B

MS-CIS-78-22

UNIVERSITY OF PENNSYLVANIA

MOORE SCHOOL

THE DESIGN OF THE
PARALLEL ARITHMETIC UNIT

IN PEPE

MARK CAMILLO DIVECCHIO

Presented to the Faculty of
(Department of Computer and
of the requirements for the

the College of Engineering and Applied Science
Information Sciences) in partial fulfillment
degree of Master of Science in Engineering.

Philadelphia, Pennsylvania
August 1978

(o hod)) Coriag

Cj%r. John W. Carr III

LA Ot

Dr. A. K, Joshi

1.0 The Parallel Element Processing Ensemble (PEPE)
1.1 Overview

As the need for solutions to high speed processing problems increases,
new and novel architectures will be developed. PEPE is an attempt to solve
a specific real-time problem with use of special purpose hardware.

The Ballistic Missile Defense Advanced Technology Center in Huntsgville,
Alabama started development studies in the late 1960s for a processor to
offload the ever increasing demands on a serial processor operating in a
sallistic missile defense (BMD) environment.

PEPE's design specifically addresses the BMD problem. It was designed
to perform three basic functions previously allocated to a CDC 7700 system.
They are:

« Correlation of new radar returns with current tracks

¢« Track prediction on all current tracks

« Scheduling on a radar time/power line, pulses to acquire more

data on current or new tracks.

To solve these three problems, a unique multiprocessor parallel ensem-
ble was proposed. Shown in Figure 1.1, PEPE consists of three independeﬁt
control processors each commanding an ensemble of up to 288 Processing
Eleﬁents (PE). The three control processors, housed in a single cabinet
called a Control Console (CC), are identical with minor exceptioms. Each

contains:

Sequential Control Legic (SCL)

Program and Data Memories

I/0 Units

Parallel Instruction Control Unit (PICU)

PEPE SYSTEM BLOCK DIAGRAM

ACU AOCU COMMON LAGIC CCO
fost f“w — oSt TV
| 1 -{CL MAINTENANCE et]
iov@|i003 16Ud|10V3 _ PANEL 100 ¢|10U3
SAPGRMISRDATA SOPGRM SODATA L —l SCPGRMISICATA
(22%) | (31 (2%) | (3 ICL @¥) | axy
| —
4 scL. scL MCDUL | SCL
o o e e e
PI& PiIcv _fr—emMc/opc [PICO
[— |
PICO CLOCK
CsS D
BSD@)
] P
- - e T === —— —
! AU AQOU EM CcuU
i
e Y T T o —_———— ——— e e e o | — o e ——
:
L AU AOU EM CU
|
' [

—— e - S Em— —— o——

Figure 1.1 PEPE Block Diagram

The SCL is a stand alone processor with all facilities for program
execution from memory. It performs typical arithmetic, logical, compari-
son, and branching functions of a sequential machine. The I/O units per-
form high speed input and output to the CDC 7700 using a direct channel
to both program and data memories.

The PICU receives parallel instructions from the SCL. As the SCL
fetches an instruction from memory, it determines if that instruction is
targeted for execution in the SCL or in the parallel ensemble. Instruc-
tions for the ensemble are sent to the PICU. Described more fully in
Secfionlb.Z, the PICU decodes each parallel instruction and transmits
control information to all 288 PE.

The three control units are named for their major function. The
Correlation Control Unit (CCU) controls the Correlation Unit (CU) portion
of the PE. Second, the Arithmetic Control Unit (ACU) handles the Arith-
metic Unii (AU) and lastly, the Associative Output Control Unit (AOCU)
controls the Associative Output Unit (AOU).

Other major units in the CC are the Intercommunication Logic (ICL),
the Output Data Control (ODC) and the Element Memory Control (EMC). The
ICL handles communication between the three SCL's and handles interrupt
vectoring and masking. The ODC controls access to the main data bus used
for outputting data from the ensemble. This bus is a single path shared
between all AU and AOU of the ensemble., EMC controls the granting of
cycles of the Element Memory (EM) which is shared between processors of

the PE.

Figure 1.2 shows the floor layout of a PEPE installation. The CC
is centrally located since it must communicate with each of the 8 Element
Bays (EB). A Burroughs Bl1714 computer is the Test and Maintenance (T&M)
unit for PEPE, Figure 1.3 is a picture of PEPE installed in Huntsviile,
Alabama.
1.1.1 The Element Bay

Each EB contaiﬁs 36 PE as shown in.Fngre 1.4, The PE are laid out
in 4 rows of 9 PE. Each row also contains a clock distribution card.
Figure 1.5 is a close up picture of the Element Bay with 11 PE.

One PE consists of 6 large 300 DIP boards, allocated as follows:

* AU 2 boards

« EM 1 board
’ . CU 1 board

« AOU 2 boards

The Bay Signal Distributor (BSD) occupies the left end of the cabinet.
The BSD provides connectors and gates to relay control and data signals from

the CC to each PE and to gather output from the PE on the Output Data Bus

(ODB) and relay that back to the CC. A simplified layout is shown symbol-

ically in Figure 1.6.

Inoke] 10017 5d9d Z°T 9in81d . 0}

- =—======7
) I
) [}

LINN
A9VHOLS
-=q
| ! '
] [i
{]]
¥IqAVaY N X)
Quvo] ' :
|
) TTOSNOD . '
/ YoLV43Ido . .“ .
HTOSNOD “ |
TOYLNOD
RON3'1d b e
a1y
40SSAD0Yd v_\ -
- - - -~
TVELNID r “.. r f
YALNI¥d | | {
ANI'T !
[! [|
y1L1d ! ' (|
| | i |
! | 1 1
"] | |
| | . |
- - e = — R,
SAVE INAW4Td

JYVMQUVH dddd

dddd €°1 °an81yg

. . 1/89/1-89

370SNOD 108 LNOD AV8 LN3IW373

Inokeq Aeg g4 #°1 2an8yg

¢
3
9¢3d | - sead pE e 3d 2€3d 1€3d 0£3d 6234 8234 |r
- Q
)
™
L23d 9234 §23d b23d £23d 223 123d 0234 6134 |2
lw
u
813d L13d 913d S13d 134 €13d 2134 113d ol3d |o
lw]
O N T | .
13d
r——h—
. 33z [z 2l
63d 83d L3d 934 $3d b3d €34 23d |G| L
lw)
r » . 1 r 2 4 A -y 1 3 1 1 4 | 3 h‘P 1 A A Iy '} A I N r'e e 2
= 4 % T B 71

WdAL

1
A

ass

Y
2

POWER

CABINET

CIRCUIT CARD

SUPPLIES

MODULE ASSEMBLY

FRAME

BACKPLANE
ASSEMBLIES

BLIES

CARD RACK
ASSEM

BI-FOLD DOOR

Figure 1.5 PE Bay with 11 PE Installed

" PE BAY-PARALLEL ORGANIZATION
(5YMBOLIC)

I

M v] v
| l PE 1 PE2 . ROW 1 --- |PEQ
CONTROL
CONSOLE
< (1 ¥ ¥ ¥
\d |ODB ‘
l ¥ 1 P
| PE10| [PE11] - ROW 2 - -- |PE1S
T y
I o
| i ; I)
| |
| | PEIq| |PE20 - ROW 3 - - - |pE2T
| , '
R’ ¥ K
| 005
| , 7 1 1
| I
| peza| |PE29 . ROW 4 - - - |PE36
|
L

Figure 1.6 Busing Diagram

1.2b Number Formats

Crucial to the understanding of the operation of a complex floating
point processor such as the AU, is a detailed knowledge of the number formats
processed by the AU.

The basic PEPE word is 32 bits in length. Bits are numbered right to

left with bit 31 being the most significant bit (MSB).

BIT # 31 0
1.2.1 Integer Format
PEPE integers are stored in the lower 24 bits of a word. The upper

right bits are always zero.

000000 00(S
31 24 23 0
B

7
«Po

Bit 23 is the sign bit for the two's complement representation of the

number in bits 22-0. The Range of values for integers is

w2230 2= integer 2-223

-

A sign of "1'" indicates a negative number and the binary point is considered
to be to the right of bit zero.

In a two's complement number system, one more negative number may be

represented than positive numbers. Consider the following for a four bit

system: BINARY DECIMAL
0111 +7
0110 +6
0000 0
1111 1
: !
1001 -7
1000 -8 10

Plus seven is the largest positive integer and -8 is the largest negative
integer. Since this -8 value does not have a positive "equivalent" we
will see later that it requires special handling during the execution of
certain PEPE instructions.
1.2.2 Double Integer Format

PEPE double integers are stored in the.lower 24 bits of two PEPE words.
The upper 8 bits of both words are always zero. Bit 23 of the lower word

is always the same as bit 0 of the upper word. Bit 23 of the upper word

is the sign Git.

0000000G | s

BIT 31 2t 23 0

00000000

The range of values for double integers is

+247-1 2 double integer 2 -247

The binary point (B.P.) is to right of bit 0 of the lower word. Double integers
less than +223—1 or greater than —223 are completely represented in the

lower word as standard PEPE integers.

1.2.3 Logical Format

A PEPE logical word is 32 bits long with no restriction as to its

contents.

11

1.2.4 Floating Point Format

PEPE floating point numbers are represented in one 32 bit word. The
fraction (or mantissa) part is stored in bits 23-0. The binary point is
to the left of bit 22 and bit 23 is the sign bit of the fraction. The
exponent (base 2) is stored in bits 31-24 with bit 31 being the sign bit.

Both the fraction and exponent are carried in two's complement notation.

SE SF
BIT # 31 24 ZiTéz 0
B.P.
L ~ » ~ oy P
EXPONENT FRACTION

SE - Sign Exponent
SF - Sign Fraction

All floating point nﬁmbers are normalized and this is maintained by all
PEPE floating point instructions. The number is considered normalized if
the most significant bit of the fraction (Lit 22) is different from the
sign of the fraction (bit 23).
The exponent can be considered as an 8 bit integer field. Range of
the exponent field is:
127 2 exponent s -128

which can represent decimal values from (approxirately):

38 38

10 = floating point 3 10”7
and
-10.38 > floating point = -1038.

The range of the fraction is:
2° - 2-23 > fraction 3z -ZO

which can represent decimal values from (approximately):

0.9999998% = fraction » -1.0000000.

12

6

The smallest magnitude fraction is .1192 X 107 . The fraction is always less

than magnitude one except for one special case of -1.0000000., This results
from the same effect as discussed under integer format. PEPE floating point
format allows seven significant decimal digits in the fraction.
1.2.4.1 Floating Point Zero

In any floating point system, a mantissa of zero with any exponent

has a value of zero. Thus:

27 28

0.0x2*27 = 0.0x2° = 0.0x27!
PEPE hardware must, though, be able to determine equality of numbers that
may both be zero. For the hardware to know that 0.0x2° = OXZIO, poses
difficulties that can be avoided, In PEPE, we define one floating point
zero. It is:

0.0x27128
In 2 32 bit word, this is a one in bit 31 and zeros in bits 30-0. All
PEPE floating point instructions expect operands of zero in this form and

will produce results of zero in this form. This representation can be con-

sidered the ''smallest" zero in floating point format.

P

13

2.0 AU Architecture at the Register Level

The Arithmetic Unit is designed to perform floating point and integer
arithmetic, boolean operations, shift operations, single-bit memory data
packing, overflow detection and normalize operations. Two's complement
arithmetic is used. Double precision integgr add and subtract instructions
can be accomplished through software.

The AU also is designed to perform element activity instructions.
Activity instructions are used for selecting a set or subset of PEPE elements.
The selected set is said to be active and will have its activity flip-flop
set. Elements whose activity flip-~flop is not set will be inactive and will
not participate in selected parallel instructions until such time as they
are set active.

The ACU controls each AU operation through the use of control lines
from the PICU. Global operands are transmitted to the AU on 32 of these
lines in a time-sgharing mode. In addition, element memory data transfer to
and from the AU is done on 32 bidirectional lines. All data output for
global use is available on 32 output data lines which are time-shared with
AQPU data output under global command from Output Data Control ($DC).

Each AU also provides two outputs for the Select Highest/Lowest logic.
For observation of unit faults and as a programming aid, two overflow
indicators are sent to the ICL.

The AU contains a fault flip-flop which can be set by the ACU,
conditional on element activity. When this flip-flop is set it will not
allow the AU, AQU, and CU of the element to participate in any instruction

other then 'clear fault flip-flop'", which will re-enable the failed elements.

14

Shown in block diagram form in Figures 2.1 and 2.2, the AU was built
on two boards named AUl and AU2., With the exception of the input receivers,
output drivers, and a data alignment network, the AU can be functionally
described as being composed of an arithmetic and an element activity section.

he arithmetic section contains three working registers (A, B, and Q),
an adder, and data input switches. The B register is not programmer acces-
sible. The activity section contains a tag register, a stack (shift) reg-
ister, and an clement activity flip-flop. Also included is the necessary
logic and switching which operate in conjunction with these components.

| The register level diagram of the AU shows all cf the main AU data
paths and centrol. Not showvn is the detail logic of functions such as the
normalize decode network, zero and overflow detection, and the element
activity. These items vwill be discussed in Section 4. The design is based

on specific arithmetic algorithms described in Section 3.

15

To/From BSD

From EM

e
N
1 S Local
Control
: Control Control to AU2 N
: Lines ! >
1
!) 1 O -
EA FAULT .
Sam—— From Zeros
Contrql Detector
Retiming -
' Stack 7
Shift
Data
ﬂ\]:/F'
A Register From
] 5() Normalize
< \() Decode
Search A\]j/\
Logic ‘ Exponent | shife count
Adder
B Register l 2's Comp
To EM and ODB 7
N -
Alignment / . -
Q Register Shifter Shift 7
Network Data

Figure 2.1 AU Card 1

16

From EM

2
AL Control From AUl
T
\
: Control Local
]
: Lines Control
H
Control .
Retiming \ g%gt
Stack N
7
/
p [Tag
= .
A Register L%t
Mantissa
Adder
B Register To EM and ODB
7
f\ ;é,\ PE Number

il L

: Normalize
Q Register Decode
Alignment / Network
Shifter '
Network ?
>
Shift
Data

Figure 2.2 AU Card 2

17

2.1 AU Registers

The AU contains the following registers and flip-flops visible to

the programmer:

A Register (PAAREG) - Implicit operand in most instructions.

32 bits in length.
Q Register (PAQREG) - Quotient register for the divide instruction.

Used as a scratch register in the multiply instruction. 32 bits

in length.
Element Activity Flip-Flop (PAEACT) - A one bit register used to

indicate the state of the AU. If reset, the AU will not partici-

pate in the execution of most instructions.

Activity Stack (PASTAK) - A 21 bit FILO stack used to store the
PAEACT bit. An attempt to push a bit out of the bottom of
stqck will send an error indication to the ICL.

Tag Register (PATAGR) - An Eight bit register used to hold a tag
loaded by the control unit. The tag can be used to permit or

inhibit the execution of instructions in the AU. Different AU

can contain different tags.

Overflow Flip-Flop (PAOVFF) - A one bit register used to indicate
if an arithmetic overflow occurred within the AU. This flip-
flop is sent as an error indicator to the ICL.

Fault Flip-Flop (PAFALT) - A one bit register used to completely

disable the entire Processing Element.

PE from the Ensemble.

Programmatically removes

18

Other registers not visible to the programmer are:

2.2

B Register (PABREG) - Used to hold the explicit operand during most
instructions. It holds the operand after receiving it from the
control unit or the Element Memory. 32 bits in length.

Shift Count Register (PASHCR) - A six bit register used to hold
the shift amount. Possible values are +31 to -32 with positive
numbers indicating a right shift and negative numbers a left shift.

AU Functional Units

Major functional units of the AU are:

Adder (PAADMN bits 23-0 and PAAD;X for bits 31-24) - A twos
complement adder divided into a mantissa section and an exponent
gsection. It is capable of both arithmetic and logical operations.
Output is PAAOUT.

Alignment Network (PAALNO) - A 32 bit barrel shift network capable
of 32 bit left and right logical shifts and 24 bit left and right
arithmetic shifts. Input is PAALNI,

Shift Count Two's Complement (PA2SCO) - A six bit subtractor which
subtracts PASHCR from zero. It is used to take a positive shift
count and negate it to permit left shifts.

Normalize Decode Network (PANRMD) - A combinatorial network which
counts the number of leading zeros or ones in a floating point
fraction. Used to produce a count of 0 to 23 to left shift the
fraction for normalization during floating point instructions.
Shift count output is PANRMD, a 5 bit positive value.

Search Conversion Logic (PASRCH) - Logic used in the conversion

micro-step of the Select Highest/Lowest instructions.

19

3.0 Instruction Set of the AU

The PEPE Arithmetic Unit can execute 71 Instructions that can be

classified into six basic types:

1,

3.

4,

6.

Activity - those instructions which affect the Element Activity
Flip-Flop or Activity Stack.

Integer - those instructions involved with the processing of
integer data.)

Logical/Data Transfer - those instructions involved with the

processing of logical data.

Floating Point - those instructions involved with the processing

of floating point data.

Output - those instructions which cause the AU to transmit data
to the EM or the ACU.

Distributed - those instructions which operate over a set of AU's
rather than within a single AU.

Appendix C lists the instruction set in several different formats

and classes each into one of the six types. The following sections will

describe each type in general and will describe in detail the more

interesting instructions of each type.

20

3.1 Activity Instructions

As mentioned in Section 2.0, the Element Activity (EA) Flip-Flop
controls whether its particular AU will participate in the currently
broadcast parallel instruction. Maximum use of this flip-flop is made
to facilitate PEPE's associative nature, Tbe select instructions cause
the EA to set or reset depending on the result of an internal comparison
between two pieces of data. For example, during Select -on Not Equal
Global (SNG-107), a comparison is made between a global operand and the

AU A Register. The EA is reset in all AU performing an equal comparison.

21

3.2‘ Integer Instructions
3.2.1 Single Integer
The AU integer instructions perform addition, subtraction and multi-
plication on the 24 bit integers described in Section 1.2.1.°
The implicit operand is always the A Rggister. The explicit operand
can be global or it can be fetched from the local EM. The Arithmetic
Logic Unit (ALU) performs only addition. Subtraction is accomplished by
complementing the subtrahend, introducing a carry into the lower order
bit and then adding. Integer multiply is described in Section 3.4.3.
Instructions are: ADI
SBI
MLI
All AU integer instructions check for overflow. During addition, over-
flow is generated if the result sign is different than the two operand
signs if they are the same. During subtraction, overflow is generated if
the result sign is different than thé minuend sign if the minuend sign is
different from the subtrahend sign. The overflow signal is sent as an
error interrupt to the ICL.
3.2.2 Double Integer
The AU can process double integer values using a sequence of instruc-
tions. First, the lower words must be fetched. The operation can then be
performed and the result stored. Then the upper words are fetched, oper-
ated on and stored. A flip-flop is used to store a borrow or carry
between the lower and upper words.
Instructions are: LADI
LSBI
UADI

USBI

Overflow is checked when processing upper words.

3.3 Logical/Data Transfer Instructions

This class of instructions includes both those that perform logical
(AND, OR) operations and those that cause the movement of data.
3.3.1 Llogical Instructions

The AU performs logical instructions through the ALU. The A Register
is one operand and the B Register is loaded with the other operand. As
in most instructions the B data can be global or it can be fetched from
the local EM. The result is placed in the A Register.
3.3.2 Data Transfer Instructions

These instructions are classed as logical -instructions because they
handle data as 32 bit words without regard to their internal format., Data

transfer can occur over the paths shown in Figure 3.l.

23

Stack

Element Global PE Number
Memory Data
Data
¥ ¥
Register Q Register
_J
|
A
. Alignment / Tag
Shifter
Network
Instructions: LDA STGA
LDE STGI
LDQ TAQ
LTAG TIDA
SHL TQA
STG

Figure 3.1 User Controlled Data Paths

24

3.4- Floating Point Instfuctions

This class of instructions make up the more interesting operations
possible on PEPE. They operate on the PEPE floating point (FP) data
representation described in section 1.2.4.

" 3.4.1 Float/Fix

The Float instruction (FLOT) takes a 24 bit PEPE integer and converts
it into a floating point number. This is done by normalizing and adding
an exponent.

FLOT is performed in three steps as follows:

1.‘ Count leading "zeros" for positive numbers (leading

"ones" for negative) starting at bit 22 down.

2. Shift the 24 bit integer the counted number of places

left (filling with "zeros") thus normalizing it.

3. Subtract the count from 23 to form the exponent of the

new FP number.

The subtraction from 23 is required because in the conversion, the
binary point is moved 23 places from the right of bit O to the right of
bit 23. All integers can be converted to FP.

The fix (FIX) instruction is more complicated because not all FP
numbers can be represented as integers. FIX takes a FP number and con-
verts it to an integer. Consider that the PEPE FP number can be math-
ematically represented by:

+ M+ X/Y
where M is a whole part and X/Y is the fraction part. FIX is defined to
extract the whole part. For example:

5.3 when FIXed becomes 5

5.8 " 5
-5 ° 3 1] -6
=5.8 n -6

25

The last two examples are so because -5.3 in two's complement form is
really -6 + .7.
The FIX algorithm executes as follows:
1. First check the exponent. If it is greater than 23, we cannot fix
the number. An overflow indication is sent to the ICL.
2. Subtract the exponent from 23. Save this number as a shift count.
3. Shift the fraction right extending bit 23, the sign bit. Zero out
the exponent.
4, If any significant bits were shifted out, add one to the new integer
. lif it wasnnegative.
The fourth step handles the two's complement negative numbers.
3.4.2 Add/Subtract
FP add (ADD) and subtract (SB) are identical except for the actual
arithmetic operation performed.
The ADD algorithm is:
1. The two exponents are subtracted and the result is saved as a shift
count,
2. The fraction with the smaller exponent is shifted in order to make
the exponents equal.
3. The add or subtract is performed.
4, If the fraction sum overflows, an attempt is made to right shift
the fraction and increment the exponent to correct the overflow.
5. If the exponent overflows, an error indication is sent to the ICL.
If the exponent difference is greater than 23, one of the fractions
will be shifted completely out of the register. This is not an error
condition but must be handled specially (because the shifter is not defined

to operate with a greater than 23 arithmetic shift). The result of the

26

exponent subtraction is held in two flip-flops which cause the A or B
input to the ALU to be zeroed during step 3.

An ADD example:

.1 X Zgg becomes: 1 X 23030
+ X2 + L,001 X 2
.101 x 2%°
also:
.1 X 230 becomes: .1 X 228
+ JA X2 .0 X 2
.1 x 230

3.4.3 Multiply
‘ Several multiply algorithms were considergd for the AU.
The simplest is a bit by bit algorithm. That is, if a bit is "one"
in the multiplier, add the multiplicand to a partial sum, shift it left
one place and proceed to the next bit.

For example:

00101 =5
X 00101 =5
1 add multiplicand, shift 00101
0 add 0 , shift 00000
1 add multiplicand, shift 00101
0 add 0 , shift 00000
0 add 0 , shift 00000
000011001
= 25

This method requires one - step per bit in the multiplier. In the AU it
would have required 24 steps.
A second method, as an extension of the first, is to take 2 bits of

the multiplier at a time.

multiplier bits action
00 add 0 , shift two
01 add 1 X multiplicand, shift two
10 add 2 X multiplicand, shift two
11 add 3 X multiplicand, shift two

Repeat this for each pair of bits in the multiplier. -

For example:

00101 = 5
X 01001 =9
L
X
01 add multiplicand , shift two 00101
10 add 2 X multiplicand, shift two 01010
00 add O , shift two 00000
000101101
= 45

This method needs one step per two bits in the multiplier and in the
AU could operate in 12 steps. The major difficulty with this algorithm
is the generation of the 3X multiplicand. O and 1X are easy to generate.
2X is just the multiplicand shifted left one place. We can, of course,
get 3X by adding 1X and 2X but this adds a step to the execution.

The algorithm used in the AU is a modified version of the two bit
multiply without the need for a 3X operand. The AU takes the two bits
plus a "look ahead', one bit of the next pair. From these three bits add
to the partial sum:

000 0 , shift two
001 1X multiplicand, shift two
010 1X multiplicand, shift two
011 2X multiplicand, shift two
100 -2X multiplicand, shift two
101 -1X multiplicand, shift two
110 -1X multiplicand, shift two
111 0 , shift two
Thus, if we had a pair of bit groups as follows:
multiplier 0110 = 6

First, extend it right one zero bit and extend it to the left to

complete the last group of three

0001100
S/
W1
et 2
3
Group 1 100 -2 X 2° = -2X
Group 2 011 2 X 22 = 8X

Group 3 000 O0x2%= ox

6X

28

The result is 6 X the multiplicand. The first group served to correct
by subtraction, what it knew was an average added by the second group. The

3 X operand becomes:

0011
extend:
00110
—
wl
2
Group 1 110 -1 X 2° = -1x
Group 2 001 1Xx 2% - &x
3x

For our earlier example of 5 times 5:

00101 = 5
X 00101 =5
Group 1 010 1X2°=1x
Group 2 010 1X 22 = &4X
Group 3 000 0 X 2% = ox
5X
Another example:
00101 = 5
X 01110 = 14
Group 1 100 -2X2°=-2x
Group 2 111 0x 22 - ox
Group 3 001 1X 24 = 16X
14X

This method, used in the AU, requires only 12 steps to perform the
actual multiplication. The same algorithm operates correctly on both

integer and floating point numbers.

29

3.4.4 Divide

The AU divide (DV) algorithm resembles standard longhand division.
The algorithm divides positive numbers by positive numbers only. There-
fore, the first thing the AU does is check if one or the other operand
(but not both) are negative. If so, it sets a flip-flop to remember and
then takes the two's complement of any negative operands. The AU also
requires that the quotient be less than +1 (definition of normalized
positive fractions). The AU checks this by subtracting the divisor from
the dividend and examining the sign of the result.

| Fof example:
0.11010 < 0.10000

(13/16 < % = 13/8)

0.11010 \ 2's comp 0.11010
- 0.10000 “ subtraction: + 1.10000
0.01010

A negative result would indicate that the quotient will have a
positive sign and a "one" in the MSB of the fraction (thereby less than
+1). A positive result would indicate that the quotient will be greater
than one (as in the example). To prevent this, the AU will shift the

dividend one place right sign extended and increment the exponent by one.

Then:

0.11010 X 2° becomes 0.01101 X 21

It is no longer normalized but the algorithm can handle that.

30

For the divide, the AU subtracts the corrected divisor from the diviéend
and follows these two rules: (by subtracting the divisor, the AU guesses
that the quotient bit for this position is a '"one").
1. If a '"one" appears as the sign bit of the result of the
subtraction, that means the guess of '"one'" as the quotient
bit is incorrect. Therefore, the quotient bit is set to 'zero",
the result of the subtraction is discarded, and the dividend
ig shifted left zero fill one place.
2. If a '"zero" appears as the sign bit of the result of the
| subtraction, the guess of "one" as the quotient bit is
correct. Therefore, the quotient bit is set to "one"
and the result of the subtraction is shift left zero
£fill one place to become the new dividend.
Continuing our example:

0.01101
+ f1.10000 bit

%.11101 3 0. (First result bit is the
0.11010 sign and will always be

+ 1.10000 - "zero")
0.01010
(:
0.10100
+ 1.10000
0.00100

new
dividend

Quotient

0.01000
+ f1.10000
}.11000

0.10000
+ 1.10000
0.00000

LO.OOOOO
+ 1.10000
}.10000

31

Quotient is 0.11010. The result exponent is the dividend exponent
minus the divisor exponent. For the example it is 1 - 0 = 1. The final
quotient is

0.11010 X 2% = 13/16 x 2} = 13/8

(1

The AU executes the iterative portion gf the DV instruction in 24
steps.
3.4.5 Square Root

In base ten, a square root operation is a set of guesses and sub-

tractions. The guess can be 0 to 9. In longhand decimal

find v'104692

3 2 3
VIO 46 92
3X3 -9

1 46

62 X 2 -1 24
_ 22 92
643 X 3 -19 39
3 53

If the guess of the root digit was too high as evidenced by a negative
difference, the digit is decremented by one to become a new guess. The
AU also guesses at the result, but in binary only two guesses are possible.

A longhand example in binary (Example A):

1 1 0 1 1 1 Al2
v 10 11 il 01 10 10
1X1 -1
1 11 Al
101 X1 -1 01 A2
10 11 A3
1100 X O =0 00 Ab
10 11 01 A5
11001 X 1 -1 10 01 A6
1 01 00 10 A7
110101 X 1 -0 11 01 01 A8
01 11 o1 10 A9
1101101 X 1 -1 10 11 01 AlOQ
0 0 10 01 All
[Reference
Line #

32

- The AU guesses that each root bit is a "one'",then performs a sub-
traction. If the guess turns out to be incorrect, the subtraction result
is still used but a correction factor is added during the next subtraction.
The AU proceeds as follows: |

First, the exponent must be even. If it is not, the fraction is

shifted right one place sign extended and one is subtracted from

the exponent.
The first two bits of the square are taken. A guess is made that the first
bit of the result will be a 'one'". The guess is subtracted from the operand
This regult becomes the new operand and is concatenated with the next two
bits of the square. The guess is then shifted left one place and the lower
three bits are replaced by:

011 if the subtraction is negative
101 if the subtraction is positive.

This becomes the new guess. If the result of the last subtraction was
negative, we add the new guess else we still subtract it. The process
continues until all bits of the square are used. The root is contained
in the last guess word. It is normalized aﬁd the exponent is shifted
right one place sign extended to divide it by two and the instruction is

complete.

33

eferenc

For our earlier example: R
[Line #

JI0 1T 1T 01 10 10
=01 &~ first guess

01 11 Bl
-01 01 B2
10 11 B31
-11 01 B41
11 10 01 . BS1
+ 01 10 11 B6
01 01 00 10 B7
=00 11 01 01 B8
01 11 01 10 B9
~01 10 11 01 B10
00 10 01 Bll
last guess —> 11 01 11 B12
¥
normalize
0.110111

In line A4 of the longhand method, zero was subtracted because a guess
of zero was used as the next bit of the answer. In line 841 of the
algorithm, a guess of '"one" was subtracted (since the algorithm always
guesses "one'") and as seen in line BSI, a negative result indicates too
large of a guess. Line BG1 applies the following insertion factor which
replace the last three bits of the guess:

T
Two's complement of the new guess .
Corfect bit of the root.
The two's complement of the new guess serves to correct the over
subtraction of this step during the next step. The ''correction'" field used

as a result of a correct guess is:

10

i
New guess

orrect bit of the root.

34

»

In the example, the algorithm subtracted:
00 11 01 [1;4]]
and produced a negative result. Therefore it must add this back during

the next step while at the same time subtracting the new guess word.

IReference
result of previous step Line #

current guess
add back o~ 1
to undo - 00 11 01 B4
subtraction]

result of this step

. l next guess

subtract) 1
new L+00 01 10 01 B5
guess i
add for 1
entire - 00 01 10 11 B6
correctionj

and new guess
The AU executes the iterative portion of the square root instruction

in 24 steps.

35

3.5. Output Instructions
3.5.1 Store Instructions (STA)

All of the AU visible registers can be stored in Element Memory.
During a single micro-step, the selected data is gated to the EM and
written. Storable register are:

A Register
Q Register
Activity Stack
Tag Register
EA Flip-Flop
Overflow Flip-Flop
3.5.2 Output A Register Instruction (OTA)

A special instruction which executes both in the SCL and AU is used
to retrieve a 32 bit word from one AU and place it in the SCL A Register.
In preparation for the execution of an OTA instruction, appropriate select
instructions should have been executéd to leave only one AU active. When
the SCL decodes an OTA, it sends a copy to the PICU while at the same time
requesting use of the Output Data Bus (ODB) from ODC, Figure 3.2. When a
bus cycle is granted, the AU gates its A Register onto the bus. After some
signal propagation delay, the ODC responds to the SCL with a data ready

line and the correct data.

36

AOCU
SCL

' AOU

AOU

ACU oDC
SCL
Control Control
PAODAT //1
From all
288 PE
AU
=
AU
The PAODAT Bus is 32 bits wide

Figure 3.2 Output Data Bus/OTA Instruction
Block Diagram

37

3.6‘ Distributed Logic Instructions

PEPE also includes a set of logic called distributed logic. This
logic is not contained in any one PEPE unit but is spread over the control
console and the element bays.

3.6.1 Count AU

The SCL may at any time, request a count of the number of AU is with
their EA Flip-Flops on. Special logic exists within each EB and the CC
to perform this count. Shown in Figure 3.3, each AU in the ensemble
presents the state of its EA to the count logic. The count logic presents
a nine bit (0-288) count to the SCL which can be loaded into the SCL A
Register during the execution of a Read Activity (RDA) instruction. The
AU does not directly participate in this instruction.

Two other signals are generated by the AU Count logic. They are
SAMANY and SAACTV. The signal SAMANY is a detection of activity count
greater than one or "many" active. The signal SAACTV is also a detection
of activity count, here for a count éreater than zero. Both of these
signals are transmitted to the SCL and SAMANY is also sent to the PICU.
3.6.1 Select Highest/Lowest Instructions

A need was identified in PEPE for a high speed algorithm to perform
a maximum or minimum search over a set of data values in the element
ensemble., The two search instructions are Select Highest and Select
Lowest (SH/SL). The SH/SL instructions execute as follows: in the set
of active AU's, reset element activity in each AU whose "A'" Register
contains a nonmaximal/minimal value relative to the set of active AU.
This value comparison is done for the set of PEPE integer or normalized

floating point numbers but never for a mix of both types.

38

TO
ACU
SCL

COUNT
LOGIC

AU

T Tt

From
all

288
PE

AU

Figure 3.3 Count AU Block Diagram

EA

AU

AU

39

A discussion of valid operands for the SH/SL may be appropriate
here. For simplicity, consider a machine with eight bit registers in-
stead of 32 bit registers. Let four bits represent the fraction or
integer and four bits represent the exponent. See figure 3.4. Note
that the entire discussion following can behdirectly extrapolated to
PEPE 24 bits fraction/integer and eight bit exponent.

When doing a search over a set of integers, SH/SL requires that
the exponent and the sign of the exponent be zero. The integer value
is searched for the largest/smallest value.

| A search over a set of floating point numbers requires that the
fraction be normalized. Normalized numbers are those whose SF and most
significant bit of the fraction are different. As shown in figure 3.4,

+ 1/8 is not a valid floating point number for this reason. If + 1/8

were permitted, the numbers 0010 0001 and 0000 0100 would both have the value

of + 3. The search algorithm as described later will report that the
first binary pattern is larger than the second when they are actually
equal.

Also note that the value of floating point zero can be represented
in 16 different ways, that is with any exponent as long as the fraction
and SF are all zero. In effect 0111 0000 = 0000 0000 = 1000 0000. There-
fore, we define floating point zero to be the '"smallest" zero represent-
able or 1000 0000 which is O X 2-8. Note that floating point zero is not

normalized.

40

7 6 5 4 3 2 10
0]0 O O]sI VALUE INTEGER

SE| EXP | SF{ FRACTION FLOATING POINT

TWO'S COMPLEMENT NOTATION

INTERPRETATION

SIGN MAGNITUDE INTEGER EXPONENT FRACTION
0 111 +7 27-128 +7/8
0 110 +6 2564, +3/t
0 101 +5 2°-32 +5/8
0 100 +4 2%.16 +1/2
0 011 +3 238 +3/8 *
0 010 +2 22.4 +1/4 *
0 001 +1) +1/8 *
0 000 0 201 0
1 111 -1 L) -1/8 *
1 110 -2 272174 A1/6 *
1 101 -3 2-3.1/8 -3/8 *
1 100 . -4 2741716 | -1/2 *
1 011 -5 272-1/32 -5/8
1 010 -6 2-6_ 1766 | -3/
1 001 -7 2="_1/128 | -7/8
1 000 -8 2817256 | -1

* Not Valid Normalized Floating Point Patterns

Figure 3.4 A Four Bit Number System

3.6.2.1 Algorithm

The algorithm to be described executes in the AU and requires a
maximum of 35 100 ns micro-steps. Execution consists of two parts,
Conversion and Search.
3.6.2.2 Conversion

The first micro-step of SH/SL converts the set of values to be
compared from the valid set of PEPE 2's complement number system into
an ordered set of operands. This conversion is a mapping of PEPE numbers
onto a 32 bit pure magnitude number line. In the case of Select Highest,
the lafgest (most positive) PEPE number is converted to all ones and the
smallest (most negative) PEPE number is converted to all zeros. For
Select Lowest the mapping is reversed.

For the purposes of this explanation, the set of PEPE floating rumbers
is broken into 4 classes. Refer to figure 3.5. Column 1 represents the
ordered set of 2's complement normalized PEPE operands. Top-most positive,
bottom-least positive. Fraction sign (bit 23) is first and exponent sign
bit 31 next, for both, O is positive. The exponent field (bits 30 to 24)
is next. Fraction field is last (bits 22 to 0). The classes are:

Class 1 contains all operands with positive fraction and

positive exponent.
Class 2 contains all operands with positive fraction and
negative exponent.
Note the zero operand is the least class 2 element. Class 3 contains all
operands with negative fraction and negative exponent. Here the exponent
field is ordered all zeros to all ones. The fraction field is ordered by
normalized negative values (zero with all ones to all zeros). This puts

the operands in order (most to least positive) but not in decreasing binary

42

Original Select Select

Floating Highest Lowest

Point Mapping Mapping

Number

SF SE EXP FRAC SF SE EXP FRAC SF SE EXP FRAC
0 0 1-111-1 11 1-111-1 0 0 0-000-0
0 0 1-110-1 11 1-11 -0 0 0 0-001-1
0 0 0-011-1 1 1 0-011-1 0 0 1-100-0
0 0 0-010-0 1 1 0-010 -0 0 0 1-101-1
01 1-111-1 1 0 1-111-1 01 0-000-0
0 1 1-110-0 1 0 1-110-0 01 0-001-1
0 1 0-011-1 1 0 0-011-1 0 1 1-100-0
01 0-010-0 1 0 0-010 -0 0 1 1-101-1
0 1 0-000-0 1 0 0-000-04 0 1 1 -11211-1
1 1 0-001-1 0 1 1-101-1 l1 0 0-010-0
1 1 0-000-0 0 1 1-100-0 l1 0 0-011-1
1 1 1-101-1 0 1 0-001-1 l1 0 1-110-0
1 1 1-100-0 0 1 0-000-0 1 0 1 -111-1
1 0 0-001-1 0 0 1-101-1 1 1 0-010-0

. : .
1 0 0-000-0 0 0 1-100-20 11 0-011-1
1 0 1-101-1 0 0 0-001-1 1 1 1-110-0
1 0 1-100-0 0 0 0-000 - 0 1 1 1-111-1
(Figure 3.5 N&mber Classes and Conversion

Floating Point

CLASS 1

CLASS 2

(ZERO)

CLASS 3

LASS &4

43

seqﬁence. Class 4 contains all operands with negative fraction and positive
exponent. It is ordered similarly to class 3. Column 2 shows the converted
values for select highest and Column 3 shows the converted values for

select lowest.

The set of PEPE integers is broken into 2 classes. Refer to figure 3.6.
Column 1 represents the ordered set 2's complement PEPE integers? top-most
positive, bottom-least positive. Fraction sign (bit 23) is first, zero is
positive. Exponent sign and exponent are all zero. Fraction field is
last (bits 22 to 0). The classes are:

Class 1 contains all positive integers.

Class 2 contains all negative integers.

Column 2 shows converted values for SH,and column 3 shows the converted
values for SL. Operation of SH/SL on integer values can be considered a
subset of floating point operation when the exponent is zero.

Rules for either floating point or integer conversion are:

Select Highest (SH)

1. Complement bit 31 if bit 23 equals zero

Complement bits (30-24) if bit 23 equals one

Bits (22-0) remain unchanged

J-‘}AN

. Complement bit 23

Select Lowest (SL)

1. Complement bit 31 if bit 23 equals one
2. Complement bits (30-24) if bit 23 equals zero
3. Complement bits (22-0)

4, Bit 23 remains unchanged

44

Original Select Select
Integer Highest Lowest
Number Mapping Mapping
S1 XX XXX INT | ST XX XXX INT ST XX XXX INT
0 0 0-011 -1 1 1 0-011-1 0 0 1-100-0
0 0 0-011-0 1 1 0-011-0 0 0 1-100-1
0 0 0-000-1 1 1 0-000-1 0 0 1-111 -0
0.0 0-000-0 1 1 0-000-20 0 0 1-111-1
0 0-011 -1 0 0 1-111-1y 11 0-000-0
1 0 0-011-0 0 0 1-111-0 11 0-000-1
1 0 6 -000 -1 0 0 1-100-1 1'1 0-011-0
1 0 0-000 -0 0 0 1-100-0 1 1 0-011 -1

Figure 3.6 MNumber Classes and Conversion

Integer

CLASS 1

(ZERO)

CLASS 2

45

The conversion is done in the ALU of the element. Following this
mapping, each element contains a value in pure 32 bit magnitude represent-
ation with the same relative '"value'" as the original PEPE number. All
that remains is to compare this value in all active elements and leave
the element(s) with the maximum/minimum value active.
3.6.2.3 Search

Figure 3.7 illustrates the basic principle behind the search function.
One bit of the converted value in each active element is gated out of the
element and into the Signal Distribution System (SDS). The SDS in PEPE is
that'portion of logic that enables the control console and the element bays
to communicate., The SDS can be considered to encompass the distributed
logic. In the SDS, they are '"OR'"ed together and transmitted back to each
element. The line sent back to each element indicates that at least one
of the active elements has a "1'" in the bit position being examined. A
decision is then made in each element to reset the element activity if
that element has a "0" in the bit position and at least one element has
a "1", It is clear that any element with a "1" in a particular bit posi-
tion has a number of greater magnitude than an element with a '"0'" in that
position.

Due to PEPE layout constraints, the propagation delay encountered in
the "OR" circuit will be on the order of 200 ns. Therefore one bit each
200 ns is the maximum rate in the "OR" circuit and a SH/SL operation over
the full 32 bit word would take 6400 ns. In order to reduce this time, the
method in Figure 3.8 was used. Two bits each 200 ns are output by the

element for a search time of 3200 ns.

Element Activity
Flip-Flops
PE #1
74

From all other
Processing
Elements

i

<:::1_ i A Register
MG .
R a PE #2
'R A Register
~1
Q
R

()

—an e e e me @y e R Smeas Em— . e—
v s e Gms Er Gm wwe WP D e s e G, G e

A Register

-L;Q ’ PE #n

Figure 3.7 SH/SL One Bit Per Cycle

47

Figure 3.8 shows that 2 bits are decoded and sent out of the element
on 3 lines. Each of the 3 lines from all of the elements are "OR"ed and
returned to the element. If the element has 2 bits that are less than
indicated by the 3 reset lines, the element resets its element activity.
Figure 3.9 shows the truth table for this reset function. % and e are
the 2 bits being examined, A, B and C are the 3 output lines of the element,
X, Y and Z are the 3 "OR"s of all the elements A, B and C lines, and RESET
is the signal to reset the element activity flip-flop. Line A equals "1"
when bqth bits being examined are binary "1". Line B equals "1" when the
high order bit is a "1" and the low order bit is a "0". Line C equals 1
when the low order bit is a "1'" and the high order bit is a "0". All 3
lines are "0' when both bits are zero. These 3 lines are '"OR"ed in the
CSD/BSD with the corresponding lines from all the other active elements
and these 3 signals are returned to every element. The element then
compares its local A, B, C lines with the global X, Y, Z lines and any
elements whose ABC lines indicate its 2 bits are less than the XYZ lines

show for the entire system, will reset its element activity.

48

Element Activity

Figure 3.8 SII/SL Two Bits Per Cycle

Flip-Flops
c PE # 1
A Register
B T
A
L {q
' R - e oy
PE # 2
C A Register
B T
, A 1 |
Q
R | '
l
‘ |
|
I |
(l
| I
! |
|
| l
From
All I '
Other | |
Elements \ |
{ |
) PE # n
|
C l A Register
B - |
Lk
R i
1“. 2 «L\ Compare Logic
"| _— Decode Logic
Reset
Lines

49

Truth Table

A,B,C Lines

BETA

ALPIE » BETA

ALPHA « BETA
ALPHA »

nouu

A
B
C

c

B

A

oO-C O

OO O

COOrm

ALPHA BETA

OO

OO i

RESET

OrdrdrAeArdrdr-d O~ HH OO0 OCO

Reset Element Activity Truth Table

A B C X Y Z

ALPHA BETA

O OO OHMHMHMHAHOFROMO O
COMrHMFMOOH MO Ot OO0O
COCOAMmMmOOrmrtOoOO rrdr —rir
OO0 OOOCOCOOHMHMHFHFHOOOOOOCOCO
O000O00COLOOCOCOrmMFHOOOO

cNoNeNololoNoRoNoloNoloNoloNoNe R R N ol

[eNeoReoleoleloNoNoN NoN NoNeoNeNoNo N B B Ny

oOoocoocoooooooooOOmririre A

RESET = AX + ABY + ABCZ

‘Figure 3.9 Search:Reset Element Activity Function

50

The flip-flops & and € contents are

u-step

BO2

BOO

B31
B29
B27
B25
B23*
B21
B19
B17
B15
B13
Bl1
BOS
BO7
BO5
BO3

BO1

as follows during execution of SH/SL:

conversion micro-step

*Note that the effective bit 23
is examined twice. This was done
to simplify the SH/SL logic.
The second pass of bit 23 through
the compare logic is a NO-OP.

**at the end of micro-step 35,
and § reset to O.

51

The PICU does not directly participate in the actual search. It
sends controls to the elements directing the element to generate the A,

B and C lines, to do the mapping, to compare the X, Y and Z lines and to
reset the element activity if the compare so indicates. The PICU can end
the search early. If during the execution of the search instruction, the
element activity count goes to one, the PICﬁ terminates execution of the
instruction. This early end is possible because, if there is only one
element left, it has the highest or lowest valued A register in the set
of active elements. This logic is described in detail in section 4.2.
3.6.3 éelect First

Following the execution of a SH, SL or other select instruction,
many AU may still remain active. If we wish to extract a data item via
the ODB, we require only one active AU. The Select First (SFi instruction,
will cause all but one AU to reset its EA.

The one AU selected to remain aétive will be the "first" one found.
"First" is defined as the AU within fhe lowest numbered PE. As shown in
Figure 3.10, each AU supplies its EA to the priority logic. This logic
then determines the lowest numbered AU and returns a pointer to this AU.
The priority logic is always active. During the execution of a SF instruc-
tion, the AU is commanded to load the pointer ("one" or '"zero') into its
EA flip-flop thus selecting one AU,

The priority'logic is contained within each Bay and the CC.

52

EA

POINTER |
EA
1 1
> 2 2
-3 3+
From PRIORITY To
all LOGIC all
288 288
PE PE EA
> I__
EA

Processing Elements are Numbered on the Basis of
Physical Location

Figure 3.10 Select First Block Diagram

PE #1

PE #2

PE #287

PE #288

53

4.0. Detail Design of the AU

In this section I will describe in detaii the implementation of the
algorithms explained in Section 3. After a description of the physical
hardware, I will show how the PICU controls the AU. Finally, the special
hardware which enables the AU to perform as an efficient parallel associ-
ative processor is described.

4.1 Hardware

The selection of the physical and electrical parameters of PEPE
played'an important role in its success.
4,1.1 Circuits - ECL

The AU is designed using readily available 10K series Emitter Coupled
Logic (ECL). Appendix D lists the package types used along with the logic
symbols and truth tables for the more complex Medium Scale Integration (MSI)
chips.

The use of 10K series logic with its two nanosecond typical delay
times permits the AU to execute at a-speed of 100 ns per micro-step. With
the exception of the 10181 each of these chips is mounted in a 16 pin
Dual-In-Line Package (DIP). The 10181 is a 24 pin DIP.

In the remainder of this section, the five digit 10K gate type will
generally be abbreviated to the last three digits. |
4.1.2 Boards

The AU was fabricated on two large printed circuit boards. The
boards, which were specially designed for PEPE, contain eight printed circuit
layers. Four of these layers carry ECL signals. Each printed line is
controlled during manufacture to maintain a 55 ohm impedence. Two of the

remaining layers distribute voltages to the DIPs. Voltages used are a

54

VCC of +2 and a VEE of -3.2. Finally, the last two layers are ground,
used both for DC reference and as a ground plane for the signal lines.

In addition to printed circuit, the board can be wirewrapped with
open wire and miniature coaxial cable. All of the signal carrying media
are controlled impedance (55 ohm) lines. Since these lines are similar
to high frequency transmission cables, they are properly terminated with
a 55 ohm resistive load to minimize reflections.

Shown in figure 4.1, the board can hold up to 300 16-pin DIPS.

Since the ALU (181) is a 24-pin DIP , special provision was made to

permit up to 10 24-pin sockets in the center of the board. Each 24 pin
socket replaces two 16 pin sockets. In the final AU design, board AUl
_contains 201 16-pin ECL DIPS, 3 24-pin 181 DIPS and 73 16 pin 55.~terminator
modules. Board AU2 contains 219 16-pin ECL DIPS, 6 24-pin 181 DIPS and 67

16 pin terminator modules.

Interconnection into the backplane for signals, power and ground is
through four 100 pin connectors. 256 of the 400 pins are available for
signals.

4.,1.3 Backplane

Each AU board plugs into a 55 slot backplane/card rack assembly.

The backplane can accommodate nine processing elements. It is a three
layer laminated assembly used not only for physical support but also for
power distribution. Power enters the board from the backplane via the
two center 100 pin connectors which are mounted on the backplane.

Figure 4.2 shows a rear view of the Element Bay. The Bay houses
four backplane/card rack assemblies and power supply for each row. The
power bussing scheme is designed as a low inductance distribution network

to provide power to the row with less than a 50 milli-volt drop along the

five foot backplane. 55

DIE-CUT
ALUMINUM
FRAME

TEST MODULE

24-PIN,DUAL-IN-LINE
INTEGRATED
CIRCUIT PACKAGE

16 -PIN,DUAL-IN-LINE
INTEGRATED
CIRCUIT PACKAGE '

KEYING

PINS I/0 CONNECTOR

:] —-g§.,t‘f”b—:.:!rb—s:s“~x-:—'~"¢~';d {

L
p———— . e .1 .3 . e -3) -t . .9 . e

N =3 ——
5:‘4“" P t.*«,f‘r". B {“a"“‘r _‘4’., B i B ‘ 0i = — ¥ 3,.,.;- .- F*ﬂ l\

-

WNM ’Iu.d‘

ol

n

serareen

X [EaEy
B - y..-:’\-ﬂ»

| aiage

e B e 34 __;:::! Lo AP U M ey 3 gg = ‘;;é
s ;;miu::@ :':3 l:.‘;t;_ .

- .

i
i ST S

ki fadd

ERR I e

daif
oY

"

ixtc-vvt-.--t-vt-

Snempaash
1 }

@.s—amz*ﬂu
.,J,,J»"ﬂlm Jr“«‘ =M

reet-cct - - wmtrea--ws-serc-cmcieraventrvec -} oy

7:{_”_55'.35,‘5:‘3.___1; --k-,ul":x-
e N ved 2...1!:‘313"’3’

sesenersas .

v

rﬁT

-

F"”ﬁ m‘E”E, ‘:;::,.

,,4,,4-“

-r-rrf(:: ”__!-I: -."T'("""""E)«J ’

___’l ‘h s * ,,ﬁ&.‘.g'ﬂ:"'i"’"*“‘_:“m

e ,,r'**!g:a’a:::,,’

T ecssencreescssa kenananue .

—e——

NS P AP

T
7

__Sz’;‘z!t;_;*t: ey et

.......................... e

' :;,if“'m:ﬂim" iiiwa T

..z&z*:::'ﬂ:"‘ LTI r"s;t:—» L

1611

= ::;m{z*::‘ “Mm,m;m,qr‘irm,‘.ﬁé"?‘

see¥

N S

~- -L"d;mio-. ,a-_;_!‘:‘- =

...........-.-------------.------a..‘-«.

Ao 3 T f."—‘-aix:':z

PIN

| Ve

SHEER/LOCATING

CAMING HANDLE

KEYING
PINS

16 PIN,
DUAL-IN—-LINE
TERMINATOR
MODULE

DECOUPLING
CAPACITORS

Figure 4.1

18.5"

PEPE Printed Circuit Board

56

g

- S R S o ¥,

ey o s

-

el

4

i
y
{

e

SIS

..

it oot
i

ey

=4

oot R K
‘

kplane

igure 4.2 Element Bay Bac

F

57

All signal interconnections between boards of the PE are via the three
bottom connectors of the boards. Miniature coaxial cable is used as the
media. The top connector (Pl) uses a specialiy designed signal distribution
scheme using belted cable, The belted cable carries control signals from
the BSD to the PE in the row. The regular pattern of cables seen in Figure
4,2 serve to outline each PE. The signalling method used on .these cables
is differential balanced pair. This provides immunity to both resistive
voltage losses and common mode injected noise. The Output Data Bus is also
carried on these belted cables.

'The control signals reach these belts afte; originating in the PICU
and travelling through the Signal Distribution System. Upon reaching the
AU, they cause registers, selectors and functional units to execute the

‘instruction decoded in the PICU. These control lines will be described in
the remainder of this section. Appendix E will serve as a quick reference

for signal names used in this section.

58

4.2 Parallel Instruction Control Unit

The control lines for the AU are generated by the Parallel Instruction
Control Unit (PICU) in the Control Console.- The PICU contains a Micro-
Program Memory (MPM) that stores the control bits for each micro-step. The
PICU also contains control logic for correct sequencing of each instruction.
4,2.1 Purpose/MPM

The ACU-PICU is part of the Arithmetic Control Unit and is supplied
parallel instructions and data from the ACU-SCL. The purpose of the PICU
is to cause parallel element AUs to properly perform parallel instructions
by transmitting, through the Signal Distribution System, global control and
data. The PICU must also interface with the Element Memory Control (EMC)
to assure proper operation in the event of Element Memory access conflicts
with the two other processors in each PE.
4,2.2 Operation

Figure 4.3 shows a block diagram of the ACU-PICU. The following
ﬁaragraphs describe the operation of each block.
4.,2.2.1 PICU Interfaces
4,2.2.1.1 ACU-SCL/PIQ

The PICU receives instructions and data from the SCL/PIQ. These data

are presented to the PICU on 47 lines:

SAIINP(31-0) 32 bit operand
SAIINP(39-32) 8 bit opcode
SAIINO(40) R (EM reference) bit
SAIINP(45-41) not used in ACU-PICU
SAIINP(46) EM look-ahead bit

The PICU signals with SAIEMT when it has completed execution of its parallel
instruction. The SCL/PIQ signals with SAIREQ to the PICU when a new parallel
instruction is available. The PICU acknowledges receipt of the imstruction

with SAIACK.

59

we13eiQ YOOTY NDIJ-AOV g% SanSrg

dso 94yl ®IA ny jo apquasuy ay] of

60

TIOWVd \—l
0a0 INTUXS
MOVVXS®
1013u09 a
pue] 0IUvXS
Bururg TWOVL
101
, ('TIONVd)
19318189y 3nding 1013U0] §83apPpYVY
N] h f
) e —
Aovavd
1a4Savd
DdUGVd X _
A : -y
AaqNavd uﬂwma 21807 mmcﬂg" mosﬂqu pPIaTd
“—vava— 189nbay 93BI9Udy Houpccun - 1013u0) | 883IAPPY
d R icH R A 184019 | 18207 | IxaN
fo)0ict Kiowsl wwiBoad-o0adil
y
AN
(490NVd) 1938180y (IVIBVd) 1938780y yo<H<mM
19330g puwiadg 6591ppy Alowsyy ommHme
LAIVS
(9%)ANIIVS
(2€-0%)dNIIVS ,
(0-T€)dNIIVS °
nd1d-nov

]

4,2.2.1.2 Element Memory Control (EMC)

When the PICU requires EM access during the course of a parallel
instruction execution, it signals the EMC by:

1. Placing the EM address on address bus PADAIN

2. Signaling read or write with line PADMDE

3. Requesting access by raising line PADREQ

When the EMC has selected the ACU-PICU for service, it responds with
PADSEL. The PICU then utilizes this signal to gate the EM data bus to or
from the AU.
4.2.2.1.3 Signal Distribution System (SDS)

The PICU receives one signal from the SDS. Named, SAMANY, it is
derived from the AU count logic (see section 3.6.1) and indicates that
more than one AU in the ensemble are active.

Since the AU contain little execution control logic (they are
composed of registers and selectors), all switching control and data strobe
signals are generated by the PICU and transmitted to the ensemble of AU
through the SDS.
4,2.2.1.4 Output Data Control (0ODC)

The ODC transmits PAOSEL to the ACU-PICU during the execution of an
OTA instruction. The PICU then causes the active AU to place the contents
of its A Registe; on the Output Data Bus.
4.,2.2.1.5 Intercommunication Logic (ICL)

A séecial purpose interface exists to the ICL. It does not affect

operation of the AU and will not be discussed here.

61

4,2.2.2 Micro-Program Memory

The MPM consists of 1024 words each 80 bits wide. The memory is
addressed with 9 bits, the 8 bit opcode and the R bit. The next address
field contains the address of the next micro-step. This field allows
jumps within the MPM. The global control line field bits are used to
define steering gateswand register strobes in the ensemble AU which allow
data to pass from one register to another. These lines are discussed in
detail in Section 4.3.

The local PICU control line field is used to control operations within

the PICU. Some of the local control bits are listed:

« PADREQ Request for EM cycle to EMC.
* PADMDE R/W indicator to EMC.
* PAMEOI End of instruction bit. Causes the control to switch

the next parallel instruction opcode from the SCL/PIQ
into the memory address register. Otherwise the MPM
next address field is used.

« PAMGDT A two bit field used to select one of the following as
input to bits 31-0 of the PAMORL Output Register:

1. Operand from the SCL/PIQ
(PAMOBR(31-0))

2. Mask Generation Logic

3. MPM Global Control Bits (31-0)

e PAMEXT Set to "1" for each micro-step of a Select Hfghest/
Lowest instruction. It is used to affect an early
exit from these instruction when only one AU remains
active. Section 3.6.2 describes its use in more detail.

The MPM is constructed of 1024 X 1 bit RAM and is loaded from the Test and

Maintenance Computer.

62

A At e 5 8 s s

4.2.2.3 Memory Address Register (PAMMAR)

PAMMAR supplies address lines to the MPM. It is loaded from the MPM
next address field or from SCL/PIQ lines 46-32.
4.2.2.4 Operand Buffer Régister (PAMOBR)

Thirty-two bits from the SCL/PIQ are gated into the PAMOBR when the
parallel instruction is transferred into the PICU. The data represents the
parallel instruction operand. It may be required during any, or none, of
the micro-steps of the instruction. The Output Register selector will
determine, based on PAMGDT, if and when the PAMOBR will be selected onto
the-PAMORL lines.

When a request is made to EMC, the lower ten bits are sent as the

EM address.

Bits 15-11 are transferred to the Mask Generate Logic during execution
of the instructions RBIT, SBIT, PSEL and SELB.
4,2.2.5 6utput Register (PAMORL)

The PAMORL holds the current micro-step data and control being trans-
mitted to the ensemble AU. Input to the register is controlled by PAMGDT
(paragraph 4.2.2.2).
4,2.2.6 Mask Generate Logic

In order to make efficient use of EM, instructions are provided which
operate on a single bit of memory at a time. The instructions are SBIT,
RBIT, PSEL and SELB. They are implemented in the AU by performing logical
operations over the entire 32 bit data word. To protect the 31 bits that

are not involved in the instruction, the PICU generates a mask.

63

The mask for RBIT will contain "ones" in every bit position except
for the bit indicated by PAMOBR(15-11). The mask for SBIT, PSEL and
SELB will be all "zeros" with a single 'one'".
4,2.2.,7 Timing and Control

This block performs all of the control functions of the PICU and
handles all of the interfaces.

It generates PAGEN, the general clock-strobe, to the AU, causing
the AU to execute the current micro-step.
4.2.2.8 The R bit

| The R or routing bit is generated by the SCL when decoding the

instruction. If the programmer specified a global operand, the R bit is

"zero'" and the PAMOBR is passed to the AU. If an EM operand was specified,

the R bit is a "one'". The PICU requests arn EM cycle and causes the AU to
use its local EM data bus as the source of the operand. The PICU imple-

ments this by using the R bit as an address bit in accessing MPM. The AU
is then caused to execute a different micro-sequence based on the operand

gource.

64

4.3. Detail Block Diagram
Figure 4.4 shows a detail block diagram of the AU. Depicted are all
of the registers, flip-flops, selectors, functional units and data paths.
Each of these receives a control line originating in the PICU MPM. That
control line or lines causes actions which gnable the AU to perform in-
structions. Table 4.1 relates the bit numbers of the PICU Output Register
(PAMORL) to the AU control line names.
4.3.1 Registers/Flip-Flops
Table 4.2 lists the control lines for the registers in the AU and
Table 4.3 lists the lines for the flip-flops. A "one" on the control line
causes the storage element to load the contents of its input lines under
the following conditions:
e Since the instruction stream to the AU may not be continuous,
signal PAGEN is sent to all AU by the PICU. If PAGEN is
"zero'" no storage elements are permitted to change state in
the AU. |
e If the AU is inactive (PAEACT is reset), no user visible reg-
isters are permitted to change state with minor exceptions.
The instructions which execute in an inactive AU are only
those which can activate the AU.
e If the entire PE is faulted (PAFALT is set), the AU will not
respond to any instruction except "clear fault'" (CF). No
user visible storage element is permitted to change state.
4.3.1.1 A Register Mantissa PAAREG(23-0)

STROBE=PAEACT . PAFALT - PAMORL19

65

Co23

22

Co23

101 'L
. Y
011
2 (- 3 19
By Bp A
Search
Conversion
Logic
T
+1 12 11 ;
Normalize
13 Decode fs O
Network
Shift
Count .
Alignment Exponent
“L_i Network Adder
o
2's Comp
Network
[C
Ad Overflow
der —
Output | Underflow
To Detection | .GT. 23
EM L_.LT. -23
v

Figure 4.4a PEPE AU Detailed Block Diagram

66

From
t EM
‘ g ~ b B o Z S o)
< 1= > (@] =% o & a
17 17 :
LOCAL CONTROL
—x
] —1
_ oo
k : Il
Tag
Input Logic
: Qe
I
| Tag
| | Register
0 9 |
4
° @ 0 e 0 1
Mantissa Ext.
Adder Adder EAFF Activity Stack
To Adder —— Co023
" EM Qutput —— Co022
Detection j— Overflow/Underflow
A 4
.EQ. O
.EQ. -1

Figure 4.4b PEPE AU Detail Block Diagram

I RO

e e

PR T AT s e

PAMORL

BIT NO.

31-00

SIGNAL
NAME

FOR

PAMORL 48=0

#PAADMOO
#PAADMO1
#PADDMO2
#PAADMO3
#PAAMAOO
#PAAMAO1
#PAAMAO2
#PAAMBOO
#PAAMBO1
#PAAEBOO
#PAAEBO1
#PAAEAOO
#PAAEAOL
#PAAEAO2
#PAAMSOO
#PAAMSO1
#PAAESOO
#PAAESO1
#PAAESO2
#PAAMM

#PAAEM

#PAQMSOO
#PAQMSO1
#PAQESOO
#PAINSOO
#PAINSOL
#PAINSO2
#PAINSO3
#PAINSO4L
#PAALO -~
#PAALNOO
#PAALNO1

FOR

PAMORL 48=1

PAXDIN

Adder

Adder
Adder

Adder
Adder
Adder
Adder
Adder
Adder

Adder

DEFINITION

Control (ALU)

Control
mantissa,

mantissa,
mantissa,
mantissa,
exponent,
exponent,
exponent,

exponent,

»

>owww P>

A

input

input
input
input
input
input
input

input

select

select
select
select
select
select
select

select

A register, mantissa input select
A register, mantissa input select
A register, exponent input select

A register, exponent input select

Clock enable, A mantissa
Clock enable, A exponent
Q register, mantissa
Q register, mantissa
Q register, exponent

Local control decode

Local control decode
Alignment network control

Alignment network input select
Alignment network input select

Global Data From PICU

TABLE 4.1, CONTROL SIGNALS, AU

input select
input select
input select

68

e ekt

PAMORL SIGNAL NAME

BIT NO. FOR 49=1 DEFINITION

32 #PASTK Clock enable, stack register

33 #PAEAZOO Element activity control decoder input

34 #PAEAZO1 Element activity control decoder input

35 #PAEAZO2 Element activity control decoder input

36 #PAEAZO3 Element activity control decoder input

37 #PAEAZO4L Element activity control decoder input

38 #PATGSOO Tag register, input select

39 #PATGSO1 Tag register, input select

40 #PAEAC Clock enable, element activity flip-flop

41 #PADPC Clock enable, double precision carry

42 #PATAG Clock enable, tag register

43 #PASTKOO Stack register, input select

44 #PASTKO1 Stack register, input select

SIGNAL NAME
FOR 49=0

32 #PANOR Alignment network control

33 J#PAFIX Special control inhibit A reg mantissa
Clock during microstep 5 of FIX
instruction

34 #PATOV Clock enable, temporary overflow hold FF

35 ##PACO-23 Clock enable, carry out 23 hold FF

36 #PAQMM Clock enable, Q mantissa

37 #PAQEM Clock enable, Q exponent

38 #PABMSOO B register, mantissa input select

39 #PABMSO1 . B register, mantissa input select

40 #PABESOO B register, exponent input select

41 #PABESO1 B register, exponent input select

42 #PABMMO1 Clock enable, B mantissa bits 7-0

43 #PABMMO2 Clock enable, B mantissa bits 23-8

44 #PABEM Clock enable, B exponent

45 FPAASCSO0 Shift control register, input select

46 #PASCSO1 Shift control register, input select

47 #PAOV Clock enable, PAOVFF flip-flop

48 #PADTC Control signal, data time shared with’
control

49 #PACTC Control signal, select control group

50 #PASCR Clock enable, shift count register

51 #PARVM PAXDIN input select

a) The meaning of PAMORL (31-0) lines is dependent on PAMORL 48.
b) The meaning of PAMORL (44-32) lines is dependent on PAMORL 49,

TABLE 4.1, CONTROL SIGNALS, AU
69

P

A P N AT VIR R R

o1

PP

T ——

REGISTER (Bit #)

A (23-0)

A _(31-24)

B (7-0)

B (23-8)

Bx(31-24)
th(Extension bit)
Qm(23-0)

Qx(31-24)
th(Extehsion bit)

3

»®

3

3

Shift Count Register
Tag Register
Activity Stack

CONTROL LINE

PAMORL19
PAMORL20
PAMORL42

PAMORLL3

PAMORLSGL
None

PAMORL 36
PAMORL37
None

PAMORLS50
PAMORL42
PAMORL32

Table 4.2 Register Control

70

CONTROL FLIP-FLOP CONTROL LIMNE
PAEACT PAMORL40O
PAFALT Local Coritrol
PAZROA Local Control
PAZROB Local Control
PASIGN Local Control
PADPC PAMORL4A]
PATOVF PAMORL 34
PAOVFF PAMORLA7Y
PACOZéFF PAMORL35

Table 4.3 Flip-Flop Control

71

4.3.1.2

4.3.1.3

4.3.1.4

4.3.1.5

4.3.1.6

4.3.1.7

4.3.1.8

4.3.1.9

A Register Exponent PAAREG(31-24)
STROBE=PAMORL20 + PAEACT . PAFALT
B Register Mantissa 1 PABREG(7-0)

STROBE = PAMORL42 . PAFALT

B Register Mantissa 2 PABREG(23-8)

STROBE = PAMORL43 . PAFALT

B Register Exponent PABREG(31-24)
STROBE = PAMORL44 + PAFALT

Q Register Mantissa PAQREG(23-0)
STROBE = PAMORL36 - PAFALT « PAEACT
Q Register Exponent PAQREG(31-24)
STROBE = PAﬁORL37 - PAFALT - PAEACT
Shift Count Register PASHCR(5-0)
STROBE = PAMORL50 « PAFACT - PAFALT
Taé Register PATAGR(7-0)

STROBE = PAMORL42 ° PAFALT

4.3.1.10 Activity Stack PASTAK(21-0)

STROBE = PAMORL32 + PAFALT

4.,3.,1.11 B Register Extension Bit PABEXT

Q Register Extension Bit PAQEXT

These two single bit registers are used during the multiply instructions.

They are continuously clocked.

Input to PAQEXT is the result of Control Point 24.

struction, see 4.8.4.3.

Used during the ML in-

Input to PABEXT is always bit 1 of the adder..

72

4.3.1.12 Element Activity Flip-Flop PAEACT
STROBE = (PAMORL40+PAMORL(28-24)=29) + PAFALT
Note: This is a special use of PAMORL(28-24).
PAMORL40 is the control bit for the flip-flop only when
-PAMORL4Y = 1. When
PAMORL40 = 0, PAMORL(28-24) = 29 can be used in place
of the control bit,

4,3.1.13 F.P. Add Zero A Input PAZROA
F.P. Add Zero B Input PAZROB

Set and reset by Local Control, see section 4.7.1. Used during the
ADD/SB instruction, see 4.8.4.2.
4,3,1.14 DV Sign Flip-Flop PASIGN
Flip-Flop used during the DV instruction to remember to complement
the result following the divide. Set and reset by Local Control, see
Section 4.5.
4,3.1.15 Double Precision Carry FF PADPC
STROBE = PAMORL41 - PAEACT . PAFALT
4.3.1.16 Temporary Overflow FF PATOVF
STROBE = PAMORL34
4.3.1.17 Overflow FF PAOVFF
STROBE = PAMORL47 - PAEACT + PAFALT
4,3,1.18 Carry Out of Bit 23 FF PACOFF23
STROBE = PAMORL35
4.,3.1.19 Fault Flip-Flop PAFALT

STROBE = (PAMORL(28-24)=30)+
(PAMORL(28-24)=31)

73

4.3.2 Selectors
Selectors or data multiplexers are numbered 1 through 24. Each selector,
which may have several control lines, picks one of many possible inputs and

presents that input to the register, flip-flop or functional unit attached.
4.3.2.1 B Register Exponent Input CPl

PAMORL Function

41 40

0 0 31-24 = PAALNO(31-24)
0 1 31-24 = PAXDIN(31-24)
1 0 31-24 = PAAOUT(31-24)
1 1 31-24 = PASRCH(31-24)

4,3.2.2 B Register Mantigsa Input CP2

PAMORL function
39 38
0 0 23-0 = PAAOUT(23-0)
0 1 23-0 = PAALNO(23-0)
1 0 23-0 = PAAOUT(23, 23, 23-2)
1 1 23-0 = PAXDIN(23-0)
4.,3.2.3 A Register Exponent Input CP3
PAMORL Function
18 17 16
0 0 0 31-24=exponent of -128
. 0 0 1 31-24=exponent of -128
0 1 0 31-24=ZERO
0 1 1 31-24=ZERO
1 0 0 31-24=PAAOUT(31-24)
1 0 1 31-24=PAALNO(31-24)
1 1 0 31-24=PAAREG(31, 31-25)
1 1 1 31-24=PABREG(31-24)

74

4.,3.2.4 A Register Mantissa Input CP4

BIT 22-0 truth table

15 14

0 0 22-0 = PAAOUT(21-0), ZERO
0 1 22-0 = PAALNO(22-0)

1 0 22-0 = PAAOUT(22-0)

1 1 22-0 = PABREG(22-0)

4.3.2.5 Q Register Exponent Input CP5

PAMORL23 Function
0 31-24=PAAOUT(31-24)
1 31-24=PABREG(31-24)

4.,3.2.6 Q Register Mantissa Input CP6

PAMORL Funcfion
2 2
0 0 23-0=PAQREG(22-0), '"bit 0 input"
0 1 23-0=PAAOUT(0), PASEXT, PAQREG(23-2)
1 0 23-0=PAAOUT(23-0)
1 1 23-0=PABREG(23-0)

Q register, mantissa bit 0 input
bit 0 = PAMORL(28-24)£18 - PAAOUT23

4,3.2.7 Input A Exponent Adder CP7

PAMORL Function
13 12 11
0 0 0 31-24=PABREG(312-4)
0 0 1 31-24=ZERO
0 1 0 31-24=+23=00010111
0 1 1 31-24=PASTAK(20-13)
1 0 0 31-24=PAQREG(31-24)
1 0 1 31-24=PAAREG(31-24)
1 1 0 not defined
1 1 1 not defined

4.3.2.8

Input B Exponent Adder CP8

PAMORL Function
10 09
0 0 31-24 = PA2sc0(5,5,5-0)
0 1 31-24 = PAAREG(31-24)
1 0 31-24 = PABREG(31-24)
1 1 31-24 = ZERO
4.3.2.9 Input A Mantissa Adder CP9
PAMORL Function
06 05 04
0 0 0 23-0 = PASTAK(12-0), PAEACT, PAOVFF,
, PAXDPC, PATAGR(7-0)
0 0 1 23-0 = PAQREG(23-0)
0 1 0 23-0 = PABREG(23-0)
0 1 1 23-0 = ZERO(23-16), PABREG(7-0), ZERO(7-0)
1 0 0 23-0 = PAQREG(23-0)
1 0 1 23-0 = PAAREG(23-0)
| 1 0 23-0 = ZERO ~
1 1 1 23-0 = PAAREG(21-0), PAQREG(22-21)
4.3.2.10 Input B Mantissa Adder CP10
PAMORL Function
08 07
0 0 23-0 = PAAREG(23-0)
0 1 23-0 = PAAREG23, PAAREG23, PAAREG(22-1)
1 0 23-0 = PABREG(23-0)
1 1 23-0 = ZERO

4.,3.2.11 Alignment Network/Shifter Mantissa CPll

PAMORL Function

31 30

0 0 23-0 = PABREG(23-0)
0 1 23-0 = PAAREG(23-0)
1 0 23-0 = PAQREG(23-0)
1 1 23-0 = Undefined

Inputs (23-0) to alignment network also are gated to a leading zeros/ones

counter.

Output is a binary count PANRMD(5-0). See Section 4.4.4.1.

76

4.3.2.12 Alignment Network/Shifter Exponent CP12

Alignment network inputs (31-24) input select truth table

PAMORL Function
30
0 31-24 = PABREG(31-24)

1 31-24 = PAAREG(31-24)

4,3.2.13 Shift Count Register Input CP13

PAMORL Function
46 45
-0 0 5-0 = POSITIVE ONE

0 1 5-0 = PAAOUT(29-24)
1 0 5-0 = PANRMD(5-0) See Section &4.4.4.1
1 1 5-0 = PAXDIN(5-0)

4.,3.2.14 Alignment Network/Shifter, Shift Distance Selector CPl4

PAMORL

Fuﬁctioﬁ
3
0 Shift amount = PASHCR(5-0)
1 Shift amount = PA2SC0(5-0) (Two's compiement

of PASCHR)

4.3.2,15 Element Activity Input CP15
PAMORL(37-33) are used to select the correct input to the EA FF.
Table 4.4 lists the 32 possible input selections and the instruction
. during which each is used. The function is the equation which is evaluated
and used to set or reset the flip-flop. "EA STATE" is used to indicate that

the EA FF has to be on in order for the instruction to execute.

77

PAMORL USED ON EA
DECODE 37 36 35 34 33 INST STEP FUNCTION STATE
DECL
0 0O 0 0 0 O - NONE D.C.
1 0 0 0 0 1 SNOV 1 IF PAOVFF, EA« O 1
2 0 00 10 SEG 2 IF PAAOUT(31-0) # EA& O 1
SZL 1
3 0O 0 0 1 1 SNG 2 IF PAAOUT(31-0) = 0, EA O 1
SNZL 1
PSEL 5
SELB 4
4 0 0100 SGZ 1 IF PAAOUT23 OR IF PAAOUT(23-0) = 1
zero, EA& O
5 0 01 0 1 SGE 1 IF PAAOUT23, EA< O 1
6 0 0110 SNZ 1 IF PAAOUT(23-0) = zero, EA< O
7 0 0 1 1 1 SZR 1 IF PAAOUT(23-0) # zero, EA¢ O
8 0 1.0 0 O SLE 1 IF PAAOUT23 AND IF
: PAAOUT(23-0) # zero, EA¢- O 1
9 0O 1 0 01 SLZ 1 IF PAAOUT23, EA& O
10-11 —— _— NONE
12 0 1 1 SF IF PASFPT, EA& O
13 0 1 101 sov 1 IF PAOVFF, EA& O
" 14-15 - -—- NONE
16 1 0 0 0 O LTAG 1 EA ¢ PAXDIN1O D.C.
17 0 0 ACT 3 IF PAAOUT(23-0) = zero, EA& 1 D.C.
18 0 01O CACT 3 EA4& (PAAOUT(23-0) = zero) D.C.
19 -— - NONE
20 1 0100 COPY 1 EAe- PASTAKOO D.C.
POP 1
21 1 1 ORS 1 IF PASTAKOO, EA & 1 D.C.
22 0 ANS 1 IF PASTAKOO, EA¢& O D.C.
23 1 0 11 CA 1 IF PASTAKOO AND IF PAEACT, D.C.
EA<- 1. Also IF PAEACT, EA« O
24-31 -—- R NONE

D.C. = Don't Care

TABLE 4.4, ELEMENT ACTIVITY CONTROL

78

4,3,2.16 Activity Stack Input CP16

PAMORL Functiqn
44 43

0 0 20-0 = PAXDIN(31-11)

0 1 ' 20-0 = PASTAK(20-1), O

1 0 - 20-0 = PASTAK(19-0), PAEACT
1 1 PASTAK(20-1) : NO CHANGE

PASTAK(O) ¢—0 IF PAEACT
ELSE NO CHANGE

Bit 0 is the top of stack.
4.3.2.17 Data Input Selector CPl7

PAMORL 51 Function

0 31-0 = PAMORL(31-0) i.e. global

1 31-0

PXEMOT(31-0) i.e. element memory

4,3.2.18 Tag Register Input CP18

PAMORL Function

39 38

0 0 7-0 = PATGLG(7-0) See Note
0 1 7-0 = PATGLG(7-0)

1 0 7-0 = PATGLG(7-0)

1 1 7-0 = PAXDIN(7-0)

Note: PATGLGn = PAXDIN (n plus 8) . PAXDINn +
for n =0, 7

PAXDIN (n plus 8) « PATAGRn +
PAXDINn . PATAGRn

PATGLG is the Tag Register input logic shown in Figure 4.4.

79

S ———

4,3.2.19 A Register Bit 23 Input

PAMORL
15 14
0 0
0 1
1 0
1 1

CP19

Function

IF PAMORL(28-24)#5,
IF PAMORL(28-24)#5,
IF PAMORL(28-24)#5,

IF PAMORL(28-24)#5,

Note: IF PAMORL(28-24)=5, 23=PACOFF23

4.3.2.20 DV/SQ Result Selector CP20

See equation for bit 0 in Section 4.3.2.6

4.3.2.21 B Register Bits 23-22 Input CP21

Control is generated locally, see Section 4.5.13

PAMOVB
01 _ 00
0 0
0 1
1 0
1 1

4.3.2.22 SQ Result Selector CP22

Function

Bits (23-22) of CP2

Adder Carry out signal for both bits

23=PAAOUT(22)
23=PAALNO(23)
23=PAAOUT(23)

23=PABREG(23)

PACOFF23, bit 22 of CP2

don't care

Control is generated locally, see Section 4.5.14

PASQRT
01 00
0 0
0 1
1 0
1 1

Function

PAALNO(2-0)
don't care
"101"

||011u

80

4.3.2.23 Q Extension Bit Input CP23

Control is generated locally, see Section 4.5.15.

PAQSEL Function
o "0"
1 PAQREG(1)

4,3,2.24 Extension Adder B Input CP24

Control is generated locally, see Section 4.5.16.

PAAXB Function
0 PAAREG(0)
1 non

4.3.2.25 Double Precision Carry Input CP25

Control is generated locally, see Section 4.5.17,

PADPIN Function
0 PAXDIN(8)

1 Carry out of Adder bit 22

81

gma

4.3.3 Functional Units
4.3.3.1 Arithmetic Logic Unit

The ALU performs 32 bit logical operations and 24 bit and 8 bit
arithmetic operations. The lower 24 bits, the mantissa adder PAADMN,
performs all eight functions shown in the following table. The upper
eight bits, or exponent adder PAADEX, perform all functions except decrement.

PAMORL Function

o
W

02

o
p—d
o
o

exclusive OR
logical AND-NOT
logical OR
logical AND

decrement
*

*
add

*

*

*

*
subtract

*

*

increment

R R EEREO0O0000000
o et = e O O OO === OO0 00
== OO MHOORRMFMOO+HFHOO
FOMHFOHHOFROFROMROMROFO

Notes: * = undefined
4,3.3.2 Alignment Network/Shifter PAALNO
The alignment network can perform four different shifts of up to 32

places. The shift type is selected by:

PAMORL Function
29
0 Arithmetic Shift
1 Logical Shift

82

Shift amount is controlled by the output of control point 14. The most

significant bit (the sign) of CPl4 output also acts as a control line.

PAMORL PASCR(5) Function
(Output of CPl4)
29
0 0 24 bit arithmetic right shift
sign extended
0 1 24 bit arithmetic left shift
zero fill to bit O
1 0 32 bit logical right shift end
around
1 1 32 bit logical left shift zero

fill to bit O

83

4.4 Micro-Level Implementation

4.4.1 Selectors/Registers

The AU data selectors or multiplexers are constructed out of standard

ECL 10K MSI packages. They are:

10164 8 Input Multiplexer
10173 Quad 2 Input Multiplexer
10174 Dual 4 Input Multiplexer

The Registers are also standard MSI packages. They are:

10135 Dual JK Flip-Flop
10141 4 bit Shift Register
10176 Hex D Flip-Flop

4,4,2 Element Activity Flip-Flop

The EA FF is JK with separate selectors for the J and K inputs.
Section 4.3.2.15 shows the functions performed by the selectors.
4.4,3 Arithmetic Logic Unit
4,4.3.1 Logical Unit

The ALU directly performs AND, OR, XOR, and ANDNOT operations.
equations are:

AND: PAAOUT «— PAADA

PAADB

OR: PAAOUT «— PAADA + PAADB

XOR: PAAOUT & PAADA PAADB + PAADA < PAADB

ANDNOT: PAAOUT <~ PAADA ° PAADB
where: PAADA - A input,both exponent and mantissa

PAADB - B input both exponent and mantissa

The

84

4.,4,3,2 Arithmetic Unit
The ALU performs two basic arithmetic functions: (using the 10181 chip)
1 - PAAOUT« PAADMA plus PAADMB plus PACIN
2 - PAAOUT &~ PAADMA plus PAADMB plus PACIN
where PACIN - Carry in to bit O
The four required functions are generated as follows:
ADD - Implicit operand to PAADMA
Explicit operand to PAADMB
"o" to PACIN
perform function 1
SUBTRACT - Implicit operand to PAADMA
Explicit operand to PAADMB
"1 to PACIN
perform function 2
This takes the subtrahend and converts it to
its two's complement form and performs an
addition.
INCREMENT - Implicit operand to PAADMA
Explicit operand to PAADMB
"1" to PACIN
perform function 1
DECREMENT - Implicit operand to PAADMA
Explicit operand to PAADMB
"o to PACIN

perform function 2

4,4.,3.3 Carry Look Ahead

The basic ALU circuit in the AU performs a 24 bit add. The input to
each bit position are two 1 bit operands and 1 bit carry-in, The result at
each bit position is a 1 bit sum and a 1 bit carry out. It follows the

truth table.

>
=
g
3

Carry-In Carry Out

HRRESMO0O00O0
HFHOOHFOO
—_ O OMFHO~RO
HOOHOKHR~O
RO, O0O0

Take, as an example two &4 bit numbers:
0110
The ALU takes them one bit position at a time with the CIN to that

position and generates a sum and C for the next bit position:

IN
0
o, 0
—_1 «—
1
1 1 o 0 o
— le 1 &
0 1
1 1 0
—loed 1e°1 &
0 0 1
1 0 1 ! 1 L o 0 o
Carry- — lée— 06 le 1
Out 0 0 0 1

86

This effectively takes four operations which must be done sequentially
before the final sum and carry-out are known. This is the common ripple |
carry adder. When implemented in logic, the delay time required is that
to let each bit add and to let the carry move down each bit position until
it is available at the end of the carry chain.

As an improvement to this adder, consider that much can be inferred
about the carry out of a particular stage if the bit patterns of the input

to that stage are known. Consider:

+ 0 Carry-out must be "O"
0 no matter what carry-in is.
+ 1 Carry-out must be "1I"
1 no matter what carry-in is.
+ 0 + 1 Carry-out is the same
1 0 as carry-in.

So, adding two bits together requires a carry-in. Look a£ the previovs
bit position inputs and from above,the carry-in can or cannot be determined.
If it is not determined, look at the next previous bit position and continue
until carry-in is known. This could be carry-in to the very first bit

position - C Since all of the required inputs are available at the start

IN®
of the add, the logic can proceed immediately not having to wait for any
ripple.

Define:

Ai - Bi

Generate: Gi

Transmit: Ti = Ai @ Bi (Exclusive OR)

]

where Ai and Bi are the ith bits of the two operands.

87

Generate indicates that carry-out of this pair is a 1 no matter what
carry-in is (Carry is "generated").

Transmit indicates that carry-out of this pair is the. same as the
carry-out of the last pair (Carry is "transmitted").

So we have:

CARRY-INi = Gi_, + Ti_; (Gi_z + Ti_, (Gi_3 + Ti 5 ...

1
e e oo (Go + To (CIN)) o0)
From this equation we can get any Carry-in by only looking at the
2 operands and the carry-in bit 0. This is called a carry look ahead adder.

The truth table for carry into stage i-from stage i-1 in a four bit

, ALU is:

-3 INo INi

|

R == OR |
QOO0 QR !
QoYW | -
|ROO R -

O = =t = =R
OCOOOOH |+
QoHraes
OO K ==

® = don't care
Actual implementation of this equation can vary drastically. In the AU
a 24-bit look ahead adder takes less than 30 ns and uses only 8 ECL chips
(6 10181s and 2 10179s).
For simplicity, transmit is often reduced to a simple OR circuit instead
of an XOR. It is then referred to as:
Propagate: Pi = Ai + Bi

The Ai = Bi = 1 case is a don't care, as generate is a higher priority

term.

88

e 14 e —————3y

4.4.3.4 Overflow Detectors
4.4,3,4,1 Mantissa Overflow

To detect the overflow conditions described in Section 3.2.1, this
circuit is used:

Add = 1, Subtract =0

PAADMA23
PAADMB23
0————‘PAAOUT23
PAMOF (Mantissa Overflow)
1 1 1 1 0
1 1.1 0 1
1 1 0 1 0
1 1 0 O 0
1 0 1 1 0
1 01 0 0
1 0 ¢ 1 1
1 0 0 O 0
0 1 1 1 0
0 1 1 0 0
0 1 0 1 0
0 1 0 O 1
0O 0 1 1 1
0O 01 O 0
0 0 0 1 0
0O 0 0 O 0
PAAOUT23 g
107
L1702 PAMOF
ADD=1 |—O
i 107 o—
PAADMA23 | |
D)107

89

4.4.,3.4.2 Exponent Overflow
During FP instructions, the four different types of overflow are

detected separately from the exponent adder.

Add underflow - addition of two negative numbers with a
positive result

PAEXUF = PAADEA31 °* PAADEB31l . PAAOUT31

Add overflow - addition of two positive numbers with a

negative result

PAEXOF = PAADEA31 - PAADEB31 + PAAOUT31

Subtract underflow - subtraction of a positive number from

a negative number with a positive result

PASBUF = PAADEA31 - PAADEB31 - PAAOUT31
* Subtract overflow - subtraction of a negative number from a
positive number with a negative result
PASBOF = PAADEA31 - PAADEB31 - PAAOUT31
4.4,3.4.3 Overflow Flip-Flop
The overflow FF is set as a result of the above overflow conditions.
See Section 4.5.8.
4.4,3.,5 Adder Output Detector
4.4.3.5.1 Equal to Zero

All zeros are detected with a tree of negative input AND gates (10109):

¢
Output ——9109¢
of d y-
Adder
..-——-q ——
(24 bits) —
ﬁ 109
—q
4 S—
\ a4
109 90
—q

4,4,3.5.2 Equal to Minus One

Minus One in two's complement notation is a word of all "1', It is
detected by first inverting the adder output and then passing that through
a circuit similar to the zeros detector.
4.4,3.,5.3 Less Than Zero

Less than zero is detected by examining the sign bit. Negative two's
complement numbers always have a "1" sign bit.
4.4.3.5.4 Greater Than Zero

Greater than zero is detected by ANDing '"not equal to zero'" and
"notiless than zero'.
4.4.4 .Alignment Network/Shifter
4,4.4,.1 Normalize Decode Network (PANRMD)
. A circuit designed to produce a count of the number of leading ones
or zeros for the normalize function is attached to the output of CPl1l.
The circuit compares the sign bit with each bit in the fraction starting
at bit 22, The first mis-match found causes the count circuit to produce
a five bit shift count.

The comparison is done with 10107 exclusive OR gates. The count is
generated by selecting the first mis-match with 10165 Priority Encoders
and converting that output to a count.

Figure 4.5 shows the circuit.

91

WRINVd

J]L0MIDYN BPODI(9ZT [RWION

00

HL1

G°# 2an31g

701

7Ll

[1

£

(o]

S91

92

INTIVVd
I
e - b
N p———. - | ﬂ e
R G- 10
g -
-] _ °
- g > 1= .
g —
— L J
C o ﬁ T2
~ (AT S
B w -
== P
- - (44

4.,4,4,2 Two's Complement of Shift Count (PA2SCO)

The alignment network/shifter performs left shifts when presented
with a negative shift count. The PANRMD produces a positive count, but
for normalization, a left shift is required. This circuit, which is merely
a 10181 ALU, subtracts the Shift Count Register from zero to produce its
negative value.
4.4.4.3 The Shifter

The shifter is designed as a multi-level network capable of any shift
in one clock cycle.
4.4.4.3.1 Stage One

Stage one generates a 63 bit shift operand. Input is the result of
CP1l and CP12, PAALNI(31-0). Output is PAALNI and PAALNA(31-0). Control

for this stage is:

PAMORL PASCR(5) FUNCTION
29 (Output of CP14)
0 0 PAALNI23 duplicated
0 1 31 times (for sign extension
1 0 of arithmetic right shift)
1 1 PAALNI(31-0)

4.,4.,4,3.2 Stage Two
Stage two receives the 63 bit shift operand and performs right shifts
and left shifts with zero fill. Figure 4.6 shows stages one and two.

Control for stage two are bits PASCR(5-3) which are output from CPl4.

93

PAMORL29

- - O O

PASCR(5)

- O = O

PAALNI(31-0)

Y

23 PAALNI 23 PAALNI(23-0)
31 PAALNI 00
PAALNA(31-0)
06 A 0O ZERO
% A 06| ZERO
22 A 00 ZERO
30 A 00| zzro
06 A 0031 £~ 24423 I 040
1L A 00131 A 24} 23 I 0
22 A 00| 31 A 2622 1 1
30 A 00 |31 24
PAALNB(33-0)

Figure 4.6

Stages One and Two of Alignment

Network

STAGE
ONE

PASCR

54 3

100 \

101

110

111 STAGE
T.0

D00

001

o010 /

013

94

EFFECTIVE SHIFT (DECIMAL)

PASCR POSITIVE NEGATIVE
54 3 COUNT COUNT

A 100 - 32 left ZF

: 101 - 24 left ZF

: 110 - 16 left ZF

i 111 - 8 left ZF

‘ 000 0 right -
001 8 right -
010 16 right -
011 24 right -

ZF = Zero Fill
4.4,4.3.3 Stage Three
Stage three receives the 39 bit operand from stage two. Figure 4.7
shows stages three and four. Control for this stage are bits PASCR(2-1)
which are output from CPl4,

EFFECTIVE SHIFT

PASCR POSITIVE NEGATIVE
21 COUNT COUNT
00 0 0
01 2 right 2 right
10 4 right 4 right
11 6 right 6 right

4,4.4.3.3 Stage Four

Stage four receives the 33 bit operand from stage three.

shows this stage. Control is bit PASCR(0) from CPl4,

EFFECTIVE SHIFT

PASCR POSITIVE NEGATIVE
0 COUNT COUNT
% 0 0 0
: 1 1 right 1 right

Figure 4.7

Output from stage four is PAALNO(31-0) which is the final shifted

output.

95

PAALNB(38-0)

32 | 31 PAALNE 00
3L | 33 PAALNB 02
36 |35 PAALND 0L
35 | 37 PAALNB 06
PAALNC(32-0)
N~
31 PAALNC 00
32 PALLNC 01
PAALNO(31-0)

PASCR
2 1
0 0 STAGE
o 1 THREE
1 0
11
PASCR{0)
0 STAGE
FOUR
1

Figure 4.7 Stages Three and Four of Alignment

Netowrk

4.,4.4.4 Shifter Operation

The shift is the logical sum of the shifts performed by stages two,

three and four. For right shifts, stage two shifts right an amount equal

to the multiple of eight nearest but not less than the shift amount. Stages
three and four then complete the shift.
Examples:
Shift
Amount Stage 2 Stage 3 Stage 4
0 0 0 0
+8 +8 0 0
+12 +8 +4 0
+29 +24 +4 +1
A -8 +4 0
-16 -16 0 0
-25 =32 +6 +1
Where "+'" is a right shift and "-'" is a left shift.

97

4.5 Local Control
Global control signals PAMORL(28-24) enable special logic in the AU.
This is required because the data in each PE can cause slightly different
execution of some instructions. Table 4.5 lists the 32 possible decodings
of these lines, the instructions affected by each and the function carried
out.
Following is a description of the local control modification produced
by the PAMORL(28-24) lines.
4.5.1 ALU Control
IF PAMORL(28-24)=06 - PAQREGO1l, select subtract
IF PAMORL(28-24)=06 - PAQREGOl, select add

IF PAMORL(28-24)=18 - PAAREG23, select add
IF PAMORL(28-24)=18 . PAAREG23, select subtract

cin = PAMORLO3 « PAMORL(28-24) # (06+18+26) +
PAMORL(28-24)=06 + PACOXT +
PAMORL(28-24)=18 . PAAREG23 +
PAMORL(28-24)=26 . PADPC

IF PAMORL(28-24)=6 or 18, PAMORL(3-0) must be O.

IF PAMORL(28-24)=26

PAMORL(03) must be O

4,5.2 Input A Mantissa Adder CP9

PAMORLO4 = PAMORLO4 + PAMORL(28-24)=02 < PAZROA
PAMORLO5 = PAMORLO5 + PAMORL(28-24)=02 - PAZROA
PAMORLO6 = PAMORLO6 + PAMORL(28-24)=02

IF PAMORL(28-24)=2, PAMORL(6-4) must be 0.

4.5.3 Input B Mantissa Adder CP10

PAMORLO7 = PAMORLO7 + PAMORL(28-24)=02 - PAZROB +
' PAMORL(28-24) = 06 (PAQREGOO=PAQREGO1l +
PAQREGOO # PAQEXT)
PAMORLO8 = PAMORLO8 + PAMQRL(28-24)=02 +

PAMORL(28-24)=06 (PAQREGOl - PAQREGOO -
PAQEXT+PAQREGO1 °* PAQREGOO - PAQEXT)

IF PAMORL(28-24)=2 or 6, PAMORL(8-7) must be O.

98

PAMORL USED ON

DECODE 28 27 26 25 24 INST. STEP : FUNCTION
00 000 0O - - Rest State
01 0 0 0 0 1 ADD 7 A Register mantissa and exponent
SB 7 select as a function of PAEXUF.
ML 18 Also IF PAEXOF, PAOVFF «—1
ADE 2
02 0 0 01 O ADD 4 Adder mantissa A input select
SB 4 as a function of PAZROA
Adder mantissa B input select
as a function of PAZROB
03 0O 0 0 1 1 FIX 1 Clock enable, A mantissa as a
. function of PAAREG31l. Also IF
PAAOUT31 - PAAREG3l, PAOVFFe&-1
04 0 01 0 O ADIT 2 IF PAMOF, PAOVFF«¢ 1
SBI 2
LINA 2
LDEA 2
05 0 01 0 1 ADD 5 A register bit 23 select as a
SB 5 function of PACOFF23. Also
ML 16 IF PATOVF + PAEXOF, PAOVFF& 1
DV 7
06 0O 01 1 0 ML 3-14 Add/subtract control and adder
MLI 3-14 mantissa control. Also

IF DECODE=1,2,5 or 6,
PAADXB «— PAAREG(00)

IF DECODE=0,3,4 or 7,

PAADXB&— zero. Also

IF PAMOF, PABREG(23,22)¢ PACOUT(23,23)
IF PAMOF, PABREG(23,22)€~ PAAOUT(23,23).
Also enable PAQEXT& PAQREG(01)

ML 14 IF PAMOF, PATOVF¢— 1 Also
IF PAMOF, PACOFF23 < PACOUT23
MLI 14 IF PAMLOF, PAOVFF¢—1
07 0 01 11 MLI 15 Clock enable, A mantissa as a

function of PAOVFF
08 01 0 0 O DV 32 A register, mantissa input select
as a function of PAAOUT23. Also Q

register bit O input as a function
of PAAOUT23.

TABLE 4.5, PAMORL(28-24) DECODE TABLE

99

. PAMORL USED ON
DECODE 28 27 26 25 24 INST. STEP FUNCTION
09 0 1 0 0 1 DV 33 Clock enable, A mantissa and clock
34 enable, Q mantissa as a function
of PASIGN
10 0 1010 DV 2 IF PAAOUT(23-0) = zero, PAOVFF<— 1
11 01 0 1 1 bv 3 Enable PASIGNé&- PAAQUT23
12 01 100 DV 4 Clock enable, A mantissa
6 as a function of PABREG23
13 0110 1 DV 5 Clock enable, B mantissa and exponent.
i Also IF PATOVF - PAEXOF, PAOVFF&« 1.
| 14 0 1.1 10 DV 8 Clock enable, A mantissa and exponent
| as a function of PAAOUT23. Also
) IF PAAOQUT23 - PASBOF, PAOVFF< 1
15 01 111 DV 9-31 A regisfer input select as a function
of PAAOUT23. Also Q register,
mantissa bit O input as a function
1 of PAAOUT23
! 16 1 00 0 O sQ 1 IF PAAREG23, PAOVFF ¢ 1
17 1 0 0 0 1 sQ 2 Clock enable, A mantissa and exponent
as a function of PAAREG24. Also
IF PAAREG24 * PAEXOF, PAOVFF¢ 1
18 1 0 01 O SQ 5-28 Adder control as follows:
IF PAAREG23 select SUBTRACT
IF PAAREG23 select ADD.
Also B register input select as a
: function of PAAREG23
: 19 1 0 0 11 ADD 8 Clock enable, A exponent
f SB 8 as a function of
i ML 19 PAAOUT(23-0) # zero
DV 38
SQ 32
FLOT 3
20 1 01 0 O DV 36 Clock enable, A mantissa
SBE 2 and A mantissa input select as a

function of PASBUF. Also
IF PASBOF, PAOVFFé&— 1

TABLE 4.5, CONTINUED

100

PAMORL USED ON 4
DECODE 28 27 26 25 24 INST. STEP FUNCTION

21 1 01 01 ML 15 Clock enable and A mantissa input
select as a function of PAEXUF. Also
IF PAEXOF, PAOVFF¢— 1

22 1 0110 ADD 3 Alignment network control,

SB 3 Alignment network input select, clock
enable A exponent and mantissa and
clock enable B mantissa

23 10 111 STAG 1 Enable PAXDOT(31-0) ¢ PAAOUT(31-0)
Also PADWSL ¢« 1
24 1 1 0 0 O SL 1 B register, exponent input select as
a function of PAAREG23. Also
PAALFA< PAAOUT23
PABETA & PAAOUT31
25 1 1.0 0 1 LADI 2 IF PACOUT22, PADPCé 1
LSBI 2 OTHERWISE PADPC& O
26 1 1.0 1 O UADI 2 ADDER C INé&— PADPC. Also
USBI 2 IF PAMOF, PAOVFF &1
27 1 1 0 11 SH 1 B register, exponent input select as
a function of PAAREG23. Also
PAALFAS— PAAQUT23
PABETA%— PAAOUT31
28 1 11 0 O ADD 2 IF PAAOUT(31-24) > 23 OR IF
SB 2 PASBOF, PAZROB €1, Also
ROV 1 IF PAAOUT(31-24) > 23 AND IF
PASBOF, PAZROB<— 0. Also
IF PAAOUT(31-24) < -23 OR IF
PASBUF, PAZROA¢— 1. Also
IF PAAOUT(31-24) < -23 AND IF
PASBUF, PAZROA¢— 0. Also
PAOVFF & O
29 1 11 01 SH 3-35 IF (PABITA - PABITZ +
SL (opD) PABITA * PABITB PABITY +
PABITA * PABITB - PABITC °* PABITZ)

Then PAEACT¢— O. Also

PAALFAS— PABREG31. Also

PABETA¢é— PABREG30.
30 1 1 1 1 0 SFF 1 PAFALT ¢ 1
31 1 1 1 11 CF 1 PAFALT¢«— O

TABLE 4.5, CONTINUED

101

4.,5.4 A Register Mantissa Input CP4

PAMORL14 = PAMORL14 + PAMORL(28-24)=08 - PAAOUT23+
PAMORL(28-24)=15 - PAAOUT23+
PAMORL(28-24)=01 - PAEXUF

PAMORL15 = PAMORL15+PAMORL(28-24)=08 - PAAOUT23+

PAMORL(28-24)=01 <« PAEXUF
IF PAMORL(28-24)=1, 8, or 15, PAMORL(15-14) must be O.
4,5.5 A Register Exponent Input CP3
PAMORL18 = PAMORL18+PAMORL(28-24)=01 * PAEXUF+

PAMORL(28-24)=20 - PASBUF+
PAMORL(28-24)=21 « PAEXUF

IF PAMORL(28-24)=1, 20, or 21, PAMORL(18-16) must be O.
4.5.6 Strobe A Register Mantissa
Enable Strobe if X where

X = PAMORL(28-24)=03 + PAAREG31l+

PAMORL(28-24)=05 « PATOVF+
PAMORL(28-24)=07 = PAOVFF+
PAMORL(28-24)=09 . PASIGN+
PAMORL (28-24)=12 - PAAREG23+
PAMORL(28-24)=14 - PAAOUT23+
PAMORL(28-24)=17 - PAAREG24+

| PAMORL(28-24)=20 - PASBUF+

; PAMORL(28-24)=21 - PAEXUF+

r PAMORL33 - (PAAREG23+PABREG23)+
PAMORL(28-24)=22 « (PASHCRO5 - PAZROA < PAZROB)

IF PAMORL(28-24) equals any of the above values or if
PAMORL33, PAMORL1Y9 must be = 1
4.,5.6 Strobe A Register Exponent
é Enable strobe of X
where X = PAMORL(28-24)=05 - PATOVF+
PAMORL(28-24)=14 + PAAOUT23+
PAMORL(28-24)=17 - PAAREG24+

PAMORL(28-24)=19 « PAAOUT(23-0)#ZERO+
PAMORL(28-24)=22 + PASBOF + (PASBUF - PAAOUT31)

IF PAMORL(28-24) equals any of the above values, PAMORL20 must

be = 1.

102

4.5.7 Alignment Network/Shifter CPll and CPiZ
PAMORL30 = PAMORL30 + PAMORL(28-24) = 22 + PASCHRO5
IF PAMORL(28-24) = 22, PAMORL(31-30) must be O.

4,5.8 Alignment Network/Shifter, Shift Distance Selector CPl4
PAMORL32 = PAMORL32+PAMORL(28-24)=22 * PASHCRO5
IF PAMORL(28-24)=22, PAMORL32 must be O.

4.5.9 Strobe Overflow FF

PAOVFF O IF STROBE - PAMORL(28-24)
PAOVFF 1 IF STROBE - PAMORL(28-24)

01 ° PAEXOF +

03 - PAAOUT31 +

04 <« PAMOF +

05 < PATOVF . PAEXOF +
06 - PAMLOF +

10 + PAAOUT(23-0) = zero +
13 « PATOVF + PAEXOF +
14 « PASBOF °* PAAOUT23 +
16 < PAAREG23 +

17 - PAEXOF - PAAREG24 +
20 - PASBOF +

21 <« PAEXOF +

26 + PAMOF

28

IF PAMORL(28-26) equals any of the above values,
PAMORL47 must be set to effect the change in PAOVFF

4.,5.10 Strobe Q Mantissa
Enable Strobe if X
where X = (PAMORL(38-24) = 09) - PASIGN
IF PAMORL(28-24) = 9, PAMORL36 MUST BE 1.
4.,5.11 Strobe B Exponent
Enable strobe if X

where X = (PAMORL(28-24) # 13) + PATOVF

103

4.5.12

4.5.13

4.5.14

4,5.15

4.5.16

4.5.17

4.5.18

Strobe B Mantissa
Enable strobe if X
12 - PABREG23 +

13 - PATOVF +
22 - (PASHCRO5 + PAXROA + PAZROB)

where X = PAMORL(28-24)
PAMORL(28-24)
PAMORL(28-24)

wonn

IF PAMORL(28-24) = 12, 13 or 22, PAMORL42 and 43 must be 1
B Register Bits 23-22 Input CP21
Control lines locally generated.

PAMOVBOO = (PAMORL(28-24)

6) + PAMOF

PAMOVBO1

Il
]

(PAMORL (28-24) = 13)
SQ Result Selector CP22
Control lines locally generated.

PASQRTO1 (PAMORL (28-24)

18)

1l

PASQRTOO = (PAMORL(28-24) 18) + PAAREG(23)

[l

Q Extension Bit Input CP23
Control is locally generated.
PAQSEL = (PAMORL(28-24) = 6)
Fxtension Adder B Input CP24
Control is locally generated.
PAAXB = PAQXT (Q Extension FF)
DPC Input CP25

Control is locally generated.

'PADPIN = (PAMORL(28-24) = 25)
Strobe Tag Register
Enable strobe if X

where X = PAMORL(39-38) 1 « PAEACT +

PAMORL (39-38) 2 - PAEACT +

104

4,5.19 Control Line Select Signals

4.5.19.1 Control signal, data time shared with control

PAMORL 48 Function
1 Control lines PAMORL(31-0) contain data
0 Control lines PAMORL(31-0) contain control

4,5.19.2 Control signal, select control group

PAMORL 49 Function
0 Control lines PAMORL(44-32) contain group
2 control
1 Control lines PAMORL(44-32) contain group
1 control

105

4.6 Double Integer Hardware
4.,6.1 Double Precision Carry FF
Used to hold the carry or borrow between double integer instructions.
Input is from a circuit which detects the carry from bit position 22 of
the ALU., See Section 4.3.2.25.
4,6.2 Carry-out Bit 22
Since the ALU is constructed of 4 bit wide 10181 ALU chips, the carry
between bits 22 and 23 is completely within the chip. The following circuit
was designed to reconstruct that line outside of the chip.
ADD = 1, SUBTRACT = 0
PAADMA23
l PAADMB23

PAAOUT23
PACOUT 22

ADD=1
PAADMA?23 ;107 >—
PAADMB23 ''107 Yy~
! L_.‘._'—”\
PAAOUT23 107 -—

’ e’

PACOU

HOOHOMMFHOOMFHOHOOR

QOO OO0OOO O 1= = pmd pud 1 = 1
OCOO0OO0O R MEEOOO O = -
COHMFHFOOHMNOO KOO
OHOFHROHOMROHORFOMOM

106

4.7 Floating Point Hardware
4,7,1 PAZROA and PAZROB
These FF are used during the FP ADD and SB instruction. As explained

in Section 3.4.2, when an addition of two numbers where one is more than 223

greater or less than the other causes a shift of more than 23 places, special

handling is required.

In micro-step two, after the exponents are subtracted, the result is
compared to 23. If the result is greater than 23, PAZROB is set. If the
result is less than -23, PAZROA is set. Then in micro-step four, the
appropriate input to the adder is zeroed out.
4.,7.1.1 Greater Than 23 Detector

The circuit for the > 23 detector is shown in Figure 4.8.
4,7,1.2 Less Than -23 Detector

The circuit for the < -23 detector is shown in Figure 4.9.

4,7.2 Extension Hardware

The multiply algorithm described in Section 3.4.3 requires a 25 bit
adder. The additional bit is implemented by extending the B and Q Register
one bit each and extending the adder one position. The extension is on the
least significant bit end.

4,7.3 Sign FF PASIGN

This FF is used during the DV instruction to save the sign of the
result. As described in Section 3.4.4, the DV algorithm only divides two
positive numbers. If the hardware must take the two's complement of one
of the operands, it sets the sign FF. Then following the.divide, if the

sign FF is set, the two's complement of the quotient is taken.

107

PAAOUT

31 30 29 23 27 26 25 24 DECIMAL FUNCTIOM
1] 0 000 O O O O -128 0
11 1 111 121 -1 0
0 0 0O OO O 0 O 0 0

¢ : i
0O 0 01 01 1 0 22 0
0 0 01 0o 1 1 1 23 0
0O 0 0 1 1 0 O O 24 1
0O 0 01 1 0 0 1 25 1
M : :
0O 01 0 0 0 O O 32 1
¢ 1 0 0 0 0 0 0o 64 1
o 1 1 1 1 1 1 1 127 1
Function = 31 ¢ (30 +29 + (28 « 27))
| L TesTs .gE. 2t
l .GE. 32
| . TESTS .GE. O

Figure 4.8

Adder Output Greater Than 23 Detector

108

PAAQUT

31 30 29 28 27 26 25 24 DECTIIAL FUNCTION
0 1 1 1 1 1 1 1 127 0]

0 0 O 0 0 0

1 1 1 1 1 =1 0
11 1 01 1 0 O -20 0
11101 0 1 1 =21 0
11 1.0 Y ¢ 1 0O ~22 0
111 0 1 0 O 1 =23 0

1 11 0 1 & 0 O ~24 1
i1 1 0 0 1 1 1 -25 1
111 0 0 1 1 0O -26 1

1 0 0 0 0 0 0 ¢ -128 1
Function = 31 ¢ (30 + (28 27) + (28 « 27 2% -

Figure £.9

Ldder Outnut Less Than -23 Detector

2L
-2L
-32

109

001 e B A& b Ao e

Input to the FF is bit 23 of the ALU output:(the sign bit). The FF
is clocked when local control senses PAMORL(28-24) = 11.
4.7.4 Temporary Overflow Hold FF PATOVF

This FF is used to temporarily store an overflow indication during
ML, ADD, SB and DV instructions. When an overflow is detected during an
FP instruction, the AU attempts to correct it by right shifting the fraction

and incrementing the exponent., Only if the exponent then overflows, is the

overflow made permanent and PAOVFF is set.

Input to the FF is the mantissa overflow detector PAMOF (Section 4.4.3.4.1).

4,7.5 Carry Out of Bit 23 FF PACOFF23

This FF holds the carry-out of the ALU during ML, ADD, SB and DV
instructions. As described in the previous section, when the fraction
overflows, a correction is attempted. This FF becomes the new bit 23 of the
right shifted fraction.

Input is the carry out of the last ALU chip only if there is a mantissa

overflow (PAMOF).

110

4.8 Instruction Implementation
Each of the following sections is centered around the micro-step
sequence of some of the more interesting AU instructions of each of the
six types.
Each sequence contains the following information:
Opcode - 8 bits, in octal
Instruction Name
Mnemonic
Description of the operation
Number of micro-steps in execution
Micro-step Sequence
In the sequence, this symbology is used:
¢— indicates that the register or data lines on the left
receive the register or data lines on the right.
"Select'" indicates the operation being performed by the ALU.
"iff" If and only if.

Qualifier. The operation on the left is not performed

we

unless the equation on the right is true.
s Concatenate. The bits on the left are combined with the
i bits on the right to produce a single value.
(XX-YY) Bits XX through YY of the named register or data path.
4.8.1 Activity Instructions

Instructions chosen as examples are SNZL, SNG, ANS, CAS, and PSEL.

111

- ———— e ———

4.8.1.1 SNZL

The A Register is compared to zero. If it is, the EA FF is reset.
Figure 4.10.
4.8.1.2 SNG

An operand is formed in the B Register during micro-step one. During
step 2, the A and B are exclusive "OR"ed by the ALU. The result is checked
for zero and if it is, the EA FF is reset. Figure 4.11.
4.8.1.3 ANS

The top of the stack (PASTAK(O)) is ""AND"ed with the EA FF and the
resuit placed in the EA FF. The stack is then popped. Figure 4.12.
4.8.1.4 CAS

The top of the stack is set to "O'", Figure 4,13,
4.8.1.5 PSEL

The EA is pushed into the activity stack. A 32 bit mask of zeros
with a single "1" is generated in the PICU and sent to the AU B Register.
A word is fetched from Element Memory and "AND'"ed with the mask by the ALU.
The output of the ALU is checked for all zeros, if so, the EA FF is reset.
Figure 4.14,
4.8.2 Integer Instructions

Instructions chosen as examples are ADI, LSBI and USBI.
4.8.2.1 ADI

During the first micro-step the operand is formed in the B Register.
In the second step, the A and B Registers are added together with the
result placed in the A Register. Overflow is checked and the Overflow FF

is set if necessary. Figure 4.15 shows the micro-step sequence.

112

OPCODE

166

INSTRUCTION MNEMONIC

Select on Non-Zero Logical SNZL

DESCRIPTION

Set EA to zero in those active AUs in which A-register
(31-0) equal zero
Execution: 1 step

MICRO STEP SEQUENCE

1) PAADEA(31-24) <— PAAREG(31-24)
PAADEB(31-24) &— 0
PAADMA(23-0) «— PAAREG(23-0)
PAADMB(23-0) «— 0
Select OR

PAEACT é&—— 0; iff PAAOUT(31-0)=0

FIGURE 4.10, SNZL

113

OPCODE INSTRUCTION MNEMONIC
167 Select on Not Equal Global SNG
DESCRIPTION
Set EA to zero in those active AUs in which A-Register
(31-0) are equal to Operand (31-0)
Execution: 2 steps

MICRO STEP SEQUENCE

1) If R=1l:
PADMDE é— 0
PADAIN(10-0) ¢— PAMOBR(10-0)
Transmit PADREQ to EMC
PAXDIN(31-0) é&— PXEMOT(31-0); when PADSEL=1
If R=0:
PAMORL(31-0)¢— PAMOBR(31-0)

PAXDIN(31-0) &— PAMORL(31-0)

PABREG(31-0) <— PAXDIN(31-0);
2) PAADEA(31-24) ¢«— PAAREG(31-24)
PAADEB(31-24) ¢— PABREG(31-24)
PAADMB(23-0) «— PABREG(23-0)
PAADMA(23-0) é— PAAREG(23-0)

Select EXCLUSIVE OR

PAEACT ¢— 0; iff PAAOUT(31-0)=0

FIGURE 4.11, SNG

114

OPCODE INSTRUCTION MNEMON IC

252 AND of STACK ANS
DESCRIPTION
In all ensemble AUs:
PAEACT ¢— PAEACT *« AND - PASTAK(O)
PASTAK(I) ¢— PASTAK(I + 1) ; I =0, ---, 19
PASTAK(20)€— 0
Execution: 1 step

MICRO STEP SEQUENCE

1) PAEACT4— (PAEACT) * (PASTAK(0))

PASTAK(20-0) «— (0, PASTAK(20-1))

FIGURE &4.12, ANS

‘ 115

~1

OPCODE

253

INSTRUCTION MNEMONIC

Clear Active Stack CAS

DESCRIPTION

In all active AUs
PASTAK(0)€¢— O
Execution: 1 step

MICRO STEP SEQUENCE

1) PASTAK(20-0)%— PASTAK(20-1), 0; iff PAEACT =1

FIGURE 4.13, CAS

116

OPCODE INSTRUCTION . MNEMONIC
013 Push and Select on Bit PSEL
DESCRIPTION
In all ensemble AUs, EA is pushed into the activity stack
as follows:
PASTAK(20-1)€— PASTAK(19-0)

PASTAK(O) ¢— PAEACT

If PASTAK(19)=1, prior to "Push", the overflow error is
generated to the ICL.

After PUSH is complete, select on bit (where PAEACT = 1) as
follows:

Reset PAEACT in AUs where the bit specified by Operand
(15-11) in memory word specified by Operand (10-0) is zero.

Execution: 5 steps

MICRO STEP SEQUENCE
1) PASTAK(20-1)€— PASTAK(19-0)
PASTAK(Q) é— PAEACT
If PASTAK(19)=1; generate overflow error to ICL
2) PAMORL(31-0) ¢~ Mask Generate Logic (31-0)
PAXDIN(31-0) <~ PAMORL(31-0)
PABREG(31-0) ¢— PAXDIN(31-0)
3) PAAREG(31-0) ¢— PABREG(31-0)
4) PADAIN(10-0)&— PAMOBR(10-0)
PADMDE «— 0
Transmit PADREQ to EMC
PAXDIN(31-0)é— PXEMOT(31-0) ; when PADSEL = 1
PABREG(31-0) «— PAXDIN(31-0)
5) PAADEA(31-24)¢€— PAAREG(31-24)
PAADEB(31-24) ¢ PABREG(31-24)
PAADMA(23-0) €— PAAREG(23-0)
PAADMB(23-0) <— PABREG(23-0)
Select AND
PAEACT ¢— 0 ; iff (PAEACT = 1) - (PAAOUT(31-0) = 0)
PAEACT ¢— PAEACT ; iff (PAEACT = 0) + (PAAOUT(31-0) # 0)

FIGURE 4.14, PSEL

117

e v ———— P . A i, Tiown AvEvR: Mete . mvm——

OPCODE

220

INSTRUCTION ‘ MNEMONIC
Add Integer ADI
DESCRIPTION

In all active AUs!

PAAREG(23-0) €&— PAAREG(23-0) + OPERAND(23-0)
PAAREG(31-24) €— 0

Execution: 2 steps

MICRO STEP SEQUENCE

1)

2)

If R=1:

PADMDE €é— 0

PADAIN(10-0) «— PAMOBR(10-0)

Transmit PADREQ to EMC

PAXDIN(31-0) €— PXEMOT(31-0); when PADSEL = 1
If R=0:

PAMORL(31-0) ¢— PAMOBR(31-0)

PAXDIN(31-0) ¢— PAMORL (31-0)
PABREG(31-0) «— PAXDIN(31-0); iff PAEACT=1

PAADMA(23-0) «— PAAREG(23-0)
PAADMB(23-0) ¢«— PABREG(23-0)
Select ADD

PAAREG(23-0) «— PAAOUT(23-0); iff PAEACT=1
PAOVFF ¢— 1; iff (PAEACT=1) - (overflow)
PAAREG(31-24) €— 0; iff PAEACT=1

FIGURE 4.15, ADI

118

4.8.2.2 LSBI end USBI

During the first micro-step of both instructions the operand is formed.
The second micro-step of the LSBI subtracts the two operands and saves the
borrow in the DPC FF. The second step of the USBI subtracts its two operands
using the DPC FF as a borrow into the low order bit of the ALU. Overflow
is checked and the Overflow FF is set if necessary. Figures 4.16 and 4.17
show the micro-step sequences.
4.8.3 Logical/Data Transfer Instructions

Instructions chosen as examples are ORA and TAQ.
4.8.3.1 ORA

During the first micro-step, the explicit operand is loaded into the B
Register. Then, the A and B Registers are '"OR'"ed in the ALU and returned
to the A Register. Figure 4.18 shows the micro-step sequence.
4.8.3.2 TAQ

In this instruction, the A Register is routed to the input of the
Q Register which is then clocked. Figure 4.19 shows the micro-step sequence.
4.8.4 Floating Point Instructions

Instructions chosen as examples are FIX, FLOT, ADD, ML, DV and SQ.
These instructions were described in detail in Section 3.4. The micro-steps
in this section follow those algorithms.
4.8.4.1 FIX/FLOT

In the FIX instruction, the exponent is compared to 23. If it is
greater than 23, the overflow flip-flop is set. The A Register is then
shifted until the exponent is zero and placed in the B Register. The B
Register is then shifted right to its original position. The A and B
Register are compared and the difference is placed in B. The A Register

is then shifted again until the exponent is zero. If the difference in

119

i

OPCODE

226

INSTRUCTION MNEMONIC
Lower Subtract Integer LSBI
DESCRIPTION

In all active AUs;

PAAREG(23-0) «— PAAREG(23-0) - OPERAND(23-0)
PAAREG(31-24)«— 0

PAXDPC ¢«— 1; iff borrow out

Execution: 2 steps

MICRO STEP SEQUENCE

1)

2)

If R=1:

PADMDE &— 0

PADAIN(10-0) «— PAMOBR(10-0)

Transmit PADREQ to EMC

PAXDIN(31-0) ¢ PXEMOT(31-0); when PADSEL=1
If R=0:

PAMORL(31-0) «— PAMOBR(31-0)
PAXDIN(31-0) <— PAMORL(31-0)

PABREG(31-0) <« PAXDIN(31-0)
PAADMA(23-0) < PAAREG(23-0)
PAADMB(23-0) «— PAAREG(23-0)

Select SUBTRACT

PAAREG(23-0) ¢« PAAOUT(23-0); iff PAEACT=1
PAXDPC €— 1 iff (borrow out) °* (PAEACT=1)
PAAREG(31-24) ¢— 0; iff PAEACT=1

FIGURE 4.16, LSBI

120

k.

OPCODE INSTRUCTION MNEMONIC
216 Upper Subtract Integer USBI
DESCRIPTION

In all active AUs;
PAAREG(23-0) € PAAREG(23-0) - OPERAND(23-0) - PAXDPC
PAAREG(31-24)&« 0

Execution: 2 steps

MICRO STEP SEQUENCE

1) If R=3:
PADMDE €— 0
PADAIN(10-0) & PAMOBR(10-0)
Transmit PADREQ to EMC
PAXDIN(31-0) &— PXEMOT(31-0) ; when PADSEL=1

If R#3:
PAMORL(31-0) « PAMOBR(31-0)
PAXDIN(31-0) & PAMORL(31-0)
PABREG(31-0) €— PAXDIN(31-0) .
2) PAADMA(23-0)¢— PAAREG(23-0)
PAADMB(23-0) ¢— PABREG(23-0)
Select SUBTRACT, carry-in = PAXDPC
PAAREG(23-0) & PAAQUT(23-0); iff PAEACT=1
PAOVFF ¢— 1 if overflow and PAEACT=1
PAAREG(31-24) ¢— 0; iff PAFACT=1

FIGURE 4.17, USBI

121

OPCODE INSTRUCTION ' MNEMON IC
244 Logical OR ORA
DESCRIPTION

In all active AUs;

PAAREG(31-0) €~ PAAREG(31-0) .OR, OPERAND(31-0)
Execution: 2 steps

MICRO STEP SEQUENCE

1) If R=1:
PADMDE &— 0
PADAIN(10-0) «— PAMOBR(10-0)
Transmit PADREQ to EMC
PAXDIN(31-0)e— PXEMOT(31-0); when PADSEL=1
If R=0:
PAMORL(31-0) e— PAMOBR(31-0)
PAXDIN(31-0)<— PAMORL(31-0)

PABREG(31-0) «— PAXDIN(31-0)
2) PAADEA(31-24)¢— PAAREG(31-24)
PAADEB(31-24) &— PABREG(31-24)
PAADMA(23-0) €— PAAREG(23-0)
PAADMB(23-0) ¢— PABREG(23-0)
Select OR
PAAREG(31-0)&— PAAOUT(31-0); iff PAEACT=1

FIGURE 4.18, ORA

122

st s i Sttt .

OPCODE INSTRUCTION MNEMONIC
043 Transfer A to Q TAQ
DESCRIPTION

AU A-Register 31-0 is moved to AU Q-Register 31-0 in

those AUs which are active.
Execution: 1 step

MICRO STEP SEQUENCE

1) PAADEA(31-24)€— PAAREG(31-24)
PAADEB(31-24)¢e— O
PAADMA(23-0) €= PAAREG(23-0)
PAADMB(23-0) ¢— O
Select OR
PAQREG(31-0) €— PAAOUT(31-0); iff PAEACT =1

FIGURE 4.19, TAQ

123

s g s

B is less than zero and the A Register is negative, the A Register is
incremented by one to become the final integer value.

In the FLOT instruction, the number of leading ones/zeros is counted
and placed in the Shift Count Register. This value is subtracted from 23
and the result becomes the exponent of the FP number. The fraction is then
shifted right by the amount determined in step one to become the final
fraction.

Figure 4.20 shows the micro-step sequence for FIX and 4.21 shows it
for FLOT.
4.8.4,2 FP ADD/SB

The floating point add and subtract instructions require a binary
point alignment step before the fractions of the two operands can be added
or subtracted. During this alignment step, the exponents of the operands
are differenced and the fraction with the smallest exponent is enabled, via
local control flip-flops, into the alignment network. See Figure 4.22,

After the binary points are aligned and the fractions added (subtracted),
the result is normalized and the exponent updated. If the result of the add
(subtract) operation is zero, -128 is gated into the exponent of the result.

The floating point add and subtract instructions are identical except

for micro-step 4 as shown in the flow chart (Figure 4.23).

124

OPCODE

205

INSTRUCTION MNEMONIC
Fix FIX
DESCRIPTION

In all active AU's, the floating point number contained
in the A-Register (31-0) is converted to integer format
in A-Register (23-0) with PAAREG(31-24) set to zero. It
is assumed that the floating point mantissa has no over-

flow and is normalized. Truncation is performed as follows:

X
+m +-;-—9 + m.

Execution: 5 steps

MICRO STEP SEQUENCE

1) PAADEA(31-24)¢— 2310
PAADEB(31-24)e— PAAREG(31-24)
PAADMA(23-0)€— 0
PAADMB(23-0)%— 0

2)

Select SUBTRACT
PASHCR(5-0) «—
PAOVFF <— 1;
PAAREG(23-0)&—

PAALNI(23-0) &«
PASCR(5-0) <—
PAAREG(31-24) €—
PABREG(23-0) «—

PAAOUT(29-24); iff PAEACT=1

iff (PAEACT=1) - (PAAOUT(31-24)<<0)
PAAOUT(23-0);

iff (PAEACT=1) - (PAAREG(31-24)<0)

PAAREG(23-0)
PASHCR(5-0)
0; iff PAEACT=1
PAALNO(23-0)

FIGURE 4.20, FIX

125

3) PAALNI(23-0)¢— PABREG(23-0)
PASCR(5-0) €— PA2SC0(5-0)
PABREG(23-0) ¢ PAALNO(23-0)

4) PAADMA(23-0)¢€— PABREG(23-0)
PAADMB(23-0) ¢— PAAREG(23-0)
Select SUBTRACT
PABREG(23-0) &~ PAAOUT(23-0)
PASCR(5-0) €— PASHCR(5-0)
PAALNI(23-0) < PAAREG(23-0)
PAAREG(23-0) &— PAALNO(23-0); iff PAEACT=1

5) PAADMA(23-0)«— PAAREG(23-0)
PAADMB(23-0) &— 0
Select INCREMENT
PAAREG(23-0) & PAAOUT(23-0); iff
(PAEACT=1) + (PABREG(23-0) <0) - (PAAREG(23-0) <0)

|
|
|

126

OPCODE

206

INSTRUCTION

Float

DESCRIPTION

MNEMONIC

FLOT

In all active AUs, the integer number contained in the

'~ A-Register (31-0) is converted to normalized floating

point format in A-Register (31-0).

Execution: 3 steps

MICRO STEP SEQUENCE

1)

2)

3)

PAALNI(23-0) «—
PASHCR(5-0)€—

PASCR(5-0) &—
PAALNI(23-0) ¢—
PAAREG(23-0) <—
PAADEA(31-24) &—
PAADEB(31-24) «—
Select ADD
PAAREG(31-24) ¢

PAADMA(23-0) ¢—
PAADMB(23-0) <
PAADMB(23-0) ¢«
Select ADD

Iff PAAQOUT(23-0) =
PAAREG(31-24)« - 128

PAAREG(23-0)
PANRMD(5-0); iff PAEACT = 1

PA2SC0O(5-0)

PAAREG(23-0)

PAALNO(23-0); iff PAEACT=1
+ 2310

PA25c0(5,5,5-0)

PAAQUT(31-24); iff PAEACT=1

PAAREG(23-0)
0
0

0:

1o} Iff PAEACT=1

FIGURE 4.21, FLOT

127

OPCODE INSTRUCTION MNEMONIC
200 Add Floating Point ADD
DESCRIPTION

In all active AUs, A-Register (31-0) is added to operand
(31-0) and the sum placed in A-Register (31-0).

Execution: 8 steps

MICRO STEP SEQUENCE

1) 1If R=1:
PADMDE & 0
PADAIN(10-0) &~ PAMOBR(10-0)
Transmit PADREQ to EMC
PAXDIN(31-0) €~ PXEMOT(31-0) ; when PADSEL = 1
If R=0:
PAMORL(31-0)¢~ PAMOBR(31-0)
PAXDIN(31-0)¢- PAMORL(31-0)
PABREG(31-0) <~ PAXDIN(31-0)

2) PAADEA(31-24)¢&- PAAREG(31-24)
PAADEB(31-24)<— PABREG(31-24)
Select SUBTRACT
PASCHR(5-0) €~ PAAOUT(29-24); iff PAEACT=1
PAZROB «— 1 ; if (PAAOUT(29-24) > 24) - (PAEACT = 1)
or exponent overflow : Else O
PAZROA¢— 1 ; if (PAAOUT(29-24) < -23) - (PAEACT = 1)

or exponent underflow : Else O

3) 1If (PASHCR(5-0) > 0) - (PAZROA) - (PAZROB):
PASCR& PASHCR(5-0)
PAALNI(23-0) ¢~ PABREG(23-0)
PABREG(23-0) ¢~ PAALNO(23-0); iff PAEACT =1

FIGURE 4.22

128

If (PASHCR(5-0)<0) - (PAZROA) - (PAZROB) = 1:
PASCR¢~ PA2SCO
PAALNI(23-0) €~ PAAREG(23-0)
PAAREG(23-0) €= PAALNO(23-0) ; iff PAEACT = 1
I1f (PASHCR(5-0) <0) - (PAEACT = 1) :
PAAREG(31-24) ¢~ PABREG(31-24); iff PAEACT=1

4) PAADMA(23-0)¢~ (PAZROA) *+ (PAAREG(23-0)
PAADMB(23-0) ¢— (PAZROB) - (PABREG(23-0))
Select ADD
PAAREG(23-0)€ PAAOUT(23-0) ; iff PAEACT =1
PATOVF¢—~ O if (no overflow) - (PAEACT = 1)
If (overflow) °* (PAEACT = 1);

PATOVF ¢~ 1
PACO23FFe~C023 (carry out of bit 23)
PASHCR(5-0) ¢— 1 ; iff PAEACT - 1

]

5) If (PATOVF = 1) - (PAEACT = 1);
PASCR(5-0) €= PASHCR(5-0)
PAALNI(23-0)«= PAAREG(23-0)
PAADEA(31-24) ¢ PAAREG(31-24)
PAADEB(31-24)e« O
Select INCREMENT
PAAREG(22-0) é— PAALNO(22-0)
PAAREG(23) e~ PACO23FF
PAAREG(31-24) €= PAAOUT(31-24)
PAOVFF ¢— 1 ; iff overflow from exponent

If (PATOVF = 0) :

No operation

6) PAALNI(23-) é— PAAREG(23-0)
PASHCR(5-0) €— PANRMD(5-0) ; iff PAEACT = 1

FIGURE 4.22, CONTINUED

129

7)

8)

PASCR(5-0)<«— PA25C0(5-0)
PAALNI(23-0) ¢«— PAAREG(23-0)
PAADEA(31-24) «— PAAREG(31-24)
PAADEB(31-24)¢— PA25C0(5,5,5-0)
PAADMA«— O
PAADMB¢— 0
Select ADD
If no underflow from exponent:
PAAREG(23-0) €= PAALNO(23-0) ; iff PAEACT = 1
PAAREG(31-24) ¢— PAAOUT(31-24) ; iff PAEACT =1
If exponent(31) underflow:
PAAREG(31-24) ¢~ -128,,
PAAREG(23-0) &— PAAOUT(23-0)

PAADMA(23-0) « PAAREG(23-0)
PAADMB(23-0) < 0
Select ADD
If PAAOUT(23-0) = 0:
PAAREG(31-24) ¢— -128 ; iff PAEACT = 1

FIGURE 4.22, CONTINUED

130

2

ADD:*

< STARTv)

/
us 1 PAXDIN31-0 + PABREG31-0

us 2 PAAREG(31-24) - PABREG(31-24) » PASHCR

Set Set
ZROAFF ZROBFF
us
[YES PASCHR NO
\,/
! !
I ZROAFF, ZROBFF = 0, If ZROAFF, ZROBFF = 0,
) PASHCR -+ PASCR PA2SCG + PASCR
PABREG23-0+ PAALNW23-0+ PAAREG23-0 + PAALNW23-0
PABREG23-0 PAAREG23-0
If ZROAFF, ZROBFF =0, Or
ZROAFF =1,
PABREG31-24 «+PAAREG31-24
*SB is identical except in . Figure 4.23a
us 4 A and B reg. subtracted. @ Floating Point Add/Subtract

Algorithm
131

ADD

us 4

+1 + PASHER
ZROATF*PAAREG(23-0)+PABREG(23-0)
*« ZROBFF + PAAREG(23-0)

us

YES

/

1 + TOVFF
C0O23 -+ CO23FF

us

-5

V

6 %PAAREG23-O-oNormalizer-'PASI ICR

&

\

=T
7 PAAREG23-0-PAALNW23-0+PAAREG?23-C
PAAREG31-24 4+ PASHCR(5, 5, 5-0) =

uS

PAAQUT31-24

NO YES

PASHCR =+ PASCR
PAAREG23-0+PAALNW23-0+PAAREG220
CO23FF -PAAREG23
1+PAAREG31-24 -+ PAAQUT31-24
PAAQUT31-24 + PAAREG31-24

PAAQUT31-24 »
PAAREG31-24

-128+ PAAREG31-21
0 - PAAREG23-0

!

us 8

_YES

1 + OVFF

PAAREG23-0+0 % PAAQUT23-0

NO

-128 + PAAREG31-24

Figure 4.23b
Floating Point Add/Subtract
Algorithm

132

4.8.4.3 Multiply Floating Point

The method used in the execution of the FP multiply instruction is
comprised of three functional categories. They are initialize, iterate,
and terminate. See Figure 4.24.

During the initialization phase, the multiplier is received and placed
into the Q register. The partial product register is zero filled, and the

lowest three multiplier bits are decoded as shown below.

Multiplier Bits Operation
000 +0X
001 +1X
010 +1X
011 +2X
100 -2X
101 -1X
110 -1X
111 -0X

‘During the iterate phase, two final product bits are calculated for
each micro-step. Therefore, twelve steps are performed to generate the
24 bit final product.

In the terminate phase, the 24 bits of the fraction are normalized,
the addition of the multiplicand and multiplier exponents is performed,
and the result (of exponent addition) is corrected for any normalization
shifts. In addition, the 24 bit fraction is checked and corrected for the
one overflow fault resulting from the multiplication of two -1.0 operands.
After all operand corrections have been accomplished, the final exponent
and fraction are checked for exponent overflow and fraction equal to zero
conditions to set the appropriate indicator. Figure 4.25 illustrates the

ML instruction processing.

133

4

OPCODE

202

INSTRUCTION ' MNEMONIC
Multiply Floating Point ML
DESCRIPTION

In all active AU, operand (31-0) is multiplied by A-Register

(31-0) and the product is placed in the A-Register (23-0).

A-Register is corrected for (1) mantissa overflow during

adds, (2) result of multiplication equal to zero, (3) exponent

underflow, and (4) A not normalized.

If A-Register of product mantissa equal to O, then the
A-exponent set to -128 .,

If A-exponent greater than or equal to +128 set overflow
flip-flop to 1.

Q register contents are destroyed.

Execution: 19 steps

MICRO STEP SEQUENCE

1) If R=1:
PADMDE& O
PADAIN(10-0) ¢ PAMOBR(10-0)

Transmit PADREQ to EMC

PAXDIN(31-0) PXEMOT(31-0) when PADSEL=1
If R=0:

PAMORL(31-0) ¢~ PAMOBR(31-0)

PAXDIN(31-0)¢— PAMORL(31-0)

PABREG(31-0) ¢ PAXDIN(31-0)

FIGURE 4.24, ML

134

2)

3-13)

PAQREG(23-0)&— PABREG(ZB-O), iff PAEACT=1
PAQEXT&~ O

PAADMA(23-0)¢— 0

PAADMB(23-0) ¢+ 0

Select add (PAADMN)

PABREG(23-0)¢— PAAOUT(23-0)

PABEXT ¢~ PAAOUT1

Decode PAQREGl, PAQREGO, PAQEXT into octal 0-7.
PAADMA(23-0) ¢~ PABREG(23-0)

If decode = 0,7 : PAADMB(23-0)¢ O

If decode = 3,4 : PAADMB(23-0)¢~ PAAREG(23-0)
If decode = 1,2,5,6: PAADMB(23-0)¢ PAAREG(23,23-1)

If decode

0,1,2,3: Select Add (PAADMN)
If decode = 4,5,6,7: Select subtract (PAADMN)
PABREG(21-0) €~ PAAOUT(23-2)
If decode = 1,2:

PAQREG(22) ¢~ PABEXT + PAAREGO; iff PAEACT=1
If decode = 5,6:

PAQREG(22) ¢— PABEXT - PAAREGO; iff PAEACT=1
If decode = 0,3,4,7:

PAQREG(22) €~ PABEXT; iff PAEACT=1
PAQREG(23) ¢~ PAAOUTO; iff PAEACT=1
PABEXT<¢~ PAAOUT1
PAQREG(21-0) <« PAQREG(23-2); iff PAEACT=1
PAQEXT <— PAQREG1

FIGURE 4.24 (CONTINUED)

135

PR —

14)

If PAMOF:

If PAMOF:

PABREG(23)¢— PACO23FF
PABREG(22)¢~ PACO23FF
PABREG(23) &= PAAOQUT(23)

PABREG(22)¢— PAAOUT(23)

Decode PAQREG(1), PAQREG(0), PAQEXT

into octal 0-7

PAADMA(23-

If decode

If decode

If decode

If decode

If decode

PAAREG(23-

If decode

0) €~ PABREG(23-0)

0,7 : PAADMB(23-0)« O

3,4 : PAADMB(23-0)¢— PAAREG(23-0)

1,2,5,6: PAADMB(23-0)¢— PAAREG(23,23-1)

0,1,2,3: Select Add (PAADMN)

= 4,5,6,7: Select Subtract (PAADMN)
0) €~ PAAOUT(23-0); iff PAEACT=1

= 1,22

PAQREG(22) «— PABEXT + PAAREGO; iff PAEACT=1

If decode

= 5,6:

PAQREG(22) €~ PABEXT - PAAREGO; iff PAEACT=1

If decode

= 0,3,4,7:

PAQREG(22) &~ PABEXT; iff PAEACT=1

PAQREG(23) ¢~ PAAOUTO; iff PAEACT=1

PAQREG(21-

0) ¢~ PAQREG(23-2); iff PAEACT=1

PASHCR(5-0)+1; iff PAEACT=1

If PAMOF:

PATOVF «— 1

PACO23FF €« CARRY OUT BIT 23

Esle PATOVF ¢ 0

FIGURE 4.24 (CONTINUED)

136

15) PAADEA(31-24)e PAAREG(31-24)
[ADD EXPONENTS]
PAADEB(31-24)¢~ PABREG(31-24)
Select Add (PAADEX)
PAADMA(23-0)+— O
PAADMB(23-0)¢— O
Select Add (PAADMN)
If PAEXOF: PAOVFF& 1
If PAEXUF PAAREG(31-24)¢— -128; iff PAEACT=1
PAAREG(23-0) < PAAOUT(23-0); iff PAEACT=1
If PAEXUF: PAAREG(31-24) < PAAOUT(31-24); iff PAEACT=1
16) If PATOVF = 1:
PASCR(5-0) &~ PASHCR(5-0)
PAALNI(23-0) €~ PAAREG(23-0)
PAAREG(22-0) €= PAALNO(22-0); iff PAEACT
PAAREG(23) € PACO23FF; iff PAEACT
PAADEA(31-24)¢ PAAREG(31-24)
PAADEB(31-24)< 0 ADD ONE TO EXPONENT I
Select INCREMENT MANTISSA OVERFLOWS 1
PAAREG(31-24) «— PAAOUT(31-24); iff PAEACT
If PAEXOF: PAOVFF ¢ 1; iff PAEACT
17) PAALNI(23-)& PAAREG(23-0)

PASHCR(5-0) €~ PANRMD(5-0); iff PAEACT=1

FIGURE 4.24 (CONTINUED)

137

18)

19)

PAALNI(23-0)¢— PAAREG(23-0)

PAADMA(23-0)<— O

PAADMB(23-0)¢— 0

Select add (PAADMN)

PAADEA(31-24) ¢ PAAREG(31-24)

PAADEB(31-24) <= PA2SC0(5,5,5-0)

Select add (PAADEX)

If PAEXUF: PAAREG(31-24)¢ -128
fAAREG(23-0)e— PAAOUT(23-0)

If PAEXUF: PAAREG(31-24) ¢ PAAOUT(31-24)
PAAREG(23-0) & PAALNO(23-0)

PAADMA(23-0) € PAAREG(23-0)

PAADMB(23-0)¢ 0

Select Add (PAADMN)

If PAAOUT(23-0) = O:

PAAREG(31-24) ¢ -128; iff PAEACT=1

FIGURE 4,24 (CONTINUED)

iff PAEACT=1

138

N

s 3-13

us 14

MULTIPLY FLOATING POINT (1)

(START)

us 1 IPAXDIN31-0 + PABREG31-0

PABREG +» PAQREG
s 2 0 + PABREG
+ B, Q Extension Bits

Partial Product (B) £ N*Mcand (A) » PABREG
(N determined by Multiplier Bits)
Product Bits stored in Q23, Q22

NO
PAAOUT23 -~ PABREG23S, 22

YES

C0O23 -+ PABREG23, 22

\
Partial Product (B) + N*Mcand (A) + PAAREG
(N determined by Multiplier Bits)
Product Bits stored in Q23, Q22

ws 14
1+ TOVFF
CO23 +CO23FF

YES

us 15 Add A, B Reg. Exponents

Figure 4.25a
Floating Point Multiply
Algorithm

139

us 17

ps 18

MULTIPLY FLOATING POINT (2)

us 15 | Set OVFF

-128 + A Exponent
0 -+ A Mantissa

|

us 15

YES Rt. shift A Reg. by 1

bs 16 OVFF CO23FF » PAAREG23 NO
=1 Add 1 to A Exponent
NO YES
< Set OVFF [
e

Y

PAAREG <+ Normalize Decodef

/

Normalize A Mantissa
Update A Exponent

-128 -+ A Exponent
0 » A Mantissa

Algorithm

YES
Figure 4.25b
Floating Point Multiply

140

MULTIPLY FLOATING POINT (3)

A

YES

us 19 Mantissa »-128 + A Exponent

Figure 4.25c
Floating Point Multiply
Algorithm

141

2

4.,8.4.4 FP Divide

The execution of the floating point divide instruction is comprised
of three functional steps; initialize, iterate and terminate. Figure 4.26
shows the micro-step sequence and Figure 4.27 is a flow chart.

The main function performed during the jnitialize phase is to check
the divisor and set the overflow flip-flop if the divisor is zero. When
the divisor is not zero, the divisor and dividend fractions are made
positive (if negative). It is assumed that the dividend and divisor are
normalized initially. In this algorithm, the developed quotient must be
less'than one. This is accomplished by performing a trial subtraction of

the divisor from the dividend. If the result is positive (dividend >

divisor), then the dividend is shifted right one bit position and its

exponent is corrected for this shift. This procedure thus insures the
first quotient bit to be zero and that the quotient will have a value less
than one.

In the iterate phase, the divisor is subtracted from the dividend.
If the result is positive, a zero bit is entered in the quotient and the
dividend is shifted left one place. If the result is negative, a one bit

is entered in the quotient and the difference becomes the new dividend.

During the terminate cycle, the quotient and remainder are sign corrected

and placed into their respective final registers. The divisor exponent is
subtracted from the dividend exponent. The quotient is then normalized and
the normalization shift is added to the quotient exponent. The remainder
is not normalized. Finally, the exponent is checked for overflow and the

quotient for zero to set the appropriate indicator.

142

OPCODE INSTRUCTION MNEMONIC
203 Divide Floating Point DV

DESCRIPTION

In all active AUs, the floating point A-Register (31-0)
is divided by the floating point operand (31-0) with the
quotient going to A-Register (31-0) and the remainder to
Q-Register (23-0). The divisor and dividend are assumed
to be normalized. The quotient shall be normalized and

the remainder not.

If the divisor equals zero or if.exponent overflow occurs,
then the overflow indicator shall be set and the overflow
error transmitted to the ICL.

Execution: 38 steps

MICRO STEP SEQUENCE

1) If R=l:
PADMDE« 0
PADAIN(10-0) <~ PAMOBR(10-0)
Transmit PADREQ to EMC
PAXDIN(31-0) ¢~ PXEMOT(31-0); when PADSEL=1
If R=0:
PAMORL(31-0) « PAMOBR(31-0)
PAXDIN(31-0) < PAMORL(31-0)

PABREG(31-0) ¢~ PAXDIN(31-0)

FIGURE 4.26, DV

143

2)

3)

4)

5)

PAADMB(23-0) ¢~ PABREG(23-0)
PAADMA(23-0)¢— 0
Select ADD
PAOVFF <~ 1; iff PAAOUT(23-0) = 0 and PAEACT=1
PAADMA(23-0) « PAAREG(23-0)
PAADMB(23-0) «~ PABREG(23-0)
Select EXCLUSIVE OR
PASIGN & PAAOUT(23)
PAADMA(23-0) « O
PAADMB(23-0) € PABREG(23-0)
Select SUBTRACT
If PABREG(23) = 1:
PABREG(23-0) €<= PAAOUT(23-0)
If overflow:
PATOVF « 1
PACO23FF ¢— (€023
PASHCR(5-0) €= (000001); iff PAEACT=1
If PATOVF = O:
Do nothing
If PATOVF = 1:
PASCR(5-0) &= PASHCR(5-0)
PAALNI(31-0) &~ PABREG(31-0)
PAADEA(31-24)«— O
PAADEB(31-24) é— PABREG(31-24)

Select INCREMENT

FIGURE 4.26 (CONTINUED)

144

PABREG(31-24) «— PAAOUT(31-24)
PAOVFF&— 1 ; iff exponent overflow PAEACT=1
PABREG(23) <~ PACO23FF

PABREG(22-0) < PAALNO(22-0)

6) PAADMA(23-0)¢ O

7)

PAADMB(23-0) «— PAAREG(23-0)

Select SUBTRACT

If

If

If

If

PAAREG(23) = 1:
PAAREG(23-0) & PAAOUT(23-0); iff PAEACT=1
overflow:
PATOVF ¢— 1
PACO23FF+ C023
not overflow:
PATOVF ¢« O
PATOVF = O:
Do nothing
PATOVF = 1:
PASCR(5-0) ¢~ PASHCR(5-0)
PAALNI(31-0) € PAAREG(31-0)
PAADEA(31-24) <~ PAAREG(31-24)
PAADEB(31-24) ¢ 0
Select INCREMENT
PAAREG(31-24) < PAAOUT(31-24)
PAOVFF «— 1 ; iff overflow - PAEACT=1
PAAREG(23) é— PACO23FF ; iff PAEACT=1

PAAREG(22-0) €~ PAALNO(23-0) ; iff PAEACT=1

FIGURE 4.26 (CONTINUED)
145

8)

9-30)

PAADMA(23-0) & PAAREG(23-0)
PAADBM(23-0) €= PABREG(23-0)
PAADEA(31-24) e~ PAAREG(31-24)
PAADEB(31-24) &~ PA25C0(5,5,5-0)
Select SUBTRACT
PASCR(5-0) & PASHCR(5-0)
PAALNI(23-0) €= PAAREG(23-0)
If PAAOUT(23) = 0: (A > B)
PAAREG(23-0) ¢« PAALNO(23-0)
PAAREG(31-24)¢— PAAOUT(31-24) ;iff PAEACT=1
PAOVFFe— 1 ; iff overflow (PAADEX)
If PAAOUT(23) =1 : (A<B)
Do nothing
PAADMA(23-0) €~ PAAREG(23-0)
PAADMB(23-0) ¢~ PABREG(23-0)
Select SUBTRACT
PASCR(5-0) €~ PA2SC0(5-0)
PAALNI(23-0) ¢« PAAREG(23-0)
PAQREG(23-1) ¢— PAQREG(22-0); iff PAEACT=1
If PAAOUT(23) = 1:
PAAREG(23-0) ¢« PAALNO(23-0)
PAQREG(0) «- 0 3 iff PAEACT=1
If PAAOUT(23) = O:
PAAREG(23-1) €= PAAOUT(22-0)
PAAREG(0) «~ O

PAQREG(0)¢— 1

FIGURE 4,26 (CONTINUED) 146

31) PAADMA(23-0) ¢« PAAREG(23-0)
PAADMB(23-0) ¢~ PABREG(23-0)
PAADEA(31-24)¢« O
PAADEB(31-24)% 0
Select SUBTRACT
PASCR(5-0) & PA25C0(5-0)
PAALNI(23-0) < PAAREG(23-0)
PAQREG(23-1) ¢~ PAQREG(22-0); iff PAEACT=1
If PAAOUT(23) = 1:
PAAREG(23-0) < PAALNO(23-0)
PAQREG(0) & ©
If PAAOUT(23) = O: if PAEACT=1
PAAREG(23-1) « PAAOUT(22-0)
PAAREG(0) <« O
PAQREG(0) & 1
PASHCR(5-0) &~ PAAOUT(29-24)
32) PAADMA(23-0) €= PAAREG(23-0)
PAADMB(23-0) ¢~ PABREG(23-0)
Select SUBTRACT
PASCR(5-0) €= PA25C0(5-0)
PAALNI(23-0) < PAAREG(23-0)
PAQREG(23-1) &~ PAQREG(22-0) ; iff PAEACT=1
If PAAOUT(23) = 1:
PAAREG(23-0) €<= PAALNO(23-0)
PAQREG(0) «— © iff PAEACT=1
If PAAOUT(23) = 0:
PAAREG(23-0) «—— PAAOUT(23-0)

PAQREG(0) ¢— 1 147

FIGURE 4.26 (CONTINUED)

33) PAADMA(23-0) <« PAQREG(23-6)
PAADMB(23-0)e— 0
Select INCREMENT
If PASIGN = O:
Do nothing
If PASIGN = 1:
PAQREG(23-0) «~ PAAOUT(23-0) ; iff PAEACT=1
34) PAALNI(23-0) < PAQREG(23-0)
PASHCR(5-0) <= PANRMD(5-0)
PAADMA(23-0)%~ 0
PAADMB(23-0) «— PAAREG(23-0)
Select SUBTRACT
Iff PASIGN = 1:
PAAREG(23-0) €« PAAOUT(23-0) ; iff PAEACT=1
35) PASCR(5-0) «~ PA2SC0(5-0)
PAALNI(23-0) & PAQREG(23-0)
PAADMA(23-0) €~ PAAREG(23-0)
PAADMB(23-0) ¢« O
Select ADD
PAAREG(23-0) €« PAALNO(23-0)

iff PAEACT=1
PAQREG(23-0) & PAAOUT(23-0)

FIGURE 4.26 (CONTINUED)

148

36)

37

38)

PAADEA(31-24) ¢ PAAREG(31;24)
PAADEB(31-24)%— PABREG(31-24)
PAADMA(23-0)¢ O
PAADMB(23-0)« O
Select SUBTRACT
If not underflow:
PAAREG(31-24)€ PAAOUT(31-24) ; iff PAEACT=1
If overflow (exponent):
PAOVFF « 1 ; iff PAEACT=1
If underflow (exponent):
PAAREG(31-24)¢ —128l

0
PAAREG(23-0)%— PAAOUT(23-0)=0

;iff PAEACT=1

PAADEA(31-24) <~ PAAREG(31-24)
PAADEB(31-24) < PA25C0(5,5,5-0)
PAADMA(23-0)¢ O
PAADMB(23-0) < o-
Select ADD
If no underflow (exponent):

" PAAREG(31-24) < PAAOUT(31-24)

; 1ff PAEACT=1
If underflow: PAAREG(31-24)¢— -128,,
PAAREG(23-0) ¢— PAAOUT(23-0)

PAADMA(23-0) <= PAAREG(23-0)
PAADMB(23-0) ¢ 0
Select ADD

If PAAOUT(23-0) = O:

PAAREG(31-24) «— -128,4 5 iff PAFACT=1

FIGURE 4.26 (CONTINUED) 149

Us

DIVIDE FLOATING POINT (1)

Load Divisor - B

Set OVFF

Record Sign of Quotient
A23®B23 -+ SIGNFF

Enter 1 in Quotient

us 5
us 4
Complement Rt. shift Divisor
 Update Exp. by 1
Divisor P *P) Y
Check OV
|
us 6 us 7
Rt. Shift Dividend
Complement i
Divisor *1Undate Exp. by 1
Check OV
]
Arith. Rt. Shift
Dividend 1
Update Exp.
Shift A left 1.
Enter 0 in Quotient
(No left shift of A on
Step 32.)
YES
Complement Q,
ws 33 Return to Q. ‘
NO Figure 4.27a
< Floating Point Divide
% Algorithm
150

us

us

us 35

us 36

36

317

317

38

DIVIDE FLOATING POINT (2)

. YES
us 34 SIGNFF
=1

NO

2's Complement A,
Return to A
Q <+ Normalize Decode

Normalize Q, Return
to A, A -+ Q

A(31-24) -+ B(31-24)

us 36
YES Set
OVFF
NO
Onder_YES_ | -128 +A(31-24)
flow 0 +A(23-0)
NO
Y
PAAOUT(31-24) + A(31-24)
o2
Y
A(31-24) - PASHCRS, 5, 5-0
flow 0 4+ A(23-0)
NO
\ 4
PAAOUT(31-24) » A(31-24)
<
Y

~128 -+ A(31-24)

Check for 0 Result, if YES,

Figure 4.27b

&

us 36

us 37

Floating Point Divide

Algorithm

151

4.8.4.5 F.P. Square Root

The execution of the floating point square root instruction is comprised
of two functional steps; initialize and iterate. Figure 4.28 shows the
micro-step sequence for SQ and Figure 4.29 is the flow chart.

The main function of the initialize phase is to determine if the
fraction is negative. If so, the overflow flip-flop is set. If not, the
exponent portion of the operand is examined to determine if it is even or
odd. If it is odd, the fraction is shifted right one position. Then, the
exponent is shifted right one place to divide it by two. The first trial
diviéor is then taken.

The iterative phase is composed of pairs of micro-steps wherein one
square root bit is generated per pair., Within each pair, a trial divisor
is generated, a subtraction of this divisor from the dividend (or previous
remainder) is performed, a square root bit is generated based on the sign
of the result of the subtraction, and a new trial divisor is formed.

The result of the iterative phase is a square root of 12 bits.

4.8.5 Output Instructions

Instructions chosen as examples are STA and OTA.
4,8.5.1 STA

During the STA instruction, the A Register is gated unchanged through
the ALU to EM. The micro-step sequence is shown in Figure 4.30. The

actual EM write cycle is handled by the PICU and EMC as described in Section

4.2.2.1.2.

4.8.5.2 OTA
During the OTA instruction, the A Register is gated unchanged through
the ALU onto the Output Data Bus (PAODAT). The micro-step sequence is shown

in Figure 4.31. The AU should have been selected such that only one AU in

the ensemble has its EA flip-flop set. 152

OPCODE

204

INSTRUCTION ' MNEMONIC
Square Root Floating Point SQ
DESCRIPTION

In all active AUs, the square root of the floating point
contents of A-Register (31-0) is placed in A-Register (31-0).
Overflow error is generated and PAOVFF set in the case of
negative operands. Q-Register contents are destroyed.
Execution: 32 steps

MICRO STEP SEQUENCE

1) PAADEA&— O
PAADEBS O
PAADMA« O
PAADMB& O
Select INCREMENT

PABREG(23-0) &« PAAOUT(23-0) (0...01)

PASHCR(5-0) &= PAAOUT(29-24) = +1 iff PAEACT=1

PAOVFF — 1; iff PAAREG(23) = 1 * PAEACT=1
2) PAALNI(23-0) ¢~ PAAREG(23-0)

If PAAREG(24) = 1:
PAADEA(31-24)%— PAAREG(31-24)
PAADEB(31-24) & O
Select INCREMENT
PAOVFF¢&— 1 iff overflow
PAAREG(31-24) & PAAOUT(31-24) ; 1ff PAEACT=1

PAAREG(23-0) €= PAALNO(23-0)

FIGURE 4.28, SQ

153

3)

4)

5,7,9-27)

- 6,8,10,-28)

PAAREG(31-24) ¢ PAAREG(31,31-25)
PAADMA(23-0) ¢— PAAREG(23-0)
PAADMB(23-0)&~ 0
Select ADD
PAQREG(23-0) ¢~ PAAQUT(23-0) ; iff PAEACT=1
PAADMA(23-0) &« O
PAADMB(23-0) ¢« 0
Select ADD
PAAREG(23-0) < PAAQUT(23-0) ; iff PAEACT=1
PAQREG(23-0)<~ (PAQREG(22-0, 0) ; iff PAEACT=1
PAADMA(23-0) &~ (PAAREG(21-0), PAQREG(22,21)
PAADMB(23-0) ¢~ PABREG(23-0)
If PAAREG(23) = O0:
Select SUBTRACT
PAAREG(23-0)+ PAAOUT(23-0) ; iff PAEACT=1
If PAAREG(23) = 1:
Select ADD
PAAREG(23-0) & PAAQOUT(23-0) ; iff PAEACT=1
PAQREG(23-0) ¢ (PAQREG(22-0),0) ; iff PAEACT=1
PASCR(5-0) ¢— PA2SCO(5-0)
PAALNI(23-0) < PABREG(23-0)
PABREG(23-0) ¢~ PAALNO(23-0)
If PAAREG(23) = 0 (correct guess)
PABREG(2-0) ¢~ (101) ; iff PAEACT=1
If PAAREG(23) = 1 (wrong guess)

PABREG(2-0) «— (011) ; iff PAEACT=1

FIGURE 4.28 (CONTINUED)
154

us

us

us

us

SQUARE ROOT (1)

NO

Set OVFF

\
Initialize
B Mantissa

Exponent YES

Rt. Shift A Mantissa

Add Add 1 to A Exponent
NO Exp.\YES
< oV > Set OVFF
<
\

Rt. Shift A Exponent 1 bit
A Mantissa + Q Mantissa

Y

Set A Mantissa = 0

Figure 4.2%9a

Floating Point Square Root

Algorithm

156

SQUARE ROOT (2)

us 5,7, ...27 NO \“;23/ YES

| \
(AREG21-0, QREG22, 21) + (AREG21-0, QREG22, 21) -
(BREG23-0) + AREG23-0 (BREG23-0) » AREG23-0

=] Shift Q Mantissa left 1 bit

/
us 6,8,...,28 Shift B Mantissa left 1 bit
Shift Q@ Mantissa left 1 bit

0,1,1 4, BREG2-0

1,0, 1 + BREG2-0 |

us 29 Shift B Mantissa right 2 bits[<
us 30 B Mantissa - Normalize Decoder
/
us 31 Normalize B Mantissa
B Mantissa -+ A Mantissa
us 32 -128 = A Exponent

Figure 4.29b

Floating Foint Square Root
Algorithm

157

-

OPCODE

031

INSTRUCTION MNEMONIC
Store A-Register STA
DESCRIPTION

AU A-Register (31-0) is stored in element memory (word
specified by operand (bits 10-0)) from those AUs which

are active.
Execution: 1 step

MICRO STEP SEQUENCE

1) PADMDES 1
PADAIN(10-0) €= PAMOBR(10-0)
Transmit PADREQ to EMC
PAADEA(31-24) €~ PAAREG(31-24)
PAADEB(31-24)¢~ 0
PAADMA(23-0)¢~ PAAREG(23-0)
PAADMB(23-0)&— 0
Select OR
PXEMOT(31-0) €<= PAAOUT(31-0); iff PADSEL. (PAEACT=1)

PADWSL<~ 1; iff PADSEL.(PAEACT=1)

FIGURE 4.30, STA

158

OPCODE

047

INSTRUCTION MNEMONIC
Output to A OTA
DESCRIPTION

AU A Register (31-0) is gated to the SCL A Register
via the Adder Output to the Output Data Bus if
Element Activity is 1.

Execution: 1 step

MICRC STEP SEQUENCE

1) PAADEA(31-24)¢ PAAREG(31-24)
PAADEB(31-24) < 0
PAADMA(23-0) «— PAAREG(23-0)
PAADMB(23-0) ¢~ O
Select OR

PAODAT(31-0) €= PAAOUT(31-0); iff PAEACT=1

FIGURE 4.31, OTA

159

vl

4,8.6 Distributed Logic Instructions

Instructions chosen as examples are RDA (executed in the SCL), SH,
SL and SF.
4.8.6.1 Count AU/RDA

AU Count logic is based on a design by Drs, C.C. Foster (FO76) and
K. E. Batcher at Goodyear Aerospace. It is an exact counter which re-
quires no more than one full adder per PE,

Each row of nine AU contains one set of the logic shown in Figure 4.32.
The AU supplies the output of its EA FF, The sum is generated and sent to
the éC where standard adders generate a count for the entire system.

The nine EA signals are fed to a group of full adders. The outputs

are labeled with a power of two weighting. The remaining adder stages

gather all like weighted signals together to produce a single four bit
count.

In the CC, the AU count is available to the SCL, when, during the
execution of a RDA, the count of active AU is loaded into the SCL A Register.
4,8.6.2 Select Highest/Lowest

The SH/SL algorithm was described in detail in Section 3.6.2.

Figures 4.33 shows the micro-step sequence for SH. In the following
micro-step description

PAALFA - Flip-Flop

PABETA - Flip-Flop

SAMANY - When low, indicates to the PICU that zero or one AU
remains active.

PABITC
PABITX
PABITY
PABITZ

PABITA
PABITB | A, B, C lines
} X, Y, Z lines

160

19T

Elcment
Activity

Flip-Flops

[&Ul
|
C
AU2 r 5|20
]
AU3 B 21
f'.Ull-
L 0l
AUS L
1
AU6 B 2
AUT A
\
c
AUS 20 D
A
AU9 ol
D

These logic gates are ECL type 182 single bit full adders.

Figure 4.32 Row Count Logic

20 -
>
51
O - S 21 N
>
1)2
2t

22
S >

93
© = >

[el

OPCODE INSTRUCTION MNEMONIC
164 Select Highest SH
DESCRIPTION
Set EA to zero in all active AU's whose A-Registers contain
non-maximal values relative to set of active elements
(Integer or Floating Point).
Execution: 35 Steps (Maximum)

MICRO STEP SEQUENCE

1) PAADMA(23-0)¢— 0
PAADMB(23-0) «— PAAREG(23-0)
SELECT OR
PABREG(23-0) e~ PAAOUT(23-0)
If PAAREG(23) =1

PABREG(31) « PAAREG(31)

PABREG(30-24)€— PAAREG(30-24)
If PAAREG(23) =0

PABREG(31) <~ PAAREG(31)

PABREG(30-24) &~ PAAREG(30-24)
PAALFA € PAAOUT(23)
If PAAREG(23) =1

PABETA <— PAAREG(31)

If PAAREG(23) =0
PABETA <~ PAAREG(31)
PASHCR(5-0) ¢— 01g; Iff PAEACT = 1

FIGURE 4.33, SH

162

2)

3

even, 4-34)

PABITA € PAAFLA-PABETA-PAEACT
PABITB < PAALFA+PABETA-PAFACT
PABITC «— PAALFA*PABETA*PAEACT
PABITA& PAALFA°*PABETA+PAEACT
PABITB ¢~ PAALFA-PABETA-PAFACT
PABITC & PAALFA®PABETA*PAEACT
PASCR(5-0) ¢~ PA2SC0(5-0)
PAALNI(31-0) &= PABREG(31-0)
PABREG(31-0) 4~ PAALNO(31-0)

If (PABITA-PABITX) +

(PABITA.PABITB-PABITY) +

(PABITA-PABITB-PABITC*PABITZ)
Then PAEACT <« 0
Else PAEACT not changed.
PAALFA ¢~ PABREG(31)
PABETA ¢~ PABREG(io)

If SAMANY 0:

I

EXIT

If SAMANY = 1;
PABITA < PAALFA-FABETA-PAEACT
PABITB¢— PAALFA-PABETA-PAEACT
PABITC <~ PAALFA<PABETA+PAEACT
PASCR(5-0) < PA25C0(5-0)
PAALNI(31-0) « PABREG(31-0)

PABREG(31-0) «= PAALNO{(31-0)

FIGURE 4.33 (CONTINUED)

163

odd, 5-35)

If

If

SAMANY

il
o

EXIT

SAMANY

1:

PABITAS—~ PAALFA*PABETA®PAEACT
PABITB €~ PAALFA-PABETA-PAEACT
PABITC €~ PAALFA*PABETA«PAEACT
PASCR(5-0) <= PA25C0(5-0)
PAALNI(31-0) € PABREG(31-0)
PABREG(31-0) €= PAALNO(31-0)

IF (PABITA-PABITX) +

(PABITA-PABITB-PABITY) +

(PABITA-PABITB-PABITC+*PABITZ)
Then PAEACT<— 0
Else PAEACT not changed
PAALFAS- PABREG(31)

PABETA €= PABREG(30)

FIGURE 4.33 (CONTINUED)

164

The conversion micro-step uses both normal ALU hardware and special
logic. The fraction part of the conversion is performed by the mantissa
adder. The exponent part, converted by the Search Conversion Logic,
PASRCH(31-24), is as follows:

(IF (PAMORL(28-24) = 27 - PAAREG23) OR
(PAMORL(28-24) = 24 . PAAREG23) THEN

PASRCH31 <« PAAREG31,
PASRCH(30-24) <— PAAREG(30-24)) OR

(IF (PAMORL(28-24) = 27 - PAAREG23) OR

: (PAMORL(28-24) = 24 - PAAREG23) THEN
PASRCH31 <« PAAREG31,
PASRCH(30-24) «— PAAREG(30-24))

The conversion logic is shown in block diagram form in Figure 4.34.

The two bit interative logic is shown in Figure 4.35. The A, B, C
output lines are sent to the BSD where they are '"OR'ed with ail other
like lines with the Bay. Then they are sent to the CSD where all eight
Bays are "OR"ed. The result, now called X, Y, Z lines are then broadcast
back to all AU. The global X, Y, Z lines are compared to the local A, B,
C lines and the EA FF reset if necessary.
4,8.6.3 Select First

The SF instruction encompasses very little logic in the AU. The AU
sends its EA FF to the BSD and receives a pointer, PASFPT, back. The BSD
sends a row activity signal to the CSD. The row activity is an "OR" of
the EA of each AU in the row. The CSD sends a pointer to the first BSD in
the first Bay with an active AU. The BSD then sends the pointer to the
first active AU in the row.

The AU, upon execution of an SF instruction, waits one clock for the
propagation delay of the distributed logic to settle and.then the AU loads
the pointer into its EA Flip-flop. Figure 4.36 shows these two micro-steps.

The SF logic on the BSD is shown in Figure 4.37. The nine EA lines

enter at the left and the nine pointers exit on the right.

165

31 30 24 23 22 00
SE EXP ST FRACTION
r—-]-———4
Search |
Conversion |
Logic | ¥
l XOR | '
[I o
b e e o — b — = L
A B
Mantissa
Adder
TO Alpha
and Beta
,Flip-fisﬁs
<:§}1
4 Vv \[7

%
lo~)
w
O

Figure 4.34 SI/SL. Conversion Miecro-Step Logic

99T

A Register

Control
Su= "Q"

SL: nln

Control
SH= "or"
SL= "decrement"

B Register

L9

From Conversion Logic

109

PABITA

P
«

0dd
—0 usteps
3-35
ﬂ
ustep 1
BETA EA FALT
] 135 | |135
€
[]
- A
O L
H —
4 ™~
‘r43105;uﬁ
::3105
L—O
o)
& &
- =
m)
< <
~ o~
v v
To BSD

Figure 4.35 AU Search Logic

———nts

PABITX

PABITY

N

N

\ \
From BSD

P ———

rABITZ

-

$ —O

lll"

0dd
usteps

3-35

OPCODE

150

INSTRUCTION MNEMONIC

Select First SF

DESCRIPTION

Set EA to zero in all active AUs except one. The one
remaining active AU is chosen on the basis of physical
hardware location.

Execution: 2 steps

MICRO STEP SEQUENCE

1) NOP
2) PAEACT& 0O; if PASFPT = 0

Else PAEACT not changed

FIGURE 4.36, SF

168

p-Flops (PAEACT)

v Fli

lement Activity

™
po

691

Pointer from
ie CSD

> ' f>¢
> AU2 AU?2 N
« AU3 AU3 |
r >
N LU AUL N
"~ aus - &>
A I ~
— 10165 10162 AUy B
LU6 . AUS &
7 - 7 <5
. AU7 £U7 N 5
7 - rg
/";US AUS N (D:
e >
, AU AUQ | B
ﬁ N -~ [%4
o
— o
L0
w
¥
Q
o
5
AUl Q —0
> 101
105 2 <
-0
—-— Pointer to

the CSD

105

(row actifity)

rigure 4.37 Row Selecl Iirst Logic

5.0 Conclusion

The AU design successfully met all design and operational goals set by
the specification document. It and the remainder of PEPE was delivered on
budget and on schedule to the BMD Advanced Technology Center in Huntsville,
Alabama.

A critique of the final design found two areas of the AU that could be
improved. The FIX instruction algorithm could be reduced from 5 steps to
3 steps with the addition of hardware. The rather clumsy algorithm now
used, were developed because an error was found in the AU during final tests.
The correction had to entail minimum change and therefore was not an
elegant solution. Hardware to detect the case where significant bits are
shifted out would cut steps & and 5 from the current algorithm.

The quotient of the floating point multiply and the dividend of the
floating point divide should be 48 bits long to avoid any loss of accuracy.
AU hardware does not support the long words but this could possibly be
added to enhance the AU performance.

PEPE has been studied by Burroughs and System Development Ccrporation
for use in other high speed processing problems. Areas suggested have been
air -traffic control, image processing, weather forecasting and wind tunnel
simulation. Since PEPE was designed as a processor ensemble, there is no
direct communication between AU's. Most problems that are amenable to
parallel solutions require at least nearest neighbor communications. The
possibility of using the AOCU/AOU parallel ensemble as a programmable rout-
ing network has been proposed. Under this scheme, the ACU/AU ensemble could

be processing data while the AOCU/AOU ensemble was routing data between the

170

i

Element Memories. The major advantage of this software routing is that
in a hardwired system, like ILLIAC IV, if a PE failed, the communication
network was left with a hole whereas if a PEPE PE failed, software could
reestablish the network using another PE. This work has not yet been
completed.

The analysis of algorithms for parallelism is a new, largely un-
explored field. Some work E{a7€;_“ and E<U76] has been done but a useable

parallelism detecting compiler is still in the future,

171

References and Bibliography

Search Algorithm

E.e
[Se
e

2
77a)

77b)

Lewin, M. H., "Retrieval of Ordered Lists from a Content
Addressed Memory', RCA Review, June 1962.

"Select High/Low Register Method and Apparatus'", US Patent
#4,007,439,

"Integer and Floating Point to Binary Converter'", US
Patent #4,038,538.

Select First Algorithm

[an

PEPE

[?o

73

Hardware

76]

Software

7
7]
&

77)

Anderson, George A,, "Multiple Match Resolvers: A New Design
Method'", IEEE Transactions on Computers, C-23, No. 12, Dec. 1974,

Foster, C. C., Computer Architecture, Van Nostrand Reinhold,
1976.

Foster, C. C., Content Addressable Parallel Processors,
Van Nostrand Reinhold, 1976.

PEPE System Functional Design Specification, Volume II
Hardware Specification, System Development Corporation, REV. E,
Dec. 1975,

Thurber, K. J., Large Scale Computer Architecture, Hyden, 1976,

Blakely, C. E., '"PEPE Application to BMD Systems", 1977
International Conference on Parallel Processing, 1977,

Cornell, J. A., "Parallel Processing of Ballistic Missile
Defense Radar Data with PEPE', IEEE CCMP CON 1972 Digest.

Dingeldine, J. R., et al, "Operating System and Support
Software for PEPE", 1973 Sagamore Computer Conference on
Parallel Processing, 1973.

Welch, H. 0., "Numerical Weather Prediction in the PEPE

Parallel Processor'", 1977 International Conference on
Parallel Processing, 1977.

172

Parallelism Detection

[co 7]

[ku 74]
o 73

[?a 7@]

Gonzalaz, M. J. Jr., and C. V. Ramamoorthy, '"Program
Suitability for Parallel Processing', IEEE Transactions
on Computers, C-20, June 1971,

Kuck, D. J., et al, '"Measurements of Parallelism in Ordi-
nary FORTRAN Programs", Computer, Jan. 1974,

Kuck, D. J., '"Parallel Processing of Ordinary Programs",
Advances in Computers Volume 15, Edited by M. Rubinoff
and M. Yovits, Academic Press, 1976.

Ramamoorthy, C. V. and W. H. Lering, "A Scheme for the
Parallel Execution of Sequential Programs', 1976 Inter-
national Conference on Parallel Processing, 1976.

173

APPENDICES

174

Arithmetic Control Unit (ACU) - Controls the A;ithmetic Units (AU) in the
PEPE elements so that they can execute the required parallel algorithms
in an efficient manner. In addition, it executes sequential instructions
retrieved from the program memory (PGRM) similar to that of a conventional
processor.

Associative Output Unit (AOU) - Performs computations including, but not
limited to, those required in the output of data from the PE to the
Control Unit.

Associative Output Control Unit (AOCU) - Similar to ACU except controls the
associative output units (AQOU) in the PEPE elements.

Arithmetic Unit (AU) - Performs computations including, but not limited to,
those required to apply complex arithmetic functions to data contaired in
element memory (EM).

Bay Signal Distributor (BSD) - The portion of the SDS contained in the
Element Bay.

Central Signal Distributor (CSD) - Thé portion of the SDS contained in the
Control Console.

Control Console (CC) - That portion of PEPE consisting of all cf the functional
units except the PE.

Correlation Control Unit (CCU) - Similar to ACU except controls the correlation
units (CU) in the PEPE elements.

Correlation Unit (CU) - Performs computations including, but not limited to,
those required to correlate incoming data with data already resident in

the element.

APPENDIX A, PEPE DICTICNARY

175

Data Memory (DATA) - One of three memories, one in each control unit, used
to hold data in transit between the Host computer and the elements,
Element Bay (EB) - That portion of PEPE consisting of up to 36 processing
elements (PE). A complete PEPE system consists of eight element bays.

Element Memory (EM) - A word addressed memory of 2048 locations contained
in each processing element (PE). It is shared between the AU, AOU, and
Ccu.

Element Memory Control (EMC) - Unit which performs conflict resolution on
requests from the three control units for use of element memory.
Intercommunication Logic (ICL) - A unit in the PEPE Control Console which

handles:
Inter-control unit communication
Control unit interrupts
PEPE status and maintenance
Data collection and timing
Input-Output Unit (IOU) - Provides communication between the PEPE control
units and external computers or another PEPE.
Interval Timer (IT) - A programmable timer in the ICL which can be set to

interrupt the ACU after a time-out.

Maintenance Control and Diagnostic Unit (MCDU) - Unit which can perform test

and diagnostic operations on each control under either manual or external

computer control.

Micro-Program Memory (MPM) - A programmable and alterable memory in each SCL

and PICU which controls registers and gating in order to execute the micro-

sequences that comprise an instruction.

176

Output Data Control (ODC) - Unit which performs conflict resolution on
requests from the ACU and AOCU for use of the output data bus from the
elements.

Parallel Instruction Execution -~ The process of the PICU receiving instruc-
tions from the SCL, translating the instruction into micro-sequence
control bits and transmitting these controls to the element for execution.

Processing Element (PE) - One minimum building block of PEPE. Includes one
AU, AOU, and CU and one EM.

PE Clock Distributor (PECLKD) - The logic which receives a square wave clock
signal from the BSD and generates all clock and write enable pulses required
by the PE.

Parallel Element Processing Ensemble (PEPE) - A highly-parallel computer con-
sisting of three control units and 288 content-addressable processing ele-

ments (PE). PEPE is capable of executing three independent instruction
streams simultaneously.

Program Memory (PGRM) - One of three memories, one in each control unit, used
to hold the program to be executed by that control unit. Ccntains both
parallel and sequential instructions.

Parallel Instruction Control Unit (PICU) - Unit which transmits controls and
data to the element. One PICU in each coatrol unit.

Parallel Instruction Queue (PIQ) - First-in, first-out buffer between the
ACU SCL and the ACU PICU. Used to increase the execution overlap of long
arithmetic parallel instructions with shorter arithmetic sequential

instructions.

177

Real Time Clock (RTC) - A clock in the ICL which can follow real-time or
simulated real-time. Can cause an interrupt to the ACU when it equals
a programmable value.

Routing - The process whereby the SCL fetches an instruction from PGRM,
determines if it is a parallel or sequential instruction and transfers
it to the sequential execution sub-unit of the SCL or to the PICU for
parallel execution.

Select First (SF) - A distributed logic function whereby the first active
element is selected to perform a sequence of instructions while non-first
elements remain idle.

Select Highest/Select Lowest (SH/SL) - A distributed logic function whereby
the active elenzat with the maximal/minimal binary value in its A register
is selected to perform a sequence of instruction while non-maximal/minimal
elements remain idle,

Sequential Control Logic (SCL) -~ That part of a control unit that performs
instruction fetching, sequential instruction execution and parallel
instruction preparation.

Signal Distribution System (SDS) - The logic which carries data and control
lines from the PICU to the PE and which returns data and status signals
from the PE to the PICU and SCL. Contains the Distributed Logic.

Sub-Processor - One of the three processors in the processing element \PE).
The three sub-processors are the AU, AOU and CU.

Test and Maintenance Computer (T & M) - An external computer interfaced
with PEPE via the MCDU and IOUs. The T & M can have complete control
over PEPE for program loading, execution and debugging a"? for mainten-

ance and diagnostic functions. The T & M is a Burroughs B1714 system.

178

2.

CLOCK RATE - 10 MHZ, & 0.01% Crystal Controlled

MECL 10K

29 types used

16 and 24 pin Dual-In-Line package (DIP)

2 to 30 gates per 16 pin DIP (62 gates per 24 pin DIP)
2 nanosecond delay and rise time

t

NO. OF CIRCUIT TYPES USED (excluding memory) - 29

- PE BAY (11 PE system) - 10,000 IC DIPS
- (36 PE system) - 33,000 IC DIPS
- (288 PE system) - 262,000 IC DIPS
CONTROL CONSOLE - 11,000 IC DIPS
TOTAL EQUIVALENT GATES (288 PE system) - 3 million
11 gates/DIP average

MEMORY TYPES AND SIZES

- Control Console SCL MPM, 3-1K X 48: 144 IC DIPS
- Control Console DATA & PGM, 5-4K X 32; 640 IC DIPS
- Control Console ACU PGM, 1-32K X 32; 1024 IC DIPS
- Control Console PICU MPM, 3-1K X 80; 240 IC DIPS
- ELEMENT BAY EM, 11-2K X 32; 704 IC DIFS
- ELEMENT BAY CU Reg. 11-16 X 32; 88 IC DIPS

TOTAL MEMORY DIPS = 2840
(2 circuit types)

IMPEDANCE CHARACTERISTICS

~ Laminated Copper backplane used for low impedance power distribution
- 50 ohm transmission lines used for signal distribution throughout the
system - including all boards and backplanes.

NUMBER OF BOARDS

- Control Consonle, 6 layer - 105 boards
No. of types, 6 layer - 41
- Element Bay, 8 layer - 66 boards
6 layer - 6 boards
No. of types, 8 layer - 6
6 layer - 2

APPENDIX B, PEPE HARDWARE FEATURES

7. COOLING TECHNIQUES

- Cooled Forced Air with Fin and Tube Heat Exchanger
- Direct Liquid Cooling

8. POWER SUPPLY

High Frequency Power Conversion
Output - 4300 Watts
- 600 Amps at 5.2V
- 600 Amps at 2.0V
Efficiency = 70%
Regulation; + 2%
Fault Control - over/under voltage
- over current
-~ over temperature
- air flow
Output Rectification - Schottky Diodes

Cooling - Direct Liquid Cooling for Schottky Diodes and Power Switches

180

LCT CACT | POP PSIZIL | PUSH -ACTIVITY

1.DA LG LDE LTAG ~LOAD

ST STG STAG ~-STORE

Move

TCA

=3
o)
=
+
)
Q
=3

LATo vy
=Ll diol L

RBIT|{ SBIT| STG STG.L | STGI | CF SF¥ ' Rov ~-SET/RESET
:
i
H

SEG SZL S5GZ S1Z SGE 578 sriz ZR ~SELECT

Control

Aritlmetic/
Logical

SF SELD
3 S¥ZL | SNG
SHAT S -SHIFT
DD | 83 1L DY SC riy TioT ~-FLOATIIIG POINT
:{DE | sBE ‘ UsDI USOI -SPECTL
£DI |SBI [:LI | LINA TDE: | iaDT 1831 -INTEGER
|
| A& | AFNT lORA iNOL OCL o -LOGICAL
COPY | C.. ANS | CAS jo&s l . -STACK

Appendix C Instruction Set of the AU

181

oy]

Listed in the following tables are the AU instructions.
list ordered by mnemonic and second is a list ordered by opcode with a

brief description of the operation of each instruction.

MNEMONIC - Four character code accepted by the PEPE

Assembler

TYPE - Instruction class

1

2

5
6

Activity

Integer

Logical/Data Transfer
Flogting Point
Output

Distributed

OPCODE - 8 bit binary

STEPS - Number of 100 ns clock periods required for execution.

First is a

182

MNEMONIC OPCODE MNEMONIC OPCODE

TYPE STEPS TYPE STEPS
ACT 1 010 3 SBI 2 221 2
ADD 4 200 8 SBIT 1 101 4
ADE 4 210 2 SEG 1 120 2
ADI 2 220 2 SELB 1 157 4
ANA 3 242 2 SF - 1 150 2
ANNT 3 243 2 SFF 1 106 1
ANS 1 252 1 SGE 1 124 1
CA 1 251 1 SGz 1 122 1
CACT 1 011 3 SH 6 164 35
CAS 1 253 1 SHAI 2 171
CF 1 105 1 SHL 3 173 2
COPY 1 250 1 SL 6 165 35
DV 4 203 38 SLE 1 125 1
FIX 4 205 5 SLZ 1 123 1
FLOT A 206 3 SNG 1 167 2
LADI 2 225 2 SNOV 1 140 1
LDA 3 021 2 SNZ 1 126 1
LDE 3 026 2 SNZL 1 166 1
LDEA 2 224 2 sov 1 147 1
LDQ 3 023 2 sQ 4 204 32
LINA 2 223 2 STA 5 031 1
LSBI 2 226 2 STAG 5 037 1
LTAG 3 027 1 STG 3 102 1
ML 4 202 19 STGA 3 103 1
MLI 2 222 15 STGI 3 104 1
OCL 3 246 1 STQ 5 033 1
ORA 3 224 2 SZL 1 121 1
ORS 1 254 1 SZR 1 127 1
OTA 5 047 1 TAQ 3 043 1
POP 1 012 1 RXI 2 247 1
PSEL 1 013 5 TIDA 3 046 2
PUSH 1 014 1 TQA 3 042 1
RBIT 1 100 4 UADI 2 215 2
ROV 2 107 1 USBI 2 216 2
SB 4 201 8 XO0A 3 245 2 183
SBE 4 211 2

%X
XX
XX
* XK AU INSTRUCTION SET
*X
XX _
¥ ACTIVITY INSTRUCTIONS
*x
010 ACT ACTIVATE FAEACT=TAG REGISTER INFUT LOGIC
011 CACT CLEAR AND FAEACT=1 IF TAG MATCH ELSE O
ACTIVATE
012 FOF FOF STACK FAEACT=FASTAK(0)
FASTARK(19-0)=FASTARK(20-1)
FASTAR (203 =0
013 FSEL FUSH AN COMBINATION OF FUSH AND ZELR
SELECT OM RIT
014 FUSH FUSH ACTIVITY PFASTAR(O)=FAEACT
STACK
FASTAR{(Z20-1)=FABTAR{19-0)
Aok
¥k LOAD INSTRUCTIONS
XX
021 LDA LOAD A& REG FAAREG=0FERAND
023 LG LOAD & REG FARREG=QFERAND
026 LIE LOAD & FAAREG(3]-24)=0FERAND(31-24)
EXFONENT
027 LTAG LOAD TAGS FATAGR=DFERAMNTI(T~0)
FADFC=0FERANL{R)
FAEACT=0FERANDCLIO)
FASTAR=0FERSMOCZ1L-11)
KX
% STORE INSTRUCTIONS
*X
031 STA S&STORE A EMCOFERANT (100) =FAAREG
033 STQ STORE @ EMCOFPERANDCLO-G) =FadaEl
037 8TAG STORE TAGS EMCOPERANTICLO-03) =REGIETERS IN THE
SAME FORMAT A5 LTAG
¥x
¥X TRANSFER INSTRUCTIONS
XX ‘
042 TRA TRANSFER Q FAAREG=FAQREG
T0 A
043 TAR TRANSFER A FAQREG=FAAREG
TO Q
046 TIDA TRANSFER ID FAAREG(8-0)=FE NUMEBER
T0 A
047 0OTA OUTFUT TO & FADDIAT=FAAREG
100 RRIT RESET BIT EMOOFERANDCLO-0) COPERAND(LIS-11) =0
101 SRIT SET RIT EMCOFPERANDCLO-0) (OFERANDCLE-11)) =1
102 STG SET TaG IN FATAHGR=OFERANICZ-0). aNU.
ACTIVE AU OFERANDCLS-8) , ANIL, FAEALT =1
103 STGA SET TaAaG IN FATAGR=0FERANTGC? =30 mil,
ALl AU OFERANTICLTS~3)
104 STGI SET TAG IN FATAGR=0FERAND(T7-0) . ANI,
IN ACTIVE AU OFERANDOLG-3)Y JAND O FAEACT =0
105 CF CLEAR FAULT FArFaLT=0
106 SFF SET FAULT FAFALT=1 IF FAEACT=1 184
107 ROV RESET OVERFLOW FAOVFF=0

il

XX
* K
XX

XX
*k
XX

SELECT INSTRUCTIONS

120
121
122
123
124
125
126
127
140
147
130

157

164
165

166
167

ARITHMETIC

171
173
200
201
202
203
204
205
206
210

211
215
216
220
221

ROD

222
223
224
225
226

SEG
SZL
SGZ
SL.Z
SGE
SLE
SNZ
SZR
SNOV
S0V
SF

SELR

SH
Sl

SNZL.
ENG

SELECT
SELECT
SELECT
SELECT
SELECT
SELECT
SELLECT
SELECT
SELECT
SELECT
SELECT

SELECT

SELECT
SELECT

SELECT
SEILECT

ON
0N
ON
ON
ON
0N
ON
ON
O™
ON

ON RIT

HIGEST
LOWEST

EQUAL GLOREAL
ZERO LLOGICAL

GT
L.T
GE
LE
NE
EQ

ZERD

ZERD ¥k SET PAEACT=0 TN THOSE

ZERO X% ACTIVE AU WHERE THE CONDITION
ZERD 4ok I8 NOT SATISFIED

LZERD

ZERD

NON-~OVEFRFLOW
OVERFLOW
FIRST

SET FAEACT TO ZERDQ TN ALL

AU EXCERT THE ONE WITH THE LOWEST

FE NUMRER

SET FAEACT TO ZERQ IN ALL ACTIVE al
WHERE EM{OFERANDCLO-01 (OFERANDCLE--11))
IS NOT EQUAL TO ZERD

¥X SET FAEACT TO ZERDO TE all. ACTIVE Al
ik WHOSE » REGISTER CONTALN A

e NON MAXTMAL/ZMINIMAL VALUE

ON NON ZERO LOGICAL
ON NOT EQUAL GLOgAL

INGTRUCTIONS

SHAT
SHL
A0
SUR
ML
LV
SR
FIX
FLOT
ADE

SERE
UADI
USRI
AbY
SRI
MY
LLINA
LIEA
LADY
LSEI

EHIFT ARITHMETIL INTEGER

SHIFT LOGICAL

ADD FLOATING FOINT
SUBTRACT FLOATING FOIMT
MULTIFLY FLOATIMG FOINT

DIVIDE FLOATING

SQUARE
FIX
FLOAT

FOINT

ROOT FLOATING FOINT

AL EXFONENT

FAAREG(31-24)=FAAREG(31-24) FI.US
OFERAND(31-24)

SURTRACT EXFONENT
UFFER ADD

UFFER

INTEGER

SUBTRACT

AN INTEGER
SUBTRACT
MULLTIFLY
LOAT AND
LOAD AN
LOWER AL

INTEGER

INTEGER
INTEGER
INCREMENT A
DECREMENT A
TNTEG
LOWER SUBTRACT

ER

THTEGER

185

b
XKk
XX

XX
*¥
XX

LOGICAL INSTRUCTIONS

242
243
244
245
246
247

ANA

ANNT LLOGICAL

ORA
X0a
0CL
TCI

1.OGIC

LOGIC
L.OGIC

AL+ AND,

Al «OR.
Al « XOR .

LOGIECAL «NOT.
TWAES COMFLEMENT INTEGER

ACTIVITY INSTRUCTIONS

rJ
i

0

r
¢

i

r
i

2
~.

253

COFY COFY

Ch

ANS

CAS

DRS

STACK
COMFL.
ACTIV
ANTE O

CLEAR
STHCK
OR OF

ACTIVITY
EMENT
ITY

F STACK
ACTIVE

STACK

« ANTINGT

FAEACT=FASTARK(O)

FAEACT= +NOT. FAEACT JAND. FASTAK(O)

FAEACT=FAEACT +ANII. FASTAK Q)
FASTAK (20-0) =0, FASTAK (15-1)
FASTAKCO) =0

FAEACT=FAEACT OR. FASTAK(O)
FASTAR(Z20-0) =0y FAGTARK (1917

186

10101
10102
10104
10105
10106
10107
10109
10110
10111
10115
10116
10117
10121
10135
10141
10161
10164
10165
10173
10174
10176
10179
10180

10181

Quad OR/NOR

Quad 2 Input OR

Quad 2 Input AND/NAND
Triple 2-3-2 Input OR/NOR
Triple 4-3-3 Input NOR
Triple XOR

Dual &4-5 Input OR/NOR
Dual 3 Input OR

Dual 3 Input NOR

Quad Line Receiver
Triple Line Receiver
Dual 2 wide 2-3 Input OR/NOR
4 Wide 3 Input OR/AND
Dual JK Flip-Flop

4 bit Shift Register

1 to 8 Decoder

8 Input Multiplexer

8 Input Priority Encoder
Quad 2 Input Multiplexer
Dual &4 Input Multiplexer
Hex D Flip-Flop

Look Ahead Carry Block
Dual Full Adder

4 Bit Arithmetic Logic Unit (ALU)

APPENDIX D, MECL 10K Logic Family Used in the AU

187

—q 121

H7
) XX
Do
X X

|
v Y

:XX 22

ECL 10117
Dual 2 Wide 2-3
OR/AND

ECL 10121

& tTide

M TaAamr
- LTl T

OT‘ M
PN Y SR R

Taout

188

1

X

QUTPLTS®

Bit Shift Registe
1RPUYS

ECL 10141

i

*

4

189

.

o1

Dual J-X Flip-Flop

GEIT T 4 a2 X XXX XX XX

ML T A T)X X X %X XX XIx x>

Ol 49X TR XXX KX XN KX

ECL 10135

N) D AT T I T A I]I TR

r==-"
TRUTH TABLE

e - d

14

B

FUNCTION TABLE

v
Gl 44| d XTI IITIT
ur
“loranm|lvuer|loaao lome
3 -] e -
a
(7 B h e
w
mw SO X
2l ele] e T U
Clwl ez
K bRt o
w < mrm.*w
al &laalsla ®
4 o
- o
5
{
IS ot el
9]
p
2 ~
[w4 T{-T
=
Q
E'lv.ﬁl.l.l
-l
W
o)
al Sl eiz

| I15] | ZCL 10161

R | 1 to 8 Decocder

-
| S |
)
E DOp 5
7 DIp 4 Enable Inputs Outputs
Al Dz p 3 02 15 A4 A2 A1 |[DO D1 D2 23 D& 2% N6 DY
9 D3p 1. L L LliL = # T %1 1 H
A2 [)4;;'3 v 1 © 1 mlH w ou 73 o1 o4y
14 12 i woH®woHllw w1 1T 1L
A4 D5p B S S I8 N A A S S S
|6ID6£“ o on ¢ ¢ @flw omow oH IHIH
1O
; D7 ¢ = dont care

7] o]i0]
o [ATAZ AZ
= X0 ECL 10164

X1 8 Input Multirlexer
4 164 put Hultir

X2

X3 15

Iy, 2 _ .

| Snablz|Iaputs Cuvinut
X5 *
' 3 02 x‘;tl- ‘A)Z A] Z

X6

14 Lo|L oL o xo
X7 Lo LoLougx?
E Lo wou ol x|
2 T wle e ¢

190

NC4 C
165
——Q—DO
A Y 3
13 Qo ECL 10165
D2 2 y - . .
10 Ql 3 Input Friority Encoder
—=—D3 15
i D4 Q2 14
12 Q3
6 D6
— D7
Data Inputs _ || __Outputs
i DO D1 B2 D3 D4 DS 06 DY G3 g2 C1 Q¢
H ¢ QS ¢ p ¢ Q() i L . L
L ué¢ ¢ ¢ dpg| 8L L H
L L H ¢ ¢ &6 ¢ ¢ H L H L
i L L L AR HY ® ¥ u u
; L L 1 L . L . vl 111w

% ¢= dont care

191

Doo
Dol QO
/0 Q!
DI Q2
D20 @3
D2

b3 173

D3|
CE

7| ol

w

W\

H

o)

ol

|

N

O

A0 Al

| X0

X1

X2 Z
| X3

YO 174

Y vy

Y2
Y3 E

15
14

ECL 10173
Quad 2 Input Multiplexer

ECL 1017

Jial & Input Multinlexer

192

ECL 10176

Hex D Flip-Flceps

Look Ahead Carry Blocik

—2o0 ao
""":,:"Dl Ql n
—D2 Q2
-———:? p3 70 @3 :i
—z|24 Q4 -z
—— D5 C Q5
S
"
_Mles v ECL 10170

lf

o Go

- el cv, -8

60179
':' P2
3
13 %g’ Chy
I Cl2=Cli. ©C ¢ D1 4+ GO
—G3 CUeaCl e TV 7”1 e P2v
G_°P GO« T1 ¢« T2+ P34
2 |15 51 e 72 ¢ "3 s
‘ G2« T3 &

PPN

193

SA
S8
A

1]

CIN

N

180
co

Func

tion Select Table

SA

SB FUICTION

H
-
1

)

.

=

S=A plus 3
S=A minus B
S=B minus A
S=0 minus & miaus D

o o

ECL 10180
Dual Full Adders

194

] (1] s 13!
S0 S1 $2 <3
_zliao
—= 180 ECL 10131
—1Al

—ig] _ - 13
a8 P
6
b

2 4 Bit Arithmetic
Logic Unit

2N

L

! ’,\3

—16 fa3 ©

\CN

Operations cf Interest

Select ‘lofe 1 Outnut i

$3 52 81 s0 | i i

L 1 oL 1 A ~lus 3 ~li:g CN (ad™} i

I L L H L | N ;lus‘§ slus CN isubftact‘ %

L H 0 .| u 4 exclusive OR I

H L B /| u A OR B

T 0oL oH|ou Ao A 3 ’

HouoonoLn| o LN 3 .
i

N,

Signal

Mnemonic

PAALO
PAADEA
PAADEB
PAADMA
PAADMB
PAALFA-
PAALNA
PAALNB
PAALNC
PAALNI
PAALNO
PAAOUT
PAAREG
PAAXB
PABETA
PABEXT
PABITA
PABITB
PABITC
PABITX
PABITY
PABITZ

PABREG

Definition
Alignment Network Control
A Input to Exponent Adder
B Input to Exponent Adder
A Input to Mantissa Adder
B Input to Mantissa Adder
Search: ALPHA Flip-Flop
Alignment Network Output of Stage One
Alignment Network Output of Stage Two
Alignment Network Output of Stage Three
Input to Alignment Network
Output of Alignment Network
ALU Output
A Register
Local Control - Extension Adder B Input
Search: BETA Flip-Flop
B Extension Flip-Flop

- Search: Decoded Output

- Search: Input to AU

B Register

APPENDIX E, Signal Name Glossary
196

Signal

Mnemonic

PACIN
PACOFF23
PACOUT23
PACOUT22
PACOXT
PADAIN
PADPC
PADPIN
PADSEL

PAEACT

" PAEXOF

PAEXUF
PAGEN

PAMLCF
PAMOBR
PAMOF

PAMORL
PAMOVB
PANRMD
PAODAT
PAOVFF
PAQSEL

PASBOF

Definition
Carry Input to Mantissa Adder
Carry Output Flip-Flop
Carry Out of Position 23
Carry Out of Position 22
Carry Out of Extension Adder
Global Address to Element Memory
Double Precision Carry Flip-Flop
Local Control for DPC Input
Global Control EM Bus Enable
Element Activity Flip-Flop
Exponent Adder Add Overflow
Exponent Adder Add Underflow
Global Clock Control for the AU
Detection of All Ones or Zeros from Mantissa Adder
PICU Operand Buffer Register
Mantissa Overflow
Global Data/Control Inputs
Local Control for B Register(23,22)
Normalize Decode Network Output
Output Data Bus
Overflow Flip-Flop
Local Control for Q Extension Bit

Exponent Adder Subtract Overflow

197

