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Abstract

We give a new proof showing that it is NP-hard to
color a 3-colorable graph using just four colors. This
result is already known [18], but our proof is novel
as it does not rely on the PCP theorem, while the
one in [18] does. This highlights a qualitative differ-
ence between the known hardness result for coloring
3-colorable graphs and the factor n� hardness for ap-
proximating the chromatic number of general graphs,
as the latter result is known to imply (some form of)
PCP theorem [3].

Another aspect in which our proof is different is
that using the PCP theorem we can show that 4-
coloring of 3-colorable graphs remains NP-hard even
on bounded-degree graphs (this hardness result does
not seem to follow from the earlier reduction of [18]).
We point out that such graphs can always be col-
ored using O(1) colors by a simple greedy algorithm,
while the best known algorithm for coloring (general)
3-colorable graphs requires n
(1) colors. Our proof
technique also shows that there is an "0 > 0 such that
it is NP-hard to legally 4-color even a (1�"0) fraction
of the edges of a 3-colorable graph.

1 Introduction

The graph coloring problem is to assign colors to
vertices of a graph G such that no two adjacent vertices
receive the same color; such a coloring is referred to as

�Laboratory for Computer Science, Massachusetts Institute
of Technology, 545 Technology Square, Cambridge, MA 02139.
Email: venkat@theory.lcs.mit.edu. Part of this work
was done when the author was visiting Bell Labs, Murray Hill.

yDepartment of Computer and Information Science, University
of Pennsylvania, Philadelphia, PA 19104. This work was done
when the author was at Bell Labs, Murray Hill. Email : san-
jeev@cis.upenn.edu.

a legal coloring of G. The minimum number of colors
required to do a legal coloring is known as the chro-
matic number of G, and is denoted �(G). Graph color-
ing is a fundamental and extensively studied problem,
which besides its theoretical significance as a canoni-
cal NP-hard problem [16], also arises naturally in a va-
riety of applications including register allocation and
timetable/examination scheduling.

Coloring a graph G with the minimum number
�(G) of colors is NP-hard [16], so the focus shifts
to efficiently coloring a graph with an approximately
optimum number of colors. Garey and Johnson [10]
proved that it is NP-hard to approximate the chromatic
number within a factor of (2 � �) for any � > 0. The
best known algorithm for general graphs appears in
[13] and colors a graph using a number of colors that is
within a factor of O(n(log log n)2= log3 n) of the op-
timum (here and elsewhere n refers to the number of
vertices in the graph). There is strong evidence that
one cannot do substantially better than this for gen-
eral graphs, as the recent connection between Proba-
bilistically Checkable Proofs (PCPs) and hardness of
approximations [7, 2, 1], has led to strong hardness re-
sults for graph coloring also. The first such result was
established by Lund and Yannakakis [19] who proved
that chromatic number is hard to approximate within
n� for some constant � > 0. Feige and Kilian [8], us-
ing the powerful PCP constructions due to Håstad [14],
prove that unless NP � ZPP one cannot approximate
the chromatic number within a factor of n1�� for any
constant � > 0.

However, none of these inapproximability results
apply to the case when the input graph is k-colorable
for some small constant k. Indeed, better perfor-
mance guarantees are known in this case. For instance,
a polynomial time algorithm that colors 3-colorable
graphs using ~O(n3=14) colors is known [22, 5, 15, 6].
It is known that for every constant h there exists a
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large enough constant k such that coloring k-colorable
graphs using kh colors is NP-hard [19, 18]; it is how-
ever not known if the order of quantifiers above can be
reversed. Khanna, Linial and Safra [18] proved that it
is NP-hard to color a 3-colorable graph using only 4
colors, and to this date no improvement to this hard-
ness result has been obtained.

Our Results. Our main result in this paper is a new
proof of the above result of [18], stated formally be-
low:

Theorem 1 (Main Theorem) It is NP-hard to color a
3-colorable graph with only four colors.

The proof of Khanna et. al. [18] uses the result that
MAX CLIQUE is NP-hard to approximate within a fac-
tor of two, a consequence of the PCP theorem [2, 1].
An important distinguishing aspect of our proof is that
it does not require the PCP theorem and only relies on
the NP-hardness of the MAX CLIQUE problem. The
hardness for 3-colorable graphs is the most intricate of
the results in [18], and has not been improved upon
or simplified ever since. Our work represents the first
progress on this important problem after the result of
[18], and one which will hopefully spur further im-
provements. Not relying on PCP machinery implies
that this hardness result could have been obtained al-
most three decades ago, long before the arrival of the
PCP theorem. In contrast the hardness result (for ap-
proximating within n� for example) for general graph
coloring implies some form of PCP [3]; our result
therefore also highlights a qualitative difference be-
tween the hardness of general graph coloring and col-
oring 3-colorable graphs.

As in essentially all previous reductions show-
ing hardness of graph coloring, our reduction too
starts from the hardness of INDEPENDENT SET (MAX

CLIQUE): it transforms an instance G of INDEPEN-
DENT SET to an instance H of graph coloring such
that a large independent set in G translates into a small
collection of (in our case three) independent sets in H
which together cover all vertices in H . But in addi-
tion, our proof is based only on local gadgets and eas-
ily leads to the hardness of 4-coloring even bounded
degree instances of 3-colorable graphs, albeit only by
resorting to the PCP theorem:

Theorem 2 There is a constant � such that given a
graph 3-colorable graph with maximum degree at most
�, it is NP-hard to color it using just 4 colors.

Note that since such graphs can be colored using O(1)
colors (in fact (� + 1) colors) by a simple greedy
algorithm, while the best algorithm for general 3-
colorable graphs uses n
(1) colors, this hardness result
is stronger than that of Theorem 1. Another strength-
ening of Theorem 1 which the degree-bounded result
enables us to deduce is the following:

Theorem 3 There is a constant "0 > 0 such that it is
NP-hard to, given a graph G, distinguish between the
case when G is 3-colorable and when any 4-coloring
of G miscolors at least an "0-fraction of its edges.

Both of these results do not seem to follow from the
proof technique of [18] and therefore appear to be new
to our paper. Note that the latter claim also generalizes
the result of Petrank [21] which shows that there is an
" > 0 such that it is NP-hard to legally color a (1� ")
fraction of the edges of a 3-colorable graph using only
3 colors.

We also note, using standard PCP techniques, a uni-
form hardness result that �h-coloring a graph G with
�(G) = � is NP-hard for some (fixed) constant h > 1,
for chromatic numbers � in the range c � � � nÆ for
some constants c; Æ > 0. A similar result has earlier
been shown by Fürer [9], but our proof uses the sim-
pler and more transparent transformations in [18], and
also does not use a randomized reduction (while the
result in [9] is obtained under the stronger assumption
of NP 6� ZPP).

Inapproximability Results and PCPs. In light of our
main result, it is natural to ask how far non PCP tech-
niques can go in proving hardness results for color-
ing 3-colorable graphs. It turns out that an inapprox-
imability factor of 
(logn) does imply some form of
PCP. This is by a result of Blum [4] (see also [3])
which shows that if coloring a 3-colorable graph us-
ing c log n colors is hard for every constant c, then for
every � > 0, it is hard to approximate MAX CLIQUE

within a factor of n1��; and using the “reversal” of the
FGLSS connection presented in [3], this implies the
PCP theorem (in fact a very strong version of it, see
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[3] for details).1 It, however, seems entirely possible
that any o(log n) hardness bound can be proved for
coloring 3-colorable graphs without resorting to PCP
techniques. We hope our work will spur further inves-
tigation into these questions that will eventually lead
to improving the current results on the complexity of
coloring 3-colorable graphs.

Expanding the scope of our investigation, it is nat-
ural to ask which inapproximability results really re-
quire PCPs. It is known for example that PCPs are in-
herent to obtaining (at least strong) hardness results for
approximating MAX SAT, MAX CLIQUE, Chromatic
Number and Vertex Cover. Recent work in [12] and
[17] proves strong (in fact near-tight) inapproximabil-
ity results for Disjoint Paths and Longest Path prob-
lems without requiring PCPs; prior results for these
problems always began with the PCP theorem, and
yet turned out to be weaker. Together with our result,
these raise similar questions about the hardness results
for certain other fundamental problems like Set Cover,
Nearest Codeword Problem, Shortest Vector Problem,
etc, which while currently relying on the PCP theo-
rem, are not known to provably require PCPs. In each
case it is interesting to see if a reverse connection to
PCPs exists or if PCPs are only an artifact of the cur-
rent proof techniques. Even more ambitiously, one can
ask what aspect(s) of an optimization problem cause
its inapproximability results to necessarily imply some
non-trivial PCP constructions.

Notation. We use the standard notation to denote
graph-theoretic parameters. For a graph G, we denote
by �(G), �(G), !(G) and �(G), the chromatic num-
ber of G, the size of a largest independent set in G, the
size of a largest clique in G and the clique cover num-
ber of G (the minimum number of cliques to cover all
the vertices of G) respectively. Clearly �(G) = !( �G)
and �(G) = �( �G) where �G is the complement of the
graph G.

Organization. We present the proof of our main theo-
rem (Theorem 1) in Section 2. Section 3 describes the
hardness result for bounded degree 3-colorable graphs
and sketches the proof of Theorem 3. Section 4 de-

1Actually, since the reduction from 3-coloring to finding large
cliques is only a Turing reduction, strictly speaking we can only
conclude that every language in NP Turing reduces to a language
in a certain PCP class.

scribes the uniform �h hardness bound for coloring �-
chromatic graphs.

2 Proof of the Main Theorem

We describe a reduction from the INDEPENDENT

SET problem. Specifically, we start with instances of
the following form: we are given a graph Gwhose ver-
tices can be partitioned into r cliques Ri, 1 � i � r,
each with exactly k vertices. Clearly, �(G) � r. It is
NP-hard to determine if �(G) = r on instances with
this structure (this even holds with k = 3, the standard
reduction for NP-hardness of INDEPENDENT SETin
fact produces such instances [11]). Starting with such
an instance G, we construct (in polynomial time) a
graph H which will have the property that �(H) = 3 if
�(G) = r and �(H) � 5 otherwise. This will clearly
prove Theorem 1.

2.1 Overview of the Reduction

Let G be a graph with vertices partitioned into r
cliques with exactly k vertices fvi;0; : : : ; vi;k�1g in
the ith clique for 1 � i � r. The graph H com-
prises of r “tree-like” structures, say T1; � � � ; Tr, one
for each clique Ri of G, together with a specific inter-
connection pattern between the leaves of the different
tree-structures based on the adjacency of vertices in G.
There are two key properties satisfied by the construc-
tion of the Ti’s:

� Any 4-coloring of a Ti can be interpreted as “se-
lecting” a unique vertex vi;p in the row Ri of
graph G (Section 2.2).

� The edges between the Ti’s are such that no 4-
coloring is feasible if two vertices that are adja-
cent in G are selected from two different trees
(Section 2.3).

In other words, any 4-coloring of H can be inter-
preted as selecting a vertex in each of the r cliques Ri

of G such that the selected vertices induce an indepen-
dent set of size r in G, ensuring that if �(G) < r, then
in fact �(H) > 4. The other part, viz. H is 3-colorable
if �(G) = r, will also be easily seen to hold for our
reduction.
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Figure 2. The basic template

2.2 The Structure of each Ti

Each Ti will have the structure of a binary tree with
k leaves, fvi;j : 0 � j < kg, one for each of the k ver-
tices of G in the clique Ri (see Figure 2.2). It also has
(k�1) additional internal nodes fti;j : 0 � j < k�1g
with ti;0 being the “root” ri; by ti;k�1 we mean the leaf
node vi;k�1. (The subscript i is omitted in Figure 2.2
for sake of readability. The exact “shape” of the tree Ti
is not important; any binary tree with k leaves and with
all internal nodes having exactly two children will suf-
fice for our purposes.) Each individual node of Ti itself
comprises of the template shown in Figure 2. This ba-
sic template, denoted Hbasic, may be viewed as a 3�3
grid such that the vertices in each row and in each col-
umn of the grid induce a 3-clique. The vertices in the
first column of any such template are referred to as
ground vertices and are in fact shared across all such
templates in all the tree-structures. Since the ground
vertices form a clique, any legal coloring will assign
three distinct colors to them; we refer to these colors

as 1, 2 and 3.
The connection pattern between the template at an

internal node ti;p and its children templates vi;p and
ti;p+1 is best understood by the schematic depicted in
Figure 3. (Nodes P , L and R will play the roles of ti;p,
vi;p and ti;p+1 respectively.) In addition to the tem-
plates at these nodes, there are two 3-cliques that are
connected to templates at ti;p; vi;p and ti;p+1 via appro-
priate edges. All nodes in the schematic are labeled as
3-tuples of the form hxyzi where x; y; z 2 f1; 2; 3g.
The edges (not shown) between the various vertices
are given by the simple rule: two vertices are adjacent
if and only if their labels differ in all three coordinates.

2.2.1 Node Selection

A node of the tree is called selected if at least one of
the three rows in its template has colors which reading
from left to right form an even permutation of f1; 2; 3g
(i.e the first row has colors 1,2,3; the second one has
2,3,1; or the third one has 3,1,2). Similarly, we say that
a row is not selected if at least one of the three rows in
its template has colors which reading from left to right
form an odd permutation. It is easy to see that in any
legal 4-coloring a node can never be simultaneously
labeled selected as well as not selected. Moreover, in
any 4-coloring a node is always either selected or not
selected.

2.2.2 Enforcing Selection of a Leaf Node

Our goal now is to enforce that for any legal 4-coloring
of the tree-structure Ti, at least one leaf node is se-
lected. Broadly speaking, our approach here will be
to “hardwire” selection of the root node and then in-
troduce gadgets to ensure that whenever a node is
selected, one of its two children is selected as well.
In other words, our construction propagates selection
from the root to some leaf node.

Root Selection: In each tree Ti, 1 � i � r, we enforce
selection of the root using the gadget shown in Fig-
ure 4. It is obtained by adding, for each j 2 f1; 2; 3g,
edges from the ground vertex colored j to the first ver-
tex in row number (j mod 3+1) of the copy of Hbasic

at the root node ri of Ti. This ensures that in any 4-
coloring of H , there will be one row of (each) root
which will be selected (and hence the root itself will be
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[231][312]

[132]

[321][213]

[111]         [233]         [322]

[222]         [311]         [133]

 [111]         [323]        [232]

[222]         [131]        [313]

[333]         [212]        [121]

P

L R

[111]         [223]         [332]

[222]         [331]         [113]

[333]         [112]         [221]

[333]         [122]         [211]

                  Two nodes are adjacent iff their labels differ in every coordinate.

Figure 3. The connection pattern between the templates at a node and its children
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Figure 4. Enforcing selection at a root

selected). Indeed, there must exist one row whose ver-
tices are not colored using 4, say for concreteness the
third row is such. But since we added an edge between
ground vertex colored 2 to the first vertex in the third
row, this vertex cannot be colored 2, and it follows that
the third row of the root must be colored (3; 1; 2), as
desired.

Propagating the Selection: Next we show how selec-
tion of a node in the tree can be propagated to at least
one of its children. This ensures that in each tree at
least one leaf node must be selected. Consider again
the schematic in Figure 3 and assign the following in-
terpretation to the node labels:

� Colors in the first coordinate of each node corre-
spond to the situation where ti;j is selected and it
enforces selection at vi;j .

� Colors in the second coordinate of each node cor-
respond to the situation where ti;j is selected and
it enforces selection at ti;j+1.

� Colors in the third coordinate of each node cor-
respond to the situation where ti;j is not selected
and it does not enforce any selection at its chil-
dren.

It is easy to verify that for any l 2 f1; 2; 3g, if we as-
sign colors 1, 2 and 3 to the nodes as specified by their
lth coordinate, it forms a feasible coloring. Moreover,
for any choice of a leaf node to be selected in Ti, col-
oring the nodes along the unique root-leaf path as se-
lected (i.e coloring the three rows of the corresponding
templates as f1; 2; 3g, f2; 3; 1g and f3; 1; 2g), and the
remaining nodes in Ti as not selected (i.e coloring the
three rows of the corresponding templates as f1; 3; 2g,
f2; 1; 3g and f3; 2; 1g), yields a legal 3-coloring of Ti.
The following is thus evident for our construction:

Lemma 2.1 For each i, 1 � i � r, and 8j, 0 �
j < k, there is a 3-coloring of the vertices in the tree-
structure Ti such that the leaf corresponding to vi;j is
the only selected leaf in Ti.

We can now establish the following key lemma:

Lemma 2.2 In any 4-coloring of a tree Ti, whenever
an internal node is selected, one of its two children
must be selected.

Proof. Consider again the schematic of Figure 3, with
P being the parent whose selection we want to argue
implies the selection of one of its children L and R.
We consider two cases:

Case 1: Both vertices in one of the pairs
fh112i; h113ig, fh221i; h223ig, and fh331i; h332ig
receive color 4 in the 4-coloring of H .

Suppose it is the pair fh331i; h332ig that receives
color 4. Since P is selected, the third row of P must
be colored (3; 1; 2) in this case. We now claim that
one of L and R will in fact be selected with their third
row being colored (3; 1; 2). Indeed, none of the ver-
tices h122i, h211i, h212i and h121i (the third row non-
ground vertices of L and R) get the color 4 as they
are all adjacent to one of h331i or h332i. Thus if nei-
ther of L;R is selected, h122i; h212i get colored 2 and
h211i; h121i get colored 1. Now it is easy to see that
each of the vertices h123i, h231i and h312i have color
1 as well as color 2 neighbors (for instance h123i is
adjacent to h211i and h212i), and this implies that all
these three must be colored either 3 or 4. But this is
impossible as these three vertices form a clique. Thus,
one of L;R must be selected.

Exactly similar arguments will hold when both of
the vertices h112i; h113i receive color 4 or if both the
vertices h221i; h223i receive color 4. So it remains to
consider the following case.

Case 2: At most one of the vertices in each of the pairs
fh112i; h113ig, fh221i; h223ig, and fh331i; h332ig
receives color 4 in the 4-coloring of H .

In this case we first claim:

Claim 1 At least one of the vertices h112i; h113i gets
colored 1, one of h221i; h223i gets colored 2, and one
of h331i; h332i gets colored 3.
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To see this, note that P is selected, so we may assume
without loss of generality, that the third row of P is
colored (3; 1; 2). Thus the above claim is trivially veri-
fied for the colors 1 and 2 (since h112i is colored 1, and
h221i is colored 2). Now if neither h331i nor h332i
is colored 3, then in fact they must both be colored
4 (since, for instance, h332i cannot be colored either
1 or 2 since it is adjacent to h111i and h221i respec-
tively). But this contradicts the hypothesis of this case,
and therefore our claim holds. �

We are now ready to finish the proof for Case 2 also.
Suppose P is selected, but neither of L;R is selected.
We will call a row of a node pure if none of its ver-
tices are colored 4. Clearly at least one of the rows of
both L and R is pure. Since the entire gadget is to-
tally symmetric, assume for definiteness that the third
row of L is pure, so that it is colored (3; 2; 1) (recall
that L is not selected, so it cannot be colored (3; 1; 2)).
Now if the third row of R is pure, then it will also be
colored (3; 2; 1), and we will get a contradiction ex-
actly as we obtained in the analysis of Case 1. So one
of the first or second rows of R is pure, say without
loss of generality again, that the first row of R is pure
so that it is colored (1; 3; 2). The upshot of all this
is that the vertices h122i; h211i; h323i; h322i receive
colors 2; 1; 3; 2 respectively.

Now consider the vertex h231i. It is adjacent
(among other vertices) to h122i (which is colored 2),
h323i (which is colored 3), and to both h112i; h113i
one of which is colored 1 by Claim 1. It follows there-
fore that h231i is colored 4. An exactly similar argu-
ment shows that h123i must also be colored 4 — in-
deed h123i is adjacent to h211i (colored 1), to h322i
(colored 2), and to both h331i; h332i one of which is
colored 3 by Claim 1. But now h231i and h123i are
both colored 4 and they are adjacent, a contradiction.
This completes the analysis for Case 2 as well, and the
proof is now complete. �

2.3 The Structure Across the Trees

We now specify how the nodes across different Ti’s
are connected. For every pair of leaf nodes vi;p 2 Ti
and vj;q 2 Tj such that vi;p and vj;q are adjacent
in G, we insert a gadget (actually a combination of
more than one gadget) that prevents both of these leaf

1

2

3

1

2

3

a c

b

1 2 21

Figure 5. The Leaf-level Gadget: “Same Row
Kind”

nodes from being selected simultaneously in any legal
4-coloring of H . Observe that this would immediately
imply that if H is 4-colorable, then there must be an
independent set of size at least r in G. This follows
from Lemma 2.2 which shows that in any 4-coloring
of H , every tree has at least one selected leaf, and the
fact that no two vertices of G corresponding to selected
leaves can be adjacent in G.

The leaf-level gadget consists of two parts, as
shown in Figures 5 and 6. Given two nodes, each a
copy of the basic template Hbasic, we use two kinds
of gadgets. The one of the first kind, shown in Fig-
ure 5, prevents both nodes being selected because of
the same row (for example because the third row of
both nodes is colored (3; 1; 2)) – we use three such
gadgets, one for each row. It is easy to check that the
gadget in Figure 5 is 3-colorable as long as at least
one of the two third rows are colored (3; 2; 1), but is
not even 4-colorable if both the third rows are colored
(3; 1; 2).

The second kind of leaf-level gadget, shown in Fig-
ure 6, ensures that the two nodes are not both selected
because of different rows, and is even simpler than the
first. Once again it is completely straightforward to
check that the gadget works as desired; for instance
for the gadget shown, there exists a valid 3-coloring as
long either the third row of the left hand side node is
(3; 2; 1) or the first row of the right hand side node is
(1; 3; 2) (i.e at least one is not selected), but there is no
valid 4-coloring if these rows are colored (3; 1; 2) and
(1; 2; 3) (i.e if both are selected).
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Figure 6. The Leaf-level Gadget: “Different
Rows Kind”

The preceding discussion has thus established the
following:

Lemma 2.3 If the graph H constructed as above is
4-colorable, then �(G) = r.

Lemma 2.4 If �(G) = r, then H is 3-colorable.

Proof. Let K = fvi;pi : 1 � i � rg be an independent
set of size r in G, where 0 � pi < k for each i. By
Lemma 2.1, we can legally color all the vertices of the
tree structures Ti using only three colors such that for
each tree Ti, the leaf corresponding to vi;pi is the only
one that is selected. It remains only to color the ver-
tices used in the leaf-level gadgets. By the argument
above we can color the vertices of any leaf-level gad-
get using just three colors provided at least one of the
two leaf nodes it “connects” is not selected. But this
condition is met for every leaf-level gadget in our case,
since K is an independent set, and therefore there is no
leaf-level gadget between any two of our selected leaf
nodes. The entire graph H is thus 3-colorable. �

Theorem 1 now follows from Lemmas 2.4 and 2.3
since the construction of H can be clearly accom-
plished in polynomial time.

We point out here that the graph H constructed in
the reduction above is always 6-colorable. Indeed one
can legally color all nodes in the tree-structures using
three colors, and legally color all nodes in the leaf-
level gadgets using three different colors, for a total of
six colors.

3 Hardness for degree-bounded 3-colorable
graphs

We now show that the result of Theorem 1 holds
even if the input graph G has degree bounded by some
constant �, thus establishing Theorem 2. Unlike The-
orem 1, however, we do not see how to prove the result
below without using the PCP Theorem. Specifically
we use Proposition 3.1 below which follows from the
PCP theorem and MAX SNP-hardness of MAX 3-SAT

instances where each variable appears in at most a con-
stant number of, say 5, clauses [20].

Proposition 3.1 For every constant t > 1 there exist
constants q;� such that given a graph G whose ver-
tices can be partitioned into r cliques each containing
exactly q vertices, and in which each vertex has de-
gree at most �, it is NP-hard to distinguish between
the cases �(G) = r and �(G) < r=t.

Proof of Theorem 2: We employ (essentially) the
same reduction as in the proof of Theorem 1, except
that we now start from a hard instance of INDEPEN-
DENT SET as in Proposition 3.1 with a “gap” (in inde-
pendent set size) of t = 24. The graph H thus con-
structed will satisfy �(H) = 3 if �(G) = r while
�(H) � 5 if �(G) < r. By the nature of the re-
duction presented in Section 2, and the fact that the
maximum degree of G is at most �, it is easy to see
that all vertices in H have very small degree except
the three ground vertices which are shared across all
the r tree-like structures in H (that correspond to the
r cliques in G). We get around this by simply using
a distinct set of three ground vertices in each of the
r tree-structures to give a new degree-bounded graph
H 0. By a pigeonhole argument, since there are only
24 different colorings of a (labeled) 3-clique using 4
colors, there are at least r=24 of the tree-structures
whose ground vertices in rows 1; 2; 3 are colored us-
ing the same three colors c1; c2; c3; we just label these
colors as 1; 2; 3 respectively. Now applying the argu-
ment used in the proof of Lemma 2.3 to the subgraph
of G induced by the vertices in the r=24 cliques corre-
sponding to these tree-structures, we conclude that if
H 0 is 4-colorable, then �(G) � r=24. Of course in
the case when �(G) = r, the same coloring used to
establish Lemma 2.4 with all copies of the ground ver-
tices being colored as 1; 2; 3 properly implies that H 0
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is 3-colorable. Combining this reduction with Propo-
sition 3.1, therefore, gives us our claimed result. �

It turns out that the above argument also suffices to
establish Theorem 3.

Proof of Theorem 3 (Sketch): Use the same reduction
to get a graph H as in the above proof, except now
start from a hard instance of INDEPENDENT SET with
a “gap” of t = 48. If n;m are respectively the number
of vertices and edges in H , then we have n = O(r),
and since H is degree-bounded, m = O(n). Thus
m = O(r) � c0r for some absolute constant c0. Now
define "0 = 1=4c0. If a 4-coloring of H miscolors
at most "0m edges, then since "0m � r

4 , there are
at least r=2 tree-like structures such that they, and the
leaf-level gadgets associated with them, are all legally
colored using only 4 colors. Arguing as in the proof of
Theorem 2, we can now conclude �(G) � r=48. Thus
when �(G) < r=48, every 4-coloring of H legally
colors at most (1� "0) fraction of the edges. �

4 Hardness of the form �
Æ for coloring

In this section we sketch the proof of a uniform in-
approximability result of �h for coloring in terms of
the chromatic number � for a wide range of values of �
(for a constant h > 1). Using more complicated tech-
niques, the same hardness result was established in [9]
under the assumption NP 6� ZPP. Our proof, based
on transformations in [18], is simpler and also shows
hardness under the weaker assumption NP 6= P. By
using more recent PCP constructions in the proof, we
can prove the claimed hardness with any h < 6=5.
Our focus here is not on the quantitative aspects, but
to illustrate the fact that a uniform �h hardness can be
shown to hold over a large range of values of �.

Theorem 4 There exist constants c, Æ > 0 and h >
1 such that for chromatic numbers in the range c �
�(G) � nÆ, it is NP-hard to �(G)h color a graph G
on n vertices with chromatic number �(G).

Proof. The proof of this result follows by combining
existing results in [3] and [18]. We assume familiarity
with the terminology of PCPs like free bit complex-
ity [3] and the construction of the FGLSS graph from
a proof system [7].

We start with the PCP theorem [2, 1] which gives a
PCP construction for NP that uses a logarithmic num-
ber of random bits, f free bits for some constant f ,
has perfect completeness and soundness 1=2, i.e we
use NP � FPCP1;1=2[ log n; f ]. This, together with
[3][cf. Proposition 11.4] implies that, for every � > 0
and every admissible function t : Z+ ! Z+,

NP � FPCP1;2�t [O(log n) + (2+ �) � t; (1 + �) � tf ]:
(1)

Using the FGLSS transformation from proof sys-
tems to layered graphs with gaps in clique size [7],
Equation (1) above (with the choice � = 1) implies
that in a graph G layered into R = nO(1)23t rows
each being an independent set of size q = 22tf , it
is NP-hard to distinguish whether !(G) = R or if
!(G) � s �R = 2�tR.

We now further map G to a graph H as in the re-
duction of Section 3 of [18] with parameter k = 2t =
q1=2f . For sake of completeness we briefly sketch this
mapping. The transformation from G to H is best de-
scribed through an intermediate (k � R)-partite graph
G0. For each row i of G, there is a block Bi of k
rows in G0 such that the jth row in Bi is simply the
ith row of G shifted by (j � 1) columns to the right
in a wraparound manner. Thus each vertex of G has k
copies in G0. For each edge (u; v) in G (here we also
treat (u; u) to be an edge of G for every vertex u), we
insert an edge between every copy of u and v in G0.
The graph H is now obtained from G0 by applying an
appropriate injection T : [q] ! [q0] (with q0 = q5, see
[18] for details) to the vertices of each row of G0. For
every edge (u; v) in G0, we have an edge (T (u); T (v))
in H , and the edge set is extended by including all the
wraparound rotations of these edges. Hence the graph
H has N = q0kR vertices in all, organized as R blocks
corresponding to the R rows in G, with k rows in each
block and each row having exactly q0 = q5 vertices.

This transformation can be shown to satisfy the fol-
lowing two properties (see [18]). First, if !(G) =
R, then �(H) = �( �H) = q0. Second, we have
!(H) � k!(G) + r, and hence if !(G) � sR,
!(H) � ksR+R, so that

�( �H) = �(H) �
N

!(H)
�

q0kR

ksR+R

�
q0q1=2f

s2t + 1
=

q0q1=2f

2
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> q01+1=10f=4 > q0h

for any h < 1 + 1=10f (if q0 is greater than a suf-
ficiently large constant). Now q0 = 210tf = 2�(t)

and the total number of vertices in �H is N = n�(1) �
2�(t) = n�(1) (assuming t = O(logn)); and it is NP-
hard to distinguish between the cases �( �H) = q0 and
�( �H) > q0h. By choosing t in the range of O(1) to
O(logn) we get the claimed range in q0, the chromatic
number of H , in terms of the number of vertices N . �
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