 

knockout in the MMTV-Neu breast cancer model delayed tumor onset and reduced 

metastatic lesions. In this study, PERK knockdown triggered oxidative DNA damage and 

activated the DNA damage checkpoint in breast cancer cells and orthotopic tumors, 

suggesting a mechanism whereby tumor cell proliferation and survival are attentuated 

through PERK loss (Bobrovnikova-Marjon et al, 2010). Recent work has also 

demonstrated a significant pro-survival effect of PERK on ECM-detached mammary 

epithelial cells; PERK is activated upon cell detachment and induces autophagy via 

AMPK/mTORC1 regulation, thus protecting cells from anoikis (Avivar-Valderas et al, 

2013; Avivar-Valderas et al, 2011). Additional pathways through which PERK likely 

contributes to cell survival are the PI3K-Akt and NFkB networks, however, these 

mechanisms have not yet been fully elucidated.  
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1.2.3 PERK contributes to metastatic progression  

     Metastasis of primary tumor cells to a distant site requires multiple steps that 

challenge a cell’s ability to navigate harsh conditions. Cells must detach from the primary 

site, migrate through surrounding tissue, enter and survive blood stream circulation, and 

finally, extravasate to colonize a secondary site. Successful completion of these steps 

requires altered cell-cell and cell-substratum contacts and acquisition of a more 

migratory, invasive phenotype. While previous work suggested a PERK-dependent effect 

on metastasis, it is not until very recently that the details of its pro-metastatic influence 

are beginning to become clear. These lines of investigation have centered around 

regulation of a previously uncharacterized metastasis-associated gene, LAMP3. LAMP3 

is transcriptionally upregulated in several tumor types, as well as in response to hypoxic 

conditions in various cancer cell lines. This response is PERK-eIF2α-ATF4 dependent, 

though direct regulation by ATF4 has not yet been shown (Mujcic et al, 2009). 

Furthermore, depletion of PERK, ATF4, or LAMP3 inhibits migration in breast cancer 

cell lines (Nagelkerke et al, 2013), with subsequent studies demonstrating an inhibitory 

effect on invasion and metastasis in vivo (Mujcic et al, 2013).  

     A connection between PERK signaling and the epithelial-mesenchymal transition 

(EMT) has also been proposed (Feng et al, 2014). EMT is a transition from epithelial, 

cuboidal morphology with tight cell-cell junctions to a more motile, invasive, 

mesenchymal cell type. EMT contributes to normal development and to oncogenic 

transformation; in the latter context, it is thought to facilitate metastatic progression. 

Agents that induce ER stress can induce an EMT-like transition (Ulianich et al, 2008).  

Supporting these observations, recent work demonstrated specific activation of the 
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PERK-eIF2α-ATF4 branch of the UPR in cells undergoing EMT, as well as a positive 

correlation between ATF4 expression and EMT genes in primary human tumors. 

Moreover, PERK signaling was required for the migratory and invasive properties of 

these cells, as well as the metastatic capability of 4T1 cells in vivo (Feng et al, 2014). 

1.2.4 PERK promotes angiogenesis 

     Tumor expansion requires adequate tissue vasculature to support such growth. Tumor 

angiogenesis is the penetration of new blood vessels into cancerous tissue to provide 

tumor cells with nutrients and oxygen, and remove waste. Vascular endothelial growth 

factor (VEGF) is a secreted protein that was originally thought to be specific to 

endothelial cells (Leung et al, 1989), and has been shown to promote angiogenesis and 

vascular hyperpermeability. Interestingly, expression of the most abundant of this family, 

VEGFA, is induced 2-5 fold with ER stress in numerous cancer cell types (Ghosh et al, 

2010). This upregulation was mediated by all three branches of the UPR: IRE1, PERK, 

and ATF6 in a HIF1α-independent manner. Consistent with these observations, 

subsequent work using a tumor xenograft model demonstrated diminished vascular 

density and perfusion in mice treated with the PERK inhibitor GSK2656157 (Atkins et al, 

2013). Furthermore, VEGF activated PERK, IRE1, and ATF6 through PLCγ/mTORC1 

crosstalk in endothelial cells, and that signaling through PERK and ATF6 are required for 

endothelial cell survival (Karali et al, 2014). Collectively, these data suggest a potential 

positive feedback mechanism whereby VEGF secretion stimulates angiogenesis while 

activating UPR signaling; UPR activation promotes cell survival while feeding back to 

stimulate increased VEGF expression. 
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1.2.5 PERK signaling and tumor dormancy 

     Following chemotherapeutic treatment and regression of the primary tumor, patients  

can experience a period of remission followed by relapse due to metastatic disease that is 

apparent at the time of initial treatment. Some patients relapse following a relatively 

extended disease-free period, suggesting that tumor cells can also survive 

chemotherapeutic treatment to lie dormant in the body until later reactivation. Key 

properties of dormant tumor cells are G0-G1 cell cycle arrest and enhanced survival, both 

of which are also consequences of PERK activation. Consistent with the idea that PERK 

can therefore contribute to tumor dormancy, studies using human squamous carcinoma 

cell lines demonstrated increased resistance to doxorubicin-induced apoptosis in the 

dormant tumor cells (D-HE3p) when compared to those that were aggressively 

tumorigenic (T-HEp3) (Ranganathan et al, 2006). Increased drug-resistance was 

dependent upon PERK activity, which was in turn dependent upon p38. Although these 

studies were not conducted in vivo, the data suggest that PERK may play a role in 

promoting tumor dormancy which can protect the host during early stages of tumor 

progression, but may also endanger the host in later stages by protecting tumor cells until 

more favorable conditions arise.  

1.2.6 PERK as a tumor suppressor 

     Though the prevailing view of PERK is as an oncogenic effector, PERK has also been 

proposed to play a role in tumor suppression in certain contexts. This adds an additional 

layer of complexity to its study not only from a purely biological standpoint but also from 

a therapeutic perspective. Early studies demonstrated oncogenic transformation of NIH-

3T3 cells with inhibition of eIF2α phosphorylation (Donze et al, 1995), as well as 
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transformation of primary human kidney cells with expression of an eIF2α phospho-

mutant (Perkins & Barber, 2004). Moreover, expression of a dominant-negative PERK 

mutant in mammary epithelial cells resulted in hyper-proliferation, and orthotopic 

implantation of these cells promoted mammary tumor formation (Sequeira et al, 2007), 

while PERK activation inhibited tumor growth in a colon cancer model (Ranganathan et 

al, 2008). Collectively, these studies suggest a role for PERK in cancer is highly context-

dependent, underscoring the need for further definition of its mechanisms of action and 

downstream target activation under varying conditions, environments, and stages of 

cancer progression. 

 

1.3 Chemical-genetic approaches to exploring kinase function and pathway 

mapping 

     Protein kinases are important regulators of normal and tumor cell biology, PERK 

being a prime example.  Analysis of their functional properties in the context of disease is 

of vital importance. From a therapeutic standpoint, this is reflected in an intense focus on 

kinase inhibitor development, and in the array of kinase inhibitors currently in clinical 

trial (Fedorov et al, 2010). Despite the demand for kinome profiling and kinase 

characterization, this area of study has proven challenging. When employing the use of 

small molecule inhibitors to study kinase function, the fact that most inhibitors often 

target the conserved ATP-binding pocket presents a specificity issue. On the other hand, 

genetic manipulations (i.e. kinase deletion) achieve specificity in that only the kinase of 

interest is targeted. This method, however, has the drawback of depleting the kinase for 

an extended period, during which compensatory mechanisms and indirect downstream 



 12 

effects are often confounding. This method also cannot distinguish between effects due to 

loss of kinase activity and those due to loss of the entire protein. Chemical-genetic 

techniques have recently enabled significant advances in this field. Using a system 

whereby the kinase of interest is genetically altered to selectively bind a bulky inhibitor 

analog has offered benefits of both transience and specificity.  

1.3.1 Analog-sensitive kinases to interrogate kinase function 

     The concept of an analog-sensitive kinase, i.e. a kinase that has been genetically 

engineered to bind a specific ATP analog, was first introduced through work from the 

Shokat lab (Bishop et al, 1998; Bishop et al, 2000). The tyrosine kinase v-Src was used in 

these studies, due in part to the inability of established Src inhibitors to distinguish 

between closely related family members, which hindered the study of individual Src 

function. A conserved site in the ATP binding pocket was identified (Ile 338) and 

mutated to a smaller amino acid, generating a “hole” that could serve as a specificity 

pocket (Figure 1.3). An ATP-competitive analog with a corresponding “bump” was then 

synthesized, such that the binding between analog and kinase was akin to a lock-and-key 

model. Importantly, alignment of v-Src with all other known eukaryotic protein kinases 

revealed a residue with a bulky side chain at the site corresponding to Ile 338. Wild type 

kinases lacking the engineered specificity pocket should therefore not be able to bind the 

bulky inhibitor. Highly specific inhibition of the mutant kinase by a panel of modified 

pyrazolo[3,4-d]pyrimidine (PP1) inhibitors was demonstrated both in vitro and in the 

context of intact cells; moreover, in a functional assay, inhibition of the v-Src 

transformed cell morphology was observed only in cells expressing the mutant kinase. 
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Thus, this approach provided a high degree of specificity that is not often achieved by 

small molecule inhibitors. 

     The conserved residue in the ATP-binding pocket whose mutation confers analog-

sensitivity has since been termed the “gatekeeper” residue, as it blocks access to a deeper 

hydrophobic pocket that can be accessed through space-generating mutation. It has been 

demonstrated through numerous subsequent studies that simple alignment of primary 

sequence can accurately predict the gatekeeper residue. This allows this strategy of 

kinase sensitization to be extended to identify analog-sensitive alleles of other kinase 

families. As testament to the appeal of this method, analog-sensitive alleles have been 

generated for at least 85 kinases to date (Zhang et al, 2013a). 

1.3.2 Analog-sensitive kinases for substrate identification/pathway mapping 

     Analog-sensitive kinases are not only used for studying kinase function, but have also 

been recently employed for network mapping, i.e. for identifying direct kinase substrates 

(Allen et al, 2005; Allen et al, 2007; Banko et al, 2011; Blethrow et al, 2008; Chi et al, 

2008; Ubersax et al, 2003). In the past, substrate identification has been approached 

through various genetic and chemical-based methods including genetic screening, protein 

and peptide array screens, in vitro lysate phosphorylation coupled with mass 

spectrometry, yeast two-hybrid screens, and bioinformatic analysis (Johnson & Hunter, 

2005). The only technique that can screen for direct interaction on a genome-wide scale, 

however, is use of an analog-sensitive kinase. 

     Wild type kinases transduce signals by transferring a phosphate group from ATP to 

serine, threonine, or tyrosine residues of substrate proteins. With a chemical-genetic 

approach to substrate identification, the analog-sensitive kinase uses N6-alkylated ATPγS 
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to transfer a thiophosphoryl rather than a phosphoryl group to its substrates. The bulky 

side chain confers specificity for the analog-sensitive kinase, and the thiophosphoryl 

group acts as a label for distinguishing direct substrates from all other phosphorylated 

proteins in the cell (Figure 1.4). The thiophosphoryl moiety can then be used as a 

“handle” for affinity purification of labeled substrates, followed by identification via 

mass spectrometry.  

     Traditional methods for PERK substrate identification have thus far revealed only 

three direct targets. Realizing that approximately one-third of the proteome is 

phosphorylated by only 518 kinases (Johnson & Hunter, 2005), and therefore that most 

kinases phosphorylate a multitude of substrates, it seems likely that these methods have 

fallen short of describing the breadth of PERK kinase activity.  

     The unbiased, chemical-genetic approach we describe here has provided a significant 

candidate substrate list from which to launch inquiry into novel signaling branches 

downstream of PERK. Confidence in these results has been increased through multiple 

biological replicates, as well as by the fact that two independent methods of substrate 

purification using the thiophosphoryl tag were employed. This has allowed us to identify 

overlap both within a single screening method, and between the two independent 

methods. Preliminary follow-up studies on four of the top candidates have verified 4/4, 

including the critical UPR mediators, ATF6 and IRE1. Future interrogation of these and 

other putative targets will elucidate the molecular details of known PERK signaling 

pathways, as well as uncover novel PERK networks and functions. 
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Figure 1.1 Signaling through the three branches of the Unfolded Protein Response. The ER stress 
sensors inositol-requiring gene 1 (IRE1), activating transcription factor 6 (ATF6), and (PKR)-like ER 
kinase (PERK) span the ER membrane. In response to conditions that perturb ER homeostasis, IRE1 is 
activated through oligomerization and trans-autophosphorylation. IRE1 RNase activity cleaves the mRNA 
of XBP-1 to generate an active transcription factor (XBP-1s) that targets genes involved in protein folding 
and ER-associated degradation to facilitate ER stress resolution and ultimately promote cell survival. 
Activation of ATF6 in response to ER stress involves its migration to the trans-Golgi, where it is 
proteolytically processed. This cleavage event releases the cytosolic bZIP domain, which translocates to the 
nucleus to activate the expression of ER chaperones and ERAD components. PERK activation occurs 
through oligomerization and trans-autophosphorylation, leading to phosphorylation of the translation 
initiation factor, eIF2α, and the antioxidant response factor, Nrf2. Phosphorylation of eIF2α leads to 
general inhibition of translation, contributing to overall cell survival. Phosphorylation of Nrf2 activates 
transcription of antioxidant factors. Selective upregulation of the bZIP transcription factor ATF4 through 
eIF2α targets both pro-survival genes as well as the pro-apoptotic factor GADD153/CHOP.  
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Figure 1.2 Oncogenic functions of PERK. Restricted nutrient and oxygen conditions in the tumor 
microenvironment triggers UPR signaling in cancer cells. The cell adaptive nature of PERK signaling 
enables enhanced cell survival, increased migratory and metastatic capacity, resistance to anoikis in ECM-
detached cells, and increased pro-angiogenic potential to support tumor growth. 
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Figure 1.3 Chemical-genetic approach to kinase inhibition. Generation of an analog-sensitive (AS) 
kinase involves mutation of the conserved gatekeeper residue in the ATP-binding pocket to a smaller amino 
acid. This creates a specificity pocket (red arrow) for binding bulky ATP analogs. ATP-competitive 
analogs with a bulky side chain will bind and inhibit the analog-sensitive kinase only; wild type kinases 
lacking the enlarged pocket will not accept the analog and thus will be unaffected in terms of activity. 
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Figure 1.4 Analog-sensitive kinases can be used for pathway mapping. The analog-sensitive kinase 
(AS) accepts an ATP analog that has been modified in two ways: first, by the addition of a bulky side chain 
and second, with the substitution of thiophosphate (*) in place of a phosphate group. While wild type 
kinases use ATP to phosphorylate substrates, the AS kinase uses bulky ATPγS to specifically label 
substrates with thiophosphate. This label can later be used to purify and identify substrates of the kinase of 
interest.
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CHAPTER TWO 

GENERATION AND CHARACTERIZATION OF AN ANALOG-SENSITIVE  

PERK ALLELE 

 

Nancy L. Maas, Nickpreet Singh, and J. Alan Diehl 

 

 

     Restriction of nutrients and oxygen in the tumor microenvironment disrupts ER 

homeostasis. Adaptation to this stress is mediated by the key UPR effector PERK, which 

is critical for tumor cell survival and growth. Given its protumorigenic activity, 

significant efforts have been made to elucidate the molecular mechanisms that underlie 

PERK function. Chemical-genetic approaches have recently proven instrumental in 

pathway mapping and interrogating kinase function. To enable a detailed study of PERK 

signaling we have generated an analog-sensitive PERK allele that accepts N6-alkylated 

ATP analogs. We find that this allele can be regulated by bulky ATP-competitive 

inhibitors, confirming the identity of the PERK gatekeeper residue as methionine 886. 

Furthermore, this analog-sensitive allele can be used to specifically label substrates with 

thiophosphate both in vitro and in cells. These data highlight the potential for using 

chemical-genetic techniques to identify novel PERK substrates, thereby providing an 

expanded view of PERK function and further definition of its signaling networks. 
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2.1 Introduction 

     The tumor microenvironment is characterized by limitation of nutrients and oxygen, 

both of which are necessary for tumor expansion. These conditions arise from the 

combination of increased demand by proliferating tumor cells and compromised 

vasculature in surrounding tissue. One consequence of this environmental challenge is a 

reduced capacity for tumor cells to properly fold secretory proteins. The accumulating 

misfolded proteins trigger a cell adaptive response termed the Unfolded Protein Response 

(UPR). The pro-survival nature of this response is co-opted by cancer cells, allowing 

them to survive the harsh tumor microenvironment (Luo & Lee, 2013). 

     The UPR is mediated by three primary signal transducers: ATF6, Ire1, and PERK. 

These three factors are embedded in the ER membrane and act as ER stress sensors. 

Under homeostatic conditions, ATF6, Ire1, and PERK are bound by the ER luminal 

chaperone GRP78/BiP, preventing their activation (Bertolotti et al, 2000; Shen et al, 

2002). With ER stress, however, the accumulation of unfolded proteins increases demand 

for BiP chaperone function. This releases BiP, permitting oligomerization and activation 

of Ire1 and PERK, and migration of ATF6 to the trans-Golgi where it is proteolytically 

processed (Bertolotti et al, 2000; Shen et al, 2002).  The initial stages of this response are 

stress adaptive. To this end, activation of Ire1 and ATF6 upregulate ER chaperones to 

facilitate protein folding. Activation of PERK triggers eIF2α phosphorylation which 

inhibits protein synthesis, thus lowering the protein load (Harding et al, 1999; Shi et al, 

1998). In addition, eIF2α phosphorylation contributes to cell cycle arrest through 

inhibiting cyclin D1 translation. In turn, cell cycle arrest reduces cellular biosynthetic 

needs and thereby contributes to ER stress resolution (Brewer et al, 1999). PERK 
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signaling also selectively upregulates certain proteins, like the transcription factor ATF4. 

ATF4 regulates the expression of pro-survival genes that encode detoxifying enzymes as 

well as ER chaperones and foldases (Harding et al, 2003; Hetz et al, 2013). 

Paradoxically, ATF4 also increases expression of the pro-apoptotic transcription factor 

GADD153/CHOP after prolonged or acute ER stress, setting the stage for cell death 

(Tabas & Ron, 2011). 

     Consistent with the idea that the pro-survival effects of the UPR are important for 

tumor cell survival, key UPR mediators have been implicated in promoting tumorigenesis 

(Hetz et al, 2013; Ma & Hendershot, 2004). Among these is the primary UPR effector 

PERK, which has been characterized for its role in tumor growth, cell migration, 

metastasis, angiogenesis, survival of ECM-detached cells, and the epithelial-

mesenchymal transition (Avivar-Valderas et al, 2011; Bi et al, 2005; Blais et al, 2006; 

Bobrovnikova-Marjon et al, 2010; Feng et al, 2014; Mujcic et al, 2013; Nagelkerke et al, 

2013). In light of these pro-tumorigenic effects, there has been significant interest in 

developing cancer therapeutics that target PERK activity, and in defining the molecular 

mechanisms that underlie PERK function (Axten et al, 2012; Pytel et al, 2014).  

     To further interrogate PERK signaling networks, we have generated an analog-

sensitive PERK allele that specifically binds N6-alkylated ATP analogs. This involves 

mutation of a conserved residue in the ATP-binding pocket known as the “gatekeeper” 

(Bishop et al, 1998; Bishop et al, 2000). The gatekeeper residue blocks access to a deeper 

hydrophobic pocket; when mutated to a smaller amino acid, the resultant enlarged pocket 

specifically binds ATP analogs modified with a bulky alkyl group. Here, we show that 

analog-sensitive PERK alleles are specifically inhibited by bulky ATP-competitive 
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analogs, and that PERK M886A can utilize N6-alkylated ATPγS to label substrate both in 

vitro and in the context of permeabilized cells. These data highlight a strong potential for 

use of PERK M886A in network mapping. 

 

2.2 Results 

2.2.1 Methionine 886 is the gatekeeper residue 

     The gatekeeper residue for most protein kinases can be predicted through primary 

sequence alignment with related family members (Shokat & Velleca, 2002). To identify 

the gatekeeper residue for PERK, this alignment was performed through the Kinase 

Sequence Database (Buzko & Shokat, 2002). Conserved residues contacting ATP are 

represented in green, with the predicted residue for conferring analog sensitivity 

highlighted in red (Figure 2.1A). The predicted gatekeeper residue for PERK is 

methionine 886. To generate an analog-sensitive PERK allele, methionine 886 was 

mutated to three distinct small hydrophobic residues: glycine, alanine, and valine. To test 

whether M886 functions as the gatekeeper residue, recombinant wild type and mutant 

kinases were purified and used for radiometric in vitro kinase assays (Figure 2.1B). The 

p85 subunit of PI3K was used as substrate, as previous unpublished work from our lab 

revealed it to be a direct PERK substrate in vitro. We found that the three mutant PERK 

alleles retained varying degrees of kinase activity. Mutation of M886 to glycine severely 

crippled PERK activity, therefore, this mutant was not used for further study. M886V 

retained the highest level of kinase activity, and was thus considered the strongest 

candidate. In the presence of the bulky ATP-competitive inhibitor 1-NM-PP1, wild type 

kinase activity was unaffected, while all mutant alleles were inhibited both in terms of 
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PERK autophosphorylation and phosphorylation of p85 substrate. This suggests that 

mutation of M886 to a smaller amino acid opened an affinity pocket that allowed the 

bulky ATP analog to bind, confirming M886 as the gatekeeper residue. These results 

were verified for M886V by additional radiometric assays in which recombinant PERK 

was incubated with eIF2α substrate in the presence or absence of 1-NM-PP1 or another 

bulky ATP-competitive analog, 3-MB-PP1 (Figure 2.1C). 

2.2.2 PERK M886V and M886A are analog-sensitive in the context of cells 

     To assess kinase activity and our ability to regulate PERK gatekeeper mutants in vivo, 

PERK-/- embryonic fibroblasts were transduced with retrovirus encoding wild type 

PERK, PERK M886A or PERK M886V.  Stably transduced cell lines were subsequently 

challenged with thapsigargin to induce ER stress, in the presence or absence of the 

indicated doses of 3-MB-PP1. Consistent with in vitro results, the bulky ATP analog did 

not affect wild type PERK autophosphorylation or phosphorylation of eIF2α at any 

concentration tested (Figure 2.2A-B). PERK M886V exhibited sensitivity to 3-MB-PP1 

at concentrations between 20-40µM, with maximal inhibition at 100µM (Figure 2.2A). 

Of note, though this concentration did not affect wild type activity, it is well above the 

concentration of PP1 inhibitor generally used in cells (Au-Yeung et al, 2010; Levin et al, 

2008; Liu et al, 2009). In contrast, PERK M886A exhibited maximal sensitivity at 

significantly lower concentrations, suggesting that the alanine mutation permits more 

efficient analog binding (Figure 2.2B; data not shown). 

     To further characterize PERK M886A, effects on downstream signaling were assessed 

by stressing cells with thapsigargin for a more extended period to induce ATF4 and 

CHOP expression. 3-MB-PP1 inhibited PERK M886A and eIF2α phosphorylation as 
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well as ATF4 and CHOP induction, while having no influence on wild type activity 

(Figure 2.2C). Collectively, these data in vitro and in cells demonstrate that methionine 

886 is the PERK gatekeeper residue. Moreover, these studies suggest that mutation of 

M886 to alanine allows the highest binding affinity for PP1 inhibitors while retaining 

adequate kinase activity. 

2.2.3 3-MB-PP1 inhibits PERK activity, but exhibits previously uncharacterized off-

target effects 

     PERK is essential for cell survival following acute ER stress (Harding et al, 2000), 

therefore, we asked whether 3-MB-PP1 treatment impaired survival in cells expressing 

the PERK gatekeeper mutants. To address this, acute tunicamycin treatment was 

delivered in the presence or absence of 3-MB-PP1. Cells were also treated with the 

commercially available PERK inhibitor GSK2606414 (Axten et al, 2012) as a positive 

control. The outgrowth of colonies following ER stress was visualized by Giemsa 

staining. As anticipated, the control PERK inhibitor suppressed colony outgrowth, 

however, all cells regardless of genotype exhibited increased survival with 3-MB-PP1 

treatment (Figure 2.3A-B; data not shown). Given that PP1 inhibitors are known to be 

highly selective (Bishop et al, 2000), this off-target effect was surprising. Though this 

precludes further study of PERK function with 3-MB-PP1, the in vitro assays served to 

confirm the gatekeeper mutant and spur an effort to determine whether PERK M886A 

could be used as a tool for pathway mapping. 

2.2.4 PERK M886A can utilize bulky ATP analogs to label substrates in vitro 

     Chemical-genetic techniques have also been employed to map signaling networks 

through use of an analog-sensitive kinase that can specifically label substrates (Allen et 
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al, 2005; Allen et al, 2007; Banko et al, 2011; Blethrow et al, 2008). With this approach, 

the analog-sensitive kinase uses N6-alkylated ATPγS to transfer a thiophosphoryl group 

to its substrates. The bulky group again confers specificity for the analog-sensitive 

kinase, and the thiophosphoryl group acts as a label for distinguishing direct substrates 

from all other phosphorylated proteins in the cell. To determine whether PERK was able 

to use ATPγS as a phosphodonor, recombinant wild type PERK was incubated with 

eIF2α in the presence or absence of ATPγS. Reactions were alkylated and probed by 

western blot with an anti-thiophosphate ester antibody (Allen et al, 2005; Allen et al, 

2007) that recognizes alkylated, thiophosphorylated substrate (Figure 2.4A). PERK and 

eIF2α phosphorylation could be detected only in the presence of the ATPγS and the 

alkylating agent, PNBM, demonstrating not only that PERK can use ATPγS but that the 

thioP antibody is specific in this system. We then asked whether the M886A mutant 

could specifically use a bulky ATPγS analog to thiosphorylate substrate. In vitro kinase 

assays demonstrated that indeed, the gatekeeper mutant could use bulky and non-bulky 

ATPγS to label eIF2α, while wild type PERK could only use the non-bulky analog 

(Figure 2.4B). Furthermore, a comparison of various bulky analogs established N6-

furfuryl ATPγS as the preferred phosphodonor (Figure 2.4C). 

2.2.5 M886A thiophosphorylates substrate in permeabilized cells 

     Maintaining a kinase in its appropriate subcellular compartment is arguably the most 

desirable context for substrate labeling and identification. Therefore, we asked whether 

PERK could thiophosphorylate substrate under near-physiological conditions. This was 

addressed by gently permeabilizing cells expressing PERK wild type or M886A with a 

low concentration of digitonin. Cells were then incubated with thapsigargin in the 
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presence of N6-furfuryl ATPγS for in vivo substrate labeling. Analysis of whole cell 

lysates by western blot revealed increased thiosphorylation in the M886A mutant as 

compared to wild type (Figure 2.5A). Moreover, when labeled lysates were subjected to 

immunoprecipitation with the thioP antibody, increased labeling was again detected for 

M886A in enriched samples. To verify that the increase in signal was in fact dependent 

upon PERK kinase activity, cells were pre-treated with GSK2606414 prior to labeling. 

PERK inhibition decreased thiophosphorylation in the M886A-labeled sample to 

background levels, as seen in the PERK-/- and wild type lanes (Figure 2.5B). Together, 

these data reveal a strong potential for PERK M886A in screening for novel substrates.  

 

2.3 Discussion 

     To assess PERK function and identify novel signaling branches, we report an analog-

sensitive PERK allele, M886A, that is inhibited by the bulky ATP-competitive analog 3-

MB-PP1 both in vitro and in vivo. These results confirm methionine 886 as the 

gatekeeper residue for PERK. It is interesting to note, however, that our characterization 

of cellular responses to 3-MB-PP1 suggest an off-target activity of pyrazolo[3,4-

d]pyrimidine (PP) inhibitors that has not been previously reported. Not only did the PP1 

inhibitor enhance survival of the M886A mutant, which was the exact opposite of its 

anticipated effect, it also increased survival of cells expressing wild type PERK. 

Subsequent experiments performed by pulsing in 3-MB-PP1 at an even lower dose 

(5µM) recapitulated this result (data not shown). This could reflect inhibition of a stress 

induced pro-apoptotic pathway, or possibly activation of another UPR branch. Although 

we have not explored alternative inhibitors for use with M886A, several possibilities do 
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exist for reducing off-target effects. Recent work from the Shokat lab proposed mutating 

the gatekeeper residue to cysteine for use with electrophilic inhibitors, a panel of which 

were screened for potency and specificity (Garske et al, 2011). These, in addition to a 

new set of inhibitors with even higher potency and selectivity (Zhang et al, 2013a) would 

provide a solid platform from which to launch such a study. 

     In terms of using the analog-sensitive version of PERK for novel substrate 

identification, the work presented here will be instrumental. To date, PERK substrate 

mapping has only been attempted via yeast two-hybrid screening (Cullinan et al, 2003).  

This study identified the antioxidant response factor Nrf2 as a direct PERK substrate, one 

of only three that have been identified thus far. We have shown that PERK M886A can 

label substrates with a unique thiophosphoryl tag, both in vitro and in permeabilized 

cells. This tag can subsequently be used for purification and mass spectrometry-based 

substrate identification. Moreover, the conditions have been optimized to allow substrate 

labeling in gently permeabilized cells, which should maintain PERK in its native 

subcellular compartment. This is arguably the most favorable condition for screening 

purposes, as it should reduce the number of false positives. In vivo labeling techniques 

have recently been used to successfully identify novel substrates of Erk2 and AMPK 

(Allen et al, 2007; Banko et al, 2011), giving us confidence in identifying PERK 

substrates in a similar fashion. Such a screen would provide significant information for 

understanding PERK signaling from a purely biological standpoint, and also may provide 

additional mechanistic data to consider for PERK inhibitor development in the treatment 

of cancer.  
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2.4 Materials and Methods 

2.4.1 Cell culture and treatments 

     Cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with 

10% fetal bovine serum, 4mM L-glutamine, 55mM β-mercaptoethanol, and nonessential 

amino acids. To induce ER stress, cells were treated with 500nM thapsigargin (Sigma 

T9033) or 2.5ug/ml tunicamycin (Sigma T7765) for the indicated times. For PERK 

inhibition, cells were pre-treated with 1µM GSK2606414 (Axten et al, 2012) or the 

indicated concentrations of 3-MB-PP1 (EMD Millipore 529582) for 1 hr. 

2.4.2 Retroviral vectors and stable cell lines 

     Retroviral vectors for expression of PERK M886A and M886V were generated by 

QuikChange site-directed mutagenesis (Agilent 200521) of Myc-tagged full-length 

mPERK in pBabe-puro. Stable cell lines were generated by transducing PERK-/- mouse 

embryonic fibroblasts (Gao et al, 2012) with retrovirus carrying these constructs. Cells 

were selected with and maintained in 5ug/ml puromycin. 

2.4.3 Antibodies and immunoblotting 

     Cells were lysed in EBC buffer (50  mM Tris pH 8.0, 120  mM NaCl, 0.5% NP-40) or 

RIPA buffer (50 mM Tris pH 8, 150 mM NaCl, 1.0% NP-40, 0.1% SDS) supplemented 

with protease and phosphatase inhibitors. The following antibodies were used for 

immunoblotting: anti-PERK (Cell Signaling 3192), anti-phosphoserine 51 of eIF2α (Cell 

Signaling 3597), anti-CHOP (Cell Signaling 2895), anti-eIF2α (Invitrogen AHO0802), 

anti-ATF4 (Santa Cruz Biotechnology sc-200), anti-lamin B (Santa Cruz Biotechnology 

sc-6216), anti-beta actin (Sigma A5441). The thioP antibody has been previously 

described (Allen et al, 2005; Allen et al, 2007) and was available from Epitomics/Abcam 
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(ab92570). 

2.4.4 Radiometric in vitro kinase assay 

     PERK M886G, M886A, and M886V were generated by QuikChange site-directed 

mutagenesis (Agilent 200521) of GST-tagged PERK-ΔN in pGEX (Bobrovnikova-

Marjon et al, 2012). Recombinant PERK was expressed in BL21 bacterial cells and 

purified using GST Purification columns (Clontech 635619). HIS-tagged eIF2α in 

pET15b was expressed in BL21(DE3) cells and purified on HisTALON gravity columns 

(Clontech 635654). Recombinant p85 was from SignalChem (P31-30H). PERK was pre-

treated with indicated concentrations of 1-NM-PP1 (EMD Millipore 529581) or 3-MB-

PP1 (EMD Millipore 529582) for 30 min. PERK was then incubated with recombinant 

substrate in the presence of γ-32P-ATP for an additional 30 min at 30°C. Reactions were 

run on an SDS-PAGE gel, Coomassie-stained for loading, and exposed to film. 

2.4.5 ATPγS in vitro kinase assay 

     Recombinant GST-tagged PERK-ΔN (described above) was incubated with 

recombinant eIF2α in the presence of 1mM ATPγS (Biolog A060) or N6-substituted 

ATPγS (Biolog F008, B072, P026) for 30 min at 30°C (Hertz et al, 2010). Following 

thiophosphorylation, reactions were alkylated by adding p-nitrobenzyl mesylate (Abcam 

ab138910) to 2.5mM for 1 hr at room temperature. Samples were boiled in SDS sample 

buffer, run on an SDS-PAGE gel, and probed by western blot for thiophosphorylated 

protein.  

2.4.6 Fractionation 

     Cells were lysed in 6 pellet volumes Harvest Buffer (10mM HEPES pH 7.9, 50mM 

NaCl, 0.5M sucrose, 0.1mM EDTA, 0.5% Triton X 100) supplemented with 1mM DTT, 
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and protease and phosphatase inhibitors. Nuclei were pelleted, washed in Buffer A 

(10mM HEPES pH 7.9, 10mM KCl, 0.1mM EDTA, 0.1mM EGTA), and lysed in 4 

volumes Buffer C (10mM HEPES pH 7.9, 500mM NaCl, 0.1mM EDTA, 0.1mM EGTA, 

0.1% NP-40). Nuclei were vortexed for 15 min at 4°C and clarified. Cytoplasmic and 

nuclear extracts were analyzed by western blot. 

2.4.7 In vivo substrate labeling and immunoprecipitation 

     Samples were prepared as previously described (Allen et al, 2007) with slight 

modifications. In brief, cells were trypsinized, counted, and resuspended to 3x106 cells/ml 

in cold kinase buffer (25mM Tris pH 7.5, 10mM MgCl2 in PBS) and 50ug/ml digitonin 

to permeabilize. Cells were incubated on ice for 5 min, pelleted gently, then resuspended 

in kinase buffer containing 500nM thapsigargin, 100µM N6-furfuryl ATPγS (Biolog 

F008), and 1mM GTP (Sigma G8877) for substrate labeling. Cells were incubated for 1 

hr at 30°C with gentle shaking, then lysed in RIPA buffer (50 mM Tris pH 8, 150 mM 

NaCl, 1.0% NP-40, 0.1% SDS) containing 25mM EDTA to quench. Lysates were 

alkylated by adding p-nitrobenzyl mesylate (Abcam ab138910) to 2.5mM for 1 hr at 

room temperature with nutation. For immunoprecipitation, lysates were exchanged to 

RIPA buffer on PD Miditrap G-25 columns (GE Healthcare 28-9180-08) to remove 

PNBM. Lysates were then pre-cleared with rProtein G agarose (Invitrogen 15920-010) 

and subjected to immunoprecipitation with thioP antibody bound to rProtein G agarose 

beads.  
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2.4.8 Cell survival after ER stress 

     Cells were seeded at 20,000 per 60mm dish and pre-treated with indicated doses of 3-

MB-PP1 for 1 hr. Cells were then challenged with an acute dose of tunicamycin 

(2.5ug/ml) for 30 min. Colony outgrowth was assessed by Giemsa staining after 6 days. 
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Figure 2.1 The gatekeeper residue for PERK is methionine 886. (A) Sequence alignment of the PERK 
ATP-binding pocket with related kinases predicts the conserved gatekeeper residue, shown in red. (B) PP1 
inhibitors inhibit the gatekeeper mutant in vitro. Recombinant WT PERK-ΔN or PERK-ΔN M886G/A/V 
were pre-incubated with 1-NM-PP1. Kinase was then incubated alone (-) or with p85 substrate in the 
presence of γ-32P-ATP. Reactions were run on an SDS-PAGE gel and exposed to film. Western blots were 
performed against total levels to confirm equal loading (Ponceau stains for p85 shown for M886A, 
M886V). (C) Recombinant WT PERK-ΔN and PERK-ΔN M886V were pre-incubated with 1-NM-PP1 
(NM) or 3-MB-PP1 (MB). Kinase was then incubated with recombinant eIF2α in the presence of γ-32P-
ATP. Reactions were run on an SDS-PAGE gel and exposed to film.  

B 

A 
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Figure 2.2 Analog-sensitive PERK alleles are functional in the context of cells. (A) 3-MB-PP1 inhibits 
PERK M886V. PERK-/- mouse fibroblasts expressing PERK WT or M886V were pre-treated with the 
indicated doses of 3-MB-PP1, then challenged with thapsigargin (TG) for 1 hr. PERK activation was 
assessed by western blot for PERK and eIF2α phosphorylation. (B) 3-MB-PP1 inhibits PERK M886A. 
PERK-/- mouse fibroblasts expressing PERK WT or M886A were treated as described in (A). (C) Cells 
were pre-treated with the indicated doses of 3-MB-PP1, then challenged with TG for 4 hr to induce ATF4 
and CHOP expression. Cytoplasmic fractions were probed for PERK and p-eIF2α, with total eIF2α to 
control for equal loading. Nuclear fractions were probed for ATF4 and CHOP, with lamin B as a loading 
control. 
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Figure 2.3 3-MB-PP1 rescues tunicamycin-sensitivity in wildtype cells, demonstrating an off-target 
effect. (A) Immortalized PERK-/- mouse fibroblasts stably expressing wild type PERK were pre-treated 
with 10µM (bottom, left) or 15µM (bottom, right) 3-MB-PP1 for 1h, or with GSK2606414 as a control. 
Cells were then acutely stressed with tunicamycin for 30 min and allowed to grow for 6 days. Colonies 
were stained with Giemsa. (B) Cells of the indicated genotypes were pre-treated with 10µM 3-MB-PP1 for 
1h, then treated as described in (A). 
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Figure 2.4 PERK M886A can utilize bulky ATPγS to thiophosphorylate substrate in vitro. (A) The 
thioP antibody specifically recognizes alkylated, thiophosphorylated PERK substrate. Recombinant WT 
PERK-ΔN was incubated with eIF2α in the presence or absence of 1mM ATPγS or ATP. Samples were 
alkylated (PNBM) and assessed by western blot for thiophosphorylated protein using an anti-thiophosphate 
ester antibody (α-thioP). (B) Only PERK M886A can use bulky ATPγS to thiophosphorylate substrate in 
vitro. Recombinant WT or M886A PERK-ΔN was incubated with eIF2α in the presence of ATPγS or 
benzyl (Bn) ATPγS. Reactions were alkylated, then and probed by western blot with the thioP antibody. 
(C) PERK M886A prefers N6-furfuryl ATPγS. Recombinant WT or M886A PERK-ΔN were used in 
kinase assays, as described in (B) with the inclusion of the indicated bulky ATPγS analogs.  
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Figure 2.5 PERK M886A thiophosphorylates substrate in permeabilized cells. (A) PERK-/- cells 
expressing either PERK WT or M886A were permeabilized, then incubated with thapsigargin and N6-
furfuryl ATPγS for substrate labeling. Cells were lysed, and lysates alkylated. Lysates were probed by 
western blot for total thiophosphorylated substrate (left). Alkylated lysates were then immunoprecipitated 
with α-thioP (right). (B) Cells expressing M886A were pre-treated with GSK2606414 inhibitor as a control 
for PERK-dependent activity. The indicated cell types were then treated as described in (A).  

B A 
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CHAPTER THREE 

A CHEMICAL-GENETIC SCREEN FOR PERK SUBSTRATE IDENTIFICATION 

 

Nancy L. Maas, Rebecca Levin, Kevan M. Shokat, and J. Alan Diehl 

 

 

     The ER kinase PERK, a key mediator of the Unfolded Protein Response, is known to 

promote tumorigenesis, cell migration, and metastasis, as well as inhibit anoikis. Though 

PERK has these and other important cellular functions, only a handful of its direct 

substrates are currently known. Therefore, in order to provide an expanded view of 

PERK function and further definition of its signaling networks, we have used a chemical-

genetic approach to screen for additional PERK substrates. We find that a mutation in the 

PERK ATP binding pocket renders it sensitive to bulky ATP analogs both in vitro and in 

cells. Furthermore, bulky ATPγS analogs were used exclusively by the analog-sensitive 

version of PERK to label substrates with thiophosphate. After labeling, 

thiophosphorylated substrates were affinity purified by immunoprecipitation or 

thiophosphopeptide capture, and subsequently identified by tandem mass spectrometry. 

Utilization of this analog-sensitive PERK allele for substrate characterization will be 

discussed. 
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3.1 Introduction 

     It is estimated that approximately one-third of all intracellular proteins are 

phosphorylated (Johnson & Hunter, 2005), making phosphorylation the most common 

signaling mechanism for regulating protein function and activity. Protein kinases are 

responsible for mediating this modification through transfer of a phosphate group from 

ATP to serine, threonine, or tyrosine of its substrates. Phosphorylation induces a 

conformational change that affects either the protein’s catalytic activity, or creates a 

binding motif for interacting proteins. This modification is reversible; the removal of 

phosphate is catalyzed by protein phosphatases. This quality of reversibility is essential 

for the dynamic nature of cellular response to internal and external stimuli, i.e. for signal 

transduction. 

     Chemical-genetic techniques have recently been at the forefront of kinomics, or the 

global study of kinase signaling. In contrast to more traditional methods for substrate 

identification, this approach can be used to identify direct kinase-substrate relationships 

in a large-scale setting. Initial studies utilized an analog-sensitive allele of Cdk1 (Cdk1-

as1) that was engineered to accept a bulky, radiolabeled ATP analog (Ubersax et al, 

2003). Cdk1-as1 catalyzed transfer of the radiolabel to substrates in a library of affinity-

tagged yeast proteins, which were then purified and assessed for phosphorylation. By this 

method, over 200 Cdk1 substrates were identified. For mammalian systems, however, 

such libraries do not yet exist. It was therefore necessary to design a strategy for 

transferring an affinity tag to substrates that could later be used for purification and 

substrate identification. To this end, Shokat and colleagues devised a system wherein an 

analog-sensitive kinase could instead transfer a thiophosphate group from a bulky ATPγS 
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analog to substrates (Allen et al, 2007; Blethrow et al, 2008). This thiophosphate could 

later be used as a “handle” for purification and identification by mass spectrometry.  

     With regard to PERK signaling, only one screen has thus far been performed for 

substrate identification (Cullinan et al, 2003), with just three direct PERK substrates 

identified to date: the translation initiation factor eIF2α (Harding et al, 1999; Shi et al, 

1998), the antioxidant response factor Nrf2 (Cullinan et al, 2003), and most recently, the 

FOXO transcription factor (Zhang et al, 2013b). Further elucidation of PERK signaling 

networks is therefore in order. As described in Chapter 2, we have generated and 

thoroughly characterized an analog-sensitive PERK allele that can specifically transfer 

thiophosphate from N6-alkylated ATPγS to eIF2α substrate in vitro. Furthermore, we 

have demonstrated that substrate labeling can be conducted in the context of intact cells, 

allowing PERK to remain in its native compartment during this process. Here we present 

the results of a chemical-genetic screen for PERK substrates, with substrate identification 

performed by two methods. Interestingly, the screen results suggest crosstalk between 

PERK and the two other major branches of the UPR: ATF6 and IRE1. Two additional 

novel substrates, VAPB and EEF1D, have also been verified in vitro, with a significant 

list of candidates yet to be explored. 

 

3.2 Results 

3.2.1 In vivo substrate labeling followed by immunoprecipitation and mass 

spectrometry identifies 607 candidate substrates 

     The chemical-genetic PERK substrate screen was designed utilizing the previously 

characterized analog-sensitive allele, PERK M886A (Maas et al, 2014). As demonstrated 
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in the previous work, the optimal ATP analog for use by PERK M886A is N6-furfuryl 

ATPγS. We then sought to optimize labeling conditions, i.e. to determine the optimal 

length of incubation with ATP analog that would achieve maximal thiophosphoryl 

labeling in the M886A sample with minimal background signal in PERK-/- and wild type 

samples. To address this, immortalized mouse embryonic fibroblasts transduced to stably 

express either wild type or M886A PERK were gently permeabilized and incubated with 

the bulky ATP analog, N6-furfuryl ATPγS in the presence of thapsigargin to induce ER 

stress. Cells were then lysed and assessed for total thiophosphorylated substrate by 

western blot (Figure 3.1). We found that cells incubated with ATP analog for 1h resulted 

in a significant increase in thiophosphorylated protein over the 0.5h labeling time. 

Incubation for 1.5h did not increase this signal, therefore the 1h time point was used for 

substrate labeling for the screen. Importantly, all samples exhibited minimal substrate 

labeling in PERK-/- and wild type cells. 

     For screening purposes, the scale of the labeling experiment was increased 

significantly, then one of two substrate identification methods was employed (Figure 

3.2). The first method involved alkylation of thiophosphorylated proteins, followed by 

affinity purification of labeled proteins with an antibody that recognizes the alkylated, 

thiophosphorylated moiety. Labeling efficiency was verified prior to 

immunoprecipitation by western blot; a stronger signal confirmed more efficient substrate 

labeling by PERK M886A compared with wild type (Figure 3.3A, left). Following 

immunoprecipitation with the α-thioP antibody, samples were run on an SDS-PAGE gel 

and silver-stained to reveal thiophosphorylated proteins (Figure 3.3A, right). Mass 

spectrometric analysis of silver-stained gel slices identified over 600 proteins specifically 
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found in the samples labeled by the analog-sensitive kinase and not in the wild type 

samples. Only those proteins that were detected at 5 peptides or greater were considered 

for this list. 

     The candidate list was subsequently sorted by GO term and assessed for enrichment 

over reference set (Figure 3.3B) using GOToolbox (Martin et al, 2004). We found 

significant enrichment of metabolic pathway categories, which is consistent with the role 

of PERK in lipid and glucose metabolism. Also in line with known PERK functions were 

GO categories related to transport, specifically, vesicle-mediated and transmembrane 

transport. Interestingly, both ATF6α and ERN1/IRE1, the master regulators of the other 

UPR branches were thiophosphorylated in the analog-sensitive kinase samples alone. 

This is intriguing in that it suggests a novel mode of crosstalk between the three main 

UPR pathways. 

3.2.2 ATF6α  and IRE1 are candidate PERK substrates. 

     Though the idea of integrated signaling between UPR pathways has been proposed, no 

direct interaction between PERK and ATF6 or IRE1 has yet been shown. There is, 

however, evidence that PERK activation occurs prior to ATF6 and IRE1 (Rutkowski & 

Kaufman, 2004), and that PERK is required for full ATF6 activation (Teske et al, 2011). 

These, together with the fact that activated PERK is in close proximity to both ATF6 and 

IRE1, are consistent with the idea that PERK could play a role in full activation of the 

remaining UPR branches. 

     To independently confirm results from the screen, substrate thiophosphorylation was 

performed in permeabilized cells stably expressing either wild type or M886A PERK, 

and transfected to overexpress a tagged form of either ATF6 or IRE1. Increased substrate 
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labeling was observed in cells expressing PERK M886A (Figure 3.4A). Candidate 

substrates were subsequently immunoprecipitated and assessed for thiophosphorylation. 

Both IRE1 (Figure 3.4B) and ATF6 (Figure 3.4C) were again specifically phosphorylated 

in cells expressing PERK M886A, confirming the results of the screen for these two 

candidates. 

     To verify that ATF6 and IRE1 could be directly phosphorylated by PERK, in vitro 

kinase assays were performed. Tagged forms of both proteins were expressed in 293T 

cells and immunoprecipitated for use as substrate in vitro. Incubation of substrate with 

recombinant PERK in the presence of ATPγS was followed by analysis of 

thiophosphorylated protein by western blot. We found that ATF6 was directly 

phosphorylated by PERK in vitro (Figure 3.5, left), which led us to ask whether the site 

of phosphorylation could also be determined. To address this, scaled-up kinase assays 

were performed, and reactions were run on an SDS-PAGE gel for silver staining and 

analysis by mass spectrometry (Figure 3.5, right). Though the sequence coverage was 

close to 50% overall, tryptic digest did not produce many suitable peptides for the N-

terminal half, the cytosolic region of ATF6 that would most likely be phosphorylated by 

PERK. We feel confident that chymotryptic digest of a 5-fold increased reaction would 

yield the desired result. 

     Results for IRE1 were inconclusive as recombinant PERK and immunoprecipitated 

IRE1 were of nearly identical molecular weight (data not shown). Further optimization 

(e.g. utilizing a C-terminal fragment of recombinant IRE1 in place of full-length) will 

therefore be required to determine whether IRE1 is a direct PERK target.  
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3.2.3 In vivo substrate labeling followed by thiophosphopeptide capture identifies 35 

candidate substrates with phospho-sites. 

     As an independent method of confirming results from the primary screen and culling 

the large list of candidate substrates, a second method for PERK substrate identification 

was employed (Hertz et al, 2010). This method involves digestion of thiophosphorylated 

proteins to peptides, which are then affinity purified on iodoacetyl beads. After 

purification, peptides are specifically released by oxone treatment. This system has the 

advantage of providing not only a list of candidate substrates, but also identifying the 

sites of phosphorylation. Incorporated into this screen was an additional control: substrate 

labeling in the absence of PERK.  

     We found that labeling efficiency was higher in PERK M886A samples than in 

PERK-/- or cells expressing wild type PERK, as anticipated (Figure 3.6). Three 

independent large-scale labeling experiments were performed, followed by 

thiophosphopeptide capture to generate a candidate substrate list of 35 proteins with 

defined phospho-sites (Table 3.1). These proteins were only considered candidate 

substrates if detected in the M886A sample alone, a stringent cutoff for the screen. Of 

these, over half were ER-associated, including PERK itself which we anticipated to be 

autophosphorylated. To determine whether there were putative substrates identified by 

both immunoprecipitation/MS and peptide capture/MS, overlap between datasets was 

assessed (Table 3.2). We found that 9/35 of the substrates identified here were also found 

in the larger dataset described in 3.2.1. In terms of overlap between the three peptide 

capture replicates, 5/35 were repeatedly represented. Of immediate interest were two of 
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the candidate substrates: eukaryotic elongation factor 1-delta (EEF1D), and vesicle-

associated membrane protein-associated protein B/C (VAPB).  

3.2.4 PERK phosphorylates EEF1D on serine 162. 

     General translation is rapidly attenuated with PERK activation; this has previously 

been attributed solely to PERK-dependent phosphorylation and inhibition of the 

eukaryotic translation initiation factor, eIF2α. This does not, however, preclude the 

possibility that concomitant inhibition of the translation elongation factor eEF1D by 

PERK could also serve to facilitate this response. In fact, studies of translational 

repression mechanisms during mitosis support the idea that translation is tightly regulated 

not only at the initiation stage but also during elongation (Sivan et al, 2007).  

     eEF1D is the catalytic delta subunit of eEF1B, a multi-subunit guanine exchange 

factor (GEF) that facilitates the exchange of GDP for GTP on eEF1A. During mitosis, 

CDK1-mediated phosphorylation of eEF1D on serine 133 inhibits the interaction between 

eEF1B and eEF1A (Sivan et al, 2011). This slows tRNA delivery to ribosomes, thus 

contributing to translational repression. eEF1D has also been previously identified as a 

substrate of casein kinase II (CK2) (Gyenis et al, 2011; Palen et al, 1994; Sheu & Traugh, 

1997; Sheu & Traugh, 1999). Gyenis et al identified eEF1D as a protein that exhibited 

decreased phosphorylation in cells treated with CK2 inhibitors as well as cells depleted 

for CK2. Furthermore, CK2 has been shown to directly phosphorylate eEF1D on serine 

162 (Gyenis et al, 2011; Sheu & Traugh, 1999), which is the PERK-mediated phospho-

site identified in our study. 

     To determine whether PERK directly phosphorylates eEF1D, in vitro kinase assays 

were performed (Figure 3.7). Recombinant PERK was incubated with 
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immunoprecipitated eEF1D wild type or S162A mutant in kinase buffer supplemented 

with ATP. Reactions were then assessed for eEF1D S162 phosphorylation by western 

blot using a phospho-specific antibody (Gyenis et al, 2011). We found that PERK 

directly phosphorylated wild type eEF1D, but that this event was abrogated when the 

S162A mutant was used as substrate. This demonstrates that eEF1D is directly 

phosphorylated by PERK on serine 162 in vitro, validating the result from our screen.  

3.2.5 PERK phosphorylates VAPB in vitro. 

     Vesicle-associated membrane protein-associated protein B/C (VAPB/ALS8) was also 

identified as a putative PERK substrate, with phosphorylation detected on threonine 148. 

VAPB is a member of the VAP family, which was originally studied for its role in 

neurotransmitter exocytosis (Skehel et al, 1995) and has since been identified as an 

integral membrane protein of the ER, and mediator of the UPR (Kagiwada et al, 1998; 

Kanekura et al, 2006). Moreover, VAPB has been implicated in regulating ER structure 

through interaction with Nir proteins, ER-Golgi trafficking, and regulation of 

phopholipids (Amarilio et al, 2005; Peretti et al, 2008). A role for VAPB is also 

suggested in ER protein quality control (ERQC), with its loss resulting in protein 

accumulation, ER expansion, and ER stress (Moustaqim-Barrette et al, 2014). These 

significant functions of VAPB in the context of ER stress make it a prime candidate for 

further investigation as a putative PERK target.  

     To determine whether PERK directly phosphorylates VAPB, recombinant PERK was 

incubated with recombinant human VAPB in the presence of the non-bulky ATP analog, 

ATPγS for substrate labeling (Figure 3.8). Following alkylation, reactions were probed 

by western blot for thiophosphorylated substrate. We found that only in the presence of 
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VAPB, kinase and ATPγS was a band between 25-37 kDa detected. This was previously 

determined by Coomassie stain to be the molecular weight of recombinant VAPB (data 

not shown). These data confirm VAPB as a PERK substrate in vitro. Though the 

phospho-site has not yet been tested, a VAPB T148A phospho-mutant will determine 

whether this modification is as predicted by our screen. 

   

3.3 Discussion 

     In the present study, we have successfully designed and implemented a chemical-

genetic screen for PERK substrate identification. This screen was optimized for substrate 

labeling in vivo, which should maintain PERK in its native compartment, thereby 

decreasing the number of spurious positives. Two independent methods of substrate 

identification have generated candidate lists of 35 and 607 putative substrates. We have 

begun to verify individual candidates, and three of the four tested thus far have been 

confirmed for direct phosphorylation by PERK in vitro. These putative substrates (ATF6, 

eEF1D, and VAPB) are ER-associated proteins that have either demonstrated influence 

on UPR signaling and/or seem likely to mediate downstream PERK functions.  

     Though we report a high number of candidate substrates that are ER-associated, and 

have detected PERK thiophosphorylation exclusively and consistently in samples labeled 

by the analog-sensitive kinase, we have not yet been able to detect thiophosphorylation of 

the three known PERK substrates (eIF2α, Nrf2, and FOXO). To further pursue this type 

of screen validation, we have assessed eIF2α immunoprecipitated from labeled lysates 

for evidence of thiophosphorylation. Again, we have not been able to detect this 

modification. We are therefore unable to definitively state that within the setting/ 
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conditions of our screen, PERK M886A targets its native substrates. One explanation for 

our failure to detect eIF2α thiophosphorylation is fact that a large pool of eIF2α is 

rapidly phosphorylated within minutes after ER stress induction (data not shown). It is 

therefore possible that PERK M886A phosphorylates the majority of eIF2α prior to the 

influx of bulky ATPγS during substrate labeling. Alternatively, our system could be 

saturated by newly-identified substrates that are more readily labeled or purified. The 

abundance of unlabeled protein in the cell could also mask labeled substrate of lower 

abundance. Overall screen sensitivity would then be improved through additional 

phosphopeptide enrichment steps. Finally, it remains possible that cell treatments 

incorporated into our screen such as trypsinization and permeabilization have drawn 

PERK M886A away from its natural targets. We have shown, however, that in the same 

cell lines used for the screen, signaling downstream of PERK M886A remains intact 

(Maas et al, 2014), increasing our confidence in screen integrity. 

      In terms of prioritizing candidates for follow-up study, the list of ~600 proteins will 

present a challenge. This list was generated through immunoprecipitation, which could be 

optimized with more stringent wash conditions if additional biological replicates are 

attempted. Sodium dodecyl sulfate (SDS) was used in the lysis buffer prior to 

immunoprecipitation, however, its concentration could also be increased to facilitate 

disruption of complexes. In its current state, the large list of substrates can be sorted into 

categories of particular interest for follow-up, e.g. the UPR-related category that includes 

ATF6, IRE1, and SREBP2. The nine proteins that overlap with the smaller dataset should 

also be prioritized. 
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     In summary, this work has provided a platform from which to explore the mechanistic 

details of PERK signaling through both known and novel networks. The identification of 

IRE1 and ATF6, for instance, suggests an intriguing possibility of direct crosstalk 

between UPR branches through PERK-mediated phosphorylation. Assuming that these 

results are confirmed in vivo, it will be interesting to ask whether PERK-dependent 

crosstalk is a major determinant in fine-tuning the ER stress response, i.e. in regulating its 

intensity and attenuation as well as differential activation of the three branches. Also 

significant is the identification and in vitro confirmation of eEF1D phosphorylation. Thus 

far, relatively little is known about its phosphorylation on serine 162 with regard to 

function. If eEF1D phosphorylation results in dissociation of the eEF1A/eEF1B complex 

or a decrease in eEF1B catalytic activity, this modification would serve to inhibit 

translation in the face of ER stress. Finally, the identification and verification of VAPB 

proposes a possible mechanistic link between PERK, phospholipid regulation, and 

maintenance of ER-Golgi structure. This is particularly interesting in light of the recently 

defined role for PERK as a lipid kinase (Bobrovnikova-Marjon et al, 2012). Additional in 

vitro experiments will be required to identify phospho-sites for candidates of interest 

generated by thioP immunoprecipitation/MS, and further interrogation of all candidates 

in cells and perhaps in vivo will be necessary for determining whether the detected 

phosphorylation events contribute to PERK function in ER stress signaling. 
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3.4 Materials and Methods 

3.4.1 Cell culture  

     Immortalized mouse embryonic fibroblasts were maintained in Dulbecco’s modified 

Eagle’s medium supplemented with 10% fetal bovine serum, 4mM L-glutamine, 55mM 

β-mercaptoethanol, nonessential amino acids, and penicillin-streptomycin. HEK293T 

cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% 

fetal bovine serum and penicillin-streptomycin.   

3.4.2 Stable cell lines 

     Cell lines excised for PERK and transduced to stably express wild type or M886A 

PERK were described previously (Gao et al, 2012; Maas et al, 2014). Cells were selected 

and maintained in 5ug/ml puromycin. 

3.4.3 Antibodies and affinity resins 

     The following antibodies were used for immunoblotting: anti-IRE1 (Cell Signaling 

3294S), anti-FLAG (Sigma F1804), anti-PERK (Cell Signaling 3192) and anti-beta actin 

(Sigma A5441). The thioP antibody has been previously described (Allen et al, 2005; 

Allen et al, 2007) and was available from Epitomics/Abcam (ab92570). The phospho-

EEF1D S162 antibody was a generous gift from Dr. David Litchfield, and has been 

previously described (Gyenis et al, 2011).  

3.4.4 Recombinant proteins and expression constructs 

     Recombinant GST-tagged PERK-ΔN was expressed in BL21 bacterial cells and 

purified using GST Purification columns (Clontech 635619). Human recombinant VAPB 

was purchased from ProSpec (PRO-014). ATF6 was expressed from p3xFLAG-ATF6 

(S1P-), which was a kind gift from Dr. Ron Prywes. IRE1 was expressed from pCAX 
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IRE1α-HA-K599A, which was generated by Dr. Zhenhua Xu through Quikchange 

mutagenesis using pCAX IRE1α-HA from Dr. Takao Iwawaki. Expression constructs for 

FLAG-tagged EEF1D wild type and S162A were generous gifts from Dr. David 

Litchfield, and have been previously described (Gyenis et al, 2011). 

3.4.5 ATPγS in vitro kinase assay (ATF6 and VAPB) 

     Recombinant GST-tagged PERK-ΔN was incubated with substrate in the presence of 

1mM ATPγS (Biolog A060) for 30 min at 30°C (Hertz et al, 2010). Following 

thiophosphorylation, reactions were alkylated by adding p-nitrobenzyl mesylate (Abcam 

ab138910) to 2.5mM for 1 hr at room temperature. Samples were boiled in SDS sample 

buffer, run on an SDS-PAGE gel, and probed by western blot for thiophosphorylated 

protein.  

3.4.6 In vitro kinase assay for EEF1D 

     FLAG-tagged EEF1D wild type and S162A were immunoprecipitated from 293T cells 

with anti-FLAG M2-Agarose Affinity Gel (Sigma A2220). EEF1D substrate (on beads) 

was incubated with  recombinant GST-tagged PERK-ΔN in kinase buffer for 30 min at 

30°C. Samples were boiled in SDS sample buffer, run on an SDS-PAGE gel, and probed 

by western blot for EEF1D phosphorylated on S162 with a phospho-specific antibody 

(Gyenis et al, 2011). 

3.4.7 In vivo substrate labeling and immunoprecipitation for mass spec analysis 

     Samples were prepared as previously described (Allen et al, 2007) with slight 

modifications. In brief, 5x107 cells expressing wild type or M886A PERK were 

trypsinized, counted, and resuspended to 3x106 cells/ml in cold kinase buffer (25mM Tris 

pH 7.5, 10mM MgCl2 in PBS) and 50ug/ml digitonin to permeabilize. Cells were 
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incubated on ice for 5 min, pelleted gently, then resuspended in kinase buffer containing 

500nM thapsigargin, 100µM N6-furfuryl ATPγS (Biolog F008), and 1mM GTP (Sigma 

G8877) for substrate labeling. Cells were incubated for 1 hr at 30°C with gentle shaking, 

then lysed in RIPA buffer (50 mM Tris pH 8, 150 mM NaCl, 1.0% NP-40, 0.1% SDS) 

containing 25mM EDTA to quench. Lysates were alkylated by adding p-nitrobenzyl 

mesylate (Abcam ab138910) to 2.5mM for 1 hr at room temperature with nutation. For 

immunoprecipitation, lysates were exchanged to RIPA buffer on PD Miditrap G-25 

columns (GE Healthcare 28-9180-08) to remove PNBM. For immunoprecipitation of 

thiophosphorylated proteins followed by mass spectrometry, lysates were pre-cleared 

with rProtein G agarose (Invitrogen 15920-010) and subjected to immunoprecipitation 

with thioP antibody bound to rProtein G agarose beads overnight. Immunoprecipitates 

were run on an SDS-PAGE gel and stained with Pierce Silver Stain Kit for Mass 

Spectrometry (Pierce 24600). Mass spectrometry was performed by the Taplin Mass 

Spectrometry Facility at the Harvard Medical School. For immunoprecipitation of 

candidate PERK substrates, lysates were incubated with either anti-FLAG M2-Agarose 

Affinity Gel (Sigma A2220) or Monoclonal Anti-HA Agarose (Sigma A2095). 

3.4.8 Thiophosphopeptide capture 

     5x107 PERK-/- cells or cells expressing either wild type or M886A PERK were 

labeled in vivo as described in 3.4.6. Cells were then resuspended in RIPA buffer lacking 

SDS and sonicated for complete lysis. Lysates were prepared for thiophosphopeptide 

capture as previously described (Hertz et al, 2010). Mass spectrometry was performed at 

the University of California San Francisco. Results from three independent large-scale 

experiments were compiled for the list of candidate substrates presented.  
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3.4.9 Bioinformatic analysis of gene dataset generated by immunoprecipitation/MS 

     Following the procedure described in 3.4.7, the resultant list of proteins 

immunoprecipitated with the thioP antibody was culled according to number of peptides 

detected. Only proteins that were represented at 5 peptides or greater were retained. 

Candidates were then assigned GO terms and assessed for enrichment of GO categories 

over reference set using GOToolBox (Martin et al, 2004). Reference set used was the 

mouse genome, ontology was set to Biological Process, and term filtering at level 3.  
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Figure 3.1  Optimization of labeling time for PERK substrate screen. Immortalized mouse embryonic 
fibroblasts expressing either PERK wild type or M886A were gently permeabilized, then incubated with 
thapsigargin and N6-furfuryl ATPγS for substrate labeling. Lysates were alkylated, assessed for labeling 
efficiency by western blot (left),
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Figure 3.2  Chemical-genetic substrate labeling and identification strategies. Analog-sensitive PERK 
has been engineered with a novel specificity pocket in the ATP-binding site that allows it to accept bulky 
ATP analogs carrying a thio-phosphate label (*). The thio-phosphate group is then transferred specifically 
to PERK substrates in intact cells. The first method for substrate identification (left) involves alkylating 
labeled substrates with p-nitrobenzyl mesylate and immunoprecipitating with an antibody that recognizes 
alkylated, thio-phosphorylated protein. Substrates are identified by mass spectrometry. The second method 
(right) involves substrate labeling followed by tryptic digest. Labeled peptides are captured on beads, then 
released after washing and analyzed by mass spectrometry. 
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Figure 3.3  Substrate labeling followed by immunoprecipitation and mass spec analysis yields a 
candidate list of 607 putative PERK substrates. (A) Immortalized mouse embryonic fibroblasts 
expressing either PERK wild type or M886A were gently permeabilized, then incubated with thapsigargin 
and N6-furfuryl ATPγS for substrate labeling. Lysates were alkylated, assessed for labeling efficiency by 
western blot (left), then subjected to immunoprecipitation with an α-thioP antibody. Immunoprecipitated 
proteins were run on an SDS-PAGE gel and silver-stained (right). Bands were cut for mass spectrometric 
analysis. (B) Mass spectrometry identified 607 candidate substrates in PERK AS lysates that were not 
found in PERK WT. Candidates were sorted into GO categories that were enriched over reference set.  
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Figure 3.4  Independent confirmation of ATF6 and Ire1 as PERK substrates. (A) Cells expressing 
PERK WT or M886A were transfected with expression vectors carrying either HA-tagged Ire1 or FLAG-
tagged ATF6α. Cells were then labeled and alkylated as described in Fig 3.3. Labeling efficiency was 
assessed by western blot for total thio-phosphorylated protein. (B) Lysates were immunoprecipitated with 
anti-HA beads. Immunoprecipitates were assessed by western blot for Ire1 pull-down (left) and thio-
phosphorylated protein (right). (C) Lysates were immunoprecipitated with anti-FLAG beads. 
Immunoprecipitates were assessed by western blot for ATF6 pull-down (left) and thio-phosphorylated 
protein (right). 
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Figure 3.5  In vitro kinase assay for verification of ATF6 and phospho-site identification. FLAG-
tagged ATF6 was immunoprecipitated from 293T cells and incubated with recombinant PERK in the 
presence of ATPγS. Reactions were alkylated, run on an SDS-PAGE gel, and assessed for 
thiophosphorylated protein by western blot (left) or silver-stained for analysis by mass spectrometry (right). 
The two forms of FLAG-ATF6 are denoted by (*). 
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Figure 3.6 Substrate labeling followed by digestion and thiophosphopeptide capture. Cells were 
labeled as described in Fig 3.3. Thiophosphorylated proteins were assessed by western blot. For substrate 
identification, lysates were digested with trypsin and labeled peptides captured on iodoacetyl beads. Bound 
peptides were released with oxone treatment. Peptides were analyzed by tandem mass spectrometry.  
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Table 3.1 Thiophosphopeptide capture yields a candidate list of 35 putative PERK substrates with 
phospho-sites. ER-associated proteins are highlighted in orange, including PERK itself which is 
autophosphorylated.  
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Table 3.2 Independent identification of putative PERK substrates.  Substrate identification was 
performed via thioP immunoprecipitation or thiosphosphopeptide capture followed by mass spectrometry. 
One dataset was generated through immunoprecipitation and three biological replicates were analyzed for 
thiophosphopeptide capture. Overlap between and within datasets are represented, with thiophosphopeptide 
capture/MS denoted as “1” and immunoprecipitation/MS as “2”. 
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Figure 3.7  EEF1D is phosphorylated by PERK on serine 162 in vitro. (A) 293T cells expressing 
FLAG-tagged wild type or S162A EEF1D were lysed and subjected to immunoprecipitation with anti-
FLAG beads. Immunoprecipitated EEF1D was used as substrate for an in vitro kinase assay by incubating 
with recombinant PERK in a reaction supplemented with ATP. Reactions were run on an SDS-PAGE gel 
and analyzed for phosphorylated EEF1D by western blot with an anti-EEF1D pS162 antibody. PERK 
loading was verified by western blot with an antibody against total PERK; substrate loading was verified 
by Ponceau stain. 
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Figure 3.8  VAPB is phosphorylated by PERK in vitro. Recombinant PERK was incubated with 
recombinant VAPB in the presence or absence of ATPγS. Reactions were alkylated with PNBM, run on an 
SDS-PAGE gel, and assessed for thiophosphorylated protein by western blot.
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CHAPTER FOUR 

SUMMARY AND FUTURE DIRECTIONS 

 

     Protein kinases comprise a major class of enzymes that initiate and propagate 

signaling cascades critical for maintaining normal cellular function. It is therefore not 

surprising that disruption of protein kinase activity can have a significant impact on 

cellular and organismal fitness, as is frequently observed in diseases like cancer. Though 

many signaling events occur in the context of the cytoplasm, the endoplasmic reticulum 

also hosts an intricate signal transduction network. This network responds to changes in 

the environment that affect protein folding efficiency. Conditions in the tumor 

microenvironment can impinge upon protein folding, triggering ER stress signaling and 

initiating a cell adaptive response. This enables cancer cells to survive and thrive under 

the restricted conditions of the tumor microenvironment.  

     This body of work focuses on the ER kinase PERK, a key mediator of the UPR. 

PERK is instrumental in promoting an adaptive response through translational inhibition, 

and through transducing pro-survival signals to the nucleus. Numerous cancer-related 

functions have been ascribed to PERK, such as promotion of tumor cell survival, cell 

migration, increased metastatic potential, increased angiogenic potential, and 

chemotherapeutic resistance. Though the range of these attributes is broad, only three 

direct substrates of PERK have been identified to date. This has limited our 

understanding of the mechanistic details of PERK signaling under both homeostatic and 

oncogenic conditions.   
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     Herein, we have reported the identification and verification of an analog-sensitive 

allele of the ER kinase PERK (PERK M886A). Analog-sensitive kinases can be used for 

studying kinase function through small molecule-mediated inhibition as well as for 

mapping kinase-substrate interactions. We have utilized PERK M886A for both of these 

purposes, the implementation of which has been described in previous chapters, and the 

implications of which will be discussed in detail in the sections following.  

 

4.1 Perspectives on small molecule-mediated PERK inhibition  

     Given the multifaceted role of PERK signaling in tumorigenesis, there has been 

significant interest in developing small molecule PERK inhibitors. At the outset of this 

study, however, highly potent and specific inhibitors of PERK activity had not yet been 

reported. Therefore, one of our initial aims was to develop a system for PERK inhibition 

through chemical-genetic techniques, which would provide both relative ease in system 

design and generation, and high specificity in terms of inhibition. 

     The past two years have seen significant advances in PERK inhibitor development, 

which challenges the ultimate utility of PERK M886A for this purpose. In the first study, 

a screen of proprietary compounds for inhibitors of PERK catalytic activity toward eIF2α 

was performed (Axten et al, 2012). Lead optimization resulted in the identification of 

compounds with in vitro IC50s in the nanomolar range. Of these, 8 compounds exhibited 

activity in cells. Importantly, these compounds displayed at least 100-fold selectivity for 

PERK over the closely-related eIF2α kinases HRI and PKR. One of the most potent, 

selective compounds (GSK2606414) was further assessed for its in vivo efficacy in a 

human tumor xenograft model. At its highest dose, GSK2606414 inhibited pancreatic 
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tumor burden by 59%. A subsequent study of another compound identified in this screen 

(GSK2656157) demonstrated inhibitor-dependent restriction not only of tumor growth 

but also of blood vessel density and vascular perfusion (Atkins et al, 2013). PERK has 

been shown to upregulate VEGF, therefore, the inhibitory effect of this compound on 

angiogenesis is not unexpected, and is further evidence of PERK inhibition. In addition, 

an independent high-throughput screening of approximately 80,000 compounds resulted 

in the identification of two lead compounds that inhibit PERK catalytic function (Pytel et 

al, 2014). Unique to this study is the fact that both lead compounds are non-competitive 

PERK inhibitors.  The utility of these compounds in vivo remains to be established. 

     Despite promising results in the context of tumorigenesis, however, the highly specific 

small molecule inhibitors tested in vivo have had deleterious effects on pancreatic 

function. Though this certainly does not preclude the use of PERK inhibitors in treating 

neoplastic disease, it does highlight the fact that extreme caution should be used when 

considering treatment options. It may be possible to titrate the drug to a level of PERK 

inhibition that would restrict tumor burden while retaining enough activity to support 

pancreatic homeostasis. Transient inhibition may also lessen toxic effects on the 

pancreas. In addition, experimental evidence supports an approach wherein pancreatic 

function could be preserved through insulin supplementation (Gao et al, 2012). 

Administering exogenous insulin relieved the demand for insulin synthesis and secretion, 

which resulted in partial rescue of beta cell death. Finally, PERK inhibition may present a 

viable option for those with compromised pancreatic function, e.g. patients suffering 

from pancreatic cancer. 
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     Since this is an on-target effect of PERK inhibition, these results call into question the 

overall legitimacy of inhibiting PERK as a therapeutic strategy. Alternatives to PERK 

inhibition that are currently being explored target eIF2α (Sidrauski et al, 2013), IRE1α 

(Mimura et al, 2012; Papandreou et al, 2011), GRP78/BiP (Cha et al, 2009; Luo et al, 

2010; Martin et al, 2013; Matsuo et al, 2009; Pyrko et al, 2007), proteasomal degradation, 

and ERAD, among others (Clarke et al, 2014; Hetz et al, 2013; Li et al, 2011). These may 

offer the advantage of reduced organ toxicity in the clinic. 

     In terms of using the analog-sensitive PERK allele for inhibition studies in cells, we 

have uncovered an off-target effect of pyrazolo[3,4-d]pyrimidine (PP) inhibitors that 

precludes its use for this purpose. Alternatives to PP1 inhibitors are available (Zhang et 

al, 2013a) and may have fewer off-target effects if used in our system, or the gatekeeper 

mutation at M886 can be altered to accommodate an electrophilic inhibitor (Garske et al, 

2011). With the advent of highly specific commercially available PERK inhibitors, 

however, the gatekeeper system is of limited value, as it requires additional genetic 

manipulation of the kinase whereas general PERK inhibitors can immediately be used in 

many cell types. This is not meant to imply that the work presented in Chapter 2 is 

without value. To the contrary, our report demonstrates that the analog-sensitive allele of 

PERK is functional, i.e. that PERK M886A targets endogenous substrate in the context of 

cells, and initiates canonical PERK signaling with ER stress. Moreover, we have shown 

that the gatekeeper mutant was robustly inhibited by 3MB-PP1, which implies that the 

ATP-binding pocket of M886A was optimally modified to accept bulky ATP analogs. 

Both of these findings are imperative for the success of the subsequent PERK substrate 

screen described in Chapter 3. 
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     With regard to the enhanced survival phenotype observed with PP1 treatment, this 

phenomenon may be of interest for future study in its own right. The effect of PP1 

inhibitors on cell survival is dramatic, and has not been fully characterized in our study. 

For instance, it is not clear whether the effect on cell survival is PERK-dependent or 

UPR-dependent, or whether PP1 inhibitors activate another, as-yet-unidentified protein or 

survival pathway that is important for the response to ER stress. Exploration of these and 

other questions may lead to the discovery of novel ER stress related pathways, or 

connections between proteins or pathways that have not yet been forged. 

 

4.2 Potential for direct crosstalk between UPR pathways  

     The coming years will undoubtedly see further clarification of PERK signaling 

mechanisms through identification of additional interactors and downstream targets. 

From a clinical standpoint, this should provide the opportunity for more selectively 

targeting the oncogenic potential of PERK, while preserving its vital functions in cellular 

homeostasis. Prior to this study, there has only been one unbiased screen for PERK 

substrates (Cullinan et al, 2003). While this screen successfully identified the antioxidant 

response factor Nrf2, the list of PERK substrates has remained conspicuously small.  

     With the chemical-genetic screen described here, we have identified close to 700 

putative PERK substrates. Though this number may seem challenging to prioritize, we 

have generated substrate lists via two independent methods, which allows concentration 

on list overlap. Alternatively, it may be prudent to focus mainly on the list of 35 

substrates in its entirety, as this list is small enough to be manageable, and has the added 

advantage of defining phospho-sites for immediate mutagenesis. 
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     Three of the four putative substrates we have thus far pursued have been verified as in 

vitro PERK substrates. Our interest is particularly piqued by the identification of two 

master UPR regulators: ATF6 and IRE1. Indeed, previous studies have suggested 

interplay between the UPR branches with PERK being the initiating signal, though direct 

interaction between the three UPR sensors has not yet been demonstrated. For instance, 

the induction of ATF6-regulated genes was compromised in the absence of PERK in 

MEFs as well as in a liver-specific PERK knockout model (Teske et al, 2011; Wu et al, 

2007). Moreover, Teske et al demonstrated that PERK was required for full activation of 

~74% of all ER stress-induced genes in PERK KO livers, strongly suggesting pathway 

overlap. Mechanistically, these studies proposed that PERK facilitates ATF6 activation 

through promoting ATF6 cleavage (Adachi et al, 2008; Teske et al, 2011), and that this 

occurs at least in part through an eIF2α/ATF4-dependent pathway. We have verified that 

ATF6 is directly phosphorylated by PERK in vitro. Though there has been no evidence 

for ER stress-related phosphorylation of ATF6 prior to our study, previous work has 

shown p38-mediated ATF6 phosphorylation in myocardial cells (Thuerauf et al, 1998). 

This interaction was direct, as demonstrated by in vitro kinase assay. In addition, the 

requirement for p38 and the upstream activator MKK6 was demonstrated using a 

GAL/ATF6 reporter. A subsequent study, however, suggested that IRE1 overexpression 

was sufficient to activate ATF6 but that p38 was not required (Wang et al, 2000). Thus 

the question of whether ATF6 is activated through a mechanism unrelated to its 

proteolytic cleavage is largely unresolved, leaving the idea of PERK-mediated 

phosphorylation a tantalizing possibility.  
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     In following up on our initial results, the site of ATF6 phosphorylation is next to be 

determined. Several large-scale analyses by mass spectrometry have detected N-terminal 

phosphorylation of human ATF6 at Ser16 (Zhou et al, 2013) and Thr296 (Hornbeck et al, 

2012), which are within the cytoplasmic region we would expect to be phosphorylated by 

PERK. Mutagenesis of these sites, in addition to those derived from the scaled-up version 

of the in vitro kinase reaction followed by mass spec (Chapter 3), will be the most logical 

place to begin. 

     Though less well-studied, there also appears to be crosstalk between PERK and IRE1, 

with PERK signaling being required for stabilization of the spliced, active form of XBP1 

(XBP1s) that lies downstream of IRE1 activation (Huang et al, 2010; Majumder et al, 

2012; Teske et al, 2011). This was dependent at least in part on phosphorylation of eIF2α 

(Majumder et al, 2012), however, this does not preclude an even more direct involvement 

of PERK in IRE1 activation. Though the in vitro kinase assays we performed were 

inconclusive for technical reasons, our preliminary results suggest that PERK does 

phosphorylate IRE1 in permeabilized cells. Since IRE1 is a kinase, we have used the 

kinase dead allele (IRE1 K599A) to rule out the possibility that we are instead detecting 

IRE1 autophosphorylation. This mutant would also be useful for asking whether an 

IRE1-independent (potentially PERK-dependent) phospho-shift can be detected by 

western blot following ER stress. Ultimately, a direct assay for PERK-dependent 

phosphorylation will be required; a clear result here will likely be achieved through use 

of truncated, recombinant IRE1 that is of a significantly different molecular weight than 

PERK.  
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     For both ATF6 and IRE1 it will be important to determine the function of PERK-

mediated phosphorylation. Phosphorylation can alter conformation of the protein itself 

and thus alter activity, or it can result in the association or dissociation of interacting 

proteins. In terms of UPR crosstalk, it would be reasonable to speculate that these 

phosphorylation events might play a role in the temporal regulation of the three branches. 

In response to ER stress, PERK signaling is the first pathway to be activated, followed 

closely by ATF6 and eventually by IRE1 (Rutkowski & Kaufman, 2004; Yoshida et al, 

2003). PERK activation inhibits protein synthesis, which serves an immediate adaptive 

function by limiting the influx of nascent proteins to the ER. The second stage of UPR 

activation involves transcriptional upregulation, which is initiated by ATF6 processing 

and translocation of its cytoplasmic domain to the nucleus where it induces the 

expression of ER chaperones. ATF4-regulated genes are also induced downstream of 

PERK. Finally, IRE1 activation culminates in the induction of ER chaperones, as well as 

the induction of EDEM (ER degradation-enhancing α-mannosidase-like protein) which 

is required for degradation of remaining unfolded proteins after refolding is first 

attempted by ATF6 targets (Yoshida et al, 2003). These transcripts must be translated, 

which then requires relief of translational inhibition by GADD34 through 

PERK/eIF2α/ATF4. The timing of this response is imperative for appropriate UPR 

signaling, with translational repression followed by transcriptional upregulation and 

reinitiation of protein synthesis, followed by increased chaperone activity and protein 

folding, and finally degradation of proteins that are still unfolded. The temporal 

separation of these responses is consistent with the idea that PERK-mediated 

phosphorylation could enable full activation of ATF6 and IRE1 signaling at the onset of 
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stress. Alternatively, phosphorylation could serve to inhibit ATF6 and/or IRE1, thus 

preventing premature activation of the other two branches, or as a negative feedback 

mechanism for eventual attenuation of UPR signaling. Consistent with this idea, IRE1 

hyper-phosphorylation is required for its de-oligomerization and ultimate deactivation 

once ER stress has been resolved (Rubio et al, 2011). 

 

4.3 PERK in lipid metabolism  

     The endoplasmic reticulum is not only a major site of protein synthesis, but also a 

compartment essential for phospholipid synthesis. The ER itself can account for greater 

than 60% of phospholipid mass; its function is dependent upon appropriate phospholipid 

regulation and its composition, in a state of constant flux (Lagace & Ridgway, 2013). The 

major cell membrane phospholipid phosphatidylcholine (PtdCho) is synthesized in the 

ER, and is essential for ER expansion during stress. The Brewer lab elucidated a link 

between UPR signaling and phospholipid biosynthesis in work demonstrating that NIH-

3T3 cells overexpressing spliced XBP1 exhibited increased phospholipid levels, ER 

expansion, and activation of the PtdCho biosynthetic pathway (Sriburi et al, 2004). 

Moreover, ATF6 has also been implicated in regulating ER abundance. Subsequent 

studies showed that forced expression of ATF6α triggered ER expansion in multiple cell 

types, and that this expansion was independent of XBP1 expression (Bommiasamy et al, 

2009). 

     Though PERK has not yet been implicated specifically in ER expansion, studies have 

shown that PERK is required for sustained induction of the lipogenic enzymes FAS, 

ACL, and SCD1, and for activation of the transcription factor SREBP1, which targets 
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lipid metabolic genes (Bobrovnikova-Marjon et al, 2008). Interestingly, recent work has 

also demonstrated PERK involvement in phospholipid signaling. This study showed that 

PERK possesses lipid kinase activity toward the lipid precursor diacylglycerol (DAG), 

generating phosphatidic acid both in vitro and in vivo (Bobrovnikova-Marjon et al, 2012). 

PERK-dependent phosphatidic acid production, in turn, promotes mitogenic signaling 

through Akt activation, highlighting an important connection between PERK and 

metabolic pathways. 

     In our study, the transcription factor SREBP-2 was identified as a putative PERK 

substrate via thioP immunoprecipitation/MS. Sterol regulatory element binding proteins 

(SREBPs) are transcription factor precursors embedded in the ER membrane; SREBP-2 

is the main transcription factor responsible for regulating cholesterol biosynthesis, and as 

such, plays a major role in cell membrane biology. SREBP-2 is activated by agents that 

induce ER stress, and is proteolytically processed by the same proteases as is ATF6 

(S1P/S2P) (Colgan et al, 2007). The exact mechanism by which SREBP-2 is activated, 

however, has not yet been elucidated. It therefore remains possible that SREBP cleavage 

and activation could be facilitated by a phosphorylation event, e.g. phosphorylation 

mediated by PERK. Indeed, SREBP-1c and -2 were shown to be phosphorylated by 

AMPK, which in the case of SREBP-1c led to attenuation of the proteolytic processing 

required for activation (Li et al, 2011). Additional in vitro experiments should determine 

whether SREBP2 is a direct PERK target, and should successfully identify the phospho-

site involved. It will then be interesting to determine whether phosphorylation of this site 

is activational, which would be in keeping with the idea that ER stress activates SREBP 

pathways, or whether its phosphorylation inhibits SREBP function, which would be 
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consistent with conflicting reports suggesting an antagonistic relationship between PERK 

and SREBP (Harding et al, 2005). 

     Another putative PERK substrate identified in our screen, vesicle-associated 

membrane protein-associated protein B/C (VAPB/ALS8), falls under the category of 

lipid metabolism and phospholipid regulation. VAPB is particularly interesting for its 

characterized role in maintaining ER/Golgi structure and functional integrity through 

interaction with lipid-transfer/binding proteins (Amarilio et al, 2005; Peretti et al, 2008). 

Amarilio et al found that VAPB binds Nir family members through their conserved 

FFAT motif, and that VAPB-Nir overexpression differentially affected ER structure. The 

subsequent study from Peretti et al found that RNAi-mediated knockdown of endogenous 

VAPB disrupted Golgi architecture, altered the lipid composition of the Golgi membrane, 

impaired recruitment of Nir2, OSBP, and CERT, and disrupted Golgi-mediated 

trafficking.  

     VAPB is one of 35 proteins identified via thiophosphopeptide capture/MS in our 

study, with phosphorylation detected on Thr148. VAPB is an integral membrane protein, 

with a cytoplasmic region spanning residues 1-222; Thr148 therefore lies within the 

region we expect to be phosphorylated by PERK. The domains of VAPB have been 

previously described: the N-terminal MSP domain contains a conserved sequence that 

binds the FFAT motif, which is followed by a coiled-coil domain (CCD) and finally the 

transmembrane domain (TMD) responsible for VAP dimerization (Amarilio et al, 2005; 

Lev et al, 2008; Nishimura et al, 1999). Thr148 lies between the MSP and CCD, which is 

not immediately suggestive of a role in either FFAT binding or dimerization, however, 

phosphorylated residues in close proximity to Thr148 have been detected via large-scale 
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mass spectrometric analyses (Hornbeck et al, 2012). We have thus far confirmed VAPB 

as a PERK substrate by in vitro kinase assay; further experiments involving Thr148 

mutagenesis will be needed to both verify this site and to explore its function in vivo. 

     Given previous work, we speculate that the interaction between PERK and VAPB 

could regulate ER expansion and/or ER-Golgi trafficking. In line with this idea, our 

screen also identified several OSBP-like proteins as putative PERK substrates. The 

oxysterol-binding protein (OSBP) family is a conserved group of lipid binding/transfer 

proteins that regulate lipid flux, organelle lipid composition, and cell signaling (Olkkonen 

& Li, 2013). OSBP has also been shown to interact with VAPB through its FFAT motif 

in regulation of Golgi structure and function (Peretti et al, 2008), which may place 

PERK, VAPB, and OSBP in the same pathway. 

     Interestingly, recent studies have also implicated VAPB in the promotion of tumor 

growth via interaction with Akt (Rao et al, 2012). VAPB was overexpressed in patient 

breast cancer samples, and levels were negatively correlated with recurrence-free 

survival. Mechanistically, this study demonstrated that VAPB promotes cell proliferation 

as well as tumor spheroid growth through modulating Akt activity. In light of these 

results, it is possible that UPR activation in tumor cells promotes signaling through a 

novel PERK-VAPB-Akt pathway, which in turn promotes transformation and 

tumorigenesis. This hypothesis is consistent with previous reports demonstrating PERK-

dependent mitogenic signaling through Akt (Bobrovnikova-Marjon et al, 2012; 

Hamanaka et al, 2009). 
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4.4 PERK and translational regulation 

     The most well characterized role for PERK in the adaptive response to ER stress is 

arguably its influence on translation, i.e. its phosphorylation of eIF2α that inhibits 

translational initiation. This limits the influx of nascent proteins during ER overload. For 

this reason, it was of particular interest that our screen identified the translational 

elongation factor eEF1D as a putative PERK substrate. Furthermore, though not 

specifically reported in the preceding chapter, additional initiation and elongation factors 

were also identified in our immunoprecipitation/MS-based screen including eIF3 and 

eEF1A. This suggests the intriguing possibility that not only is translational initiation 

inhibited with ER stress, but that translational elongation may also be restricted through 

PERK activation.  

     Translational regulation enables rapid changes in the proteome, making this an 

effective way for cells to respond to stress. With ER stress, phosphorylation of the α 

subunit of eIF2 inhibits eIF2B, thus inhibiting the ability of the 43S preinitiation complex 

to recognize the start codon (Donnelly et al, 2013). Inhibition at the level of initiation is 

not the only stage at which translation can be repressed, however. Studies of the 

translational repression that occurs when cells undergo mitosis have provided additional 

insight into this phenomenon (Sivan et al, 2011; Sivan et al, 2007). During mammalian 

mitosis, translational repression at the level of elongation was evidenced by stalled 

polysomes as opposed to ribosomal runoff/polysome disassembly (Sivan et al, 2007). 

Mechanistically, this was thought to occur through eEF1D phosphorylation on Ser133, 

which reduces its interaction with eEF1A and thus results in fewer eEF1A-tRNA 

complexes that are able to deliver charged aa-tRNA to elongating ribosomes (Sivan et al, 
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2011). In the context of oxidative stress, translation is repressed at both the initiation 

stage via Gcn2-mediated eIF2α phosphorylation, and at the elongation stage in yeast 

(Shenton et al, 2006).  

     We therefore speculate that PERK phosphorylates not only eIF2α but also additional 

translation factors, such that the translational inhibition observed during ER stress is 

mediated through concomitant repression of both initiation and elongation. eIF3b/c were 

identified as putative PERK substrates, and are components of a multi-subunit complex 

that associates with the 40S ribosome and facilitates formation of the preinitiation 

complex. Multiple phosphorylation events have been detected on mammalian eIF3, 

however, none appear to have been characterized beyond their identification in large-

scale analyses (Hornbeck et al, 2012). A study in yeast has revealed phosphorylation of 

several components of the eIF3 complex, however (Farley et al, 2011). Interestingly, Prt1 

and Nip1, the yeast homologs of eIF3b and eIF3c, were phosphorylated and phospho-

sites assigned. Assuming conservation, these sites will be suitable for initial mutagenesis 

studies.  

     With respect to elongation factors, eEF1A and eEF1D were detected via different 

substrate identification methods in our set of screens. For eEF1D, the phospho-site 

detected was on Ser162, which was previously identified as a casein kinase II-mediated 

modification (Gyenis et al, 2011; Palen et al, 1994; Sheu & Traugh, 1997; Sheu & 

Traugh, 1999). The function of this modification and the conditions under which it is 

regulated have not yet been determined. Since eEF1A and eEF1D function in a single 

complex that facilitates the delivery of tRNA to ribosomes, it is possible that this 

interaction is disrupted via PERK-mediated phosphorylation of one or both components, 
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thus inhibiting translational elongation. Assays for interrogating the process of 

translational elongation have previously been described; these should guide initial 

experiments addressing whether translational repression occurs at the level of elongation 

during ER stress, whether PERK plays a role in said repression, and whether PERK-

mediated phosphorylation events are responsible for dissociation of elongation 

complexes or whether other inhibitory mechanisms come into play. 

 

4.5 Challenges and future outlook 

     In summary, PERK is involved in multiple stages of tumor initiation, progression, and 

metastasis, aspects of which are just beginning to become clear. Given the breadth of 

both cancer-related as well as homeostatic PERK functions, the near future will 

undoubtedly see heightened interest in and deeper understanding of the underlying 

molecular details of such functions. This thesis presents a characterized analog-sensitive 

PERK allele as a tool for studying PERK-mediated pathways, as well as a set of putative 

PERK substrates derived from two independent, optimized screens. These studies will 

provide a foundation from which to explore the mechanistic details of PERK signaling. 

     Not only have putative substrates been identified, but several novel connections have 

also been suggested between PERK and proteins involved in other UPR branches, in lipid 

metabolism and maintenance of ER-Golgi structure and function, and in translational 

regulation. Based on what we know about PERK function, additional expected categories 

of enrichment included metabolism, transmembrane and vesicle-mediated transport, and 

processes related to cell migration. Our screen also identified a large number of proteins 

that are not localized to the endoplasmic reticulum or involved in expected PERK-related 
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processes. This could indicate that PERK is in fact active in compartments other than the 

ER, an exciting idea that has been neither suggested nor refuted by the literature. Given 

that the ER has multiple contact points with both the nucleus and mitochondria, this is 

certainly not out of the question. On the other hand, the fact that non-ER-related proteins 

were identified as PERK substrates by our method could instead indicate that PERK was 

not maintained in its native compartment during cell permeabilization and subsequent 

manipulation. Though unlikely, it remains possible that even the low concentration of 

digitonin used to gently permeabilize cells resulted in disruption of intracellular 

compartments, and that PERK localization was compromised. If this is a concern in the 

future, PERK localization under the conditions used for the screen could be assessed by 

cell fractionation.  

     Another factor that might have resulted in spurious target identification is the 

possibility of bulky analog use by wild type kinases. Though our PP1 inhibitor results do 

suggest that bulky analogs have the potential for targeting proteins other than analog-

sensitive kinases, we have taken stringent measures to eliminate this factor from our 

dataset, i.e. we have subtracted the hits obtained using wild type PERK entirely from the 

final substrate list. Therefore, this list represents substrate phosphorylation that is solely 

dependent upon PERK M886A.  

     One of the obvious and immediate challenges in working with the list of 607 

substrates will be in culling it further to prioritize follow-up studies. One way of 

approaching this would be to conduct a biological replicate of the IP/MS screen. A repeat 

of this experiment could be done in precisely the same manner as described in Chapter 3, 

or it could include samples from unstressed cells as additional controls. Inclusion of these 
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controls was beyond the scope of this project, however, it would have allowed us to 

determine which were basal phosphorylation events, and which were specifically induced 

upon acute stress and thus intimately linked with UPR activation. Another approach to 

prioritizing the list would involve screening through the existing candidates via a more 

targeted, smaller scale method (e.g. peptide or protein array) or by using a combination of 

computational and genetic tools as has recently been described by the Krogan lab 

(Roguev et al, 2013).  

     Future directions for this work may also extend to the development of a screen using 

the analog-sensitive M886A allele to study PERK lipid kinase activity. Bobrovnikova-

Marjon and colleagues have demonstrated that PERK directly phosphorylates 

diacylglycerol (DAG) to generate phosphatidic acid (PA) in vitro and in vivo, and that PA 

formation is important for the activation of PERK-regulated mitogenic signaling 

(Bobrovnikova-Marjon et al, 2012). In light of this work, and the fact that numerous 

candidates from our screen fall under the lipid signaling and lipid metabolism categories, 

it seems likely that PERK directly phosphorylates proteins involved in these pathways as 

well as potentially phosphorylating lipids other than PA. Large-scale lipidomic studies 

have previously been hindered by analytical difficulties, however, with recent advances 

in lipid analysis by mass spectrometry, it might also be feasible to label lipids in a 

chemical-genetic manner to identify PERK-mediated modifications. 

     In conclusion, this thesis work provides us with a glimpse into the future study of 

PERK activity and function. Novel interactions and pathways downstream of PERK have 

been suggested herein, many of which will help clarify the mechanisms behind newly-

discovered PERK functions, such as the role of PERK in mediating the complex 



 80 

processes of EMT (Feng et al, 2014), cell migration (Nagelkerke et al, 2013), metastasis 

(Mujcic et al, 2013), and ER-mitochondrial signaling (Verfaillie et al, 2012). Given that 

these data reflect an unbiased approach, we may also be led into entirely unexpected 

fields of study. We hope that such insights into the pro-survival nature of PERK signaling 

will ultimately contribute to the design and development of highly-specific, targeted 

therapeutic strategies in the treatment of cancer. 
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