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We construct an explicit model of the gravity trapping domain-wall potential, where for the first time

we can study explicitly the graviton wave function fluctuations for any thickness of domain wall. A

concrete form of the potential depends on one parameter 0 � x � �
2 , which effectively parameterizes the

thickness of the domain wall with specific limits x! 0 and x! �
2 corresponding to the thin and the thick

wall, respectively. The analysis of continuum Kaluza-Klein fluctuations yields explicit expressions for

both small and large Kaluza-Klein energy. We also derive specific explicit conditions in the regime x > 1,

for which the fluctuation modes exhibit a resonance behavior, and which could sizably affect the

modifications of the four-dimensional Newton’s law at distances that typically are by 4 orders of

magnitude larger than those relevant for Newton’s law modifications of thin walls.
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I. INTRODUCTION

Bogomol’nyi-Prasad-Sommerfied (BPS) saturated su-
pergravity domain walls [1], which interpolate between
two BPS anti–de Sitter vacua, possess the feature that
they can trap gravity [2]. The original infinitely thin, Z2

symmetric domain-wall solution [3] in five dimensions can
be treated explicitly to obtain the qualitative form of cor-
rections to the four-dimensional Newton’s law [2].
Subsequent studies extended further analysis to features
of the finite thickness walls (see [9,10] and references
therein) as well as numerous other subsequent studies of
special models, primarily employing numerical analyses of
fixed thickness solutions (for recent studies see e.g.,
[11,12] and references therein) [13].

The purpose of this paper is to advance the analysis of
gravity trapping for domain walls in an explicit analytic
model, where the graviton wave function fluctuations can
be studied explicitly for any thickness of domain wall. The
Schrödinger potential depends on one parameter 0 � x �
�
2 , which effectively parameterizes the thickness of the

domain wall. The two limits x! 0 and x! �
2 reproduce

the infinitely thin and thick wall limits, respectively. This is
the first analytic example where the graviton wave function
can be obtained explicitly for any value of allowed x, both
for small and large values of Kaluza-Klein masses of
fluctuations. Intriguingly, we also find resonance behavior
in the regime x > 1 and provide an explicit analytic study
of resonances, which in turn can sizably modify the four-
dimensional Newton’s law at distances that are typically 4
orders of magnitude larger than those relevant for modifi-
cations in the thin wall setup.

The paper is organized in the following way. In Sec. II,
we present the concrete form of gravity potential in the
background of the BPS domain with a finite thickness,
interpolating (in Z2 invariant way) between two anti–
de Sitter vacua with negative cosmological constant �.
We discuss in detail matching conditions on the metric
and the explicit form of the potential that depends only on
one free parameter 0 � x � �

2 , effectively parameterizing

the thickness of the wall. In Sec. III, we study graviton
wave function fluctuations and, in particular, focus on the
explicit form of the probability density at the center of the
wall. In Sec. III A, we obtain analytic expressions for the
probability density at the center of the wall both for small
and large values of Kaluza-Klein masses. In Sec. III B, we
analyze quantitatively the conditions under which the wave
function exhibits resonances. In Sec. IV, we study the
implications for the modification of Newton’s law, and,
in particular, obtain the analytic form of Newton’s law
modifications both in thin (x < 1) and thick (x > 1) re-
gimes. Conclusions and proposals for further studies are
presented in Sec. V.

II. FINITE THICKNESS DOMAIN-WALL MODEL

For the sake of simplicity, the model that we shall
discuss is chosen to arise from a Z2 symmetric finite
thickness domain wall that interpolates between two BPS
vacua with negative cosmological constant � in five di-
mensions [16]. Our motivation is to present an explicit,
integrable model of the Schrödinger potential for graviton
wave function modes, which would be explicitly parame-
terized by the thickness of the wall. Such a model would in
turn allow for an explicit analysis of graviton fluctuation
modes and the subsequent analysis of a modification of the
four-dimensional Newton’s law, thus providing a unifying,
analytic approach, which addresses these effects as a func-
tion of the wall thickness.
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We choose the following form of the potential:

VðzÞ ¼ �V0; jzj � d

2
;

VðzÞ ¼ 15

4ðzþ �Þ2 ; jzj � d

2
:

(1)

This potential enters the Schrödinger equation for the
graviton wave function (for the derivation of the wave
equation and other details see, e.g., [10]):

� d2 mðzÞ
dz2

þ VðzÞ mðzÞ ¼ m2 mðzÞ; (2)

where the graviton wave function �h�� ¼ ��� ðzÞ�
expðik�x�Þ and k�k

� ¼ m2 parameterizes the Kaluza-

Klein energy associated with the four-dimensional mo-
mentum k�.

The potential VðzÞ is related to the conformal factor AðzÞ
of the domain-wall metric

ds2 ¼ exp½�AðzÞ�
�
�dt2 þ dz2 þX3

i¼1

dx2i

�
(3)

through the following relation (see, e.g., [10]):

VðzÞ � 9

16

�
dAðzÞ
dz

�
2 � 3

4

d2AðzÞ
dz2

: (4)

Along with the boundary conditions Að0Þ ¼ 0, Að0Þ0 ¼
0 and AðzÞ ! 2 logðkjzjÞ as jzj ! 1 the relation (4) deter-
mines for the potential (1) the following form of the metric:

AðzÞ ¼ � 4

3
logðcos ffiffiffiffiffiffi

V0

p jzjÞ; jzj � d

2
;

AðzÞ ¼ log½k2ððjzj þ �Þ2�; jzj � d

2
;

(5)

where k ¼
ffiffiffiffiffiffiffiffi
� �

6

q
(see, e.g., [14]) and the five-dimensional

Planck constant MPlanck5 was set to 1.

Continuity of the metric and its derivative at the junction
jzj ¼ d

2 imposes the following two conditions among pa-

rameters V0, d and �:

k

�
d

2
þ �

�
¼ cos

� ffiffiffiffiffiffi
V0

p
d

2

��2=3
;

�
d

2
þ �

��1 ¼ 2

3

ffiffiffiffiffiffi
V0

p
tan

� ffiffiffiffiffiffi
V0

p
d

2

�
:

(6)

These two conditions can be viewed as fixing d
2 þ � and V0

in terms of one free parameter

x �
ffiffiffiffiffiffi
V0

p
d

2
: (7)

The parameter x has a range f0; �2g. The infinitely thin wall

corresponds to the following parameter limit:

x! 0; d! 0; V0 ! 1; V0d ¼ 3

�
¼ 3k;

(8)

while the infinitely thick wall corresponds to

x! �

2
; d! 1; V0 ! 0;

ffiffiffiffiffiffi
V0

p
�! �x; ð ffiffiffiffiffiffi

V0

p
�þ xÞ5

�
kffiffiffiffiffiffi
V0

p
�
3 ¼ 9

4
:

(9)

III. WAVE FUNCTION

The Schrödinger equation solution (2) has eigenvalues
m2 � 0, with m ¼ 0 corresponding to the graviton bound
state (see e.g., [10])

 0ðzÞ ¼ N0e
ð�ð3=4ÞAðzÞÞ; (10)

where the normalization constantN0 is fixed by the follow-
ing relationship:

k

N2
0

¼ 2

3
sinðxÞ cosðxÞ�5=3ðxþ sinðxÞ cosðxÞÞ þ cosðxÞ4=3:

(11)

In the thin wall limit (x! 0) and thick wall limit (x! �
2 )

the normalization coefficient N0 takes the following re-
spective forms:

k

N2
0

! 1; as x! 0;

k

N2
0

! �

3 cosðxÞ5=3 ; as x! �

2
:

(12)

The solution  mðzÞ of (2) in the continuum m2 > 0 has the
following form:

 mðzÞ ¼ Am cosðKjzjÞ; jzj � d

2

 mðzÞ ¼ Nm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jzj þ �

q
½amY2ðmjzj þ �Þ

þ bmJ2ðmjzj þ �Þ�; jzj � d

2
:

(13)

Here, K � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ V0

p
and the coefficients am and bm sat-

isfy a2m þ b2m ¼ 1. The normalization constant Nm is de-
termined by employing a regulator jzcj ! 1 along with
the asymptotic form of  mðzÞ as jzj ! 1:

 mðzÞ ¼ Nm

ffiffiffiffiffiffiffiffi
2

�m

s �
am sin

�
mðjzj þ �Þ � 5�

4

�

þ bm cos

�
mðjzj þ �Þ � 5�

4

��
: (14)

In the limit jzcj ! 1, the asymptotic wave function (14)
ensures dominant contribution to the wave function proba-
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bility, and thus Nm ¼
ffiffiffiffiffiffi
�m
2zc

q
, which in the continuum limit

becomes Nm ¼ ffiffiffi
m
2

p
, i.e. zc is replaced by �.

The matching of the wave function and its first derivative
at jzj ¼ d

2 determines the coefficients am; bmða2m þ b2m ¼
1Þ and Am. In particular, the key expression in determining
the deviations of Newton’s law is the probability density of
the wave function at the center of the wall

j mð0Þj2 ¼ A2
m ¼ 1

�2

1

ð~J2 ~S� ~J02 ~CÞ2 þ ð ~Y2
~S� ~Y0

2
~CÞ2 ;
(15)

where

~C ¼ cosð~y0Þ; ~S ¼ �K sinð~y0Þ; (16)

and

~J 2 �
ffiffiffiffiffi
y0
2

r
J2ðy0Þ; ~J02 �

d~J2ðy0Þ
dy0

;

~Y2 �
ffiffiffiffiffi
y0
2

r
Y2ðy0Þ; ~Y0

2 �
d ~Y2ðy0Þ
dy0

;

(17)

where J2 and Y2 are Bessel functions of order 2. The
arguments y0 and ~y0 are defined as

y0 ¼ M

cosðxÞ2=3 ; ~y0 ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2 sinðxÞ2

9 cosðxÞ10=3
s

; (18)

and coefficients M and K are defined as

M � m

k
; K �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9 cosðxÞ10=3

4M2 sinðxÞ2
s

: (19)

Note that the expression for A2
m (15) is a function of x and

M, only. This allows us to fully explore the analytic be-
havior of the probability density A2

m, which we shall do in
the following subsections. In particular, in the thin wall
limit (x! 0) A2

m takes the form

A2
m ¼ 2

�2M½J21ðMÞ þ Y2
1ðMÞ� : (20)

For the sake of completeness, we also present the ex-
pression for the ratio

am
bm

¼ � ~J2 ~S� ~J02 ~C
~Y2
~S� ~Y0

2
~C

(21)

and bm ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðam=bmÞ2

p
.

Note that for the thick wall x > 1, the expression for the
probability density of the wave function varies significantly
over the range of the wall. In this case, the probability
density, averaged over the domain of the wall thickness,
may be more appropriate:

j mj2 ¼ A2
mFm; Fm ¼ 1

2

�
1þ sinð2~y0Þ

2~y0

�
: (22)

Note that Fm is a mild function of x, and while Fm ! 1 as
x! 0, for x! �

2 , it approaches the asymptotic value 1
2 .

A. Small and large Kaluza-Klein energy expansion

The expression (15) can be readily expanded in different
regimes of values of x and M parameters.
The expression (15) has a universal behavior

A2
m ! 1

�
; as M ! 1: (23)

On the other hand, one can also explicitly expand (15) in
the limit of smallM. We have done so up to the fourth order
in M expansion

A2
m ¼ M�0ð1þM2�1Þ þOðM5Þ; for M � 1; (24)

where coefficients �0 and �1 are the following explicit
functions of x:

�0 ¼ 9 cosðxÞ10=3
2ðcosðxÞ3 þ 2x sinðxÞ þ 2 cosðxÞÞ2 ; �1 ¼ p1

p2

;

(25)

where

p1 ¼ cosðxÞ
�
8� 34 cosðxÞ2

� cosðxÞ4
�
1þ 54 log

�
2 cosðxÞ2=3
M expð�Þ

���

þ 2x sinðxÞð4� 9 cosðxÞ2 � 4 cosðxÞ4Þ; (26)

p2 ¼ 18 cosðxÞ10=3ðcosðxÞ3 þ 2x sinðxÞ þ 2 cosðxÞÞ: (27)

The thin wall limit (x! 0) produces the following values
of �0 and �1:

�0 ¼ 1

2
; �1 ¼ � 1

2
þ log

�
M expð�Þ

2

�
; as x! 0:

(28)

Note that (27) is a valid expansion for x < �
2 ; however, in

the thick wall limit (x! �
2 ), Am has further suppressions

for small values of M:

�0 ! 9

2�2

�
�

2
� x

�
10=3

;

�1 ! 2

9

�
�

2
� x

��10=3
; as x! �

2
:

(29)

and thus A2
m ! 1

�2M
3.

In Figs. 1 and 2 ,A2
m is plotted for a small and an

intermediate value of x, respectively.
For the sake of completeness, we also give the expansion

am
bm

¼ M2�0ð1þM2�1Þ þOðM6Þ; for M � 1; (30)

where
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�0 ¼ 3� cosðxÞ5=3
4ðcosðxÞ3 þ 2x sinðxÞ þ 2 cosðxÞÞ ; �1 ¼ r1

r2
;

(31)

where

r1 ¼ 4x sinðxÞ cosðxÞð2� 11 cosðxÞ2Þ
þ cosðxÞ2ð28� 92 cosðxÞ2 � 17 cosðxÞ4Þ
� 4x2 sinðxÞ2ð5� 8 cosðxÞ2Þ

� 108 cosðxÞ6 log
�
2 cosðxÞ2=3
M expð�Þ

�
; (32)

r2 ¼ 72 cosðxÞ13=3ðcosðxÞ3 þ 2x sinðxÞ þ 2 cosðxÞÞ; (33)

whose thin and thick limits have the following form:

�0 ¼ �

4
;

�1 ¼ � 3

8
þ 1

2
log

�
M expð�Þ

2

�
; as x! 0;

�0 ! 3

4

�
�

2
� x

�
5=3
;

�1 ! � 5�

72

�
�

2
� x

��13=3
; as x! �

2
:

(34)

B. Resonances

Another interesting behavior of Am takes place in a
particular window for the combination where parameter
x > 1 and for small values of M:

y0 ¼ M

cosðxÞ2=3 � 1; ~y0 ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2 sinðxÞ2

9 cosðxÞ10=3
s

� 1;

(35)

or

M

cosðxÞ2=3 � 1;
M tanðxÞ
cosðxÞ2=3 � 1: (36)

The probability density (15) exhibits a resonance behavior

[17]. The resonance then appears when ~Y2
~S� ~Y0

2
~C	 0,

which for the regime (36) takes the form

~S
~C
	� 3

2y0
: (37)

For the above expression, we have employed the small

argument y0 � 1 expansion of ~Y2 ¼ � 2
ffiffi
2

p
�y3=2

0

þOðy1=20 Þ
and ~Y0

2 ¼ 3
ffiffi
2

p
�y5=2

0

þOðy�1=2
0 Þ. Equation (37) is satisfied ap-

proximately when ~y0 	 �
2 ð2nþ 1Þ (n ¼ 1; 2; 
 
 
 ) or

Mn 	 3 cosðxÞ5=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p
; n ¼ 1; 2; 
 
 
 : (38)

Note that the above relation for the position of resonances
becomes less valid as n increases.
When condition (37) is satisfied, the probability density

(15) is highly peaked at

A2
m 	 18

�2y50
¼ 18 cosðxÞ10=3

�2M5
n

� 1: (39)

To obtain the above expression, we set in (15) ~Y2
~S�

~Y0
2
~C	 0 and employed the small y0 argument expansion

of ~J2 ¼ ð ffiffi
2

p
y5=2
0

Þ
16 þOðy7=20 Þ and ~J02 ¼ 5

ffiffi
2

p
y3=2
0

32 þOðy5=20 Þ,
which yields [along with (37)] ~J2 ~S� ~J02 ~C	� y5=2

0

3
ffiffi
2

p . Note

the sharp falloff of the density amplitude with the increase
of the discretely valued Mn (38).
One can also estimate the approximate width�Mn of the

resonances by determining the change in parameter M (by

1
2 �Mn) when ~Y2

~S� ~Y0
2
~C	 ~J2 ~S� ~J02 ~C	� y5=2

0

3
ffiffi
2

p , using lo-

0

0.1

0.2

0.3

0.4

Am2

2 4 6 8 10

M

FIG. 1. Probability density A2
m plotted as a function of M for a

small value of x ¼ 0:1.

0

0.1

0.2

0.3

0.4

Am2

2 4 6 8 10

M

FIG. 2. Probability density A2
m plotted as a function of M for

x ¼ 1.
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cally linear approximation. This condition yields

�Mn

Mn

	 �y50

9ð~y0 � �2

4~y0
Þ ¼

M4
n

3 cosðxÞ5=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4nðnþ 1Þ

s
: (40)

Note that in this case, the estimate for A2
m�Mn, which

effectively parameterizes the integral of the sharply peaked
density probability over its width, takes the form

A2
m�Mn 	 2Mn

�ð~y0 � �2

4~y0
Þ ¼

6 cosðxÞ5=3
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4nðnþ 1Þ

s
;

(41)

and is thus close to being Mn independent. Of course, this
is a valid approximation only for the first few resonances,
whose width is still small, as we used only locally linear

approximation for the quantity ~Y2 ~S� ~Y0
2
~C near Mn.

The most distinct and pronounced resonances appear in
the range x	 f1:35; 1:55g. In Fig. 3, the density probability
as a function ofM is plotted for the regimes of x where the
resonances are pronounced. We have checked explicitly
that our analytic results for the location, the amplitude, and
the width of resonances are in good agreement with nu-
meric ones, as is evident from Table I.

IV. MODIFICATION OF NEWTON’S LAW

The analytic form of the probability density in turn
allows us to study explicitly the deviation of Newton’s
law in the presence of continuum states. The (bound state)
graviton wave function (10) determines the four-
dimensional Newton’s law, while continuum Kaluza-
Klein fluctuation modes (13) are responsible for correc-
tions to Newton’s law. The four-dimensional gravitational
potential between two pointlike particles withM1 andM2,
a distance r apart, can be written in the form (see, [18])

V ¼ GN

M1M2

r
ð1þ �Þ; (42)

where GN ¼ M�3
Planck5

N2
0 and �, the correction to Newton’s

law is of the form

� ¼ 1

N2
0

Z 1

0þ
e�mrj mj2dm: (43)

Note that since N2
0=k [Eq. (11)] is only a function of x, and

j mj2 [Eq. (22)] is only a function of x and M � m=k, the
correction to Newton’s law can be rewritten as an integral
over M,

� ¼ k

N2
0

Z 1

0þ
eð�MkrÞj mj2dM; (44)

and is thus only a function of kr and x.
Note again that the averaged wave function density

j mj2 [Eq. (22)] is of form A2
mFm, where Fm is a mild

function of x andM, with Fm ! 1 and Fm ! 1=2 as x! 0
and x! �

2 , respectively. In the following, we shall there-

fore not address detailed wave function effects away from
the center of the wall, but shall focus on the modification of
Newton’s law due to the wave function probability density
near the center of the wall. Namely, our focus shall be on
the A2

m factor and its effect on the structure of �. However,
further detailed studies of the nontrivial wave function
profile would be of interest.
The amplitude A2

m [Eq. (15)] has a smallM expansion of
the form (24) and (27) and asymptotes to ��1 as M ! 1
[Eq. (23)]. For x � 1, it is a reasonable approximation to
split the integral (44) into two intervals M ¼ f0;MCg and
M ¼ fMC;1g, where for the form of A2

m, the small M and
large M expansion is used, respectively. A reasonable
choice MC 	 ð��0Þ�1 produces an approximate result,
which is in good agreement with the numerical one

� ¼ k

N2
0

�
�0

ðkrÞ2 ½1� eð�MCkrÞÞðMCkrþ 1Þ�

þ �0�1

ðkrÞ4 ½6� eð�MCkrÞððMCkrÞ3 þ 3ðMCkrÞ2

þ 6MCkrþ 6Þ� þ 1

�kr
eð�MCkrÞ

�
: (45)

Again, note that for r� ðkMCÞ�1, the leading correction is
of the form

0

20

40

60

80

100

Am2

0.04 0.06 0.08 0.1 0.12

M

FIG. 3. Probability density A2
m plotted as a function of M for

the value of x ¼ 1:5. It exhibits distinct resonances.

TABLE I. The comparison of the numeric and analytic results
for the location M, the amplitude A2

m, and the width �M of the
resonances for x ¼ 1:5.

n 1 2 3

numeric Mn 0.051 41 0.088 89 0.125 43

analytic Mn 0.051 33 0.088 91 0.125 74

numeric A2
m 680 50.07 10.12

analytic A2
m 749 48.06 8.50

numeric �Mn 1:0710�5 1:4710�4 7:1610�4

analytic �Mn 1:0410�5 1:5610�4 8:7510�4
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� ¼ k

N2
0

�0

ðkrÞ2
�
1þ 6�1

ðkrÞ2
�
: (46)

The intriguing possibility takes place for x > 1 where
the resonance behavior takes place. Note that in this case,
the resonances are highly peaked, and the integral over M
can be approximated by a sum of expressions
kN�2

0 A2
m�Mne

�Mnkr over n. Employing the analytic ex-

pressions from Sec. III B, we obtain the following correc-
tion to Newton’s law:

�	 2

�

X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4nðnþ 1Þ

s
e�Mnkr; (47)

where Mn are locations of resonances (38), and the ap-
proximately constant prefactor is obtained by using the

limit x! �
2 in (11): kN�2

0 ! �
3 cosðxÞ5=3 and (41):

ðA2
m�MnÞ 	 6

�2 cosðxÞ5=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4nðnþ1Þ
q

. Note that the pre-

factor is approximately constant and of order 1.
Mn’s (38) are typically in the range of 10

�2, and thus, for
a choice of small k and range of distance r	 ðMnkÞ�1, the
leading resonances can potentially contribute a sizable
effect. In particular, when choosing k	 106 GeV, at
distances r	 10�4 GeV�1 the thick wall limit with reso-
nancesMn 	 10�2 would produce an order 1 modification
of Newton’s law, while for the walls with x � 1, the
corrections (45) and (46) would be negligible, i.e.Oð10�4Þ.

V. CONCLUSIONS

We have presented the first explicit model of a finite
thickness domain wall, interpolating between Z2 symmet-
ric five-dimensional anti–de Sitter vacua, where the gravi-
ton wave function fluctuations can be studied explicitly for
any thickness of the wall, parameterized by x ¼ f0; �2g. This

allows us to explicitly determine the probability density of
Kaluza-Klein fluctuations both for the small and large
values of Kaluza-Klein energy. Notably, for x > 1 reso-
nance behavior emerges, which is most pronounced in the
range x ¼ f1:35; 1:55g and can be analyzed explicitly. For a
specific range of Kaluza-Klein momenta (and anti–
de Sitter cosmological constant�) this resonance behavior
can significantly modify four-dimensional Newton’s law
by an effect of order 104 larger than that of thin walls.
While the concrete model is based on a specific, analyti-

cally solvable Schrödinger potential for the graviton fluc-
tuation modes, we have not addressed the origin of the
supergravity Lagrangian that would result in a BPS
domain-wall solution whose metric leads to the proposed
Schrödinger potential. Certainly, this is an important out-
standing issue.
The analytic solvability of the model for graviton fluc-

tuations lends itself to the further study of fermionic and
spin-one fluctuation modes. In addition, while we chose to
study fluctuation modes for codimension one (domain
wall) configuration in five dimensions, extending the study
to other dimensions is readily available and is relegated to
future work.
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