Cache-aware Interfaces for Compositional Real-Time Systems*
(Invited paper)

Linh Thi Xuan Phan

University of Pennsylvania
linhphan@cis.upenn.edu

ABSTRACT

Interface-based compositional analysis is by now a fairly estab-
lished area of research in real-time systems. However, current re-
search has not yet fully considered practical aspects, such as the
effects of cache interferences on multicore platforms. This posi-
tion paper discusses the analysis challenges and motivates the need
for cache scheduling in this setting, and it highlights several re-
search questions towards cache-aware interfaces for compositional
systems on multicore platforms.

1. INTRODUCTION

Modern real-time systems are highly complex; for instance, a car
nowadays contains more than 100 microprocessors that run thou-
sands of software functions. As new functionalities are being added
and new technologies — such as multicore processors — are be-
ing adopted, this complexity is only going to increase. To meet
this trend, the real-time systems community has developed scalable
timing analysis techniques based on compositional reasoning [8].
The idea is to break a complex system into individual components,
which are scheduled hierarchically on the platform. These compo-
nents are analyzed individually at first; then, an interface is gener-
ated for each component that captures the component’s timing and
resource requirements. By choosing the interfaces carefully, it is
then possible to combine them into larger interfaces that cover big-
ger and bigger subsystems, so that it eventually becomes possible
to derive the properties of the system as a whole.

Despite several promising results on compositional analysis, most
existing research assumed an idealized platform in which all over-
heads are negligible. In practice, however, there are many sources
of nontrivial overheads — such as cache effects, preemptions, con-
text switches, and interrupts — that can substantially interfere with
the execution of tasks. Ignoring these overheads when analyzing
the system can lead to wrong results: at run time, the system can
miss deadlines, even when the analysis may suggest otherwise [6].

To bridge this gap, recent work has begun to consider overhead-
aware compositional analysis (see e.g., [3, 5, 6, 10]). The idea
is to account for the overheads that tasks of a component experi-
ence and incorporate them into the component’s resource demands,
which are then used to derive the component’s interface. This ap-
proach works well for uniprocessor platforms, and it has also been
extended to multicore platforms with private caches [10]. How-
ever, the cache-aware compositional analysis on multicore plat-
forms with shared caches remains an open problem.

In the following sections, we discuss the challenges in analyz-
ing the overheads in the presence of shared caches and motivate the
need for cache scheduling in this setting. We then outline several

*The authors retain copyright.

Meng Xu

University of Pennsylvania
mengxu@cis.upenn.edu

Insup Lee
University of Pennsylvania

lee@cis.upenn.edu

Comp. C; Comp. C, Comp. C,
Components T T,T Ty Ts Te T; Tg
"\ Tasks execute on
.) virtual processors
Virtual processors o e y — s e 4
(implement interfaces) | | VP1 | VP (VPy | VP, VPg

S
™ Virtual processors
execute on cores

)
Ll Ll Ll 1

Private caches L

Shared cache L, (LLC)

Figure 1: A compositional system on a multicore platform. Here,
the resource demands of tasks in a component are abstracted as an
interface. This interface is further transformed into a set of virtual
processors, which supply resources to the tasks of the component.
The virtual processors of all components are globally scheduled
(e.g., as servers) on the cores. Each core has a private cache, and
all cores share a shared cache.

research directions towards cache-aware interfaces and their real-
ization on modern multicore platforms.

2. ANALYSIS CHALLENGES

To illustrate the challenges, we use a two-level compositional sys-
tem that is scheduled on a multicore platform with a last-level shared
cache (LLC), as shown in Fig. 1.

Challenge #1: Concurrent cache accesses. On a multicore plat-
form, tasks running simultaneously on different cores may con-
currently access the memory regions that are mapped to the same
cache sets of the LLC. When this happens, they may evict each
other’s content from the cache, thus resulting in cache misses. Pre-
cisely accounting for the overheads due to these concurrent cache
accesses is highly challenging: in the worst case, these accesses
may interleave with one another, and thus the tasks keep polluting
each other’s cache content. Without fine-grained information about
the layouts of the tasks in the LLC and their access patterns, which
are typically not captured in the tasks’ specifications, it seems nec-
essary to assume that every access to the LLC is a cache miss. With
this assumption, one can perform the cache-aware analysis using
the same method for private caches [10]. However, since this ap-
proach effectively considers the overhead of an LLC access to be
the overhead of accessing the memory, it can result in unacceptable
analysis pessimism.

Challenge #2: Cyclic dependency between components’ inter-
faces and tasks’ overheads. In a compositional setting, an addi-
tional source of cache overheads comes from the interactions be-
tween the components’ tasks and their interfaces (implemented as

virtual processors). To illustrate this, consider the following sce-
nario in Fig. 1. Suppose 7; (higher-priority) and 7, (lower-priority)
are running on VP and VP,, which are mapped to cores 1 and 2,
respectively. Suppose further that VP is now preempted by an-
other virtual processor of another component, say VP4. Then, the
higher priority task 7; will migrate to VP, and preempt the lower-
priority task 7,. This leads to both cache-related migration and
preemption overheads: (i) since VP, is mapped to core 2, 7| has to
reload its useful cache content to the private cache of core 2 when
it executes on VP,; and (ii) when 1, resumes later, it will need to
reload the useful cache blocks that have been evicted from the pri-
vate cache and the LLC by 7;. In other words, when a virtual pro-
cessor of a component is preempted by another virtual processor,
tasks running within the component may experience cache over-
heads. Likewise, we can show that tasks can also experience over-
heads when a virtual processor of their component has exhausted
its budget and stops its execution.

The key challenge in the analysis of the above type of overheads
is the cyclic dependency between the interface computation and the
overhead a task experiences. For instance, to derive the overhead-
aware interface for C;, we need to compute the overheads that its
tasks experience. To compute such overheads, we need to know
(among others) how often each of its virtual processors is pre-
empted by virtual processors of other components and how often
it exhausts its budget. The former is not possible in a truly open
environment, where information about other components is com-
pletely hidden from the analysis of C;. The latter requires certain
information about the interface of Cy, which is to be computed.

In our prior work for private caches, we resolved this cyclic de-
pendency by assuming that the period of a component’s interface is
given a priori and that it is available to all other components [10].
However, efficiently deriving optimal cache-aware interfaces in the
general setting, especially in the presence of the LLC, remains an
open research problem. One potential approach is to use paramet-
ric interfaces, but this would typically result in a much more com-
plex analysis.

Challenge #3: Dynamic concurrent resource supply patterns.
The analysis of cache overheads in a compositional setting is fur-
ther complicated by the dynamic resource supply patterns of the
interfaces. In the traditional non-hierarchical setting, the platform
always provides fully available resources with a fixed degree of
concurrency m (equal to the number of cores), and thus it is possi-
ble to determine the resource demand of a task in its busy window
based on its worst-case execution time (WCET) and m. In a hi-
erarchical setting, however, the virtual processors of a component
are not always available to the component, and their supply pat-
terns can in fact vary significantly depending on their parameters
as well as how they are scheduled at the next level. These varia-
tions and dynamic changes in the supply patterns of the interface
make the resource demand analysis highly challenging, especially
when considering their impacts on the overheads that a task experi-
ences. Careful considerations and new abstractions of the resource
supply patterns are therefore necessary to derive resource-efficient
cache-aware interfaces.

Challenge #4: Interactions between the LLC and private caches.
For platforms with multi-level caches, the interactions between dif-
ferent cache levels can create intricate effects on the overheads. For
example, a task can only pollute another task’s cache content in the
LLC if it has already experienced a cache miss in the private cache
of its core, which in turn could have been caused by itself (i.e.,
intrinsic cache miss), by a higher-priority task, or by a virtual pro-
cessor of a component. Similarly, different cache policies also lead
to different overhead scenarios. For instance, with strictly inclu-

sive caches, whenever a useful cache block of a preempted task is
evicted from the LLC, the corresponding block in the private cache
is also evicted; later, when the task resumes, it will need to reload
the cache block to both the private cache and the LLC, thus expe-
riencing overheads at both levels. On the contrary, for exclusive
caches, a task may experience a cache miss in the private cache but
not in the LLC. Due to these intricate effects, simple extensions
of existing results for a single cache level may lead to overly pes-
simistic or incorrect results.

3. CACHE SCHEDULING FOR
COMPOSITIONAL SYSTEMS

An essential characteristic — and important benefit — of composi-
tional systems is the ability to provide resource isolation among
components. To a large extent, this isolation has been achieved
for CPU resources through careful CPU scheduling and interface
analysis. However, on a multicore platform, components can still
interfere with each other in a complex manner via caches. As was
discussed in Challenge #1, tightly accounting for such overheads
in the interface computation is extremely challenging, and even if
new analysis methods could be established that reasonably account
for the cache overheads, the components themselves would still not
be “free from interferences.” While this may not be an issue from
the schedulability point of view, it can create undesirable conse-
quences, such as potential security attacks via caches.

Recent advances in hardware- and software-based cache parti-
tioning have brought a new solution within reach: instead of simply
analyzing the cache as is, we can treat cache as another schedula-
ble dimension. By breaking the cache into smaller pieces, e.g., us-
ing cache partitioning mechanisms, we can assign them to different
tasks (or virtual processors, or components, or cores) at run time,
and we can do so dynamically depending on how much cache space
a task would need at a given point. This way, tasks running con-
currently on different cores never access one another’s cache space,
thus completely eliminating the cache interference due to concur-
rent cache accesses. To realize this approach, the CPU and cache
schedulers would need to be aware of each other to guarantee iso-
lation while still being resource efficient.

In our prior work, we have explored this approach for real-time
components [9], and our evaluation results show that it can help
improve schedulability substantially compared to cache-agnostic
scheduling. In the following, we discuss two important research
problems and potential directions towards this approach for com-
positional systems.

Hierarchical cache partitioning: On today’s hardware, one-
level cache partitioning can easily be done using either software or
hardware techniques, e.g., page coloring [2] or way-partitioning [4].
For example, using the page coloring mechanism, the cache can be
divided into several disjoint partitions that each consist of a number
of cache sets, which are mapped to different regions of the mem-
ory; by controlling the mapping of virtual addresses to machine ad-
dresses, the operating system can control which cache partition(s)
a task can use. This approach can potentially be extended to enable
hierarchical partitioning by adding intermediate layers of address
translations. For instance, a two-level partitioning can be achieved
by controlling the mapping from virtual addresses to the physical
addresses and the mapping from physical addresses to machine ad-
dresses.! However, this has two direct implications: (i) the cache
scheduler in each component would need to be aware of the map-
ping used by the next-level scheduler, i.e., complete isolation be-

I'This approach may not work for systems with huge memory
pages.

tween different scheduling levels is no longer achievable; and (ii)
the cache allocation and reallocation become a lot more expensive.

In contrast, hardware techniques, such as way partitioning or In-
tel’s Cache Allocation Technology [1], can provide very efficient
cache allocation, but the total number of cache partitions is more
limited than that of software-based techniques. It seems interest-
ing to explore hybrid approaches that combine software and hard-
ware mechanisms for different levels of the hierarchy, to achieve
a larger number of partitions, while still maintaining low overhead
and some degree of isolation between scheduling layers.

Static vs. dynamic allocation: A simple approach to achieving
cache isolation in compositional systems is to perform static allo-
cation across all levels of the hierarchy: the cache is statically parti-
tioned to components, and each component’s cache space is further
partitioned to its sub-components (tasks). Since each task has its
own cache space throughout its lifetime, it will never interfere with
another task via cache, and the interface analysis can thus be done
using existing techniques. However, this approach cannot always
be feasibly applied in practice, e.g., when the tasks do not fit in the
whole cache at the same time. When this occurs, the tasks have
to receive fewer partitions (or even none) than they would require,
which in turn result in much higher worst-case execution times (due
to intrinsic cache misses, which they create on themselves). Static
allocation can also severely under-utilize cache resources, because
the cache partitions allocated to a task are wasted when the task is
not executing or does not need all partitions.

An alternative approach is to only statically partition the shared
cache among cores and apply the cache-aware compositional anal-
ysis for multicore systems with private caches [10]. However, this
can still lead to high cache preemption and migration overhead
when the virtual processors are scheduled globally on the cores.

The above issues can be solved by dynamically allocating cache
resources to each task at run time. Dynamic cache allocation is
beneficial, as it provides better flexibility and higher utilization of
cache resources. However, it also presents several new challenges
from both theory and systems perspectives. When preemption is
allowed, tasks may still experience cache overhead — e.g., upon
resuming from a preemption, a task may need to reload its cache
content in the cache partitions that were used by its higher-priority
tasks; as a result, the overhead analysis would need to consider the
specific cache allocation strategy used at each layer of the hierar-
chy. Further, efficiently implementing dynamic cache reallocation
is much more complex than static allocation, and software tech-
niques such as page coloring typically have very high overheads in
this case.

A promising direction is to integrate static and dynamic alloca-
tions using software techniques and hardware techniques, respec-
tively. One potential solution is to perform static allocation at the
component level and dynamic allocation at the task level. Not only
can such an approach provide complete isolation among compo-
nents (Which is more critical than isolation among tasks of the same
component), it can also be applied to systems with very high num-
ber of tasks. An interesting question for systems with more than
two levels of hierarchy is to find the right combination of static and
dynamic allocations that provides a good tradeoff between resource
utilization and run-time efficiency.

4. CACHE-AWARE INTERFACES WITH
CACHE SCHEDULING

In this section, we discuss the necessary extensions towards cache-
aware analysis for compositional systems with cache scheduling.

Component specifications. Since a task’s WCET depends on
the cache space it is allocated, to enable optimized cache alloca-
tion, each task should specify not only a single WCET for a specific
number of cache partitions but potentially a set of WCETSs with re-
spect to different numbers of allocated partitions. To derive tight
analysis of the cache overheads a task may experience, it would
be useful to additionally specify other fine-grained cache-related
information such as the memory access patterns and the working
set size, as they can greatly influence the overheads. Since this ex-
tended specification will also make the analysis much more com-
plex, it is interesting to explore different trade-offs and quantifica-
tions of the cache-related information of a task to achieve accurate
analysis without being intractable.

Component-level schedulers. To fully utilize resources, the
CPU and cache scheduling should be integrated, since a task or
a virtual processor can only be executed when it has both types of
resources. It seems intuitive at first to synchronize the CPU and
cache allocations, i.e., whenever a task (or virtual processor) re-
ceives CPU resources to execute, it will also receive the required
cache resources. However, this is not always possible: because
the amounts of cache and CPU resources that are available may
be different, it is possible that there are sufficient cores to sched-
ule the ready tasks but not sufficient cache partitions, and vice
versa. In addition, unlike CPU scheduling, fully dynamic cache
scheduling (at every scheduling level) is difficult to achieve with-
out incurring high run-time overheads. It is therefore necessary
to develop new scheduling solutions specifically for compositional
systems that can efficiently and effectively integrate the CPU and
cache allocations.

Cache-aware interfaces. To enable cache scheduling at the
component level(s), it is necessary to expose not only the CPU re-
quirements but also the cache requirements on the components’ in-
terfaces. One approach is to use similar concepts to CPU resource
models such as the multiprocessor periodic resource model [7],
which specifies the total resource budget ® that must be provided
in each period IT with a maximum degree of concurrency of m.
One challenge with this approach is that, because the interface it-
self does not impose constraints on the exact level of concurrency,
the number of cache partitions a component receives at run time
can vary between 0 and m. This is problematic for the scheduling
within the component, because not all allocated cache resources
can be used effectively, e.g., if each task requires more than the
provided number of partitions. Alternatively, if we allow a task to
execute even if there are fewer partitions than it requires and the
partitions it receive can vary dynamically, the worst-case execu-
tion time of the task in this scenario becomes difficult to predict.
Therefore, it seems necessary to impose additional constraints on
the concurrency level of the cache resources that an interface pro-
vides. In cases where static cache allocation is performed at the
component level(s), the cache information exposed on an interface
can potentially be reduced to the total number of cache partitions
the component requires (as the number of cache partitions a com-
ponent receives is fixed).

Interface analysis. With cache scheduling, the overhead due
to concurrent cache accesses is eliminated, which significantly re-
duces the analysis complexity. However, since static allocation
across all levels may not be possible, tasks and virtual processors
may share and access the same partition(s) over disjoint periods of
time. As a result, the analysis also faces all the remaining chal-
lenges described in Section 2. In addition, the interface analysis
must also consider the cache supply patterns of the interface and its

impact on the cache overhead, e.g., caused by the (extra) preemp-
tions via cache. We also note that the cache-aware interface compu-
tation (a synthesis problem) is significantly more challenging than
the cache-aware schedulability analysis, as it requires computation
of the cache-aware resource demand functions of tasks under a spe-
cific interface model, as well as a way to generate the interface pa-
rameters that satisfy the component’s demands.

S. CONCLUSION

Compositional analysis is an effective approach to scheduling and
analysis of complex real-time systems. However, its benefits have
not been fully realized on modern multicore platforms due to the
lack of a theory that can accurately consider the effects of caches.
In this position paper, we have discussed key challenges in this
setting, and we outlined several research questions and potential
directions towards a realistic cache-aware compositional analysis
theory for multicore platforms.

Acknowledgement

This work was supported in part by ONR N00014-13-1-0802 and
NO00014-16-1-2195, and NSF CNS 1117185, ECCS 1135630, and
CNS 1329984.

References

[1] x86: intel cache allocation technology support. http://lwn.net/
Articles/622893/. Accessed: 2015-01-09.

[2] R. E. Kessler and M. D. Hill. Page placement algorithms for
large real-indexed caches. ACM Transactions on Computer
Systems, 10(4):338-359, Nov. 1992.

[3] W. Lunniss, S. Altmeyer, G. Lipari, and R. I. Davis. Ac-
counting for cache related pre-emption delays in hierarchical
scheduling. In Proceedings of the 22nd International Confer-
ence on Real-Time Networks and Systems (RTNS), 2014.

[4] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and
R. Pellizzoni. Real-time cache management framework for
multi-core architectures. In Proceedings of the IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS), 2013.

[5] R. M. Pathan, P. Stenstrom, L.-G. Green, T. Hult, and
P. Sandin. Overhead-aware temporal partitioning on multi-
core processors. In Proceedings of the IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS),
2014.

[6] L. T. X. Phan, M. Xu, J. Lee, I. Lee, and O. Sokolsky.
Overhead-aware compositional analysis of real-time systems.
In In Proceedings of the IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), 2013.

[7] 1. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling
framework for virtual clustering of multiprocessors. In Pro-
ceedings of the Euromicro Conference on Real-Time Systems
(ECRTS), 2008.

[8] I. Shin and I. Lee. Periodic resource model for compositional
real-time guarantees. In Proceedings of the IEEE Real-Time
Systems Symposium (RTSS), 2003.

[9] M. Xu, L. T. X. Phan, H.-Y. Choi, and I. Lee. Analysis and
implementation of global preemptive fixed-priority schedul-
ing with dynamic cache allocation. In In Proceedings of the
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2016.

[10] M. Xu, L. T. X. Phan, I. Lee, O. Sokolsky, S. Xi, C. Lu,
and C. Gill. Cache-aware compositional analysis of real-
time multicore virtualization platforms. In Proceedings of the
IEEE Real-Time Systems Symposium (RTSS), 2013.

