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ABSTRACT 

 

THE ROLE OF TSC2 and DEPTOR in FETAL CORTICAL DEVELOPMENT 

 

 Victoria Tsai  

Peter B. Crino 

 

Tuberous Sclerosis Complex (TSC) is an autosomal dominant genetic disorder that 

results form mutations in the TSC1 or TSC2 genes. TSC is a multisystem hamartoma 

syndrome with manifestations in the brain, heart, lungs, kidney, skin and eyes. 

Neurologically, TSC patients may exhibit severe epilepsy, cognitive disabilities, and 

autism spectrum disorders. TSC1 and TSC2 proteins form a heterodimeric complex that 

serves to inhibit mammalian target of rapamycin (mTOR) signaling pathway. TSC1 and 

TSC2 receive activating or inhibitory signaling from multiple inputs including growth 

factors, insulin signaling, energy and amino acid levels, and proinflammatory pathways, 

and then integrate those signals to regulate the activity of mTOR. mTOR signaling plays 

a critical role in regulating cell growth, transcription, translation, and autophagy. Animal 

models have shed light on certain features of TSC, but failed to recapitulate the disease 

completely and currently further research is under way to better understand this 

devastating disorder. To date, mTOR signaling hyperactivation has been demonstrated 

in TSC tubers at postnatal time points, thus we set out to study the profile of mTOR 

activation in the fetal brain. We utilized both mouse neural progenitors in vitro and 

developing brain in vivo systems to understand the effects of Tsc1 and Tsc2 during brain 

development. Furthermore, after the identification of a new mTOR regulatory protein 

Deptor (DEPDC6 gene), which inhibits the mTORC1 and mTORC2 signaling pathways 

similar to TSC1-TSC protein complex, we examined its role in brain development.  We 
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found that Deptor shRNA knockdown results in mTORC1 and mTORC2 activation in 

vitro as well as abnormal migration in vivo. Our results show that mTOR signaling 

pathway could be the common pathway on which TSC1, TSC2, and DEPTOR converge 

and exert their effects on brain development. These results suggest mTOR signaling and 

its downstream effectors could be targets for therapeutic treatment during 

embryogenesis and could potentially prevent abnormal brain development. 
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An estimated 1 million individuals are affected with Tuberous Sclerosis Complex 

(TSC) worldwide, involving all racial and ethnic groups. TSC is an autosomal dominant 

multi-system disorder with an incidence of 1 in 6000 live births (Crino et al., 2006). The 

majority of individuals with TSC exhibit neurological deficits, including cognitive disability, 

epilepsy, and autism spectrum disorders, that are directly linked to developmental 

malformations of the cerebral cortex known as cortical tubers. Histopathological studies 

revealed that tubers have loss of normal six-layered structure of cortex, and consist of 

abnormal dysmorphic neurons and cytomegalic ‘giant’ cells (GCs) which are 

immunoreactive for neuronal and glial cell markers and exhibit mTOR signaling pathway 

activation (Crino et al., 2006). TSC results from mutations in either TSC1 or TSC2 

genes, and the proteins for which they encode, TSC1 and TSC2, form a functional 

heterodimeric complex that serves as an upstream regulator of mTOR pathway through 

inhibition of a GTPase-activating protein Ras homolog enriched in brain (Rheb). mTOR 

integrates signals from various inputs including growth factors, nutrients, energy, and 

stresses, to regulate multiple cellular processes such as growth, transcription, 

translation, and autophagy (Sarbassov et al., 2005; Chong-Kopera et al., 2006; 

Wullschleger et al., 2006). mTOR is found in two functionally distinct complexes which 

share some of the protein components, but  raptor is specific to mTOR complex 1 

(mTORC1) and rictor to mTORC2 (Cybulski and Hall, 2009). mTORC1 regulates 

ribosome biogenesis, transcription, translation and autophagy via phosphorylation of 

effector proteins S6K1, S6 and 4E-BP1 (Huang and Manning, 2008). Much less is 

known about mTORC2 signaling and function, but its effectors include Akt, serum and 

glucocorticoid-inducible kinase 1 (SGK1), PKCα and PKCδ (Guertin et al., 2006; Zhao et 

al., 2009). mTORC2 has been shown to regulate actin cytoskeletal organization, but 

through unknown mechanisms (Masri et al., 2007; Dada et al., 2008).  
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Rapamycin, an mTORC1 inhibitor, has been tested in clinical trials and shown to 

improve lung and renal manifestations of TSC, however significant effects on epilepsy, 

autism and cognitive disabilities have not been realized, suggesting non-mTORC1 

signaling or negative feedback loop effects and the need for more targeted treatment 

approaches. To date, TSC animal models have only recapitulated certain aspects of 

tuber pathology, however the mechanisms governing loss of hexalaminar structure, 

ectopic cell positioning, cytomegaly and aberrant differentiation have not been 

elucidated.  

Deptor is a newly discovered mTOR interacting and regulatory protein that 

directly binds to mTOR and antagonizes mTORC1 and mTORC2 signaling, and may 

thus be similar in function to TSC1-TSC2 (Peterson et al., 2009). Deptor overexpression 

in HEK293 and HeLa cells inhibits mTORC1 activity and leads to activation of 

PI3K/mTORC2/Akt pathway due to removal of inhibitory arm from S6K1, and has been 

shown to be mutated in multiple myeloma (Peterson et al., 2009). To date there have 

been no studies to identify the expression or function of Deptor in the brain. 
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CHAPTER 2. TUBEROUS SCLEROSIS COMPLEX: GENETIC BASIS AND CLINICAL 

MANAGEMENT STRATEGIES 1 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 This work was originally published in Advances in Genetics and Genomics journal. Tsai 
V and Crino PB. 2012. Tuberous sclerosis: genetic basis and management strategies. 
Copyright © 2012 Dove Press.  
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2.1. Tuberous Sclerosis Complex 

 

Tuberous Sclerosis Complex (TSC) is an autosomal dominant disorder with an 

incidence of 1 in 6000-10000 live births (Osborne et al., 1991; Devlin et al., 2006). 

Currently an estimated 1 million individuals are affected worldwide, involving all racial 

and ethnic groups. TSC is characterized by hamartomas, or benign tumor-like growths, 

in multiple organs including brain, lungs, heart, kidney, skin and eyes (Roach et al., 

1992; Roach et al., 1998; Crino et al., 2006). TSC exhibits both variable penetrance, with 

individuals from the same family showing differential severity of specific features, and 

pleiotropy, in which individuals sharing similar genotypes have disparate clinical 

manifestations. TSC is diagnosed according to a group of major and minor diagnostic 

criteria (Table 2-1) that were revised at an NIH sponsored consensus conference (2004) 

(Roach et al., 1998).  Genetic testing is valuable in confirming an early diagnosis but is 

not currently considered requisite for clinical diagnosis.  

 

 

2.2. Clinical Diagnostic Features  

2.2a. Neurological Manifestations 

Neurological disorders are among the most common causes of morbidity in TSC 

patients. Individuals with TSC exhibit epilepsy, cognitive disabilities, and autism 

spectrum disorders (Crino et al., 2006). Nearly 90% of TSC patients develop epilepsy 

throughout their lifetime, which is often progressive, and intractable to medications. TSC 

is also the most common genetic cause of infantile spasms, a devastating epilepsy 

syndrome that affects 30-40% newborn infants. Approximately 50-60% of TSC patients 
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exhibit behavioral abnormalities, cognitive disabilities, and autism spectrum disorders. 

With increasing numbers of cases that are diagnosed prenatally or in early infancy, prior 

to seizure onset, questions regarding possible prophylactic anticonvulsant therapy to 

prevent development of epilepsy have emerged (Yates et al., 2011).  

TSC brain lesions include developmental brain malformations known as cortical 

tubers, subependymal nodules (SENs), and subependymal giant cell astrocytomas 

(SEGAs). Cortical tubers are present in 80% of TSC patients and are characterized 

histopathologically by loss of normal six-layered structure of the cerebral cortex. Tubers 

are composed of abnormal dysmorphic neurons, cytomegalic ‘giant’ cells (GCs), and 

proliferative astrocytes, which have abnormal cellular morphology, cytomegaly, aberrant 

axonal projections and dendritic arbors (Richardson, 1991). Fetal tubers have been 

identified as early as 20 weeks gestation (Park et al., 1997) and it is currently believed 

that TSC1 and TSC2 mutations alter the normal development of neural precursors 

between 7 and 20 weeks (Crino, 2004). A recent study utilizing magnetic resonance 

imaging (MRI) has described distinct cortical tuber types based on signal intensity of 

subcortical white matter (Gallagher et al., 2010). Tubers Type A were isointense on 

volumetric T1 images and had subtle hyperintensity on T2 weighted and fluid-attenuated 

inversion recovery (FLAIR); Type B were hypointense on volumetric T1, but 

hyperintense on T2 weighted and FLAIR; and Type C were hypointense on volumetric 

T1 images, hyperintense on T2 weighted, and heterogeneous on FLAIR (Gallagher et 

al., 2010). Furthermore, this study compared and correlated TSC manifestations in 

patients with different tuber types: Type A patients had a milder phenotype, whereas 

patients with predominantly Type C tubers had other MRI abnormalities in addition to 

tubers, such as SEGAs, and a higher probability of having autism spectrum disorders, 

history of infantile spasms, and higher frequency of epileptic seizures, compared to 

patients with Type A and Type B tubers (Gallagher et al., 2010).  
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In the few reported neuropathological analyses of the post-mortem TSC brains, 

disruption of normal brain architecture distinct from tubers including small structural 

abnormalities including heterotopias, subcortical nodules, radial migration lines, areas of 

hypomyelination, and small cortical dysplasias have been described (Richardson, 1991; 

Scheithauer and Reagan, 1999). These lesions differ from tubers in that they are 

smaller, GCs are an infrequent finding, cortical lamination is only mildly altered, and they 

do not exhibit calcification. Recent MRI analyses in TSC patients have confirmed subtle 

structural abnormalities outside of tubers in the cortex and within subcortical structures 

such as the thalamus and basal ganglia (Ridler et al., 2001; Bolton et al., 2002) and 

suggest that these non-tuber brain lesions, in addition to tubers, may contribute to 

autism and cognitive disability in TSC. 

SENs are nodular lesions typically less then 1 cm in size and are located on the 

surfaces of the lateral and third ventricles. SENs are present in about 80% of TSC 

patients and are believed to be asymptomatic i.e., not related to cognitive deficits or 

epilepsy. Typically, SENs are covered by a thin layer of ependyma, can exhibit extensive 

vascularization and extend into the periventricular white matter and the basal ganglia. 

These lesions develop early, in fetal life, and often degenerate or calcify later in life.  

It is widely believed that SENs transition to form SEGAs, although the molecular 

mechanisms governing transformation from SEN to SEGA are unknown. SEGAs 

generally appear within the first twenty years of life. SEGAs generally exceed 1 cm in 

diameter but can grow greater than 10 cm in size. SEGAs extend into the lateral 

ventricle and often obstruct the flow of cerebrospinal fluid through the lateral ventricle 

and foramen of Monro, causing hydrocephalus, focal neurological deficits, and death. 

Thus in a select group of TSC patients, SEGAs require surgical removal. Overall, 

SEGAs are relatively rare and represent only about 1-2% of pediatric brain tumors. 

SEGAs can occur as sporadic tumors, however most of these likely represent somatic 
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mosaic TSC cases i.e., TSC gene mutation occurring within a restricted population of 

cells within a limited number of organ systems.  
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Table 2-1. TSC Clinical Diagnostic Criteria  

(Roach et al., 1998) 

 

 Major Features Minor Features 

Brain Cortical tuber Cerebral white-matter radial 
migration lines 

 Subependymal nodule (SEN)  
 Subependymal giant cell 

astrocytoma (SEGA) 
 

   
Lungs Lymphangiomyomatosis (LAM)  

   
Heart Cardiac rhabdomyoma  

   
Kidney Renal angiomyolipoma (AML) Multiple renal cysts 

   
Skin Facial angiofibromas “Confetti” skin lesions 

 Ungual or periungual fibroma  
 Hypomelanotic macules (three or 

more) 
 

 Shagreen patch  
   

Eyes Retinal nodular hamartomas Retinal achromatic patch 
   

Other  Multiple pits in dental enamel 
  Hamartomatous rectal polyps 
  Bone cysts 
  Gingival fibromas 

 
 
Definitive TSC: 
Two major features 
One major plus two minor features 
 
Probable TSC:  
One major plus one minor feature 
 
Possible TSC: 
One major feature 
Two or more minor features 
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2.2b. Dermatological Features 

Skin lesions are detected at all ages in more than 90% of patients and serve as 

an important clinical diagnostic features in both children and adults with TSC. For 

example, hypopigmented macules (“ash leaf spots”), are a major diagnostic feature of 

TSC generally detected in infancy or early childhood. Hypopigmented macules are 

generally a few millimeters to centimeters in size and can be found anywhere on the 

face, limbs, or trunk. The Shagreen patch is usually identified as a few centimeters in 

diameter area of roughened skin over the lumbosacral or flank region with increasing 

incidence after the age of 5 years. Ungual fibromas are fleshy growths near or beneath 

the nail that typically appear after puberty and may develop at any time in later 

adulthood. Facial angiofibromas (formerly referred to as adenoma sebaceum) may be 

detected at any age but are generally more common in late childhood or adolescence. 

They appear around the malar region of the face and the chin but can be found within 

the nose and external ear. 

 

2.2c. Renal Lesions 

 Over 80% of TSC patients have renal manifestations, including 

angiomyolipomas (AMLs) and polycystic kidney disease. Renal AMLs are benign tumors 

comprised of abnormal blood vessels, smooth muscle cells, and adipocytes. While 

AMLs can occur sporadically in TSC patients, multiple AMLs are typically found in both 

kidneys (bilateral). It is estimated that AMLs can be detected in 55-75% of adult TSC 

patients. One study of 25 boys and 35 girls reported that 75% percent of children with 

TSC had renal AMLs by age 10.5 years (Ewalt et al., 1998). AMLs are detected by 

ultrasound, computed tomography, or MRI of the abdomen. Because AMLs contain 
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abnormal vasculature (which often contains aneurysms), spontaneous and potentially 

life-threatening hemorrhage is an important complication. Current treatment of AMLs 

includes embolization or systemic treatment with sirolimus (Davies et al., 2008; Davies 

et al., 2011). Rarely, surgery is indicated. In addition to AMLs, TSC patients may 

develop cysts, polycystic kidney disease and renal cell carcinomas (RCC; see below).  

Epithelial cysts, which can be multiple and are generally asymptomatic, may also be 

associated with hypertension and renal failure.  Two to three percent of TSC patients 

carry a contiguous germline deletion, affecting both TSC2 and PKD1 genes on 16p13, 

resulting in polycystic kidney disease renal insufficiency.  

 

2.2d. Pulmonary Manifestations 

Lymphangiomyomatosis (also called lymphangioleiomyomatosis or LAM), affects 

women almost exclusively, and is characterized by widespread pulmonary proliferation 

of abnormal smooth muscle cells and cystic changes within the lung parenchyma (see 

review by Yu et. al., 2010) (Yu et al., 2010). LAM often presents clinically with dyspnea 

or pneumothorax during early adulthood. While LAM can occur as a sporadic disorder, 

the incidence of radiographic evidence of LAM among women with TSC is 26-39%. 

Many women with radiographic evidence of LAM are clinically asymptomatic.  

Recent studies have focused on understanding whether LAM results as a 

consequence of metastasis of benign tumors from other parts of the body. 

Approximately 60% of women who have sporadic LAM also present with renal AMLs. 

Genetic analyses and fluorescent in situ hybridization studies of recurrent LAM following 

lung transplantation provide support for benign tumor metastasis, since cells with the 

same gene mutation were found in the transplanted allograft (Karbowniczek et al., 

2003).  
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2.2e. Cardiac Manifestations 

Cardiac rhabdomyomas develop in approximately 50% of the TSC patients and 

may result in ventricular obstruction, arrhythmias, or congestive heart failure. However, 

in most TSC patients rhabdomyomas regress spontaneously with time and many 

disappear by the first year of life. As a rule, new rhabdomyomas do not appear in later 

life. In TSC patients with cardiac rhabodmyomas, medications are prescribed to treat 

arrhythmias and congestive heart failure, and some undergo surgery to relieve 

ventricular obstruction.  

 

2.2f. TSC and Cancer Predisposition 

TSC is not classically defined as a cancer predisposition syndrome and few 

epidemiological studies have accurately assessed the cumulative risk of developing, for 

example, RCC, in TSC. RCC occurs in TSC in perhaps 1-3% of patients and likely 

clinically presents at an earlier age than the general population. Conversely, mutations in 

TSC1 or TSC2 have been reported in several sporadic cancers such as transitional cell 

cancer of the bladder (van Tilborg et al., 2001; Adachi et al., 2003; Knowles et al., 2003; 

Pymar et al., 2008), urothelial carcinoma (Mhawech-Fauceglia et al., 2008; Sjodahl et 

al., 2011), and neuroendocrine tumors (Larson et al., 2011). These tumors are not part 

of the diagnostic criteria for TSC, and thus their relation to the pathogenesis of TSC is 

unknown.   
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2.3. Genetics 

 

 TSC results from mutations in TSC1 (9q34) or TSC2 (16p13.3) gene (1993; van 

Slegtenhorst et al., 1997). TSC1 is an 8.6 kb transcript, with a total genomic extent of 55 

kb, consisting of 23 exons, and encoding an 1164 amino acid, 130 kD protein TSC1 

(hamartin) (van Slegtenhorst et al., 1997). TSC2 is a 5.5 kb transcript, with a total 

genomic extent of 40 kb, consisting of 41 exons, and encoding an 1807 amino acid, 180 

kD protein TSC2 (tuberin). Approximately 20% of affected TSC individuals have an 

inherited TSC1 or TSC2 mutation, while in 80%, TSC results from a sporadic mutation. 

Over 1000 unique TSC1 and TSC2 allelic variants have been reported due to nonsense, 

missense, insertion and deletion mutations, involving nearly all exons of TSC1 and 

TSC2 (Jones et al., 1997; Jones et al., 1999; Niida et al., 1999; van Slegtenhorst et al., 

1999; Dabora et al., 2001; Sancak et al., 2005; Napolioni et al., 2009). A study 

examining the differences between patients with TSC1 versus TSC2 mutations, found 

that individuals with sporadic TSC1 mutations had an age range, average age, and 

median age that was similar to patients with sporadic TSC2 mutations (Dabora et al., 

2001). Furthermore, TSC patients with a sporadic TSC1 gene mutation had on average 

milder disease manifestations, in particular neurological manifestations, than patients 

with TSC2 mutations of similar age. Germline and somatic mutations were more 

common in TSC2 gene than in TSC1 (Dabora et al., 2001). A subset of patients that did 

not have any identifiable mutation in TSC1 or TSC2 gene. In another study, in a cohort 

of 362 patients, 276 had a definite clinical diagnosis of TSC and had a mutation 

detection rate of 85% (Sancak et al., 2005). However, approximately 15% had no 

identifiable mutation in either TSC1 or TSC2, which could have been due to large 

deletions, somatic mosaicism or an unidentified locus. When examining the spectrum of 

TSC gene mutations, TSC2 mutations were 3.4 times more common than TSC1 
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mutations (Sancak et al., 2005). In this study, TSC1 mutations and familial TSC2 

mutations were associated with less severe phenotypes than sporadic TSC2 mutations 

(Sancak et al., 2005). In a more recent study in 325 patients, mutations in either TSC1 or 

TSC2 genes were identified in 72% of de novo and 77% of familial cases, however, 29% 

of patients had no mutation identified (Au et al., 2007). Current estimate is that mutations 

in TSC1 or TSC2 genes have been identified in 70-90% of TSC patients, however 10-

15% have no identified mutation (Qin et al., 2010b).  

Aside from broad associations, there are few genotype-phenotype correlations. 

Prenatal molecular diagnosis using amniocentesis and chorionic villus sampling has 

been shown to be accurate in 48 out of 50 fetal cases at risk with TSC due to family 

history or fetal detection of cardiac rhabdomyoma on ultrasound, showing promise for 

early TSC diagnosis (Milunsky et al., 2009). 

While loss of heterozygosity has been reported for hamartomas in almost all TSC 

lesions (Green et al., 1994a; Green et al., 1994b; Henske et al., 1996; Henske et al., 

1997; Wolf et al., 1997; Niida et al., 2001; Chan et al., 2004; Cai et al., 2010), there is no 

consensus on the mechanism of cortical tuber formation in the brain. A recent report 

implementing single cell sequencing of TSC1 and TSC2 in phosphorylated ribosomal 

protein S6 (P-S6) immunolabeled GCs showed that tubers contain both germline and 

somatic mutations suggesting a mechanism of biallelic gene inactivation (Crino et al., 

2010). In an animal model of TSC which is discussed in a subsequent section of this 

review, a second ‘hit’ was focally induced on a heterozygous background for a Tsc1 

mutation and resulted in cellular abnormalities reminiscent of tubers (Feliciano et al., 

2011), providing support for biallelic gene inactivation in tuber formation. However 

another group reported that a second mutational ‘hit’ in TSC1, TSC2, or KRAS is a rare 

event in tubers (Qin et al., 2010a). Thus further investigation will need to be conducted 

to determine the molecular mechanism of cortical tuber formation in TSC. 
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Figure 2-1. TSC1-TSC2 Signaling Pathway. 

TSC1 and TSC2 proteins form a heterodimeric complex that serves as an inhibitor of 
mammalian target of rapamycin (mTOR) signaling pathway through GTPase Rheb. 
mTOR forms two distinct complexes with other proteins, among them raptor, specific to 
mTOR complex 1 (mTORC1) and rictor, specific to mTORC2, to regulate different 
aspects of cellular function, including transcription, translation, proliferation, 
differentiation, and autophagy. TSC1 and TSC2 integrate signals from various inputs 
upstream, among them insulin signaling, energy status, inflammatory, and Wnt/b-catenin 
signaling, and regulate mTOR pathway activity accordingly. 
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2.4. Role of TSC1 and TSC2 Proteins in Cellular Function  

   

TSC1 and TSC2 proteins have been shown to regulate multiple cellular 

processes in both mTOR-dependent and mTOR-independent mechanisms. TSC1 and 

TSC2 proteins form a heterodimeric complex that serves as an upstream regulator of the 

mTOR pathway. TSC2 acts as a GTPase-activating protein towards Ras homolog 

enriched in brain (Rheb), which results in inhibition of mammalian target of rapamycin 

(mTOR) signaling (Fig. 1) (Tee et al., 2003). TSC1 protein stabilizes TSC2 by binding to 

it and prevents its ubiquitination (Benvenuto et al., 2000; Chong-Kopera et al., 2006). 

mTOR is an evolutionarily conserved serine/threonine kinase that integrates signals from 

various inputs including growth factors, nutrients, energy, and stresses, to regulate 

multiple cellular processes such as growth, transcription, translation, and autophagy 

(Fig. 1) (Sarbassov et al., 2005; Chong-Kopera et al., 2006; Wullschleger et al., 2006). 

mTOR is found in two functionally distinct complexes: mTOR complex 1 (mTORC1), 

which is comprised of mTOR, raptor (regulatory associated protein of mTOR) and 

PRAS40, and mTORC2, which is made up of mTOR, rictor (rapamycin insensitive 

component of mTOR), mSin1, and Protor1/2 (Cybulski and Hall, 2009).  

mTORC1 regulates ribosome biogenesis, transcription, translation and 

autophagy (Wullschleger et al., 2006) via phosphorylation of several downstream 

effector proteins including S6K, S6 and 4E-BP1 (Huang and Manning, 2008). Loss of 

function mutations in TSC1 or TSC2 lead to aberrant activation of mTOR signaling, 

resulting in increased phosphorylation of S6K1, S6, and 4E-BP1.(Huang and Manning, 

2008) Notch signaling is an important regulator of progenitor cell self-renewal, 

proliferation, differentiation, and survival (Lathia et al., 2008). Reduction in 

Notch1/Jagged1 signaling in vivo decreases the number of proliferating cells in postnatal 
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subventricular zone (SVZ) (Androutsellis-Theotokis et al., 2006). A recent study showed 

that mTOR regulates differentiation through STAT3-p63-Jagged1-Notch pathway in TSC 

fibroblast, LAM and mouse kidney tumor cells (Ma et al., 2010). A recent 

phosphoproteome analysis suggested that mTORC1 may actually modulate 

phosphorylation of several hundred proteins thus positing TSC1:TSC2:mTOR as a 

pivotal signaling node in many types of undifferentiated and differentiated cells (Hsu et 

al., 2011; Yu et al., 2011). Rapamycin is a macrolide antibiotic that is a highly specific 

mTORC1 inhibitor, functioning through FKBP12 (Sabers et al., 1995; Wiederrecht et al., 

1995). 

Much less is known about mTORC2 signaling and function, but its effectors 

include Akt, serum and glucocorticoid-inducible kinase 1 (SGK1), and PKCα.(Guertin et 

al., 2006; Zhao et al., 2009) mTORC2 has been shown to regulate actin cytoskeletal 

organization and hyperactivated mTORC2 signaling results in altered cell motility in 

endothelial cells and glioma cell lines (Masri et al., 2007; Dada et al., 2008), however 

through unknown mechanisms. mTORC2 is relatively insensitive to immediate direct 

inhibition by rapamycin (Sarbassov et al., 2005); although long-term treatment in 

mammalian cells can prevent de novo mTORC2 assembly (Sarbassov et al., 2006). 

Torin1 has been shown to inhibit both mTORC1 and mTORC2 signaling (Peterson et al., 

2009). While TSC1-TSC2 complex serves an inhibitory role on mTORC1 signaling, 

some studies have reported opposite effects on mTORC2, and showed that TSC1-TSC2 

is required for its proper activation. A study in renal AMLs and Tsc2+/- mouse kidney 

tumors has reported that while mTORC1 biomarkers are increased in TSC tissues, 

mTORC2 effectors are attenuated (Yang et al., 2006; Huang et al., 2008; Huang et al., 

2009). However further investigation needs to be conducted to understand mTORC2 

signaling dysregulation in TSC.  
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Tsc1 protein has been found to interact with ezrin-radixin-moesin family of actin-

binding proteins (Lamb et al., 2000). Another binding partner of TSC1, known as TBC1 

domain family, member 7 (TBC1D7), may play pivotal roles in regulating the GAP 

activity effects exerted on Rheb. TSC1 stabilizes TBC1D7, and overexpression of TSC1 

results in increased levels of TBC1D7 and its knockdown in reduced levels of TBC1D7 

(Sato et al., 2010). Knockdown of TBC1D7 using siRNA resulted in inhibition of cell 

growth in lung cancer cells, whereas transplantation of COS-7 cells overexpressing 

TBC1D7 into BALB/cAJcl-nu/nu mice resulted in tumor development (Sato et al., 2010). 

Thus future investigation needs to be conducted into the role of TBC1D7 in regulation of 

mTOR pathway and TSC pathogenesis. Tsc2 has been shown to directly bind to 

p27kip1 and regulates its cellular localization and stability by preventing degradation by 

SCF-type E3 ubiquitin ligase complex (Soucek et al., 1997; Soucek et al., 1998; Miloloza 

et al., 2000; Rosner et al., 2003; Rosner and Hengstschlager, 2004; Rosner et al., 

2007). p27kip1 is a cyclin-dependent kinase inhibitor of G1 cell cycle progression and 

regulates proliferation. Akt phosphorylates Tsc2 on Ser939 and Thr1462, and thus 

controls its nuclear and cytoplasmic localization (Rosner et al., 2007). In G0 arrested 

cells, Akt is downregulated and majority of Tsc2 is localized to the nucleus, however 

when the cells re-enter cell cycle, Akt is upregulated, Tsc2 is phosphorylated, and in turn 

is primarily found in the cytoplasm.(Rosner et al., 2007) Interestingly, p70S6K1 is found 

in both nucleus in the cytoplasmic compartments, however when it is phopsphorylated 

(Thr389) by mTORC1, it becomes predominantly localized to the nucleus (Rosner and 

Hengstschlager, 2011). 

Tsc1 knockout (KO) or Tsc2 shRNA knockdown in hippocampal pyramidal 

neurons results in enlarged cell somas and altered dendritic spine morphology which 

were dependent on cofilin Ser3 phosphorylation (Tavazoie et al., 2005). These findings 

implicated regulation of actin cytoskeletal dynamics as the underlying molecular 
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mechanism for aberrant neuronal structural changes following loss of either Tsc1 or 

Tsc2 (Tavazoie et al., 2005). A recent study utilizing scratch-induced polarization “wound 

healing” assay in Tsc2-/- fibroblasts demonstrated that Tsc2 has a critical role in cell 

spreading, polarity and migration by regulating Cdc42 and Rac1 GTPase activation 

(Larson et al., 2010). Rapamycin treatment rescued the cell polarization defect in Tsc2-/- 

fibroblasts and increased the activation of Cdc42 and Rac1, thus demonstrating 

mTORC1-dependence (Larson et al., 2010). mTORC2 has been shown to regulate the 

actin cytoskeleton and its deactivation by rictor shRNA knockdown leads to stress fiber 

formation and delocalized paxillin (an adapter protein present at the junction between 

actin cytoskeleton and plasma membrane) staining, which is phenotypically similar to 

Tsc2-/- HeLa cells (Jacinto et al., 2004). Further studies will need to be conducted in 

order to determine whether regulation of cell migration by Tsc1-Tsc2 is through 

mTORC1 or mTORC2 signaling pathways.  

 

 

2.5. Animal Models of Tuberous Sclerosis Complex  

 

Animal models have provided invaluable insight into TSC disease pathogenesis 

and cellular pathophysiology. Early studies in Drosophila showed that inactivating 

mutations in dTsc1 and dTsc2 cause indistinguishable phenotypes with deregulation of 

various processes, including increased cell size and enhanced cell proliferation (Ito and 

Rubin, 1999; Gao and Pan, 2001; Potter et al., 2001; Tapon et al., 2001). These findings 

led to identification of the link between dTsc1, dTsc2, and insulin growth factor signaling, 

and ultimately to the role of mTOR in TSC. Since then, the Eker rat, which has a 

spontaneous mutation in the Tsc2 gene (an insertion which results in production of 
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abnormal larger protein), has been described as an autosomal dominant hereditary TSC 

animal model with predispositions to renal adenoma and carcinoma (Eker, 1954; Yeung 

et al., 1994). Eker rats develop kidney cystadenoma lesions by 4 months, and pituitary 

adenomas, uterine leiomyomas, and leiomyosarcomas, and splenic hemangiosarcomas 

between 14 months to 2 years (Everitt et al., 1992; Hino et al., 1993). Loss of 

heterozygosity is seen in majority of these tumors and established Tsc2 as a tumor 

suppressor gene.  

More recently, transgenic strategies in mice have resulted in the generation of 

several different Tsc1 and Tsc2 KO models (see Table 2-2 for details). Tsc1 or Tsc2 KO 

(Tsc1-/-, Tsc2-/-) results in embryonic lethality. Specifically, Tsc1-/- mice die at E9.5-13.5 

and have developmental delay, liver hypoplasia, neural tube closure defects, and poor 

abdominal organ development (Kobayashi et al., 2001; Kwiatkowski et al., 2002; Wilson 

et al., 2005). Tsc2-/- mice die earlier than Tsc1-/- (between E9.5-12.5) and also have 

developmental delay, neural tube closure defects, exencephaly, liver hypoplasia, poor 

development of abdominal organs, and thickened myocardia (Kobayashi et al., 1999; 

Onda et al., 1999; Hernandez et al., 2007; Pollizzi et al., 2009b). 

Heterozygote Tsc1+/- and Tsc2+/- mice develop bilateral renal cystadenomas, liver 

hemangiomas, lung adenomas and extremity angiosarcomas by 15 months of age and 

lesion development is milder in Tsc1+/- mice compared to Tsc2+/- mice (Kobayashi et al., 

1999; Onda et al., 1999; Kobayashi et al., 2001; Kwiatkowski et al., 2002; Wilson et al., 

2005; Hernandez et al., 2007; Pollizzi et al., 2009b) (see Table 2-2; for detailed review 

see Kwiatkowski D. J., 2010 (Kwiatkowski, 2010) ). Rapamycin and other related 

mTORC1 inhibitors have been shown to be effective in blocking tumor development in 

Tsc1+/- and Tsc2+/- mouse models, similar to the results seen in Eker rat model 

(Kenerson et al., 2005; Lee et al., 2005; Pollizzi et al., 2009a). Furthermore, rapamycin 

treatment resulted in a decrease in size of renal and pituitary tumors and improved 
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survival, however, evidence of drug resistance was reported in a small percentage of 

lesions after long-term therapy (Kenerson et al., 2005).  

Several conditional knockout (cKO) TSC mouse models have been generated 

subsequently. Neuronal Tsc1 cKO in mice (Tsc1fl/fl; Synapsin1-Cre) results in 

spontaneous seizures in 10% of mice, ectopic, enlarged, and aberrant neurons, reduced 

myelination (Meikle et al., 2007), hyperexcitability and tonic spasms leading to 

premature death.(Wang et al., 2007)  Mice with Tsc1 cKO in astrocytes (Tsc1fl/fl; GFAP-

Cre) have megalencephaly, epilepsy, increased astrocytic proliferation, aberrant 

hippocampal organization, and die prematurely (Uhlmann et al., 2002b). Tsc1 cKO in the 

forebrain (Tsc1fl/fl; Emx1-Cre) results in enlarged brain size and cytomegalic cells within 

the cerebral cortex, and the mice die by postnatal day 25 (Carson et al., 2011). Recently, 

a new model of focal Tsc1 KO in a subpopulation of progenitor cells on a heterozygous 

Tsc1 background was described and the mice show aberrant lamination of the cerebral 

cortex, cytomegalic multinucleated neurons in the intermediate zone (similar to 

subcortical white matter in humans), and lower seizure threshold, providing support for 

biallelic gene inactivation in the brain (Feliciano et al., 2011).  

Radial glia-specific Tsc2 cKO mice (Tsc2fl/ko; hGFAP-Cre) have many of the TSC 

features, including megalencephaly, cellular cytomegaly, and cortical lamination defects 

(Way et al., 2009). Tsc2 cKO in astrocytes (Tsc2fl/fl; GFAP-Cre) results in a more severe 

epilepsy phenotype than Tsc1 cKO (Tsc1fl/fl; GFAP-Cre), with an earlier onset and higher 

seizure frequency which were correlated with higher mTORC1 activation (Zeng et al., 

2011). These findings support that mutations in Tsc2 gene result in a more severe 

phenotype than mutations in Tsc1. Another Tsc2 animal model which expresses a 

dominant negative Tsc2 transgene shows mild but statistically significant impairments in 

social behavior and rotarod motor learning, recapitulating some of the behavioral 

abnormalities observed in TSC patients (Chevere-Torres et al., 2011). The dominant 
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negative Tsc2 is able to bind Tsc1, but the mutation affects its GAP domain and 

rabaptin-5 binding motif (Chevere-Torres et al., 2011). 

Tsc1+/- neurons with a single deleted copy of Tsc1 exhibit morphological changes 

characteristic of Tsc1- and Tsc2-deficient neurons, suggesting that haploinsufficiency 

rather than complete lack of either Tsc gene could contribute to certain aspects of TSC 

neuropathogenesis (Tavazoie et al., 2005). While heterozygote Tsc1+/- and Tsc2+/- mice 

do not exhibit gross brain abnormalities, they have cognitive and social behavior deficits 

and impaired hippocampus-dependent learning (Goorden et al., 2007; Ehninger et al., 

2008; Chevere-Torres et al., 2011). Tsc2+/- mice have also been shown to have aberrant 

retinogeniculate projections with EphA receptor-dependent axon guidance in the visual 

system (Nie et al., 2010). This suggests that while there may be no gross apparent brain 

architectural changes due to Tsc1 or Tsc2 haploinsufficiency, there could be alterations 

in network circuitry.  

Rapamycin treatment has been shown to be effective in brain abnormalities in 

TSC mouse models. Rapamycin treatment started prior to onset of seizures prevented 

the development of epilepsy in Tsc1 cKO mice (Tsc1fl/fl; GFAP-Cre) and improved 

survival, however if the treatment was stopped, the neurologic phenotype subsequently 

developed with a delay of several weeks, including the histopathologic abnormalities and 

epilepsy (Zeng et al., 2008). When treatment was started after epilepsy onset, 

rapamycin reduced the seizure frequency, thus supporting mTOR’s role in early and late 

epileptogenesis, however its effects were not as robust as when rapamycin was began 

early (Zeng et al., 2008). Rapamycin treatment in heterozygous Tsc2+/- mice reversed 

the learning abnormalities, thus demonstrating its potential in treatment of cognitive 

deficits in TSC (Ehninger et al., 2008). 

Recently, in a model of Tsc1 cKO in postnatal SVZ using a tamoxifen-inducible 

Nestin-CreERT2 mouse line, tamoxifen was administered at postnatal day 7 or 1 month, 
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resulting in enlarged brains at 3 and 6-7 months, however had no body weight 

differences (Zhou et al., 2011). Furthermore, Tsc1-Nestin cKO mice had hydrocephalus, 

an enlarged hippocampus, and small nodular structures and tumors were present near 

the interventricular foramen, reminiscent of SENs and SEGAs seen in TSC patients 

(Zhou et al., 2011). Most cells in these tumors had enlarged somas and stained positive 

for mature neuronal markers MAP2 and NeuN or astrocytic markers S100b and GFAP, 

but were low in Ki67 and did not exhibit multinucleation (Zhou et al., 2011). Another 

model of Tsc1 Nestin-Cre cKO exhibited normal body weight and organ development, 

but an enlarged head and the mice died within 24 hours after birth with lethality being 

most likely due to malnutrition, hypoglycemia, and hypothermia (Anderl et al., 2011b). 

The mutant brains grossly showed normal brain architecture, but the cerebral cortex was 

especially enlarged (Anderl et al., 2011b). Single rapamycin dose (1 mg/kg) was 

administered subcutaneously to the pregnant dam between embryonic days E15-17, and 

significantly increased the survival of the mutant mice up to postnatal day 20 (Anderl et 

al., 2011b). This study strengthens the potential of early rapamycin therapy in TSC.  

In summary, TSC animal models have taught us a lot about TSC 

pathophysiology in certain organ systems. However the existing TSC animal models 

have failed to recapitulate all lesions seen in TSC human patients. For example, cortical 

tubers and LAM lesions have not been completely modeled in animal models. Further 

investigation and better TSC animal models will be pivotal in understanding of the 

disease mechanisms leading to TSC pathogenesis.  
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Table 2-2. TSC Mouse Models 

Gene Knockout Condition Phenotype 

   
KO: embryonic lethal (E10.5-11.5) due 
to neural tube closure defects, 
exencephaly, abnormal morphology of 
myocardial cells, developmental delay, 
liver hypoplasia 

Tsc1 Neo insertion and deletion of 
exons 6-8 (Kobayashi et al., 
2001) 
 

 
HET: kidney cysts and cystadenomas, 
liver hemangiomas, tail hemangioma, 
uterine leiomyoma/leiomyosarcoma 
KO: embryonic lethal (E9-13.5) due to 
liver hypoplasia; developmental delay of 
approximately 1 embryonic day 
compared to littermates, poor 
development of abdominal organs, 
enlarged heart which was shifted 
inferiorly, pericardial effusions, 
circulatory failure due to anemia 

 Deletion of exons 17-18 
(Kwiatkowski et al., 2002) 
 

HET: bilateral kidney cystadenomas, 
liver hemangiomas (females: higher % 
affected, higher average grade; 
compared to males), forepaw 
angiosarcoma; premature death (higher 
in females than in males) 
KO: embryonic lethal (E10.5-12.5), 
developmental delay, exencephaly, 
abnormal vacuolation of myocardial 
cells 

 Neo cassette insertion and 
deletion of exons 6-8 (Wilson et 
al., 2005; Goorden et al., 2007) 
 
 
 
 

HET: kidney lesions (cysts, 
cystadenomas, solid carcinomas), 
metastatic renal cell carcinomas, liver 
hemangiomas, premature death; 
severity of phenotype was dependent 
on  genetic background; impaired 
hippocampal-dependent learning and 
impaired social behavior 

 Conditional GFAP-Cre (target: 
astrocytes), exons 17-18 
(Uhlmann et al., 2002b) 
 

cKO: megalencephaly, epilepsy, 
astrocytic proliferation, aberrant 
hippocampal neuronal organization, 
premature death 

 Conditional Synapsin1-Cre 
(target: neurons), exons 17-18 
(Meikle et al., 2007) 

cKO: spontaneous seizures (10%), 
neuropathological abnormalities 
(ectopic, enlarged, aberrant neurons), 
reduced myelination, delayed 
developmental beginning 
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 Conditional Synapsin1-Cre 
(target: neurons), exons 17-18 
(Wang et al., 2007) 

cKO: bicuculline-induced epileptiform 
discharges, hyperexcitability, tonic 
spasms leading to death 

 Conditional Nestin-Cre (target: 
neural progenitors), exons 17-18 
(Zhou et al., 2011) 

cKO: structural abnormalities 
resembling features of  SENs and 
SEGAs in the lateral ventricle 

 Conditional Nestin-Cre (target: 
neural progenitors), exons 17-18 
(Anderl et al., 2011b) 

cKO: enlarged brains, early lethality 
due to hypoglycemia, poor mother-pup 
interaction 

 Conditional Emx1-Cre (target: 
neural progenitors of the 
forebrain), exons 17-18 (Carson 
et al., 2011) 

cKO: enlarged brain size, enlarged 
cells, decreased myelination, premature 
death 

 Focal deletion of exons 17-18 in 
brain on background of Tsc1fl/mut 
(Feliciano et al., 2011) 

Focal brain KO: ectopic cytomegalic 
and multinucleated neurons, lower 
seizure threshold 

   
   

Tsc2 Eker rat; spontaneous insertion 
mutation (Eker, 1954; Eker et 
al., 1981; Everitt et al., 1992; 
Hino et al., 1993; Yeung et al., 
1994; Yeung et al., 1997; 
Mizuguchi et al., 2000) 
(d) 

Predisposition to kidney cystadenomas 
and renal cell carcinomas, pituitary 
adenoma, uterine leiomyomas, 
leiomyosarcomas, splenic 
hemangiosarcomas, some brain lesions 

KO: embryonic lethal (E9.5-12.5) due to 
liver hypoplasia; exencephaly, 
developmental delay of 1-2 embryonic 
days compared to littermate, poor 
development of abdominal organs, 
heart shifted inferiorly, pericardial 
effusions, circulatory failure due to 
anemia 

 Neo cassette insertion into exon 
2 (Onda et al., 1999) 
(d) 

HET: kidney tumors (renal cysts and 
adenomas), renal cell carcinoma, liver 
hemangiomas, lung adenomas, and 
foot, tail, lip angiosarcomas; deficits in 
hippocampal-dependent learning 
KO: embryonic lethal (E9-12.5) due to 
neural tube closure defects, 
exencephaly, abnormal thickened 
myocardia 

 Neo cassette insertion into exon 
2 and deletion of exons 2-5 
(Kobayashi et al., 1999) 
(d) 

HET: multiple renal cell carcinomas, 
liver hemangiomas 

KO: embryonic lethal (E9.5-17); neural 
tube closure defects, developmental 
delay 

 Neo cassette insertion into exon 
1, deletion of exons 2-4 
(Hernandez et al., 2007) 
(d) HET: kidney cysts and tumors 
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KO: embryonic lethal (E9.5-13.5; longer 
survival compared to previous Tsc2 KO 
models(Kobayashi et al., 1999; Onda et 
al., 1999)), developmental delay, liver 
hypoplasia, poor/deficient 
hematopoiesis, hemorrhage in multiple 
sites (heart, liver) 

 Deletion of exon 3 (hypomorphic 
allele, del3) (Pollizzi et al., 
2009b) 

HET: kidney cysts and cystadenomas; 
phenotype less severe than that of 
previous Tsc2 KO models(Kobayashi et 
al., 1999; Onda et al., 1999) 

 Conditional Insulin2-Cre (target: 
pancreatic b-cells), exons 3-4 
(Shigeyama et al., 2008) 

cKO: hypoglycemia and 
hyperinsulinemia (age 4-28 weeks); 
hyperglycemia and hypoinsulinemia 
(after age 40 weeks) 

 Conditional hGFAP-Cre (target: 
radial glial progenitor cells), 
exons 2-4 (Hernandez et al., 
2007; Way et al., 2009) 

cKO: megalencephaly, cellular 
cytomegaly, cortical and hippocampal 
lamination defects, astrocytosis, 
abnormal myelination, premature death 

 Conditional GFAP-Cre (target: 
astrocytes), exons 2-4 (Zeng et 
al., 2011) 

cKO: megalencephaly, hippocampal 
neuronal disorganization, astrocytic 
proliferation, premature death 
(phenotype more severe than Tsc1 
GFAP-Cre cKO(Uhlmann et al., 2002a)) 

 Dominant negative transgene 
(delta RG) (Govindarajan et al., 
2005; Chevere-Torres et al., 
2011) 

fibrovascular collagenoma in dermis, 
subpial external granule cells in 
cerebellum; deficits in social behavior 
and rotarod learning 
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2.6. Clinical Management Strategies for TSC 

 

Up until 2007, treatment of TSC was largely symptomatic and not specific for the 

cell signaling pathways activated in TSC. Thus, anti-epileptic drugs and epilepsy surgery 

remain the mainstays of epilepsy therapy. Embolization or surgery is used for renal 

lesions, and oxygen supplementation can provide symptomatic relief for LAM. However, 

an initial clinical trial assessed the efficacy of sirolimus in reducing the volume of renal 

AMLs and showed improving pulmonary function tests in LAM (Bissler et al., 2008). A 

pivotal finding of this trial was that while AMLs did in fact show diminished volume after 

12 months of rapamycin treatment, in the ensuing 12 months during which rapamycin 

was discontinued, there was re-growth of AMLs in many patients (Bissler et al., 2008). 

Phase 2 clinical trials with sirolimus showed that patients treated for 52 weeks had 

regression of kidney AMLs, SEGAs, and liver AMLs (Dabora et al., 2011). Most recently, 

the mTOR inhibitor everolimus showed efficacy in reducing SEGA volume after 6 

months of treatment (Krueger et al., 2010). Furthermore, there was modest reduction in 

seizure frequency in 9 out of 16 TSC patients with seizures, however seizures frequency 

did not change in 6 individuals, and worsened in 1 patient (Krueger et al., 2010). These 

studies provided clear evidence that modulation of the mTOR pathway in TSC could 

benefit some patients and thus opened the conceptual door for syndrome specific 

therapy in TSC. Everolimus is the first mTOR inhibitor that has been FDA approved for 

treatment of SEGAs associated with TSC (Franz, 2011). Recently, there has also been a 

case report of regression of cardiac rhabdomyoma in a TSC patient 13 months after 

everolimus treatment (Tiberio et al., 2011). While cardiac rhabdomyomas have been 

shown to regress naturally, the time course in this specific patient who was diagnosed in 

utero and had no significant changes for the next 5 years, suggests that everolimus 
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might have played a role in the regression and near resolution of the rhabdomyoma 

(Tiberio et al., 2011). These results support the role of mTOR involvement in TSC 

pathogenesis and demonstrate potential of mTOR inhibitors as therapeutic treatments. 

However, a clear and overarching clinical challenge associated with the use of mTOR 

inhibitors is the need for continued therapy to prevent recurrence of lesion growth. The 

modest or non-effect of everolimus on epilepsy necessitates further investigation into the 

role of mTOR in epileptogenesis in TSC. 

 



 

29 

 

 

 

CHAPTER 3. FETAL BRAIN mTOR SIGNALING PATHWAY ACTIVATION IN 

TUBEROUS SCLEROSIS COMPLEX 2 
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3.1. Introduction 

 

Tuberous Sclerosis Complex (TSC) is an autosomal dominant disorder resulting 

from mutations in either TSC1 or TSC2 genes, characterized neurologically by 

intractable epilepsy, cognitive disability, and autism spectrum disorders. Cortical tubers 

are malformations of the cerebral cortex, which are detected as early as 20 weeks 

gestation (Park et al., 1997) and identified in over 80% of TSC brain specimens 

(Sparagana and Roach, 2000; DiMario, 2004; Crino et al., 2006). Tubers exhibit severely 

disorganized lamination and contain cells with abnormal cellular morphology, specifically 

enhanced cell size (cytomegaly). While tubers are believed to be closely linked to 

epileptogenesis in TSC, there is debate as to whether there is a relationship between 

tuber number or “tuber burden” and severity of neurocognitive deficits in TSC patients 

(Jambaque et al., 1991; Marcotte and Crino, 2006; Zaroff et al., 2006; Ess and Roach, 

2012; Tillema et al., 2012).  

The encoded TSC1 and TSC2 proteins form a functional heterodimeric complex 

that inhibits the mammalian target of rapamycin (mTOR) signaling pathway 

(Wullschleger et al., 2006; Huang and Manning, 2008). Loss of function mutations in 

TSC1 or TSC2 in neuroglial progenitor cells lead to constitutive activation of the mTOR 

cascade as evidenced by phosphorylation of p70 S6 kinase 1 (P-p70S6K1; T389) and 

ribosomal protein S6 (P-S6; S235/236) in pediatric and adult human tuber specimens 

and TSC animal models (Huang and Manning, 2008). Extant transgenic mouse strains 

lacking either Tsc1 or Tsc2 under conditional cell-specific promoters (e.g. hGFAP, 

Synapsin1) exhibit variable morphological and functional changes including astrocytosis, 

laminar disorganization, cytomegaly, spontaneous seizures, and decreased survival 

(Uhlmann et al., 2002b; Wang et al., 2007). Conditional Tsc2 deletion in mouse radial 
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glial cells (Tsc2hGFAPCre) produces megalencephaly and cortical lamination defects (Way 

et al., 2009). Tsc2hGFAPCre knockout mice have been shown to have a more severe 

seizure phenotype than Tsc1hGFAPCre knockout mice (Zeng et al., 2011). In most Tsc1 or 

Tsc2 mouse mutants, transgene expression occurs across much of the developing 

telencephalon as opposed to within focal brain regions similar to tubers in TSC. 

Recently, a murine model was reported in which biallelic Tsc1 mutations engineered in 

neuroglial progenitor cells caused focal brain malformations (Feliciano et al., 2011). 

Generating focal malformations on a background of morphologically intact cortex 

provides an attractive strategy to test the new pharmacotherapies on lesion formation, 

as well as the surrounding cortex.  

Since hyperactivation of mTOR signaling has thus far been demonstrated in 

tubers only at postnatal time points and since to date, no studies have evaluated mTOR 

complex 2 (mTORC2) signaling in TSC brain, we examined the phosphorylation status 

of mTORC1 substrates P-p70S6K1, P-S6, and c-myc and mTORC2 complex substrates 

P-PKCα (S657), P-Akt (Ser473), P-SGK1 (S422) and P-NDRG1 (Thr346) in human fetal 

tubers to determine the activation state of mTORC1 and mTORC2 during fetal 

development. Because recent human and animal genotype-phenotype analyses have 

demonstrated that TSC2 gene mutations are associated with a more severe clinical 

phenotype than TSC1, and because many of the existing conditional knockout mouse 

strains target Tsc1, we then focused our in vitro and in vivo studies in mouse neuroglial 

progenitor cells on Tsc2. First, we show that shRNA-mediated KD of Tsc2 in vitro in 

mouse neural progenitor cells (mNPCs) leads to mTORC1 and mTORC2 activation, thus 

modeling human fetal brain tissue, and enhanced cell size that is prevented with the 

mTORC1 inhibitor rapamycin. We then show that Tsc2 shRNA KD in fetal mouse brains 

in vivo using in utero electroporation causes aberrant cortical lamination that can be 

prevented with in utero rapamycin treatment. Our goal was to generate focal KD of Tsc2 
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to study the effects of Tsc2 loss on neural progenitor cells as well as on surrounding 

cells in the developing cortex. 

 

 

3.2. Materials and Methods 

3.2a. Human TSC Fetal and Adult Tuber Specimens 

Human fetal tuber specimens were obtained post-mortem following fetal demise 

(n=4; a twin pair, ages 23 weeks gestations, and single specimens at 34 and 38 weeks 

gestation) and the detection of tubers and subependymal nodule or cardiac 

rhabdomyoma (major diagnostic criteria for TSC) confirmed the diagnosis of TSC. The 

genotype of the 23-week twin pair was an identified TSC2 mutation (2713C-T; R905W; 

mutation data was not available for the other human specimens). Control fetal brain 

specimens with normal cytoarchitecture (n=2; age: 28, 33 weeks gestation) were 

analyzed. Control adult brains were obtained post-mortem. Adult TSC tuber specimens 

were obtained following surgical resection from 2 female TSC patients. For Western 

analysis, control specimen was obtained post-mortem (male; age: 28 years) and TSC 

tuber following surgical resection (male; age: 2 years).  

Fixed, paraffin-embedded specimens, 5 sections per case, were probed with a 

panel of antibodies including P-p70S6K1 (T389; Cell Signaling), P-S6 (S235/236; Cell 

Signaling), c-myc (Abcam), P-PKCα (S657; Santa Cruz Biotechnology), P-SGK1 (S422; 

Santa Cruz Biotechnology), P-Akt (S473; Cell Signaling), P-NDRG1 (T346; Cell 

Signaling), and PKCα (Cell Signaling) overnight at 4°C. Immunolabeling was visualized 

with avidin-biotin complex (Vectastain ABC Kit; Vector Labs) and 3,3’-diaminobenzidine 

(Sigma-Aldrich).  
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 3.2b. Cell Culture and Transfection 

mNPCs derived from the subventricular zone (SVZ) of postnatal day 1 C57BL/6 

mice, were cultured on poly-D-lysine (PDL) coated plates in Dulbecco’s modified Eagle 

medium: nutrient mixture F-12 (DMEM/F12) supplemented with 1% fetal bovine serum 

(FBS), 1% N2 supplement, fibroblast growth factor, and heparin (Orlova et al., 2010a). 

mNPCs express protein markers of a neuroglial progenitor state (SOX2, Nestin), and 

retain full differentiation capacity into neurons or astrocytes (Magnitsky et al., 2008; 

Orlova et al., 2010a).  

mNPCs were transfected with shRNA plasmids containing a green fluorescent 

protein (GFP) reporter under the control of a cytomegalovirus (CMV) promoter (shRNA-

GFP; SA Biosciences) targeting mouse Tsc2 or scrambled sequence (control) using 

Lipofectamine LTX/Plus Reagents (Invitrogen). shRNA constructs were commercially 

confirmed for absence of interferon response. In keeping with existing standards for 

shRNA experimentation in vitro and in vivo (Samuel-Abraham and Leonard, 2010), 

multiple shRNA constructs to Tsc2 and scrambled sequence were tested. GFP-positive 

mNPCs were sorted using fluorescence-activated cell sorting (FACS) with a FACS Aria 

flow cytometer (BD Biosciences) at 2-5 days post transfection (DPT), plated and grown 

for 3-5 days, and used to generate protein lysates for Western analysis. Rapamycin 

(100nM; Cell Signaling) was added directly to cell culture media and administered for 24 

hours or daily for 5-7 days.  

mNPCs lysates (radioimmunoprecipitation [RIPA] lysis buffer 50 mM Tris HCl, pH 

8.0; 150 mM NaCl; 1% NP-40; 0.5% sodium deoxycholate, 0.1% SDS, with protease 

and phosphatase inhibitors)  separated on a 4-15% SDS-PAGE gel (Bio-Rad), 

transferred onto PVDF membranes and probed with Tsc2 (Abcam), phosphorylated 4E-
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BP1 (P-4E-BP1; T37/46; Cell Signaling), 4E-BP1 (Cell Signaling), P-S6 (S235/236; Cell 

Signaling), S6 (Cell Signaling), P-PKCα (S657; Santa Cruz Biotechnology), PKCα (Cell 

Signaling), P-Akt (S473; Cell Signaling), Akt (Cell Signaling), P-NDRG1 (T346; Cell 

Signaling), NDRG1 (Abcam) antibodies overnight at 4°C and HRP-conjugated 

secondary antibodies (GE Healthcare) for 1 hour at room temperature, and visualized 

with ECL or ECL Plus (GE Healthcare). Membranes were probed with antibody to 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Cell Signaling) to ensure equal 

protein loading.   

 

3.2c. In Utero Electroporation (IUE) and Rapamycin Administration 

Animal experiments were approved by the Institutional Animal Care and Use 

Committee of the University of Pennsylvania. 

Time-pregnant C57BL/6J mice at embryonic day 14 (E14) were placed under 

isoflurane-induced anesthesia and the uterine horns were surgically exteriorized. 

shRNA-GFP plasmids targeting mouse Tsc2 or control scrambled sequence (3-8 mg/ml) 

diluted in TE Buffer (Qiagen) and Fast Green dye (0.3 mg/ml; Sigma-Aldrich), were 

microinjected through the uterine wall into one lateral ventricle of each embryo. Tsc2 

shRNA clone #4 was used for IUE experiments. Five electrical pulses (40 V, 50 ms 

duration, 1000 ms intervals) (Saito, 2006) were delivered across the embryonic head 

using CUY21 Edit Square Wave Electroporator (Nepagene). Uterine horns were 

returned to the pelvic cavity and the abdominal wall was closed by suture. Females were 

returned to the cage and embryos were sacrificed 5 days later at E19.  

BrdU (50 mg/kg body weight) was intraperitoneally injected at E14. Rapamycin 

(0.5, 2.5, or 5.0 mg/kg body weight) diluted in vehicle solution (5% PEG 400, 5% Tween 



 

35 

80, 0.9% NaCl/H2O) was intraperitoneally injected daily for 4 days (E15-E18) or 5 days 

(E14-E18).  

Fixed, cryoprotected embryonic mouse brains were cryostat sectioned at 20 µm 

thickness. Sections were probed with antibodies to P-S6 (S235/236; Cell Signaling; 

Bethyl Laboratories), Cux1 (Santa Cruz Biotechnology), Ctip2, Tbr1, MAP2 (Abcam), 

and BrdU (Millipore). Sections were subsequently stained with Texas Red (Vector Labs), 

Cy3, Cy5 (Jackson Immunoresearch), AlexaFluor647 (Invitrogen) secondary antibodies 

and Hoechst33342 (0.0001mg/ml; Invitrogen) to visualize cell nuclei and define the 

zones of the embryonic brain based on cellular density. Fluoromount-G 

(SouthernBiotech) mounting media was used to mount the sections.  

 

3.2d. Quantitative Analysis 

Cell size was compared by FACS sorting mNPCs transfected with scrambled or 

Tsc2 shRNA-GFP plasmids for GFP. The scrambled and Tsc2 shRNA transfected 

mNPCs were sorted using the same parameters and consecutively during one run. 

Forward scatter area (FSC-A) and side scatter area (SSC-A) histograms for scrambled 

and Tsc2 GFP-positive cell populations were compared. Mean and standard deviation 

were computed for FSC-A and SSC-A measurements and compared using one-way 

ANOVA (p<0.05).  

Total cell area of mNPCs was quantified in digital images (Leica DMI6000B 

microscope and Leica DFC360FX camera) by outlining the cell circumference of GFP-

positive cells and utilizing the ImagePro Plus software (Media Cybernetics) area 

measurement function. Cell area measurements were compared between control, 

scrambled shRNA-, and Tsc2 shRNA-transfected mNPCs in untreated, vehicle (DMSO), 
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and rapamycin (100nM) treated conditions (one-way ANOVA, Tukey-Kramer post hoc 

analysis for multiple comparisons; p<0.05).  

 The laminar position of shRNA-transfected cells in vivo was assessed at E19 in 

homologous cortical regions (n=5 embryos per condition; 3-8 rostral to caudal sections 

per embryo were analyzed). GFP-positive cells were identified in a focal region in frontal 

cortex anterior to the rostral hippocampus. The zones of the developing embryonic brain: 

ventricular zone (VZ)/SVZ, intermediate zone (IZ), and cortical plate (CP), were defined 

by the density of Hoechst-positive nuclei. The CP region was split into 3 equal 

segments: lower CP (LW_CP), middle CP (MID_CP), and upper CP (UP_CP), for further 

quantification. A region of interest (ROI) spanning these zones was delineated by a 

rectangle extending from the pial surface to the lateral ventricle that circumscribed the 

transfected region. The total number of transfected GFP-positive cells quantified was 

approximately equal for each experimental group.  The number of GFP-positive cells 

within each zone and in the ROI was counted in a blinded fashion in 3-8 sections 

spanning rostral to caudal regions for each animal. The data were expressed as the 

percentage of total GFP-positive cells in a given ROI located in each defined zone ± 

standard error of the mean (SEM; GraphPad Prism software, one-way ANOVA, 

Dunnett’s post hoc analysis for multiple comparisons p<0.05) (Nguyen et al., 2006).  

 Quantification of Cux1-positive cells surrounding the area of GFP-positive cells 

was conducted by calculating the density of Cux1-positive cells in each individual section 

(# of cells/ ROI area). ROI encompassed the area of GFP-positive cells spanning IZ, 

LW_CP and MID_CP regions. The average ROI area was 235,550 um2. The density was 

then multiplied by the average ROI area and the numbers were statistically compared 

across different conditions. The data were expressed as total number of Cux1-positive 

cells in normalized ROI ± SEM (GraphPad Prism software, one-way ANOVA and 

Tukey’s post hoc analysis for multiple comparisons, p<0.05).  
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3.3. Results  

 

3.3a. Activation of mTOR Pathway in Human Fetal TSC Brain 

Histological analysis of fetal TSC tissue (n=4) revealed isolated regions of cell 

clusters exhibiting disorganized lamination and multiple enlarged cells reminiscent of 

pathology in surgically resected tubers in pediatric and adult patients. Indeed, the 

detection of altered cortical lamination and enlarged cells supported a pathological 

diagnosis of tubers similar to the one described previously in a 20-week gestation TSC 

fetus (Park et al., 1997).  Fetal TSC tuber tissue exhibited robust P-p70S6K1 (T389) and 

P-S6 (S235/236) expression, especially in enlarged cells, which correlated with the 

expression pattern in adult TSC tubers (Fig. 3-1). While quantitative comparison of 

mTOR substrates in each fetal specimen and the adult specimens was limited by our 

sample size, overall it appeared qualitatively that phospho-protein expression was more 

robust in adult tubers compared with early fetal (23 week) tissue but differences between 

fetal specimens could not be appreciated. In the monozygotic twins specimens, the 

extent of mTOR activation did not differ within specimens. In one fetal case, a 

subependymal nodule was available for analysis and exhibited P-p70S6K1 (T389) and 

P-S6 (S235/236) immunoreactivity (Fig. 3-1A). We have previously demonstrated that c-

myc, a downstream transcriptional activator of mTORC1, is expressed in surgically 

resected cortical tubers (Orlova et al., 2010b). C-myc was detected in fetal TSC tuber 

specimens in a pattern similar to P-p70S6K1 and P-S6 (Fig. 3-1B). Analysis of mTOR 

activation in control fetal brain specimens (n=2) did not reveal immunoreactivity for P-
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p70S6K1 (T389) P-S6 (S235/236), or c-myc. Furthermore, fetal and adult TSC tuber 

tissue was evaluated for mTORC2 immunoreactivity. P-PKCα (S657), P-SGK1 (S422), 

and P-Akt (S473) have been established as biomarkers for mTORC2 signaling pathway 

activation (Guertin and Sabatini, 2007). Phosphorylation of SGK1 at S422 results in 

activation of SGK1 and phosphorylation of its effector NDRG1 (T346) (Garcia-Martinez 

and Alessi, 2008). Robust immunoreactivity for P-PKCα (S657), P-SGK1 (S422), and P-

Akt (473) was detected in fetal TSC tuber specimens, and immunoreactivity for P-PKCα 

(S657), P-SGK1 (S422), P-Akt (S473), and SGK1 substrate, P-NDRG1 (T346), was 

detected in adult TSC tuber cases (Fig. 3-1 B-D). P-PKCα (S657), P-SGK1 (S422), P-

Akt (S473), and P-NDRG1 (T346) immunohistochemical staining was virtually absent in 

control specimens (Fig. 3-1B,C). Expression of the native PKCα isoform was the same in 

adult TSC and control brain tissue (Supplemental Fig. 3-1). These findings demonstrate 

for the first time there is mTORC1 activation in fetal tubers and that in addition to 

mTORC1 activation, there is also mTORC2 activation in fetal and adult TSC brains. As 

in adult TSC brains (Marcotte et al., 2012), specimens of perituberal cortex with normal 

cytoarchitecture in fetal cases do not demonstrate evidence of mTOR hyperactivation 

(see cortex surrounding the fetal tubers, Fig. 3-1A). 
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Figure 3-1. mTORC1 and mTORC2 signaling pathway activation in fetal and adult TSC 

brains.  

(A) Control and fetal TSC tuber specimens. (a) Absence of P-S6 (S235/236) 
immunolabeling in control fetal brain (arrow depicts cortical surface). (b and c) Robust P-
p70S6K1 (T389) and P-S6 (S235/236) in fetal TSC tuber. (d) P-S6 (S235/236) 
expression in fetal TSC subependymal nodule specimen. Inset, low magnification image. 
Scale bar: 200 µm.  

(B) mTORC1 signaling pathway activation in fetal and adult tubers, with robust 
immunoreactivity for P-p70S6K1 (T389), P-S6 (S235/236), and c-myc. mTORC2 
signaling pathway activation in fetal and adult TSC tubers, with robust immunoreactivity 
for P-PKCα (S657), P-SGK1 (S422), and P-Akt (S473). Scale bar: 50 µm.  

(C) P-NDRG1 (T346) immunoreactivity was robust in adult TSC brain specimens 
compared with controls. Scale bar: 50 µm.  

(D) Western assay of human control and TSC tuber specimens. Increased levels of P-S6 
(S235/236) and P-NDRG1 (T346) were observed in TSC tuber case 
compared with control brain. glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was 
used as a loading control. 
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3.3b. Depletion of Tsc2 and Activation of mTOR in mNPCs In Vitro 

It is speculated by many investigators that tubers form because of the effects of 

loss of TSC1 or TSC2 on neural progenitors in the fetal human cortex. Thus, to 

investigate the effects of Tsc2 loss in neural progenitor cells, mNPCs were transfected 

with 3 different shRNA constructs targeting disparate regions of Tsc2 mRNA or a 

scrambled sequence not recognizing any known mouse mRNA as a control 

(Supplemental Fig. 3-1).  

At 4-10 DPT, Tsc2 shRNA-GFP clone#1 (5’-GCATGCAGTTCTCACCTTATT-3’), 

clone#3 (5’-AGAGCTGTCCAATGCCCTTAT-3’) and  

clone#4 (5’-GAAGGATTTCGTCCCTTATAT-3’) resulted in reproducible Tsc2 KD 

(Supplemental Fig. 3-1). Semi-quantitative densitometric analysis estimated Tsc2 KD at 

approximately 40-70% for all 3 shRNAs. Tsc2 shRNA clone #1 and #4 were chosen for 

subsequent in vitro mNPC experiments. Tsc2 shRNA clone #1 and #4 showed 

enhanced mTORC1 signaling in mNPCs as evidenced by increased levels of P-S6 

(S235/236) and P-4E-BP1 (T37/46); native levels of these proteins did not change (Fig. 

3-2A and Supplemental Fig. 3-1).  Furthermore, Tsc2 shRNA KD resulted in mTORC2 

signaling pathway activation as evidenced by increase in levels of P-Akt (S473) and P-

NDRG1 (T346) compared to scrambled shRNA-transfected controls (Fig. 3-2A). Total 

(nonphosphorylated isoforms) for Akt and NDRG1 did not change, however, PKCα 

levels following KD were decreased compared to controls.  

Previous studies have demonstrated that mTORC2 activation is diminished in 

mouse embryonic fibroblasts (mEFs) lacking Tsc2 (Huang et al., 2008). In keeping with 

these results, we also found decreased mTORC2 activity in Tsc2 null (Tsc2-/-) mEFs, as 

evidenced by decreased levels of P-PKCα (S657), P-Akt (S473), P-NDRG1 (T346) 

compared to Tsc2+/+ controls (Fig. 3-2A; courtesy of Dr. Elizabeth Henske, Dana Farber 
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Cancer Center, Boston, MA). Thus, our results in fetal brain tissue and mNPCs showing 

enhanced mTORC2 activation suggests a specific signaling effect in neural progenitor 

cells distinct from other cell types.  

 

3.3c. Tsc2 Regulation of mNPC Size is Rapamycin-dependent   

At 4-10 DPT, Tsc2-depleted mNPCs were FACS sorted and showed increased 

forward scatter area (FSC-A), which is a measurement reflective of cell size (Fingar et 

al., 2002). The mean FSC-A of Tsc2 shRNA-transfected mNPCs (n=7379) was 

significantly greater than mean FSC-A of scrambled shRNA-transfected mNPCs 

(n=4681; p<0.05; Supplemental Fig. 3-1). Since the FSC-A is a relative measure 

between different experimental groups, fluorescent images were acquired of individual 

cells and the cell area, defined by the GFP fluorescence, was compared for scrambled 

shRNA control and Tsc2 shRNA-transfected mNPCs (Fig. 3-2B). Tsc2-depleted mNPCs 

(n=20) had cell area twice the size of scrambled shRNA control mNPCs (n=17; p<0.01). 

No change in cell area was found following administration of transfection reagents alone, 

as previously reported (Orlova et al., 2010a).  

To determine whether increased cell size was mTORC1-dependent, control 

scrambled shRNA and Tsc2-depleted mNPCs were treated with the mTORC1 inhibitor 

rapamycin. Rapamycin (100nM) application for 24 hours had no significant effect on the 

cell size of wild-type or scrambled shRNA-GFP-transfected mNPCs, as has been 

previously reported (Orlova et al., 2010a). However, rapamycin treatment prevented cell 

size enlargement in Tsc2-depleted cells and mean FSC-A of rapamycin-treated Tsc2 

shRNA KD cells (n=7353) was similar to control scrambled shRNA cells (Supplemental 

Fig. 3-1). Rapamycin prevented cell area increase of Tsc2 shRNA-transfected mNPCs 

(n=21; p<0.05), and the rapamycin-treated Tsc2 KD mNPCs had approximately the 
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same cell area as scrambled shRNA mNPCs (Fig. 3-2B). Thus, Tsc2 depletion in 

mNPCs results in enhanced cell size that is preventable by treatment with rapamycin, 

suggesting an mTORC1-dependent mechanism. 
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Figure 3-2. Tsc2 shRNA KD in mNPCs results in mTORC1 and mTORC2 pathway 

activation and increased cell size in vitro.  

(A) Western blot depicting reduced Tsc2 protein levels following Tsc2 shRNA KD in 
mNPCs with Tsc2 shRNA-GFP clone #4 at 4-10 DPT. Tsc2 shRNA-GFP clone #4 
resulted in the highest level of Tsc2 KD and semiquantitative densitometric analysis 
estimated it at 40–70%. Tsc2 shRNA KD in mNPCs leads to increased P-S6 (S235/236) 
and P-4E-BP1 (T37/46) levels as a consequence of mTORC1 pathway activation 
compared with scrambled shRNA-GFP control. Total S6 and 4E-BP1 levels were 
unchanged (in addition see Supplementary Fig. 3-1). Similar results were observed in 
Tsc2−/− mEFs, with increased P-S6 (S235/236) and P-4EBP1 (T37/46), compared with 
Tsc2+/+ mEFs. KD of Tsc2 shRNA in mNPCs also resulted in increased levels of P-Akt 
(S473), P-PKCα (S657), and P-NDRG1 (T346), which are biomarkers of mTORC2 
signaling activation. These results were opposite of the pattern observed in Tsc2+/+ and 
Tsc2−/− mEFs, as Tsc2−/− mEFs show decreased mTORC2 signaling (decreased levels of 
P-Akt (S473), P-PKCα (S657), and P-NDRG1 (T346)), compared Tsc2+/+ mEFs. GAPDH 
was used as a loading control.  
(B) mNPCs transfected with Tsc2 shRNA-GFP clone #4 (n=20) exhibit a 1.9-fold 
increase in total cell area compared with scrambled shRNA-GFP transfected control 
cells (n=17; p<0.01). Rapamycin (100 nM) treatment rescued cell size enhancement with 
cell area being approximately the same size as vehicle-treated and untreated scrambled 
shRNA-GFP transfected control mNPCs (n=21; p<0.05). Scale bar: 25 µm.  
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3.3d. Tsc2 Depletion In Vivo Results in a Cortical Malformation 

To investigate the effects of TSC2 in vivo on cortical development, we 

transfected Tsc2 shRNA-GFP into embryonic mouse brains by in utero electroporation 

(IUE) at embryonic day 14 (E14) (Saito, 2006) and assessed the effects on migration 

and lamination at E19 (Fig. 3-3A). Scrambled shRNA-GFP plasmids were electroporated 

in a parallel set of experiments as controls for IUE and shRNA transfection.  

By E19, GFP-positive cells transfected with control scrambled shRNA-GFP 

plasmid were primarily localized in the upper portion of the CP  (UP_CP 67.3±1.3%) and 

a small number of transfected progenitors remained in VZ/SVZ (18.6±1.9%; Fig. 3-3B). 

In contrast, following transfection with Tsc2 shRNA-GFP, there were significantly fewer 

GFP-positive cells that reached the upper CP region (Tsc2 shRNA-GFP UP_CP 

19.1±3.4%; p<0.05 compared to scrambled shRNA-GFP controls) and there was an 

increase in the number of GFP-positive cells found in the VZ/SVZ region (37.6±1.9%; 

p<0.05, compared to scrambled shRNA-GFP controls). Furthermore, very few scrambled 

shRNA-GFP cells were found in the IZ (4.6±1.0%), lower (LW_CP; 3.8±0.8%), or middle 

(MID_CP; 5.8±1.3%) cortical plate,  whereas significantly more Tsc2-depleted GFP-

positive cells were found in those regions (IZ 16.8±2.37%, LW_CP 12.1±2.8 %, MID_CP 

14.3 ± 1.0%). Tsc2 shRNA KD led to a focal cortical malformation with fewer cells 

reaching their appropriate cortical laminar destination (UP_CP, layer II-III) and the 

majority of cells found in the VZ/SVZ, IZ, LW_CP and MID_CP (Fig. 3-3B). 

Immunohistochemical staining with MAP2 showed that cells which leave the VZ/SVZ in 

Tsc2 shRNA condition and express MAP2 appear to take on a neuronal phenotype (Fig. 

3-3C).  
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Figure 3-3. Focal Tsc2 shRNA KD results in a cortical malformation and cytomegaly in 

vivo.  

(A) Whole brain green fluorescent protein (GFP) fluorescence image demonstrating focal 
area of cell transfection (arrow) following in utero electroporation with Tsc2 shRNA-GFP 
plasmid. Inset is a higher power magnification image showing GFP-expressing 
cells.Scale bar: 500 µm; Inset scale bar: 100 µm.  

(B) (Top) E19 brain transfected with control scrambled shRNA-GFP at E14, with the 
majority of GFP-positive cells reaching their appropriate destination in the upper region 
of cortical plate (layers II–III). (Bottom) E19 brain transfected with Tsc2 shRNA-GFP at 
E14. In vivo Tsc2 shRNA KD resulted in a focal lamination defect with the majority of 
cells localized in the VZ and IZ, and few reaching their appropriate destination in the 
upper region of cortical plate (layers II–III). For quantification, see text and Figure 5. 
Scale bar: 100 µm.  

(C) MAP2 immunostaining of IUE E14-19 scrambled shRNA-GFP and Tsc2 shRNA-GFP 
brains. (Top) Control scrambled shRNA GFP-positive cells in layers II–III express 
neuronal marker MAP2. (Bottom) Tsc2 shRNA GFP-positive cells that leave VZ/SVZ, but 
do not reach their layers II–III cortical destination, also express MAP2 (image shown of 
cell located in the IZ). Hoechst33342 was used to visualize cell nuclei. Scale bar: 7 µm.  

(D) Confocal images of IUE E14-19 (a) scrambled shRNA-GFP and (b) Tsc2 shRNA-
GFP transfected cells in layers II–III and IZ, respectively. Tsc2 shRNA KD results in cell 
volume increase (cytomegaly), compared with scrambled shRNA-GFP control cells. For 
quantification, see text and Figure 5. Scale bar: 14 µm. 
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3.3e. Tsc2 Depletion Results in Increased Cell Volume In Vivo 

 To investigate whether Tsc2 depletion results in cytomegaly in vivo, we acquired 

z-stack images of GFP-positive cells using confocal microscopy. Cell volume was 

measured by defining the volume encompassed by the GFP fluorescence signal. 

Quantitative analysis revealed that GFP-positive Tsc2 shRNA cells in the IZ had 

approximately twice the volume (408.4 µm3) of scrambled shRNA control cells in the 

UP_CP (267.7 µm3) and some exhibited the morphology reminiscent of giant cells, with 

a laterally displaced nucleus as seen in human TSC tuber specimens (Fig. 3-3D, also 

see supplemental videos in Supplemental Figs. 3-2 and 3-3).  

 

3.3f. Tsc2 Knockdown In Vivo Results in Cell-Autonomous and Non-Cell-Autonomous 

Lamination Defects of Layer II-III 

To confirm the laminar destination of electroporated cells, sections were stained 

with homeobox transcription factor Cux1 which labels cells in superficial cortical layers II-

III born on approximately E14-15 (Fig. 3-4A) (Nieto et al., 2004). Cux1-immunolabeling 

in scrambled shRNA condition revealed a band of cells primarily confined to the 

superficial part of the CP (layer II-III), thus IUE or plasmid transfection conditions alone 

did not alter normal cortical development or affect migration of cells destined for layer II-

III of the cortex (Fig. 3-4A,B). Scrambled shRNA GFP-positive cells co-localized with 

Cux1-labeled cells in layer II-III at E19 and expressed Cux1 (100%; n=16) (Fig. 3-4A). 

Conversely, only 21% of GFP-positive cells following IUE with Tsc2 shRNA were Cux1-

positive, while the majority (79%) were Cux1-negative (n=14) (Fig. 3-4A). Interestingly, 

while most Tsc2 shRNA GFP-positive cells were Cux1-negative, we noticed that there 
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was an increase in Cux1-labeling surrounding GFP-positive cells in IZ and lower CP 

regions below layer II-III (Fig. 3-4B). To verify that this was not a result of IUE, we 

compared the density of Cux1-labeled cells in the ROI surrounding the GFP-positive in 

scrambled shRNA condition, to density in similar location on the contralateral non-

electroporated hemisphere (Supplemental Fig. 3-4). There was no statistical significance 

between the counts on the electroporated GFP-positive hemisphere and non-

electroporated hemisphere in scrambled shRNA condition (Supplemental Fig. 3-4). To 

compare the counts in the scrambled shRNA and Tsc2 shRNA conditions, density in 

ROI of equal size was normalized to non-electroporated hemisphere as an internal 

control. The ratios were further normalized to scrambled shRNA counts and revealed 

that there was a 2-fold increase in the number of non-transfected Cux1-labeled cells 

surrounding the GFP-positive cells in IZ, LW_CP, and MID_CP in Tsc2 shRNA condition 

compared to scrambled shRNA controls (Fig. 3-4B; p<0.05). These results suggest both 

cell-autonomous effects of Tsc2 KD on migration, as well as non-cell-autonomous 

lamination effects on the surrounding neighboring cells.  

To test the effects of Tsc2 KD on neighboring cells in other cortical layers, we 

immunohistochemically labeled for Ctip2 and Tbr1, which are layer V and layer VI 

markers (Hevner et al., 2001; Arlotta et al., 2005; Chen et al., 2005; Molyneaux et al., 

2005). In the scrambled shRNA-GFP control condition, virtually all cells that migrated 

into the CP reached layer II-III, above the line of Tbr1- and Ctip2-labeled cells (Fig. 3-

4C). On the other hand, in the Tsc2 shRNA KD condition, majority of GFP-positive cells 

were localized to the VZ/SVZ, IZ and lower regions of the CP (LW_CP, MID_CP). As 

mentioned previously, only 21% of GFP-positive Tsc2 shRNA-transfected cells were 

Cux1-positive and thus we wanted to evaluate whether these cells that do not 

appropriately migrate do so because of expression of other layer-specific markers, such 

as Tbr1 and Ctip2. E19 sections were imaged by confocal microscopy and revealed that 
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the Tsc2 shRNA GFP-positive cells in the IZ were Ctip2- and Tbr1-negative (Fig. 3-4C). 

To further investigate whether the Tsc2 shRNA GFP-positive cells that migrated into the 

CP, but did not reach layers II-III, assume the identity of a different cortical layer (e.g. 

layer V or VI), we looked at their Ctip2 and Tbr1 expression pattern. Tsc2 shRNA GFP-

positive cells in the LW_CP and MID_CP were MAP2-positive, and Ctip2- and Tbr1-

negative, indicating that at least at E19, they do not express layers V and VI markers 

Tbr1 and Ctip2 and thus, likely do not acquire layer V or VI identity (Fig. 3-4C). 
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Figure 3-4. In vivo Tsc2 shRNA KD results in cell-autonomous and non-cell-autonomous 

lamination defect.  

(A) IUE E14-19 scrambled shRNA-GFP and Tsc2 shRNA-GFP brains immunostained 
with a layer II–III marker Cux1. Scrambled shRNA GFP-positive cells co-localize with 
Cux1-immunoreactive cells in layers II–III at E19, and are Cux1-positive. In contrast, 
majority of Tsc2 shRNA KD GFP-positive cells, which did not reach their appropriate 
cortical destination (layers II–III), are Cux1-negative (79%). Quantification graph of GFP-
positive cells analyzed by confocal microscopy in scrambled shRNA and Tsc2 shRNA 
brains, showing that 100% of cells in scrambled shRNA-GFP condition in layers II–III 
expressed Cux1, however only 21% of GFP-positive cells in Tsc2 shRNA KD condition 
were Cux1-positive. (scrambled shRNA-GFP n=16 cells, Tsc2 shRNA-GFP n=14 cells; 3 
embryonic brains per condition were analyzed). Scale bar: 50 µm.  

(B) Non-cell-autonomous effects of Tsc2 shRNA KD on surrounding Cux1-positive cells. 
In the scrambled shRNA condition, there was a tight band of Cux1-positive cells (layers 
II–III) in the superficial region of the cortical plate. Very few Cux1-positive cells were 
noted in the ROI spanning the IZ, LW_CP, and MID_CP (white box). However, in the 
ROI surrounding the GFP-positive cells in Tsc2 shRNA KD condition, there was a 
significant increase in Cux1-positive cells. For quantification, see text and Figure 5. 
Scale bar: 100 µm.  
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Figure 3-4. In vivo Tsc2 shRNA KD results in cell-autonomous and non-cell-autonomous 

lamination defect. (continued)  

(C) Confocal images of IUE E14-19 scrambled shRNA-GFP and Tsc2 shRNA-GFP 
brains immunostained with deep layers V and VI, markers Ctip2 and Tbr1, and neuronal 
marker MAP2. Hoechst33342 was used to visualize cell nuclei. Tsc2 shRNA KD cells, 
which do not reach their appropriate cortical layer II–III destination, do not acquire 
identity of other cortical layers (e.g., V and VI). Scale bar: 100 and 50 µm (left to right). 
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3.3g. Migratory Defect following Tsc2 Knockdown is Prevented with Rapamycin 

Treatment 

Enhanced P-S6 levels in cells transfected with Tsc2 suggested that the induced 

cortical lamination defect could be dependent on the hyperactive mTORC1 signaling. 

Mean P-S6 labeling intensity was measured, normalized to background, and 

demonstrated a 2-fold increase in P-S6 in Tsc2 shRNA-transfected cells compared with 

scrambled shRNA-transfected controls (n=20, p<0.05; Fig. 3-5B). To test this 

hypothesis, we administered rapamycin daily to the pregnant dam between E15-E18. 

Rapamycin treatment (2.5, 5.0 mg/kg body weight) led to near complete inhibition of 

mTOR signaling in liver (absent P-S6 levels) compared to vehicle or low dose (0.5 

mg/kg) rapamycin at E19 (see Supplemental Fig. 3-5). In the brain, rapamycin (5.0 

mg/kg) prevented the migratory defect of GFP-positive cells transfected with Tsc2 

shRNA. Rapamycin treatment resulted in a 2-fold increase in the number of GFP-

positive Tsc2 shRNA-transfected cells reaching the upper CP layers (UP_CP 

46.5±4.8%; p<0.05 compared to untreated Tsc2 shRNA condition) and approximately a 

2-fold decrease of transfected cells remaining within VZ/SVZ (21.0±1.5%; p<0.05 

compared to untreated Tsc2 shRNA condition) compared to vehicle treated animals 

(UP_CP 19.1±3.4%, VZ/SVZ 37.6±1.9%; Fig. 3-5A). In addition, no change was noted in 

the lamination pattern of the surrounding cortex either ipsi- or contralateral to the 

induced malformation (data not shown).  Consistent with these findings, confocal 

fluorescence microscopy and immunodensitometry demonstrated that rapamycin 

treatment reduced P-S6 levels in the Tsc2 shRNA-GFP-transfected cells to near 

baseline (p>0.05 compared to control scrambled shRNA-GFP; Fig. 3-5B).  
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To test whether rapamycin alone altered normal cortical migration, we injected 

BrdU at E14 and administered rapamycin (5.0 mg/kg) for 5 days (E14-E18). At E19, the 

percentage of BrdU-labeled cells reaching CP in rapamycin-treated animals (CP 

75.3±0.3%, IZ 10.3±0.7%, VZ/SVZ 14.4±0.5%; n=3) did not significantly differ from 

untreated animals (CP 78.8±2.0%, IZ 7.8±0.7%, VZ/SVZ 13.4±1.4%; n=4; p>0.05 for 

each region; Supplemental Fig. 3-5). However, incidental note was made of reduced 

brain weight and reduced body size following fetal rapamycin therapy (Supplemental Fig. 

3-5).  

 

3.3h. Rapamycin Treatment Rescues Cytomegaly and Non-Cell-Autonomous Effects 

due to Tsc2 Knockdown 

Rapamycin treatment prevented cytomegaly (cell volume increase) in Tsc2 

shRNA-transfected animals (162.8 µm3 vs. untreated 408.4 µm3; p<0.05; Fig. 3-5C). Cell 

volume in rapamycin-treated Tsc2 shRNA animals was smaller than scrambled shRNA 

control cells (267.7 µm3), however it was not statistically significant (p>0.05). 

Furthermore, treatment with rapamycin prevented the increase in the number of Cux1-

positive cells surrounding GFP-positive cells in animals transfected with Tsc2 shRNA 

(Fig. 3-5D). Quantitative measurements were taken in the ROI surrounding the region of 

transfected GFP-positive cells and were quantified. Quantitative analysis revealed that 

the 2-fold increase in Cux1-positive cells in the ROI spanning IZ, LW_CP, MID_CP 

regions was prevented with rapamycin treatment and there was no significant difference 

between the number of Cux1-positive cells in ROI in rapamycin-treated Tsc2 shRNA 

animals compared to scrambled shRNA animals (Fig. 3-5D). These results suggest that 

mTORC1 inhibition during fetal development may prevent cell non-autonomous effects 

as well as cell autonomous effects of Tsc2 loss. 
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Figure 3-5. Fetal rapamycin treatment rescues the lamination defect, cytomegaly and 

non-cell-autonomous lamination effects following Tsc2 shRNA knockdown in vivo. 

 

(A) (Top) Scrambled shRNA-GFP transfected cells at E14 laminate layers II-III of the 
cortex at E19 (UP_CP 67.3±1.3%, MID_CP 5.8±1.3%, LW_CP 3.8±0.8%, IZ 4.6±1.0%, 
VZ/SVZ 18.6±1.9%). (Middle) Tsc2 shRNA-GFP KD at E14 leads to a lamination defect 
with cells abnormally retained in the VZ/SVZ, IZ, and LW_CP at E19 as compared to 
scrambled shRNA-GFP controls (UP_CP 19.1±3.4%, MID_CP 14.3±1.0%, LW_CP 
12.1±2.8%, IZ 16.8±2.4%, VZ/SVZ 37.6±1.9%; p<0.05). (Bottom) With daily rapamycin 
treatment (5.0 mg/kg body weight) for 4 days (E15-E18), a significantly greater number 
of Tsc2 shRNA-GFP KD cells reach their appropriate destination layer II-III of the cortex 
(UP_CP 46.4±4.8%; p<0.05) and fewer are retained in the VZ/SVZ (21.0±1.5%; p<0.05). 
(MID_CP 9.9±1.1%, LW_CP 9.4±1.0%, IZ 13.3±3.0%,). Graphic representation of the 
percentage of GFP-positive cells in each region: VZ/SVZ, IZ, LW_CP, MID_CP, and 
UP_CP of the total GFP-positive cells in scrambled shRNA-GFP, Tsc2 shRNA-GFP, and 
rapamycin-treated Tsc2 shRNA-GFP conditions. *Tsc2 shRNA-GFP vs. scram shRNA 
GFP (p<0.05); ** rapamycin-treated (5.0 mg/kg body weight; E15-E18) Tsc2 shRNA-
GFP vs. scram shRNA GFP (p<0.05); # rapamycin-treated (5.0 mg/kg body weight; E15-
E18) Tsc2 shRNA-GFP vs. Tsc2 shRNA-GFP (p<0.05). Scale bar: 100 µm.  

(B) Tsc2 shRNA KD in vivo results in mTORC1 hyperactivation that is rescued with 
rapamycin treatment. (Top) P-S6 (S235/236) immunolabeling in scrambled shRNA-GFP-
transfected cells. (Middle) Following Tsc2 shRNA KD there was a marked two-fold 
increase in P-S6 intensity compared to scrambled shRNA controls. (Bottom) Daily 
treatment with rapamycin (E15-E18) prevented mTORC1 hyperactivation following Tsc2 
shRNA KD as evidenced by decreased P-S6 intensity compared to untreated Tsc2 
shRNA KD condition. Cells in rapamycin-treated Tsc2 shRNA-GFP animals exhibited P-
S6 immunolabeling that was not different from that in scrambled shRNA controls. 
Quantification of P-S6 (S235/236) immunolabeling in scrambled shRNA-GFP, Tsc2 
shRNA-GFP, and rapamycin-treated Tsc2 shRNA-GFP conditions represented as the 
mean intensity within the cell normalized to background intensity. *p<0.05. n=5 
embryonic brains for scrambled and Tsc2 shRNA conditions, and n=4 embryonic brains 
for Tsc2+Rapamycin condition were analyzed. Scale bar: 10 µm.  
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Figure 3-5. Fetal rapamycin treatment rescues the lamination defect, cytomegaly and 

non-cell-autonomous lamination effects following Tsc2 shRNA knockdown in vivo. 

(continued) 

(C) Daily rapamycin treatment (5.0 mg/kg; E15-18) prevents increase in cell volume 
(cytomegaly) following Tsc2 shRNA KD. Scrambled shRNA 268 µm 3 (n=7), Tsc2 shRNA 
408 µm3 (n=9), rapamycin-treated Tsc2 shRNA 163 µm 3 (n=8).. * scrambled shRNA vs. 
Tsc2 shRNA, p<0.05; # Tsc2 shRNA vs. Tsc2 shRNA + Rapamycin, p<0.05. Scale bar: 
14 µm.   

(D) Rapamycin treatment prevented non cell-autonomous effects following Tsc2 shRNA 
KD. Tsc2 shRNA KD results in a 2-fold increase in Cux1-positive cell in ROI surrounding 
GFP-positive cells (n=3 embryonic brains) compared to scrambled shRNA control (n=4 
embryonic brains). Daily rapamycin treatment results in a significant decrease in the 
number of Cux1-positive cells surrounding the GFP-positive Tsc2 shRNA KD cells (n=3 
embryonic brains) compared to untreated Tsc2 shRNA condition. Quantification of Cux1-
positive cells in ROI spanning IZ, LW_CP, MID_CP. * scrambled shRNA vs. Tsc2 
shRNA, p<0.05. # Tsc2 shRNA vs. Tsc2 shRNA + Rapamycin, p<0.05. Scale bar: 100 
µm.  
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Supplemental Figure 3-1.  

(A). PKCα immunostaining in control and adult TSC brains.  

(B). Tsc2 shRNA KD with clones #1, #3, and #4. GAPDH was used as a loading control.  

(C). mTORC1 activation (P-S6) and mTORC2 activation (P-Akt (S473) and P-NDRG1 
(T346)) following KD with Tsc2 shRNA clones #1 and #4. Total 4E-BP1 levels are 
unchanged following Tsc2 shRNA KD. In Tsc2-/- mEFs mTORC1 is activated, but 
mTORC2 signaling is diminished compared to Tsc2+/+ mEFs. GAPDH was used as a 
loading control.  

(D) Forward scatter area (FSC-A) histograms of scrambled and Tsc2 shRNA-GFP 
transfected mNPCs following FACS sort for GFP-positive cells. Tsc2 shRNA-GFP 
transfected mNPCs histogram (red) is shifted to the right compared to scrambled 
shRNA-GFP control histogram (gray), indicating that FSC-A signal, which correlates with 
size of individual cells, is increased following Tsc2 KD. Treatment with rapamycin 
(100nM) following Tsc2 shRNA KD rescues the cell size phenotype and the histogram 
(blue) is shifted to the left compared to untreated Tsc2 shRNA transfected mNPCs. 
Quantification of FSC-A histogram means shows that Tsc2 shRNA KD (n=7379) results 
in significant FSC-A signal increase compared to scrambled shRNA transfected control 
cells (n=4681), and is rescued with rapamycin (100nM) treatment (n=7353). *p<0.05, 
**p<0.05. 
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The video can be found on Cerebral Cortex journal website. 

 

 

 

 

 

Supplemental Figure 3-2.  

3-D confocal microscopy video of IUE E14-19 scrambled shRNA GFP-positive cells in 
UP_CP (layer II/III). 
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The video can be found on Cerebral Cortex journal website. 

 

 

 

 

 

Supplemental Figure 3-3.  

3-D confocal microscopy video of IUE E14-19 Tsc2 shRNA GFP-positive cells in IZ. The 
cells have increased volume (408 µm3) compared to IUE E14-19 scrambled shRNA 
GFP-positive cells in UP_CP (268 µm3; p<0.05, see text).  
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Supplemental Figure 3-4.  

Quantification of Cux1-positive cells in an ROI in scrambled shRNA GFP-negative and 
GFP-positive hemispheres. There was no significant difference between the counts in 
the hemisphere containing GFP-positive cells and non-transfected GFP-negative 
hemisphere.  
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Supplemental Figure 3-5.  

(A) E19 pup livers. Rapamycin (2.5 mg/kg and 5.0 mg/kg body weight doses) causes a 
dramatic reduction in mTOR signaling when administered daily (E14-E18) compared to 
vehicle-treated and low-dose rapamycin-treated animals (0.5 mg/kg body weight).  
(B, C) BrdU-labeled cells at E14 are mostly in the CP at E19 (CP 78.8±2.0%, IZ 
7.8±0.7%, VZ/SVZ 13.4±1.4%; n=4) and daily rapamycin treatment (5.0 mg/kg body 
weight; E14-E18) does not significantly alter cortical lamination pattern (CP 75.3±0.3%, 
IZ 10.3±0.7%, VZ/SVZ 14.4±0.5%; n=3; p>0.05 for each region).  
(D) Graphical representation comparing percentage of cells in each region between 
BrdU and rapamycin-treated (5.0 mg/kg body weight; E14-E18) BrdU conditions.  
(E, from left to right) Whole-body and brain images of mouse pups at E19 in rapamycin-
treated, vehicle-treated, and untreated BrdU-injected conditions.  
(F) Graphical representation comparing brain weight (in grams) following in utero 
electroporation (IUE) procedure at E14 analysis at E19, untreated, vehicle-treated, and 
rapamycin-treated (5.0 mg/kg body weight; E15-E18) IUE.* p<0.05, ** p<0.05. 
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CHAPTER 4: DEPTOR, A NOVEL mTOR-REGULATORY PROTEIN IS EXPRESSED 

IN THE BRAIN AND ITS LOSS RESULTS IN A CORTICAL MALFORMATION  
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4.1. Introduction 

 

DEPTOR is a recently described mTOR-interacting protein that was found to be 

overexpressed in multiple myeloma cells and contributed to their survival (Peterson et 

al., 2009). DEPTOR is highly overexpresed in a subset of multiple myelomas harboring 

cyclin D1/D3 or c-MAF/MAFB translocations (Peterson et al., 2009). High DEPTOR 

expression was necessary to maintain the PI3K and Akt pathway activation and a 

reduction in DEPTOR levels resulted in apoptosis (Peterson et al., 2009). DEPTOR 

overexpression suppressed S6K1 signaling (mTORC1 signaling) but by relieving 

inhibition from mTORC1 to PI3K pathway, activates Akt signaling (mTORC2 signaling 

pathway) (Peterson et al., 2009).  Several mTOR regulatory proteins have been shown 

to be involved in brain development, such as TSC1, TSC2, PTEN and STRADα (Kwon 

et al., 2003; Way et al., 2009; Orlova et al., 2010a; Zhu et al., 2012). Thus we wanted to 

investigate whether the novel mTOR-interacting protein Deptor plays a role in brain 

development. First, we tested whether Deptor is expressed in the human and mouse 

brain. Then we examined the expression in mouse neural progenitor cells (mNPCs) and 

mixed neuronal and astrocytic cell cultures. We then generated a stable Deptor shRNA 

knockdown (KD) mNPCs cell line to study the effects of Deptor loss in vitro. Utilizing the 

in vitro scratch migration assay, we found that stable Deptor KD mNPCs had a defect in 

migration. To investigate the role of Deptor during brain development, we utilized the in 

utero electroporation strategy to knock down Deptor during embryogenesis. Deptor KD 

in vivo at embryonic day 14 (E14) led to a cortical migration defect at E19. These results 

show that Deptor may play a critical role in the brain and have an important function in 

brain development.  
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4.2. Materials and Methods 

 

Human Brain Tissue 

 Adult brain specimens were obtained post-mortem. 

 

Cell Culture 

mNPCs were a generous gift from Dr. J. Wolfe (Children’s Hospital of 

Philadelphia, PA) and derived from the subventricular zone of C57BL/6 postnatal day 1 

mice. mNPCs were cultured on poly-D-lysine (PDL) coated plates in DMEM/F12, 

supplemented with 1% fetal bovine serum, 1% N-2 supplement, 1% 

penicillin/streptomycin, fibroblast growth factor, and heparin. mNPCs express neuroglial 

progenitor state markers SOX2 and Nestin and retain full capacity to differentiate into 

neurons and astrocytes (Magnitsky et al., 2008; Orlova et al., 2010a).   

mNPCs were transfected with shRNA plasmids containing a GFP reporter and 

puromycin resistance gene (Origene) targeting mouse Deptor or scrambled (control) 

sequence using Lipofectamine LTX/ Plus Reagents (Invitrogen). shRNA constructs were 

commercially confirmed for absence of interferon response. In keeping with existing 

standards for shRNA experimentation in vitro and in vivo (Samuel-Abraham S and JN 

Leonard 2010), multiple shRNA constructs to Deptor and scrambled sequence were 

tested.  

Stable Deptor shRNA KD mNPC cell lines were generated by selection 

puromycin (8 ug/uL), picking single transfected GFP-positive cells (for clonal cell 

populations) and growing them in the presence of puromycin (8 ug/uL). Stable cell line 
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clones were chosen for subsequent experiments based on highest level of Deptor KD 

(by Western analysis).  

 

Rat and Mouse Cortical and Hippocampal Cultures 

 Primary rat cerebrocortical and hippocampal cultures were generated from 

embryonic day 17 (E17) Sprague-Dawley rat pups as previously described (Wilcox et al., 

1994; Brewer, 1995).  Cells were plated on cell culture dishes pre-coated with poly-L-

lysine (Peptides International, Louisville, KY) and maintained in Neurobasal media 

supplemented with B27 (Invitrogen) at 37°C, 5% CO2 incubator. Half of the media was 

replaced every 2-3 days, and cell cultures were used for experiments between 7 and 14 

days in vitro (DIV).  

 

Western Analysis 

mNPCs were lysed in RIPA lysis buffer (50mM Tris HCl pH 8.0; 150 mM NaCl; 

1% NP-40; 0.5% sodium deoxycholate, 0.1% SDS, protease and phosphatase 

inhibitors). Protein was separated on 4-15% SDS-PAGE Tris-Glycine gel (Bio-Rad), 

transferred onto PVDF membranes and probed with: Deptor (Millipore), mTORC1 

markers P-S6 (S235/236; Cell Signaling), P-4E-BP1 (T37/46; Cell Signaling) and 

mTORC2 marker P-Akt (S473; Cell Signaling) antibodies overnight at 4°C and HRP-

conjugated secondary antibodies (GE Healthcare) for 1 hour at room temperature, and 

visualized with ECL or ECL Plus (GE Healthcare). Membranes were probed with 

antibodies to GAPDH (Cell Signaling) to ensure equal protein loading. 
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Scratch Migration Assay 

mNPCs were grown to confluency in a 6-well plate, pre-coated with PDL. A 

scratch was made across the middle of each well with a 1000uL pipette tip. In treatment 

conditions, rapamycin (100nM) and/or Torin1 (50nM) was applied at the time of the 

scratch. Cells were imaged at 0, 15, 20 hours (h) or 0, 16, 21 h. Five images were 

obtained for each scratch. Ten length measurements were made for each image (part of 

scratch). Fifty measurements were obtained for each scratch and averaged. Distance 

migrated at each time point was calculated by subtracting the length at time of image 

from the length of scratch at time 0 h. Paired t-test and one-way ANOVA were used for 

statistical comparison across different conditions.  

 

In Utero Electroporation (IUE) 

Animal experiments were approved by the Institutional Animal Care and Use 

Committee of the University of Pennsylvania. 

Time-pregnant C57BL/6J mice at embryonic day 14 (E14) were placed under 

isoflurane-induced anesthesia and the uterine horns were surgically exteriorized. 

shRNA-GFP plasmids targeting mouse Deptor or control scrambled sequence diluted in 

TE Buffer (3-7 ug/ml; Qiagen) and Fast Green dye (0.3 ug/ml; Sigma-Aldrich), were 

microinjected through the uterine wall into one lateral ventricle of each embryo. Deptor 

shRNA clone #4 was used for IUE experiments. Five electrical pulses (40 V, 50 ms 

duration, 1000 ms intervals) (Saito T 2006) were delivered across the embryonic head 

using CUY21 Edit Square Wave Electroporator (Nepagene). Uterine horns were 

returned to the pelvic cavity and the abdominal wall was closed by suture. Females were 

returned to the cage and embryos were sacrificed five days later at E19.  
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4.3. Results 

4.3a. Deptor is Expressed in Human and Mouse Brain 

In order to investigate whether Deptor has a role in the brain, we first 

immunostained human brains to evaluate the presence of Deptor. Immunohistochemical 

staining with several Deptor antibodies revealed that Deptor is expressed in the human 

brain (Fig. 4-1). Furthermore, Deptor was expressed in the mouse brain at both 

embryonic and adult time points, as well as other organ systems including the heart, 

kidney, liver, skin by Western detection method (Fig. 4-1).  
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Figure 4-1. Deptor is expressed in the human brain and murine neural cells. 

A. Deptor is expressed in the human brain.  

B. Deptor is expressed in mouse neural progenitor cells (mNPCs).  

C. Deptor is expressed in mouse and rat neurons and astrocytes.  
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4.3b. Deptor is Expressed in mNPCs, Neurons, and Astrocytes 

Immunocytochemistry revealed that Deptor is expressed in mNPCs, as well as 

rat and mouse neurons (Fig. 4-1, 4-2). Cytoplasmic and nuclear fractions of mNPCs 

revealed that Deptor protein is present in both the cytoplasmic and nuclear 

compartments, similar to its binding partner mTOR (Fig. 4-3) (Peterson et al., 2009). 

Furthermore, when comparing rat mixed, neuronal, or astrocytic cell cultures, Deptor 

protein expression was found highest in the astrocytes (Fig. 4-4).  
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Figure 4-2. Deptor is expressed is developmentally expressed in the mouse brain. 

A. Deptor is expressed in the mouse embryonic brain. Immunohistochemical staining 
with Deptor of mouse brain at embryonic day 19 (E19). Hoechst33342 was used to 
visualize the nucelei 

B. Deptor is developmentally expressed in the mouse brain at 19, postnatal day (P) 7, 
P30, and adult time.  
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Figure 4-3. Deptor is present in cytoplasmic and nuclear compartments in mouse neural 

progenitor cells.  

Western analysis of mNPCs cytoplasmic and nuclear compartments reveals presence of 
Deptor protein in both compartments, similar to its binding partner mTOR. GAPDH is 
specifically localized to the cytoplasm and Histone H3 to the nucleus.   
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Figure 4-4. Deptor is more highly expressed in the astrocytes compared to neurons.  

Comparing rat mixed, neuronal, and astrocytic cultures show that Deptor is most highly 
expressed by astrocytes. GFAP is an astrocyte specific marker. GAPDH was used as a 
loading control. 

 



 

72 

 

4.3c. Deptor shRNA KD in mNPCs Results in mTORC1 and mTORC2 Signaling 

Pathway Activation  

Stable cell lines were generated with puromycin-resistant shRNA against Deptor 

and a scrambled sequence was transfected as a control. Deptor depletion in mNPCs 

resulted in activation of mTORC1 (P-S6 (S235/236), P-4E-BP1 (T37/46)) and mTORC2 

(P-Akt (S473)) signaling pathways (Fig. 4-5 and preliminary data). Furthermore, Deptor 

shRNA KD cells expressed progenitor cell markers SOX2 and Nestin, and appear not to 

have undergone differentiation (Fig. 4-5). However, the Deptor KD cells appeared to 

have abnormal morphology, with the possibility of increased focal adhesions (Fig. 4-5).   
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A. 

 

B. 

 

Figure 4-5. Mouse neural progenitor cells with stable Deptor knockdown express SOX2 

and Nestin, and show mTOR activation. 

A. Stabled Deptor KD mNPCs express progenitor marker SOX2. 

B. Stabled Deptor KD mNPCs express progenitor marker Nestin. 
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Figure 4-5. Mouse neural progenitor cells with stable Deptor knockdown express SOX2 

and Nestin, and show mTOR activation. (continued) 

C. Stable Deptor KD in mNPCs results in mTORC1 activation via increased levels of P-
S6 (S235/236). GAPDH was used as a loading control.  
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4.3d. Deptor KD in mNPCs Results in a Migration Defect In Vitro  

To investigate whether Deptor plays a role in migration, we utilized the wound-

healing scratch assay and found that stable Deptor KD mNPCs close the wound 

significantly slower than the scrambled shRNA control or wild-type cells and have 

impaired migration (Fig. 4-6). Treatment with rapamycin, an mTORC1 inhibitor, or 

Torin1, mTORC1 and mTORC2 inhibitor, did not rescue the in vitro migration phenotype 

(Fig. 4-6, preliminary data).  
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A 

 

 

 

 

Figure 4-6. Deptor knockdown results in impaired migration in vitro 

A. Scratch-induced wound healing assay in stable scrambled shRNA-puroR and Deptor 
shRNA-puroR cell lines. Deptor KD cells do not close the gap as compared to the 
scrambled shRNA control cells. 
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Figure 4-6. Deptor knockdown results in impaired migration in vitro. (continued) 

B. Treatment with mTORC1 inhibitor rapamycin does not rescue the impaired migration 
in vitro following Deptor KD. 
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C

 

Figure 4-6. Deptor knockdown results in impaired migration in vitro. (continued) 

C. Treatment with mTORC1 and mTORC2 inhibitor Torin1 does not rescue the impaired 
migration in vitro following Deptor KD.  
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4.3e. Deptor shRNA KD In Vivo During Embryogenesis by In Utero Electroporation 

Leads to a Cortical Malformation 

To investigate the role of Deptor, a novel mTOR-regulatory protein, in vivo during 

embryonic brain development, we utilized the in utero electroporation strategy using 

shRNA targeting Deptor. IUE was performed at embryonic day 14 (E14) with GFP-

tagged shRNA targeting mouse Deptor mRNA. Five days (E19) post introduction of 

Deptor shRNA plasmid into progenitor cells in the ventricular zone (VZ), GFP-positive 

cells were found to be primarily localized to the VZ/SVZ and IZ zones, and failed to 

reach layer II-III, like scrambled shRNA control cells (Fig. 4-7). Intraperitoneal rapamycin 

treatment (5 mg/ kg of body weight) resulted in a partial rescue, with more cells exiting 

the VZ/SVZ (preliminary data). 
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Figure 4-7. Deptor depletion in vivo results in a cortical malformation.  

Deptor shRNA KD in vivo by in utero electroporation at E14 leads to a cortical 
malformation at E19. (Right) Quantification of GFP-positive cells in VZ/SVZ, IZ, LW_CP, 
MID_CP, UP_CP in scrambled shRNA-GFP and Deptor shRNA-GFP conditions. 
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CHAPTER 5. CONCLUSION, DISCUSSION AND FUTURE DIRECTIONS 2 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 Part of Chapter 5: TSC work discussion, was originally published in Cerebral Cortex 
journal. Tsai V, Parker WE, Orlova KA, Baybis M, Chi AWS, Berg BD, Birnbaum JF, 
Estevez J, Okochi K, Sarnat HB, Flores-Sarnat L, Aronica E, Crino PB. 2012. Fetal Brain 
mTOR Signaling Pathway Activation in Tuberous Sclerosis Complex. Copyright © 2012 
Oxford University Press.  
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5.1. Tsc2 Work Discussion 

 

We demonstrate for the first time the profile of mTORC1 and mTORC2 signaling 

cascade activation in human fetal tuber tissue. We provide data quantifying the 

significant cellular enlargement following Tsc2 KD in neural progenitor cells in vitro and 

in vivo and show that enhanced cell size can be prevented by rapamycin treatment.  We 

demonstrate for the first time that focal KD of Tsc2 during fetal brain development leads 

to a focal cortical lamination defect characterized by both cell-autonomous and non-cell-

autonomous effects that can be prevented by in utero rapamycin treatment. The effects 

of rapamycin on mTOR signaling have been studied in the postnatal rodent brain 

however little is known of the effects of rapamycin on mTOR signaling during fetal brain 

development, an epoch that coincides with the pathogenesis of TSC. Taken together, 

these data suggest that hyperactive mTORC1 and mTORC2 signaling in neural 

progenitor cells leads to cellular features of TSC and that these effects could in theory 

be targeted therapeutically during in utero development.  

Our findings support the hypothesis that mTORC1 activation is an early finding in 

fetal TSC brain lesions and provide a new window to understand the cellular 

pathogenesis of TSC. Of course, we acknowledge that only 4 specimens were analyzed, 

however, given the rarity of fetal TSC brain specimens, we were fortunate to assess 4 

high-quality tissue samples. As alterations in cortical lamination that likely reflect nascent 

tubers have been reported in the fetal period by autopsy and magnetic resonance 

imaging studies (Park et al., 1997; Levine et al., 1999; Chen et al., 2010), we propose 

that mTORC1 hyperactivation is an early event in the pathogenesis of embryonic tuber 

formation (Crino, 2010). The detection of P-p70S6K1, P-S6, and c-myc provides strong 
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evidence that enhanced mTORC1 signaling in a focal region of the developing brain is 

intimately linked to abnormal architecture characteristic of tubers.  

mTORC2 signaling, evidenced by increased levels of P-PKCα, P-Akt, P-SGK1, 

and P-NDRG1 is activated in the TSC adult and fetal brain specimens. Our findings 

differ from previous reports in human renal angiomyolipomas, Tsc2+/- mouse kidney 

angiomyolipomas, Tsc2-/- mouse embryonic fibroblasts, and human embryonic kidney 

293 (HEK293) cells (Yang et al., 2006; Huang et al., 2008; Huang et al., 2009), which 

show that mTORC2 signaling cascade is attenuated in the absence of Tsc2. The 

disparity between these data and our own may reflect differential effects of mTORC2 in 

fetal neurons, or the presence of other modulators that are activated in TSC brain such 

as EGFR (Parker et al., 2011) that activate mTORC2 (Tanaka et al., 2011). In the adult 

tubers specimens, a possible contribution to changes in mTORC2 signaling from 

recurrent seizures is also possible.  Two studies (Goto et al., 2011; Carson et al., 2012) 

have investigated mTORC2 substrates in brain lysates following Tsc1 conditional 

knockout. In the Emx-Tsc1 conditional knockout mouse strain (Carson et al., 2012) there 

was a reduction in phospho-NDRG1 at P15 whereas in the inducible in Tsc1cc Nestin-

rtTA+ TetOp-cre+ strain (Goto et al., 2011) there was a reduction in P-PKCα at P30. 

Neither of these studies examined embryonic tissue or neural progenitor cells.  

There have been few studies to date providing data quantifying the effects of 

Tsc2 KD or mTOR hyperactivation on cell size in neural progenitor cells although 

conditional knockout of Tsc2 in radial glial cells in vivo causes enhanced cell size (Way 

et al., 2009). KD of Tsc2 in mNPCs resulted in a 2-fold increase in cell size associated 

with enhanced mTOR activation. The effect on cell size was preventable with rapamycin 

treatment suggesting that cytomegaly in TSC is an mTORC1-dependent process. 

Similar mechanistic effects on cell size have been demonstrated in the mouse for two 

other known mTORC1 inhibitory proteins, PTEN and STRADα (Kwon et al., 2003; 
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Orlova et al., 2010a), suggesting that mTORC1 signaling plays a pivotal role in cell size 

in the brain. Thus, mTORC1 inhibition may provide a potentially attractive strategy to 

prevent cytomegaly in neural progenitor cells. Further studies to define the precise role 

or mTORC2 activation in fetal TSC brain tissue is clearly warranted. 

KD of Tsc2 during embryonic brain development resulted in a focal cortical 

lamination with the majority of cells being localized in deeper regions of the cortex 

instead of superficial layers II-III. This could potentially suggest that Tsc2 plays a role in 

migration. It was interesting to find that only 21% of Tsc2 KD cells were Cux1-positive, 

while the other 79% were Cux1-negative. Homeobox Cux1 transcription factor has been 

shown to regulate dendrite branching, development of spines, and synapse formation of 

layer II/III neurons (Cubelos et al., 2010). Given that cells electroporated with Tsc2 

shRNA do not migrate appropriately and in addition do not express Cux1 could 

potentially result in dysregulated neuronal development (spines, dendrite branching) and 

aberrant targeting and synapse formation. Furthermore, the Tsc2 KD cells that started 

on their migrational route but were localized in the IZ and lower CP regions (LW_CP, 

MID_CP), did not express transcription factors Ctip2 and Tbr1 that are specific to deeper 

cortical layers V and VI, indicating that at least at this stage in development, they have 

not taken on the cell identity of another layer which surrounds them.  

The observation that Tsc2 KD leads to altered laminar destination of Cux1-

positive nontransfected cells suggests that there may be non-cell-autonomous effects of 

loss of Tsc2 function in the developing brain. It has previously been reported that RNAi 

KD of doublecortin gene DCX during brain development results in non-cell-autonomous 

defect in migration of neighboring cells (Bai et al., 2003). It is possible that Tsc2 KD 

results in mTORC1 hyperactivation, which in turn results in expression and secretion of 

factors that disrupt lamination of neighboring Cux1-positive cells. For example, following 

Tsc2 KD, mTORC1 activation could result in release of secretable factors that influence 
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migration and lamination of surrounding progenitor cells. We have previously 

demonstrated robust expression of numerous growth factors including NT4, VEGF, 

HGF, and EGF in tubers and in the Tsc1GFAPCre conditional mouse strain (Kyin et al., 

2001; Parker et al., 2011) that could alter laminar destinations of migrating neurons.  

While the existing conditional TSC mouse models provide invaluable systems to 

study brain development in TSC, rapamycin only partially reverses the structural 

abnormalities in these strains. In the Tsc1synCre mouse strain (Meikle et al., 2007), 

treatment with rapamycin or RAD001, another mTOR inhibitor, improves survival and 

reduces neuronal enlargement in vivo (Meikle et al., 2008), but disorganized neocortical 

architecture is not fully rescued possibly because rapamycin and RAD001 were begun at 

postnatal timepoints. Similarly, postnatal treatment with rapamycin in both Tsc1GFAPCre 

(Zeng et al., 2008) and Tsc2GFAPCre (Zeng et al., 2010) mice ameliorated the seizure 

phenotype but only partially rectified the histopathological abnormalities. Rapamycin has 

not been previously assayed as a preventative approach for Tsc2-induced lesions in 

utero, however, in a previous study, prenatal rapamycin improved survival of 

Tsc1nestinCre conditional knockout mice (Anderl et al., 2011a). Our results demonstrate 

for the first time that selective effects of Tsc2 KD on neural progenitor cells or during 

fetal brain development (e.g., cytomegaly, altered cortical lamination, enhanced mTOR 

signaling), can be prevented with rapamycin treatment. In concert with the discovery of 

mTOR cascade hyperactivation in fetal tuber specimens, we suggest the possibility that 

prenatal treatment with mTOR pathway inhibitors could prevent or reduce neurological 

disability in TSC. In 2 recent clinical trials (Bissler et al., 2008; Krueger et al., 2010), 

tuber size was not altered following treatment with the rapamycin analog everolimus and 

seizures were reduced in only 50% of patients (age range: 3-34) receiving the drug 

(Krueger et al., 2010). However, white matter abnormalities in TSC can be reversed with 

everolimus (Tillema et al., 2012). Postnatal treatment with mTOR inhibitors may miss a 
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critical period in the pathogenesis of tuber formation and thus have limited benefit for all 

neurological features of TSC. However we acknowledge that rapamycin has 

independent effects on development including reduction of body size and brain weight, 

alterations in gene expression, and cognitive function (Ruegg et al., 2007; Way et al., 

2012) that require important consideration for further clinical studies. 

 

 

5.2. Deptor Work Discussion 

  

Our results demonstrate for the first time that DEPTOR is expressed in human 

and murine brain. We show that Deptor shRNA KD in vitro in neural progenitor cells 

causes mTORC1 and mTORC2 signaling pathway activation.  Furthermore, in vivo KD 

of Deptor during embryonic brain development results in a focal cortical malformation. 

Treatment with mTORC1 inhibitor rapamyicin and dual mTORC1 and mTORC2 inhibitor 

Torin1, did not rescue the in vitro migration phenotype. Limited improvement in cell 

migration was observed in vivo with fetal rapamycin treatment.  Interestingly, this was 

different from the results we previously observed in our studies with Tsc2 (Tsai et al., 

2012).  

 Several questions arise on the limited efficacy of rapamycin and Torin1 

treatments. Given that DEPTOR directly interacts with mTOR, it is possible that 

DEPTOR protein is necessary for mTORC1 and mTORC2 complex function. While 

studies in other cell types (Peterson et al., 2009) and our results in mouse neural 

progenitor cells show that Deptor inhibits mTORC1 and mTORC2 signaling, it could 

have a secondary role in facilitating certain mTORC1 and mTORC2 functions.  Lack of 

Deptor could also result in mTORC1 signaling activation and negative feedback loop 
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from S6 kinase, in which case rapamycin and Torin1 may not be the most effective 

inhibitors.  

 

 

5.3. Remaining Questions 

5.3a. mTOR activation in Neural Progenitor Cells vs. Mature Neurons and Astrocytes 

 mTOR signaling (mTORC1 and mTORC2) has various downstream effects on 

different cellular functions (e.g. transcription, translation, autophagy, actin cytoskeleton 

dynamics) and thus it would be important to evaluate whether there is differential 

activation in immature (neural stem and progenitor cells) vs. mature (neurons, 

astrocytes, glia) neural cells. Furthermore it would be critical to determine the role that 

the timing of mTOR signaling pathway activation or deactivation would play on 

subsequent phenotype effects (e.g. mTOR signaling dysregulation in very early stages 

of development vs. later stages).  

 

5.3b. Cell-Autonomous vs. Non-Cell-Autonomous Effects 

It would be interesting and important to investigate further what the cell-

autonomous and non-cell-autonomous roles Tsc2 and Deptor play. Specifically, what 

effects do these mTOR-regulatory genes and proteins exert on the affected cell (cell 

harboring mutation, knockdown, or knockout). Furthermore, how does the affected cell 

influence the signaling of other surrounding unaffected cells. Given that we have 

observed an increase in cell size following Tsc2 KD in mNPCs, as well as non-cell-

autonomous effects in vivo, it would potentially be very interesting to do the following 

experiment. First, culture Tsc2 KD and wild-type mNPCs for several days. Then, take 
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the media from the Tsc2 KD cells and replace the wild-type mNPC plates’ media with 

this media and grow for several days. If the non-cell-autonomous effects are through a 

secreted factor, we should potentially observe an increase in cell size in wild-type 

mNPCs grown in media from Tsc2 KD cells, when comparing to wild-type mNPCs grown 

in regular media the whole time.  

 

5.3d. Is Deptor Associated with Any Neurological Diseases? 

DEPTOR-related research is still in its early stages. To date, no reports have 

been published describing DEPTOR’s function in the brain. Given that approximately 10-

15% of diagnosed TSC cases do not have either a TSC1 or TSC2 gene mutation 

identified, could DEPTOR be the TSC3 gene? To answer this question, it would be 

important to screen individuals with a TSC clinical diagnosis for a DEPTOR (DEPDC6) 

gene mutation. However it is also possible that DEPTOR could be mutated in other 

neurological disorders characterized by cortical malformation and epilepsy, such as 

hemimegalencephaly. Given the domains within DEPTOR protein (2 DEP and 1 PDZ) it 

would be important to find its binding partners. Identification of DEPTOR”s binding 

partners would provide insight into its potential function in neural cell physiology.  

 

5.3c. TSC2 vs. DEPTOR 

 In light of the different effects of Tsc2 shRNA KD and Deptor shRNA KD in vitro 

and in vivo (Chapters 3 and 4), Deptor shRNA KD appears to be more severe than Tsc2 

shRNA KD in vivo, and less responsive to mTORC1 inhibitor rapamycin, unlike in the 

Tsc2 shRNA KD condition. It would be important to investigate further the mechanisms 

for why different mTOR-regulatory proteins have different effects on cell function.  
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There could be several possibilities: 

1. The mTOR-regulatory protein (e.g. TSC2 or DEPTOR) has a different degree of 

regulation on mTOR signaling (mTORC1 and mTORC2). 

2. The mTOR-regulatory protein has different degree of regulation on either 

mTORC1- or mTORC2-specific signaling. (For example, TSC1-TSC2 complex 

could have a greater effect on mTORC1-specific signaling, whereas DEPTOR 

could regulate both mTORC1 and mTORC2 signaling equally.) 

3. One mTOR-regulatory protein (e.g. TSC2) has different binding partners from 

other regulatory mTOR proteins (e.g. DEPTOR) which results in the different 

phenotypes.  

 

5.3e. Therapeutic Treatment Approaches 

With genetic testing being available, it would be crucial for to understand for a 

disease like TSC the contribution of either TSC1 or TSC2 gene to the disease and how 

the different mutations in either gene produce their phenotypic effects. TSC individuals 

exhibit variable penetrance, or variable severity of disease manifestations. Thus it would 

be important to understand what accounts for the differences in disease severity.  

Understanding the mechanistic differences between various mTOR-regulatory 

proteins would be crucial in designing new treatment approaches for individuals with 

different gene mutations (e.g. TSC1 vs. TSC2 vs. DEPTOR), since each gene and 

mutation could have different regulatory contributions on the mTOR pathways (e.g. 

mTORC1, mTORC2, or other downstream effectors). Specifically, given the complicated 

nature of mTOR signaling, with multiple regulatory proteins, as well as positive and 

negative feedback loops, it would be important to consider how the gene and protein of 
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interest regulate that pathway. Furthermore, should the therapies target mTORC1 only, 

mTORC2 only, both mTORC1 and mTORC2, or combination treatments targeting both 

mTORC1 and/or mTORC2 and the Akt and/or S6 kinase signaling (e.g., to account for 

the negative feedback loop in the mTOR pathway).  

Another important consideration is when to begin therapy. It has previously been 

shown in various TSC animal models that mTOR inhibition with rapamycin improves 

seizures and learning more effectively when administered early. In our Tsc2 study in a 

developmental mouse model system, we were able to rescue the cell migration 

phenotype by fetal rapamycin treatment. However the decrease in body and brain weight 

brings up important considerations for treatment with mTOR inhibitors during embryonic 

development. While fetal rapamycin treatment did not disrupt the normal cell migration in 

the brain, the effects on other processes such as synapse formation and dendrite 

branching, as well as on different cell types (e.g., neurons vs. astrocytes vs. glia) would 

have to be carefully considered. Future studies and insights into the mechanism of 

mTOR dysregulation downstream of mTORC1 and mTORC2 signaling would provide 

the possibility of designing more targeted therapeutic approaches which could potentially 

be safer for administration during fetal development.  
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