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ABSTRACT
Exact query reformulation using views in positive rela-
tional languages is well understood, and has a variety
of applications in query optimization and data sharing.
Generalizations to larger fragments of the relational al-
gebra (RA) — specifically, support for the difference op-
erator — would increase the options available for query
reformulation, and also apply to view adaptation (up-
dating a materialized view in response to a modified
view definition) and view maintenance. Unfortunately,
most questions about queries become undecidable in the
presence of difference/negation. We present a novel way
of managing this difficulty via an excursion through a
non-standard semantics, Z-relations, where tuples are
annotated with positive or negative integers.

We show that under Z-semanticsRA queries have a nor-
mal form as a single difference of positive queries and
this leads to the decidability of equivalence. In most
real-world settings with difference, it is possible to con-
vert the queries to this normal form. We give a sound
and complete algorithm that explores all reformulations
of an RA query (under Z-semantics) using a set of RA
views, finitely bounding the search space with a simple
and natural cost model. We investigate related complex-
ity questions, and we also extend our results to queries
with built-in predicates.

Z-relations are interesting in their own right because
they capture updates and data uniformly. However, our
algorithm turns out to be sound and complete also for
bag semantics, albeit necessarily only for a subclass of
RA. This subclass turns out to be quite large and cov-
ers generously the applications of interest to us. We also
show a subclass of RA where reformulation and evalua-
tion under Z-semantics can be combined with duplicate
elimination to obtain the answer under set semantics.
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1. INTRODUCTION
Query reformulation (rewriting) using views is well un-
derstood for positive fragments of relational languages,
such as conjunctive queries (CQs) or unions of CQs
(UCQs), under both set and under bag semantics (see,
e.g., [4, 24]). Reformulation is of both theoretical and
practical interest, due to its importance to data integra-
tion (specifically, local-as-view and GLAV query refor-
mulation [19]) and to query optimization with materi-
alized views. Our interest is with exact reformulation,
which finds only equivalent rewritings of the query.

Under bag-semantics (“real” queries [5]), given a UCQ
Q and a finite set V of UCQs, there are only finitely
many queries equivalent to Q under V. This follows
from the fact that there is a simple bound on the size
of UCQs equivalent toQ and using at least one view.1 In
turn, this is a consequence of the result that under bag
semantics UCQs are equivalent iff they are isomorphic.
(see [13] where this result is discussed).2

For set semantics, the problem is more complicated,
since even CQs can be arbitrarily extended with redun-
dant atoms while preserving equivalence. Nonetheless,
the results of [24] imply that there is a simple bound on
the size of locally minimal UCQs equivalent to Q and
using at least one view.

Abstracting the salient features of these approaches, we
find that they imply the decidability of query equiva-
lence under V (see Appendix).

Naturally, it would be desirable to extend query refor-
mulation techniques to the full relational algebra (RA)
by adding difference. This would yield a variety of ben-
efits:

• Optimization using materialized views could be done
over a broader space of plans (even if the original
query and view were just CQs/UCQs!). Rewrit-
ings could subtract one view from a larger view in

1This is the foundation of optimization of queries with
views under bag semantics [4].
2Under bag semantics, containment of UCQs is unde-
cidable [21]. For CQs, equivalence is the same as iso-
morphism [5] but the status of containment is still open.



order to return a query answer.

• View adaptation [16], the act of updating a materi-
alized view instance when the view definition has
changed, could be seen as a reformulation using
views. Here, the updated view can be recomputed
based on the old contents of the view, by adding
and/or subtracting queries over the base data and
possibly other views.

• Incremental view maintenance [17] could be seen
as a reformulation using views, since insertions
and deletions could be treated as unions and dif-
ferences.

Unfortunately, introducing the difference operator de-
stroys the decidablity of query equivalence under views.
Indeed, even without views the equivalence of relational
algebra (RA) queries is undecidable, for both set and
bag semantics.3 Since the decidability of equivalence is a
necessary condition, we cannot hope for the approaches
to reformulation under bag or set semantics to extend
to the entire RA.

A natural question to ask is whether there is a slightly
less expressive class of queries — still including differ-
ence, and hence still providing the benefits cited above
— for which reformulation can be handled effectively. In
this paper we do this via an excursion through a non-
standard semantics that is of interest in its own right:
what we term Z-relations. These are relations whose tu-
ples are annotated with integers (positive or negative)
and the positive RA operators are defined on them ac-
cording to the semiring-annotated semantics used in our
previous [14, 15]. In addition, difference has an obvious,
natural definition on Z-relations.

Z-relations are a natural representation for the updates
to source relations (collections of tuple insertions and
deletions, a.k.a. deltas) which must be propagated in in-
cremental view maintenance applications. Indeed, both
data and updates can be uniformly represented using
Z-relations, and “application” of a delta to a relation
corresponds to simply computing a union. We discuss
this further in Section 2.

It turns out that reformulation of RA queries using RA
views can be solved effectively with respect to the Z-
semantics since here equivalence of RA queries with re-
spect to a set of RA views is decidable. Moreover, we
obtain practically useful results about the class of RA
queries for which the reformulation with respect to Z-
semantics remains valid with respect to bag semantics.
Although membership in this class of queries is necessar-
ily undecidable, there are many useful cases with simple
sufficient conditions for membership, in the three classes
of applications outlined above.

3The latter follows, e.g., from the undecidability
of bag-containment of unions of conjunctive queries
(UCQs) [21], since for UCQs Q,Q′ we have Q is con-
tained in Q′ iff Q−Q′ is equivalent to the empty answer
query.

The main contributions of the paper are:

• We show that under Z-semantics every RA query
is equivalent to the difference of two RA+ queries.
Then the decidability of equivalence ofRA queries
under Z-semantics is a corollary of the decidability
of equivalence of UCQs.

• It follows that for reformulation using views under
Z-semantics we can work with differences of unions
of conjunctive queries (DUCQs). We give a termi-
nating, confluent, sound and complete rewrite sys-
tem such that if two DUCQs are equivalent under
a set of views then they can be rewritten to the
same query (modulo isomorphism). This leads to
our procedure for exploring the space of reformu-
lations (using the opposites of the rewrite rules).

• In contrast to CQs/UCQs under set semantics,
there is no natural, instance-independent notion of
“inherent minimality”for DUCQs under Z-semantics
that would yield a finite reformulation search space.
We bound the search under a simple cost model,
which is an abstraction of the one used in a query
optimizer.

• Next we examine when we can use the Z-semantics
reformulation strategy to obtain results that work
for the bag semantics. We show that the reformu-
lation procedure is closed for queries/views in this
class. We also give simple membership conditions.

• Finally, we also show how to extend our results
to queries with built-in predicates, i.e., inequalities
and non-equalities.

The paper is structured as follows. We discuss motivat-
ing applications in Section 2. We define the semantics
of RA on Z-relations and establish the decidability of
Z-equivalence of RA queries in Section 3. We introduce
DUCQs and the rewrite system for queries using views
in Section 4. We present reformulation algorithms and
strategies in Section 5. We discuss reformulation for bag
semantics/set semantics via Z-semantics in Section 6.
We extend our Z-equivalence results to RA with built-
in predicates in Section 7. We discuss related work in
Section 8 and conclude in Section 9.

2. APPLICATIONS OF DIFFERENCES
In this section, we illustrate the three motivating ap-
plications mentioned in the introduction, and show how
these problems are closely related. Given a uniform way
of representing data along with changes to the data, we
can consider each of these problems to be a case of query
reformulation or query rewriting. We shall propose Z-
relations as a unifying representation for this purpose.

Optimizing queries using views [4, 24]. Given a
query Q and a set of materialized views V, the goal is
to speed up computation of Q by (possibly) rewriting
Q using views in V. Sometimes, a view may be “nearly”



applicable for answering a query, but cannot be used
unless difference is allowed in the rewriting. For exam-
ple, consider a view V with paths of length 2 and 3 in
R:

V (x, y) :- R(x, z), R(z, y)

V (x, y) :- R(x, u), R(u, v), R(v, y)

and a query Q for paths of length 3:

Q(x, y) :- R(x, u), R(u, v), R(v, y)

To answer Q using V , we might compute paths of length
2, then subtract those paths from V under bag seman-
tics. If our end goal is set semantics, we would add a
duplicate elimination step at the end.

View adaptation [16]. Here, we have a set of base
relations, an existing materialized view, and an updated
view definition, and we want to refresh the materialized
view instance to reflect the new definition. For example,
the materialized view:

V (x, y, z) :- R(x, y), R(x, z)

V (x, y, z) :- R(x, y), R(y, z)

V (x, y, z) :- R(x, y), R(y, z), y = z

might be redefined by deleting the second rule and pro-
jecting out the middle column:

V ′(x, z) :- R(x, y), R(x, z)

V ′(x, z) :- R(x, y), R(y, z), y = z

In this case, the computation of V ′(x, z) might be sped
up under bag semantics by computing the second rule
V (x, y, z) :- R(x, y), R(y, z), subtracting the tuples of
the result, and projecting only x and z. (Again, du-
plicate removal could be done at the end to get a set-
semantics answer.)

Incremental view maintenance [17]. We are given
a source database, a materialized view, and a set of
changes to be applied to the source database (tuple in-
sertions or deletions), and the goal is to compute the
corresponding change to the materialized view. This
can then be applied to the existing materialized view to
obtain the new version. For example, consider a source
relation R and materialized view V , with definitions and
instances:

R :

a b
c b
b c
b a

V (x, y) :- R(x, z), R(z, y) :

a a
a c
b b
c c

Suppose we update R by deleting (b, a) and inserting
(c, d); to maintain V , we must insert a new tuple (b, d).
Note that deleting (b, a) does not result in deleting (b, b)
from V , because this tuple can still be derived by joining
(b, c) with (c, b). Yet if we now delete (c, b) from R, then
(b, b) and (c, c) must be deleted from V .

In order to solve the incremental view maintenance prob-
lem, Gupta et al. [17] proposed recording in V along
with each tuple the number of derivations of that tuple,

i.e., the multiplicity of the tuple under bag semantics.
To represent changes to a (bag) relation, they intro-
duced the concept of delta relations, essentially bag re-
lations with associated signs: “+” indicates an insertion
and “−” a deletion. Finally, in order to propagate up-
dates, they proposed the device of delta rules. A set of
delta rules for V correspond to the UCQ:

V ∆(x, y) :- R(x, z), R∆(z, y)

V ∆(x, y) :- R∆(x, z), R′(z, y)

Here R′ denotes the updated version of R, obtained by

applying the deltaR∆ toR, i.e., computingR′
def
= R∆∪R

where union on delta relations sums the (signed) tuple
multiplicities. By computing V ∆ and then applying it
to V , we obtain the updated version of V , namely V ′.
Note that there may actually be more than one possible
set of delta rules for V , e.g.:

V ∆(x, y) :- R∆(x, z), R(z, y)

V ∆(x, y) :- R′(x, z), R∆(z, y)

We would like to choose among the possible delta rules
sets, as well as simply computing V ′ “from scratch” via
the query:

V ′(x, y) :- R′(x, z), R′(z, y)

based on the expected costs of the various plans. We
model the relation R∆ with Z-relations, presented in
the next section. We consider this to again be a variant
of optimizing queries using views: the goal is to com-
pute the view with deltas applied, V ′, given not only
the base data R and R∆, but also the existing materi-
alized view V , and the materialized view R′ resulting
from applying the updates in R∆ to R. (We can com-
pute V ′ either before or after updating R to R′.) Since
every delta relation includes deletions, this version of
the reformulation problem also incorporates a form of
difference.

A unified treatment of these three applications requires
methods for representing data and changes via an ex-
cursion to an alternative semantics (Z-relations), per-
forming query reformulation in this context, and prov-
ing sufficient conditions for cases in which the results
agree with bag and set semantics.

3. Z-RELATIONS
We use here the named perspective [1] of the relational
model, in which tuples are functions t : U → D with
U a finite set of attributes and D a domain of values.
We fix the domain D for the time being and we denote
the set of all such U -tuples by U -Tup. (Usual) relations
over U are subsets of U -Tup (we will also refer to these
as B-relations).

A bag relation over attributes U is a mappingR : U -Tup→
N from U -tuples to their associated multiplicities. Tu-
ples with multiplicity 0 are those“not present” in R, and
we require of a bag relation that its support defined by

supp(R)
def
= {t | R(t) 6= 0} is finite.



A Z-relation over attributes U is a mappingR : U -Tup→
Z of finite support. In other words, it is a bag relation
where multiplicities may be positive or negative.

A bag instance (Z-instance) is a mapping from predicate
symbols to bag relations (Z-relations). A set instance
(or B-instance) is a mapping from predicate symbols to
B-relations.

We define the positive relational algebra (RA+) on bag
instances, Z-instances, and set instances according to
the semiring-annotated semantics used in our previous [15,
14] (repeated in the Appendix). For the time being
we assume selection predicates correspond to equalities
A = B of attributes or equalities A = c of attributes
with domain values. (We extend this to include inequal-
ity predicates in Section 7.)

We extend the above definition to the full relational al-
gebra (RA) on Z-instances by defining the difference
operator in the obvious way: if R1 : U -Tup → Z and
R2 : U -Tup → Z then R1 − R2 : U -Tup → Z is defined
by

(R1 −R2)(t)
def
= R1(t)−R2(t)

For bag semantics, the subtraction in the definition above
is replaced by proper subtraction (negative numbers are
truncated to 0). For set semantics, subtraction corre-
sponds to set difference.

Every bag instance is also a Z-instance, and relational
queries on bag instances can be evaluated under bag
semantics or Z-semantics. To disambiguate we use the
notation evalK(Q, I) to mean the evaluation of Q on bag
instance I under K-semantics, for K ∈ {N,Z}.

For Q,Q′ ∈ RA and K ∈ {B,N,Z} we say that Q and
Q′ are K-equivalent (denoted Q ≡K Q′) if for every K-
instance I, Q(I) = Q′(I). The following simple but use-
ful observation relates N-equivalence and Z-equivalence
of positive queries:

Lemma 3.1. If Q,Q′ ∈ RA+ then Q ≡Z Q
′ iff Q ≡N

Q′

Proof. “⇒” follows from the fact that every bag in-
stance is also a Z-instance and the two semantics agree
for positive queries on bag instances. “⇐” follows from
the fact that bag equivalent positive queries, when trans-
formed into UCQs, are isomorphic (see Section 7.5 in [13]).

3.1 Normal Form and Decidability
Equivalence of relational queries under set semantics has
long been known to be undecidable [26]. We have also
seen (cf. footnote in Section 1) that bag equivalence of
relational queries is undecidable, via an easy reduction
from containment of UCQs (which makes essential use
of proper subtraction). In contrast, the form of sub-
traction used in Z-relations turns out to be surprisingly
well-behaved: we will show in this section is that Z-
equivalence of relational queries is actually decidable.

(A−B)− C ≡Z A− (B ∪ C)

A 1 (B − C) ≡Z (A 1 B)− (A 1 C)

A− (B − C) ≡Z (A ∪ C)−B
(A−B) 1 C ≡Z (A 1 C)− (B 1 C)

A ∪ (B − C) ≡Z (A ∪B)− C
σP (A−B) ≡Z σP (A)− σP (B)

(A−B) ∪ C ≡Z (A ∪ C)−B
πX(A−B) ≡Z πX(A)− πX(B)

ρβ(A−B) ≡Z ρβ(A)− ρβ(B)

Figure 1: Algebraic identities for the difference
operator under Z-semantics

The key idea is that in contrast to bag and set semantics,
under Z-semantics, every relational query is equivalent
to a single difference of positive queries:

Theorem 3.2 (Normalization). For any Q ∈ RA
we can find A,B ∈ RA+ such that Q ≡Z A−B.

Proof. Straightforward induction on Q, using the
algebraic identities in Figure 1.

Note that several of these identities fail for both set and
bag semantics and indeed Theorem 3.2 fails for set or
bag semantics.

The procedure in the proof of Theorem 3.2 can be eas-
ily determinized and is clearly effective. Thus, we have
a function that computes for any Q ∈ RA a difference
normal form denoted by diffNF(Q) which has the form
A−B with A,B ∈ RA+ and such that Q ≡Z diffNF(Q).
Note that in general diffNF(Q) may be of size exponen-
tial in the size of Q.

Corollary 3.3. Z-equivalence of RA queries is de-
cidable.

Proof. Let Q,Q′ ∈ RA. By Theorem 3.2, Q ≡Z Q
′

iff diffNF(Q) ≡Z diffNF(Q′). Let A,B,C,D ∈ RA+ such
that diffNF(Q) = A − B and diffNF(Q′) = C −D. But
A−B ≡Z C−D iff A∪D ≡Z B∪C iff A∪D ≡N B∪C.
But A∪D and B ∪C are in RA+ and hence equivalent
to UCQs so the result follows from the decidability of
UCQ bag equivalence [13].

Corollary 3.3 can be used to show a PSPACE upper
bound on the complexity of checking Z-equivalence of
RA queries; however, the exact complexity remains open.
A lower bound is given by Proposition 4.1 which shows
that the problem is at least GI -hard.4

4GI is the class of problems polynomial time reducible
to graph isomorphism. Graph isomorphism is known
to be in NP , but is not known or believed to be either
NP-complete or in PTIME .



4. DUCQS AND REFORMULATION
Our reformulation algorithm does not work directly on
queries in RA. Rather, it is more convenient here to
adopt a Datalog-style syntax. We will define differences
of unions of conjunctive queries (DUCQs) for this pur-
pose, for example:

Q(x, z) :- R(x, y), S(y, z)

Q(x, y) :- R(x, y), R(y, x), R(x, x)

~Q(x, y) :- R(x, y), T (y, y)

The ~ marks a “negated” CQ, so this example in al-
gebraic form corresponds (roughly) to Q = (π(R 1

S) ∪ (R 1 R 1 R)) − (R 1 T ). DUCQs are related to
the elementary differences of [26]. Under Z-semantics,
any RA query can be written equivalently as a DUCQ;
this follows from Theorem 3.2 and the fact that any
RA+ query can be rewritten as a union of projections
of selections of joins, i.e., as a UCQ. This justifies our
use of DUCQs as an alternative representation of rela-
tional algebra queries. The semantics of DUCQs on bag
relations/Z-relations/set relations can be given formally
by translation to RA.

In this section, we first consider the complexity of re-
formulation using DUCQs. Then we discuss how we
can explore the space of rewritings using a term rewrite
system, we consider how to limit our search to diff-
irredundant rewritings, and we develop a cost model and
a procedure for limiting the search space further.

4.1 Complexity Results
Using reasoning from the proof of Corollary 3.3 along
with the fact that checking bag equivalence of UCQs
is GI -complete [13], we can fully characterize the com-
plexity of checking Z-equivalence of DUCQs:

Proposition 4.1. For DUCQs Q,Q′ checking Q ≡Z
Q′ is GI-complete.

We next consider several complexity questions related to
answering queries using views. A basic question posed
in [24] is the following: given a query Q and a view V ,
can Q be rewritten to use V ? For conjunctive queries
under set semantics, it is shown in [24] the problem is
NP-complete (and equivalent to the problem of check-
ing whether Q is contained in V when Q and V are
viewed as Boolean queries). Under bag semantics and
Z-semantics, the complexity remains NP-complete, for
CQs or UCQs:

Theorem 4.2. Given a query Q ∈ CQ and view V ∈
CQ, determining whether there exists a CQ rewriting
of Q using V under bag semantics (or Z-semantics) is
NP-complete. It remains NP-complete when the query,
view, and rewriting are UCQs.

See proof in Appendix C.

For DUCQs, the same question has a trivial answer: a
DUCQ Q can always be rewritten as the equivalent (V ∪
~V ) ∪Q (equivalent under bag semantics, Z-semantics,
and even set semantics).

Another question studied in [24] concerns complete rewrit-
ings. Given a set of views V, Q has a complete rewriting
if there is a rewriting of Q using only view predicates
(and no source predicates).

Theorem 4.3. Given a query Q ∈ CQ and set of
views V ⊆ CQ, determining whether there exists a CQ
rewriting of Q using only predicates in V under bag se-
mantics (or Z-semantics) is NP-complete. It remains
NP-complete when the query, view, and rewriting are
UCQs.

For DUCQs, we leave open the decidability of the above
problem.

4.2 Term Rewriting System
The goal of a query reformulation algorithm is to enu-
merate equivalent rewritings of a query and find the
minimum-cost rewriting (according to some cost model).
If equivalence is decidable (for the query language of
interest) a naive approach is to enumerate all queries,
selecting only those equivalent to the original query.
A more practical approach is to explore the space of
rewritings by repeatedly applying a set of transforma-
tion rules. The main benefit is that only equivalent
queries are ever considered.

We are also interested in checking equivalence and per-
forming query reformulation with respect to a set of a
views V over the source relations. In this case queries
and their reformulations are allowed to use any com-
bination of source predicates and view predicates. For
K ∈ {B,N,Z} and Q,Q ∈ DUCQ (possibly using views
in V ⊆ DUCQ) we say that Q is K-equivalent to Q′ with
respect to V, denoted Q ≡VK Q′, if Q and Q′ agree on all
instances of the source relations and derived views.

For these dual purposes (checking equivalence and enu-
merating rewritings), we introduce here a term rewriting
system [23] for DUCQs under Z-semantics. We fix a re-
lational schema Σ and a set of views V given by DUCQs
over the relations in Σ. The terms of our rewrite sys-
tem are the DUCQs over any combination of the source
predicates in Σ and the view predicates in V.

In the rewrite rules we use an auxiliary view unfolding
relation on CQs, definedQ→V Q′, ifQ′ can be obtained
from CQ Q by unfolding (in the standard way) a single
occurrence of the view predicate V in Q. We extend
→V to work with UCQ views by unfolding repeatedly
(once for each CQ in the view) and producing a UCQ
as output (with the same number of rules as the view).
For example, if V is the UCQ view:

V (x, y) :- R(x, z), R(z, y)

V (x, y) :- R(x, u), R(u, v), R(v, y)



and Q is the CQ:

Q(x, y) :- V (x, z), V (z, y)

then Q→V Q′ where Q′ is the UCQ:

Q′(x, y) :- V (x, z), R(z, w), R(w, y)

Q′(x, y) :- V (x, z), R(z, u), R(u, v), R(v, y)

Finally we extend →V to work with DUCQs by prop-
agating the ~ (e.g., if the second CQ in V above were
marked ~, then the second CQ in Q′ above would also
be marked ~).

Now we define a rewrite relation→ on terms as follows:

P,Q,R ∈ DUCQ V ∈ V P →V Q

P ∪R→ Q ∪R
(Unfold)

A,B ∈ CQ Q ∈ DUCQ A ∼= B

Q ∪A ∪ (~B)→ Q
(Cancel)

Next we establish some basic properties of our rewrite
system. We denote the transitive reflexive closure of

→ by
∗→. We say Q is a normal form if no rewrite

rule applies. A reduction sequence Q1 → · · · → Qn is
terminating if Qn is a normal form.

Proposition 4.4. The rewrite system above is uniquely
terminating, i.e., it satisfies the following two proper-
ties:

1. (confluence) For all Q,Q1, Q2 ∈ DUCQ if Q
∗→

Q1 and Q
∗→ Q2 then there exist Q3, Q

′
3 ∈ DUCQ

such that Q1
∗→ Q3 and Q2

∗→ Q′3 and Q3
∼= Q′3.

2. (termination) Every reduction sequence Q1 →
Q2 → · · · eventually must terminate.

Proposition 4.5. The rewrite system above is sound
and complete w.r.t. Z-equivalence with respect to V, i.e.,
for any Q1, Q2 ∈ DUCQ we have

1. (soundness) If Q1
∗→ Q2 then Q1 ≡VZ Q2.

2. (completeness) If Q1 ≡VZ Q2 then there exist

Q′1, Q
′
2 such that Q1

∗→ Q′1 and Q2
∗→ Q′2 and

Q′1 ∼= Q′2.

Corollary 4.6. Z-equivalence of DUCQs (and thus
RA queries) with respect to a set of DUCQ (and thus
RA) views V is decidable.

The corollary holds for RA queries and views because
we can always convert them first to DUCQs. Note
that converting them to DUCQs may increase the size
exponentially, and there can be a separate exponen-
tial blowup when unfolding the views in the DUCQs.

We leave open the exact complexity of the problems in
Corollary 4.6.

In Section 5 we develop an enumeration algorithm for
Z-equivalent rewritings, which uses the above rewrite
system combined with the converse of the Unfold and
Cancel operations, called Fold and Augment, respec-
tively. Fold rewrites a query by removing some of its
CQs and replacing them with an equivalent view (recall
that under bag semantics two UCQs are equivalent iff
they are isomorphic.) In general we may need to Aug-
ment first before Fold is applicable.

P,Q,R ∈ DUCQ V ∈ V P →V Q

Q ∪R→ P ∪R
(Fold)

A,B ∈ CQ Q ∈ DUCQ A ∼= B

Q→ Q ∪A ∪ (~B)
(Augment)

We observe that in isolation Augment can add/subtract
arbitrary CQs to the query, regardless of whether this
will turn out to be “useful” (by enabling a subsequent
Fold). Hence we do not use Augment directly, but
rather define a compound Augment-Fold operation,
which augments the query only with the CQs necessary
to perform a Fold operation with a given view. (The
Augment step of Augment-Fold may be skipped if
Fold can be directly applied to the query.) Addition-
ally, we restrict Augment-Fold to apply only if there
exists at least one rule in common between the query
and the view.

After applying Augment-Fold, we may be able to Can-
cel some rules introduced into the query. Hence, we will
also always apply Cancel after an Augment-Fold re-
peatedly until it is no longer applicable. We denote the
rule which corresponds to this sequence of Augment-
Fold followed by repeated Cancel by Augment-Fold-
Cancel, and write Q ↼ Q′ if Q′ can be obtained from
Q by an application of Augment-Fold-Cancel. We

denote the reflexive transitive closure of ↼ by
∗
↼. Note

that Q
∗
↼ Q′ implies Q

∗← Q′ but the converse does not
hold in general.

Proposition 4.7. If Q ∈ DUCQ then checking whether
there exists Q′ ∈ DUCQ s.t. Q→ Q′ (resp. Q ↼ Q′) is
GI-complete (resp. NP-complete).

4.3 Diff-Irredundant Rewritings
For UCQs (and CQs) under set semantics, the space
of rewritings is bounded because we need only search
for queries that satisfy a particular minimality property.
The space of such minimal queries is finite. Naturally,
we would like to find a similar notion of minimality for
DUCQs, such that any “non-minimal” rewriting is al-
ways less desirable than a minimal one. In this subsec-
tion, we define such a notion based on removing redun-
dant computation, and we consider whether the space
of non-redundant rewritings is finite.



We saw in the previous section that Augment (which
we denote←) can be used to“grow”a DUCQ arbitrarily
by adding more and more CQs: for example, Q← Q ∪
A ∪ ~A ← Q ∪ A ∪ B ∪ ~A ∪ ~B ← · · · . Here, we
introduce a notion of diff-redundancy which targets the
kind of redundancy in these rewritings:

Definition 4.8. A DUCQ Q = A − B is said to be
diff-redundant if for some subset of CQs A′ ⊆ A and
B′ ⊆ B, we have A′ ≡VZ B′. In this case the pair of
terms A′, B′ is said to be diff-redundant.

In the example above, Q∪A∪~A and Q∪A∪B∪~A∪~B
are both diff-redundant.

A diff-redundant DUCQ can be minimized by repeat-
edly finding and removing diff-redundant pairs of terms
until a diff-irredundant query is obtained. In the exam-
ples above, this leads back to Q (assuming Q itself is
irredundant). More generally:

Proposition 4.9. If Q,Q′ do not contain view pred-
icates and Q ≡Z Q

′, then minimizing Q and minimizing
Q′ produces the same query (up to isomorphism).

However, when queries may contain view predicates,
this property fails dramatically:

Theorem 4.10. The set IrrV(Q) of diff-irredundant
rewritings of a DUCQ Q with respect to a set of views
V is in general infinite.

Proof. If R and S are binary relations, then denote
by RS the relational composition of R and S, i.e., the
query:

Q(x, y) :- R(x, z), S(z, y)

We will use exponents to mean repeated relational com-
position (e.g., R3 = RRR), and to simplify notation we
use here + for union.

Now let Q = R2, and let V contain the single view
V = R+R3. Then we have:

Q = R2

≡VZ V R−R4

≡VZ V R− V R3 +R6

≡VZ V R− V R3 + V R5 −R8

and more generally:

Q ≡VZ (−1)nR2(n+1) +

nX
i=1

(−1)i+1V R2i−1

for all n ≥ 0. Clearly, there are infinitely many rewrit-
ings of this form. Moreover, one can check that ev-
ery such rewriting is diff-irredundant. It follows that
IrrV(Q) is infinite.

Thus, considering diff-irredundant queries does not suf-
fice to establish a finite bound on the set of possible
rewritings for a DUCQ.

4.4 A Cost Model
Another notion of minimality we might consider is the
global minimality of [24], where the goal is to minimize
the total number of atoms in a CQ reformulated us-
ing views. We find this notion problematic for several
reasons. First, in contrast to the classical CQ mini-
mization techniques (where minimizing the number of
atoms coincides with computing the core of the query),
the mathematical justification is unclear. Second, it is
not clear how global minimality should be extended to
UCQs/DUCQs (total number of atoms in all CQs?).
Third, in the practical applications of interest to us, the
real goal is to minimize the cost of executing a query,
and the number of atoms is often not indicative of query
performance. This is because of many factors, especially
the different costs of computing with different source re-
lations (which may be of drastically different cardinali-
ties, have different indexes, etc.).

To illustrate this last point, recall that in Section 2 we
had a view maintenance example, where the original
view was defined as:

V (x, y) :- R(x, y), R(z, y)

and our updated view could be defined as:

V ′(x, y) :- R′(x, y), R′(z, y)

where R′(x, y) represents R(x, y) ∪ R∆(x, y). The re-
formulation problem has two materialized views: the
original V in terms of the base R, and R′ (R after up-
dates are applied, which we can compute either before
or after computing V ′). If R∆ is large, then V ′ may be
most efficient to compute in terms of R′, as specified
in the second rule above. Alternatively, if R∆ is small,
then it may be more efficient to compute V ′ using V
and delta rules:

V ′(x, y) :- V (x, y)

V ′(x, y) :- R∆(x, z), R(z, y)

V ′(x, y) :- R(x, z), R∆(z, y)

Note that the latter query has three rules compared to
only one in the first case, and five atoms to only two.
Yet, intuitively, for small R∆s, the second case is more
efficient.

In practical DBMS implementations, a cost model [27]
predicts query performance given known properties (such
as cardinalities) of the input relations. Here we seek an
abstract cost model that captures the essence of the
detailed models implemented in real optimizers. Our
cost model, cost : RA → N, is instance-dependent, and
makes use of external calls to a cardinality estimation
function, card : RA → N, which returns the estimated
number of tuples in the result of a subquery (for the
current database instance). We define cost inductively



on RA expressions:

cost(R) = card(R)

cost(πE) = cost(E)

cost(σE) = cost(E)

cost(E1 ∪ E2) = cost(E1) + cost(E2)

cost(E1 − E2) = cost(E1) + cost(E2)

cost(E1 1 E2) = cost(E1) + cost(E2)

+ card(E1 1 E2)

This cost model intuitively focuses on the cost of pro-
ducing new tuples in expensive operations, namely joins
and tablescans. (Union in Z-semantics is inexpensive,
as it is in bag-semantics; difference in Z-semantics is in
fact a union operation that negates counts, and hence
it is also inexpensive.) Our cost model essentially com-
putes a lower bound on the amount of work a join must
perform: it considers tuple creation cost but ignores the
cost of matching tuples. (For an index nested loops join
or a hash join, matching is in fact inexpensive, so this
is a fairly realistic lower bound.) Our model satisfies
the principle of optimality [11] required by a real query
optimizer cost model.

The cost model above is based on queries represented
as relational algebra expressions (with a specific order
of evaluation). However it can be extended to CQs
by defining the cost of a CQ as the cost of the cheap-
est equivalent algebraic expression,5 and to UCQs and
DUCQs by summing the costs of all the CQs in the UCQ
or DUCQ. Assuming every source relation is non-empty,
a simple observation is that any CQ has cost at least 1,
and any DUCQ Q has cost at least n = |Q| (where |Q|
is the number of CQs in the DUCQ). This in turn leads
to a bound on the size of a minimum-cost rewriting (for
a given instance):

Proposition 4.11. For Q ∈ DUCQ, let V be a set
of views, and let k = cost(Q) where cost is defined as
above. Then for any Q′ ∈ DUCQ, if cost(Q′) ≤ cost(Q),
then |Q′| ≤ k.

This bound on the size of a minimum-cost rewriting can
be used to establish a bound on the length of a reduction
sequence which produces the rewriting:

Proposition 4.12. Let Q ∈ DUCQ, let V be a set
of views, let Q′ be the result of rewriting Q to normal
form, let Q′′ be a rewriting of Q of minimum cost, let
k1 = cost(Q), let k2 be the maximum number of atoms in
the body of a CQ in Q and V, and let k3 be the maximum
number of CQs in a DUCQ in Q and V. Then there
exists a reduction sequence Q′ ← Q1 ← · · · ← Qn ← Q′′

from Q′′ to Q′ with n ≤ k1k2k3.

5This is in fact done by dynamic programming in real
query optimizers.

This yields a finite bound (which can be effectively com-
puted from Q, V, and cost) on the region of the rewrite
space that must be explored in order to find a rewriting
of minimum cost (for a given instance).

5. FINDING QUERY REWRITINGS
Now that we understand the conditions under which
reformulation can be bounded to a finite search space,
we develop an enumeration algorithm for exploring the
space of possible query reformulations, for the problems
of optimizing queries using views, view adaptation, and
view maintenance. Recall from Section 2 that the opti-
mizing queries using views problem takes a set of mate-
rialized views, plus a query to be reformulated, as input.
View adaptation takes a single materialized view (the
“old” view definition and materialized instance), with
the modified view definition as the query to be reformu-
lated. View maintenance takes the pre-updated view
instance and updated versions of the base relations as
input views, with the maintained view (i.e., the view
computed over the updated base relations) as the query
to be reformulated.

5.1 Reformulation Algorithm
From Section 4.2 we have a set of rewrite rules, namely
Unfold, Cancel, and Augment-Fold-Cancel. Al-
gorithm 1 shows how these can be composed to enumer-
ate the space of plans. The normalize function (omit-
ted) repeatedly applies Unfold and Cancel to the in-
put query until they are no longer applicable. Next,
the main loop simply applies Augment-Fold-Cancel
to rewrite portions of each “frontier” query q in F , in
terms of any views that overlap with q.

The prune function determines whether the rewritten
query q′ should be added to the frontier set, or disre-
garded during exploration. For the rewrite algorithm to
be guaranteed to terminate and find an optimal rewrit-
ing according to the cost model, it suffices to define
prune(q, k) to return true iff k is less than the bound
given by Proposition 4.12. (In practice, we would add
additional heuristics to prune to limit the search space,
sacrificing the guarantee of a minimum-cost rewriting.)
Once the full space has been explored, reformulate re-
turns the rewriting from Q with the lowest cost accord-
ing to our cost model.

5.2 Rewriting in a Query Optimizer
In principle, one could search the space of query rewrit-
ings by building a layer above the query optimizer, which
enumerates possible rewritings; then separately opti-
mizes each. However, a more efficient approach is to
extend an existing optimizer to incorporate the rewrit-
ing system into its enumeration. Unlike with rewriting
of conjunctive queries, most existing cost-based opti-
mizers cannot easily be extended to DUCQ rewritings.
The System-R optimizer [27] only does cost-based op-
timization of joins, instead relying on heuristics for ap-
plying unions and differences. Starburst [18] can rewrite
queries with unions and differences, but only at its heuristics-
based query rewrite stage. Starburst only has limited



Algorithm 1 reformulate(query q, set of views V ) re-
turns query

1: for each view v in V do
2: v := normalize(v)
3: end for
4: Let qi := normalize(q)
5: Let Q := ∅
6: Let F := {(qi, 0)}
7: for each (q, k) in F do
8: Remove (q, k) from F and add it to Q
9: for each v in V do

10: Let q′ := Augment-Fold-Cancel(q,v)
11: if q′ not in Q and not prune(q′, k + 1) then
12: Add (q′, k + 1) to F
13: end if
14: end for
15: end for
16: return the q in Q with lowest cost

facilities for cost-based comparison of alternative rewrit-
ings.

Fortunately, the Volcano [12] optimizer generator (as
well as its successors) can be modified to incorporate
our rewrite scheme within an optimizer. Volcano mod-
els a query initially as a plan of logical operators repre-
senting the algebraic operations, including unions and
differences; it uses transformation rules to describe al-
gebraic equivalences that can be used to find alternate
plans. Implementation rules describe how to rewrite
a logical operator (or set of operators) into a series of
physical algorithms, which have associated costs.

Our rewrite rules of Section 4.2 can be expressed as
transformation rules for Volcano, and we would not need
to change any implementation rules. However, we would
also need to modify Volcano’s pruning algorithm: we
must place a finite bound on the size of the rewritings
explored, as with our prune function in the previous
subsection.

6. APPLICATIONS TO BAG AND
SET SEMANTICS

Having obtained a sound and complete algorithm for
reformulation of RA queries using RA views under Z-
semantics, we wish to see for which RA queries/views
this same algorithm actually provides reformulations un-
der bag semantics. Thus we are naturally led to study
the following class of queries:

Definition 6.1. We denote by RA the class of all
queries Q ∈ RA such that for all bag-instances I,
evalN(Q, I) = evalZ(Q, I).

Right away we see that:

Lemma 6.2. For any Q1, Q2 ∈ RA we have Q1 ≡Z
Q2 implies Q1 ≡N Q2.

Then (see proofs in Appendix C):

Lemma 6.3. If A,B ∈ RA+ then A−B ∈ RA if and
only if B vN A.

Proposition 6.4. If Q ∈ RA then diffNF(Q) ∈ RA
and Q ≡N diffNF(Q).

Corollary 6.5. Bag-equivalence of RA queries is
decidable.

Next we show that if we start with a DUCQ in RA and
a set of DUCQ views also inRA, then the exploration of
the space of reformulations prescribed by the algorithm
of Section 5 examines only queries in RA which are ≡N
under the views to the original DUCQ.

Suppose that V is a set of views in RA expressed as
DUCQs.

Proposition 6.6. If Q is a DUCQ in RA and Q′ is
a DUCQ obtained from Q either by a step of augmen-
tation or by a step of folding with a view from V then
Q′ ∈ RA and Q′ is ≡N to Q under V.

Therefore, the reformulation algorithm can be used with
RA queries and views. Unfortunately, but not unex-
pectedly, it is undecidable whether anRA query or even
a DUCQ is actually in RA (Lemma 6.3 provides a re-
duction from bag-containment of UCQs). But there are
interesting classes of queries for which membership in
RA is guaranteed. The simplest but still very useful
case is based on the observation that RA+ ⊂ RA. It
follows that our algorithm is also complete for finding
DUCQ reformulations of UCQs using UCQ views, as in
the example in Section 2.

Next we identify a subclass of RA for which, while still
undecidable in general, membership may be easier to
check in certain cases.

Definition 6.7. We denote by dRA the class of of all
RA queries Q such that for every occurrence A− B of
the difference operator in Q, we have B vN A.

Theorem 6.8 (Normalization for dRA). For any

Q ∈ dRA can find A,B ∈ RA+ such that Q ≡N A−B.

Proof. Straightforward induction on Q, using the
same algebraic identities as in Theorem 3.2. Although
these identities fail under bag semantics for RA queries,

they hold for dRA queries.

Corollary 6.9. Bag-equivalence of dRA queries is
decidable.



Theorem 6.10. dRA ⊂ RA
Proof. Checking dRA ⊆ RA is a straightforward ap-

plication of Theorem 6.8. To see that the inclusion is

proper, consider the query Q
def
= (R−(R∪R))−(R−(R∪

R)). Q is both Z-equivalent and N-equivalent to the un-
satisfiable query ∅; it follows that Q is in RA. However,

since R ∪R 6vN R, it is clear that Q 6∈ dRA.

Although RA contains queries which are not in dRA
(because of their syntactic structure), it turns out that,

semantically, dRA capturesRA, as the following theorem
makes precise:

Theorem 6.11. For all Q ∈ RA there exists Q′ ∈dRA such that Q ≡N Q
′.

See proof in Appendix C.

Membership in dRA is also undecidable. However in
some practical situations, such as incremental view main-
tenance of RA+ views using delta rules [17], the differ-
ence operator is used in a very controlled way where
the containment requirement is satisfied (e.g., it is just
necessary for the system to enforce that only tuples ac-
tually present in source tables are ever deleted from the
sources).

We are also interested in reformulating and answering
queries under Z-semantics, but then “eliminating dupli-
cates” to obtain the answer under set semantics. Even
for dRA queries, this is not in general straightforward:
for example, consider the query Q = (R ∪ R)− R. Un-
der set semantics, this is equivalent to the unsatisfiable
query, while under bag semantics or Z-semantics, it is
equivalent to the identity query R. We can, however,

restrict the use of negation in dRA further, to obtain
another fragment of RA suitable for this purpose.

Definition 6.12. An RA query Q over a schema Σ
is said to be a base-difference query if A−B can appear
in Q only when A and B are both base relations (names
in Σ). Further, a base-difference query Q is said to be
positive-difference wrt a set-instance I if for each A −
B appearing in Q we have AI ⊇ BI (where AI is the
relation in I that corresponds to A ∈ Σ.)

Although the use of negation in base-difference queries
considered on instances wrt which they are positive-
difference is highly restricted, it still captures the form
needed for incremental view maintenance, where nega-
tion just relates old and new versions of source relations
via the tables of deleted and inserted tuples.

For conversion between bag semantics / Z-semantics
and set semantics we also define the duplicate elimina-
tion operator δ : Z → B which maps 0 to false and ev-
erything else (positive or negative) to true. Conversely,

we can view any set instance as a bag/Z instance by
replacing false with 0 and true with 1. With this we can
state the salient property of base-difference queries:

Proposition 6.13. . Let Q ∈ RA be a base-difference
query and let I be a set instance w.r.t. which Q is positive-
difference. Then, we can compute Q(I) by viewing I as
a Z-instance, computing Q(I) under Z semantics and
finally applying δ.

Consequently, the optimization techniques in this pa-
per (which replaces a query with a Z-equivalent one)
will also apply to set semantics, provided we restrict
ourselves to base-difference queries applied to instances
w.r.t. which they are positive-difference.

7. BUILT-IN PREDICATES
To this point, our approach to query rewriting has as-
sumed equality predicates only. Clearly, any practical
implementation would also consider inequality (<,≤)
and non-equality (6=) predicates. In this section we dis-
cuss the extensions necessary to support such built-in
predicates.

We assume our domain D comes equipped with a dense

linear order <, and we define RA<, dRA<, CQ<, etc. as
the previously defined classes of queries extended to al-
low use of the predicates <, ≤, =, and 6=. In general,
the predicates in a CQ< induce only a partial order on
the variables. We shall call a CQ< total if the predicates
in the query induce a total order on the variables, and
partial otherwise. To facilitate syntactic comparison of
queries we shall assume w.l.o.g. for total CQ<s that a
minimal number of predicate atoms are used, i.e., if the
predicates induce the total order x < y < z then the
predicate atoms x < y and y < z and no others appear
in the query. A UCQ< or DUCQ< is total if all of its
CQ<s are total, and partial if it contains a partial CQ<.

As in [9, 8], we note that a partial CQ< Q can always
be converted into an equivalent total UCQ<, denoted
lin(Q), that contains one CQ< for each linearization of
the partial order on the variables. For example:

Q(x, y) :- R(x, y), R(y, z), x < y, x ≤ z

can be rewritten:

Q(x, y) :- R(x, y), R(y, z), x = z, x < y

Q(x, y) :- R(x, y), R(y, z), x < y, y = z

Q(x, y) :- R(x, y), R(y, z), x < y, y < z

Q(x, y) :- R(x, y), R(y, z), x < z, z < y

Likewise a partial UCQ< (DUCQ<) Q can be converted
into an equivalent total UCQ< (DUCQ<) lin(Q) by re-
placing each partial CQ< with its equivalent total UCQ<.
Note that if Q is already total, then Q = lin(Q).

Theorem 7.1. For all Q,Q′ ∈ UCQ< the following
are equivalent:



1. Q ≡N Q
′

2. Q ≡Z Q
′

3. lin(Q) ∼= lin(Q′)

Proof. (2) ⇒ (1) because every bag instance is a
Z-instance. (1)⇒ (3) is stated in [9] for bag-set seman-
tics but it also holds for bag semantics (see Section 7.5
in [13]). (3) ⇒ (1) follows from the observation that
Q ≡Z lin(Q).

Corollary 7.2. Z-equivalence ofRA< queries is de-

cidable and so is bag-equivalence of dRA< queries.

This leads to an approach to enumerating rewritings of
queries with predicates w.r.t. views: linearize the queries
and views into total UCQs/DUCQs as above and refor-
mulate using the linearized representations. As an op-
tional final step, the reformulated query could then be
“de-linearized” to a partial query.

8. RELATED WORK
Exact query reformulation using views has been studied
extensively, due to its applications in query optimiza-
tion, data integration, and view maintenance, starting
with the papers by Levy et al. [24] and Chaudhuri et
al. [4]. The former paper established fundamental re-
sults for UCQ<under set semantics. The latter paper
considered CQ<s under bag semantics, but it did not
provide a complete reformulation algorithm or consider
UCQs or UCQ<s. Cohen, Nutt, and Sagiv [7] consid-
ered the problem for CQ<s with aggregate operators
and built-in predicates under bag-set semantics, and de-
veloped sound and complete reformulation algorithms.
In contrast to our term-rewrite system based approach,
which considers only equivalent rewritings, their algo-
rithm considers non-equivalent candidate rewritings, us-
ing an equivalence check to filter candidates. Afrati and
Pavlaki [2] give results on rewriting with views for CQs
with safe negation. These queries/views are considered
under set semantics but their expressive power seems to
be incomparable to that of the queries we consider in
Proposition 6.13.

The seminal paper by Chandra and Merlin [3] intro-
duced the fundamental concepts of containment map-
pings and canonical databases in showing the decidabil-
ity of containment of CQs under set semantics and iden-
tifying its complexity as NP-complete. The extension
to UCQs is due to Sagiv and Yannakakis [26], where the
undecidability of set-equivalence of RA queries was also
established.

The papers by Ioannidis and Ramakrishnan [21] and
Chaudhuri and Vardi [5] initiated the study of query op-
timization under bag semantics. Chaudhuri and Vardi
showed that bag-equivalence of CQs is the same as iso-
morphism and established the Πp

2-hardness of check-
ing bag-containment of CQs. Ioannidis and Ramakr-

ishnan showed that bag-containment of UCQs is unde-
cidable. The decidability of bag-equivalence of UCQs
can be derived from the results on bag-set semantics
in [9, 6] and also from results on provenance-annotated
semantics (see the discussion in [13]). The decidabil-
ity of bag-containment of CQs remains open. Recent
progress was made on the problem by Jayram, Kolaitis
and Vee [22] who established the undecidability of check-
ing bag-containment of CQs with built-in predicates
(our CQ<s).

Chaudhuri and Vardi also introduced in [5] the study
of bag-set semantics (where source tuple multiplicities
are 0 or 1 only, and queries are evaluated under bag se-
mantics), and showed that bag-set equivalence of CQs
is the same as isomorphism. This was essentially a re-
discovery of a much earlier result due to Lovász [25] (see
also [20]). Cohen, Nutt, and Sagiv [8] give decidability
results for bag-set equivalence of CQs with comparisons
and aggregate operators. Cohen, Sagiv, and Nutt [10]
give decidability results for bag-set equivalence of UCQs
with comparisons, aggregate operators, and a limited
form of negation (only on extensional predicates).

The view adaptation problem was introduced in [16],
which gives a case-based algorithm for adapting mate-
rialized views under changes to view definitions (under
bag semantics). In contrast, our methods apply to view
adaptation, but use a more general term rewrite system
to develop a sound and complete query reformulation
algorithm.

Our Z-relations appeared in an early form as the deltas
in the count incremental view maintenance algorithm
for UCQs of [17]. That paper did not consider query
equivalence for deltas or make a general study of query
reformulation.

9. CONCLUSIONS
In this paper we investigated the problem of exact query
reformulation using views, when queries and views are
given with the full RA including difference. We intro-
duced Z-relations, we showed that under Z-semantics,
every RA query may be expressed as a difference of
two RA+ queries, and we saw that this leads to the
decidability of Z-equivalence of RA queries. (In con-
trast, equivalence of RA queries is undecidable under
set or bag semantics). We presented a query reformula-
tion algorithm based on a term rewrite system and saw
that it is sound and complete for RA queries under Z-
semantics. We also saw that query reformulation on Z-
relations allows us to unify in one framework several in-
teresting applications, such as optimizing queries using
materialized views, view adaptation, and incremental
view maintenance. We studied related complexity ques-
tions, and gave conditions under which our techniques
our results can be used to find reformulations under bag
semantics and set semantics. Finally, we showed that Z-
equivalence of RA queries extended with built-in predi-
cates, and bag-equivalence of RA+ queries with built-in
predicates, are also decidable.



As future work, we hope to develop a practical imple-
mentation of our reformulation algorithm and evalu-
ate experimentally its effectiveness in view maintenance,
adaptation, and optimization.
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APPENDIX

A. POSITIVE RELATIONAL ALGEBRA
ON Z-RELATIONS

The operations of the positive algebra on Z-relations
are defined as follows:

empty relation For any set of attributes U , there is
∅ : U -Tup→ Z such that ∅(t) = 0.

union IfR1, R2 : U -Tup→ Z thenR1∪R2 : U -Tup→ Z
is defined by

(R1 ∪R2)(t)
def
= R1(t) +R2(t)

projection If R : U -Tup → Z and V ⊆ U then πVR :
V -Tup→ Z is defined by

(πVR)(t)
def
=

X
t=t′ on V and R(t′)6=0

R(t′)

(here t = t′ on V means t′ is a U -tuple whose re-
striction to V is the same as the V -tuple t; note also
that the sum is finite since R has finite support)

selection If R : U -Tup→ Z and the selection predicate
P maps each U -tuple to either 0 or 1 then σPR :
U -Tup→ Z is defined by

(σPR)(t)
def
= R(t) ·P(t)

Which {0, 1}-valued functions are used as selection
predicates is left unspecified, except that we as-
sume that false—the constantly 0 predicate, and
true—the constantly 1 predicate, are always avail-
able.

natural join If Ri : Ui-Tup→ Z i = 1, 2 then R1 1 R2

is the Z-relation over U1 ∪ U2 defined by

(R1 1 R2)(t)
def
= R1(t1) ·R2(t2)

where t1 = t on U1 and t2 = t on U2 (recall that t
is a U1 ∪ U2-tuple).

renaming If R : U -Tup → Z and β : U → U ′ is a
bijection then ρβR is a Z-relation over U ′ defined
by

(ρβR)(t)
def
= R(t ◦ β)



B. COMPUTABILITY ASPECTS OF RE-
FORMULATION

Let us summarize the common abstract elements of the
approaches to query reformulation using views for CQs
and UCQs, for bag and set semantics. Let Σ be the
relational schema and let us denote by ΣV the schema
consisting of the view names (assumed disjunct from Σ).
In all these approaches to reformulation we have:

• A total recursive function β that associates to each
Σ-query a natural number.

• For each Σ-query Q a total recursive function µQ
(abstracting local minimization) that associates to
each Σ∪ΣV-query Q′ an equivalent Σ∪ΣV -query
such that if Q′ ≡VZ Q then µQ(Q′) ≡VZ Q and the
size of µQ(Q′) is bounded by β(Q).

• The total function that associates to each Σ-query
Q the (finite) set of Σ ∪ ΣV -query that are equiv-
alent to Q under V and whose size is bounded by
β(Q) is recursive.

It is easy to see that these imply the decidability of
query equivalence under V.

C. PROOFS
Proof. (of Theorem 4.2) (Sketch) Membership in

NP in both cases is easy to see. NP-hardness when
Q and V are CQs (and hence also for the case where Q
and V are UCQs) is established by a straightforward re-
duction from the subgraph isomorphism problem: given
graphs G1, G2 is there a subgraph of G1 which is iso-
morphic to G2? (In contrast to graph isomorphism,
the subgraph isomorphism problem is known to be NP-
complete.)

Proof. (of Lemma 6.3) “⇒”: suppose A − B ∈ RA
and consider an arbitrary bag instance I and tuple t.
Since evalZ(A−B, I)(t) = evalN(A−B, I)(t) ≥ 0, and by
definition, evalZ(A−B, I)(t) = evalZ(A, I)(t)−evalZ(B, I)(t),
it follows that evalA(Z, I)(t) ≥ evalZ(B, I)(t). Since A
and B are positive queries, by Lemma 3.1, evalZ(A, I) =
evalN(A, I) and evalZ(B, I) = evalN(B, I) and therefore
evalN(A, I)(t) ≥ evalN(B, I)(t). Since I and t were cho-
sen arbitrarily, it follows that B vN A.

“⇐”: suppose A vN B and consider an arbitrary bag
instance I. By Lemma 3.1 evalN(A, I) = evalZ(A, I)
and evalN(B, I) = evalZ(B, I). But since evalN(B, I) ≤
evalN(A,), it follows that evalZ(A − B, I) = evalN(A −
B, I) ≥ 0. Since I was chosen arbitrarily, it follows that
A−B ∈ RA.

Proof. (of Proposition 6.4) Suppose Q ∈ RA, let
diffNF(Q) = A− B (with A,B ∈ RA+), and choose an
arbitrary bag instance I and tuple t. Then evalN(Q, I)(t) =
evalZ(Q, I)(t) = evalZ(A − B, I)(t) = evalZ(A, I)(t) −
evalZ(B, I)(t) ≥ 0. It follows that evalZ(A, I)(t) ≥
evalZ(B, I)(t) and therefore (using Lemma 3.1) that evalZ(A−
B, I)(t) = evalN(A−B, I)(t). Since I and t were chosen

arbitrarily, it follows that Q ≡N A−B, as required, and
also that B vN A. By Lemma 6.3 this in turn implies
that A−B ∈ RA.

Proof. (of Theorem 6.11) For any Q ∈ RA, we show
that there must exist A,B ∈ RA+ such that B vN A
and Q ≡N A − B. Fix a Q ∈ RA. By Theorem 3.2,
there exist A,B ∈ RA+ such that Q ≡Z A − B. We
argue by contradiction that B vN A. Suppose B 6vN A.
Then there exists a bag instance I and tuple t such that
evalN(A, I)(t) < evalN(B, I). Then evalZ(A− B, I)(t) <
0, i.e., evalZ(A − B, I) = evalZ(Q, I) is not even a bag-
instance. However, this is a contradiction, because by
assumption (sinceQ ∈ RA), we must have evalZ(Q, I) =
evalN(Q, I). Finally, we argue that Q ≡N A−B. To see
this, fix an arbitrary bag instance I. We want to show
that evalN(Q, I) = evalN(A − B, I). Since Q ∈ RA,
we have evalN(Q, I) = evalZ(Q, I). Since Q ≡Z A − B
we have evalZ(Q, I) = evalZ(A − B, I). Finally, since

A−B ∈ dRA, by Theorem 6.10 we have evalZ(A−B, I) =
evalN(A−B, I). This completes the proof.


