
Safe and Flexible Dynamic Linking of Native Code*

Karl Crary Michael Hicks Stephanie Weirich
Carnegie Mellon University University of Pennsylvania Cornell University

Abs t rac t

We present the design and implementation of a framework
for flexible and safe dynamic linking of native code. Our ap-
proach extends Typed Assembly Language with a primitive
for loading and typechecking code, which is flexible enough
to support a variety of linking strategies, but simple enough
that it does not significantly expand the trusted computing
base. Using this primitive, along with the ability to compute
with types, we show that we can program many existing dy-
namic linking approaches. As a concrete demonstration, we
have used our framework to implement dynamic linking for
a type-safe dialect of C, closely modeled after the standard
linking facility for Unix C programs. Aside from the un-
avoidable cost of verification, our implementation performs
comparably with the standard, untyped approach.

1 Int roduct ion

A principle requirement in many modern software systems
is dynamic extensibility-the ability to augment a running
system with new code without shutting the system down.
Equally important, especially when extensions may be un-
trusted, is the condition that extension code be safe: an
extension should not be able to compromise the integrity
of the running system. Two examples of systems allowing
untrusted extensions are extensible operating systems (4, 71
and applet-based web browsers [16]. Extensible systems that
lack safety typically suffer from a lack of robustness, the
frequent crashes of Windows applications due to DLL in-
compatibility being a conspicu&s example. Those crashes
are accidental, so in the arena of untrusted extensions the
problem is greatly magnified, since malicious extensions may
intentionally violate safety.

The advent of Java [3] and its virtual machine [22] (the
JVM) has popularized the use of language-based technology
to ensure the safety of dynamic extensions. The JVM byte-
code format for extension code is such that the system may
verify that extensions satisfy certain safety constraints be-
fore it runs them. To boost performance, most recent JVM
implementations use just-in-time (JIT) compilers. However,
because J IT compilers are large pieces of software (typically
tens of thousands of lines of code), they unduly expand the
trusted computing base (TCB), the system software that is
required to work properly if safety is to be assured. To min-
imize the likelihood of a secnrity hole, a primary goal of all
such systems is to have a small TCB.

'Submitted for publication

An alternative approach to verifiable bytecode is verifi-
able native code, first proposed by Necula and Lee [27] in
the context of Proof-Carrying Code (PCC). In PCC, code
may be heavily optimized, and yet still verified for safety,
yielding good performance. hrthermore, the TCB is sub-
stantially smaller than in the JVM: only the verifier and the
security policy are trusted, not the compiler. A variety of
similar architectures have been proposed [26, 18, 21.

While verifiable native code systems are fairly mature,
all lack a well-designed methodology for dynamic linking,
the mechanism used to achieve extensibility. Within PCC,
for example, dynamic linking has only been performed in an
ad-hoc manner, entirely within the TCB [27]. Most general-
purpose languages support dynamic linking [3, 6, 8, 20, 28,
291, so if we are to compile such languages to PCC, then it
must provide some support for implementing dynamic link-
ing. We believe this support should meet three important
criteria:

1. Security. It should only minimally expand the TCB,
improving confidence in the system's security. Fur-
thermore, soundness should be proved within a formal
model.

2. Flexibility. We should be able to compile typical
source language linking entities, e.g., Java classes, ML
modules, or C object files, and their operations, e.g.,
loading and linking.

3. Efficiency. This compilation should result in efficient
code, in terms of both space and time.

In this paper, we present the design and implementation
of a dynamic linking framework for verifiable native code.
We have developed this framework in the context of Typed
Assembly Language [26] (TAL), a system of typing annota-
tions for machine code, similar to PCC, that may be used
to verify a wide class of safety properties. Our framework
consists of several small additions to TAL that enable us
to program dynamic linking facilities in a type-safe manner,
rather than including them as a monolithic addition to the
TCB. Our additions are simple enough that a formal proof
of soundness is straightforward.'

To demonstrate the flexibility and efficiency of our frame-
work, we have used it to program a type-safe implemen-
tation of DLopen [6], a UNIX library that provides dy-
namic linking services to C programs. Our version of

 h he interested reader is referred to the companion technical re-
port [14] for the full formal framework and soundness proof.

The first argument to the function do-op indicates the oper-
ation to perform, and the second argument contains a tuple
of the two arguments. A client of this module might be
something like:

fun add-int (x,y) = Arith.do-op (0, (x.y))
fun sub-int (x.y) = Arith.do-op (l,(x,y))

If we wanted to close this client code to make it amenable
for dynamic loading, we need to remove the references to
the Arith module. For example, we could do:

val Arith-do-op : int * (int * int) ref = . . .
fun add (x,y) = !Arith-do-op (O, (x ,y))
fun sub (x,y) = !Arith-do-op (l,(x,y))

We have converted the externally referenced function into
a locally defined reference to a function. When the file is
dynamically loaded, the reference can get filled in. This
is essentially a iLpoor-man's" functorization. This process
closes the file with respect to values. However, we run into
difficulty when we have externally defined values of gener-
ative type. Consider an implementation of Arith that uses
datatypes:

structure Arith =
struct
datatype op = Add I Sub I Mult I Div
fun do-op (Add.(x,y)) = x + y

i do-op (Sub.(x,y)) = x - y
I do-op (Mult,(x,y)) = x * y
I do-op (Div,(x,y)) = x / y

end

The code for the module is the same, but now we've used
a generative datatype to implement the operation. If we
attempt to close the client code as before, we get:

val Arith-do-op : Arith.op * (int * int) ref = ...
fun add (x,y) = !Arith-do-op (Arith.Add, (x,y))
fun sub (x,y) = !Arith-do-op (Arith.Sub, (x,y))

But we still have the external references to the datatype
Arith.op itself, as well as to its constructors Add and Sub.
The question becomes, how can we create holes for gener-
ative types and type constructors in the same way that we
create holes for values? Essentially we need a way for the
loaded code to state its assumptions concerning generative
types, and a way for the running program to validate those
assumptions. Unfortunately, it is not feasible to do so out-
side the trusted computing base. Because load typechecks
the given module, types play a major role in its operation.
Therefore it makes sense that to manipulate shared types
effectively we must incorporate them into our framework.
As we describe in the next subsection, our implementation
does not greatly increase the TCB as these checks are based
on TAL's framework for static link verification [lo].

To allow loaded code to refer to externally defined types,
we do the following. A module may declare a type inter-
face (XI, XE), which is a pair of maps from type name to
implementation. The intuition is that XI mentions the gen-
erative types provided by other modules, and XE mentions
generative types defined by this one. By not including the
implementation of the type inside the map X (just men-
tioning its name), we can use this mechanism to implement
abstraction as well. As an example, the type interface of the
client code above would be something like:

({op = Add I Sub I Mult I Div), {I)

and the interface for Arith would be the reverse:

((1, {op = Add] Sub (Mult I Div})

The runtime system maintains a list of the imported and
exported types of all the modules in the program, called the
program type interface. When a new module is loaded, load
checks that the generative type imports of the new mod-
ule are consistent with the program interface, and that the
exports of the new module do not redefine, or define differ-
ently, any types in the program interface imports. We do
not require that all of a module's type imports be defined
by the program interface when it is loaded. This relaxation
allows a program to manipulate objects of an undefined type
abstractlv.

We have developed a formal calculus for our framework
and have proven it sound. While this formalization is inter-
esting, the real contribution lies in the way we can program
type-safe dynamic linking within our framework. We refer
the interested reader to the companion technical report [14]
for the full theoretical treatment.

2.2 Implementa t ion

We have implemented TAL/Load it in the TALx86 imple-
mentation of TAL. The key component of TAL/Load is the
load primitive, whose actions are illustrated in Figure 1. Us-
ing components of the TALx86 system, load performs two
functions:

1. Disassembly The first argument, which provides the
expected type of the exports, must be disassembled
into the internal representation of TAL types. This
type should always be of tuple type, where each ele-
ment type represents the type of one of the object file's
exports. The second argument to load is a byte array
representing the object file and the typing annotations
on it, depicted in the figure as two distinct arguments.
This information is parsed by the TAL disassembler to
produce a TAL implementation.

2. Verification The TAL implementation is then veri-
fied using the current program's type interface, follow-
ing the procedure described in the previous subsection.
If verification succeeds, the result is a list of exported
values and the new type interface (not shown). The
values are gathered into a tuple, the type of which is
compared to the expected type. If the types match,
the tuple is returned (within an option type) to the
caller, and the new type interface replaces the original
interface. On failure, NONE is returned.

The majority of the functionality described above results
in no addition to the TAL trusted computing base. In par-
ticular, the TAL link verifier, typechecker, and disassembler
are already an integral part of the the TCB; TAL/Load only
makes these facilities available to programs through load.
Two pieces of trusted functionality are needed, however, be-
yond that already provided by TAL: the ability to represent
types as runtime values, and the maintenance of the pro-
gram's "current" type interface at runtime.

Passing T y p e s at R u n t i m e As TAL uses a type-erasure
semantics we need some way to pass a runtime representa-
tion of the type argument to load. We do this by extending

extern handle ;
extern handle dlopen(string f name) ;
extern a dlsym<a>(handle h, string symbol);
extern void dlclose(hand1e h) ;

extern exception WrongType(string);
extern exception FailsTypeCheck;
extern exception SymbolNotFound(string);

Figure 2: DLpop library interface

and compiler [25]. Our version, called DLpop, follows the
interface in Figure 2, which we describe in detail below:

handle dlopen(string fname)
Given the name of a TAL object file, dlopen dynami-
cally loads the file and returns a handle to it for future
operations. Imports (i.e., symbols declared extern)
in the file are resolved with the exports (i.e., sym-
bols not declared static) of the running program and
any previously loaded object files. Before it returns,
dlopen will call the function Anit if that function is
defined in the loaded file. In DLpop (but not DLopen),
dlopen typechecks the object file, throwing the excep-
tion FailsTypeCheck on failure.

a dlsym<a>(handle h, string symbol)
Given the handle for an object file and a string naming
the symbol, dlsym returns a pointer to the symbol's
value. In DLopen, this function returns an untyped
pointer, of C-type void *, which requires the program-
mer to perform an unchecked cast to the expected type.
By contrast, our version takes a type argument, de-
noted <a>, to indicate the expected (pointer) type; this
type is checked against the actual type at runtime. If
the requested symbol is not present in the object file,
the exception SymbolNotFound is thrown; if the passed
type does not match the type of the symbol, the excep-
tion WrongType is thrown.

To implement type-passing style, dlsym uses a R-type
internally, as described in Section 2.2. We hide this
complexity from the user by making dlsym a special
keyword. When encountering a call to dlsym, the com-
piler automatically constructs its type argument's rep-
resentation, signaling an error when this cannot be
done statically, and turns the dlsym call into a call to
dlsym-internal, which has type:3

a dlsym-internal<a>(handle h, string symbol,
R(a) typerep)

void dlclose(hand1e h)
In DLopen, dlclose unloads the file associated with
the given handle. In particular, the file's symbols are
removed from the DLopen symbol table, and the mern-
ory for the file is freed; the programmer must make
sure there are no dangling pointers to symbols in the
file. In DLpop, dlclose only removes the symbols from

3 ~ o r purposes of exposition, we will include the R-type constructor
in Popcorn syntax, even though it is an internal type. To mark this
distinction, we will use TAL notation for type constructor application
(R(a)) instead of that of Popcorn (<a>R).

Dynamically linked code: loadable. pop

extern int f oo(int) ;

int bar(int i) {
return f oo(i) ;

}

Static code: main .pop

int foo(int i) {
return i+l;

1
void pop-main0 {

handle h = dlopen("loadableW) ;
int bar(int) = dlsym(h,"bar") ;
bar (3) ;
dlclose(h) ;

}

Figure 3: DLpop dynamic loading example

the symbol table; if the user program does not refer-
ence the object file, then it is unreachable and can be
garbage collected.

The current version of DLpop does not implement all of the
features of DLopen. For example, it does not recursively
load object files upon which a dynamically loaded file de-
pends, and cannot load files with mutual dependencies. We
also do not support user-defined finalization of unloaded ob-
ject files. However, we foresee no technical difficulties in
adding these features, and plan to do so in future work.

Figure 3 provides an example of this dynamic link-
ing strategy in Popcorn. The user would statically link
the file main. pop, which, during execution, dynamically
loads the object file 1oadable.o (the result of compiling
loadable. pop) to resolve the symbol "bar". The dynami-
cally linked file also makes external references to the function
"f oo", which are resolved at load time from the exports of
main. pop.

3.2 Implement ing DLpop in TAL/Load

Our implementation of DLpop is similar to implementations
of DLopen that follow the ELF standard [31] for dynamic
linking, which requires both library and compiler support.
In ELF, dynamically-loadable files are compiled so that all
references to data are indirected through a global offset table
(GOT) present in the object file. Each slot in the table is la-
beled with the name of the symbol to be resolved. When the
file is loaded dynamically, the dynamic linker fills each slot
with the address of the actual exported function or datum
in the running program. Exported symbols are collected
in a dynamic symbol table to facilitate this task, first con-
structed at static link time and then added to as new files
are loaded. The DLopen functions themselves are normally
implemented in a library, libdl.

We describe our DLpop implementation below, which is
similar in spirit to the ELF approach. However, DLpop is
inherently more secure than DLopen: because it is written
in TAL/Load, all operations are verifiably safe. A mistake
in our implementation will result only in incorrect behavior,

DLpop encodes the dynamic symbol table as a string-
keyed dictionary, mapping object file names to dictionaries
of symbols; the statically linked program is treated as a sin-
gle object file for our purposes here. Each time a new object
file is loaded, a new symbol dictionary is added, indexed by
its name.

Each entry of a symbol dictionary contains the name,
value, and type representation of a symbol in the running
program, with the name as the key. So that dictionary en-
tries have uniform type, we use existential types [24] to hide
the actual type of the value:4

symbol-dict : <string, 3a. (a x R (a))> dict

To update the table with a new symbol, we pack the value
and type representation together in an existential package,
hiding the value's type, and insert that package into the dic-
tionary under the symbol's key. When looking up a symbol,
the dictionary returns an entry containing a value of some
abstract type and a representation of that type. We then use
checked-cast to compare that type with the expected type
and (if they match) coerce the value to the expected type.

The DLpop library essentially consists of wrapper func-
tions for load and the dynamic symbol table manipulation
routines:

dlopen
Recall that dlopen takes as its argument the name of
an object file to load. First it opens and reads this
object file into a bytearray. Because of the compila-
tion strategy we have chosen, all loadable files should
export a single symbol, the init function. There-
fore, we call load with the init function's type and
the bytearray, and should receive back the init func-
tion itself as a result. If load returns NONE, indicating
an error, dlopen raises the exception FailsTypeCheck.
Otherwise, a new symbol dictionary is created, and a
custom update function is crafted that adds symbols
to this dictionary. The returned init function is called
with this custom update function, as well as with a
lookup function that works on the entire symbol ta-
ble. After init completes, the new symbol dictionary
is added to the global table, and then returned to the
caller with abstract type handle.

dlsym-internal
Because the handle object returned by dlopen is in
actuality the symbol dictionary for the object file,
dlsym-internal simply attempts to look up the given
symbol in that dictionary, raising an exception if the
symbol is not found or has improper type.

dlclose
The dlclose operation simply removes the symbol dic-
tionary associated with the handle from the dynamic
symbol table. Future attempts to look up symbols us-
ing this handle will be unsuccessful. Once the rest of
the program no longer references the handle's object
file, it will be safely garbage-collected.

As a closing remark, we emphasize the value of imple-
menting DLpop. We have not intended DLpop to be a
significant contribution in itself; rather, the contribution
lies in the way in which DLpop is implemented. By using
TAL/Load, much of DLpop was implemented within the

4 ~ h e type <TI, rz> dict contains mappings from rl to ~ 2 .

verifiable language, and was therefore provably safe. Only
load and XR constitute trusted elements in its implementa-
tion, and these elements are themselves small. If some flaw
exists in DLpop, the result will be object files that fail to
verify, not a security hole.

4 Measuremen t s

Much of the motivation behind TAL and PCC is to provide
safe execution of untrusted code without paying the price
of byte-code interpretation (as in the JVM) or sandboxing
(as in the Exokernel [7]). Therefore, while the chief goal of
our work is to provide flexible and safe dynamic linking for
verifiable native code, another goal is to do so efficiently.

In this section we examine the time and space costs im-
posed by load and DLpop. We compare these overheads
with those of DLopen (using the ELF implementation [31])
and show that our overheads are competitive. In particular,
our run-time overhead is exactly the same, and our space
overhead is comparable for typical programs. The verifica-
tion operation constitutes an additional load-time cost, but
we believe that the cost is commensurate with the benefit of
safety, and doesn't significantly reduce the applicability of
dynamic linking in most programs. All measurements pre-
sented in this section were taken on a 400 MHz Pentium I1
with 128 MB of RAM, running Linux kernel version 2.2.5.
DLopen/ELF measurements were generated using gcc ver-
sion eecs-2.91.66.

L.

The impatient reader may wish to skip to Section 5 to
read more about how TAL/Load can implement other dy-
namic linking strategies.

4.1 T i m e Overhead

The execution time overhead imposed by dynamic linking,
relative to Popcorn programs that use static linking only,
occurs on three time scales: start-time, load-time, and run-
time. At startup, statically-linked code must register its
symbols in the DLpop symbol table. At load-time, the run-
ning program must verify and copy the loaded code with
load, and then link it by executing its init function. At run-
time, each reference to an externally defined symbol must
be indirected through the GOT. DLopenIELF has similar
overheads, but lacks verification and its associated benefit
of safety.

4.1.1 Run-t ime Overhead

At run time, the only additional overhead on dynamic code
is the need to access imported symbols through the GOT;
this is exactly the same overhead imposed by the ELF ap-
proach. Each access requires one additional instruction,
which we have measured in practice to cost one extra cy-
cle. A null function call in our system costs about 7 cycles,
so the dynamic overhead of an additional cycle is about 14%.

4.1.2 Load-time Overhead

The largest load-time cost in DLpop is verification. Verifi-
cation in load consists of two conceptual steps, disassembly
and verification, as pictured in Figure 1, and described in
Section 2.2. Verification itself is performed in two phases:
consistency checking (labeled verify in the figure) and in-
terface checking (labeled compare types in the figure). For
the 1oadable.pop file, presented in Figure 3, the total time

tion. All functions are void (void) function^.^ Each bar in
the cluster represents a different compilation approach. The
leftmost is the standard DLpop approach, and the right-
most is DLopen/ELF. The center bar is DLpop without the
sharing of type representations, to show worst case behav-
ior (when sharing, only one type representation for void
(void) is needed). Each bar shows the size of object files
when compiled statically, compiled to export symbols to dy-
namic code, and compiled to be dynamically loadable (thus
importing and exporting symbols). The export-only case is
not shown for ELF, as this support is added a t static link
time, rather than compile-time.

The figure shows that DLpop is competitive with, or
better than, DLopen/ELF in most cases. The figure also
illustrates the benefit of type representation sharing; the
overhead for the 15i 15e when not sharing is almost twice
that when sharing is enabled. As the number of symbols in
the file increases, the ELF approach will begin to outper-
form DLpop, but not by a wide margin for typical files. In
general, we do not feel that space overheads are a problem
(nor did the designers of ELF dynamic linking, it seems).
We could structure our object files so that the i n i t func-
tion, which is used once, and type representations, which are
used infrequently, won't affect the cache, and may be eas-
ily paged out. Type representations are highly compressible
(up to 90% using gzip), and therefore need not contribute
to excessive network transmission time for extensions.

5 P rogramming o t h e r Linking Strategies
(Rela ted Work)

Using our framework TAL/Load, we can implement safe,
flexible, and efficient dynamic linking for native code, which
we have illustrated by programming a safe DLopen library
for Popcorn. Many other dynamic linking approaches have
been proposed, for both high and low level languages. In
this section we do two things. First, we describe the dy-
namic linking interfaces of some high level languages, de-
scribe their typical implementations, and finally explain how
to program them in TAL/Load, resulting in better security
due to reduced TCB size. Second, we look at some low-
level mechanisms used to implement dynamic linking, and
explain how we can program them in our framework. Over-
all, we demonstrate that TAL/Load is flexible enough to
encode typical dynamic linking interfaces and mechanisms,
but with a higher level of safety and security.

5.1 J a v a

In Java, user-defined classloaders [17] may be invoked to
retrieve and instantiate the bytes for a class, ultimately re-
turning a Class object to the caller. A classloader may
use any means to locate the bytes of a class, but then re-
lies on the trusted functions Classloader .def ineClass and
Classloader. resolveClass to instantiate and verify the
class, respectively. When invoked directly, a classloader is
analogous to dlopen. Returned classes may be accessed di-
rectly, as with dlsym, if they can be cast to some entity that
is known statically, such as an interface or superclass. In the
standard JVM implementation, linking occurs incrementally
as the program executes: when an unresolved class variable
is accessed, the classloader is called to obtain and instantiate
the referenced class. In the standard JVM implementation,

 his is the Popcorn (C-like) notation for the type unit -+ unit.

all linking operations occur within the TCB: checks for un-
resolved class variables occur as part of JVM execution, and
symbol management occurs within resolveClass.

We can implement classloaders in TAL/Load by follow-
ing our approach for DLpop: we compile classes to have
a GOT and an i n i t function to resolve and register sym-
bols. A classloader may locate the class bytes exactly as in
Java (i.e., through any means programmable in TAL), and
def ineClass simply becomes a wrapper for a function sim-
ilar to dlopen, which calls load and then invokes the i n i t
function of the class with the dynamic symbol table.

To support incremental linking, we can alter the com-
pilation of Java to TAL (hypothetically speaking) in two
ways. We first compile the GOT, which holds references to
externally defined classes, to allow null values (in contrast
to DLpop where we had default values). Each time a class
is referenced through the GOT, a null check is performed; if
the reference is null then we call the classloader to load the
class, filling in the result in the GOT. Otherwise, we sim-
ply follow the pointer that is present. The i n i t function no
longer fills in the GOT at load-time; it simply registers its
symbols with the symbol table. This approach moves both
symbol management and the check for unresolved references
into the verifiable language, reducing the size of the TCB.

5.2 OCaml Modules

Objective Cam1 [20] (OCaml) provides dynamic linking for
its bytecode-based runtime system with a special Dynlink
module; these facilities have been used to implement an
OCaml applet system, MMM [29]. Dynlink essentially im-
plements dlopen, but not dlsym and dlclose, and would
thus be easy to encode in TALjLoad. In contrast to the
JVM, OCaml does not verify that its extensions are well-
formed, and instead relies on a trusted compiler. OCaml
dynamic linking is similar to that of other type-safe, func-
tional languages, e.g. Haskell [28].

A TAL/Load implementation of the OCaml interface
would improve on its current implementation [20] in two
ways. First, all linking operations would occur outside of
the TCB. Second, extension well-formedness would be veri-
fied rather than assumed.

5.3 Uni ts

Units [8] are software construction components, quite sim-
ilar to modules. A unit may be dynamically linked into a
static program with the invoke primitive, which takes as
arguments the unit itself (perhaps in some binary format)
and a list of symbols needed to resolve its imports. Linking
consists of resolving the imports and executing the unit's
initialization function. Invoke is similar to dlopen, but the
symbols to link are provided explicitly, rather than main-
tained in a global table.

Units could be implemented following DLpop, but with-
out a dynamic symbol table. Rather than compiling the
i n i t function to take two functions, lookup and update,
it would take as arguments the list of symbols needed to
fill the imports. The function would then fill in the GOT
entries with these symbols, and then call the user-defined
- i n i t function for the unit. The implementation for invoke
would call load, and then call the i n i t function with the
arguments supplied to invoke.

The current units implementation [8] is similar to the one
we have described above, but is written in Scheme (rather

[12] R. Harper, J . C. Mitchell, and E. Moggi. Higher-order mod-
ules and the phase distinction. In Seventeenth A CM Sympo-
sium on Principles of Programming Languages, pages 341-
354, San Francisco, Jan. 1990.

[13] M. Hicks. Dynamic software updating. Technical report, De-
partment of Computer and Information Science, University
of Pennsylvania, October 1999. Thesis proposal. Available
athttp://www.cis.upenn.edu/~mwh/proposal.ps.

[I41 M. Hicks and S. Weirich. A calculus for dynamic loading.
Technical Report MS-CIS-00-07, University of Pennsylvania,
2000.

[15] L. Hornof and T. Jim. Certifying compilation and run-time
code generation. Journal of Higher-Order and Symbolic
Computation, 12(4), 1999. An earlier version appeared in
Partial Evaluation and Semantics-Based Program Manipu-
lation, January 22-23, 1999.

[I61 Hotjava browser. http: //java.sun. com/products/hotj ava/
index. html.

[17] The basics of java class loaders, 1996. http://vww.
javaworld,com/javavorld/jw-l0-1996/jw-l0-indepth.
html.

[18] D. Kozen. Efficient code certification. Technical Report 98-
1661, Department of Computer Science, Cornell University,
Ithaca, NY 12853-7501, January 1998.

[19] X. Leroy. Manifest types, modules and separate compila-
tion. In Twenty-First ACM Symposium on Principles of
Programming Languages, pages 109-122, Portland, Oregon,
Jan. 1994.

[20] X. Leroy. The Objective Caml System, Release 2.02. Institut
National de Recherche en Informatique et Automatique (IN-
RIA), 1999. Available at http://pauillac.inria.fr/ocarnl.

[21] M. Lillibridge. Translucent Sums: A Foundation for Higher-
Order Module Systems. PhD thesis, Carnegie Mellon Univer-
sity, School of Computer Science, Pittsburgh, Pennsylvania,
May 1997.

[22] T. Lindholm and F. Yellin. The Java Virtual Machine Spec-
ification. Addison-Wesley, 1996.

[23] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The
Definition of Standard ML (Revised). The MIT Press, Cam-
bridge, Massachusetts, 1997.

[24] J. C. Mitchell and G. D. Plotkin. Abstract types have exis-
tential type. ACM Ilf-ansactions on Programming Languages
and Systems, 10(3):470-502, July 1988.

[25] G. Morrisett, K . Crary, N. Glew, D. Grossman, R. Samuels,
F. Smith, D. Walker, S. Weirich, and S. Zdancewic. TALx86:
A realistic typed assembly language. In Second Workshop on
Compiler Support for System Software, Atlanta, May 1999.

[26] G. Morrisett, D. Walker, K. Crary, and N. Glew. From Sys-
tem F to typed assembly language. ACM Ransuctions on
Programming Languages and Systems, 21(3):527-568, May
1999. An earlier version appeared in the 1998 Symposium
on Principles of Programming Languages.

[27] G. Necula and P. Lee. Safe kernel extensions without run-
time checking. In Second Symposium on Operating Systems
Design and Implementation, pages 229-243, Seattle, Oct.
1996.

[28] 3. Peterson, P. Hudak, and G. S. Ling. Principled dynamic
code improvement. Technical Report YALEUIDCSJRR-
1135, Department of Computer Science, Yale University,
July 1997.

(291 F. Rouaix. A Web navigator with applets in Caml. In PFO-
ceedings of the 5th International World Wide Web Confer-
ence, an Computer Networks and Telecommunications Net-
working, volume 28, pages 1365-1371. Elsevier, May 1996.

[30] E. G. Sirer, M. E. Fiuczynski, P. Pardyak, and B. N. Ber-
shad. Safe dynamic linking in an extensible operating sys-
tem. In First Workshop on Compiler Support for System
Software, Tucson, February 1996.

[31] Tool Interface Standards Committee. Executable and Link-
ing Format (ELF) Specification. http: //x86. ddj . com/ftp/
manuals/tools/elf.pdf, May 1995.

[32] S. Weirich. Type-safe cast. In submission, Mar. 2000.

