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ABSTRACT

NOVEL STATISTICAL METHODOLOGIES IN ANALYSIS OF POSITION EMISSION

TOMOGRAPHY DATA: APPLICATIONS IN SEGMENTATION, NORMALIZATION, AND

TRAJECTORY MODELING

Daniel B. Shin

Russell T. Shinohara

Position emission tomography (PET) is a powerful functional imaging modality with wide uses in

fields such as oncology, cardiology, and neurology. Motivated by imaging datasets from a psoriasis

clinical trial and a cohort of Alzheimer’s disease (AD) patients, several interesting methodological

challenges were identified in various steps of quantitative analysis of PET data. In Chapter 1, we

consider a classification scenario of bivariate thresholding of a predictor using an upper and lower

cutpoints, as motivated by an image segmentation problem of the skin. We introduce a generaliza-

tion of ROC analysis and the concept of the parameter path in ROC space of a classifier. Using this

framework, we define the optimal ROC (OROC) to identify and assess performance of optimal clas-

sifiers, and describe a novel nonparametric estimation of OROC which simultaneous estimates the

parameter path of the optimal classifier. In simulations, we compare its performance to alternative

methods of OROC estimation. In Chapter 2, we develop a novel method to normalize PET im-

ages as an essential preprocessing step for quantitative analysis. We propose a method based on

application of functional data analysis to image intensity distribution functions, assuming that that

individual image density functions are variations from a template density. By modeling the warping

functions using a modified function-on-scalar regression, the variations in density functions due to

nuisance parameters are estimated and subsequently removed for normalization. Application to

our motivating data indicate persistence of residual variations in standardized image densities. In

Chapter 3, we propose a nonlinear mixed effects framework to model amyloid-beta (Aβ), an impor-

tant biomarker in AD. We incorporate the hypothesized functional form of Aβ trajectory by assuming

a common trajectory model for all subjects with variations in the location parameter, and a mixture

distribution for the random effects of the location parameter address our empirical findings that

some subjects may not accumulate Aβ. Using a Bayesian hierarchical model, group differences

are specified into the trajectory parameters. We show in simulation studies that the model closely
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estimates the true parameters under various scenarios, and accurately estimates group differences

in the age of onset.
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CHAPTER 1

INTRODUCTION

The field of biomedical imaging has transformed in recent decades from simple applications, such

as visualization of broken bones using projection radiographs, to vastly more complex applications,

such as quantification of brain activity using functional magnetic resonance imaging. Advances

in imaging technology has made it possible to observe real-time in vivo disease processes, e.g.

the level of impaired bone mineralization or the amyloid plaque burden in the brains of Alzheimer’s

disease (AD) patients, that until recently could only be seen post mortem or using invasive methods

such as biopsies. The transition from qualitative to quantitative applications in biomedical imaging,

along with increasing understanding of the relationship between various disease biomarkers and

clinical outcomes, has highlighted the importance of robust statistical methods.

This dissertation focuses on positron emission tomography (PET) and statistical methodologies in-

spired by problems encountered during the analysis of PET data. The motivation comes from the

Vascular Inflammation in Psoriasis (VIP) trial. The VIP trial is a multicenter, randomized controlled

trial to assess the effects of adalimumab, a biological systemic therapy, on systemic vascular in-

flammation in subjects diagnosed with moderate to severe psoriasis, as compared to narrow-band

ultraviolet B phototherapy or placebo. The primary outcome measure is the change in total vascu-

lar inflammation in aortic segments as assessed using 18F-fludeoxyglucose (FDG) PET/computer

tomography (CT) between baseline and end of study. The timing of the start of the dissertation

research coincided with the start of the VIP trial, and the opportunity naturally arose to observe and

participate in the analytic planning of the trial. This opportunity eventually evolved into the first two

chapters of this dissertation.

Chapter 2 is inspired by a novel application of FDG-PET/CT to quantify the level of skin inflamma-

tion. With the goal to quantify and correlate PET signals with clinical psoriasis severity measures,

skin segmentations need to be superimposed on the FDG-PET images that contain measures of

metabolic activity. A method for image segmentation, or the partitioning of an image into segments

of interest, is devised for the skin using the CT image, where a bivariate threshold (i.e. upper

and lower cutpoints are used) is applied to a binary tissue mask image transformed using a Gaus-
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sian filter. This chapter addresses the performance assessment of bivariate thresholding such as

the interval classification used in the segmentation method. However, after the methodology was

developed, it was noticed that proper co-registration, or alignment, of PET image to the CT segmen-

tations became impossible due to significant movements of the extremities during image acquisition

in the VIP trial. A dataset from serum sodium levels in patients hospitalized for fulminant bacterial

meningitis fit the classification scenario was substituted as the motivating example.

While parallels can be drawn from the classic binary classification scenario and the receiver op-

erating characteristic (ROC) analysis, these classic approaches are inadequate and restrictive for

classification beyond simple univariate binary thresholding. Simple classification scenarios involv-

ing thresholding a predictor using a cutpoint offer straightforward assessments of classifier perfor-

mance using the ROC curve, but in complex scenarios, such as bivariate thresholding, the ROC

curve is not specified. Chapter 2 presents a generalization of the ROC analysis, introduces the

concept of the parameter path in the ROC space of a classification scenario, and defines the opti-

mal ROC (OROC) to identify and assess performance of optimal classifiers. Interval classification,

where a predictor is thresholded using two cutpoints, is used to illustrate the OROC estimation and

show that nonparametric estimation (NPE) procedure simultaneously produces the parameter path

of the optimal classifier. Alternative semiparametric and parametric methods for OROC estima-

tion are presented: the generalized additive model (GAM), and the maximum likelihood estimation

(MLE) based on a profile likelihood. The performance of the NPE, GAM, and MLE in Monte Carlo

simulations and application to the serum sodium dataset are presented.

Chapter 3 covers image normalization, a major topic in quantitative PET. Image normalization is

widely viewed as an essential preprocessing step for quantitative analysis. While great advance-

ments have been made in normalization for magnetic resonance imaging (MRI), quantitative analy-

sis of positron emission tomography (PET) primarily involves the use of standardized uptake values

(SUV) which aim to account for major sources of nuisance variation. However, these units are

highly susceptible to variations in imaging protocol and physiology. A normalization method based

on the application of functional data analysis to image intensity distribution functions is proposed

in this chapter, with the assumption that individual density functions are variations from a template

density function. Warping functions, which transform the template density into individual densities,

capture these variations. By modeling the warping functions using a modified function-on-scalar
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regression, the variations in density functions due to nuisance parameters are estimated and sub-

sequently removed for normalization. This chapter outlines image intensity density normalization

and includes the application to the VIP trial dataset. Additionally, the normalized densities show

correlations with cardiovascular biomarkers that are not present in the original densities.

Chapter 4 presents another interesting PET data problem in the realm of neuroimaging. The prob-

lem presents itself in the form of a plot (Figure 4.1) of longitudinal measurements of amyloid-beta

(Aβ) in the brain, using florbetapir-PET. There are striking features that show 1) differences by

genotypes, 2) an outline of a common trajectory function, and 3) possible clustering of subjects

who many have significant delay in Aβ accumulation. Aβ is an important biomarker in AD, and

a general hypothesis exists regarding the functional form of its longitudinal trajectory. Surprisingly,

even with various hypotheses on the shape of Aβ trajectories, no studies have integrated this knowl-

edge in modeling Aβ trajectories, with most analyses instead relying on basic linear mixed effects

models. This chapter describes a new approach using nonlinear mixed effects framework to model

Aβ trajectories as measured by florbetapir-PET in a cohort of patients from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI). The hypothesized functional form of Aβ trajectory is incorporated by

assuming 1) a common trajectory function for all subjects, with variations in the location parameter,

and 2) a mixture distribution for the random effects of the location parameter to address an em-

pirical findings that some subjects may not accumulate Aβ. Using a Bayesian hierarchical model,

group differences are specified into the trajectory parameters. Monte Carlo simulation results are

presented to show the performance of model estimates under various scenarios. Application to the

ADNI data show an estimated difference of 21 years in the onset of Aβ between average and high

risk group based on APOE genotype.
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CHAPTER 2

ESTIMATION OF THE OPTIMAL ROC IN COMPLEX CLASSIFICATION SETTINGS

2.1. Introduction

Assessment of classifier performance is well established for simple biomedical scenarios. The most

common methods quantify the tradeoff between correct and incorrect disease classifications to de-

termine the performance of a biomarker, and these methods are prevalent in binary classification

settings. While these methods may be sufficient for classification that involves thresholding a con-

tinuous score, they are not be able to accommodate complex classifications such as multivariate

thresholding. In the setting of multiple thresholds, the traditional single threshold method cannot

be used to assess the performance of the classifier. Alternatively, the performance measure of the

classifier must accurately reflect the classification rule.

The receiver operating characteristic (ROC) curve is the standard method of assessing classifier

performance, owing largely to the simplicity of its graphical and statistical interpretation (Metz,

1978; Pepe, 2003). The ROC curve is defined in the binary setting, where two distinct classes

are assumed to have different (i.e. separated) distributions of a common measure such that partial

separation of distributions can be achieved using a single cutoff. In this particular setting, the ROC

curve has been extensively characterized and its properties are well understood.

In the framework of the simple thresholding of a dependent variable that allows the tradeoff be-

tween sensitivity and specificity to be used, extensions have been developed for more complex

decision rules, with the emphasis primarily on ternary classification such as trichotomous classi-

fication (Dreiseitl, Ohno-Machado, and Binder, 2000; Mossman, 1999) and transitional (ordinal)

classification (Alonzo and Nakas, 2007; Nakas and Alonzo, 2007). These classifier assessment

methods rely on a seemingly natural extension of the ROC curve, the ROC surface, whose volu-

metric interpretation is similar to the area under the ROC curve (AUC) (Dreiseitl, Ohno-Machado,

and Binder, 2000; Mossman, 1999; Nakas and Yiannoutsos, 2004; Nakas and Alonzo, 2007).

However, traditional ROC analysis suffers the major limitation of an assumption of classification

based on univariate thresholds, i.e. it assumes risk increases or decreases monotonically with the

biomarker. Consider a scenario where the classification is based on a more complex decision rule,
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such as biomedical image segmentation (i.e. classification of features of an image as anatomical or

disease classes) using a multimodal histogram where a feature of interest has values only within a

specific interval (Chen, 2008). A histogram of the image intensity values may assume a multimodal

distribution, and a segmentation algorithm may partition the histogram using thresholds based on

features such as valleys in the histogram. Another scenario to consider is predicting survival of pa-

tients based on biomarkers at admission to a hospital in patients with fulminant bacterial meningitis

(Muralidharan, Mateen, and Rabinstein, 2014), where serum sodium level within a specific range

may predict survival better than using single threshold. In such cases, traditional ROC analysis,

which can only assess the sensitivity and specificity tradeoff for one threshold at a time, are no

longer useful.

We propose a simple generalization of ROC analysis that does not impose a binary cutoff restriction

and can easily accommodate various classification scenarios. In Section 2.2, we introduce optimal

ROC framework and apply this concept using a simple case that involves classification bounded

by two thresholds, or interval classification. We demonstrate nonparametric, semiparametric, and

parametric estimation procedures for the generalized ROC analysis, and show that the nonpara-

metric estimation procedure has the benefit of simultaneously estimating the optimal thresholds for

a given sensitivity or specificity. In Section 2.4, we compare the performance of the various pro-

posed ROC methods in simulation studies. In Section 2.5, we apply these methods to the study of

serum sodium levels for predicting survival in bacterial meningitis patients.

2.2. Description

2.2.1. Classical terminology

We adopt the traditional terminology from the simple binary classification scenario. The true class

membership Y = {1, 0} is predicted using a continuous predictor X. For a given threshold parame-

ter θ, an observation with X > θ is classified as Y = 1. Consequently, the true positive rate (TPR),

or sensitivity, is defined as the proportion of correctly classified positives (denoted as Y ):

TPR(θ) = P (X > θ|Y = 1) = P (XY > θ). (2.1)
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The false positive rate (FPR), or 1-specificity, is defined as the proportion of incorrectly classified

negatives (denoted as Ȳ ):

FPR(θ) = P (X > θ|Y = 0) = P (XȲ > θ). (2.2)

While the plot of TPR as a function of FPR(θ) traditionally represents the ROC curve (Pepe, 2003),

we use a more general representation of the ROC as a vector-valued function,

ROC(θ) = {FPR(θ), TPR(θ)}, for θ ∈ Θ. (2.3)

In traditional binary classification, Θ = R, and the plot is a monotonic curve. Specifically, the ROC

curve is a function of the data generating distribution, the classifier f , and its parameter θ. In

simple classification, the classifier is based on a single parameter θ and it can be summarized as

an indicator function

f(θ,X) = I(X > θ). (2.4)

The performance of the classifier is summarized using the AUC by integrating TPR over FPR.

2.2.2. Parameter path of the ROC curve and the optimal ROC

The tradeoff between TPR and FPR is graphically summarized by the ROC curve. In the simple

classification scenario, TPR as a function of FPR(θ) is sufficient to describe the performance of the

classifier over Θ as an ROC curve. In the more general case, θ ∈ Θ must be properly structured to

represent a classifier in ROC space.

For a classifier f , we define a continuous path φ,

φ : (0, 1) 7→ Θ, (2.5)

where lims→0 φ(s) corresponds to (0,0) in the ROC plot, and lims→1 φ(s) corresponds to (1,1).

In the simple classification case, lims→0 φ(s) = −∞ and lims→1 φ(s) = ∞. Conceptually, φ can

be represented as a sequence of θ that plots the ROC curve from (0,0) to (1,1). We denote the

functional space of all φ by Φ, and in simple classification Im(φ) ≡ R, ∀φ ∈ Φ.
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In a given classification schema, Φ produces set of all possible ROC curves. Since it is convention

to attribute one ROC curve to a classifier, from now we refer to φ as a classifier. Revisiting the

ROC, it can now be defined as a function of the classifier and data:

ROC(FY,Ȳ ,φ, s) = {FPR(φ(s)), TPR(φ(s))}, s ∈ [0, 1]. (2.6)

Furthermore, we generalize the AUC as the integration of TPR over φ transformed to FPR:

AUC =

∫
φ

TPR(θ) dFPR(θ) · dθ. (2.7a)

It can be reparameterized as an integral over FPR:

AUC =

∫ 1

0

TPR(φ(s)) dFPR(φ(s)). (2.7b)

In the case where FPR is an invertible function whose domain is φ(s), s ∈ [0, 1], substituting

u = FPR(φ(s)), (2.7b) becomes more familiar:

AUC =

∫ 1

0

TPR(FPR−1(u)) du. (2.7c)

The concept of the optimal ROC is straightforward. For a given classification scenario in Φ, we are

interested in a classifier φ that achieves the best classification. Namely, we want φ that achieves

the optimal ROC, with optimality defined by a feature (generally the AUC) of the ROC curve:

arg max
φ

AUC(φ) := {φ | ∀τ ∈ Φ : AUC(τ ) ≤ AUC(φ)}. (2.8)

In simple classification, {Im(φ)} ≡ R implicitly defines a unique φ that spans from −∞ to ∞,

therefore it is the optimal ROC classifier.

2.2.3. Interval classification

The concept of optimal ROC may seem trivial in simple classification, but its importance is evi-

dent in classification that uses more than a single parameter. To illustrate the optimal ROC, we

describe a more complex classification schema with two real parameters, θ = {θ1, θ2}, and with the
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classification function defined as

f(θ, X) = I(θ1 < X < θ2). (2.9)

We refer to this as interval classification, and the decision rule is also straightforward. In this case,

the TPR is:

TPR(θ) = P (XY > θ1 ∩XY < θ2). (2.10)

Similarly, FPR is defined as

FPR(θ) = P (XȲ > θ1 ∩XȲ < θ2). (2.11)

A contour plot of FPR(θ) and TPR(θ) (Fig 2.1) best illustrates Θ, now a subset of R2, and Φ of

this schema. As before, define a path represented as an arc along the surface with end points

parameterized as 0 and 1, respectively representing (FPR, TPR) of (0,0) and (1,1). Let φ be a

continuous function that maps the arc to the parameters that constitute an ROC curve, such that

lims→0 φ(s) = {θ, θ} for some θ ∈ R and lims→1 φ(s) = {−∞,∞}. In this scenario, Im(φ) is a set of

θ ∈ R2 that defines an ROC curve. It is evident that a unique φ does not exist; rather, many possible

classifiers exist. The corresponding ROC curves of the four φs highlighted in (Fig 2.2) show a wide

classifier performance range, but φ1 has the largest AUC.

The AUC in interval classification has the following form:

AUC =

∫
φ

TPR(θ) dFPR(θ) dθ

=

∫
φ

P (XY ≥ θ1 ∩XY ≤ θ2)·

d{P (XȲ ≥ θ1 ∩XȲ ≤ θ2)}dθ.

The conventional interpretation of the AUC is the probability of correctly ordering diseased and

non-diseased in simple classification (Pepe, 2003). This interpretation is more difficult in complex

classification settings; however, for the simple case where FY and FȲ are symmetric about 0 and
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Figure 2.1: Plot of FPR(θ) and TPR(θ). TPR(θ) is the color overlay of FPR(θ), represented as
the surface plot. The colored curves along the surface represent sample φ’s. The black curve
represents the φ of the optimal ROC. The corresponding ROC curves are shown in Figure 2.2. The
plot represents underlying data densities in Figure 2.3a (µ = 2.5).

θ1 = −θ2 for all points along φ, it can be easily seen that

AUC = P (|XY | < |XȲ |), (2.12)

which is similar to the probabilistic interpretation of AUC in the classical case.

2.3. OROC estimation

We present three methods for estimating the optimal ROC for our interval classification scenario,

but these methods are generalizable to many binary classification scenarios.
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2.3.1. Nonparametric estimation

Ideally, we want to estimate the φ that satisfies the definition of optimality (2.8) for a given classi-

fication scenario. From a random sample (X1, Y1), . . . , (Xn, Yn), we may simultaneously estimate

the φ and optimal ROC curve nonparametrically. Formally, for each possible value of FPR = s, we

choose the parameters θ that have the corresponding FPR and maximum TPR:

φ̂Opt(s) = arg max
θ:FPR(θ)=s

TPR(θ) := {θ | ∀π : TPR(π) ≤ TPR(θ)}. (2.13)

Monotonicity is guaranteed since FPR(θ1, θ2) ≤ FPR(θ1 − δ1, θ2 + δ2) and TPR(θ1, θ2) ≤ TPR(θ1 −

δ1, θ2 + δ2) for any δ1, δ2 > 0. φ̂Opt(u) is the estimator for φ in (2.8); maximization of TPR over all

values of FPR results in maximizing the AUC. Alternatively, for a given value of TPR = s, θ could

also be chosen to have the minimum FPR:

arg min
θ:TPR(θ)=s

FPR(θ) := {θ | ∀π : FPR(π) ≥ FPR(θ)}. (2.14)

The two methods are equivalent and yield the same optimal ROC curve, since TPR for θ̂ obtained

for given value of FPR returns θ̂ by definition, and vice versa.

The nonparametric method simultaneously estimates the classifier φ and the optimal ROC curve.

In the interval classification scenario, φ is represented by a continuous path along the ROC surface

in Figure 2.1, but φ may include any set of discontinuous or disjointed paths that give rise to the

optimal ROC. From this point, we refer to the nonparametric optimal ROC classifier estimation as

NPE. Appendix A is the R code for nonparametric estimation of the optimal ROC AUC.

2.3.2. Semiparametric estimation

An alternative method for estimating the optimal ROC for the interval classification is a generalized

additive model (GAM) using quadratic penalized regression splines with smoothing parameters se-

lected by REML (Hall, Hyndman, and Fan, 2004; Hastie and Tibshirani, 1986) for the classification

of class membership. The model is simply

logit{Pr(Y = 1|X)} = f(X) (2.15)
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where the function f is a smooth function of X, modeled using thin plate regression splines (Wood,

2003). For interval classification, the general shape of f is a smooth curve with a single hump

centered between the intervals and low values outside of the interval (e.g. a quadratic curve).

The performance assessment of φ is straightforward: the predicted value from (2.15) can be thresh-

olded as in the classical scenario, and a simple area under the ROC curve can be employed to

estimate the optimal ROC. Additionally, f−1{logit(p̂)} ∈ {Im(φ̂)} so φ can be estimated indirectly,

and we refer to this semiparametrically estimated classifier as the GAM classifier. We implement

this using the R (R Core Team, 2014) package mcgv (Wood, 2000, 2004, 2011).

2.3.3. Parametric estimation

Another alternative method for optimal interval classification is specifying a parametric model. For

our interval classification scenario, we can incorporate the complex decision rule directly into a

generalized linear model and maximize the model likelihood L under

logit{Pr(Y = 1|S)} = α+ βI(θ1 < X < θ2). (2.16)

Our parameter of interest is θ = {θ1, θ2}. We estimate {θ, α, β} using a profile likelihood Lθ(α̂θ, β̂θ).

For each θ using a grid search, we find α̂ and β̂. Subsequently, we evaluate

θ̂Opt = arg max
θ

Lθ(α̂θ, β̂θ), (2.17)

which we refer to as the MLE classifier. We assess the performance of the MLE classifier using

ROC curve generated from the logistic model or direct classification.

2.4. Simulation

To compare the proposed estimation techniques for the optimal ROC, we simulate from data-

generating distributions consistent with the interval threshold setting, where XY is sandwiched

by XȲ . We first consider symmetric distributions for simplicity using bimixture distributions, and we

then consider estimating φ using asymmetric distributions. The data are independently generated

for training and validation.
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2.4.1. Simulation - symmetric distributions

Three different scenarios are considered for our simulations, with variations in distributional overlap

betweenXY andXȲ . In the world simulation, we use a normal distribution and a mixture distribution

of normals (Figure 2.3a). For each observations i = 1, ..., N , we randomly sample XY i ∼ N (0, 1),

and for each observations i = N + 1, ..., 2N , we randomly sample XȲ i ∼ 1
2N (−µ, 1) + 1

2N (µ, 1).

In the second simulation, the distribution of the score for cases is modified to a uniform distribution

(Figure 2.3b). For each observations i = 1, ..., N , we randomly sample XY i ∼ Unif(−1.5, 1.5),

and for each observations i = N + 1, ..., 2N , we randomly sample XȲ i ∼ 1
2N (−µ, 1) + 1

2N (µ, 1).

The third simulation involves a biuniform distribution flanking a uniform distribution (Figure 2.3c);

the distributional overlap is no longer transitional. For each observations i = 1, ..., N , we randomly

sample XY i ∼ Unif(−1.5, 1.5), and for each observations i = N + 1, ..., 2N , we randomly sample

XȲ i ∼ 1
2Unif(−µ− 1.5,−µ+ 1.5) + 1

2Unif(µ− 1.5, µ+ 1.5).

2.4.2. Simulation results

We simulate B = 1000 datasets for each parameter combination and obtained AUC performance

measures for the training and validation sets. Figure 2.4 summarizes the mean AUCs. In all simu-

lations, the AUC increases with greater separation between XY and XȲ (i.e. increasing µ).

While there is a tendency for the NPE to overfit the data when the separation is small (i.e. greater

overlap between XY and XȲ ), more so than the GAM and the MLE, the NPE performs better

than GAM and MLE in small sample sizes and smaller separations in distributions. With sharp

distributions (i.e. uniform, simulations 2 and 3 in Fig 2.4), the NPE once again performs better than

GAM and MLE in smaller sample sizes and separations. In general, the optimal ROCs from NPE

and GAM methods are more similar than those of the MLE method, and this may be attributed to

the estimation of a single point in the MLE φ .

2.4.3. φ estimation

Figure 2.5 illustrates the NPE of φ. We simulated data using asymmetric distributions with the

following parameters: XY i ∼ N (1, 1), XȲ i ∼ 1
2N (−0.5, 1) + 1

2N (2, 1), and N = 500 each for XY

and XȲ . The estimation procedure according to (2.13) is used.
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The NPE ROC curve is remarkably close to the true optimal ROC curve. There is expected noise

in φ̂, especially at the beginning of the ROC curve, but the overall path is captured. The intervals

between θ1 and θ2 in the true and estimated φ are consistent over the values of FPR.

2.5. Serum sodium data

The motivating dataset is from a retrospective study that sought to identify neurological factors

associated with poor outcome in adult patients with fulminant bacterial meningitis (Muralidharan,

Mateen, and Rabinstein, 2014). Serum sodium at admission was obtained in 39 patients hospi-

talized for fulminant bacterial meningitis at the Mayo Clinic in Rochester, Minnesota. The primary

end-point of the study was in-hospital mortality.

Patients who have serum sodium levels outside of the ideal range of 136-145 mmol/liter may have
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higher risk of poor outcomes (i.e. death) (Kratz et al., 2004), whereas serum sodium levels inside

the ideal range would carry no additional risk of death. With the outcome defined as survival,

we estimate the OROC using the NPE method and compare it with the GAM and MLE methods.

Table 2.1 contains the complete data analyses along with bootstrapped 95% confidence intervals

(n = 1000).

Although the GAM has the highest AUC at 0.83, it was not significantly different from the NPE and

MLE methods (AUCs of 0.76 and 0.69, respectively). It is possible that due to a small sample size,

outliers may force the flexible splines of the GAM to estimate a functional form that is cubic instead

of quadratic in nature, thereby losing the fidelity to the classification decision rule. We also assess

the performance of the different classifiers using subsampling at random at 30% and 50% of the

observed sample size which shows with similar cross-validated results.

NPE GAM MLE

Sampling Tr Val Tr Val Tr Val
Complete

data 75.5 - 82.9 - 68.6 -
(64.3-90.9) (69.1-99.2) (63.3-88.0)

30%
85.3 61.0 90.2 63.6 83.3 65.1

50%
80.7 66.7 83.5 70.3 76.3 65.8

Table 2.1: Serum sodium analysis: Complete data and mean AUCs (%) from 1000 resamples

2.6. Discussion

We generalize ROC-based performance assessment in complex classification settings by defining

a classifier φ as a path in the ROC space. The example of interval thresholding illustrates the

inherent limitations of applying the traditional binary decision rules associated with ROC curves,

and the OROC offers an easy and intuitive framework to assess performance of interval classifiers.

Unlike the MLE classifier, where only a single classification table can be obtained, the NPE and

GAM classifiers have flexibility in range of classification statistics. The NPE classifier, however, has

the advantage of ease of interpretation; the directly estimated φ plotted over the ROC curve such

in Figure 2.5 provides an intuitive look-up table for the classifier, and simple comparisons of new

measurements to the optimal thresholds is straightforward. This simplicity is desirable in clinical

diagnostic setting. In our example, φ̂, the estimated path through Φ, is noisy, but a smooth function
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may improve estimation of φ.

While GAM has the added benefit of natural accommodation of external covariates, which can be

useful in applications such as tissue segmentation described above, existing methods for covariate-

adjusted ROC analysis (Janes and Pepe, 2009) may be applicable to the NPE. Furthermore, the

flexibility of the GAM may make it susceptible to influential outliers. This may result in loss of fidelity

to an a priori classification rule, whereas the NPE and MLE methods are bound by the classifi-

cation rule. Regarding comparison of NPE classifiers, existing tests using bootstrap estimates of

standard errors of the AUCs can be easily performed (Hanley and McNeil, 1982) without being

computationally expensive. Further work is necessary to investigate the asymptotic distribution of

the NPE AUC with and without distributional assumptions.

In addition to improvements in classification performance in data scenarios described in this chap-

ter, the simplicity of the performance measure of complex classifiers should make the application

of NPE and GAM more compelling. The present work uses the bivariate classification setting ex-

ample, but this methodology may be extended to multiple input scores X1, X2, X3, ... and threshold

parameters θ1,θ2,θ3, .... Another interval thresholding scenario, albeit theoretical, may include

multimodal thresholding, e.g. I(tl1 < S < tu1
∪ tl2 < S < tu2

∪ ...), where clusters of intervals for

class membership exist.
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CHAPTER 3

INTENSITY NORMALIZATION OF PET IMAGES VIA DENSITY WARP REGRESSION

3.1. Introduction

Biomedical imaging modalities such as magnetic resonance imaging (MRI), computer tomography

(CT), and positron emission tomography (PET) are established cornerstones of qualitative diag-

nostics that allow visualization of structures and physiological function in healthy and diseased

subjects. Statistics have gradually transformed the use medical imaging from a qualitative to a

quantitative tool, allowing greater discrimination and more comprehensive descriptions of disease

status and prognosis. However, quantitative analysis of biomedical images is challenging due to

the many sources of unwanted variation that confound the signal. These sources range from ma-

chine calibration and scan parameters to the patient’s metabolic rate affected by ambient conditions

(Coxson, 2013). Without comparability of measurements, formal statistical inference suffers from

diminished power and potentially strong biases.

Image intensity normalization is generally acknowledged as a key preprocessing step in the an-

alytical pipeline. Various methods exist in the literature, including histogram matching (Nyul and

Udupa, 1999) and intensity normalization with respect to particular regions of interest (ROI) (Shino-

hara et al., 2014). In the latter example where particular anatomical structures are assumed to have

similar physical consistency, such as the normal appearing white matter or cerebellar gray matter

in the brain, simple z-score statistical normalization successfully removes a significant amount of

nuisance variability due to parameters such as scanner and platform. More often than not, these

benefits are conferred to imaging modalities with high resolutions (e.g. MRI) and well character-

ized tissue properties (e.g. density). In PET imaging, image resolution is bounded by an inherent

uncertainty of the radionuclide tracer location, image reconstruction is dependent on near-perfect

alignment of a reference image, and tissue-specific intensity is dependent on pharmacokinetics

and physiological state of the body. The standardized uptake value (SUV), a relative measure of

tracer uptake, compensates for the largest sources of signal variation, which include the amount

of injected tracer, patient body weight, and radioactive decay. Summary measures of SUV and

tissue-to-background ratio, which is calculated by dividing each SUV image by the subject’s mean
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SUV in reference tissues, are mainstays in quantitative PET. Increasingly, however, it is becoming

clear that existing normalization methods for PET may be inadequate to handle these sources of

variability (Huet et al., 2015; Keyes, 1995).

In this chapter, we propose a new statistical normalization strategy based on the application of

functional data analysis (FDA) to image intensity distribution functions. FDA has been previously

proposed for analyzing densities by treating empirical density curves as functional data (FD) objects

(Alois Kneip, 2001) and conducting unsupervised analyses to investigate unwanted variation. One

such method directly uses the empirical probability density functions (PDF) as FD objects (Deli-

cado, 2011). Unfortunately, these normalizations suffer from undesirable properties, including the

violation of regularity conditions of the Hilbert space-based methods when applied to density func-

tions (Petersen and Mller, 2016). Outside of image analysis, supervised methods for normalization

using functional data have been proposed, such as functional normalization (funnorm) by Fortin et

al. (Fortin et al., 2014). This method uses simple additive models for quantile functions as FD ob-

jects. Unfortunately, coefficients near boundary values (i.e. at 0 and 1) may be subject to increased

uncertainty in estimation when studying quantile functions. The funnorm approach also does not

account for smoothness in the curves, but rather focuses on pointwise regression techniques in the

context of gene expression distributions. We propose a novel FDA approach to density-valued data

that uses a modified function-on-scalar regression applied to image-specific warping functions from

a template density function. This method aims to increase the flexibility to capture more shape vari-

ation and reduce estimation uncertainty at boundary limits, while maintaining interpretability and

improving statistical power for detecting group differences.

Our motivating example comes from the Vascular Inflammation in Psoriasis (VIP) Trial, a random-

ized, placebo-controlled study designed to test the effect of systemic therapy for psoriasis on sys-

temic vascular inflammation as measured by PET/CT. Psoriasis is a common inflammatory disease

that prominently manifests in the skin, but it is also independently associated with many cardio-

vascular comorbidities. These include myocardial infarctions (MI), stroke, and cardiovascular death

(Gelfand et al., 2006; Ogdie et al., 2015). The underlying inflammatory mechanism in psoriasis

is shared by other diseases that are associated with cardiovascular burden, and lowering sys-

temic inflammation may mitigate the risk. Since inflammation involves biological processes with

high metabolic activity (i.e. glucose consumption (Emami and Tawakol, 2014)), a radionuclide
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Figure 3.1: Left: PET image. Intensity levels (shown in jet color spectrum) indicate the level of
18F-FDG uptake in tissue. Right: Corresponding CT image in grayscale. The anatomical structures
are more pronounced, and the intensity levels indicate tissue density.

glucose-analogue, 18F-fludeoxyglucose (FDG), may be used as a biomarker to measure the level

of metabolic activity. Figure 3.1 is a coronal (frontal) plane image view of a PET/CT scan of a

study patient; red regions, including the brain, show tissue with high 18F-FDG uptake, indicative of

high metabolic activity. Our goal in this work is to improve quantification of systemic inflammation

through improved normalization of the PET image. In the remainder of this chapter, we apply our

normalization to the VIP data and compare the correlation between densities and cardiovascular

biomarkers before and after normalization.
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3.2. Methods

3.2.1. Density-valued data

In PET, the raw unit of measure is radioactivity concentration of becquerels per cubic centimeter

(Bq/cc). This unit reflects the amount of radionuclide tracer concentration (i.e. 18F-FDG) in tissue,

and is the quantitative unit for a given voxel in a PET scan image. We denote the intensity at a given

voxel v as Y (v), which arises from an intensity distribution f . We make fundamental assumptions of

the data that the intensity distribution of a scan for a patient is a realization of a stochastic process

that generates these distributions. We further assume that the variations from a template density

fm are attributable to biological and non-biological factors, and can be modeled statistically.

3.2.2. Warping functions

For each subject i, we define the density-valued image intensity data as the empirical probability

density function fi(x), where x represents image intensity values and ranges. Likewise, we let

Fi(x) represent corresponding cumulative distribution function. We denote the population template

function by Fm(x) =
∫ x

0
fm(u)du, and define the warping function wi(x) as the function that maps

Fm(x) to Fi(x). That is, a warping function wi remaps the domain such that

Fm{wi(x)} = Fi(x). (3.1)

The warping function is represented as a curve, with the identity function wI(x) = x indicating no

warping. To define the template function, we use the depth measure of centrality of a given curve

within a group of curves as defined by Fraiman and Muniz (2001). We use the functional median

of a set of curves, which is defined as the function Fm(x) having the greatest integrated depth.To

assess the systematic effects of sources of variation that are not related to the biological processes

of interest, we next propose to study the warping functions using functional regression models.

3.2.3. Restricted function-on-scalar regression

Following the assumption that the variations from the population mean or template intensity distri-

butions can be explained by biological and non-biological factors, we can model the effects of these

factors using the warpings as the functional responses. We denote by Vi = (Vij)
J
j=1 the vector
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of observed variables that are not of interest for the study; for example, the dose of radionuclide

tracer administered only introduces unwanted variation into the measurements. We further denote

by Xi = (Xik)Kk=1 the vector predictors of interest for subject i. Since CDFs range from 0 to 1, the

warping functions at domain boundaries are restricted to the identity functions. This can be further

simplified by subtracting the wI(x) from wi(x) to yield functional responses ri(x) that are restricted

to 0 at the domain boundaries.

The ri(x) can be modeled as functional responses for regression models with scalar predictors (i.e.

biological and non-biological factors). We employ regression models for functional responses and

scalar predictors (Ramsay, 2005; Reiss, Huang, and Mennes, 2010):

r(x) = Zβ(x) + ε(x). (3.2)

In this scenario, x ranges over some finite interval X ⊂ R, and r(x) can be represented as an

N -dimensional functional response vector. The design matrix Z = [X V ] is N × q dimensional,

β(x) = [β1(x), . . . , βq(x)]T is the functional coefficients vector, and ε(x) is the functional error vector.

Consider the b-spline basis function representation of r(x),

r(x) = Cθ(x), (3.3)

where θ(x) = [θ1, . . . , θK ]T ] is the vector of K b-spline functions and C is an N ×K matrix of basis

coefficients. The coefficient functions in (3.2) are then represented as

βk(x) = bkθ(x), (3.4)

where bk is the basis coefficient vector. The problem reduces to estimatingB = (b1, . . . , bq)
T using

this general form of (3.2):

r(x) = ZBθ(x) + ε(x). (3.5)

However, for the warping functions to yield proper CDFs, the aforementioned restriction to r(x) must

be implemented. The basis function representation in (3.3) offers a simple solution to implement

the restriction. Given sufficient K basis functions, we modify B and θ(x) by removing the first and
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last b-spline basis components:

B∗N×(K−2) = BN×K ×


0K−2

IK−2

0K−2


K×(K−2)

, (3.6)

and

θ∗(x) = [θ2, . . . , θK−1]T . (3.7)

We estimate B∗ by minimizing the following:

∫
‖Cθ(x)−ZB∗θ∗(x)‖2dt+

q∑
k=1

λk

∫
[L(b∗kθ

∗(x))]2dt. (3.8)

The second term is a roughness penalty with a non-negative tuning parameter λ and a linear

differential operator L. We use a second derivative operator for L.

Since the basis functions θ1 and θK only contribute to the functional range at the boundaries of X,

we first estimate B∗ and then add the zero coefficients, i.e. B̂ = [0K B̂
∗

0K ]. We calculate the

estimates of coefficient functions βk(x) and their standard errors from B̂ using standard methods

penalized likelihood estimating λ using generalized cross-validation. We implement the restricted

function-on-scalar regression (rfosr) with the aforementioned modifications to the fosr function

(Reiss, Huang, and Mennes, 2010) in the refund package for R (Huang et al., 2015). Appendix B

is the R code for rfosr.

3.2.4. Normalization

We assume that the degree to which an intensity distribution of a particular scan differs from the

population template is captured by the warping functions, and that the modeled estimated coef-

ficient for various factors are additive in nature and can be adjusted for. Our overall approach to

normalization is to regress out the effects of nuisance factors from the warping parameters, and ulti-

mately estimate an intensity distribution Fnormi (x) adjusted for the nuisance factors for each image.

Using functional regression, we separate Z and β(x) to K predictors of interest and J nuisance

variables in (3.2):

r(x) = XKβK(x) + V JβJ(x) + ε(x). (3.9)
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We form the normalized functions,

r̂norm(x) = r(x)− V J β̂J(x), (3.10)

which we use to form the normalized warping function functions ŵnorm(x). Following the warping

function representation (3.1), the we normalize distributions using the normalized warping func-

tions:

F̂normi (x) = Fm{wnormi (x)} (3.11)

Figure 3.2 illustrates the normalization procedure. First, we convert empirical densities fi(x) (A)

to Fi(x) (B). We choose a template Fm(x) (C) and calculate warping functions wi(x) (D). We then

regress out the nuisance effects on the warping functions and estimate the normalized warping

functions wnormi (x) to obtain the normalized density estimates F̂normi (x) (E) and f̃normi (x) (F).

3.3. VIP Trial data

3.3.1. Motivating Study

As a proof of concept, we apply our normalization to the VIP Trial PET/CT imaging data and assess

sensitivity to associations between metabolic activity and lipoprotein particle biomarkers known to

be associated with cardiovascular risk (Austin et al., 1988; Gordon et al., 1989). We study the PET

scans, with intensities recorded in standardized uptake values (SUV), defined voxel-wise as

SUV (v) =
I(v)

C/W
(3.12)

where I(v) is the PET scan and W is the weight of the patient. C is the corrected radionuclide

tracer activity, calculated as

C = T · 2−
tS−tI
t1/2 , (3.13)

where T is the injected tracer activity, tS is the time of scan, tI is the time of tracer injection, and

t1/2 is the half life. Base 10 logarithm transformation of SUVs are used as primary units due to the

highly skewed distributions of the whole-body voxel SUVs.

One of the trial objectives is to obtain full-body PET/CT scans, but due to scanner limitations,
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Figure 3.2: Normalization workflow. Empirical densities fi(x) (A) are transformed to Fi(x) (B). A
template density Fm(x) (C) is chosen and warping functions wi(x) (D) are estimated. Using a
modified functional regression, normalized warping functions wnormi (x) are calculated, which are
then used to estimate the normalized densities Fnormi (x) (E) and fnormi (x) (F).
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single-pass full-body scans are not available for many subjects and instead the torso and lower

extremities are often scanned separately. To standardize the scanning protocol, we use single-

pass PET/CT scans and truncate at the same anatomic landmark for each scan (the femoral head).

Additionally, to eliminate scanner variability, we analyze scans from a single facility at the Hospital

of the University of Pennsylvania. We obtain log SUV densities after removing background using

active contour segmentation of tissue in ITK-SNAP (Yushkevich et al., 2006).

For the model, we choose variables that are known contributors to SUV variability, such as weight,

drug incubation time (i.e. tS − tI ), and radionuclide dose (Boellaard, 2009), as well as plausible

biological factors such as age and sex. Since the underlying disease process is understood to be

associated with systemic metabolic activity and thus disease, we also included the psoriasis area

severity index (PASI), a clinical measure of psoriasis severity, in the model but do not residualize

based on PASI during normalization. Finally, we compare the SUV means before and after normal-

ization, and correlate the means with lipid and inflammatory biomarkers using each density’s mean

as a coarse measure of total systemic inflammation.

3.3.2. Results

Figure 3.3 shows the estimated functional coefficients of the covariates on wi(x), and figure 3.4

shows the densities before and after normalization (N=32). Of the six scalar covariates in the

model, incubation time has the greatest effect on the warping function, whereas FDG dose has the

least effect on the warping function.

Table 3.1 summarizes the association between the SUV density means and biomarkers pre- and

post-normalization (N=30). We use spearman’s ρ as a measure of correlation. None of the original

density means are statistically associated with the various lipoprotein and inflammatory biomarkers.

Employing the proposed normalization, we find LDL cholesterol concentration (LDLc), LDL particle

size (LDLp), very large LDL particle size (vl LDLp), total cholesterol (Tc), and IL-6 to be statistically

significantly associated density means.

3.4. Discussion

We introduce a new intensity normalization method for quantitative biomedical images using func-

tional regression of density warping functions. Our method models the intensity distributions as
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Figure 3.3: Coefficient functions of the restricted function-on-scalar regression using six covariates.
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Original Normalized
Biomarker ρ∗ p-value ρ∗ p-value
HDLc 17 0.38 10 0.61
HDLp 3 0.87 -1 0.97
HDLz 3 0.89 0 1.00
S HDLp -23 0.22 -22 0.23
M HDLp 10 0.59 8 0.66
LM HDLp 16 0.40 13 0.49
L HDLp 20 0.30 16 0.39
IDLp -11 0.55 9 0.63
LDLc 16 0.40 44 0.02
LDLp 10 0.59 46 0.01
LDLz 20 0.29 2 0.91
S LDLp -1 0.94 29 0.11
L LDLp 31 0.10 28 0.13
VL LDLp 8 0.68 44 0.01
VLDLp -23 0.22 1 0.97
VLDLz -0.00 0.99 22 0.25
S VLDLp -32 0.08 -22 0.24
M VLDLp -9 0.62 17 0.37
LM VLDLp -11 0.56 17 0.37
L VLDLp -9 0.64 8 0.68
VLDLtg -15 0.43 12 0.53
Efflux value 20 0.31 13 0.52
Tg -14 0.47 16 0.41
Tc 16 0.40 39 0.03
LPIR -2 0.92 17 0.37
CRP -9 0.62 -6 0.77
IL-6 -30 0.10 -37 0.05

Table 3.1: Correlation between density means and various lipoprotein particle biomarkers. Abbrevi-
ations: HDL, high density lipoprotein; LDL, low density lipoprotein; VLDL, very low density lipopro-
tein; Tg, triglyceride; Tc, total cholesterol; LPIR, lipoprotein insulin resistance score; S, small; M,
medium; LM, large-to-medium; L, large; VL, very large. CRP, C-reactive protein; IL-6, Interleukin 6.
Suffixes: z, size; p, particle number; c, cholesterol concentration. ∗ρ× 100 are shown.

functions of nuisance imaging protocol parameters and removes their effect. By modifying the

b-spline functional basis, we restrict the warping functions to yield proper density functions for nor-

malization. One of the strengths of our method is that it allows the use of full scan intensity densities

instead of using tissue-specific densities. Additionally, since we normalize the entire densities, the

use of reference tissues is not required.

Our application to the VIP Trial data shows promise that normalization may reveal signals that may

otherwise be obfuscated by nuisance parameters. This is extremely important for PET imaging,

where numerous imaging and pharmacokinetic parameters are found to be contributing to SUV
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variability. The regression model indicates that the standardization using the SUV did not ade-

quately “standardize” the effects of the imaging parameters, in particular the FDG incubation time.

Increases in SUV have been noted with increases in FDG incubation time (Basu et al., 2007), with

standardizing the scan initiation time suggested as a corrective measure. In multi-site studies, these

corrective measures such as these may fall short due to the complex nature of PET/CT acquisition

and a statistical normalization may offer the best standardization.

While we have assessed our normalization in terms of association of the density means to lipopro-

tein biomarkers, another indicator for the usefulness of normalization would be to assess the pri-

mary outcomes of the VIP Trial, which are mean PET signals in the aorta. The density means

may offer a measure of cardiovascular risk via systemic inflammation, but they may also oversim-

plify the relationship between metabolic activity of the entire body and an inflammatory disease

process. Targeted quantification of the aorta using manual segmentations directly assesses the

atherosclerotic burden, and the use of normalized images, i.e. applying wnormi and using Y norm(v),

has the potential to improve dose-response and/or treatment effect signals. It is noteworthy, how-

ever, that LDL cholesterol concentration and particle size, which are associated with cardiovascular

disease (Sacks and Campos, 2003), are correlated with normalized density means. Our findings

are suggestive of stronger whole-body FDG signal throughout the body in patients with unhealthy

lipoprotein profiles. The significance of the weak inverse correlation of IL-6 and whole-body FDG

signal remains unclear, as IL-6 is implicated in pro- and anti-inflammatory processes (Scheller et

al., 2011).

The overall goals of normalization should be the comparability of quantitative imaging units for

population-level analysis, and the statistical principles of image normalization (Shinohara et al.,

2014) provide guidelines for image normalization. Although the proposed methodology is theoreti-

cally consistent with these principles, further work is required to empirically assess the conformity

of our normalization process to these guidelines in large multi-center studies. Some assessments

are straightforward, such as testing the monotonicity of warping functions to assess the intensity

rank preservation. Preserving a similar distributions for similar tissues of interest may be more

challenging when a disease process may affect the distributions of every tissue class, such as the

systemic inflammatory process associated with psoriasis. Future extensions of our work will be de-

veloped to normalize scans over time to assess treatment effects, especially when the treatments
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may affect the signal densities. Disentangling treatment effects in a tissue of interest from its effect

on the overall scan is paramount, and functional mixed effect-based models may be appropriate for

modeling the warping functions these settings.
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CHAPTER 4

NONLINEAR MIXED EFFECTS MODELING OF AMYLOID-β TRAJECTORIES IN PET

IMAGING

4.1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive demen-

tia unrelated to normal aging. The disease onset, or time of first symptoms, varies from person

to person, but the the disease progression is consistently characterized by accumulation of amy-

loid plaques in extracellular space between neurons and neurofibrillary tangles inside neurons. It

is believed that these characteristic structural features disrupt normal brain function and lead to

loss of neurons. Of interest is how these physical changes in the brain progress over time and

correlate with progression of disease. Accurately measuring amyloid-beta (Aβ) protein levels, the

components of amyloid plaques, is important in understanding the plaque burden as well as stage

of disease progression. In-vivo imaging of these structures may enable earlier AD diagnosis and

guide therapeutic regimens.

There is strong evidence that Aβ PET imaging is a promising biomarker of brain Aβ-plaque load

(Kepe et al., 2013). Currently there are two PET imaging compounds for Aβ: 1) Pittsburgh-

compound B (PiB) (Klunk et al., 2004), and 2) florbetapir (Clark et al., 2011), and both radionu-

clide tracers bind to Aβ plaques in the brain. While PET applications using PiB has been around

since the early 2000’s, the more recent florbetapir has a favorable half-life profile (109.8 min in 18F

florbetapir compared to 20.38 min in 11C PiB), which allows an easier imaging protocol.

Several trajectory shapes of major AD biomarkers have been theorized, and they generally are

based on the sigmoidal model (Caroli and Frisoni, 2010; Jack et al., 2010). However, their use

in charactering Aβ PET biomarker trajectories is limited; linear mixed effects (LME) models are

generally the basis of longitudinal trajectory modeling (Jack et al., 2012; Resnick et al., 2010,

2015). In the context of a sigmoidal trajectory model, the obvious limitation of LME model is the

nonlinearity of the hypothesized trajectory; linearity is assumed once a threshold is reached (i.e.

Aβ-positivity), but the baseline (bottom plateau) and Aβ saturation (upper plateau) are not properly
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accounted for.

In this chapter, we propose a new method of modeling the Aβ trajectories based on a couple of

biological assumptions. The first assumption is that each subject has a unique Aβ trajectory based

on a common functional form (i.e. sigmoidal curve). The second assumption is that there are sub-

jects for whom the accumulation is not observed. In Section 4.2, we incorporate these assumptions

by combining a nonlinear mixed model framework with mixture of heterogeneous populations, and

formulate the trajectory model in a Bayesian framework. In Section 4.3, we evaluate the perfor-

mance of the Bayesian model in estimating the parameters using Monte Carlo simulation studies.

In Section 4.4, we apply these methods to the florbetapir dataset from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) cohort for estimating group differences in Aβ trajectories.

4.1.1. ADNI data

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a consortium of researchers whose goal

is to collect, validate, and utilize study data to define the progression of AD. MRI and PET study

data are used, in addition to genetics, cognitive tests, and CSF/blood biomarkers, to understand

and predict AD. Florbetapir PET imaging has been collected in a cohort of subjects with ADNI,

which is publicly available (adni.loni.usc.edu).

The unit of Aβ florbetapir measure is the standardized uptake value ratio (SUVR), which is the

nonweighted SUV average across four main cortical regions (frontal, anterior/poster cingulate, lat-

eral parietal, lateral temporal) divided by the SUV average across the composite reference region

(whole cerebellum, brainstem/pons, and eroded subcortical white matter) (Landau et al., 2015).

Figure 4.1 is a spaghetti plot of the Aβ trajectories in the ADNI cohort as measured by PET imag-

ing. To illustrate genetic differences, four color groups indicate the different AD risk profiles based

on APOE gene alleles. Typically, there are two to three Aβ measurements per subject, with an

average time between subsequent scans being 2 years. Due to radiation toxicity and cost of scans,

repeated measurements throughout the course of Aβ accumulation are not performed.
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Figure 4.1: Trajectories by APOE risk category and overlay of proposed trajectories

4.2. Methods

4.2.1. Assumptions

As mentioned previously, we make several assumptions about Aβ trajectories:

1. An individual has a unique Aβ trajectory that follows a common trajectory shape

2. An individual may or may not exhibit Aβ accumulation

The first assumption is based on the literature of AD biomarkers that indicate Aβ accumulation is a

common biological phenomenon in all subjects. The AD disease progression is associated with Aβ

accumulation in the brain, from a baseline value corresponding to a healthy level to an upper value

corresponding to a saturated Aβ level. However, healthy, nondemented individuals are subject to

accumulation of Aβ (Braak and Braak, 1991), and amyloid plaque load does not correlate well with

the degree of cognitive impairment (Hardy and Selkoe, 2002). Sections 4.2.2 and 4.2.3 describe

the common trajectory and its model framework.
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The second assumption is based on the observation that many subject-level trajectories do no

accumulate over time and stay at a baseline level (i.e. flat) far into the observation window, even

in subjects who are at higher risk of AD. In the context of the first assumption, it is plausible that,

given adequate follow-up without censoring due to death, an individual will exhibit the characteristic

accumulation of Aβ. Section 4.2.4 incorporates the second assumption into the model framework.

4.2.2. Trajectory function

The prevailing trajectory shape for cortical Aβ accumulation is the sigmoidal curve (Jack et al.,

2010). Under assumptions discussed by these authors, each subject’s Aβ trajectory follows a

common sigmoidal curve, and the general model for Y (t), the SUVR measurement at time t, is of

the form

Y (t) = A+
K −A

1 + e−B(t−M)
, (4.1)

which is the generalized logistic function. The parameters are as follows: A - lower asymptote; K

- upper asymptote; B - shape/slope parameter; M - location parameter. In terms of Aβ trajectory,

A describes the baseline (i.e. pre-accumulation) level of Aβ, and K is the limit of Aβ capacity of

the brain. M describes the time of the inflection point and thereby is the parameter of onset of Aβ

accumulation. It should be noted that M is not interpreted as the time of onset of accumulation;

rather, M and B together determine the time of accumulation onset (i.e. start of the exponential

growth phase).

4.2.3. Nonlinear mixed effects model

Nonlinear mixed effects models, or hierarchical nonlinear model, provide a flexible framework when

linear mixed effects models are inadequate (Marie Davidian, 2003). We follow this framework to

model the outcome data. Let Yij be a response variable for florbetapir SUVR, the biomarker for

Aβ, at tij , the jth time measurement in age, for the ith subject for i = 1, . . . , n. Additionally, let

mi and ai be the subject-specific location and lower asymptote parameters for the ith subject. The

subject-specific model of the response variable is as follows:

Yij = ai +
K − ai

1 + e−B(tij−mi)
+ εij , (4.2)
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with

ai ∼ Unif(AL, AU ),

mi ∼ N (M,σ2
M ),

εij ∼ N (0, σ2
ε ).

M is the population-level parameter of Aβ onset, and we assume subject-level parameters are

normally distributed about M . Subject-level baseline of Aβ is assumed to be uniformly distributed

within the clustered observations. Furthermore, this model assumes conditional, or serial, indepen-

dence (i.e. εij ⊥ εik | ai,mi). We ignore serial correlation as its effects are often dominated by the

combination of random effects and measurement error (Verbeke and Molenberghs, 2001).

4.2.4. Mixture distribution

We define accumulators (G = 1) as subjects whose observed Aβ trajectories have a positive slope,

and non-accumulators (G = 0) as subjects whose observed Aβ trajectories are flat at baseline

during the observation period. By our first assumption, all subjects have a common sigmoidal Aβ

curve, so we address the second assumption of non-accumulation of certain subjects by introducing

a shift in M such that the exponential growth portion (i.e. Aβ accumulation) is not observed in the

age range. The mixture distribution of mi is the following:

mi ∼ π ×N (M1, σ
2
M0

) + (1− π)×N (M0, σ
2
M1

), (4.3)

where π is the probability of accumulator membership P (G = 1), and M1 and M0 are the Aβ onset

parameter group means of the accumulators and non-accumulators, respectively. Furthermore, π

can be modeled based on subject-specific risk profiles such as a high-risk allele of a known gene,

e.g.:

logit
{
π|X = x

}
= β0 + βx, (4.4)

where X = {0, 1} is a binary variable for a high-risk allele.
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4.2.5. Group differences in Aβ onset

Another implicit assumption is that there is a group difference in Aβ onset based on risk profiles

(e.g. genetic). This is a widely accepted concept with strong biological foundations and empirical

data. Let δ be the group difference in the population-level parameter M between two risk groups.

Then the subject-specific random effects for Aβ onset is distributed as follows:

mi ∼ N (M + δxi, σ
2
M ), (4.5)

where X = {0, 1} is a binary variable for risk group. The hypothesis testing of the group differences

is simply:

H0 : δ = 0

vs

Ha : δ 6= 0.

(4.6)

4.2.6. Bayesian estimation

Bayesian formulation of the model offers a tractable estimation subject-level parameters (e.g. mi)

and inference (e.g. π, δ). Moreover, it allows incorporation of known constraints to model parameter

values with prior distributions. Treating the parameters as random variables, we approximate a joint

posterior density by sampling these parameters using MCMC techniques. We simulate the posterior

densities using a Gibbs sampler implemented in R (JAGS - Just Another Gibbs Sampler ; Plummer

et al., 2006). Appendix C is the BUGS model specification (Lunn et al., 2000).

4.3. Simulation

We evaluate the performance of the proposed inference using simulation studies. In all simulations,

the truth is simulated as in model XX to mimic the ADNI dataset. Unless otherwise stated, each

simulation consists of M=500 simulated replicates with N=300. Each replicate is run with 11,000

iterations with 1,000 burn-in.

38



0.6

0.8

1.0

1.2

50 60 70 80 90
t

y

0.00

0.25

0.50

0.75

1.00

Figure 4.2: Simulated data per simulation 1a. The color gradient indicates the proportion of the
subject being sampled as an accumulator.

4.3.1. Simulation 1 - Estimation of accumulation

The goal of these simulations is to evaluate the performance of the model in estimating the pro-

portion of accumulators and predicting the accumulators. We simulate the truth model with normal

random effects distributions, m1i ∼ N (75, 102), m0i ∼ N (500, 102), a uniform random effect distri-

bution, ai ∼ Unif(0.65, 0.75), a fixed π, K = 1.2, B = 0.15, and Yij based on (4.2). For each i,

age at observation is sampled uniformly from 50 to 90, with 2 or 3 measurements generated with

a probability of 0.50 each, and measurements intervals from N (2, 0.12). Figure 4.2 is a plot of the

data simulated per simulation (a) in Table 4.1, with the color gradient indicating the proportion of

the observation being sampled as an accumulator.

Table 4.1 summarizes the various performance measures with varying simulation conditions. In

simulation 1a, the Bayesian model is specified as the simulation condition. In simulations 1b and 1c,

we introduce misspecification to B and A in the model, where B = 0.3 and ai ∼ Unif(0.55, 0.85),

respectively. The proportion is altered in simulations 1d and 1e, and σε is increased in 1f and 1g to
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induce noise. In set 1h, the data are generated to reflect K = 0.8 and are modeled as 1a.

In nearly all simulation scenarios, the Bayesian posterior parameter means reflect the truth, with

the exceptions in simulation 1h. π and σε are slightly under- and overestimated, respectively. The

AUC is for the classification of accumulators based on the probability score of being an accumu-

lator, calculated as proportion a subject is sampled as such per replicate run (i.e. 10,000 random

sampling). In all scenarios with the exception in 1h, there is good classification performance, with

average AUC of 0.95.

4.3.2. Simulation 2 - Group differences

Next we consider a scenario where there are two groups, each with a different mean onset of

Aβ accumulation. The data-generating model now consists of two groups which we denote by

X = {0, 1}. We simulate data normal random effects distributions, m1i ∼ N (75 + δxi, 102) and

m0i ∼ N (500, 102), and gi is sampled according to (4.4), with fixed effects β0 and β. Additionally,

we proceed as in the first simulation scenario with ai ∼ Unif(0.65, 0.75), K = 1.2, B = 0.15, and

Yij is sampled using (4.2). Again, for each i, age at observation is sampled uniformly from 50 to 90,

with 2 or 3 measurements generated with a probability of 0.50 each, and measurements intervals

from N (2, 0.12).

Table 4.2 summarizes various simulation scenarios. The simulated differences are at 15 years, 5

years, and 1 year, with varying parameters for β0 and β1. In all scenarios, the model estimates of δ

correspond closely with the truth, indicating excellent model performance.

4.4. ADNI florbetapir data

The analytic ADNI florbetapir dataset contains a total of 1348 observations from 236 controls, 301

MCI, and 79 AD subjects, with each subject contributing from 2 to 3 observations over time. Data

were processed and summarized as described in Landau et al. (2013). The mean age at baseline

scan is 73.2 years, and the mean interval between scans is 2.1 years. Using the APOE gene allele

data, four risk categories are assigned (Slooter et al., 1998), from lowest to highest: 1 - ε2/ε2 or

ε2/ε3; 2 - ε3/ε3; 3 - ε2/ε4 or ε3/ε4; 4 - ε4/ε4. Figure 4.1 shows the data stratified by APOE risk

status. Group 2 is at average risk of developing AD.
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For the analysis, sixty one subjects in the below-average risk category (group 1) are excluded,

leaving 1211 observations from 555 subjects. For each subject i, the risk classification is binarized

to high risk (groups 3 and 4) and average risk (group 2), denoted by the variable APOEi. We

denote Yij the florbetapir SUVR measured at tij . We consider the hierarchical model based on

(4.2), (4.3), and (4.4).

We fit the Bayesian model by assuming a N (M1, σ
2
M ) distribution for m1i, with hyperpriors M1 ∼

N (75, 104). For m0i, we assume a fixed distribution of N (500, 1) to reinforce the non-accumulators.

For β0 and β1, we assign N (0.5, 1) and N (0, 1) priors, respectively. Additionally, we specify ai ∼

Unif(0.6, 0.8), K = 1.1, and B = 0.15.

The posterior means of the estimates are summarized in Table 4.3. The model estimates a mean

difference of 21 years between the two APOE groups, with the lower risk group having a mean Aβ

onset parameter of 90. The 95% credible interval of δ precludes the null hypothesis that δ = 0. The

parameters for (4.4) indicate that the Figure 4.3 show the data with the mean group trajectory for

high risk (red line) and normal risk (orange line), with the color gradient indicating the proportion of

the subject being sampled as an accumulator.

As an exploratory analysis, another gene associated with AD is investigated. Bridging Integrator 1

(BIN1) has been associated with AD, particularly with late-onset AD (Naj et al., 2011, 2014), and

the SNP data for BIN1 (rs7561528) is readily available in a subset of ADNI florbetapir cohort. For

the analysis, there are 675 observations from 297 subjects who have the SNP genotyped. For each

subject i, the genotype is binarized to A/A and non-A/A (i.e. A/G, G/G). Denoted by the variable

BIN1i. The same model specifications are used as above.

The model estimates are summarized in Table 4.4. The model estimates a mean difference of 3.5

years between the two BIN1 groups, but the 95% credible interval includes the null value of 0, and

the non-A/A group had an estimated mean Aβ onset parameter of 80.

4.5. Discussion

We propose a framework for Bayesian inference in nonlinear mixed models for characterizing

biomarker trajectories and estimating group differences while incorporating a mixture distribution

for random effects. This approach has several advantages over the more conventional linear mixed
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Figure 4.3: ADNI mean trajectories by APOE risk group. The red curve is the mean trajectory for
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effect models including that the hypothesized longitudinal trajectory function is directly incorporated

into the model and prior distributions can be used to inform known constraints on model parame-

ters. By formulating the hierarchical models, this approach also identifies group differences based

on functional parameters that have simple biological interpretation, such as the shift in the onset of

biomarker accumulation.

To our knowledge, this is the first nonlinear modeling method applied to AD biomarkers based on Aβ

accumulation dynamics. Simulation results show that this modeling approach may be able detect

group differences in trajectories as small as one year in delayed accumulation. When applied to

the ADNI data, we identify a difference of 21 years of average onset of Aβ accumulation between

high- and average-risk group based on APOE genotype. An exploratory analysis of BIN1 indicated

a difference average onset of 3.5 years but was not statistically significant.

Some limitations remain with our proposed approach. In our modeling framework, some parame-

ters are fixed a priori, such as the sigmoidal slope parameter B. The prespecified value for B is

based on the aggregate shape of the trajectories and previous reports. Due to the sparseness of

individual measurements in the ADNI dataset (2 to 3 within a span of 4-6 years), model estimation

of B may not accurate. While we show the misspecification of B from 0.15 to 0.3 did not affect

the estimate of π in simulation scenario 1b, additional sensitivity analysis are necessary to deter-

mine effect of grossly misspecifying B. To estimate B, more individual measurements that span the

baseline, growth, and plateau phases of the sigmoidal trajectory curve will be necessary. Sensitivity

analyses are also necessary to determine the sparseness threshold for accurate estimation of the

parameter. Furthermore, the assumption of a fixed slope parameter is a strong one, as individu-

als may exhibit different rates of accumulations. This may be addressed by incorporating random

effects for the slope parameter.

The flexibility of our approach may be useful to model biomarkers with similar nonlinear functional

trajectories, particularly in settings where limitations exist in data acquisition. While our examples

are limited to two group differences, additional factors may be incorporated to explore biomarker

trajectory interactions between APOE status and sex (Altmann et al., 2014). Other trajectory param-

eters such as the lower and upper asymptotes may also be modeled with appropriate link functions

in a hierarchical manner.
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mean sd 50% 2.5% 97.5%
M1 90.318 1.711 90.359 86.791 93.538
σM1 16.741 0.961 16.705 14.958 18.711
δ -20.705 1.994 -20.708 -24.668 -16.766
β0 2.492 0.677 2.471 1.236 3.870
β1 1.453 0.746 1.449 0.016 2.966
σε 0.027 0.001 0.027 0.026 0.029

Table 4.3: ADNI Bayesian model estimates using APOE

mean sd 50% 2.5% 97.5%
M1 80.012 2.705 80.104 74.493 85.069
σM1 19.929 1.972 19.852 16.165 23.960
δ 3.460 4.633 3.565 -5.866 12.353
β0 1.655 0.558 1.600 0.700 2.921
β1 0.081 0.821 0.041 -1.376 1.856
σε 0.025 0.001 0.025 0.023 0.026

Table 4.4: ADNI Bayesian model estimates using BIN1
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APPENDIX A

R CODE FOR NPE ESTIMATION OF OROC (INTERVAL CLASSIFICATION)

# function for nonparametric estimation of OROC and ML estimator of a and b

oroc. ll <− function(x,y,cut=100) {

if (length(x)!=length(y)) stop(’Lengths of X and Y differ.’)

# regularized cutoff points

cutoffs <− rev(seq(min(x), max(x), length=cut))

sum.y0<−sum(y==0)

sum.y1<−sum(y==1)

# Internal functions for FPR and TPR

fun. fpr<−function(a,b) {

fpr<−c(sum(x[y==0]>=a & x[y==0]<=b)/sum.y0)

return(fpr )

}

fun. tpr<−function(a,b) {

tpr<−c(sum(x[y==1]>=a & x[y==1]<=b)/sum.y1)

return(tpr )

}

# function for likelihood for ME

fun. ll<−function(a,b) {

s <− (1*x>=a & x<=b)

aic<−glm.fit(cbind(1,s),y,family=binomial())$aic

return(−(aic−4)/2)

}

a<−b<−fpr<−tpr<−ll<− vector()

# grid search

for( cutoff in cutoffs ) {

fpr<−c(fpr,sapply(rev(cutoffs[cutoffs>=cutoff]) ,fun. fpr ,a=cutoff) )

tpr<−c(tpr,sapply(rev(cutoffs[cutoffs>=cutoff]) ,fun. tpr ,a=cutoff) )

ll<−c(ll,sapply(rev(cutoffs[cutoffs>=cutoff]) ,fun. ll ,a=cutoff) )
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a<−c(a,rep(cutoff,sum(cutoffs>=cutoff)))

b<−c(b,rev(cutoffs[cutoffs>=cutoff]))

}

tpr [ tpr<0 | is .na(tpr) ] = 0

fpr [ fpr<0 | is .na(fpr) ] = 0

orcdata<−data.frame(a,b,tpr,fpr,ll)

mle<−orcdata[sample(which(orcdata$ll==max(orcdata$ll)),1),1:2]

# estimation of parameter path

orcdata<−orcdata[order(orcdata$fpr,−orcdata$tpr),]

orcset <− data.frame(orcdata[1,])

for( i in 1:dim(orcdata)[1]) {

if (orcdata[ i ,4]>orcset[dim(orcset) [1],4] &

orcdata[ i ,3]>=orcset[dim(orcset) [1],3]) {

orcset <− rbind(orcset,orcdata[i ,])

}

}

# Trapezoid Rule Numerical Integration

auc<−trapz(c(0,orcset$fpr,1),c(0,orcset$tpr,1))

return( list ( ”orcset”=orcset,”auc”=auc,”mle”=mle))

}

# function for applying optimal cutoffs to validation set

oroc. validation <− function(x,y,rocdata) {

sum.y0<−sum(y==0)

sum.y1<−sum(y==1)

# Internal functions for FPR and TPR

fun. fpr<−function(a,b) {

fpr<−c(sum(x[y==0]>=a & x[y==0]<=b)/sum.y0)

return(fpr )

}

fun. tpr<−function(a,b) {
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tpr<−c(sum(x[y==1]>=a & x[y==1]<=b)/sum.y1)

return(tpr )

}

fpr<−tpr<−vector()

for( i in 1:length(rocdata$a)) {

fpr<−c(fpr,fun.fpr(a=rocdata$a[i],b=rocdata$b[i]))

tpr<−c(tpr,fun.tpr(a=rocdata$a[i],b=rocdata$b[i]))

}

tpr [ tpr<0 | is .na(tpr) ] = 0

fpr [ fpr<0 | is .na(fpr) ] = 0

fpr <− c(0,fpr,1)

tpr <− c(0,tpr,1)

rocdata<−data.frame(fpr,tpr)

rocdata<−rocdata[order(rocdata$fpr,rocdata$tpr),]

auc <− trapz(rocdata$fpr,rocdata$tpr)

return(auc)

}
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APPENDIX B

RESTRICTED FUNCTION-ON-SCALAR REGRESSION CODE

# Restricted function−on−scalar regression, modification of fosr (Reiss et al . 2010)

# Modification are highlighted

rfosr<−function(formula = NULL, Y = NULL, fdobj = NULL, data = NULL,

X, con = NULL, argvals = NULL, method = c(”OLS”, ”GLS”, ”mix”),

gam.method = c(”REML”, ”ML”, ”GCV.Cp”, ”GACV.Cp”, ”P−REML”, ”P−ML”),

cov.method = c(”naive”, ”mod.chol”), lambda = NULL, nbasis = 15,

norder = 4, pen.order = 2, multi .sp = ifelse (method == ”OLS”, FALSE, TRUE),

pve = 0.99, max.iter = 1, maxlam = NULL, cv1 = FALSE, scale = FALSE) {

## MODEL BASED ON FOMULA

if ( !is .null(formula)) {

if ( is .null(data))

stop(”Please specify the data.”)

tf <− terms.formula(formula)

trmstrings <− attr(tf , ”term.labels” )

terms <− sapply(trmstrings, function(trm) as.call(parse(text = trm)) [[1]],

simplify = FALSE)

responsename <− as.character(attr(tf, ”variables”) [2][[1]])

Y = data[, responsename]

X = model.matrix(formula, data = data)

}

## DEFINE FUNCTIONAL DATA (RESP.TYPE)

if ( is .null(Y) == is.null( fdobj) )

stop(”Please specify ’Y’ or ’ fdobj ’, but not both”)

resp.type <− if (is .null(Y))

”fd”

else ”raw”

## ARGVALS

if ( is .null(argvals))
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argvals <− if (is .null( fdobj) )

seq(0, 1, length = ncol(Y))

else seq(min(fdobj$basis$range), max(fdobj$basis$range),

length = 201)

## METHOD

method <− match.arg(method)

cov.method <− match.arg(cov.method)

gam.method <− match.arg(gam.method)

if (method != ”OLS” & (length(lambda) > 1))

stop(”Vector−valued lambda allowed only if method = ’OLS’”)

if ( !is .null(lambda) & multi.sp)

stop(”Fixed lambda not implemented with multiple penalties”)

if (method == ”OLS” & multi.sp)

stop(”OLS not implemented with multiple penalties”)

## BSS, BMAT, RESPMAT

if (resp.type == ”raw”) {

bss = create.bspline.basis(range(argvals), nbasis = nbasis, norder = norder)

Bmat <− Theta <− eval.basis(argvals, bss)

respmat <− Y

}

else if (resp.type == ”fd” ) {

if ( ! is . fd( fdobj) )

stop(”’ fdobj ’ must be a functional data object”)

bss = fdobj$basis

nbasis = bss$nbasis

Theta <− eval.basis(argvals, bss)

C = t( fdobj$coefs)

J = getbasispenalty(bss, 0)

svdJ = svd(J)

Bmat <− J12 <− svdJ$u %*% diag(sqrt(svdJ$d)) %*% t(svdJ$u)

respmat <− C %*% J12
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}

## DEFINE INITIAL PARAMETERS AS NULL

newfit = U = pca.resid = NULL

## INITIAL COVARIATE DESIGN

X.sc = scale(X, center = FALSE, scale = scale)

q = ncol(X)

ncurve <− nrow(respmat)

## PEN

if (multi .sp) {

pen = vector(” list ” , q)

for ( j in 1:q) {

one1 = matrix(0, q, q)

one1[j, j ] = 1

pen[[ j ]] = one1 %x% getbasispenalty(bss, pen.order)

}

}

else pen = list (diag(q) %x% getbasispenalty(bss, pen.order))

################### <MODIFICATION> ###################

## MODIFY BMAT AND PEN

excl .basis <− 1

Bmat <− Bmat[,(excl.basis+1):(dim(Bmat)[2]−excl.basis)]

Theta <−Theta[,(excl.basis+1):(dim(Theta)[2]−excl.basis)]

pen = list (diag(q) %x% getbasispenalty(bss, pen.order)[2:9,2:9])

################### <\MODIFICATION> ###################

## METHOD

constr = if ( ! is .null(con))

con %x% diag(nbasis)

else NULL

cv = NULL

if (method == ”OLS”) {

if (length(lambda) != 1 | cv1) {

53



################### <MODIFICATION> ###################

lofo <− new.lofocv(respmat, X.sc %x% Bmat, S1 = pen[[1]], argvals = argvals,

lamvec = lambda, constr = constr, maxlam = maxlam)

################### <\MODIFICATION> ###################

cv = if ( is .null(lambda))

lofo$objective

else min(lofo [, 2])

lambda = if ( is .null(lambda))

lofo$min

else lofo [which.min(lofo[, 2]) , 1]

}

}

## FIRSTFIT (ADDITIVE MODEL WITH CONSTRAINTS)

## INITIAL COEFMAT

################### <MODIFICATION> ###################

firstfit <− new.amc(as.vector(t(respmat)), X.sc %x% Bmat, gam.method = gam.method,

S = pen, C = constr, lambda = lambda)

################### <\MODIFICATION> ###################

coefmat = coefmat.ols = t(matrix( firstfit $coef, ncol = q))

se = NULL

## NON−OLS METHOD

if (method != ”OLS”) {

iter = 0

coefmat.old = 3 * coefmat.ols

newfit = NULL

if ( ! is .null(lambda) & max.iter > 0)

warning(”Given lambda used for initial fit only”)

## CONVERGENCE CRITERION

while (any(abs((coefmat − coefmat.old)/coefmat.old) > 0.001) & (iter < max.iter)) {

iter = iter + 1

if (max.iter > 1)
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cat(” Refit ” , iter , ”\n”)

## SET LAST ESTIMATES AS OLD

oldfit = if ( !is .null(newfit ) )

newfit

else firstfit

coefmat.old = coefmat

## RESIDUAL VECTOR

residvec <− as.vector(t(respmat)) − (X.sc %x% Bmat) %*%

oldfit $coef[1:(q * nbasis)]

residmat = t (matrix(residvec, ncol = ncurve))

if (method == ”GLS”) {

if (cov.method == ”mod.chol”) {

p = ncol(residmat)

res.cent = scale(residmat, TRUE, FALSE)

sqrt.prec. list = list ()

lwstat = lwpval = c()

for (nband in 1:(p − 1)) {

TT = diag(p)

Ddiag = rep(0, p)

Ddiag[1] = var(res.cent [, 1])

for (k in 2:p) {

qrResCent <− qr(res.cent[, max(1, k − nband):(k − 1)])

TT[k, max(1, k − nband):(k − 1)] <− (−qr.coef(qrResCent, res.cent[, k]))

Ddiag[k] <− var(qr.resid(qrResCent, res.cent[, k]))

}

prec = scale(t(TT), FALSE, Ddiag) %*% TT

sqrt.prec. list [[ nband]] = scale(t(TT), FALSE, sqrt(Ddiag))

lwprec = lw. test (residmat %*% sqrt.prec.list[[nband]])

lwstat [nband] = lwprec$stat

lwpval[nband] = lwprec$pvalue

if ( lwstat [nband] < −5)

55



break

if (nband > 5) {

if ( lwstat [nband] > lwstat[1] && lwstat[nband] >

lwstat [nband − 1])

break

}

}

nband.best = which.max(lwpval)

cat(”Using half−bandwidth”, nband.best, ”for precision matrix of residuals\n”)

sqrt.prec <− sqrt.prec.list [[ nband.best]]

}

else if (cov.method == ”naive”) {

if (nrow(residmat) < ncol(residmat))

stop(”Sample covariance matrix of residuals is singular.”)

svd.cov.mle <− svd(cov(residmat) * (ncurve − 1)/ncurve)

sqrt.prec <− tcrossprod(scale(svd.cov.mle$u,

FALSE, sqrt(svd.cov.mle$d)), svd.cov.mle$u)

}

newfit <− amc(as.vector(tcrossprod(sqrt.prec,respmat)),

X.sc %x% (sqrt.prec %*% Bmat), gam.method = gam.method,

S = pen, C = constr, start = if ( is .null(con))

as.vector(t(coefmat))

else NULL)

coefmat = t(matrix(newfit$coef, ncol = q))

}

else if (method == ”mix”) {

if (resp.type == ”fd” ) {

resid.fd <− fd(solve(J12, t(residmat)), bss)

if ( iter == 1) {

pca.resid <− pca.fd(resid.fd, nharm = min(ncurve − 1, nbasis))

npc <− min(which(cumsum(pca.resid$varprop) > pve))
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}

else pca.resid <− pca.fd(resid.fd, nharm = npc)

evalues <− pca.resid$values[1:npc]

efuncmat.scaled <− Bmat %*% t(t(pca.resid$harmonics$coef[,1:npc]) * sqrt(evalues))

}

else if (resp.type == ”raw”) {

if ( iter == 1) {

pca.resid <− fpca.sc(residmat, pve = pve)

npc <− pca.resid$npc

}

else pca.resid <− fpca.sc(residmat, npc = npc)

evalues <− pca.resid$evalues

efuncmat.scaled <− t(t(pca.resid$efunctions) * sqrt(evalues))

}

if ( iter == 1)

cat(”Using leading”, npc, ”PCs of residual functions for random effects\n”)

npen <− length(pen)

pendim <− ncol(pen[[1]])

pen.aug = vector(” list ” , npen + 1)

for ( l in 1:npen) {

pen.aug[[l ]] <− matrix(0, pendim + npc * ncurve, pendim + npc * ncurve)

pen.aug[[l ]][1: pendim, 1:pendim] <− pen[[l]]

}

if ( iter == 1)

cat(”Using leading”, npc, ”PCs of residual functions for random effects\n”)

npen <− length(pen)

pendim <− ncol(pen[[1]])

pen.aug = vector(” list ” , npen + 1)

for ( l in 1:npen) {

pen.aug[[l ]] <− matrix(0, pendim + npc * ncurve, pendim + npc * ncurve)

pen.aug[[l ]][1: pendim, 1:pendim] <− pen[[l]]
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}

pen.aug[[npen + 1]] <− diag(rep(0:1, c(pendim, npc * ncurve)))

constr.aug <− if (is .null(constr) )

NULL

else cbind(constr, matrix(0, nrow(constr), npc * ncurve))

startB <− if ( iter == 1) {

c(as.vector(t(coefmat)), rep(0, ncurve * npc))

}

else {

newfit$coefficients

}

newfit <− amc(as.vector(t(respmat)),

cbind(X.sc %x% Bmat, diag(ncurve) %x% efuncmat.scaled),

gam.method = gam.method, S = pen.aug, C = constr.aug,

start = if ( is .null(constr.aug)) startB

else NULL)

vecBt = newfit$coef[1:(q * nbasis)]

vecUt = newfit$coef[(q * nbasis + 1) :( q * nbasis + npc * ncurve)]

coefmat = t(matrix(vecBt, ncol = q))

U <− t(matrix(vecUt, ncol = ncurve))

}

}

}

## OLS METHOD

if (method == ”OLS” | max.iter == 0) {

residvec <− as.vector(t(respmat)) − (X.sc %x% Bmat) %*% firstfit$coef

covmat = ((ncurve − 1)/ncurve) * cov(t(matrix(residvec, ncol = ncurve)))

var.b = firstfit $GinvXT %*% (diag(ncurve) %x% covmat) %*% t(firstfit$GinvXT)

}

else var.b = newfit$Vp

## STANDARD ERRORS
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se.func = matrix(NA, length(argvals), q)

################### <MODIFICATION> ###################

for ( j in 1:q) {

se.func[, j ] = sqrt(rowSums((Theta %*%

var.b [(( nbasis−2*excl.basis) * ( j − 1) + 1) :(( nbasis−2*excl.basis) * j ) ,

((nbasis−2*excl.basis) * ( j − 1) + 1) :(( nbasis−2*excl.basis) * j ) ]) *

Theta))

}

for( i in 1:excl .basis) {

coefmat <− cbind(0,coefmat,0)

}

################### <\MODIFICATION> ###################

fd = fd( t (coefmat), bss)

est.func = eval.fd(argvals, fd)

fit <− if (method == ”mix” & max.iter > 0)

newfit

else firstfit

roughness = diag(coefmat %*% getbasispenalty(bss, pen.order) %*% t(coefmat))

skale = attr (X.sc, ”scaled:scale”)

if ( !is .null(skale)) {

coefmat = t(scale(t(coefmat), center = FALSE, scale = skale))

est.func = scale(est.func, center = FALSE, scale = skale)

se.func = scale(se.func, center = FALSE, scale = skale)

roughness = roughness/skaleˆ2

}

yhat = if (resp.type == ”raw”)

X %*% tcrossprod(coefmat, Theta)

else fd( t (X %*% coefmat), bss)

llist = list ( fd = fd , pca.resid = pca.resid, U = U, yhat = yhat,

resid = if (resp.type == ”raw”) Y − yhat else fdobj − yhat,

est.func = est.func, se.func = se.func, argvals = argvals,
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fit = fit , edf = sum(fit$gam$edf),

lambda = if (length( fit $gam$sp) > 0)

fit $gam$sp

else fit $gam$full.sp, cv = cv, roughness = roughness,

resp.type = resp.type)

class( llist ) = ” fosr ”

llist

}

# Leave−one out cross−validation function for rfosr

# from fosr internal function lofocv (Reiss et al . 2010)

new.lofocv <− function(Y, X, S1, argvals, lamvec=NULL, constr=NULL, maxlam=NULL) {

nn = nrow(X)

N = NROW(Y); K = NCOL(Y)

if (N*K!=nn) stop(’Number of elements of Y must equal number of rows of X’)

y = as.vector(t(Y))

if ( !is .null(constr) ) {

# The following is based on Wood (2006), p. 186

n.con = dim(constr)[1]

Z. = qr.Q(qr(t(constr) ) , complete=TRUE)[ , −(1:n.con)]

X. = X %*% Z.

S1. = crossprod(Z., S1 %*% Z.)

}

else {

X. = X

S1. = S1

}

qrX = qr(X.)

Rinv = solve(qr.R(qrX))

svd211 = svd(crossprod(Rinv, S1. %*% Rinv)) # see p. 211 of Wood

QU = qr.Q(qrX) %*% svd211$u
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# calculate the weight for the approx. integral using argvals

vecWeight = diff(argvals, 2) /2

vecWeight = c((argvals[2]−argvals[1])/2, vecWeight, (argvals[N]−argvals[N−1])/2)

cvfcn = function(lam) {

A = tcrossprod(scale(QU, center=FALSE, scale=1+lam*svd211$d), QU)

resmat = t(matrix(y − A %*% y, K))

MSEp = 0

for ( i in 1:N) {

ith = (( i−1)*K+1):(i*K)

# when no argvals is used

# MSEp = MSEp + crossprod(solve(diag(K)−A[ith,ith], resmat[i, ])) / N

# when new argvals is implemented

MSEp = MSEp + crossprod(solve(diag(K)−A[ith,ith], resmat[i, ])) * vecWeight[i]

}

MSEp

}

if ( is .null(lamvec)) { # minimize LOFO−CV criterion

if ( is .null(maxlam)) { # use GCV−minimizing lambda

model.gcv = gam(y˜X.−1, paraPen=list(X.=list(S1.)), method=”GCV.Cp”)

maxlam = model.gcv$sp

}

cat(”Finding optimal lambda by optimize()...\n”)

opt = optimize(cvfcn, c(0, maxlam), tol=.01)

if (round(opt$minimum)==maxlam) warning(”maxlam may be set too low”)

return(opt)

}

else { # calculate LOFO−CV for given values

cvvals = c()

cat(”Calculating CV for candidate smoothing parameter values...\n”)

for ( i in 1:length(lamvec)) cvvals[i ] = cvfcn(lamvec[i ])

cvtable = cbind(lamvec, cvvals)
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dimnames(cvtable)[[2]] = c(’lambda’, ’LOFO−CV’)

print(cvtable)

return(cvtable)

if (which.min(cvvals)==1) warning(”CV minimized at lowest lambda considered”)

if (which.min(cvvals)==length(lamvec)) warning(”CV minimized at highest lambda

considered”)

}

}

# Internal function for additive models with constraints used in rfosr

# from fosr internal function amc (Reiss et al . 2010)

new.amc <− function(y, Xmat, S, gam.method=’REML’, C=NULL, lambda=NULL, ...) {

n.p = length(S)

if ( !is .null(C)) {

# The following is based on Wood (2006), p. 186

n.con = dim(C)[1]

Z. = qr.Q(qr(t(C)), complete=TRUE)[ , −(1:n.con)]

Xmat. = Xmat %*% Z.

S. = vector(” list ” , n.p)

for ( i in 1:n.p) S .[[ i ]] = crossprod(Z., S[[i ]] %*% Z.)

}

else {

Z. = diag(ncol(Xmat))

Xmat. = Xmat

S. = S

}

fitter = if (length(y) > 10000) bam else gam

if ( is .null(lambda)) fitobj = fitter (y ˜ Xmat.−1, method=gam.method, paraPen=list(Xmat.=

S.), ...)

else fitobj = fitter (y ˜ Xmat.−1, paraPen=list(Xmat.=S.), sp=lambda, ...)

lambdavec = if (!is .null( fitobj $ full .sp)) fitobj $ full .sp else fitobj $sp
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fullpen = 0

for ( i in 1:n.p) fullpen = lambdavec[i] * S .[[ i ]]

list (gam = fitobj ,

coefficients = Z. %*% fitobj$coef,

Vp = Z. %*% fitobj$Vp %*% t(Z.),

GinvXT = Z. %*% solve(crossprod(Xmat.) + fullpen, t(Xmat.)),

method = gam.method)

}
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APPENDIX C

BUGS CODE FOR NONLINEAR MIXED EFFECTS MODELING

C.1. Specification for Simulation 1a

model {

# Priors for global parameters

sigma˜dunif(0, 100) # Residual standard deviation

tau <− 1/(sigma*sigma)

# Hyperpriors for subject−specific parameters

p˜dbeta(1,1)

for ( i in 1:ngroups) {

A[i ] ˜dunif(0.65,0.75)

group[i ] ˜dbern(p)

m1[i] ˜dunif(50,90)

m2[i] ˜dnorm(500,1/sqrt(10))

M[i ]<−m1[i]*group[i]+m2[i]*(1−group[i])

}

# Likelihood

for ( i in 1:n) {

# Expectation

mu[i] <− A[id[i ]] + (1.2−A[id[ i ]]) /(1 + exp(−0.15*(x[i]−M[id[i ]]) ) )

# Actual response

y[ i ] ˜ dnorm(mu[i], tau)

}

}

C.2. Specification for Simulation 2a

model {

# Priors for global parameters

sigma˜dunif(0, 100) # Residual standard deviation
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tau <− 1/(sigma*sigma)

# Hyperpriors for subject−specific parameters

beta0 ˜ dnorm(0,1)

beta1 ˜ dnorm(0,1)

M1 ˜ dnorm(75,0.01)

delta ˜ dnorm(0,0.01)

for ( i in 1:ngroups) {

logit (p[ i ]) <− beta0 + beta1*cat[i]

A[ i ] ˜dunif(0.65,0.75)

group[i ] ˜dbern(p[i ])

m1[i] ˜dnorm(M1*cat[i] + (M1+delta)*(1−cat[i]),0.01)

m2[i] ˜dnorm(500,1/sqrt(10))

M[i ]<−m1[i]*group[i]+m2[i]*(1−group[i])

}

# Likelihood

for ( i in 1:n) {

# Expectation

mu[i] <− A[id[i ]] + (1.2−A[id[ i ]]) /(1 + exp(−0.15*(x[i]−M[id[i ]]) ) )

# Actual response

y[ i ] ˜ dnorm(mu[i], tau)

}

}

C.3. Specification for ADNI data

model {

# Priors for global parameters

sigma˜dunif(0, 100) # Residual standard deviation

tau <− 1/(sigma*sigma)

sigma M1˜dunif(0, 100) # M1 standard deviation

tau M1 <− 1/(sigma M1*sigma M1)

# Hyperpriors for subject−specific parameters
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beta0 ˜ dnorm(0.5,1)

beta1 ˜ dnorm(0,1)

M1 ˜ dnorm(75,0.01)

delta ˜ dnorm(0,0.01)

for ( i in 1:ngroups) {

logit (p[ i ]) <− beta0 + beta1*apoe[i]

A[ i ] ˜dunif(0.6,0.8)

group[i ] ˜dbern(p[i ])

m1[i] ˜dnorm(M1+delta*apoe[i],tau M1)

m2[i] ˜dnorm(500,1/sqrt(10))

M[i ]<−m1[i]*group[i]+m2[i]*(1−group[i])

}

# Likelihood

for ( i in 1:n) {

# Expectation

mu[i] <− A[id[i ]] + (1.1−A[id[ i ]]) /(1 + exp(−0.15*(x[i]−M[id[i ]]) ) )

# Actual response

y[ i ] ˜ dnorm(mu[i], tau)

}

}
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