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Materials in particulate form for tissue engineering.
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Abstract

For biomedical applications, materials small in size are growing in importance. In an era where
‘nano’ is the new trend, micro- and nano-materials are in the forefront of developments. Materials in
the particulate form aim to designate systems with a reduced size, such as micro- and nanoparticles.
These systems can be produced starting from a diversity of materials, of which polymers are the
most used. Similarly, a multitude of methods are to produce particulate systems, and both materials
and methods are critically reviewed here. Among the varied applications that materials in the
particulate form can have, drug delivery systems are probably the most prominent, as these have
been in the forefront of interest for biomedical applications. The basic concepts pertaining to drug
delivery are summarized, and the role of polymers as drug delivery systems conclude this review.
Copyright  2007 John Wiley & Sons, Ltd.
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1. Definition

The key feature of particulate materials systems being
their reduced size, the question regarding the threshold
size for considering a system to be a particulate one is of
value. Across the literature, many authors differ regarding
this question. Herein, micron (µm)-sized systems in the
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range 1–1000 µm will be considered first. Nano-sized
particle systems, within this context, are those for which
the sizes are below 1 µm (Kreuter, 1991), and they will
be described next.

2. Classification of materials in
particulate form

2.1. Microparticles

Microparticles consist of particles in a size range
1–1000 µm (Couvreur and Puisieux, 1993). These include
microcapsules, vesicular systems in which a cavity is
surrounded by a unique polymeric membrane, and
microspheres, which are matrix-filled systems (Couvreur
and Puisieux, 1993). Polymer microspheres have attracted
attention as carrier matrices in a wide variety of
medical and biological applications, such as affinity
chromatography, immobilization, immunoassay, nuclear
imaging and cell culture (Tuncel et al., 1996; Kamyshny
and Magdassi, 2000; Shinkai, 2002). Additionally, the
incorporation of bioactive agents into small polymeric

Copyright  2007 John Wiley & Sons, Ltd.
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particles was recognized years ago by the pharmaceutical
industry as a viable means of improving drug delivery
(Bissery et al., 1984; Bezemer et al., 2000a, 2000b; Pillai
et al., 2001). This use arose because conventional dosage
forms, such as oral delivery and injection, were not able
to control the rate of delivery or the target area of
the bioactive agent and were often associated with an
immediate or rapid release (Tao and Desai, 2003).

The main advantages of microparticles is that they
may be administered by injection or intranasally as a
dry powder, so that a surgical procedure is not required
(Baldwin and Saltzman, 1998; Eliaz and Kost, 2000;
Tinsley-Brown et al., 2000), and that they may contain a
greater amount of biologically active molecules per unit
volume (Langer, 1991; Grassi et al., 2001; Janes et al.,
2001a). Various parameters, including particle size and
distribution, porosity, pore structure and surface area,
are considered to describe the overall performance of
polymer microparticles in biomedical applications (Tuncel
et al., 1996; Allemann et al., 1998; Yang and Alexandridis,
2000). Additionally, the use of microparticles composed
of biodegradable polymers eliminates the need for device
removal after release of the agent (Baldwin and Saltzman,
1998). Based on these features, microparticles have
been the subject of numerous studies with the intent to
overcome a number of issues related to the therapeutics
of biologically active molecules.

In summary, microparticles have the following proper-
ties that render them attractive:

• Size: small size allows them to be inserted in the
target area in a non-invasive manner, thus increasing
effectiveness.

• Size distribution: microparticles ranging from a few to a
few hundred µm can be selected according to a specific
application.

• Porosity and pore structure: the presence of pores allows
the tailoring of the release profile.

• Surface area: large surface area and a capacity for
loading the bioactive agent at a high fraction of the
total weight of the particle.

However, for some applications, particles with an
even smaller size – nanoparticles – can be preferable to
microparticles.

2.2. Nanoparticles

Nanoparticles, being submicron systems, have the
advantage of an even larger surface area compared
with microparticles, because the total surface area
is inversely proportional to the third power of the
diameter (Berton et al., 1999; Kawaguchi, 2000). In these
systems the bioactive agent can be dissolved, entrapped,
encapsulated, adsorbed, immobilized or attached to the
matrix (Orive et al., 2004) and, depending upon the
method of preparation, nanoparticles, nanospheres or
nanocapsules can be obtained (Couvreur and Puisieux,
1993; Soppimath et al., 2001). Nanocapsules are vesicular
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systems in which the bioactive agent is confined to
a cavity surrounded by a unique polymer membrane,
while nanospheres are matrix systems in which the
bioactive agent is physically and uniformly dispersed
(Soppimath et al., 2001). Nanospheres and nanocapsules
are the morphological equivalents of microspheres and
microcapsules, respectively (Allemann et al., 1998).

Nanoparticles can be injected and, as a result, can
circulate in the blood stream (Madan et al., 1997).
However, in some cases, nanoparticles are phagocytosed
by macrophages (Lee et al., 2001), and this can lead to an
adverse immunological response. However, such reaction
may be desirable in applications such as vaccination
therapies, and when enhanced uptake of exogenous
compounds, such as anti-human immunodeficiency virus
(HIV) drugs (Lee et al., 2001), is sought. Nanoparticle
polymeric carriers, when their size is less than 100 nm,
have a high potential for being accumulated in tumour
sites, according to the enhanced permeation and retention
(EPR) effect (Nishikawa et al., 1996; Yasugi et al., 1999).
Hydrophilic modification, particularly by introducing
poly(ethylene)glycol (PEG) by physical coating or
covalent linking – a process known as pegylation – to the
surface, prolongs the half-life of the carriers (Kumar,
2000; Seal et al., 2001; Diwan and Park, 2003) during
circulation in blood by reducing opsonization and thus
minimizing carrier clearance in organs such as liver,
spleen, lung and bone marrow (Gref et al., 1994;
Peracchia et al., 1997). This long-circulating stealth
characteristic of the carrier produces the EPR effect,
which is valuable in passive cancer targeting (Berthold
et al., 1998; Maeda et al., 2000).

Nanoparticles hold great potential for the treatment
of tumours. An example is related to the ability of those
materials to include within their matrix magnetic particles
and by directing nanoparticles to the target (e.g. tumour
cells) through magnetic fields created around the tumour.
This brings great advantages, such as a reduction of the
dosage and side-effects, as well as a rise in the therapeutic
effect, together with controlled and, most importantly,
direct targeting of the tumour site (Brigger et al., 2002).

Nanoparticles offer other specific advantages over
liposomes, because they increase the stability of bioactive
agents/proteins and possess a better set of controlled
release properties (Jain, 1994; Hrkach et al., 1997; Gaspar
et al., 1998; Berton et al., 1999; Kumar, 2000; Soppimath
et al., 2001).

To summarize, nanoparticles possess the following
advantages:

• Stability: increased stability over liposomes and
promotion of increased stability of entrapped bioactive
molecules.

• Surface area: higher surface area, even when compared
with microparticles.

• Size: depending on their size, they can be phagocytosed
or can circulate in the blood long enough to promote
the therapeutic effect.

Copyright  2007 John Wiley & Sons, Ltd. J Tissue Eng Regen Med 2007; 1: 000–000.
DOI: 10.1002/term
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• Stealth effect: controlled by size and modification by
coating with polymers such as PEG.

• Delivery to target site: easily delivered by injection,
without the need of invasive procedures.

3. Overview of synthesis methods

There are several methods for the production of micro-
and nanoparticles, but the most widely used techniques
are methods based in emulsions, such as suspension
polymerization, solvent evaporation and, to a smaller
extent, organic phase separation (coacervation) and
spray-drying methods, as reviewed/described in detail
in the literature (Kreuter, 1991; Gref et al., 1994; Tuncel
et al., 1996; Madan et al., 1997; O’Donnel and McGinity,
1997; Lin and Yu, 2001; Soppimath et al., 2001).

In suspension polymerization, the monomer phase is
broken into droplets (a few µm in diameter) within a
dispersion medium (usually an aqueous phase) and stabi-
lized by a surfactant dissolved in the medium (Piskin et al.,
1993). These monomer droplets containing a monomer
phase soluble initiator are then individually polymer-
ized by applying a temperature/agitation programme
(Piskin et al., 1993). In the emulsion/solvent evapora-
tion method, the polymer is solubilized/dispersed in an
organic solvent (e.g. methylene chloride, chloroform) and
the resultant solution is then emulsified with an aqueous
phase (Soppimath et al., 2001; Perez et al., 2002). The
formation of the particles is achieved by hardening result-
ing from the evaporation of the organic solvent. Stirring
speed is usually the parameter controlling the size of the
particles. This method is easy to implement and yields
very good results with a variety of raw materials.

Most of the methods for the production of particle-
based systems are actually based on the creation
of emulsions between organic and aqueous phases,
and suffer one common drawback – the need for
organic solvents (e.g. methylene chloride, chloroform,
acetonitrile, tetrahydrofuran) in at least one of the
production steps (Ghaderi et al., 1999; Kim and Park,
1999; Sendil et al., 1999; Birnbaum et al., 2000).
The residual content of the organic solvent in the
microparticles after preparation has to be removed in
time-consuming drying steps (Nykamp et al., 2002), and
in many cases the presence of an organic solvent can
lead to loss of the activity of the agent to be loaded
into the system. Currently, methods that obviate the use
of organic solvents are in demand, and this aspect is
particularly critical when there is a risk of hindering
the activity of the biological agent. An interesting new
approach in efforts to address this particular issue is
that described by Nykamp et al. (2002), who used a
jet-milling technique to produce polylactic acid (PLA)
and polylactic/glycolic acid (PLGA) microparticles with
different ratios of the two polymers. Conceivably, this
method could also be used for other polymers. However,
the first step of this process involves melting the starting
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material, which obviously has to be taken into account
when aiming to use the developed systems for delivery
of bioactive agents. Similarly, Lin et al. (1999) have used
a solvent-free method to produce polycaprolactone (PCL)
microparticles, by dispersing polyethylene glycol (PEG)
in the PCL phase. Although the melting temperature of
PCL is low (close to 60 ◦C), this temperature might still
be deleterious for the activity of bioactive molecules.

One has to be cautious in choosing the method of
production, and weigh carefully between the risks of using
an organic solvent or using high-temperature conditions,
two major parameters influencing the biological activity
of an agent.

Although micro- and nanoparticles can be produced
using a vast array of possible techniques, a number of
variables that affect the product obtained have to be taken
into account when choosing a material and method. These
include (Bissery et al., 1984; Ronneberger et al., 1997;
Bezemer et al., 2000a):

• Type and amount of material used.
• Degradation rate of the polymer.
• Type and payload of bioactive agent being incorporated

(in case of drug delivery applications).
• Organic solvent being volatilized.
• Type and amount of surfactant dissolved in the aqueous

phase.
• Temperature.
• Pressure during solvent evaporation.
• Ratio of the volume of organic solvent : volume of

aqueous phase.

By ‘playing’ with these parameters, researchers have been
able to use a wide array of materials and methods for a
number of applications.

4. Materials used in the synthesis of
materials in particulate form

The polymeric class of materials has been regarded as
the primary choice for applications in which small-sized
particles are needed, since many polymers can be formed
into microparticles and nanoparticles for delivery and
other applications. These may be non-degradable or
degradable polymers, from synthetic or natural origin,
or even blends (synthetic–synthetic, synthetic–natural or
natural–natural). Nevertheless, polymers are not the only
materials used for producing materials in particulate form;
across the literature there is a wide array of materials used
for the synthesis of particle-based materials, including
ceramics and metals. This review deals primarily with
polymers and to some extent ceramics. Some examples of
polymer–ceramic composites will also be described.

Table 1 summarizes the most frequently used materials
for the synthesis of materials in particulate form, and also
includes the methods for production of these systems and
intended applications, with a brief description of the most
widely used groups following the table.

Copyright  2007 John Wiley & Sons, Ltd. J Tissue Eng Regen Med 2007; 1: 000–000.
DOI: 10.1002/term
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The use of synthetic polymers as carriers has pre-
dominantly focused on polyhydroxyalkanoates (Ueda
and Tabata, 2003), in particular poly(α-hydroxy esters),
because the material has long been used in sutures
(Hollinger et al., 1996; Hollinger and Leong, 1996). The
most widely used poly(α-hydroxy ester) polymers for
particle-based strategies are polylactide (PLA), polygly-
colide (PGA) and their co-polymers (poly-DL-lactide-co-
glycolide) (PLGA) (Brekke, 1996; Hollinger and Leong,
1996; Whang et al., 1998). Their widespread use stems
from the ability of these materials to serve a multitude of
purposes and applications.

PLA nanoparticles, in general, have the advantage to
be able to pass through the capillary bed and to be mainly
concentrated in the liver (60–90%), spleen and lungs
(2–10%) and, to a lesser degree, blood marrow (Kreuter,
1983; Brannon-Peppas, 1995). For PLA nanoparticles
injected subcutaneously or intramuscularly, they are able
to reside at the injection site until biodegradation yields
a certain critical molecular weight that enables removal
of the degradation products (Kreuter et al., 1983). These
particular traits render these systems very interesting
for drug delivery applications. Furthermore, tuning of
the biodegradability can be performed by blending PLA
and PGA in a co-polymer (PLGA), and by changing
the proportion of each of these materials in the co-
polymer (Miller et al., 1977; Pillai and Panchagnula,
2001; Grayson et al., 2004), as PLA degrades much
slower than PGA. Degradation of PLA and PLGA is known
to proceed by hydrolytic scission of the polymer chain
and depolymerization is influenced by molecular weight
(MW), polydispersity and crystallinity (Weinhold et al.,
1998; Li and Wozney, 2001).

Although PLGA represents the ‘gold standard’ (exempli-
fied by more than 500 patents) of biodegradable polymers,
increased local acidity because of breakdown products of
these polymers can lead to irritation at the target site
and may also be detrimental to the stability of protein
bioactive agents (Pillai and Panchagnula, 2001). Addi-
tional potential problems with these synthetic materials
include poor clearance – particularly for high MW poly-
mers – and chronic inflammatory response (Kirker-Head,
2000; Li and Wozney, 2001). For this reason, research has
been focusing on other synthetic materials, such as poly(ε-
caprolactone) (ε-PCL), which was, for instance, found to
meet the requirements of a biodegradable reservoir or
monolithic device for controlled drug delivery, especially
in the contraceptive field (Pitt et al., 1979; Dubertnet
et al., 1987).

Polyorthoesters (POE) have been under development
since the 1970s, and they are unique among all
biodegradable polymers, as choosing appropriate diols
or mixture of diols in their synthesis can readily vary
many of their properties. A number of applications have
been found for this class of polymers, such as delivery of 5-
fluorouracil, periodontal delivery systems of tetracycline
and pH-sensitive polymer systems for insulin delivery
(Zignani et al., 2000; Pillai and Panchagnula, 2001).
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Polyanhydrides have been considered to be useful
biomaterials as carriers of bioactive agents to various
organs of the human body, such as bone tissue, blood
vessels, brain and eyes (Kumar et al., 2002). They can be
prepared easily from readily available, low-cost resources,
can be manipulated to meet desirable characteristics,
are biocompatible and degrade in vivo into non-toxic
diacid counterparts that are eliminated from the body
as metabolites (Kumar et al., 2002).

However, synthetic materials do not completely fulfil
current needs in terms of biomedical applications, and
in recent years many researchers have been turning
their research focus to materials of natural origin, as
these might obviate several of the drawbacks of synthetic
materials.

Polyaminoacids, such as poly(γ -methyl-L-glutamate),
that have already shown good biocompatibility, have
been investigated for the delivery of low MW compounds
(Nathan and Kohn, 1994; Pillai and Panchagnula, 2001).
However, their widespread use is limited by their
antigenic potentials and some difficulties in the control of
release that might arise from the dependence on enzymes
for biodegradation.

Collagen, viz. type I collagen, is the most widely
used natural polymer and is typically derived from
bovine or porcine bone, skin or tendon (Winn et al.,
1998). The fact that collagen is of animal origin
raises concerns, such as the possibility of transmitting
diseases. This is particularly critical for materials from
bovine sources, due to malignancies such as bovine
spongiform encephalopathy (BSE) and the human variant,
Creutzfeldt–Jakob disease (CJD). For this reason, other
sources of collagen, such as recombinant forms, are seen
as an alternative. Collagen exhibits biodegradability, weak
antigenicity and superior biocompatibility (Maeda et al.,
1999; Lee et al., 2001). This material is regarded as
very promising for the delivery of growth factors, as it
was found that an electrostatic interaction was the main
driving force for the complexation between acidic gelatin
and basic fibroblast growth factor (bFGF) (Lee et al.,
2001). Biodegradable collagen-based nanoparticles or
nanospheres are thermally stable and readily sterilizable
(Rossler et al., 1994; Lee et al., 2001). Moreover,
nanoparticles can be taken up by the reticuloendothelial
system (Marty et al., 1978) and enable an enhanced
uptake of exogenous compounds, such as anti-HIV
biologically active agents, by a number of cells, especially
macrophages (Bender et al., 1996), which may be an
additional advantage of collagen-based nanoparticles as
a systemic delivery carrier (Lee et al., 2001). Coupled to
a small size and a large surface area, high adsorptive
capacity and ability to disperse in water to form
a clear colloidal solution, the potential of collagen-
based nanoparticles has been demonstrated in their use
as a sustained release formulation for anti-microbial
agents or steroids (Lee et al., 2001). However, some
disadvantages of collagen-based systems include the
difficulty of assuring adequate supplies, poor mechanical
strength (Friess, 1998) and problems related to the use
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of animal origin (especially bovine) collagen due to
the possibility of disease transmission. Alternatives to
animal origin collagens – those produced by recombinant
technologies – still present a high cost.

Hyaluronan (hyaluronic acid), typically derived from
rooster combs, is a minor component of bone extracellular
matrix (ECM) (Li and Wozney, 2001). It has been used
as a carrier for bone morphogenetic proteins (BMPs)
and sodium hyaluronate gel was used as the delivery
system for bFGF (Li and Wozney, 2001). One advantage
of hyaluronic acid is that it is negatively charged and can
form ionic bonds with positively charged BMPs to increase
affinity. Disadvantages of hyaluronic acid include its rapid
resorption unless it is crosslinked or chemically modified
to decrease its intrinsic hydrophilicity (Li and Wozney,
2001).

However, the fear that some of these materials might
additionally be carriers for diseases has led researchers to
find other sources of natural products, mostly originating
from plants and produced by microorganisms. These
might present additional advantages, such as ready
supply, low cost, ability to be processed by several
methodologies and ability to tailor their properties.

In this field of polymers from nature, poly(glucoses),
such as starch and dextrans, have long been used for
encapsulating materials for pharmaceutical, cosmetic or
food applications (Shahidi and Han, 1993; Pereswetoff-
Morath, 1998; Zeller et al., 1999; Engelmann et al.,
2004). Dextrans are being actively investigated for
sustained delivery of therapeutic and imaging agents,
particularly for injectables and colon-specific DDSs.
Starch-based polymers have been proposed by Reis and
Cunha (1995) as materials with potential for biomedical
applications, particularly as scaffolds for bone tissue
engineering applications (Gomes et al., 2001, 2002),
bone cements (Espigares et al., 2002; Boesel et al., 2003)
and recently as drug delivery systems (Elvira et al.,
2002; Silva et al., 2005). These materials have been
shown to be biocompatible in vitro (Mendes et al., 2001;
Marques et al., 2002), and to possess a good in vivo
performance (Mendes et al., 2003; Salgado et al., 2005).
A very important feature of most natural-origin materials,
besides the ones described above, is the reaction of the
host to degradation products (in the case of starch, the
degradation products are oligosaccharides, which can
be readily metabolized to produce energy). Regarding
their biodegradability, enzymes typically catalyse the
hydrolysis of natural biodegradable polymers, e.g. α-
amylase catalyses the hydrolysis of starch, which may
constitute a strategy to tailor the biodegradability of
the material (Azevedo et al., 2003; Araújo et al., 2004;
Touvinen et al., 2004).

Chitosans are promising natural polymers that show
biocompatibility, good absorption-enhancing, controlled
release (Janes et al., 2001a; Mao et al., 2001; Pillai and
Panchagnula, 2001), bioadhesive properties (Pillai and
Panchagnula, 2001), as well as cell culture, enzymatic
immobilization and chromatograph support (Kumar,
2000). Chitosan is a product of the deacetylation of chitin,
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produced with varied degrees of deacetylation, and its
use is only limited by the poor solubility or insolubility of
chitosan in water (Wang et al., 2002). However, growing
attention given to this material for several applications,
not only for drug delivery, makes us believe that chitosan
holds promise to become a very successful material for
biomedical applications.

Another widely used polymer of natural origin
is alginate, a natural polysaccharide extracted from
brown algae and composed of various proportions
of β-D-mannuronic acid (M) and α-L-guluronic acid
(G) residues. This naturally occurring biopolymer has
many applications in various areas of biosciences and
biotechnology (e.g. as a matrix for the entrapment and/or
delivery of a variety of proteins and cells) and in the
food and beverage industry (as a thickening or gelling
agent and a colloidal stabilizer) (Smidsrød and Skjåk-
Bræk, 1990; Safarikova et al., 2003; Gu et al., 2004).
Besides the best-known method to prepare alginate
beads – which is a gelation method in which a sodium
alginate solution is single-dropped into a calcium solution,
forming particles several µm in diameter – several other
well-known methods (atomization, spraying and water-
in-oil emulsification methods) can also be used to prepare
alginate microparticles that are less than 200 µm in
diameter (Gombotz and Wee, 1998; Safarikova et al.,
2003). Gelation occurs by an ionic interaction between
the calcium ions and the carboxylate anions of G–G
blocks as calcium ions diffuse from the external source
into the droplet (Gu et al., 2004). The main advantage
of using alginate is that the alginate gelation process
occurs under very mild conditions without using high
temperatures or chemical crosslinking agents (Gu et al.,
2004), thus allowing the preservation of the viability and
biological activity of the entrapped cells and other agents,
respectively. However, the application of this system has
been limited by poor mechanical stability. Combining
alginate with other polymers and ceramic materials has
been shown to obviate this feature (Sivakumar and
Panduranga Rao, 2003). Recent studies have described
a dual function of alginate microparticles as carriers
for both cells and drugs, for application in diabetes
(Ricci et al., 2005), an idea that we also propose for
bone tissue engineering applications using starch-based
microparticles (Silva et al., submitted).

Polyhydroxybutyrate is a polyester produced as gran-
ules by microorganisms (Fidler and Dennis, 1992; Saito
and Doi, 1994; Jung et al., 2005) and has been widely
studied for tissue engineering applications (Chen and
Wu, 2005), mainly for scaffold materials in combination
with ceramic materials (Doyle et al., 1991; Knowles et al.,
1992, 1993; Li and Chang, 2004; Li et al., 2005) and also
as a vehicle for drug delivery (Koosha and Muller, 1987;
Koosha et al., 1989).

Although polymers are seen as the most versatile class
of materials, other classes have been widely studied for
biomedical applications. Among these are ceramic mate-
rials, which are refractory, polycrystalline compounds,
composed of ionically bonded compounds (de Groot,
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1983; Bajpai and Billote, 1995). Ceramic materials, such
as tricalcium phosphate (TCP), hydroxyapatite (HA) and
bioactive glasses (BG) have been widely investigated for
hard tissue applications (Balla et al., 1991; Schepers et al.,
1991, 1993, 1998; Meenen et al., 1992; Gatti et al., 1994;
Schepers and Ducheyne, 1997; Chu et al., 2002; Huygh
et al., 2002; Artzi et al., 2005; Kim et al., 2005; Chu et al.,
2006), for filling, support and promotion of regenera-
tion. Their role as drug delivery devices derives from
their compatibility and physical characteristics, such as
non-immunogenicity and degradability. Ceramics as drug
delivery systems were basically in the form of porous
materials and using the well-known ceramics mentioned
above. As proposed by Ducheyne and co-workers (Nicoll
et al., 1997; Santos et al., 1998, 1999), sol–gel tech-
nology for the formation of silica-based xerogels, which
allows the introduction of functional proteins into glass-
like materials, is a very interesting strategy that couples
the bioactive behaviour of these systems with drug deliv-
ery capability and the additional ability to tailor other
properties. Another major advantages relate to room tem-
perature processing without the need for solvents.

Further details on ceramic materials in bone tissue
engineering can be found in the second part of this review
(Silva et al., •2006).

AQ2

5. Applications

Although some applications of materials in particulate
form have been mentioned so far, Table 2 lists the major
applications of such materials in the biomedical field. By
far the greatest field of application for these materials, as
found in the literature, is as drug delivery systems (DDS)
and a few important principles regarding this field follow.

5.1. Basic concepts in drug delivery

Drug delivery routes are normally four (Langer, 1991;
Nitsch and Banakar, 1994): (a) oral, for pills and syrups;
(b) rectal; (c) intramuscular or intravenous, for solutions;
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and (d) topic, as for eye drops. These conventional
systems of drug delivery have a major disadvantage,
which is that with time the concentration of the bioactive
agent decreases to a minimum, leading to the need
for a new dose of bioactive agent within a short time
interval. Another problem is that the bioactive agent will
be distributed systemically throughout the body of the
patient (Langer, 1991; Williams, 1998). In general, for
oral drug delivery systems, the major problem is the rapid
loss of activity of the therapeutic agent in the hostile
environment of the stomach (Ponchel and Irache, 1998;
Chellat et al., 2000; Grassi et al., 2001). It has also been
observed that chemically attaching a bioactive agent to a
polymer (bioactive agent–macromolecule conjugate) may
alter such properties as its distribution in the body, rate
of appearance in certain tissues, solubility or antigenicity
(Langer, 1991; Kumar, 2000).

Since oral drug administration remains the easiest and
the most comfortable method (Ponchel and Irache, 1998;
Chellat et al., 2000; Pillai et al., 2001; Keegan et al.,
2003), the microencapsulation of bioactive agents seemed
to be an alternative to overcome the problem, allowing
their slow release and protection against the acidic and
enzymatic gastric environment (Berthold et al., 1998;
Chellat et al., 2000). All these were reasons that led to the
development of delivery systems, whose aim is to facilitate
the dosage and duration of effect of the bioactive agent,
causing minimal harm and improving patient compliance
(Langer, 1991; Pillai et al., 2001), since they would allow
a reduction of the dosage frequency (Kumar, 2000; Pillai
and Panchagnula, 2001).

For drug delivery applications, the development
of intravenously administrated carriers with blood
circulation times long enough to continuously deliver
bioactive compounds (Gref et al., 1994; Hrkach et al.,
1997; Berton et al., 1999; Kumar, 2000), imaging agents
or other entities to specific sites of action (Gref et al.,
1994) has been a major challenge, since these carriers
must possess a set of features compatible with the task
they are required to perform. The desired features of
such a carrier include (Gref et al., 1994; Soppimath et al.,
2001):

Table 2. Major applications of materials in particulate form in the biomedical field (information compiled in the scope of this review)

Applications in the biomedical field References

Chromatography (Attebery, 1975; Rocca and Rouchouse, 1976; Fahlvik et al., 1990; Zhang and El Rassi, 1999; Spegel et al.,
2001)

Imaging (Cuthbertson et al., 2003; Cavalieri et al., 2005; Huang et al., 2006; Klibanov, 2006)
Filling of defects (Schepers et al., 1991; Guicheux et al., 1997; Santos et al., 1998; Schepers et al., 1998; Falaize et al., 1999;

Huygh et al., 2002; Day et al., 2004; Domingues et al., 2004; Gosain, 2004)
Adjuvants in vaccines (Ohagan et al., 1993; Moore et al., 1995; Nakaoka et al., 1995; Ertl et al., 1996; Heritage et al., 1996; Ohagan

et al., 1997; Stertman et al., 2006)
Cell culture (Malda et al., 2003b; Xu et al., 2003; Zhang et al., 2003; Liu and Wu, 2004; Yokomizo et al., 2004; Hong et al.,

2005; Melero-Martin et al., 2006)
Drug delivery (Herrmann and Bodmeier, 1995; Guicheux et al., 1997; Berthold et al., 1998; Herrmann and Bodmeier, 1998;

Jeong et al., 1998; Cruaud et al., 1999; Ganza-Gonzalez et al., 1999; Lam et al., 2000; Lim et al., 2000; Brigger
et al., 2001; Delie et al., 2001; Han et al., 2001; Singh et al., 2001a, 2001b; van der Lubben et al., 2001;
Dalpiaz et al., 2002; Demers et al., 2002; Ko et al., 2002; Morishita et al., 2002; Perez et al., 2002; Tamura
et al., 2002; Yenice et al., 2002; Chinen et al., 2003; De Rosa et al., 2003; Perugini et al., 2003; Gu et al., 2004;
Jeong et al., 2004; Jollivet et al., 2004; Wang et al., 2004; Norton et al., 2005; Silva et al., 2005)
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Figure 1. Schematic of the release• of entrapped bioactive agents from biodegradable polymeric particles. When the polymer device
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incorporating the active agent (A) is inserted into the environment, the fluid from the surrounding medium enters the matrix (B),
causing swelling of the device (C). The fluid creates diffusion channels (C) and the incorporated active agent is released to the
external environment (D). In the case of biodegradable polymers, device removal will occur by degradation of the material
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1. That the agent to be encapsulated comprises a
reasonably high weight fraction (loading) of the total
carrier system (e.g. >30%).

2. The amount of agent used in the first step of the
encapsulation process is incorporated into the final
carrier (entrapment efficiency) at a reasonably high
level (e.g. >80%).

3. The ability to be freeze-dried and reconstituted in
solution without aggregation.

4. Biodegradability.
5. Small size.
6. Characteristics to prevent rapid clearance of the

particles from the bloodstream.

Also, within drug delivery systems, it is essential to distin-
guish between sustained and controlled delivery systems,
as these two types denote very different applications.
Sustained systems imply that the bioactive agent is deliv-
ered over a prolonged period of time to overcome the
highly periodic nature of tissue levels associated with
conventional (enteral or parenteral) administration of
single doses by tablets or fluids (Langer, 1991; Silvio
et al., 1994; Williams, 1998). The term ‘controlled’ is used
generically to indicate any device in which some control
is exerted over the way in which the bioactive agent is
delivered to the tissues once it has been administrated to
the patient (Langer, 1991; Silvio et al., 1994; Williams,
1998). This is best exemplified in the concept of ther-
mally and pH-responsive materials, where variation in
the temperature/pH discontinuously or sharply changes
properties such as volume (De Jaeghere et al., 2000;
Kawaguchi, 2000; Morishita et al., 2002). This concept
is extremely important, as it can be used as a means to
trigger the release of the entrapped bioactive agent, and
thus allow control to be exerted over the system.

If other ways of controlling the system can be
developed, besides temperature and pH, e.g. the presence
of a certain agent would trigger the release of the
incorporated agent, this could be used for other
applications. One such application has been described
by Cavanaugh et al. (2001), in which the microparticles
released their load of adenovirus only upon cell contact,
thus preventing inactivation of the viral load.

5.2. Polymers as the primary choice for DDS

The class of materials that has been most widely studied
for drug delivery applications is the polymeric one.
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Polymeric delivery systems generally release bioactive
agents by the following mechanisms (Langer, 1991;
Chellat et al., 2000): diffusion, chemical reaction or
solvent activation. The release of a bioactive agent from a
matrix is primarily controlled by diffusion of the bioactive
agent through the polymer, erosion of the polymer being
an additional but important factor (Grassi et al., 2001).
For biodegradable polymers, degradation is a chemical
process, whereas erosion is a physical phenomenon
dependent on dissolution and diffusion processes. As soon
as the bioactive agent-containing polymer (A) comes into
contact with the external liquid environment, it enters
the polymer matrix (B), resulting in a swelling process
(C), which allows the diffusion of the bioactive agent
into the external environment (Grassi et al., 2001) (D),
as illustrated in Figure 1. Factors influencing the release
rate include the molecular size of the bioactive agent and
loading percentage into the polymer, as well as polymer
composition, molecular weight and the dimensions and
shape of the matrix (Langer, 1991).

There are usually three distinct phases of release for
biodegradable polymers (as shown in Figure 2):

1. A burst or initial period of rapid diffusion of active
agent located close to the surface of the polymer.

2. A period of minimal release, during which the polymer
is gradually hydrolysed in bulk but has not yet
decreased sufficiently in molecular weight to allow
an increased diffusional release of the active agent.

Figure 2. Release profile for biodegradable polymers. The
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first stage (1) is a burst release, caused by diffusion of the
bioactive agent located closer to the surface. The second stage
(2) is caused by gradual degradation of the polymer, and
the third stage (3) is characterized by massive degradation
(solubilization) of the material
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3. The molecular weight of the polymer is sufficiently
low as to allow its solubilization in the aqueous
environment, and the release of the remaining active
agent occurs as the polymer is eroded (Weinhold et al.,
1998; Berkland et al., 2002).

This release profile is generally regarded as a problem
common to many biodegradable systems, where the
release is dependent upon degradation of the system
with time (Silvio et al., 1994), thus there is no possibilty
of achieving any kind of control. This type of device
is therefore more suitable for sustained rather than
controlled release.

In short, and for drug delivery systems in general, the
bulk properties of the polymer that need to be considered
include (Langer, 1991; Pillai and Panchagnula, 2001):

• Molecular weight.
• Physical properties (bioadhesiveness, mechanical sta-

bility).
• Solubility based on the release mechanism (diffusion or

dissolution-controlled).
• Site of action.

Bioadhesiveness needs to be taken into account when
drug delivery systems are targeted to mucosal tissues,
whereas polymers for ocular devices have to be water-
or lipid-soluble in addition to having good film-forming
ability and mechanical stability for good retention. The
structural properties of the matrix, its micromorphology
and pore size, are important with respect to mass transport
(of water) into and (of bioactive agent) out of the polymer
(Pillai and Panchagnula, 2001).

Of great importance, however, is the assurance that the
biological activity of the incorporated agent is preserved
throughout manufacturing, storage, delivery and release
(King and Patrick, 2000). This, together with the release
profile, is of particular importance when designing a
delivery system, because much as the release profile
may be adequate, there is no point in having it if the
biological activity of the agent to be delivered is lost
during processing. This idea is mostly coupled with the
use of solvents in the production of the delivery system
because, as mentioned before, organic solvents might
cause inactivation of the agent to be loaded into the
system. For growth factors, BSA has been shown to be
protective when used as an adjuvant during the loading
process (Kim and Valentini, 1997; Morlock et al., 1998),
but methods that obviate this step are needed.

Regarding the release profile, strategies to control or
render it more adequate for a particular application, by
means of modifying parameters such as the surface (by
coating, chemical modification) or creating dual-release
systems (layers of materials that can incorporate different
molecules) (Kim and Valentini, 1997; Vaz et al., 2004),
can greatly improve the properties of several materials,
and should be actively pursued.
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6. Conclusions

Materials in the particulate form have been employed
in a diversity of biomedical applications. This derives
from their properties, such as size, surface area, and
physicochemical properties, which stem from the diverse
materials and methods combined for their production.
Within the range of applications, drug delivery has
had a highlighted role, because of its promise as a
means of overcoming limitations inherent to conventional
delivery methods. Currently, the use of these systems in
innovative strategies, where they can play a multitude of
roles – delivery of bioactive agents, structural support and
carriers of cells – makes it mandatory for researchers to
become even more creative in developing such a system.
Within this perspective, an area of tissue engineering
that can obviously benefit from the specific properties of
materials in particulate form is bone tissue engineering.

Part B of this review (this issue) deals with the
roles – played and potential – of particle-based systems
in this specific subset of tissue engineering applications,
bone tissue engineering.
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