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ABSTRACT
ESSAYS ON LEARNING IN SOCIAL NETWORKS

Pooya Molavi
Ali Jadbabaie

Over the past few years, online social networks have become nearly ubiquitous, reshaping our
social interactions as in no other point in history. The preeminent aspect of this social media
revolution is arguably an almost complete transformation of the ways in which we acquire, pro-
cess, store, and use information. In view of the evolving nature of social networks and their in-
creasing complexity, development of formal models of social learning is imperative for a better
understanding of the role of social networks in phenomena such as opinion formation, informa-
tion aggregation, and coordination. This thesis takes a step in this direction by introducing and
analyzing novel models of learning and coordination over networks. In particular, we provide
answers to the following questions regarding a group of individuals who interact over a social
network: 1) Do repeated communications between individuals with different subjective beliefs
and pieces of information about a common true state lead them to eventually reach an agree-
ment? 2) Do the individuals efficiently aggregate through their social interactions the informa-
tion that is dispersed throughout the society? 3) And if so, how long does it take the individuals
to aggregate the dispersed information and reach an agreement? This thesis provides answers
to these questions given three different assumptions on the individuals’ behavior in response
to new information. We start by studying the behavior of a group of individuals who are fully
rational and are only concerned with discovering the truth. We show that communications be-
tween rational individuals with access to complementary pieces of information eventually direct
everyone to discover the truth. Yet in spite of its axiomatic appeal, fully rational agent behavior
may not be a realistic assumption when dealing with large societies and complex networks due
to the extreme computational complexity of Bayesian inference. Motivated by this observation,
we next explore the implications of bounded rationality by introducing biases in the way agents
interpret the opinions of others while at the same time maintaining the assumption that agents
interpret their private observations rationally. Our analysis yields the result that when faced with
overwhelming evidence in favor of the truth even biased agents will eventually learn to discover
the truth. We further show that the rate of learning has a simple analytical characterization in
terms of the relative entropy of agents’ signal structures and their eigenvector centralities and
use the characterization to perform comparative analysis. Finally, in the last chapter of the the-
sis, we introduce and analyze a novel model of opinion formation in which agents not only seek
to discover the truth but also have the tendency to act in conformity with the rest of the popu-
lation. Preference for conformity is relevant in scenarios ranging from participation in popular
movements and following fads to trading in stock market. We argue that myopic agents who
value conformity do not necessarily fully aggregate the dispersed information; nonetheless, we
prove that examples of the failure of information aggregation are rare in a precise sense.

iv



B

C

CONTENTS

Overview

Bayesian Social Learning with Increasing Information

2.1 Model . . . . . e e e e
2.2 Bayesian Social Learning . . . . ... .. .. ... e
2.3 Proofof Theorem 2.1 . . . . . . . . . . . e
24 ConcludingRemarks . . . ... ... . .

Information Heterogeneity and the Speed of Social Learning

31 Model . . .. e
3.2 Non-Bayesian Social Learning . . . . ... ... ... ... .. .. .. .. ... ...
3.3 RateofSocialLearning . . . . . . ... ... .. ..
3.4 Information Allocationand Learning . . . . .. ... .. .. .. .. ..........
3.5 Network Regularityand Learning . . . . . ... ... .. ... ... .. .........
3.6 Proofs . .. ...

Social Learning in a Coordination Game

4.1 BaselineModel . ... ... ... ... ... e
4.2 Equilibrium . . . . .. e e e
4.3 Reaching Consensus . . . . . . . ..t i i ittt et e et e e
4.4 Exogenous Signals and Asymptotic Efficiency . . ... ... .. ... ... .....
45 Proofs . . ... .

Conclusions
5.1 ThesisSummary . .. ... .. ... ..
5.2 Future Directions . . . . . . . . . . i i e e e e e

Blackwell’s Ordering and Uniform Informativeness
Regularity and Network Symmetry

Stability of Random Dynamical Systems

Bibliography

© 0 N

13
16
17
18
22
26
30

47
48
51
53
55
59

72
72
73

75

76

78

81



LIST OF FIGURES

3.1 Theringand star social networks . . ... ...

4.1 Thering and star social networks of Example 4.4

4.2 Evolution of the agents’ actions over time in Example4.4 . . . .. ... ... .......



CHAPTER 1

OVERVIEW

Over the past few years, online social networks have become nearly ubiquitous, reshaping our
social interactions as in no other point in history. The preeminent aspect of this “social me-
dia revolution” is arguably an almost complete transformation of the ways in which we acquire,
process, store, and use information. News is no longer gathered exclusively by journalists and re-
ported by traditional media, but emerges from information exchanges in a complex ecosystem
comprising sources, journalists, and viewers. Increasingly, the distinction between providers
and users of information is blurred as more individuals participate in creation and curation of
content. A Pew Research Center survey published in March 2010 found that 37% of American
internet users, or 29% of the population, had “contributed to the creation of news, commented
about it or disseminated it via postings on social-media sites like Facebook or Twitter.”!

The increasing pervasiveness of online social networks has had significant real world reper-
cussions as far-reaching as in catalyzing the recent wave of popular protests in Egypt, Iran,
Tunisia, and more recently Brazil and Turkey. These large-scale protests are widely believed to
have been impossible without the help of social media—to such an extent that they are dubbed
“Twitter revolutions” by some. Social networks act as conduits of information about the time
and location of protests and accounts of the events. They counter inflammatory or complacent
official sources of information. They also help coordinate the protests by providing individuals
with information on participation decisions of others or presence and forcefulness of police at a
given location.?

Understanding the role of networks in the dissemination and aggregation of information and
facilitation of coordination among individuals is important not only in providing insights on so-
cial phenomena such as uprisings, but also from a normative point of view. For example, various
development or public health projects in the developing world rely on the power of offline social
networks in spreading information.® Similarly, successful decision making and collaboration
in modern, complex organizations relies heavily on decentralized information sharing mecha-
nisms among different divisions within the organization. A better understanding of the interplay
of individual interactions and outcomes such as learning and coordination may thus be crucial
in designing effective public policy or organizational structure.

In view of the evolving nature and role of social networks and their increasing complexity,
development of formal models of “social learning” is imperative for a better understanding of the

1“The people formerly known as the audience,” The Economist, July 7th 2011.

2“The digital demo,” The Economist, June 29th 2013.

3Examples include education programs on deworming (Miguel and Kremer (2003)) and introduction of biofortified
agricultural technologies (McNiven and Gilligan (2011)) or microfinance programs (Banerjee, Chandrasekhar, Duflo,
and Jackson (2012)).



role of social networks in phenomena such as opinion formation, information aggregation, and
coordination. This thesis takes a step in this direction by introducing and analyzing novel models
oflearning and coordination over networks. In particular, we are interested in providing answers
to the following questions regarding a group of individuals who interact over a social network:
1) Do repeated communications between individuals with different subjective beliefs and pieces
of information about a common true state lead them to eventually reach an agreement? 2) Do
the individuals necessarily agree on what they would have agreed on if they all had knowledge
of every piece of information available to every other member of the society? Said differently,
do the individuals efficiently aggregate through their social interactions the information that is
dispersed throughout the society? 3) And if so, how long does it take the individuals to aggregate
the dispersed information and reach an agreement?

The answers to these questions crucially depend on the way agents behave in response to
new information. This thesis explores the implications of several behavioral assumptions. We
start by studying the behavior of a group of individuals who are fully rational and who are only
concerned with discovering the truth and show that communications between rational individ-
uals with access to complementary pieces of information eventually direct everyone to discover
the truth. Yet in spite of its axiomatic appeal, fully rational agent behavior may not be a real-
istic assumption when dealing with large societies and complex networks, due to the extreme
computational complexity of rational reasoning.? Motivated by this observation, we next ex-
plore the implications of bounded rationality by introducing biases in the way agents interpret
the opinions of others while at the same time maintaining the assumption that agents interpret
their private observations rationally. Our analysis yields the result that when faced with over-
whelming evidence in favor of the truth even biased agents will eventually learn to discover the
truth. Finally, in the last chapter of the thesis, we introduce and analyze a novel model of opin-
ion formation in which agents not only seek to discover the truth but also have the tendency to
act in conformity with the rest of the population. Preference for conformity is relevant in sce-
narios ranging from participation in popular movements and following fads to trading in a stock
market. We argue that, unlike as in the models previously mentioned, myopic agents who value
conformity do not necessarily aggregate the dispersed information efficiently; nonetheless, we
prove that examples of the failure of information aggregation are rare, in a sense that is to be
formalized later.

Although the details of the environment—beyond connectivity of the network and identi-
fiability of the unknown parameter—are irrelevant for asymptotic aggregation of information,
the rate of information aggregation crucially depends on them. To capture these details, we in-
troduce two novel orders that are pertinent to problems in learning and networks: the first one
ranks signal structures in terms of informativeness, and the second one ranks networks in terms
of symmetry. We use these orders—in addition to a well-known measure of an individual’s cen-
trality in a network—to characterize the rate of learning for boundedly rational individuals. The
analysis yields interesting insights on the implications of the interplay between information and
network structures for social learning. For instance, we show that whether a symmetric network
is conducive to learning is contingent upon the informativeness of individuals’ signal structures.

4For a discussion of the complexities of fully rational social learning, see, for instance, DeMarzo, Vayanos, and
Zwiebel (2003).



Related Literature

The first formal models of learning and agreement in presence of dispersed information are ar-
guably due to DeGroot (1974) and Aumann (1976). In his seminal paper, DeGroot considers a
group of individuals who must act together as a team, and such that each individual in the group
has her own subjective probability distribution for the unknown value of some parameter. He
presents a model which describes how the group can reach agreement on a common subjective
probability distribution for the parameter: each individual assigns a fixed weight to the opinion
of any individual in the group and repeatedly updates her subjective probability by computing
the weighted average probability distribution across the individuals in the group. It is shown
that this process leads the individuals in the group to asymptotically reach an agreement in their
subjective probabilities of the parameter. In this model, it is assumed that there is no possibility
of learning whether the opinion of one individual is closer to the truth than that of another. It is
also assumed that, at the beginning, each individual chooses the weights that she is going to use
and she then continues to use these weights throughout the process. The individuals in the De-
Groot model are thus naive: they do not use the new information obtained through the updating
process to learn the identity of the individuals whose beliefs are closer to the truth and to modify
the weights assigned to them accordingly.

Aumann (1976) takes the alternative approach of modeling individuals as perfectly rational.
He considers two agents who are endowed with equal prior beliefs about the unknown param-
eter but form posteriors based on different pieces of information. Aumann argues that if the
individuals (truthfully) inform each other of these posteriors and if the posteriors are not equal,
arevision in the posteriors may be called for. He shows that if the agents are rational, the process
of exchanging information on the posteriors will continue until these posteriors are equal. Said
differently, individuals with equal priors “cannot agree to disagree,” even if they base their beliefs
on different information. Geanakoplos and Polemarchakis (1982) explicitly model the process of
exchange and revision of posterior beliefs for two individuals with equal priors and show that
the individuals eventually converge to a common posterior equilibrium. They further argue that
the agents generically agree on a posterior they would have agreed on, had information been
directly exchanged.

Both DeGroot’s naive learning model and the fully rational model of Aumann have been sub-
stantially extended to model opinion formation, learning, and consensus over social networks.
DeMarzo, Vayanos, and Zwiebel (2003) introduce a DeGroot-based model of persuasion bias, the
failure of agents to account for possible repetition in the information they receive, and use the
model to explain phenomena such as social influence and unidimensional opinions. Acemoglu,
Ozdaglar, and ParandehGheibi (2010) use a variant of DeGroot’s model with forceful agents, who
influence others without being influenced back, to explain the spread of misinformation in so-
cial networks. Golub and Jackson (2010) argue that, absent disproportionately influential agents,
all agents’ beliefs in large societies converge to the truth, a phenomenon they refer to as “wisdom
of crowds.” In Golub and Jackson (2012b), they show that homophily, the tendency of agents to
associate disproportionately with those having similar traits, can slow the rate of convergence to
a consensus. Bala and Goyal (1998) consider an alternative model of bounded rationality where
agents do not make inferences about the information of the agents they do not directly observe.
They show that, in a strongly connected network, local interactions ensure that all agents asymp-
totically obtain the same payoffs. Furthermore, they develop conditions on the distribution of
prior beliefs, the structure of the social network, and the informativeness of observations under



which the agents’ limit actions are optimal.

The fully Bayesian learning mode has also been extended to a network setting by a num-
ber of papers among which are Gale and Kariv (2003), Rosenberg, Solan, and Vieille (2009), and
Mueller-Frank (2013). Building on the work of Gale and Kariv, Rosenberg et al. consider a general
setting in which a number of agents repeatedly observe signals that may be informative about an
unknown parameter or the actions of others. They prove that—with forward-looking agents—
eventually all motives for experimentation disappear. They also provide tight conditions on the
network and information structures under which agents eventually reach a consensus in their
payoffs. Mueller-Frank (2013) provides a framework for studying learning over social networks
given general behavioral assumptions. He provides conditions on the agents’ choice correspon-
dences and their information structures under which rational learning leads to global consen-
sus, local indifference, and local disagreement. He also provides a counterpart to the result of
Geanakoplos and Polemarchakis (1982) (on optimal aggregation of information for agents with
finite prior partitions of the state space) to a setting where agents interact over a social network.

Contributions

We start by introducing a model of Bayesian social learning in Chapter 2. Consider a group of in-
dividuals who are endowed with a common prior belief about an unknown state of the world that
they attempt to learn. Agents repeatedly observe private signals that may be informative about
the underlying state. They also observe the posteriors of their neighbors in a social network.
The agents are assumed to have incomplete knowledge of the realized social network. However,
they are endowed with a common prior over the set of all possible social networks and each is
informed of the identities of her neighbors. In Section 2.2, we argue that if the realized social
network is strongly connected—that is, if there exists a directed path for the flow of information
from any agent to any other one—and if the agents do not face a global identification problem,
then all agents asymptotically almost surely learn the realized state of the world. In other words,
agents with common priors not only “can’t disagree forever” but also agree on the posterior they
would have agreed upon had information been directly exchanged. This result goes beyond the
conclusions of Geanakoplos and Polemarchakis (1982) and Mueller-Frank (2013) in two impor-
tant ways. First, we show that for the agents to reach an agreement it is not necessary for their
private information to correspond to a finite partition of the state space. Rather, agents reach an
agreement even if they continuously receive new private signals. Second and more importantly,
the agents in our model reach an agreement in spite of having incomplete knowledge of the real-
ized network and simply by communicating their posterior beliefs over the state space—and not
their beliefs about the topology of the social network. In contrast, Mueller-Frank (2013) assumes
the underlying social network to be commonly known by the agents.

The Bayesian framework introduced in Chapter 2 serves mainly as a benchmark that charac-
terizes the behavior of fully rational individuals. The need for Bayesian agents to reason about
the source and quality of the information obtained by their neighbors without having com-
plete knowledge of the network structure significantly complicates the required calculations for
Bayesian updating of beliefs. The complications with Bayesian learning persist even when in-
dividuals have complete information about the network structure, as they still need to perform
deductions about the information of every other individual in the network while only observing
the evolution of opinions of their neighbors.

Motivated by the complexities of Bayesian social learning, in Chapter 3, we study the evo-



lution of beliefs in a non-Bayesian model of social learning introduced by Tahbaz-Salehi (2009)
and Jadbabaie, Molavi, Sandroni, and Tahbaz-Salehi (2012). The model is similar to the Bayesian
model introduced in Chapter 2 with the exception that, instead of performing Bayesian updates,
agents apply a simple learning rule to incorporate the views of individuals in their social neigh-
borhoods: Agents first incorporate their private signals in a fully Bayesian manner as an inter-
mediate step. They then combine this Bayesian posterior with the beliefs of their neighbors in a
naive way by updating their beliefs to a convex combination of the beliefs of their neighbors and
their Bayesian posteriors. The model can thus be seen as a natural generalization of the DeGroot
(1974) model to the case that agents make repeated observations over time. This is most evi-
dent by considering a scenario where signals are uninformative beyond the first time period—in
which case the update rule reduces to DeGroot’s.

Our analysis of Tahbaz-Salehi’s model yields several important insights. As we argue in Sec-
tion 3.2, the evolution of the individuals’ beliefs in the non-Bayesian model asymptotically co-
incides with that of the Bayesian benchmark introduced in Chapter 2. More specifically, given a
strongly connected social network and an identifiable state of the world, each agent eventually
learns the true underlying state as if she were aware of the observations of all agents and updated
her beliefs according to Bayes’ rule. Thus, with a constant flow of new information, the key con-
dition for social learning is that individuals take their personal observations into account in a
Bayesian way. Repeated communications over the social network ensures that the idiosyncratic
differences eventually disappear and learning is obtained. In Section 3.3, we show that the rate
of learning has a simple analytical characterization in terms of the relative entropy of agents’ sig-
nal structures and their eigenvector centralities. Our characterization establishes that the way
information is dispersed throughout the social network has nontrivial implications for the rate
of learning. In particular, we introduce a novel partial order on signal structures and show that
when the informativeness of different agents’ signal structures is comparable given this order,
then a positive assortative matching of signal qualities and eigenvector centralities maximizes
the rate of learning. On the other hand, if information structures are such that each individual
possesses some information crucial for learning, then the rate of learning is higher when agents
with the best signals are located at the periphery of the network. In Section 3.5, we introduce a
novel notion of network symmetry and use it to argue that the extent of asymmetry in the struc-
ture of the social network plays a key role in the long run dynamics of the beliefs.

In Chapter 4, we extend the benchmark Bayesian learning framework to a setting where
agents face a payoff externality—in addition to the informational externality which is charac-
teristic of social learning models—that stems from a coordination motive. Consider a group of
individuals who attempt to take actions which are close to an unknown state of the world while,
at the same time, trying to choose actions which are similar to the average action across the rest
of the population. Such agents face a trade-off between acting according to their best estimates
of the state and trying to coordinate with other agents. Such trade-offs are important in decisions
whether to participate in popular protests, trade decisions in financial markets (Morris and Shin
(2002)), consumption decisions (Bramoullé, Kranton, and D’Amours (2009)), and organizational
coordination (Calv6-Armengol and Beltran (2009)). The decisions of traders in a stock market,
for example, depend on their beliefs about the fundamental stock values; nonetheless, traders
also tend to consider how other traders will behave as their decisions could directly affect the
gains from trade. In all of these scenarios, agents make decisions by attempting to second-guess
the decisions of others while also trying to guess the value of an unknown.

We use the framework of dynamic games of incomplete information to model the agents’



problem. Agents’ preferences are represented by payoff functions, similar to the ones used by
Morris and Shin (2002) and Calv6-Armengol and Beltran (2009), that have two components: an
estimation term capturing the agents’ preference to choose actions that are close to the realized
state and a coordination term capturing their tendency to act in conformity with others. The
game is played over multiple stages. At each stage of the game, each agent takes an action and
observes a private signal and the previous choices made by others in her social neighborhood.
An agent’s action may reveal some information to her neighbors that was previously unknown
to them. The neighbors can use this information to reevaluate their beliefs about the underlying
parameter and their predictions of others’ future behavior. These reevaluations may, in turn,
lead agents to revise their actions over time.

We define the (weak perfect Bayesian) equilibrium assuming that agents are myopic and pro-
ceed to prove formal results regarding the agents’ asymptotic equilibrium behavior. First, we
show that each agent’s action asymptotically converges to some limit action. We then use this
result to prove that if the social network is sufficiently connected over time, agents asymptoti-
cally receive similar payoffs and choose similar actions. That is, agents eventually coordinate on
the same action. Second, we show that if the agents’ private observations are only functions of
the unknown state (and not their own actions), then generically the agents eventually coordinate
on the action on which they would have coordinated if they had directly exchanged their private
signals. This result extends the main theorem of Chapter 2, as well as Theorem 4 of Mueller-
Frank (2013), on optimal aggregation of information, to the cases where the state space is not
finite and the agents face payoff externalities induced by a coordination motive.



CHAPTER 2

BAYESIAN SOCIAL LEARNING WITH INCREASING INFORMATION

In this chapter, we study the problem of aggregation of information on a strongly connected so-
cial network when individuals incorporate the views of their neighbors in a fully Bayesian man-
ner. Consider a group of agents who repeatedly observe private signals that are potentially in-
formative about an underlying state of the world. We assume that agents’ private observations
are drawn from different distributions and that they may be only partially informative about the
state. We also assume that individuals cannot observe the beliefs held by all members of the so-
ciety. Rather, they only have access to the opinions of the agents in their social neighborhood.
Agents are not informed of the structure of the underlying social network beyond their imme-
diate neighborhood. The agents use the information contained in these observations to update
their beliefs according to Bayes’ rule.

We show that if the realized social network is almost surely strongly connected and the un-
derlying state of the world is globally identifiable, agents asymptotically almost surely learn the
realized state of the world. Thus, in spite of the agents’ incomplete information about the un-
derlying social network and the local nature of their interactions, the information content of the
agents’ private signals is eventually fully aggregated. In other words, each agent’s belief at the
end of the learning process is the same as what it would have been if she had had direct access
to the private observations of everyone in the society.

The work in this chapter is related to the literature on Bayesian learning over networks. The
focus of the social learning literature is on modeling the way agents use their observations to
update their beliefs and characterizing the outcomes of the learning process. Examples include,
Bikhchandani, Hirshleifer, and Welch (1992), Banerjee (1992), and Acemoglu, Dahleh, Lobel, and
Ozdaglar (2011) that study sequential decision problems; and Borkar and Varaiya (1982), Gale
and Kariv (2003), Rosenberg, Solan, and Vieille (2009), Lobel and Sadler (2012), Mueller-Frank
(2013), and Acemoglu, Bimpikis, and Ozdaglar (forthcoming) that study repeated and simulta-
neous interactions. Our model belongs to the latter class of models. Borkar and Varaiya (1982),
Gale and Kariv (2003), and Rosenberg, Solan, and Vieille (2009) study models of repeated in-
teractions similar to the one introduced in this chapter. Their focus is, however, on providing
conditions under which agents reach consensus in their actions. Lobel and Sadler (2012) and
Acemoglu, Bimpikis, and Ozdaglar (forthcoming) study social learning under aggregate network
uncertainty and endogenous costly network formation, respectively. The work most closely re-
lated to ours is by Mueller-Frank (2013) who studies optimal social learning under general choice
correspondences, given that the agents’ private information can be represented by a finite parti-
tion of the state space. In contrast, in our model, agents continuously make new private obser-
vations enabling them to form increasingly finer partitions of the state space.



2.1 Model

2.1.1 Agents and Observations

Consider a collection of n individuals, denoted by N = {1,2..., n}, who are attempting to learn an
underlying state of the world 8 € ©. The underlying state is drawn at ¢ = 0 according to probabil-
ity distribution v € A® with full support over ®, which we assume to be finite.

Even though the realized state of the world remains unobservable to the individuals, they
make repeated noisy observations about 8 over discrete time. In particular, at each time period
t € N and conditional on the realization of state 8, agent i observes a private signal s;; € S; which
is drawn according to distribution [‘? () € AS;, denoted the signal structure of agent i. We assume
that the signal space S; is finite. The realized signals are independent across individuals and over
time. Let sy = (S14,...,Sp) €S = x ;’:18,- denote the signal profile realized at time ¢ and denote the
infinite signal profile sequence by s = (s1, $2,...) € SN,

We do not require the observations to be informative about the state. In fact, each agent may
face an identification problem, in the sense that she might not be able to distinguish between
two states. We say two states are observationally equivalent from the point of view of an agent if
the conditional distributions of her signals under the two states coincide. More specifically, the
elements of the set @? ={0cO: f(i’ = [?} are observationally equivalent to state 6 from the point
of view of agent i. However, we impose the following global identifiability assumption on the
agents’ signal structures.

Assumption 2.1. There are no two states that are observationally equivalent from the point of
view of all agents, that is, @‘f n---n0% = {0} for all 6 € ©.

The above assumption guarantees that even though each agent may face an identification
problem in isolation, there is no global identification problem: agents’ observations are infor-
mative enough to allow them to collectively learn the underlying state.

2.1.2 Social Network

At every time period, in addition to her private observation, each agent also has access to the
beliefs of a subset of other agents, denoted by N; € N and called her neighbors. The interac-
tions between agents can be summarized by a directed network g = [gj;] € G = {0,1}""*" where
gji = lifand only if agent j is a neighbor of agent i, that is, if j € N;. The social network is gener-
ated at ¢ = 0 according to some probability distribution ¥ € AG independently of other random
variables in the model. Each agent i is informed of her social neighborhood N; at time ¢ = 0.

A directed path in the social network from vertex i to vertex j is a sequence of vertices starting
with 7 and ending with j such that each vertex is a neighbor of the next vertex in the sequence.
We say the social network is strongly connected if there exists a directed path from each vertex
to any other.

Assumption 2.2. The underlying social network is strongly connected with ¥ -probability one.

The above assumption simply guarantees that information can flow from any agent in the
network to any other.



2.1.3 Learning Rule

Let (Q, ) be a measurable space, where Q = © x SV x G is the space containing the realizations
of the underlying state of the world, the sequence of signal profiles over time, and the realization
of the social network, and 28 is the o-algebra of subsets of Q2. Conditional on the realization of
state 0, sample paths s € SN are realized according to the probability distribution

sz(f?xx[z N,

where N denotes the set of natural numbers. We use [P to denote the probability distribution over
Q induced by v, {é?}gegyie ~ and v, i.e., the probability distribution defined as

P@©,B,g) = fB vO) PP ds)y(g),

for any 6 € ©, g € G, and measurable set B < S".

Agents incorporate their private signals and views of their neighbors in a fully Bayesian man-
ner. The posterior belief of agent i on ® and the o-algebra generated by all her observations up to
time period t—which consists of her private signals and the sequence of beliefs of her neighbors
up to time t—are defined recursively as follows:

‘]fi[ = U(sil)---»sit) (ujlr---)uj[—l)jENi)
Kit(0) = PO|Ay),

with p;9 = v. We also use #; to denote the smallest o-algebra that contains ./¢;; for all t.
Finally, we assume that the description of the model, as presented in this section, is common
knowledge.

2.2 Bayesian Social Learning

Given the Bayesian model described in the previous section, we are interested in the long run
behavior of the agents’ beliefs and in particular whether they learn the true realized state. The
following theorem shows that each agent asymptotically assigns probability of one to the realized
state even if no agent can identify the realized state on her own—as long the agents do not face
a global identification problem.

Theorem 2.1. Suppose that Assumptions 2.1 and 2.2 hold. Then,
Lir()—1g() —0  P-as,

for all i, where 1¢y(-) is the degenerate probability measure that assigns a unit mass on the under-
lying state .

Thus, Bayesian agents will eventually learn the true parameter as long as the network is
strongly connected and no two states are observationally equivalent from the point of view of
all agents. We remark that it is critical for agents to assign a nonzero prior belief on all states.
Clearly, if a Bayesian agent considers a state 6 to be impossible then no new information would
convince her that 8 is the underlying state of the world.



The intuition behind Theorem 2.1 is simple. Consider an arbitrary agent i in the social
network. Given any 0 € ©, agent i can asymptotically learn—using only her private signals—
whether the realized state belongs to the set @?. Furthermore, this fact is common knowledge.
Therefore, any agent j, who is a neighbor of agent i and observes i’s beliefs, also learns whether
the realized state belongs to @?. A similar argument shows that the agents who observe j and,
inductively by the strong connectivity of the network, all other agents can asymptotically learn
whether the event @? is realized. The same is true for any such event G)? withie Nand 6 € ©.
Therefore, by the global identifiability assumption, for each 8 € O, every agent asymptotically
learns whether 6 is realized.

2.3 Proof of Theorem 2.1

We define &;; as the o-algebra generated by the private signals observed by agent i up to period
L
‘@il‘ = U(Sil’ -~-’Sit))

and %; as the smallest o-algebra containing 2?;, for all t. We also define %;; as the o-algebra
generated by the sequence of beliefs of agent i up to period ¢,

%it = U(”ilwnr,uit)y

and %; as the smallest o-algebra containing % for all ¢. Finally, we let [;;(-) € AS; be the empir-
ical distribution of the signals observed by agent i up to time ¢ and let B? € &; be the event

B?z{wEQ:l,’t—%? as t—oo givenw}.
By the strong law of large numbers,
|]®Q = UBQ P-a.s.

Therefore,
E[loo| 2] = E[1pol ]| =10 =1y P-as,

where the second equality is a consequence of the fact that Bl.g € ;. Hence, the fact that 22; ¢ A
implies that
e[ty || = |E [ty

%j] Z[E[ﬂeri)\@i] =|]®([) P-a.s.
Thus, by Lévy’s zero-one law, for any 6 € 9,
uic (0F) =E1p | 71| — E|1g0| 7] =1y P-as. 2.1)

In other words, agent i asymptotically rules out states that are not observationally equivalent to
the underlying state of the world from her point of view.
Next, consider agent j such that i € N;. For any 6 € ©, we have,

E [t |%ic] = E [E[vop | #ic] |ic| = € [1ase (7)) |21e] = puie (©7),
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where the first equality is a consequence of %;; A;1,° and the third equality is due to the fact
that y; is measurable with respect to %;;. Therefore, by (2.1),

Ello|%ii] — 1oy P-as.

On the other hand, by Lévy’s zero-one law, E[lg0|%;;] converges to E[lge|%;] with P-probability
one, which implies that E[lgo|%;] = g with P-probability one. Hence, for any agent j such that
i € Nj, the fact that %; < #; implies that

e [gh] e[l

7| =E|igp|% | =1ep  P-as.
Thus, by Lévy’s zero-one law,
pye (0F) = [tog 75| — E [ty 77| =1y,

with P-probability one. Therefore, not only agent j would be able to eventually distinguish be-
tween any two states that are not observationally equivalent from her own point of view, but
also between those that are not observationally equivalent from the points of view of any of her
neighbors.

Finally, the fact that the social network is strongly connected guarantees that every individual
would be able to eventually distinguish between any two states that are observationally equiva-
lent from the point of view of some other agent. This observation coupled with the assumption
that no two states are observationally equivalent from the point of view all agents imply

Wit (0) — lig P-a.s.,

completing the proof. O

2.4 Concluding Remarks

This chapter of the thesis studies a model of social learning where agents incorporate their pri-
vate signals and the beliefs of their neighbors in a fully Bayesian manner. We showed that as
long as the realized social network is strongly connected and agents do not face a global iden-
tification problem, they asymptotically almost surely learn the realized state. This result is true
even if no agent can identify the realized state on her own and in spite of the agents’ incomplete
information about the realized social network and the sources of others’ information.

The Bayesian learning framework mainly serves as a benchmark. The need for Bayesian
agents to reason about the source and quality of the information obtained by their neighbors
without having complete knowledge of the network structure significantly complicates the re-
quired calculations for Bayesian updating of beliefs, well beyond agents’ regular computational
capabilities. Gale and Kariv (2003) illustrate the complications that can arise due to repeated
Bayesian deductions in a simple network. Also, as DeMarzo, Vayanos, and Zwiebel (2003) point
out, in order to disentangle old information from new, a Bayesian agent needs to recall the infor-
mation she received from her neighbors in the previous communication rounds, and therefore,
“Iwlith multiple communication rounds, such calculations would become quite laborious, even

5Note that by definition, u;; € #;, implying that %;,; < #;;.
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if the agent knew the entire social network.” The necessary information and the computational
burden of these calculations are simply prohibitive for adopting Bayesian learning, even in rela-
tively simple networks.®

Motivated by these observations on the complexity of Bayesian updating, in the next chap-
ter, we study a tractable model of social learning that asymptotically agrees with the Bayesian
benchmark and perform explicit comparative analysis on the effect of the signal and network
structures on the rate of learning.

6An exception, as shown by Mossel and Tamuz (2010), is the case in which agents’ signal structures, their prior
beliefs, and the social network are common knowledge and all signals and priors are normally distributed.
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CHAPTER 3

INFORMATION HETEROGENEITY AND THE SPEED OF SOCIAL LEARNING

This chapter examines how social interactions in the presence of dispersed information deter-
mine the long run dynamics of the beliefs. To this end, we utilize a simple model of opinion for-
mation introduced by Tahbaz-Salehi (2009) and Jadbabaie, Molavi, Sandroni, and Tahbaz-Salehi
(2012), which in turn is a variant of the seminal model of DeGroot (1974). Agents are endowed
with a sequence of private signals that are potentially informative about an underlying state of
the world. We capture the dispersion and heterogeneity of information by assuming that agents’
private observations are drawn from different distributions and that they may be only partially
informative about the state. We also assume that individuals cannot observe the beliefs held by
all members of the society. Rather, they only have access to the opinions of the agents in their
social clique. The key feature of the model is that each agent linearly combines her private ob-
servations with the opinions of her neighbors. Agents first incorporate their private signals in a
fully Bayesian manner as an intermediate step. They then combine this Bayesian posterior with
the beliefs of their neighbors in a naive way by updating their beliefs to a convex combination of
the beliefs of their neighbors and their Bayesian posteriors.

We argue that the evolution of the individuals’ beliefs asymptotically coincides with that of
the Bayesian benchmark introduced in Chapter 2. More specifically, given a strongly connected
social network and an identifiable state of the world, each agent eventually learns the true under-
lying state as if she were aware of the observations of all agents and updated her beliefs according
to Bayes’ rule. Thus, with a constant flow of new information, the key condition for social learn-
ing is that individuals take their personal observations into account in a Bayesian way. Repeated
communications over the social network ensures that the idiosyncratic differences eventually
disappear and learning is obtained.

We also characterize the speed of social learning as a function of the primitives of the en-
vironment, namely, the structure of the social network and agents’ information structures. We
show that the structural features of the network which are relevant for the long run dynamics
of the beliefs are summarized via its eigenvector centrality, a recursively defined notion of im-
portance of different agents in the network. We also show that the rate of learning depends on
the information structure of each agent via the expected log-likelihood ratios of her signal dis-
tributions, a quantity known as relative entropy. More specifically, our characterization result
establishes that conditional on the realization of a given state, the rate at which agents rule out
another state as a possibility is equal to the convex combination of the relative entropies, where
the weights are given by the agents’ eigenvector centralities.

Our characterization of the rate of learning enables us to analyze how the dispersion of in-

This chapter is based partly on Jadbabaie, Molavi, and Tahbaz-Salehi (2013).
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formation throughout the network affects the long run dynamics of the beliefs. We show that if
the vectors of pairwise relative entropies of all agents are comparable with respect to the product
order—what we refer to as uniform informativeness ordering of signal structures—then, assign-
ing signals of the highest quality to the more central agents increases the speed of social learning.
Put differently, the positive assortative matching of signal qualities and eigenvector centralities
leads to the fastest convergence of the beliefs to the truth. The intuition behind this result is
simple: given that more central individuals receive more effective attention from other agents in
the social network, assigning the information structure that is uniformly more informative to the
more central agents guarantees that information is diffused faster.

This result is in line with the empirical observations of Banerjee, Chandrasekhar, Duflo, and
Jackson (2012), who study how variations in the set of individuals exogenously informed about
a microfinance program determine the eventual participation rate. By analyzing the social net-
work and participation data in 43 rural villages in southern India, they find that the long run rate
of participation is higher when the “injection points” have higher eigenvector centralities. Even
though based on somewhat different premises, the theoretical implications of our model match
Banerjee et al. (2012)’s empirical observations that (i) the network properties and locations of
the exogenously informed individuals can substantially impact the diffusion of information; (ii)
the extent of diffusion is significantly higher when the information injection points have higher
eigenvector centralities; and more generally, (iii) beyond eigenvector centrality, other measures
of network connectivity (such as average degree, average path length, clustering, etc.) do not
play a substantial role in the long run dynamics of the beliefs. To the best of our knowledge,
our work is the first to study the role of information heterogeneity and injection points from a
theoretical point of view.

We also use our characterization of the rate of learning to analyze the long run dynamics of
the beliefs under conditions that essentially correspond to the polar opposite of uniform infor-
mativeness ordering of signal structures. More specifically, we show that if every agent possesses
some information that is crucial for learning—in the sense that other agents cannot learn the un-
derlying state without her participation in the network—then the positive assortative matching
of signal qualities and eigenvector centralities no longer maximizes the rate of learning. Rather,
learning is obtained more rapidly if the least central agents receive signals of the highest qual-
ity. The intuition behind this result is as follows: if the information required for distinguishing
between the pair of states that are hardest to tell apart is only available to agents that receive
very little effective attention from others, then it would take a long time for (i) those agents to
collect enough information to distinguish between the two states; and (ii) for this information
to be diffused throughout the network. On the other hand, a negative assortative matching of
signal qualities and eigenvector centralities guarantees that these two events happen in parallel,
leading to a faster convergence rate.

We also provide a comparative analysis of how the structural properties of the social net-
work determine the speed at which agents’ beliefs concentrate around the truth. We define a
novel partial order over the set of social networks which captures the extent of asymmetry in
the network structure. In particular, we define a network to be more regular than another if the
eigenvector centrality of the former is majorized by that of the latter. According to this notion,
eigenvector centralities in a more regular social network are more evenly distributed among dif-
ferent individuals.

We show that if the agents’ signal structures are comparable in the uniform sense, then the
rate of learning is decreasing in the social network’s regularity. This is a consequence of the fact
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that, under positive assortative matching of signal qualities and eigenvector centralities, more
dispersion in centralities guarantees that higher quality signals receive more effective attention,
thus speeding up the learning process. In contrast, if all agents posses some information crucial
for learning, then the speed of learning is higher in more regular networks, as in such a scenario
an informational bottleneck effect plays a dominant role in determining the long run dynamics
of the beliefs: learning is complete only when the information uniquely available to the most
marginal agent is diffused throughout the society.

The juxtaposition of our results suggests that, in general, the exact role played by social in-
teractions in the dynamics of the beliefs does not disentangle from the informational content of
such communications. Rather, as our analysis highlights, the long run dynamics of the beliefs is
sensitive to the specifics of how information is dispersed throughout the social network.

Our work belongs to the large body of works that study learning over social networks. One
of the main strands of this literature focuses on simple, non-Bayesian rule-of-thumb updating
processes. These works, for the most part, rely on the well-known opinion formation model of
DeGroot (1974), according to which, agents update their beliefs as the average of their neighbors’
opinions. DeMarzo, Vayanos, and Zwiebel (2003), Acemoglu, Ozdaglar, and ParandehGheibi
(2010), and Golub and Jackson (2010, 2012a,b) are among the papers that use DeGroot’s model
to study opinion dynamics. Golub and Jackson (2010), for example, provide conditions on the
structures of a growing sequence of social networks under which asymptotic opinions of all
agents converge to the truth. The DeGroot model is generalized by Jadbabaie et al. (2012) to
allow for constant arrival of new information over time. We utilize this latter model to study the
speed of social learning in the presence of information heterogeneity.

The paper most closely related to the work presented in this chapter is the recent work of
Golub and Jackson (2012b), who study the speed of convergence of the benchmark DeGroot
learning model. However, the two works focus on different questions. Whereas Golub and Jack-
son study the role of homophily—the tendency of agents to associate disproportionately with
those having similar traits—in belief dynamics, the focus of our analysis is to understand how
the distribution of information over the social network affects the rate at which agents learn the
truth. Furthermore, unlike the benchmark DeGroot model, we explicitly model agents’ signal
structures and analyze the role of information heterogeneity in their long run beliefs.

Finally, our work is related to the smaller and much more recent collection of empirical stud-
ies that focus on learning and the diffusion of information over social networks. As already men-
tioned, Banerjee et al. (2012) study the diffusion of a microfinance program in rural India and
find that the eventual participation rate depends on the eigenvector centrality of the informa-
tion injection points. Chandrasekhar, Larreguy, and Xandri (2011) conduct a unique lab exper-
iment to test several models of learning over social networks. They observe that the evolution
of choices made by the subjects are better explained by a variant of the DeGroot model rather
than Bayesian learning models. Among other related empirical studies of learning and infor-
mation aggregation in social networks are Choi, Gale, and Kariv (2005, 2012), Alatas, Banerjee,
Chandrasekhar, Hanna, and Olken (2012), and Corazzini, Pavesi, Petrovich, and Stanca (2012).
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3.1 Model

3.1.1 Agents and Observations

Consider a collection of n individuals, denoted by N = {1,2..., n}, who are attempting to learn an
underlying state of the world 8 € ©. The underlying state is drawn at ¢ = 0 according to probabil-
ity distribution v € A® with full support over ®, which we assume to be finite.

Even though the realized state of the world remains unobservable to the individuals, they
make repeated noisy observations about 8 over discrete time. In particular, at each time period
t € N and conditional on the realization of state 8, agent i observes a private signal w;; € S which
is drawn according to distribution f?(-) € AS.” We assume that the signal space S is finite and
that B?(-) has full support over S for all i and all 6 € ©. The realized signals are independent
across individuals and over time. We refer to the collection of conditional probability distribu-
tions {é? (}oeo as the signal structure of agent i and for simplicity denote it by ¢;.

An individual’s observations may not be informative regarding the underlying state. Rather,
each agent may face an identification problem in the sense that she may not be able to distin-
guish between two states. We say two states are observationally equivalent from the point of
view of an agent if the conditional distributions of her signals under the two states coincide.
More specifically, the elements of the set @? ={fecO: ﬂ? = 5?} are observationally equivalent to
state 0 from the point of view of agent i. However, we impose the following global identifiability
assumption on the agents’ signal structures.

Assumption 3.1. There are no two states that are observationally equivalent from the point of
view of all agents, that is, @? n---n0Y = {0} forall 6 € ©.

The above assumption guarantees that even though each agent may face an identification
problem in isolation, there is no global identification problem: agents’ observations are infor-
mative enough to allow them to collectively learn the underlying state.

Letw; = (w1y,...,wy) denote the signal profile realized at time ¢ and denote the set of infinite
signal profile sequences by Q = {w : w = (w1, wy,...)}. Conditional on the realization of state 0,
sample paths w € Q are realized according to the probability distribution

pez(g(fx...xgz)’\',

where N denotes the set of natural numbers. We use P to denote the probability distribution
over O x Q defined as P(0,-) = v(O)P?(-). The expectation operators with respect to probability
distributions P? and P are denoted by EY and E, respectively. Finally, we define &;; as the o-
algebra generated by the past history of agent i’s observations up to time period ¢, and let &%; be
the smallest o-algebra containing all &;; for i € N.

3.1.2 Learning Rule

At every time period, in addition to her private observation, each agent also has access to the
beliefs of a subset of other agents, which we refer to as her neighbors. Agents apply a simple
learning rule similar to the learning model of DeGroot (1974) to incorporate their private signals
and the views of their neighbors. In particular, at every time period, each agent updates her

7All our results generalize to the case that agents’ signal spaces are nonidentical.
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belief as a convex combination of (i) the Bayesian posterior belief conditioned on her private
signal; and (ii) the opinions of her neighbors. More precisely, if u;;(-) € A® denotes the belief of
agent i at time period £, then

Pir+1 = @i BUWi50i000) + Y aijlije, 3.1
Jj#i

where BU(u;;; wir+1) is the Bayesian update of agent i’s opinion at time period ¢ following the
observation of the private signal w;;+1, and {a;;} is a collection of nonnegative constants such
that a;; > 0 for all i and a;; > 0 if and only if j # i is a neighbor of i. Thus, the value of a;;
captures the weight that agent i assigns to the belief of agent j. For simplicity of exposition, we
assume that a;; = a for all i. By construction, individuals cannot directly incorporate the views
of agents with whom they are not neighbors. Finally, note that for u;;+; to be a well-defined
probability distribution over ©, the weights that each agent i assigns to her Bayesian posterior
belief and the beliefs of her neighbors must add up to one, that is, Z;’zl aij=1.

3.1.3 Social Network

The extent of social interactions can be summarized by the matrix A = [a; jl, which we refer to
as the social interaction matrix. Equivalently, one can capture the social interactions between
the agents by a directed, weighted graph on rn vertices. Each vertex of this graph, which we
refer to as the social network, corresponds to an agent and a directed edge (j, i) with weight
a;j > 0 is present from vertex j to vertex i if agent j is a neighbor of agent i. Thus, the social
interaction matrix A is the (weighted) adjacency matrix of the underlying social network. Given
this equivalence, we use the two concepts interchangeably.

A directed path in the social network from vertex i to vertex j is a sequence of vertices starting
with i and ending with j such that each vertex is a neighbor of the next vertex in the sequence.
We say the social network is strongly connected if there exists a directed path from each vertex
to any other.

Assumption 3.2. The underlying social network is strongly connected.

The above assumption simply guarantees that information can flow from any agent in the
network to any other. Expressed in terms of the social interaction matrix, Assumption 3.2 is
equivalent to assuming that A is irreducible.?

3.2 Non-Bayesian Social Learning

As already mentioned, learning rule (3.1) is based on the learning model of DeGroot (1974) in
which agents update their beliefs as a convex combination of their neighbors’ beliefs at the pre-
vious time period. The feature that distinguishes our model from the benchmark DeGroot learn-
ing model is the constant arrival of new information over time. Whereas in the DeGroot model
each agent has only a single observation, the individuals in our model receive information in
small bits over time. In fact, if no individual receives any informative signals beyond time period

8Matrix A is reducible, if there exists a permutation matrix P such that P’ AP is block upper triangular. Otherwise,
A is said to be irreducible. For more, see Berman and Plemmons (1979).
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t =1, learning rule (3.1) reduces to the DeGroot update. In this sense, our model is a natural gen-
eralization of the DeGroot learning models to the case that agents make repeated observations
over time. This feature of the model is key for our results as it enables us to introduce informa-
tion heterogeneity in a simple manner, and hence, study the role that different agents’ signal
structures play in the extent of information aggregation.

The model exhibits a number of other desirable features which make it suitable for the study
of information aggregation over social networks. First, the evolution of the individuals’ beliefs
asymptotically coincides with those of Bayesian agents. Note that as in the benchmark DeG-
root model, agents do not adjust the updating rule to account for the network structure and the
differences in the precision of information that other agents may have learned over time. Never-
theless, the next result shows that the dispersed information in the social network is successfully
aggregated.

Proposition 3.1. Suppose that Assumptions 3.1 and 3.2 hold. Then,
Lir()—1g() —0  P-as,

for all i, where 1¢y(-) is the degenerate probability measure that assigns a unit mass on the under-
lying state .

Thus, the resulting learning process asymptotically coincides with Bayesian learning despite
the fact that agents use a DeGroot-style update to incorporate the views of their neighbors. More
specifically, each agent eventually learns the true underlying state of the world as if she were
aware of the observations of all agents and updated her beliefs according to Bayes’ rule.

Another feature of the model is its simplicity, which enables us to analytically character-
ize the asymptotic behavior of the agents’ beliefs. In particular, unlike the Bayesian learning
models—in which each agent needs to form and update beliefs about the observations made
by all other agents while only observing the beliefs (or actions) of her neighbors—our model is
tractable. Yet, as we show in the following sections, the model is rich enough to capture the non-
trivial interplay between the informativeness of agents’ private signal structures and the struc-
ture of the social network on the one hand and the extent and speed of learning on the other.

Finally, we remark that recent empirical evidence suggests that, in certain contexts, DeGroot-
like learning models do a good job in explaining individuals’ learning processes. More specifi-
cally, in a series of experiments conducted in rural India, Chandrasekhar et al. (2011) test several
models of learning over social networks. They follow the evolution of choices made by subjects
who repeatedly observe the actions of their neighbors. Their findings suggest that the observed
paths of learning are better explained by a variant of the DeGroot model rather than Bayesian
learning models.

3.3 Rate of Social Learning

In this section, we characterize the rate at which agents learn the underlying state as a function
of the structure of the social network and the agents’ signal structures. Before presenting the
results, we define a few key concepts.
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3.3.1 Relative Entropy

Given their heterogeneous signal structures, different individuals may have access to different
information about the underlying state of the world. For example, some agents may receive
more informative signals conditional on the realization of a specific state. Furthermore, the sig-
nal structure of each given individual may not be equally informative about all states, in the
sense that the collection of her private signals may provide her with more information about a
given state than another. To measure the extent of such heterogeneity, we borrow the concept
of relative entropy, first introduced by Kullback and Leibler (1951), from the information theory
literature.

Definition 3.1. Given two discrete probability distributions p and g with identical supports, the
relative entropy of g with respect to p is

pi

D(plg)=) pjlog=~

;i qj

where p; and g; are the probabilities of the realization of the j-th outcome.

One can verify that D(p|lq) = 0 for all pairs of distributions p and g and that D(p|q) = 0 if
and only if p = g. In this sense, relative entropy is a nonsymmetric measure of the discrepancy
between the two probability distributions. Alternatively, the relative entropy of g with respect to
p is the expected value of the log-likelihood ratio test when p and g correspond to the null and
alternative hypotheses distributions, respectively.’

The information content of agent i’s signal structure can be measured in terms of the relative
entropies of her marginal signal distributions. For any pair of states 6,6 € ©, let

1:6,0) = D(e?1¢%).

Thus, h; (0,0) is a measure of the expected information (per observation) in agent i’s signal struc-
ture in favor of the hypothesis that the underlying state is 8 against the alternative hypothesis 0,
when the underlying state is indeed 6. When ;(6,0) is strictly positive, observing a sufficiently
large sequence of signals generated by é? enables the agent to rule out 0 with an arbitrarily large
confidence. In particular, the number of observations required to reach a given prespecified
confidence is determined by the magnitude of h;(0,0): a larger h;(6,0) means that the agent
can rule out § with fewer observations generated by her signal structure. On the other hand, if
h;(6,0) = 0, then agent i would not be able to distinguish between the states based on her private
signals alone, no matter how many observations she makes. In view of the above discussion, we
define the following novel partial order over the set of signal structures:

Definition 3.2. Signal structure {Z?(-)}QE@ is uniformly more informative than {E’ig(-)}geg, de-
noted by ¢; > ¢, if the corresponding relative entropies satisfy

hi0,0)=h6,0) forall 6,0€0.

9In information theory, the value of D(p||g) is interpreted as the expected number of extra bits required to code the
information if the coder mistakenly assumes that the random variable is generated according to distribution ¢ when
in fact the true underlying distribution is p. For more on relative entropy and related concepts in information theory,
see Cover and Thomas (1991).
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In other words, if ¢; > [’l., then ¢; is more discriminating between any pairs of states than é’i,
and as a result, signals generated according to the former provide more information to agent i
than the ones generated according to the latter. This notion of informativeness is weaker than
Blackwell (1953)’s well-known criterion, according to which a signal structure is more informa-
tive than another if any decision maker prefers the former to the latter in all decision problems.°
Hence, if ¢; is more informative than E;. in the sense of Blackwell, then ¢; > Z’l., but not vice
versa.!! Finally, we remark that similar to Blackwell’s ordering, uniform informativeness is a
partial order on the signal structures, as not all signal structures are comparable in the sense of
uniform informativeness.

3.3.2 Eigenvector Centrality

In addition to the individuals’ signal structures, the detailed structure of the social network also
plays a key role in the extent and speed of information aggregation. The following notion is a
measure of the importance of different agents in the sense of information flow.

Definition 3.3. Given the matrix of social interactions A, the eigenvector centrality is a nonneg-
ative vector v such that for all 7,

n
Vi = Z v j a jir
j=1
and |v|; = 1. The i-th element of v is the eigenvector centrality of agent i.

The eigenvector centrality of agent i is thus a measure of her importance defined, recursively,
as a function of the importance of the agents who are connected to her: an agent is more central
if other more central agents put a large weight on her opinion. The Perron-Frobenius theorem
guarantees that if the underlying social network is strongly connected, then the eigenvector cen-
trality is a well-defined notion and is uniquely determined. Furthermore, v; > 0 for all i.'?

3.3.3 Speed of Learning

In the remainder of this section, we provide an analytical characterization of the speed of learn-
ing over the social network. As implied by Proposition 3.1, minimal connectivity and identi-
fiability conditions are sufficient to ensure that agents learn the realized state asymptotically.
However, after making any finite number of observations, agents remain uncertain about the
underlying state of the world. The extent of this uncertainty at a given time period ¢ can be
measured via

1 n
er=5 2 [mi0 =100 (3.2)
i=1

10There exists an extensive literature in decision theory and information economics that provides foundations for
different information orderings. For decision theoretic foundations of the concept of relative entropy see Sandroni
(2000), Blume and Easley (2006), Lehrer and Smorodinsky (2000), and Cabrales, Gossner, and Serrano (2012).

HpMore discussions on the relationship between the two notions can be found in Appendix A.

12 detailed review of eigenvector and other notions of centrality is provided by Jackson (2008). For other applica-
tions of network centrality in economics, see Ballester, Calvd-Armengol, and Zenou (2006), Calv6-Armengol, de Marti,
and Prat (2011), Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) and Elliott and Golub (2013).
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The above expression is the total variation distance between agents’ beliefs at time ¢ and the
probability distribution that assigns a unit mass on the realized state of the world.'® Thus, learn-
ing the underlying state implies that e; converges to zero as t — co. We define the rate of learning
as

1
A :liminf—|loget|. (3.3)
t—oo f

The above quantity is inversely proportional to the number of time periods it takes for the agents’
uncertainty about the underlying state of the world to fall below some given threshold. In this
sense, a higher value of A implies that agents reach any given level of certainty about the state
within a shorter time interval. The next proposition characterizes the rate of learning in terms of
the primitives of the environment.

Proposition 3.2. Suppose that Assumptions 3.1 and 3.2 are satisfied. Then, the following state-
ments hold in a set of P-probability one.

(a) Therate of learning A is finite and nonzero.

(b) Given any collection of signal structures, A < r, where

n
r=aminmin )_ v;h;6,6) (3.4)
00 20 ;5

and v; is the eigenvector centrality of agent i.
(¢) Furthermore,A=r+o0 (maxl.,g’é ||10g€(i’(-) - log[?(-) ||) R

Part (a) of the above proposition establishes that agents learn the underlying state of the
world (asymptotically) exponentially fast. In particular, the fact that A € (0,00) means that, for
large enough values of ¢, uncertainty e; is proportional to exp(—At). The significance of Propo-
sition 3.2, however, lies in establishing that the rate of learning depends not only on the total
amount of information available throughout the network, but also on how that information is
distributed among different agents. In particular, part (b) provides an upper bound on the rate
of learning in terms of the relative entropies of agents’ signal structures and their eigenvector
centralities. Part (c) then shows that this upper bound is an arbitrarily good approximation to
the rate of learning when the ratio é?(si) / f? (s;) is close enough to 1 for all pairs of states, all sig-
nals s;, and all agents. That is, the upper bound in (3.4) is arbitrarily tight when the information
endowment of agents are small in the sense that no single private signal is very informative about
the underlying state. In view of this result, throughout the rest of the current chapter, we use r as
a proxy for the rate of learning.

Expression (3.4) for the rate of learning has an intuitive interpretation. Recall that relative
entropy h;(6,0) is the expected rate at which agent i accumulates evidence in favor of 6 against
® when the realized state is indeed 0. Thus, it is not surprising that, ceteris paribus, an increase

13The choice of the total variation distance between the probability distributions (or equivalently, the /;-norm) in
(3.2) is not essential. Given the equivalence of norms in finite dimensional spaces, replacing the /1 -norm with some
other vector norm would simply lead to a rescaling of e; by a positive constant, which does not affect the rate of
learning.

14Given two real-valued functions f() and g(-) for which limy_.¢ f(x) = limx_ g(x) = 0, the expression f(x) =
0(g(x)) means that lim,_.g f(x)/g(x) = 0.
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in the informativeness of the agents’ signals (in the uniform sense) cannot lead to a slower rate
of learning. In fact, we have the following straightforward corollary to Proposition 3.2.

Corollary 3.1. Suppose that ¢; = 0, for all agents i. Then, for any given social network, the rate of
learning with signal structures (¢,...,£,) is no smaller than with signal structures (¢},...,7},).

In addition to the signal structures, the rate of learning also depends on the structure of the
social network. In particular, the relative entropy between distributions ¢ (l.’ ()and ¢ ? (-) isweighed
by agent i’s eigenvector centrality, which measures the effective attention she receives from other
agents in the social network. This characterization implies that in the presence of dispersed in-
formation, the process of learning exhibits a network bottleneck effect: the long run dynamics
of the beliefs is less sensitive to changes in the information of agents located at the periphery
of the network. On a broader level, this observation highlights the fact that even when the total
amount of information available throughout the network is kept constant, the way this informa-
tion is dispersed among different individuals may play a key role in determining the rate of social
learning.

Another key observation is that learning is complete only if agents can rule out all incorrect
states. More specifically, conditional on the realization of 8 € ©, the speed of learning depends
on the rate at which agents rule out the state 6 # 0 that is closest to @ in terms of relative en-
tropy. Furthermore, the realization of the state itself affects the rate, as some states are easier to
learn than others. Thus, as (3.4) suggests, the rate of learning is determined by minimizing the
weighted sum of relative entropies over both the realized state 8 and all other possible alterna-
tives § # 6. This characterization points towards the presence of a second bottleneck effect in the
learning process, which we refer to as the identification bottleneck: the (ex ante) rate of learning
is determined by the pair of states (0,0) that are hardest to distinguish from one another.

We end this discussion with a few remarks. First, note that, by definition, the rate of learning
A defined in (3.3) characterizes the agents’ uncertainty about the underlying state asymptotically
and does not capture the short term, transient dynamics of the beliefs. Thus, even though the
structural properties of the social network other than its eigenvector centrality do not appear in
the expression for the rate of learning, they play a role in how beliefs evolve in the short term.
Finally, we remark that the rate of learning A is in fact (the absolute value of) the top Lyapunov
exponent of the dynamical system that describes the evolution of the agents’ beliefs. Given that
the top Lyapunov exponent of a dynamical system characterizes the rate of separation of in-
finitesimally close trajectories, it is not surprising that this quantity coincides with the rate of
learning A.

3.4 Information Allocation and Learning

Proposition 3.2 characterizes the long run dynamics of the beliefs in terms of the structural prop-
erties of the social network and the informativeness of each agent’s observations. In this section,
we study how the interplay between these two components may lead to nontrivial implications
for the rate of social learning.

In view of Corollary 3.1, the rate of learning increases as agents receive more informative
signals. Therefore, in order to capture the effect of dispersed information on the rate of learning
in a meaningful way, we normalize the informativeness of the signal structures by keeping the
total amount of information at the network level fixed.
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Definition 3.4. The collection of signal structures (¢’ ,...,[;1) is a reallocation of (¢4,...,¢,) if
there exists a permutation o : N — N such that £, = £ ;) for all i.

Thus, if ([’1, 4 ’n) is areallocation of (¢,...,¢,), then the total amount of information avail-
able throughout the society is identical under the two information structures, even though the
information available to any given individual may be different.

3.4.1 Learning Under Uniform Informativeness Ordering

We start our analysis by focusing on environments in which different agents’ signal structures are
comparable in the sense of uniform informativeness; that is, the collection of signal structures
(¢1,...,€5) are such that for any pair of agents i and j, either ¢; = ¢; or £; = ¢;. Recall that by
Definition 3.2, a signal structure is uniformly more informative than another, if the former is
more discriminating between any pair of states than the latter. Thus, when the agents’ signal
structures are comparable, then there is an ordering of the individuals such that agents who are
ranked higher can distinguish between the underlying state @ and any other alternative 6 with
fewer observations, regardless of the value of 6.

Even though the notion of uniform informativeness only provides a partial ordering over the
set of all signal structures, there are many real world scenarios in which the quality of exogenous
information available to different agents can be unambiguously ranked in a natural way. For in-
stance, in various marketing or public health campaigns only a subset of agents are exogenously
informed (say, about a new product or the benefits of deworming). The rest of the individuals,
on the other hand, do not have access to any exogenous sources of information. Rather, they can
only obtain information via their interactions with one another or the exogenously informed
agents. In such scenarios, the assumption of comparability of signal structures in the sense of
uniform informativeness is naturally satisfied.

Proposition 3.3. Suppose that the collection of signal structures (¢1,...,¢,) are comparable in the
sense of uniform informativeness. Furthermore, suppose that for any pair of agents, ¢; = ¢  if and
only if v; =z vj, where v is the eigenvector centrality corresponding to the social network. Then, no
reallocation of signal structures increases the rate of learning.

Thus, if the agents’ signal structures can be ordered, the rate of learning is highest when the
effective attention individuals receive from others is nondecreasing in the informativeness of
their signals. In this sense, the positive assortative matching of signals and eigenvector central-
ities maximizes the rate of learning. The intuition behind this result is that if an information
structure is uniformly more informative than another, then by definition, it requires fewer num-
ber of observations to distinguish between any pair of states. As a result, allocating such an in-
formation structure to a more central agent guarantees that, irrespective of the underlying state,
the high quality information receives a higher effective attention from the rest of individuals in
the network.

The above result is in line with the empirical observations of Banerjee et al. (2012) who study
how participation in a microfinance program diffuses through social networks. By focusing on
the participation data from 43 villages in South India, Banerjee et al. (2012) find that the long
run rate of microfinance participation is higher when the “injection points”—that is, individuals
who were exogenously informed about the program—have higher eigenvector centralities in the
social network. Proposition 3.3 shows a similar result for our model: if the information available
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to the agents can be ordered in the sense of uniform informativeness (as is indeed the case if
agents are either informed about the program or not), then the speed of learning is maximized
when agents with the highest eigenvector centralities are chosen as injection points. Finally, we
remark that, as in the observations made by Banerjee et al. (2012), our result suggests that ex-
cept for eigenvector centrality, other measures of network connectivity (such as average degree,
average path length, clustering, etc.) do not play a role in the long run dynamics of the beliefs.

3.4.2 Experts and Learning Bottlenecks

Proposition 3.3 shows that as long as all signal structures are pairwise comparable in the uniform
sense, positive assortative matching of signal qualities and eigenvector centralities maximizes
the rate of social learning. However, given that uniform informativeness is a partial order over
the set of all signal structures, there are many scenarios in which the conditions of Proposition
3.3 are not satisfied. In particular, if say, agent i is better than agent j in distinguishing between
a pair of states (measured in terms of relative entropy) but is worse in distinguishing between
another, then signal structures ¢; and ¢; are not comparable in the sense of Definition 3.2. In
this subsection, we study how in the presence of such “experts”—i.e., agents who are particularly
well-informed about a subset of states but not necessarily about others—the allocation of signal
structures over the social network determines the rate of learning. Before presenting our general
result, however, it is constructive to focus on a specific example.

Example 3.1. Consider a social network consisting of n agents and suppose that the set of states
and observations are © = {0y,01,...,0,} and S = {Head, Tail}, respectively. Furthermore, suppose
that agents’ signal structures are given by

i if 0 =0;,s =Head,
%) =3 m; if 6 # 0;, s = Tail, (3.5)
1-m; otherwise,

where 7; > 1/2. Thus, the signal structure of agent i enables her to distinguish 6; from any other
state 6 # 0;, whereas the rest of the states are observationally equivalent from her perspective.

Given that 6 is observationally equivalent to 6; from the point of view of all agents j # i,
agent i is effectively the “expert” in learning 8;. Furthermore, it is easy to see that the ability
of agent i to distinguish 6; from other states is increasing in ;. In fact, the relative entropy
corresponding to agent i’s signal structure is

H; if0=0;0#0;
hi0,0)={H, if0#£6;0=0; (3.6)
0 otherwise,
where H; = (27; —1)[logn; —log(1 — ;)] is an increasing function of ;. Given that H; is the
expected rate at which agent i accumulates evidence in favor of 8; against any other state 6 # 9;,

it essentially captures the level of “expertise” of agent i: a higher value of H; (or equivalently, ;)
means a greater discrepancy between [?" () and other distributions in i’s signal structure.
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Given (3.6), the rate of learning is equal to
r=aminv; H;,
1

where v is the eigenvector centrality. In view of the above expression, one can verify that among
all possible allocations of signal structures to agents, the negative assortative matching of agents’
expertise and eigenvector centralities maximizes the rate of learning; that is, speed of learning
is maximized if H; = H; whenever v; < v; for all pairs of agents i and j. On the other hand, the
positive assortative matching of the two leads to the slowest rate of learning.

Example 3.1 shows that if all agents are experts—in the sense that information structures are
such that each individual possesses information crucial for learning—then, the negative assorta-
tive matching of expertise and eigenvector centralities leads to the fastest rate of learning among
all possible allocations of signal structures. Put differently, it is best if the least central agents
receive signals of the highest quality (7; closer to 1).

The intuition behind this observation is as follows. Recall from the discussion following
Proposition 3.2 that the process of learning exhibits two distinct bottlenecks, namely, the net-
work and the identification bottleneck effects. Due to the network bottleneck effect, the infor-
mation available to the peripheral agents receives less attention from other individuals. On the
other hand, the identification bottleneck effect means that the asymptotic rate of learning is de-
termined by state pairs that are the hardest to distinguish from one another. As a result, if the
information structures are such that each individual possesses some information that is crucial
for learning, positive assortative matching of signal qualities and eigenvector centralities mini-
mizes the speed of learning. In such a scenario, the two bottleneck effects reinforce one another:
the information required for distinguishing the pair of states that are hardest to tell apart is only
available to agents that receive very little effective attention from others. As a result, learning the
underlying state would take a long time. More concretely, in Example 3.1, the speed of learning
under a positive assortative matching is equal to a vmin Hmin; the smallest value r = amin; v; H;
can obtain. On the contrary, the speed of learning is maximized under the negative assortative
matching of signal qualities and eigenvector centralities, as such an allocation would guarantee
that the two bottlenecks are as far away from one another as possible.

We remark that in the discussions following Proposition 3.3 and Example 3.1, we used terms
such as “higher quality signals” and “better information” somewhat loosely. Whereas in the for-
mer case, such terms are used to refer to a signal structure that is more informative in the uniform
sense, in the context of Example 3.1 similar terms are used to refer to the signal structure of an
agent with a higher expertise about a state. Nevertheless, we emphasize that despite this appar-
ent inconsistency, these two cases can indeed be unified in a consistent manner using a weaker
notion of information ordering. In particular, we say a signal structure is weakly more informa-
tive than another, if it is uniformly more informative under some permutation of the states.!°
This definition immediately implies that in the context of Example 3.1, the signal structure of
agent i is (weakly) more informative than agent j’s if and only if H; = H;. Thus, in both cases, a
signal of higher quality provides more information about the state and leads to a faster reduction
of uncertainty.

We now proceed to show that the insights obtained from Example 3.1 remain valid in more

15Formally, Ci=y [j if there exists a permutation o : ® — © such that [’i > ij where é’l.e ()= [‘1.7(8) (-) for all 6.
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general settings. Given the (ordered) pair of states (8, é), let
7i(0,0) = sup{f: h;(0,0) = Bh;(0,0) Vj#1i}

capture the extent to which the signal structure of agent i is more informative in distinguishing 8
from 6 relative to other agents’. Thus, y;(6,0) = 1 means that no other agent can rule out 8§ when
the underlying state is 0 with fewer observations (in expectation) than agent i. Furthermore, let

Ei=1{0,0):0#0 and y;0,0) = 1}

be the set of state pairs which agent i can tell apart better than any other agent.'® Finally, we
define the following notions of expertise:

Definition 3.5. Provided that E; # @, the relative and absolute expertise of agent i are, respec-
tively,

y; =min{y;6,0): 6,0) € Ej},
e; =min{h;(0,0): ©0,0) € E;}.

We have the following result.

Proposition 3.4. Suppose that E; # @ for all i. Furthermore, suppose that €; < € if and only
if vi = vj, where v is the eigenvector centrality corresponding to the social network. Then, no
reallocation of signal structures increases the rate of learning by more than a(max; €;)/ (min; y;).

Thus, if for any agent i, there exists a pair of states (0,@) for which she can accumulate evi-
dence in favor of one versus the other at a higher rate than all other agents, then negative assorta-
tive matching of absolute levels of expertise and eigenvector centralities leads to rapid learning.
In particular, no reallocation of signal structures can increase the rate of learning by more than
amax; £;/ min; y;. Note that this constant is inversely proportional to min; y;. Therefore, ceteris
paribus, increasing the relative expertise of all agents leads to a smaller upper bound. In fact,
this upper bound can be arbitrarily small if agents’ signal structures are such that their relative
expertise are large enough.

3.5 Network Regularity and Learning

Our analysis thus far was focused on how the rate of learning changes with the reallocation of
information among agents, while keeping the structure of the social network fixed. In this sec-
tion, we provide a comparative analysis of how the structural properties of the social network
determine the speed at which agents’ beliefs concentrate around the truth.

We start by defining a partial order over the set of social networks. As before, let v denote the
eigenvector centrality corresponding to the social interaction matrix (equivalently, social net-
work) A.

16Given that relative entropy is a nonsymmetric measure of discrepancy between two distributions, it may be the
case that (0,60) ¢ E;, even though (6,0) € E;.
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Definition 3.6. Social network A is more regular than A’ if v’ majorizes v, that is, if

k
YouasY vy Vkell..n, (3.7)

where xj; is the i-th largest element of vector x.!”

Intuitively, a social network is more regular if the effective attention that different agents
receive from the rest of the society is more evenly distributed. In particular, as (3.7) suggests,
increasing the centralities of more central agents at the expense of more marginal ones would
lead to a less regular social network. The following simple example illustrates how the notion of
regularity defined above captures the extent of asymmetry in the structure of the social network.

Example 3.2. Consider the ring social network, depicted in Figure 3.1(a). Each agent i updates
her belief as a function of her private observations and the opinion of a single other agent,
namely agent i — 1. Due to the full symmetry in the network structure, it is immediate that all
agents have equal eigenvector centralities, that is, v; = 1/n for all i. Thus, no other social net-
work is (strictly) more regular than the ring.!® There are, however, other social networks that are
as regular as the ring network. In particular, any social network for which the sum of the weights
assigned to the opinion of each agent is equal across the society—that is, }_ j; a;; is equal for all
i—is as regular as the ring network. '’

(a) The ring social network (b) The star social network

Figure 3.1. The ring and star social networks

At the opposite end of the spectrum lies the star social network, depicted in Figure 3.1(b).
As the figure suggests, a single agent, namely agent 1, takes a a disproportionately more central

17Equivalently, A is more regular than A’ if the probability distribution corresponding to probability mass function
v first-order stochastically dominates the probability distribution corresponding to v}, where x! denotes the vector
with the same components of x sorted in the nonincreasing order.

18This is a consequence of the fact that Zle vfl.] > k/n for any stochastic vector v'.

191n the graph theory literature, such a network is simply referred to as a regular graph. Note that, by construction,
Y j#iaji = 1—ainany regular network.
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position in the network relative to all other agents. Such an asymmetry is also reflected in the
agents’ eigenvector centralities. In particular, v; = 1/2, whereas v; = 1/(2n—2) for i # 1. One can
verify that for the eigenvector centrality v’ corresponding to any other social network, Zle vf 0s

Zle vy for all k. Thus, the highly asymmetric star network is indeed the least regular social
network.

We end this discussion by contrasting our notion of regularity with an alternative notion
of symmetry introduced by Acemoglu et al. (2012), who measure the symmetry of the network
topology in terms of the standard deviation of the agents’ centralities. Even though both notions
capture the dispersion in the agents’ centralities, the two are not identical. In particular, as we
show in Appendix B, if a network is more regular than another, then it is also more symmetric as
defined by Acemoglu et al. (2012). The converse, however, is not true as regularity only defines a
partial order over the set of social networks. Finally, we remark that, under both notions, the ring
and star networks correspond to the most and least symmetric network structures, respectively.

We now present the main result of this section. For a given social network and a collection of
signal structures, let r* denote the fastest rate of learning that can be obtained via reallocation
of signals.

Proposition 3.5. Suppose that A is more regular than A’ and that ¢; = ¢', for all i. Also suppose
that the collection of signal structures (¢1,...,¢,) are comparable in the sense of uniform informa-
tiveness. Then, r* <r'*.

Thus, if the agents’ signal structures can be ordered in the sense of uniform informative-
ness, the rate of learning under the optimal allocation of signals is decreasing in the regularity of
the social network. The intuition behind the above result is simple: with uniform informative-
ness ordering of signal structures and under positive assortative matching of agents’ centralities
and signal qualities, a higher level of dispersion in centralities guarantees that higher quality
signals receive more effective attention, thus speeding up the learning process. Proposition 3.5
also implies that the ring and star social networks correspond to the smallest and largest rates
of learning, respectively. The next example shows that in large societies, the difference in the
performance of the two social networks can be arbitrarily large.

Example 2 (continued). Consider the ring and star social networks depicted in Figures 3.1(a)
and 3.1(b), respectively. Also suppose that the private observations are such that m < n agents
have access to identical signal structures that are informative about the underlying state of the
world, whereas the remaining n — m individuals do not observe any informative signals. In other
words, for any given i, either h;(6,0) = h(0,0) > 0 for all distinct pairs (0,0), or h;(0,0) = 0 for
all (6, é). Clearly, the signal structures can be ordered in the uniform sense. Proposition 3.5 thus
implies that the (maximum) speed of learning in the star network is higher than in the ring social
network. Furthermore, simple algebraic derivations imply that as n — oo,

Tying! Tstar = O(m/ 7). (3.8)
Thus, if the number of informed agents m does not grow at the same rate as the network size n,
learning in the ring and star networks occurs at diverging rates.

Proposition 3.5 establishes that if the signal structures are pairwise comparable in the uni-
form sense, then rate of learning is decreasing in the social network’s regularity. Furthermore,
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the above example shows that in large networks, the role played by the structural properties of
the networks can be significant. In view of the discussion in Section 3.4.2, however, one would
expect that similar results would no longer hold in the presence of expert agents. The following
simple example shows that this is indeed the case.

Example 3.3. Consider the collection of signal structures given in (3.5) and assume thatz; = n
for all i. Thus, each agent i is the expert in learning state 6;. As we showed in Example 3.1, the
rate of learning is simply equal to r = @ vmin H. This immediately implies that if social network A
is more regular than A’, then r > r’, regardless of the allocation of the signal structures.

Thus, in stark contrast to the case in which signal structures are comparable in the uniform
sense, more regularity in the social network implies a larger rate of convergence. This is due
to the fact that when all agents are experts, the information bottleneck effect plays a dominant
role in determining the long run dynamics of the beliefs: learning is complete only when the
information uniquely available to the most marginal agent is diffused throughout the society. It
is thus the centrality of the least central agent that determines the rate of information diffusion,
and as a result, a more regular structure guarantees a faster convergence.

Despite this observation, our next result establishes that in the presence of experts, the rate
of learning in large societies does not vary significantly as a function of the network structure.
Contrasting it with (3.8), the result also highlights yet another way in which the long run dynam-
ics of the beliefs crucially depend on the way information is dispersed throughout the network.

Proposition 3.6. Consider a sequence of information structures (¢1,,,...,¢n,n) parametrized by
the number of agents n. Also suppose that

(@ E;n# @ foralli and alln.

(b) There exists c = 1 such that maxe; , < cming; , for all n.
1 1
(¢) liminfy; ,/n>0 foralli.
n—oo
Then, for any two sequences of social networks A, and A, and any allocation of signal structures,

0< liminfr—7 <limsup r_,7 < oo.
n—oo 1y p—oco Iy

Thus, in the presence of expert agents, the rate of learning is essentially of the same order
for all network structures and signal allocations. Such a result is due to the fact that when all
agents are experts, the information content in all agents’ private signals are equally important
for learning. Hence, regardless of the structure of the social network or the allocation of the
signals, the rate of learning depends on the eigenvector centrality of the most marginal agent,
which is always of order 1/n. We remark that the assumptions required for the above proposition
to hold are fairly weak. Assumption (a) simply means that all agents are experts, whereas (b)
requires that the absolute expertise of the agents do not diverge from one another. Finally, (c) is
a technical assumption guaranteeing that the relative expertise of the agents are large enough.
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3.6 Proofs

Proof of Proposition 3.1

Before presenting the proofs of the results in the paper, we state and prove three lemmas which
will later be used in the proof of the proposition.

Let u?t(-) be the restriction of y;,(:) to the event that the underlying state is 8. We prove the
proposition by showing that, for all 8, all § # 0, and all i and with P?-probability one, p?t @) — 0.
The belief update rule (3.1) can thus be rewritten as

O i)

w0 =a o0+ Y aijul,6), (3.9)
J#i

m;,(@ir+1)

where m?t(s) =Y4co u?t (9)[? (s), called the time ¢ one-step-ahead forecast of agent i, is the prob-
ability that agent i assigns at time ¢ to the event that she observes signal s in the next time period.
More generally, with some abuse of notation, we define the k-step-ahead forecast of agent i at
time ¢ as . . .

ml, (51,50 = Y, 1,009 (5007 (s2) -+ 09 (sp0). (3.10)

0e®
The following lemma, which is proved by Tahbaz-Salehi (2009), shows that agents’ one-step-
ahead forecasts are asymptotically almost surely correct.
Lemma 3.1. Suppose that Assumption 3.2 holds. Then,
ml () -0 —o0 Plas,
foralli.

We next present and prove a simple lemma which is later used in the proof of the proposition.

Lemma 3.2. Suppose that Assumption 3.2 holds. Then, for all§ € ©,

EH

) L%] Al @) —o0  Plas,

where ,u? ©) is the n-dimensional column vector with the i -th element equal to ,u?t ).
Proof. Equation (3.9) can be written in the vector form as

Awin)

1l @ =A@ + adiag(
mit(wit+l)

1) 12). (3.11)
iIeEN

Taking conditional expectations from both sides of the above equation implies

Awi)

[EB

u§+1(é)|gt] — A 0) = adiag ([E" 1|,

oA
s (0).
m? (wir41) )ieN !
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On the other hand, we have

0 Owis) |

° .
] Zzg(s) G — Y s Pl-as,

0
m;, (Wiz+1) s€S (s s€S

where the convergence is a consequence of Lemma 3.1. The fact that Z‘? is a probability measure
on Simplies Y ;g f‘? (s) =1, completing the proof. O

The next lemma establishes that not only agents make accurate predictions about their pri-
vate observations in the next period, but also make correct predictions about any finite time
horizon in the future.

Lemma 3.3. Suppose that Assumption 3.2 holds. Then,
m (s1,...,50) = €0 (s1) 00 (sp) -+ £0(sp) — 0 PP-as,
for all natural numbers k, all (sy, s2,...,Si) € Sk and alli.

Proof. We prove this lemma by induction. In Lemma 3.1, we established that the claim is true

for k = 1. For the rest of the proof, we assume that the claim is true for k — 1 and show that

m?t(sl, ..., §k) converges to Z‘? (s1)-- -Z? (sg) for any arbitrary sequence of signals (sy, ..., Sg) € Sk 20
First, note that Lemma 3.2 and equation (3.9) imply that for all e 0,

O i)

S T OIEA BT OR
m;, (@ir+1)

- 1] p?t(é) —0 P%-a.s.

Multiplying both sides by Hk [9 (s;) for an arbitrary signal sequence (s, ..., s) € ¥~ and sum-
ming up over all € © lead to

) [ i)

0
mit(wil’+1)

> (H W(sr)) CIECIEA RO EEDY (H £(s0

0 A
—1]uit(6)—»0
feo \7 feo \7

with Pg-probability one. On the other hand,

Z(l_[fe(sr))([Eg[#n+1(9)|9’r] W @)= [ 1501 T | = ]y 2050,
feo \T=2

where we have used the definition of (k — 1)-step-ahead forecasts of agent i. The induction hy-
pothesis and the dominated convergence theorem for conditional expectations imply that the
right-hand side of the above equation converges to zero with P?-probability one. Therefore,

( ) A
SOl 0@ —0  Pl-as.,
m ((Uzt+1)

(11|

beo \1

20Recall that we use s € S to denote a generic element of the signal space, whereas w; ; denotes the random variable
corresponding to i’s observation at time ¢.
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for any arbitrary sequence of signals (s, ..., Sx) € Sk=1 which is equivalent to

LS 0 0 p

5 m;, Wirs1,52y -5 Sk) mit(Sg,...,Sk)—> -a.s.
m; (Wir+1)

Thus, once again by the induction hypothesis,

k
6 0 6 (7]
M (@141, 52, .., SK) — M7, (@ig41) | |2€,- (s7)—0 P’-as.
T=

The dominated convergence theorem for conditional expectations implies

k
m8 (i1, 82, 58) = M @iee) [T 00| | Fe| — 0 PP-as.

=2

[EG

Rewriting the conditional expectation operator as a sum over all possible realizations of ;41
leads to

Y )

Ses

—0

k
0 (= 0 0
m;,(5,52,.., 5k) = M3, (3) | |2€l~ (s7)
T=

PY-almost surely, and therefore, guaranteeing
0 0 k 6 6
m (s1,82,...,86) —my, (s1) [[ €5 (sy) — 0 PY-as,
T=2
for all s; € S.2 Finally, the fact that m‘?t(sl) — ﬁ‘?(sl) with Pg-probability one (Lemma 3.1) com-

pletes the proof. O

We next show that for any agent i, there exists a finite sequence of private signals that is more
likely to realize under the state 6 than any other state 8, unless 0 is observationally equivalent to
0 from the point of view of agent i.

Lemma 3.4. For any agent i, there exists a positive integer ]AC?, a sequence of signals (§?1, v 5?]%') €
sk, and consmnt&? €(0,1) such that
K g0(59y
LIt 259 vhgel. (3.12)

6 (20
7=1 “ﬁi (SiT)

Proof. By definition, for any 0 g G)?, the probability measures é? and [? are distinct. Therefore,
by the Kullback-Leibler inequality, there exists some constant 6? > 0 such that

29(s)
0 0
sgeséi (s)log [é(s) >€;,

i

21Recall that, by assumption, [‘? (s)>0foralls, all@,and all i.
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for all § g @?, which then implies
29(s)

9(s)
H Ep»

seS tﬁ (8)

for 8? = exp(—e?). On the other hand, given the fact that rational numbers are dense on the real

line, there exist strictly positive rational numbers {q9 (8)}ses—with qe (s) chosen sufficiently close
to f? (s)—satisfying ¥ ;5 ° (s) = 1, such that

q°(s)

s .
’ <e?  vhgel. (3.13)

()

seS
Therefore, the above inequality can be rewritten as

K9 (s)

s X .
L < (e? Kl vl ¢ @?,

()

[

seS

for some posmve integers k% (s) and k9 satisfying ke Y ses k?(s). Picking the sequence of signals

of length k7, (59

0
$i- sik?), such that s appears k’(s) many times in the sequence and setting

(69)k proves the lemma. O

The above lemma shows that the sequence of private signals in which any signal s € S appears
with a frequency close enough to [9(3) is more likely under the state 6 than any other state 0
which is distinguishable from 8. We now proceed to the proof of Proposition 3.1.

Proof of Proposition 3.1  First, we prove that with P? -probability one agent i assigns an asymp-
totic belief of zero on states that are not observationally equivalent to 8 from her point of view.
Recall that according to Lemma 3.3, the k-step-ahead forecasts of agent i are eventually cor-
rect for all positive integers k, guaranteeing that m?t(sl, ,Sk) — Hk ée(sr) with PY -probability
one for any sequence of signals (s1,..., k). In particular, the claim is true for the integer I%? and

the sequence of signals (§¢ i §?129) satisfying (3.12) in Lemma 3.4:

k? 09
0 A i ‘it 0
K (6) —— —1 P’-as.

%@ . Eé?(s?r)

Therefore,
2 “zt H 0 Ag + ) H”(G) 1—0 Pl-as,

og0! [ s i’ e

leading to

) oA k? é(Ae) .
PINCACH e ]‘[ —0 P-as.

696! =1 ée( o)
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The fact that ];I? and (§?1, eee, §?fc9) were chosen to satisfy (3.12) implies that

K 059
-[15=2->1-67>0 végel,
Tzlgi(sl'f)

and as a consequence, it must be the case that ,u?t (é) — 0 as t — oo for any ] 4 @?. Therefore,
with P?-probability one, agent i assigns an asymptotic belief of zero on any state 6 that is not
observationally equivalent to 8 from her point of view.

Now consider the belief update rule for agent i given by equation (3.9), evaluated at some
state O ¢ @?:

2] N 0 A é?(wlt+l) 0 IN
Kir10) = a“it(e)g— + Z aij”jt(e)'
m;, (Wit+1)  jzi

We have already shown that ,u?t (é) — 0, PY-almost surely. However, this is not possible unless
2 j#i Gij u?t(é) converges to zero as well, which implies that p?t(é) — 0 with P?-probability one
for all j such that a;; > 0. Note that this happens even if 6 is observationally equivalent to 6 from
the point of view of agent j; that is, even if 6 € ®‘;’.. As aresult, all neighbors of agent i will assign
an asymptotic belief of zero to parameter 0 regardless of their signal structure. We can extend
the same argument to the neighbors of neighbors of agent i, and by induction—since the social
network is strongly connected—to all agents in the network. Thus, with P?-probability one,

@ —o vien, vhgelin...nel,

implying that all agents asymptotically P?-almost surely assign a belief of zero on states that are
not observationally equivalent to 6 from the point of view of all individuals in the society. There-
fore, Assumption 3.1 implies that '“?z (@) — 0 for all @ # 0, with Pg-probability one, guaranteeing
complete learning by all agents. O

Proof of Proposition 3.2
We first provide a proof for statement (b) of the proposition. We then proceed to prove parts (a)

and (c).

Proof of Part (b) Let “?[(') be the restriction of u;;(-) to the event that the underlying state is 6.
The belief update rule (3.1) can thus be rewritten as

9 A [? (wit+1) 0 A 0 A

Hir0) = Nn(e)"‘zaiﬂ‘jr(g)'

m; (Wig+1 j#i

where m‘?t(s) =Yjco ,u?[(é)(? (s) is the probability that agent i assigns at time ¢ to the event that
she observes signal s in the next time period. Taking logarithms of both sides of the above equa-
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tion and using Jensen’s inequality imply

@wmn)
J

n
logu?Hl(G) > aijlogp?t(9)+alog(
=1 my, (Wir+1)

Let x(t’ O = *,vilog ,u(l.’t(é). Multiplying both sides of the above inequality by v; and summing
over i lead to
0,10 = x]0) +476),

where

A n i)
ﬁ@=a2wm%—%iiﬁ,
i=1 m; (@ir+1)
and as a result,

1 (x40~ @)= 1 Ti 7°0). (3.14)
T \XT 0 T &

By Proposition 3.1, agent i asymptotically learns the underlying state of the world 0, that is,
m?t(s) — l?(s) as t — oo with I]J’Q-probability one for all s. Hence, q? @ — p? @) — 0 with P?-
probability one, where

n
Pl =a) vilog

i=1

(@wmn
O irs)

Taking the limit of both sides of inequality (3.14) as T — oo implies

limsup — [x%.@)] = lim lTi (a7 - pl @)+ lim lTZ_I P20
Tooo I T CT—o T 2 ! t T—-oo T (5 e

Given that qf o) - p? (©) converges to zero on P?-almost all paths, the Cesaro means theorem
implies that the first term on the right-hand side of the above inequality is equal to zero Pf-
almost surely.?? Furthermore, by the strong law of large numbers, the second term on the right-
hand side is equal to E9[ p? (é)]. Therefore,

> v:h;i(6,0), (3.15)

12 A A
limsup — Z vilogu?t(e) = [Eg[p? @] =-a
i=1 i=1

t—oo L;

with PY-probability one, where we are using the definition of h; (8, ).
Let e? denote the restriction of e; to the event that the underlying state is 6. By definition,

n

ef =3 Y ul,0),

i:1é¢9

22For a statement and proof of the Cesaro means theorem see, for example, Hardy (1992, pp. 100-102).
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and as a result
log e‘? = log (rpaxmaxu?t (é))
0£60 1

= Ipaxmaxlogu?t(é)
00 1

n
>max y_ v;logu? 0),
076 i=1

where in the last inequality we are using the fact that "' | v; = 1. Thus, for all 0+0,
. 1. o 1 o A

limsup —loge} = limsup - ) v;logpu?,(6)

t—o0 t r—00 t i=1

n
= —az l}ihi(g,e),

i=1

PY -almost surely, where the second inequality is a consequence of (3.15). Consequently, with
PY-probability one,

1 0 n R
liminf—|loge; | <amin ) v;h;00,0),
mintloge| < amin 3 vihy 0,6)

and hence,

1 n N
A =liminf—|1 < i i h;(0,0)=r, 3.16
1{1_1)(1)21 t| oget| arrgn%;lgi;v, i10,0) =T, ( )

P-almost surely. O

Proof of Part (a) The fact that A < r immediately implies that A is finite with P-probability one.
Thus, we only need to show that the rate of learning A is strictly positive. Define (p? :R7IOI-D
R™191=D) a5 the mapping that maps (1, _, 6)); 5.4 to (u?,0)); 4.4- Also let

MY = diag(M{ ©)) 3.17)

00’

where N

0 ()
gl (wlt) _ ) 23

. .
HED) ieN
It is easy to verify that the block diagonal matrix M’ ? is the Jacobian of (/)? evaluated at the origin.
Thus, the linear dynamical system generated by {M?}teN is a linearization of the nonlinear dy-
namical system {(/)?} ren describing the evolution of the beliefs conditional on the realization of

state 0. Finally, we let {? be the top Lyapunov exponent (TLE) corresponding to the sequence of
matrices M?, that is,

M?(é):A+adiag(

1
(0= lim —log [MOMO_, - MY (3.18)

23Note that both (/)? and M tg are defined conditional on the realization of a given path w € Q. However, we suppress
this dependency for notational simplicity.
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Furstenberg and Kesten (1960) show that (‘9 exists, is independent of the choice of the matrix
norm, and is equal to a deterministic constant with P?-probability one. We have the following
lemma.

Lemma 3.5. (% <0 withP? -probability one.
Proof. By Theorems 1 and 2 of Furstenberg and Kesten (1960), the constant {? defined in (3.18)
is equal to

¢% = lim [Eg [log ||M9M? 1 M9 || ]

t—oo

and therefore,
¢’ < lim llog[EB IMEMo_ - MY

< lim —log[EH [I’MG'M‘9 Mel]

t—oo

— Ti o 10 2 01t
= lim tlog(l " mf)11),

where the first inequality is a consequence of Jensen’s inequality and the second is due to the fact
that || X||; <1’ X1 for any nonnegative matrix X. Furthermore, given that E? Me A, the Perron-
Frobenius theorem implies that [[E9M9]t — 1V’ as r — oo where v is the left eigenvector of A.
Hence,

1
% < lim —logn=0.
t—oo
On the other hand, Assumption 3.1 guarantees that p(Mf) # 1 with IPg-positive probability, where

p(X) denotes the spectral radius of matrix X. Thus, Theorem 2 of Kesten and Spitzer (1984) im-
plies that {? # 0, which completes the proof. O

The above lemma thus shows that the linear dynamical system generated by {M?}teN is PY-
almost surely exponentially stable with exponent {?. Next, we have the following lemma:

Lemma 3.6. Foralli and all® #0,
limsup ,u?t(é) < CG,
t—o0

with PP -probability one.

The above lemma, the proof of which is provided at the end of the chapter, follows from the
fact that, under the condition of Lyapunov regularity, exponential stability of the linearization of
anonlinear dynamical system guarantees that the original nonlinear system is also exponentially
stable with the same exponent.?* Lemma 3.6 implies that for P?-almost all w,

1
limsup - loget <,
t—o0

and therefore,
A—hm1nf—|loget| >m1n|(9| >0 (3.19)

t—o0

24For more on the Lyapunov exponents, Lyapunov regularity, and stability of random dynamical systems, see Ap-
pendix C.
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with P-probability one, which completes the proof of part (a). O

Proof of Part (c) Since M? is block diagonal,

| 270y - V] = max [ M7 O) M7, 6) -7 B
#

and hence,
(% =max(? ),
0#0
where ¢ (0) is the TLE of M? (). Also recall that (3.16) and (3.19) provide upper and lower bounds
on the rate of learning A, respectively. Combining the above immediately implies that

minmin|(? @) <A<, (3.20)
0 6+6

P-almost surely. In the remainder of the proof, we provide a lower bound on [{ 9()| and show that
this lower bound is arbitrarily close to r if Z?(s,-) / F? (s;) is close enough to one for all agents and
all signals. More specifically, we use a result by Gharavi and Anantharam (2005) who provide an
upper bound for the TLE of Markovian products of nonnegative matrices, expressed as the max-
imum of a nonlinear concave function over a finite-dimensional convex polytope of probability
distributions. In order to apply their result, we first need to introduce some new notation.

Let s = (s1,$2,...,Sn) where s; € S. Define & ={1,2,...,|S/"} and let f : ¥ — S§" be an enu-
meration of the set of signal profiles S§".25 For all k € %, we use fi(k) to denote the observation
of agent i when signal profile f(k) is realized; i.e., f(k) = (fi(k),..., fn(k)). For all k € .#, let
pk = IPO(f(k)) and let Qk be the realization of M? (9) given w; = f(k); that is, Qk isthe nx n
matrix defined as s

Qk:A+adiag(M—l) .
47 (fi(k) N

Let H(p) be the entropy of p defined as

H(p)=- ) p*logp".
ke

Let .4 be the set of all probability measures on (N x .%) x (N x ). Finally, with a slight abuse of
notation, for any n € .4, let H(n) be the entropy of n defined as

k!
ij

Hm=- ), n’l?;log e
i,jeN i%

k,les#

where

x _ kI 26
Nis = Z UITE
JEN
les

Gharavi and Anantharam (2005) show that the solution to the optimization problem below

25An enumeration of a finite set X is a bijective mapping from {1,2, ..., | X[} to X.
26\More generally, an asterisk * in lieu of an index indicates summation over that index.
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is an upper bound on the TLE of the set of i.i.d. matrices {M? (é)}th when M‘? (9) € {Qk}key and
Q* is realized with probability p*. That is, {?(0) < £9(0), where

¢/(0) = max H(m) + Fp) — H(p) (3.21)
subject to nljl* = pkpl Vkle&, 3.22)

nkr =nrk VieN VkeZ, (3.23)

5 =0 VijeN Vkles st Q=0 (3.24)

where Qf.cj is the (i, j) element of QX and F : .#/ — R is defined as

Fn) = i’]zean?; logQ}“i,
k,le#
with the usual convention that 0log0 = 0. Note that the diagonal elements of Q are positive,
whereas its off-diagonal elements are equal to the corresponding elements of A. Hence, Q}Ci =0
if and only if aj; = 0. Consequently, when solving for the optimal solution, we can let nf]l =0
whenever a;; = 0 and drop constraint (3.24) altogether. Given that maximizing (3.21) subject to
(3.22) and (3.23) is a strictly convex problem, the first-order conditions characterize the unique
optimal solution. Using Lagrange multipliers o’ and vf for the first and second set of con-
straints, the first-order condition with respect to nf]l is

log Q;.Cl. - logn’l?; + lognf: + okl 4 vf - v; =0, (3.25)

fori,j € Nand k,! € .¥ such that Q}Ci # 0. Thus, any (n, p,v) that solves (3.22), (3.23), and (3.25)
simultaneously corresponds to an optimal solution.
In the case that é?(-) = !? (+) for all i, it is easy to verify that
5t =vja;p*p'
p*! =logp"
f/f = —log(vipk)
satisfy optimality conditions (3.22), (3.23) and (3.25). Substituting 9 in (3.21) then implies that
&) =o. )
If, on the other hand, the ratio !? (sp)/ é?(si) is close to one for all agents i and all signals, we

can approximate ¢?(9) by its first-order Taylor expansion around the point é? ()= Z? (:) as

ﬁ@zfz

i=1 SiES

0h R
66—@ . (logé?(si) - logéﬁ(si))
alogé?(si)

+0 (max Hlogf?(') - Ing?(') ”) )
00)=000) l

R (3.26)
where we are using the fact that 59 (é) evaluated at 6?(-) = (? (+) is equal to zero.?’ Since none

of the constraints of the optimization problem depends on [?0), by the envelope theorem, the

27Note that (3.26) is the first-order Taylor expansion of &9(0) with respect to log é? (s;) rather than é? (87).
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derivative of &% (@) with respect to log é? (+) is simply equal to the partial derivative of H(n)+ F (1) —
H{(p) with respect to log [? (-) holding 7 fixed and then evaluating the result at the optimal solu-

tion 7). The terms H(p) and H(n) do not explicitly depend on Z‘?(-). On the other hand, F(n) is
given by

0(f; k)
F(n) = n*logaj; + n<tlog 2——.
i,jZeN Y ! ];v 1 f?(fj(k))
k,les k,les
Therefore,
R 0
0&%6 2% (f; (k) A
7O _ 5 75 0 |log 2= | /alog (s
alogé?(si) jEN éj (fj (k)
k,leS
9 O(f (k)
= Y avip*p! _ [log éfl }
kIes ologff(s)) | £; (fi(k)
= avil?(s),

where all the derivatives are evaluated at Z?(si) = ﬁ?(si). Substituting the above in (3.26) thus
implies

59 @) =a zn:I S;s vié?(si) (logé(i9 (si)— logé?(si)) +0 (mlax HIOgZ?(.) - logéfl.’(.) H)
i=1s;
=—a il vihi(0,0)+0 (mlax Hlogé?(-) - logé?(-) H) .
i=
Therefore, by (3.20) and the fact that 59 (é) >( o (é),
r+o (Ilneaéi Hlogﬂ?(-) - logé?(-) H) sAsr,

which completes the proof. O

Proof of Proposition 3.3

Without loss of generality assume that agents are indexed such that vy = v = --- = v,,. Therefore,
by assumption, h;(0,0) = h2(0,0) = --- = h,(0,0) for all 0,0 € ©. Also suppose that (¢!,...,¢}) is a
reallocation of (¢1,---,¢,). Then, by the Hardy-Littlewood rearrangement inequality?®

n n
Y vihi0,0) =) vih(6,0),
i=1 i=1

28The Hardy-Littlewood rearrangement inequality states that if x; = xp = --- = x; and y; = yo = --- = y,, then, for
any permutation (¥}, ..., ¥,) of (y1,..., yn), wehave X", x;y; 2 X", x; ;. For areference, see, for example, Theorem
368 of Hardy, Littlewood, and Pélya (1952).
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for any given pair of states 8 and 6. Therefore,

min Z vihi(G,é) =min

vih}0,0),
0#0 i=1 0#£0

n n
=1

for all 6 € ©, and as a result
n N n R
meinrpinz v;hi(0,0) = minmin ) _ v;h’(6,0),

0#6 i=1 0 0x60 i1

completing the proof. O

Proof of Proposition 3.4

We first state and prove a simple lemma.

Lemma 3.7. Suppose that E; # @. Then,

avie; <r; < a(vi+1/ype;,

n
wherer;=a min Y v;h;(,0).
(G,B)EE,‘]':]

Proof. For any pair of states (6,0), we have 27:1 vihj 6,0) = v;h;(0,0). Thus,

ri=av; min h;0,0) = av;e;,
(H,H)EE,*

which establishes the lower bound. On the other hand, for all (6, é) € E;,

n
Y vjhj6,0)<vihi0,0)+ ) vihi(6,0)/y;©,06)
j=1 Jj#i
< (v; +1/y)h;i (6,0).

Therefore,
ri<a(v;+1/y;) min h,-(@,é) =a(v;+1/y)e;,
0,6)<E;

establishing the upper bound. O

Proof of Proposition 3.4 Throughout the proof, without loss of generality, we assume that
agents are indexed such that v; = --- = v,,. The assumption of the proposition thus guarantees
thate; <---<e¢,.

Since E; # @,

n
ri=a min Y v;jhj(6,0)
(0,0)eE; j=1

is well-defined for all i. Furthermore, for any (ordered) pair of states (6,0) such that 6 # 0, there
exists some agent who is no worse than others in distinguishing between the two; or equivalently,
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U;E; = {(H,é) 10 # 9}. Therefore,
r=minr;. (3.27)
1

Now let ¥ = min;y; and suppose that there exists a reallocation of signal structures with the
corresponding rate of learning r’ such that r + (a/y) max; €; < r’, which in view of (3.27) can be
rewritten as a
minr; + —maxe; <minr;.
] 'Y 1 1

As aresult,
a / .
rk+;max€i <r; for all i,
1
where k € argmin; r;. Thus, by Lemma 3.7,

a , a , .
QUiEE + —Maxe; < aviE; + —¢€; for all i.
Y i Y

Note that the above inequality holds for all i only if v < v;€] for all i. In particular,
V€ < Vi€ forall i € {k,..., n}.

Furthermore, recall that by assumption, v; < vy for i = k. Therefore, & < E’l. forallieik,..., n}.
This, however, leads to a contradiction. In particular, given that (¢],...,€},) is a permutation of
(€1,...,€&n) there are at most n— k indices j such that g < 8’].. Thus, no reallocation of signals can
increase the rate of learning by more than (a/y) max; ¢;. O

Proof of Proposition 3.5

By assumption, the collection of signal structures (¢4, ...,¢,) are comparable in the sense of uni-
form informativeness. Without loss of generality, assume that signal structures are indexed such
that /1 = --- = ¢,, that is, hl(O,é) > > hn(H,é) for all 6,0 € ©. Thus, by Proposition 3.3, the
optimal rates of learning in social networks A and A’ are given by

n
r*=aminmin ) v;h;(6,0)
0 i=1
n A
r'* = aminmin ) v{;h;(6,0),
0#£0 i=1

respectively. On the other hand, given the assumption that A is more regular than A’ and by

Lemma B.1, we have,
n

n
Y viirhi©,0) < ) v{; hi(6,6),
i=1

i=1

which immediately implies r* < r'*. O
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Proof of Proposition 3.6

To simplify notation, we suppress the dependence on the size of the network n whenever there
is no risk of confusion. Since E; # @, by Lemma 3.7,

avie; <r; < a(vi+1/yp)e;.

Thus, by (3.27),
rsa (min Vi +max1/y,~) maxe;
1 1 1
< a(l/n+max1/y,~)maxei,
1 1

where the second inequality is due to the fact that min; v; < 1/n. On the other hand, the lower
bound in Lemma 3.7 and (3.27) imply

r = a(min v;)(mine¢;)
1 1
= a(ming;)/(2n—2)
1

= a(ming;)/(2n),
1

where the second inequality is consequence of the fact that min; v; = 1/(2n —2). Hence, given
any two sequences of social networks A, and A’n,

1/n+max;1/y; ,\ max; &; »
rplr), < ¥, ’

1/(2n) min; €;

<2c(l+maxn/y;n).
l

Assumption (c) of the proposition then immediately implies that there exists a uniform upper
bound on the right-hand side of the above inequality for all n, and hence,

limsup ry,/r}, < oo.
n—oo

A similar argument shows
. . !
liminfr,/r, >0,
n—oo

completing the proof. O

Proof of Lemma 3.6

The proof relies on the following theorem, which is a corollary to Theorems 1 and 2 of Barreira
and Valls (2007).

Theorem (Barreira and Valls). Consider the dynamical system @(x) = Pyx + f:(x) with trajectory
x; € RX, where P; € R**¥ for all t. Also, suppose that the following hold:

(a) The linear dynamical system generated by {P;} sen is Lyapunov regular.
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(b) The TLE corresponding to {P;}eN is negative, that is, ¢ = lim_.o % log||P;P;—y... P11 <O0.
(©) f1(x) is a continuous map with f;(0) =0 forall t.

(d) There are constants C, q > 0 such that || f;(x) - f()Il < Cllx =yl (IlxI7 + I yI19), for all t and all
X,y € Rk,

Forall ty ande > 0, there exist a neighborhood V of the origin and a constant K such thatifx,, € V,
then forallt = ty,
x| < Kl = arehy g .

We use the above theorem to prove Lemma 3.6. Recall that ¢¢ : R"(€1=1 — g7(81=D denotes
the function that maps ,a(i_l = (u?t_l(e))i’é 4 1O ﬂ? = (H?t(e))iﬁ 40 Hence, the dynamical system
{9} en with trajectory @ e R™191=D describes the evolution of the beliefs conditional on the
realization of state 0.

Given any x € R™1®I=1 the mapping ¢¢ can be decomposed as

¢?(x) = M0 x+ f2(x),

where Mf, defined in (3.17), is the Jacobian of gb? evaluated at the origin, and f; : rr101-1 _,
R"(91-D is the higher-order residual given by

[fe(x)] - a([?(wit) ~ é?(wit))x. )
e T gl Bwin )"

with g?t(x) defined as

g% (x) = 0 w;p) (1 -y xl.y(;) + ¥ Awinxg. (3.28)
0#6 0#6

Thus, if M? and f? satisfy the conditions of above theorem, then for all € > 0, there exists a
neighborhood V of the origin and a constant K such that if ﬂ?o € V, then for all £ = 1,

0
ef < Kell- " +e)+ety eét)o,
where we are using the fact that e? = ,L't? l;. Furthermore, note that by Proposition 3.1, for almost
all w, there exists a fy such that ﬁ?o € V. Therefore, given that € > 0 is arbitrary,

limsup l loge? < CB,
t—oo [
which proves Lemma 3.6. Thus, to complete the proof it is sufficient to verify that conditions
(a)-(d) of the theorem of Barreira and Valls are satisfied for almost all w.
Since the collection of matrices {Mf} ren are independent and identically distributed, by the
well-known Multiplicative Ergodic Theorem of Oseledets (1968), the linear dynamical system
{M?}teN is Lyapunov regular for almost all w.? This guarantees that assumption (a) is satisfied

29The original Multiplicative Ergodic Theorem due to Oseledets (1968) requires matrices {M?} teN to be invertible.
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for almost all w. Furthermore, recall that, as we showed in Lemma 3.5, the TLE corresponding
to Mf is strictly negative with P?-probability one, which implies that assumption (b) is also sat-
isfied. To verify assumption (c), note that fte (0) = 0. Moreover, since Z? has full support for all i
and 0, ff (x) is continuous, implying that assumption (c) holds as well. In the remainder of the
proof, we show that condition (d) of the theorem, which is a form of Lipschitz-continuity, is also
satisfied.

For any given x € R"1®1~D, define GY (x) as the diagonal matrix with diagonal entries

R 1 1
Gl =aliwi)|——- ‘
[ f(x]i,e by t)(gft(x) ﬁ?(wit))

Note that, by construction, ff (x)= G? (x)x. Furthermore,

al® ;)

[G?(x)]i,@ - Y (@i - win)x;,

g% (009 i) 29

where we are replacing E? (i) — g?t(x) from the definition of g?t(x) in (3.28). On the other hand,
given that ﬁ? has full support for all i and 0,

al (i)
# < C1 <00,
8;, (0} (wir)

for some positive constant C; defined as

maxj ; [f?(s)
Cl . 0,i,s Al 5.
ming ; ¢ ([?(s))

Hence, forany x, y € Rr(O-1)

Z (5?((0”) - f? (U)it)) (xi,é - yi,é)

[eteo-cton] =]

< Y [ win -0 in)||x;5- ;.
0+£0

Let -
C, = C; max |£?(s) —f?(5)|,
070,i,s

In the current setting, this condition is satisfied for a generic set of parameter values. Alternatively, one can use more
general variants of the theorem that extend the results to the case of noninvertible matrices.
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which by Assumption 3.1 is guaranteed to be strictly positive. Then,
[cfo-Glw)] |z ¥ lxig-vial
’ 0+#£0
< Crgglxi,é ~Vigl
where C = (0| - 1)C, > 0. Consequently,
16500 - 61 0], = maxmax| | G0 - 610, |
= Cmf"‘%’:gdxi,é - J’i,é|
<C|x-y- (3.29)

Therefore, noting that ff (x) = G? (x)x implies

If;(x) = fI = 1G 0 x - Gyl
< |Gl wx-GEwy|+ |6y -6y
<T@ | |x-y] + 67 @ -G ]

where the first inequality is due to the triangle inequality. Subsequently, using the fact that
G?(0) =0 for all £ and w leads to

1:) = frI < [ GT 0 = GLO | | x=y] + ]G] 0 =G| ]
<Clxlflx=y|+Clx=y| ¥l
=Cllx=yll (1=l + ] y]),

where the second inequality is a consequence of (3.29). This establishes that condition (d) of the
theorem of Barreira and Valls is satisfied for g = 1, and hence, completes the proof. O
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CHAPTER 4

SOCIAL LEARNING IN A COORDINATION GAME

This chapter examines the coordination problem faced by a group of agents when the relevant
information is dispersed throughout a social network. We use the framework of dynamic games
of incomplete information to model the agents’ coordination problem. A number of agents play
a game with payoffs that have two components: an estimation term and a coordination term.
The estimation term serves to capture the agents’ desire to make decisions that are optimal given
their private information about an unknown parameter. The coordination term captures the
payoffs agents receive by taking actions that are close to the average action taken by the rest
of the population. The game is played over multiple stages. At each stage of the game, agents
observe the previous choices made by a subset of other agents, called their neighbors. An agent’s
action may reveal some information to her neighbors that was previously unknown to them. The
neighbors can use this information to reevaluate their beliefs about the underlying parameter
and their predictions of others’ future behavior. These reevaluations may, in turn, lead agents to
revise their actions over time.

Given this dynamic environment, different behavioral assumptions lead to different out-
comes. In particular, the way agents revise their views in face of new information and the ac-
tions they choose given these views determine the long run outcome of the game. We assume
that agents are Bayesian and myopic. Bayesian agents use Bayes’ rule to incorporate new obser-
vations in their beliefs. Myopic agents choose actions at each stage of the game which maximize
their stage payoffs, without regard for the effect of these actions on their future payoffs. The as-
sumption on myopic agent behavior simplifies the analysis significantly and results in an essen-
tially unique equilibrium, which is unlikely with forward-looking agents. We use this behavioral
assumption to define an equilibrium, and prove formal results regarding the agents’ asymptotic
equilibrium behavior, assuming a quadratic utility function.

Our analysis yields several important results. First, each agent’s action asymptotically con-
verges to some limit action. By making use of this result, we show that if an agent (she) observes
the actions of some other agent (he) infinitely often, she will eventually be able to imitate his ac-
tions and achieve a payoff at least as high as his limit payoffs. We then use this argument to prove
that if the social network is sufficiently connected over time, agents asymptotically receive sim-
ilar payoffs. In our symmetric coordination game, this implies that different agents’ actions also
converge to the same value. In other words, agents eventually coordinate on the same action.
These results extend some of the results in the social learning literatures to the setting where
each agent’s actions directly affect others’ payoffs. To the best of our knowledge, this is the first
such result on reaching consensus in social networks in presence of payoff externalities.

This chapter is based on Molavi, Eksin, Ribeiro, and Jadbabaie (2013).
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Second, we show that if the agents’ private observations are only functions of the unknown
state (and not their own actions), then generically the agents eventually coordinate on the “effi-
cient” action—the action on which the agents would have coordinated if each agent had access
to the private observations of every other one. Thus, the dispersed information is asymptotically
optimally aggregated through the agents’ repeated interactions. This result is true because the
agents play a coordination game wherein their incentives are aligned, and hence, they do not
have an incentive to withhold their private information. This theorem extends Theorem 2.1 of
this thesis, as well as the result of Mueller-Frank (2013) on optimal aggregation of information
in Bayesian learning, to the cases where the state space is not finite and the agents face payoff
externalities.

The work in this chapter is related to three main lines of research. The first is the literature
on Bayesian learning over networks. The focus of the social learning literature is on modeling
the way agents use their observations to update their beliefs and characterizing the outcomes of
the learning process. Examples include, Bikhchandani, Hirshleifer, and Welch (1992), Banerjee
(1992), and Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) that study sequential decision prob-
lems; and Borkar and Varaiya (1982), Gale and Kariv (2003), Rosenberg, Solan, and Vieille (2009),
and Mueller-Frank (2013) that study repeated and simultaneous interactions. Due to the com-
plexity of social learning, the focus in the latter family of models is on asymptotic outcomes. In
this chapter of the thesis, we extend the repeated Bayesian social learning framework to an en-
vironment with payoff externalities, i.e., one where an agent’s stage payoff is a function of other
agents’ actions.

The current work is also related to the literature on learning in games, such as the works
by Jordan (1991, 1995), Kalai and Lehrer (1993), Jackson and Kalai (1997), Nachbar (1997), and
Foster and Young (2003). The central question in this literature is whether agents learn to play
a Nash (or Bayesian Nash) equilibrium. Whereas, in the current chapter of the thesis, the focus
is on whether agents in a network asymptotically receive the same payoffs and whether they
optimally aggregate the dispersed information.

Finally, our work is related to the literature in economic theory that studies the effect of pub-
lic and private information on welfare, pioneered by the work of Morris and Shin (2002) who
study the effect of public information on the equilibrium welfare when agents play a beauty
contest game. In this chapter of the thesis, we borrow the payoff function introduced by Mor-
ris and Shin (2002) to model the agents’ coordination problem. However, unlike the model of
Morris and Shin, the focus of the current work is on coordination and aggregation of informa-
tion dispersed in social networks. Among other related papers that study effect of public and
private information on welfare are the works by Angeletos and Pavan (2007, 2009), Vives (2010),
and Amador and Weill (2012).

4.1 Baseline Model

4.1.1 Agents and Payoffs

Consider n agents indexed by i € N = {1, ..., n} who repeatedly play a game with uncertain pay-
offs. The payoff-relevant uncertainty is captured by a common unknown parameter 6, called the
state of the world, that takes values in ® = R. Agents start with a common prior belief about 8
denoted by v. We make the following technical assumption on v.
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Assumption 4.1. The state is square integrable with respect to v, that is,

f 0?dv < co.
(C]

The game is played over a countable set of time periods that is indexed by the positive in-
tegers. At time t, each agent observes a private signal in addition to the time ¢t — 1 actions of a
subset of agents, takes an action simultaneously with other agents, and receives a payoff. We use
sir € S; to denote the private signal observed by agent i at time ¢, where S; is a complete sep-
arable metric space, and use s; = (S1¢,...,81) € S = xl'.l:lsi to denote the corresponding signal
profile. Furthermore, we let a;; € A; = R denote the action taken by agent i at time ¢, and let
a; = (aiy,...,ant) € A=R" denote the corresponding action profile. Finally, u;(a,0) denotes the
stage payoff received by agent i when agents play the action profile a and given that the realized

state is . Agent i’s stage payoff has the following representation:
ui(a,0) = —(1-(a; - 0)* - Ma; ~a-)?%, 4.1

where A € [0,1) is a constant and a_; = ﬁz j#i aj denotes the average payoff across other
agents. The first term is a quadratic loss in the distance between the realized state and agent
i’s action, capturing the agent’s preference for actions which are close to the unknown state. The
second term is the “beauty contest” term representing the agent’s preference for acting in con-
formity with the rest of the population. This utility function was introduced by Morris and Shin
(2002) to represent the preferences of the agents who engage in second-guessing others’ actions
as postulated by Keynes (1936).

4.1.2 Social Network

At time ¢ + 1, in addition to her private signal, each agent also observes the time ¢ actions of a
subset of other agents, denoted by N;; € N and called her time ¢ neighbors. We use the conven-
tion that agents are their own neighbors at all times, that is, i € N;; for all i and ¢. The time ¢
interactions between agents can be summarized by a directed network g; € G = {0,1}"**" where
[g¢] ji =1ifand only if agent j is a time  neighbor of agent i, that s, if j € N;.

Assumption 4.2. The network g; is generated according to some probability distribution vy in-
dependently of other random variables in the model.

This assumption is satisfied by many commonly used models of social networks such as
fixed networks, i.i.d networks, and deterministically time-varying ones. But it excludes the case
where an agent’s realized neighborhood is informative about the state or other agents’ signals.
We maintain Assumption 4.2 throughout this chapter.

A directed path from i to j is a sequence of agents starting with i and ending with j such that
each agent is a neighbor of the next one in the sequence. We say that a social network is strongly
connected if there exists a directed path from each node to any other. Let ¢ = x32, ¢, denote the
probability distribution over the sequences of networks {g;} . We impose the following mild
connectivity assumption on the networks generated by the stochastic process .

Assumption 4.3. For y-almost all {g;};en, there exists a strongly connected network g such that
if j is a neighbor of i given g, then j is also a neighbor of i given g; for infinitely many ¢.
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The above assumption guarantees that information obtained by an agent at any given time
period can eventually flow to any other agent in the network. That said, we have to remark that an
agent’s private information may never become available to other agents. Whether this is indeed
the case depends on the actions chosen by the agents in the equilibrium of the game.

4.1.3 Histories

Let (Q, %) denote the measurable space of plays, where Q =0 x (S x A x &N and 4 is the corre-
sponding Borel o-algebra. A generic element of the set Q is denoted by w and is called a path of
play. This is an infinite history of the game, consisting of the state and a list of all the private sig-
nals, actions, and realized networks at all time periods. Similarly, let /; denote the time ¢ history
of the game defined recursively as

he=(h¢-1;8¢-1, -1, 81-1)»

with h; = 0. This is a complete description of the game up to time period ¢ that belongs to the
measurable space H; = @ x (Sx Ax G)!~!. We let #; < 98 denote the o-algebra of subsets of Q
generated by the Borel sets of H;.

Agents’ private signals are endogenously generated according to some probability distribu-
tion which is a function of the history of the game. Given h; € H;, the time ¢ signal profile is
generated according to the probability distribution 7;(h;)[-], where 7; is a transition probability
from H; to S.3°

The time ¢ private history of agent i is a list of all of her observations, denoted by h;; and
defined recursively as

hit = (Rit=1;Sit—1,(@j1-1) jeNiy)

with h;; = @. We let H;; denotes the set of agent i’s time ¢ private histories, let H; = U2, Hj,
denote the set of agent i’s private histories of any length, and let #;; € /; and A4 < 28 denote
the o-algebras of subsets of Q generated by the Borel sets of H;; and H;, respectively.

4.1.4 Strategies and Belief Systems

A strategy is a function that maps an agent’s private histories to her actions, whereas a belief
system is mapping from private histories to probability distributions over the space of plays.

Definition 4.1. A pure behavior strategy for agent i is a measurable function o; : H; — A;.

Agent i’s strategy is a complete contingency plan determining the action to be taken by her
at all time periods and given any private history. More generally, the joint behavior of the agents
is fully described by the strategy profile o = (04, ...,0,), where g; is a strategy for agent i.

Any strategy profile c—together with the agents’ common prior v, the stochastic process
v, and the signaling functions {r;} ,en—induces a probability distribution over the measurable
space (Q,98), denoted by P?. We let E° denote the expectation operator corresponding to P°.
Given that agents follow the strategy profile o, the path of play w is simply a point in the probabil-
ity space (O, #,P?). The realized time ¢ private history of agent i is in turn a measurable function

30Given measurable spaces (X, %) and (Y, %), a function f: X x & — [0,1] is called a transition probability from X
to Y if (i) for any given x € X, f(x)[-] is a probability distribution over (Y, %/); and (ii) given any measurable set Be€ %,
the function x — f(x)[B] is measurable.
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of the realized path of play, denoted by his():Q — H;p. Welet () = 0;(hi (1) : Q — A; denote
the random variable that determines the time ¢ action of agent i as a function of the realized
path of play w.

Definition 4.2. A belief system for agent i is a transition probability g; : H; x 98 — [0, 1].

A belief is a probably distribution over the space of plays (Q2, %), whereas a belief system is
a collection of beliefs—one for every possible private history—that describes the agent’s belief
after observing any private history. More generally, the beliefs of the agents are fully described
by g = (q1,...,qn), where q; is a belief system for agent i. Finally, given a belief system ¢;, we let
Git () = qi(his()[] : Q x B — [0,1] denote the transition probability that determines agent i’s
time ¢ belief as a function of w.

4.2 Equilibrium

In this section, we introduce our equilibrium notion and provide a characterization of the equi-
librium behavior. Our notion is a variant of the weak perfect Bayesian Equilibrium according
to which (i) agents’ strategies maximize their expected stage payoffs given their beliefs; and (ii)
agents’ equilibrium beliefs are consistent with their strategies. Before formally presenting our
equilibrium notion, we introduce some notation.

Agent i’s expected utility of taking an action is dependent on her belief about the path of play
as well as what she expects other agents to do. However, if we fix a strategy profile, the other
agents’ actions are only functions of the realized path of play. Thus, given a strategy profile o,
the expected time ¢ payoff to agent i of taking action a; is uniquely determined as a function of
her belief p; over (2, 8) as

Vit(ﬂi»o'—i;pi):fgui (a;,6-i1,0)dpi,

where 6_;; = (5jt)j¢i-
Definition 4.3. A weak perfect Bayesian equilibrium consists of a strategy profilec* = (07,...,07},)
and a collection of belief systems g* = (q;,..., q,,) that satisfy the following conditions for all i
and ¢.3!

(a) ForP*-almostall h;; € H;j; and all a; € A;,
Vit (0] (hin), 07 ;g (hir)) 2 vir (ai, 07 ;5 q] (hi).

(b) G, is aregular conditional probability of P* given .7;,.%

According to the first condition, in equilibrium agents do not have access to profitable uni-
lateral deviations given all, but possibly a set of measure zero, of private histories. Bayesian Nash
equilibrium is typically defined by requiring the agents to maximize their expected utilities given
all information sets, including the ones that are reached with zero probability. Our equilibrium

31We use P* and E* to denote the probability distribution and expectation operator, respectively, induced by o *.
32Given a probability space (X, 2 ,P) and a sub ¢-algebra @ < &, the transition probability f: X x Z — [0,1] is a
regular conditional probability of P given % if for each B € &', x — f(x)[B] is a version of P(B|%¥).
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notion is thus weaker than the standard Bayesian Nash equilibrium. However, the requirement is
sufficiently strong to ensure the existence of an equilibrium that is unique up to sets of measure
Zero.

The assumption that the agents maximize their stage payoffs corresponds to myopia on
agents’ behalf. An alternative equilibrium notion is obtained by assuming that the agents choose
actions that maximize the average (or discounted sum) of their payoffs over their lifetime. How-
ever, using this alternative equilibrium notion significantly complicates the analysis and more
importantly results in multiplicity of equilibria.

The second equilibrium condition is the consistency requirement according to which the
agents’ beliefs are obtained using Bayes’ rule given their prior and the equilibrium strategy pro-
file 0*. We remark that, as typically is the case with weak perfect Bayesian equilibria, agents’
beliefs are not uniquely determined given the equilibrium strategy profile. Rather, any regular
probability distribution distribution of P* given /;; is a consistent time ¢ belief for agent i.

Definition 4.4. ¢* is an equilibrium strategy profile if there exists some g* such that the pair
(c*, q") constitutes an equilibrium.

The following lemma provides a characterization of the equilibrium strategy profiles.

Lemma4.1. ¢ is an equilibrium strategy profile if and only if for all i and t,

E* [ui(6},,67 ;0|0 2 E" [ui(Gi1,G7;,,0) 501 ], (4.2)

irY-ip —iv
for any strategy o; and with P* -probability one.

In the rest of the current chapter, we restrict our attention to square integrable strategies in
order to rule out the uninteresting equilibria wherein each agent’s expected payoff is equal to
minus infinity, regardless of her own strategy.

Definition 4.5. A strategy profile o is square integrable if
=2
E? [Uit] < 00,
forall i and t.

If agents follow square integrable strategies, their expected payoffs of taking any action given
any private history is finite. Moreover, agents’ expected stage payoffs are quadratic, and concave
in their own actions. Thus, the equilibria of the game can be characterized by a set of necessary
and sufficient first-order conditions that result in the following simple characterization of the
square integrable strategy profiles.

Corollary 4.1. The square integrable strategy profile c* is an equilibrium strategy profile if and
onlyifforalli andt,

* * ]' * ~ %k
67, = (1= ME 017 + A—— Y E*[0715: (4.3)
n-1iz

with P* -probability one.
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Agents’ equilibrium strategies are linear in their expectation of the state and others’ actions.
This feature of the equilibrium keeps the analysis tractable. Moreover, equation (4.3) can be used
to show that square integrable strategy profiles are the fixed points of a contraction mapping in
the L” space. We use this property to show that square integrable equilibrium strategies always
exist and result in equilibrium actions which are almost always unique.

Proposition 4.1. Suppose that Assumption 4.1 is satisfied. Then, a square integrable equilibrium
strategy profilec ™ exists. Furthermore, for any other square integrable equilibrium strategy profile

o andalli andt,

+
i’

~% o~
0,;,=0

P* -almost surely and P' -almost surely.

Thus, the agents’ equilibrium actions are uniquely determined after a set of full measure
of histories. In the next section, we use this result and the characterization of the equilibrium
actions in Corollary 4.1 to analyze the asymptotic behavior of the agents’ equilibrium actions.

4.3 Reaching Consensus

In this section, we show that the agents eventually reach consensus in their actions and that their
realized payoffs are asymptotically the same. To prove these results, we first show that agents’
actions converge to some limit action.

Proposition 4.2. Suppose that Assumption 4.1 is satisfied. Let c* be a square integrable equilib-
rium strategy profile. Then, G, converges to some /¢;-measurable random variable ¢} in the L?
sense, that is,

[E*[(&;‘t—ﬁf)z] —0 as t—oo

forallie N.

Agent j’s action converges in L? to some limit action that is a function of the realized path of
play. If agent i can observe the actions of j infinitely often, she can asymptotically imitate the
actions of agent j. In a strongly connected network, agent j can in turn imitate the actions of
some other agent k, and so on, with some agent being able to imitate the actions of agent i. All
agents in such a chain must, therefore, asymptotically believe that their actions are better than
the ones taken by the others. However, since the agents’ payoffs are symmetric and their actions
are strategic complements, this is only possible if any two agents asymptotically choose the same
action, regardless of the realization of the state of the world. This is an instance of argument by
the so-called Imitation Principle, according to which each agent’s asymptotic payoff is always at
least as high as the asymptotic payoff of any agent she can imitate, and hence, in a connected
network, agents’ asymptotic payoffs are the same.>®> We use this line of reasoning to prove the
following theorem on consensus in the agents’ payoffs and actions.

Theorem 4.1. Suppose that Assumptions 4.1-4.3 are satisfied. Let 0* be a square integrable equi-
librium strategy profile. Then, as t goes to infinity, foralli,j € N,

33The Imitation Principle was first introduced by Bala and Goyal (1998) to study boundedly rational social learning
with purely informational externalities. For other applications of the Imitation Principle, see Gale and Kariv (2003)
and Rosenberg, Solan, and Vieille (2009).
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(@ E* [

i (67,5°1,0) - uj (55,67;,6)| | —0,
2
(b) E* [(&;‘t—ﬁ;t) ] —0,

© &1, 2 B 10176) = E* [01.7)).

According to part (a) of the theorem, the differences between the agents’ payoffs asymptot-
ically vanish in the L' sense. Thus, in spite of the differences in their location in the network
and the quality of their private signals, agents asymptotically receive similar payoffs. This is due
to the structure of the game wherein agents’ incentives are aligned, and thus, each agent would
benefit from making her private information available to the rest of the population. From the
point of view of the agents, however, the asymptotic payoffs are not necessarily the same. That
is, the conditional expectations of the agents’ limit payoffs given their information at the end of
the game could be dissimilar. The following example illustrates this possibility.

Example 4.1. Consider two agents who observe each others’ actions at all time periods. The
common prior is the uniform distribution over the set {—2,—-1,1,2}. Agent 2 receives no signal
(S2 = @), whereas Agent 1’s private signals belong to the set S; = {1, 2} and her signaling functions

7; are given by
01 if 10]1<2,
me(hy) =
() {52 if 161>2,

where 65, is the degenerate probability distribution with unit mass on the signal sy, € S;. Thus,
agent 1 is informed of the absolute value of 8. Observe that in any equilibrium of the game
g7, =0 at all times and for both agents, Agent 1 learns the absolute value of 6, whereas Agent
2 never makes any informative observations. At the end of the game, Agent 1’s expected payoff
conditional on her information is equal to —(1—-1)|0 |2, while the corresponding payoff for Agent 2
isgiven by —(1-7) % Although these conditional expected payoffs are unequal for any realization
of the state, the unconditional expected payoffs and the realized payoffs are the same for both
agents—as also implied by Theorem 4.1.

Part (b) of the theorem proves that the agents asymptotically coordinate their actions with-
out ever communicating their private signals, whereas part (c) shows that agents asymptotically
reach an agreement in their conditional expectations of the state. Nevertheless, it is not imme-
diately obvious whether the agents coordinate on the “optimal” action—on which they would
have coordinated, had they been able to fully communicate their private signals—or whether
their consensus estimate of the state is the best possible. The following example shows that this
may indeed not be the case.

Example 4.2. Consider two agents who observe each others’ actions at all time periods. The
common prior P is the uniform distribution over the set {—1, 1}. Agents’ private signals belong to
the sets S; = S = {H, T} and the signaling functions 7, are given by

1 1

55(H,H) + 55(T,T) it 6=0,
me(hy) = 7

zé(H,T) + 55(T,H) if <0,
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where Jj, is the degenerate probability distribution with unit mass on the signal profile s; € S.
We first show that, in the unique equilibrium of the game, both agents choose 67, = 0 at all times.
Given the prior, in any equilibrium of the game, agents choose 67, =0 at t = 1. Agents then each
receive a signal that is H (T) with probability one half, regardless of the realization of 8. Agents’
private signals are thus completely uninformative about the realized state. As a result, agents
also choose 6;.“2 =0 at t = 2, regardless of the realized state. These actions reveal no information;
moreover, the time 2 private signals are uninformative. Therefore, agents continue to choose the
zero action in all subsequent stages of the game.

Next, consider the alternative setting in which both agents observe the signal profile s; =
(s11, S2¢) attime ¢. (This setup is equivalent to one in which each agent communicates her private
signals to the other.) In this modified game, both of the agents learn the realized state at ¢ = 2.
Therefore, in any equilibrium o' of the modified game both agents choose 6‘; ,=0foralr=2
and given any realization of . This shows that in the original game the agents did not coordinate
on the optimal action—which they would have chosen if they had observed each others’ private
signals.

In the above example, the information content of the private signals is not successfully ag-
gregated through the agents’ repeated interactions. The reason for this failure is that the agents’
equilibrium actions reveal no information about their private signals, although the signals con-
tain useful information about the realized state. This example is however nongeneric in the sense
that the transition probabilities 7, are “fine-tuned” to make all the states equally likely after the
observation of any private signal. In the next section, we argue that when the signals are exoge-
nously generated—as is in fact the case in Example 4.2—the agents generically coordinate on the
action that is efficient given their aggregate information.

4.4 Exogenous Signals and Asymptotic Efficiency

In this section, we provide conditions under which agents aggregate the dispersed information
and asymptotically coordinate on the efficient action. Dynamic games of incomplete informa-
tion of the type discussed in this chapter generally exhibit two distinct inefficiencies. The first
inefficiency is the result of the payoff externality whereby agents try to second-guess the actions
of others by choosing actions that are close to their estimates of the average action across the
population. A social planner that wants to maximize the sum of agents’ payoffs, in contrast,
would make them take actions which are simply close to their estimates of the state. This inef-
ficiency is present even in static variants of the game, such as the model studied by Morris and
Shin (2002). Theorem 4.1 of Section 4.3 shows that this inefficiency asymptotically disappears as
each agent learns to correctly predict the actions of other agents.

The second inefficiency is due to the informational externalities present in a dynamic setting,
wherein agents do not internalize the effect of their actions on the informativeness of the future
observations. This inefficiency is also present in models of social learning, such as the model
proposed by Vives (1997), in which each agent’s payoff is independent of the actions taken by
the rest of the population. This learning inefficiency could especially be severe if the distribu-
tion of the agents’ private signals is a function of their previous actions. The following example
illustrates some of the complications that can arise with endogenously generated signals.

Example 4.3. Consider a single agent who repeatedly plays a game with payoffs as in (4.1) with
A = 0. The agent’s prior is given by the standard normal .4#(0,1). The signaling functions are
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given by n;(h;) = A (8,1) for t <2, and

N(6,1) if 0 —ay|>1,
ne(hy) = .
A(0,1) if 0 —ay| <1.

for t > 2. The agent observes informative signals and chooses actions in the first two periods.
If her time 2 action is not within unit distance of the realized state, she continues to observe
informative private signals and asymptotically learns the state with arbitrary precision. However,
if the agent’s time 2 action is sufficiently close to the realized state, she does not observe any
informative signals after the second time period and thus never learns the state. In this example,
there is an externality associated with the effect of the agent’s time 2 action on the distribution
of the private signals observed by her future incarnations. If the agent is myopic (or sufficiently
impatient), this informational externality is not internalized in the equilibrium.

This example illustrates the path dependence that learning with endogenously generated
signals can exhibit: The total amount of information available to the agents is not fixed; it rather
is a function of the realized path of play. Consequently, no well-defined notion of the efficient
aggregation of information is readily available when learning is endogenous. We thus restrict our
attention in this section to a setting where the signals are exogenously generated in the following
sense.

Definition 4.6. The private signals are exogenously generated if for any t, there exists some tran-
sition probability 7; from © x S~1 to S such that for all i, = (8; 51, ai, 81;---3Sr—1, Ar—1,8r-1) € Hy
one has w;(h;) =7:(0; 81;82;...;8:-1).

To simplify the analysis, we also replace Assumption 4.1 with Assumption 1’ below and re-
place Assumptions 4.2 and 4.3 with Assumption 2’ below.

Assumption 1'. The set © is a bounded and measurable subset of R.

Assumption 2'. There exists a strongly connected network g such that g = g; for all r and with
w-probability one.

When the private signals are exogenously generated and Assumptions 1" and 2’ are satisfied,
we can express our results more simply by using an alternative representation of the space of
plays. Let (£, Z) be the measurable space with Z = © x SN and Z the corresponding Borel o-
algebra. Any prior v and signaling functions {r;};en induce a probability distribution P over
(£, %) which is independent of the strategy profile followed by the agents—unlike in the case of
endogenously generated private signals. On the other hand, given a strategy profile o, the private
history of agent i at time ¢ i§ an H;,;-valued random variable h;; : = — H;;. We define Jlf; to be
the o-algebra generated by ;; when agents follow the strategy profile o and define .#7 to be the
o-algebra generated by the union of .#7, over all ¢ € N. If the signals are exogenously generated,
the results of the previous sections can alternatively be expressed in terms of the probability
distribution P over the measurable space (£, ). For instance, we have the following counterpart
of Theorem 4.1, the proof of which is the same as the proof of Theorem 4.1 and is thus omitted.

Theorem 1'. Suppose that the private signals are exogenously generated and Assumptions 1" and
2 are satisfied. Let 0* be an equilibrium strategy profile. Then, as t goes to infinity, forall i, j € N,
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@ E[

i

i (67,5°,,0) - uj(57,5%;,6)| | — o,
2
) E[(&};—&}ft) ] —0,

© o;, = E|o17;| = E[ois7].

Let (P, d) denote the metric space of all probability distributions over (=, Z), where d is the
total variation distance. When agents’ private signals are exogenously generated, any prior dis-
tribution v and signaling functions {7 };cn induce some probability measure over (=, Z), and
any probability distribution over (2, Z) is induced uniquely (up to sets of measure zero) by some
prior and signaling functions. We can make use of this correspondence to define a generic set
of priors and signaling functions as a set of priors and signaling functions such that their corre-
sponding set of induced probability measures over (Z,#) is a residual subset of P, where here
and in the rest of this chapter of the thesis we assume that P is endowed with the topology of
uniform convergence (metrized by d).3* We have the following result on the generic optimality
of asymptotic actions.

Theorem 4.2. Suppose that the private signals are exogenously generated and Assumptions 1' and
2 are satisfied. If S is a finite set, then for P in a residual subset of P and all i,

EP| |6t - B [o].77" |

—0,

where E* and o® denote the expectation operator and equilibrium strategy profile given P, respec-
tively, and ¥ o" s the o -algebra generated by the union of J;’P overallie N.

The theorem states that for a generic set of probability distributions P, the agents asymp-
totically play as if they all had the information captured by the o-algebra . 7" Note that .#7"
captures the aggregate information that is collectively available to the agents at the end of the
game. Therefore, E [Blﬂ “W] is the optimal action given all the signals that the agents receive
through the course of the game. To formalize this idea of optimality, one could consider an al-
ternative setting in which a coordinator asks the agents to play according to a strategy profile
that maximizes the sum of their expected payoffs. The asymptotically optimal action profile is
then the agents’ limit action profile when they follow the coordinator’s prescription. Theorem 4.2
shows that the agents’ equilibrium actions converge to this asymptotically optimal action in the
L! sense.

An important special case of Theorem 4.2 is obtained by letting A = 0. In this case, the agents
only attempt to form the best possible estimate of the state given the information available to
them. Their equilibrium actions are in turn simply their estimate of 8 conditional on their infor-
mation. The agents’ problem then becomes an instance of social learning. Theorem 4.2 states
that the agents asymptotically learn to estimate the state as if they had access to all the available
information. In this sense, Theorem 4.2 extends and complements some of the earlier optimality
results in the Bayesian social learning literature. In particular, it extends Theorem 4 of Mueller-
Frank (2013) to the case where the join of the agents’ partitions of the state space at the end

34Given a topological space X, a subset A of X is a meager set if it can be expressed as the union of countably many
nowhere dense subsets of X. The complement of a meager set is called a residual set.
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of the game is infinite dimensional. It also extends Theorem 2.1 to the case where the agents
communicate their conditional estimates of the state, rather than their entire beliefs.

The following numerical example illustrates the evolution of the agents’ actions over time
and their convergence to the optimal action given a setting where the state and the private sig-
nals are normally distributed.

Example 4.4. There are n = 6 agents over a fixed strongly connected social network playing the
game with payoffs given by (4.1) with A = 2/3. We consider two network topologies: a directed
ring network depicted in Figure 4.1(a) and a star network depicted in Figure 4.1(b). The common
prior over @ is given by the standard normal distribution .4'(0,1). The signal spaces are given by
S1 = S2 =R, and the signaling functions are given by m;(60) = A4(8,1) and n;(h;) = §¢ for t = 2,
where Jj is the degenerate probability distribution with unit mass over zero. That is, the agents
receive only one informative signal. The evolution of the agents’ actions over time is depicted
in Figure 4.2 for two realizations of the path of play with 8 = 0. The dashed line represents the
efficient action given the agents’ private signals—which in the context of this example is equal to
the average of the private signals. Since agents’ prior is .4(0, 1), they start by choosing the zero
action. At time t = 1, agents each receive a private signal and choose the action that is equal to
her time 1 private signal. Yet, as time passes, the agents’ actions converge to the efficient action.
Moreover, over both of the networks, convergence is complete after a number of time periods
equal to the diameter of the graph.3® In this example, although the agents’ signal spaces are not

finite, convergence to the efficient action is achieved. 36

[1——)

(a) The ring social network (b) The star social network

Figure 4.1. The ring and star social networks of Example 4.4

35The diameter of a directed network is defined as max;, j 1(i, j), where [(i, j) is the length of the shortest directed
path starting from i and ending at j.

36For a recursive characterization of the agents’ equilibrium actions in the Bayesian quadratic network games sim-
ilar to the one studied in Example 4.4, see the paper by Eksin, Molavi, Ribeiro, and Jadbabaie (2013).
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Agent 1 Agent 1
Agent 2 Agent 2
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Agent 4 Agent 4
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(a) Agents’ actions given the ring network (b) Agents’ actions given the star network

Figure 4.2. Evolution of the agents’ actions over time in Example 4.4

4.5 Proofs

Proof of Lemma 4.1

First, note that given any strategy profile o, it is possible to construct a collection of consistent
belief systems g by defining g; (h;;) to be a regular conditional probability of P given #;, eval-
uated at some w € fzi‘tl (hir). Therefore, we only need to prove that if g7, is a regular conditional
probability of P* given /;;, then (4.2) is equivalent to condition (a) of Definition 4.3. Given the
strategy profile o and collection of belief systems g, let 7;;(0;,0—;; ;) be the real-valued random
variable defined as
Dit(01,0-1;G1) = Vit (0i(hir),0-15qi(hit)) .

Condition (a) of the equilibrium definition can be expressed in terms of 7;; as follows: for any
strategy o; and with P*-probability one,

Uir(07,0%;q7) 2 0i4(04,0% ;5 q;).
On the other hand, it is easy to verify that if g, is a regular conditional probability of P* given
FEir, then D (0,045 q;) is aversion of £ [u; (G, 0)|.#]. O
Proof of Proposition 4.1

Before presenting the proof, we first introduce some notation and prove a technical lemma. Let
1 < p <oo, and let (X,Z, P) be a measure space. Consider the set of all LP-integrable random
variables, that is, the set of all measurable functions f : X — R such that

1

I91,= ([ s ap)” <co

The set of such functions, together with the function ||-||,, defines a seminormed vector space,
denoted by £7 (X, P). This can be made into a normed vector space in a standard way; one
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simply takes the quotient space with respect to the kernel of ||-|| p:
ker(ll-I,) ={f: f=0 P-almost everywhere}.

In the quotient space, two functions f and g are identified if f = g almost everywhere. The
resulting normed vector space is, by definition,

LP(X,P) = £P (X, P) ker(Ill ).

Further let LP (X, P) = (L (X, P))" denote the Banach space with the norm ||-|| p defined as

I£1,= £ 141,

By Riesz-Fischer theorem, L” (X, P) and L” (X, P), together with the corresponding || - || », are Ba-
nach spaces. In our notation, we have suppressed the dependence of | - ||, on the underlying
probability measure. Whenever we | - || , use without reference to a specific probability measure,
the correct measure will be obvious from the context.

Lemmad4.2. Let (X, %, P) bea measure space, and let E be the expectation operator corresponding
to P. Also let 0 be a square integrable random variable, and let X; € & be a sub o -algebra for any
i € N. Then, there exists a unique f € L?>(X, P) such that

fi=(1-VE01Z:] + ZE[fJI%
n-15z
forallie N.
Proof. Let T :L?(X, P) — L?(X, P) be the mapping defined as
Ti(f) = Q- VEOIZi] + n— Y Elfjl2il,
j#i

where we are using the fact that 6 is square integrable. Note that

I T;(f) = T;()ll2 = Z E[fj - gjl%i]
J#i 2
ZHE —gil%illl2
17
<_Z||f] gjll2,
J#i

where the first inequality is the triangle inequality and the second one is a consequence of the
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fact that conditional expectation is a contraction with respect to the norm | - ||». Therefore,

IT() = T@ll2= Y _IT;(f) = Ti(8)ll2

i=1

A/ n
SFZZII}‘}—ngz

i=1j#i
=Alf - glla.

Thus, T is a contraction mapping with the Lipschitz constant A < 1. Hence, by the Banach fixed-
point theorem, T has a unique fixed point f € L2(X, P). O

Proof of Propositions 4.1 The proof is constructive. We start at ¢ = 1 and inductively construct
the functions a;.kt : Hi; — A;. The equilibrium strategies are then defined as U;‘ (Hiy) = G;t(Hl‘t)
forall i and t.

Let P; be the probability distribution over (H;, #) induced by v, ¥, and 71, and let E; be the
corresponding expectation operator. Consider some strategy profile . The marginal of P” over
(Hy, #6,) is equal to P;. Furthermore, 8 is measurable with respect to # and ¢ ;; is measurable
with respect to #;; < # for all i. Therefore, for any o,

A A
1 -VE° (010 + —— ) _E7 [011l#n] = A= VE 010+ —— ) E1[61]Hn].
n=1jz n-1jz

In particular, by Corollary 4.1, for any square integrable equilibrium strategy profile a*,

- A -
67y = (L= DE"(0170] +—— Y E" [57,.71]
A 4
= - NE 0170+ —— Y F1 |6}, 1%0].
n-1iz

By Assumption 4.1 and Lemma 4.2, the above system of equations has a unique fixed point
in L2(H,, Py). Consequently, (i) there exists a fixed point 67 = (61‘1,...,6:‘11) such that 6;.“1 €
£?(H;, P); and (i) for any other square integrable equilibrium strategy profile o', we have that
6;*1 = &;fl with Pj-probability one. Furthermore, by construction 6;1 is /£;1 -measurable for all i.
This implies that there exists some function ag‘l : H;1 — A; such that a;.kl (hiy) = 6;.“1.

Next, let P, be the probability distribution over (H»,.#%) induced by v, vy, m; and 7y, and
the time 1 profile (o7,,...,07,) constructed earlier. Recall that, for any two square integrable
equilibrium strategy profiles, 6}, = &;1 with P;-probability one. Thus, all such strategy profiles
induce the same probability distribution over (Hs, #%). We can thus repeat the same argument
to conclude that there exist functions 0;3‘2 : Hi» — A; such that U;.*z(hig) = 6:.‘2 € %%(H,, P,) and

* * /"/ * ~ %k
05 = (L= ME*(0172) + —— Y E* [67,| 0]

A .
=1 -DE 0|+ ——= > E [65,1752],
n-1iz
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for all i. Moreover, for any other square integrable strategy profile o', we have that Gi,= 6];2 with
P,-probability one. We can proceed inductively to complete the proof. O

Proof of Proposition 4.2

Consider the following system of equations:

A
Gi = (1-DE*[0174] + —— ) E*[E;|74,].

By Lemma 4.2, the above set of equations has some solution (¢});en, where ¢ € L2(Q,PY).
Moreover, by construction ¢ is #;-measurable. We prove the lemma by showing that 67, — ¢
in the L? sense as f goes to infinity. By Corollary 4.1,

—&r = (1-1) (E* (0176 —E [9|Ja1)+n—z([E 163,110 — " (51761
j#i

Using the triangle inequality, we can conclude that
167, —¢fll2 < (1-A) |E* 1017, —E* 10171,

/1 % ~% ~%
+n-‘1]§i||[E 05 -1,

(4.4)

"G -E ()

Since the conditional expectation is a contraction,

~ % ~ % ~ % ~
jt_CjL]fit] ||2 = “th_

il2®
Summing (4.4) over i and using the above inequality imply
n n
Y67, -l Q=1 Y ||E (017 —E* (017, |,
i=1 i=1
n
+A Z 167, =7 2

Ly

n 1 i=1j#i

i1 ~E* 15176
Hence,

n n

207, =&ilz = Z |lE* (6171 ~E* (01731,

i=1 i=1

A 1 Z
S P RN L

&) (G
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It is easy to verify that E*[8].7;;] is a martingale with respect to the filtration #;; { #;. Further-
more,
sup [E*[0]7 112 < 10112 < oo,
t

where the first inequality is a consequence of the fact that conditional expectation is a con-
traction and the second one is due to Assumption 4.1. Thus, by the LP convergence theorem,
E*[0].#;,] converges in the L? sense to E*[0]|.7;].3" That is,

lim [[E°1617;,] ~E" 617 |, = 0.

By a similar argument, relying on the fact that 6;. is square integrable, for all j,

lim [ E° (65156, - E* 155161 |, = 0.
Therefore,
n
}irgiglllﬁft—ﬁfllz =0.
O
Proof of Theorem 4.1

We first prove part (b) of the theorem. Let i, j be a pair of agents such that i observes the actions
of j infinitely often w-almost surely. Consider the strategy 0; : H; — A; defined as follows.

0 if =1,
ol(hin) =4 aji-1 it [glji=1
oi(hjt-1) otherwise.

The strategy a;f describes the following plan of action: Agent i starts by choosing zero; she plays
the same action until observing some action taken by agent j, in which case agent i switches to
the observed action and continues choosing it until agent j’s action is observed again. We use
this strategy to prove the result in three steps. In step one, we show that 6]; converges in the L?
sense to ¢*. That is, if agent i follows strategy a;f, her actions will asymptotically coincide with
those of agent j. In step two, we use this result to show that the limit of agent i’s expected payoff
from following o7 is notlower than what it would be, had she followed a;f. In step three, we show
that in a strongly connected network the limits of all agents’ expected payoffs, and hence, the
limits of their actions, are the same.

Step one. Let 1 < t. By the triangle inequality;,

*

5 (4.5)

|
2

< H&T -G
2 it

=t =x ~% ok
“"it % it ™%z

37For a statement and proof of the LP convergence theorem, see, for instance, Durrett (2010, p. 215).
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We first use a truncation argument to bound the first term of (4.5). For 7 < r < t, let B,; be the
event defined as

Bri={w:lg/lji=1, and [gs;;=0 forallr<s<t},
and let D;; be the event defined as
Dyi={w:[g/ji=0 forallt<r<t}.

B, is the event that after observing the time r action of agent j, agent i does not observe agent
J’s action again until after time t. D, is the event that agent i does not observe agent j’s actions
between time periods 7 and ¢. By definition,

BrtUBri1p-UB—1: U D7 = Q.

Therefore,38
* T * 2 =l * T * 2
E [(&”—&ﬁ) ]_§ E [(%—5]'1)

=k <k 2
O-jr O'j.[

2
~ 1 =%
(Uit Ujr)

(], - 6}%)2] P* (Dr), (4.6)

Brt] P*(By) +E*

Dn] P*(Dry)

P*(Br) +E°

1
gl

where in the second equality we are using the fact that 6;?1 is independent of D;; and of any of
the events {B;},¢[r,-1]. We have

-1 2 2 t—1
* ~ ~ % * * ~ % ~ % *
Z[E [(Ujr_ajr) ]P (Brt)srer[?at)—(l][E [(Ujr_ajr) ZP (Brt)
r=1 ) r=t
2
< max E* (&’f —&’f)
relr,t-1] [ T
- max |€r’f _ot |
reir,e—1 - J7 TIT]2”

Since {5; Jten is @ convergent sequence in the (L%, ] - l2) space, it is also a Cauchy sequence.
Therefore, for any € > 0, if 7 is sufficiently large, then II&;fr - 6; (P \/ig forall r = 7, implying that

=1 * ~ % ~ % 2 * 62
S E [(ajr—ajT) ]P (Br) =% 4.7)

r=t

Next, we consider the second term of (4.6). By construction, &L e {0tu {6;},5[1,1_1]. Thus,

2 2 2
* ~ 1 % < * ~ % * Sk <%
: [(% 73] | = max{[E [(‘fﬁ) R [(0,-, ) ] }
2 2
| 2]’
38we provide the proof for the case that P*(By;) > 0 for all T < r < ¢ and P* (D) > 0 for all 7. The proof can be
extended to other cases through obvious modifications.

* ~ %

jr %t

*

JjT

o

= max ”& , max
2 refl,t-1]
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Since {6;t}t€N is a convergent sequence in the (L% 0 - 112) space, it is a also a bounded Cauchy
sequence. Therefore, there exists some M > 0 such that for all 7,

2
5% }SM.

2 ~ %
| Tjr=%jell,

max{o

max
Jtll2’ refl,z-1

Finally, by Assumption 4.3, [FD*(D”) — 0 as t goes to infinity. Therefore, for any € > 0, if ¢ is
sufficiently large, then P* (D;,) < g3;, implying that
2

E* [(5* -5 ) ]n» (D”)<E 4.8)

Combining (4.7) and (4.8) with (4.6), we get that, for sufficiently large values of 7 and ¢ > 7,

_ ([E*
2
We next bound the second term of (4.5). By Proposition 4.2, for any arbitrary € > 0, if 7 is suffi-

ciently large, e
H S 257

Together with (4.5), the last two inequities show that if ¢ is sufficiently large, then

2
~T ~ %
(O-it_o-. )

,.T sk
||Uit Uir

<E€.

~ T =%
”G” %l

Since € > 0 was arbitrary, we can conclude that 6; , converges to 6’]'5 in the L2 sense as t goes to
infinity.

* ~*
_l?

Step two. We first prove that E* [u;(5% 6)]. By the reverse

triangle inequality,

e -7 - e [ -0

20" ”,9)] converges to E* [u; (38

)? =l -ol. - 1 -l
=|l(67.-0)- (&7 - 0)],-

By Proposition 4.2, as t goes to infinity, 67, converges to ¢; in the L? sense. Therefore,

it

E'[(67,-0)° ]| —E [ -0?] a5 t—oo.

A similar argument shows that

2
1
E* Z [ p— 5’f) as ¢ — 0o,
( 1% ) (l n=1jz"
thus implying that
E* [ui(6},,07,;,0)] —E" [u;i(],¢*,,0)] as  t—oo. (4.9)
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We can use the result of the step one to show, in a similar manner, that
B |wi6],6%,00)| —E [wi@),¢",0]  as  t—oo (4.10)
On the other hand, since ¢* is an equilibrium strategy profile, by Lemma 4.1, for all ¢,
E* ui(6},,67,,,0)|#i] = E [ul ( G.,07 ) ‘Jflt]
with P*-probability one. Therefore,
E* [ui(6},,67;,0)] =E" [u, (0”,0 lt,@)] )
Thus, taking limits of both sides of the above inequality as ¢t — co and using (4.9) and (4.10),

B [6},67,,0)] =B [wi (¢5,67,,0)] (4.11)

Step three. By Assumption 4.3, there exists a sequence of agents iy, i1, io,..., i, starting and
ending with the same agent that includes each agent other than agent iy exactly once, and such
that, for all k, agent i} observes iy infinitely often y-almost surely. For any k, thus by the result
of step two,

B i@, ¢ 0] 2B [wi(67,,67,,0)] (4.12)
Summing over k and reindexing the right-hand side sum imply

£ lueioston] £ fuleisti )

Expanding both sides of the inequality, all terms except for one cancel, resulting in

n-1
Z [E Clk Z
k=0

\%
I
-

Further simplification implies that
n n 2
Y E G |z Y E [(eik) ] 4.13)

On the other hand, ¥} | E* [(f;fk - 6;.“k_1)2] > 0 with equality if and only if 6;.2 = fz‘k_l for all k with
P*-probability one. Thus, using the fact that ¥ 7_, E* [(C‘;-kk)z] =Y7_  E*IC :.‘H)Z], we can conclude

that
n
Z E*

with equality ifand only if ¢} i = =c; P forall k, P* -almost surely; equation (4.13) implies that (4.14)
indeed holds with equality. Thus, for all i and j and with P*-probability one,

] Z[E* GGE (4.19)
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Together with Proposition 4.2, this completes the proof of part (b) of the theorem.

We now prove part (a). Since ¢}, converges to ¢; in the L? sense, it also converges in probabil-
ity. Therefore, by the continuous mapping theorem, u;(G7,,6* ;0 converges to ui(C';f‘,C'f »0)in
probability. Together with (4.9), this implies that u;(5},,6”;,,0) converges to u;(¢;,¢” ;,0) in the
L' sense.®” This is true for any two agents. Moreover, by part (b) of the theorem, ui(G;,¢*;,0) =
uj (6;‘. , C'fj, 0) for all i, j € N. This proves that, as ¢ goes to infinity,

foranyi,j.
We next prove part (c). By part (b) of the theorem, ¥ ;; 67, - &; ; goes to zero for all i in the

it’

Ui (0},6" ;,0) — uj (G}, 5" 9)”1_>0,

ir —jr

L2 sense. Therefore, by Corollary 4.1, we can conclude that 6; —E*[0]|#;] goes to zero in the I?
sense. On the other hand, since #;; | #;, we have that E*[0|#;;] converges to E*[0|#] in the
L! sense. Therefore, 6; converges to E*[0]|7#] in the L! sense. Another use of the result of part
(b) completes the proof. O

Proof of Theorem 4.2

Before proving the theorem, we first prove a technical lemma.

Lemma 4.3. Let (X,98) be a measurable space, and let (P,d) be the metric space where P is the
collection of all probability measures on (X, %) and d is the total variation distance. Let %, and
F, be two arbitrary sub o -algebras of 2, let F be the o -algebra generated by the union of #, and
F,, and let f be an arbitrary bounded random variable. The set

Q={PeP:EplfIF1] = Ep[f|F2] # Ep[f|Z]},
is nowhere dense in the metric space (P, d).

Proof. To prove the lemma, we use Dynkin’s 7-1 theorem. Let us first construct the appropriate
A and n-systems. For any P € P, define

APZ{BEQBSffdP:fEp[f|91]dp2fEp[fL@z]dP}.
B B B

We first verify that for any P € P, the set Ap is a A-system of subsets of X. (i) By the law of total
expectation X € Ap. (ii) Let B¢ denote the complement of B in X. If B € Ap, then

[ rap=| gar-|[ par=[ Epipigiar- [ EpipiFnar= | BipiFar
B¢ X B X B B¢

We also have a similar equality for &,. Therefore, B¢ € Ap. (iii) If By, By,... is a sequence of
subsets of X in Ap such that B; nB; = ¢ for all i # j, then by the countable additivity of the
integral,

0o
Ui:l

f fdp=3% | fdp=7Y EP[f|91]dP=f Ep[f|&]dP.
Uz, B i=1YBi i=17Bi B

i=

39This is due to a variant of the dominated convergence theorem that can be found, among other places, as Theorem
5.5.2. in the book of Durrett (2010).
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We also have a similar equality for &,. Therefore, U2, B; € Ap. This proves that Ap is a A-system.
Consider next the set IT defined as

MM={A1NAy:A; € F1,A € F}.

&1 and %, are g-algebras; thus, IT is nonempty and closed under intersections. This proves that
[Tis indeed a m-system of subsets of X. It is also easy to verify that o(I1) = 0 (%, U %) = &F.
Define the set R2 Q as
R={PeP:Ep[fIF] = Eplf|Fl}.

We consider the following two cases: If R is nowhere dense in P, then Q is nowhere dense in P,
and we have the desired result. If, on the other hand, R is not nowhere dense in P, then it must
be somewhere dense in it. Let % be the collection of all open subsets u of P, such that there
exists no nonempty open set v contained in u such that v and R are disjoint. We prove that Q is
nowhere dense in R by showing that any such u contains an open subset that is disjoint from Q.
Let u be an arbitrary set in %, and let b, be an open ball of radius € in the interior of u. In what
follows, we first show that for every Q € be, we have I < Ag. Let A € & and A; € %, be arbitrary
sets with C = A; N A,. Since A; € &, by the definition of conditional expectation, for all Q € b,

/. Q- | EolfI11dQ.

Therefore,

‘[Al\cfdQ"'](;fdQ:LI\CEQ[ﬂgl]dQ+LEQ[f|g1]dQ. (4.15)

On the other hand, since Ris dense in b, for any Q € b, there exists a sequence {Qy} xen such that
Qk € be nRfor all k, and Qi converges in the total variation distance to Q. Therefore, Eq, [f|%1]
converges in Q-probability to Eq[f|%11.4° Therefore, since f is bounded and Qj converges in
total variation distance to Q,

fA EQk[flgﬁlkoéfA EqQlfI#11dQ, (4.16)
and
f fko—>f fdaq. (4.17)
A, Ay
Moreover, for all k,
fA fko=fA Eok[fl%]dQﬁfA Eq fIZ11dQy, (4.18)

where the first equality is by the definition of conditional expectation and the assumption that
Ay € %,, and the second equality is a consequence of the fact that Q. € R. Equations (4.16)—(4.18)
imply that

/. fdQ-= | EqlfiF1de.

40This follows a result of Landers and Rogge (1976) (cf. Theorem 3.3. of Crimaldi and Pratelli (2005)).
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And hence,
f fdQ+f fszf EQ[flgzl]dQ+fEQ[f|91]dQ. (4.19)
As\C C A\C c

We use (4.15) and (4.19) to conclude that [ fdQ = [ Eql[f1911dQ for all Q € be. Pick some
arbitrary Q € be. If Q(A;) =0 or Q(A;) = 1, by boundedness of f we are done. If 0 < Q(A;) < 1, for
any & € (0,1) construct the measure Qs over (X, 98) as follows: for any B € 2,

Qs5(B) = (1+5Q(A9))QBN Ay + (1-6Q(A))Q(B N AS).

It is easy to verify that Qs is indeed a probability measure. We next show that Eg, [f1F1] =
Eqlf|&]. Let B € % be arbitrary.

f fdQs = f fdQs + f £dQs
B BnA; BNAS
=(1 +5Q(Af))f fdQ-f—(l—@Q(Al))f fdQ
BnA; BnAf
= (1+6Q(A9) f EolfIF11dQ+ (1 - 8Q(A) f Eolf111dQ
BnA; BN A
- f Eolf|%1d0s + f Eolf|F11dQ;
BnA; BnAf
- fB Eolf1911dQs, (4.20)

where the third equality follows from the assumption that Eg[f|57] is a conditional expectation
of f given & and the fact that Bn A; € %; and Bn A‘f € Z1. Since Eg|f|%1] is &1 -measurable,
equation (4.20) proves that Eg[f|%1] is a version of E@s [fIZ1]. Let By = Aj\Cand B, = Ay \ C.
Equations (4.15) and (4.19) imply that

f[f—EQ[flfiﬂ]dQ:f [f - Eqlf19711] dQ. (4.21)
B, B,

Since By n Ay = By,

fBl [f—E@ [fl%l] dQs =01 +6Q(A§))fB1 [f—EqlfI#1]] dQ. (4.22)
Likewise, since B, N A{ = By,

fBZ [f—E@s [fI%]] dQs =1 —5Q(A1))fBZ [f - Eqlf1Z1]] dQ. (4.23)
On the other hand, if § is sufficiently small, @5 € be. Therefore, by (4.15) and (4.19),

| [r-Eqn#]ads= [ [r-Eqr1#11]aQs. (4.24)
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Equations (4.21)—(4.24) imply that

f[f—EQ[fl%]]dQ:f [f = EqlfIZ11]dQ=0. (4.25)
B, B,

Thus, by (4.15),
| rae= [ Eolriziae
C C

A similar argument shows that for all Q € b,

fc fdQ= fc Eolf\%:1d0,

Therefore, A N Az € Aq for every Q € b.. Since A; and A, were arbitrary, this shows thatIT€ Aq
for all Q € b,. Therefore, by the Dynkin’s 7-A theorem, o (II) = % < A for Q € b; that is, for any
AeF,

fAfdQ=LEp[flglldQ=LEp[f|92]dQ.

Together with the fact that Eq[f|%1] and Eq[f]%>] are both measurable with respect to %, this
shows that Eq[f|F] = Eqlf|1] = Eqlf1%>] for all Q € be. Thus, b and Q are disjoint. Recall
that the set u € % was arbitrary. Therefore, for any set u in %, there exists some v contained in
u such that v and Q are disjoint. This shows that Q is nowhere dense in P. O

Proof of Theorem 4.2 In light of part (c) of Theorem 1’, in order to prove the theorem it is
sufficient to show that there exists a residual set R < P such that for all P € R,

Ep|0|s7" | = Ep|0]57| forallieN.
For any pair of agents i, j € N, define M;; P as
P P P
My ={PeP:Ep 097 | = Bp [0]57" | # Ep [0].77|},
where J;;P is the o-algebra generated by the union of ﬂi"P and .#7" . We first prove that M;; is a
meager set. Let D; c P be the set of all probability measures P such that P(s;) = 5, = for some
se€ Sand all T > t, where [ is the indicator function. When the state and the private signals are

realized according to some P belonging to Dy, then the signal profiles generated after time ¢ are
constant and thus completely uninformative. Trivially, it is true that

[e.0]
P=JD..
t=1

Let M; j; = M;j nD;. Then, by the above equality,

o0

M;; = UM
=1

Therefore, for M;; to be a meager set, it is sufficient that M; j; is a meager subset of D, for any .
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We prove this by proving that the set Q;j; 2 M; j; defined below is meager.
Qiji= {P eD;:Ep [9|J;’P ] =FEp [9|j]qp ] # Ep [9|J;§P ] for some P’ eDt}

Note that, for all P € Dy, the signal profiles generated by P after time ¢ are constant. Therefore,
for all i, any strategy profile o, and any P € D;, we have that J;’P is a sub o-algebra of .#;, the
Borel o-algebra generated by the signal profiles up to time ¢. Given two arbitrary sub o-algebras
it Fjr © S and the o-algebra generated by their union .%; j,, define

Siji(Fit,Fj1) ={P €D : Ep|01.F;:| = Ep [01F}:] # Ep [01Fj¢]}

Qi is a subset of the union of the above sets over all o-algebra pairs %}, #};. Since S is finite
and for P € D, the signals are constant after time ¢, the o-algebra .#; is finite. Therefore, there are
finitely many such S; ;; sets. Consequently, it is sufficient to show that any S; ;; is meager in D
in order to conclude that Q;;;, and hence M; j;, are meager in D;. Note that the set D, is the set
of probability measures over © x S ! and @ is a bounded random variable over this set. Moreover,
Fit,Fj are two arbitrary fixed sub o-algebras of the Borel o-algebra of © x S’. Therefore, we can
directly use Lemma 4.3 to conclude that S; j;(#;;,#;;) is nowhere dense in D;; therefore, M;; is
a meager subset of P.

The above argument shows that for any pair of agents i, j € N, the set M;; is a meager subset
of P. We can use this result to argue similarly that for any i, j, k € N, the set M; j defined below
is a meager subset of P.

Myj={PeP:Ep[0].97 | = Ep|0]57"| = Ep [0].57" | # Ep |0]57 ]}

where Ji‘;l;c is the o-algebra generated by the union of .7 " f}f’ " and R4 " Proceeding induc-
tively we can prove the lemma. O
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CHAPTER 5

CONCLUSIONS

5.1 Thesis Summary

In this thesis, we studied the problem of information aggregation in social networks under three
distinct assumptions on agent behavior. In the second chapter, we studied the inference prob-
lem faced by a group of fully rational agents who interact over an unknown social network. In
the third chapter, we studied a similar inference problem when agents are instead boundedly
rational and showed that boundedly rational agents can asymptotically aggregate the dispersed
information as well as their fully rational counterparts. We further provided an explicit char-
acterization of the rate of learning and used the result to perform comparative analysis. In the
fourth chapter of the thesis, we introduced a novel model of opinion formation in which agents
attempt to act in conformity with each other while also matching the unknown state. For each of
the models, the focus was on characterizing the conditions on network and information struc-
tures that lead to consensus and information aggregation. We summarize the presented results
in the following.

In Chapter 2, we studied the behavior of a group of individuals who are fully rational and
are only concerned with learning some unknown state of the world. We showed that communi-
cations between rational individuals with access to complementary pieces of information even-
tually direct everyone to discover the truth. This result holds so long as the state is collectively
identifiable, information can flow from any individual to any other one, and the agents are en-
dowed with a common prior—even if no individual is able to identify the state on her own or
if the network structure is not commonly known by the agents. Repeated interactions between
rational agents eventually lead to efficient aggregation of information. This result can be viewed
as a positive result on the possibility of full information aggregation by Bayesian agents. Yet, fully
rational agent behavior may not be a realistic assumption when dealing with large societies and
complex networks due to the extreme computational complexity of Bayesian inference.

Motivated by this observation, in Chapter 3, we explored the implications of bounded ratio-
nality by introducing biases in the way agents interpret the opinions of others while at the same
time maintaining the assumption that agents interpret their private observations rationally. Our
analysis yields the result that when faced with overwhelming evidence in favor of the truth even
biased agents will eventually learn to discover the truth.

We moreover characterized the rate of learning in terms of the relative entropy of different
agents’ signal structures and their eigenvector centralities. We showed that if the agents’ signal
structures are comparable in the sense of uniform informativeness, then the rate of learning is
maximized when the most central agents receive signals of the highest quality. We also showed
that in the presence of experts—i.e., agents with access to information crucial for learning—the
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role played by the social network structure is inverted. In particular, learning is slower if the
high quality signals are assigned to the more central agents rather than the ones at the periphery
of the network. This result is a consequence of the fact that learning is slowed down whenever
the information and identification bottleneck effects reinforce one another. More specifically,
if the information required for distinguishing the pair of states that are hardest to tell apart is
only available to an agent who receives very little effective attention from others, then it would
take a long time for (i) that agent to collect enough information to distinguish between the two
states; and (ii) for this information to be diffused throughout the network. On the other hand,
a negative assortative matching of signal qualities and eigenvector centralities guarantees that
these two events happen in parallel, leading to a faster convergence rate.

Furthermore, by defining the novel notion of regularity as a measure of the extent of asym-
metry in the network structure, we provided a comparative analysis of the role of the structural
properties of the social network on the long run dynamics of the beliefs. We showed that even
though the speed of learning is smaller in more regular networks when the signal structures are
comparable in the uniform sense, the exact opposite is true when each agent possesses some
information crucial for learning.

Finally, in Chapter 4, we studied a dynamic game in which a number of agents attempt to
coordinate on an outcome about which they have incomplete and asymmetric information. Any
agent’s actions reveal information which is used by other agents to revise their beliefs, and hence,
their actions. We proved formal results regarding the asymptotic outcomes obtained when my-
opic agents play the actions prescribed by the weak perfect Bayesian equilibrium. In particular,
we showed that the agents reach consensus in their actions if the observation network is con-
nected, and the consensus action is generically optimal if the agents’ private observations are
exogenously generated and the signal space is finite.

5.2 Future Directions

In Chapter 3, we studied a variant of the DeGroot (1974) learning model wherein agents re-
peatedly make new private observations. DeMarzo, Vayanos, and Zwiebel (2003) argue that the
agents in the DeGroot model update their beliefs as Bayesian agents who make noisy observa-
tions of a normally distributed unknown parameter, except that the agents in DeGroot’s model
fail to account for repetitions in their observations. In other words, the agents in the DeGroot
model are Bayesian except that they lack perfect recall of their past observations. As such, a
promising research direction is to investigate the non-Bayesian updating rules that can be ob-
tained from Bayes rule in different environments by imposing the additional restriction that the
agents lack perfect recall. An advantage of such a framework over the seemingly ad hoc array
of non-Bayesian models proposed in the literature is that it can be used even in environments
where no obvious non-Bayesian update rule is readily available, e.g., when agents observe the
actions of their neighbors instead of their beliefs.

Another interesting future direction is to test the predictions of the model studied in Chap-
ter 3 using lab experiments or field data. The theoretical model yields refined predictions on the
dependence of the speed of information aggregation in a network on the allocation of informa-
tion across agents that can be empirically identified. Empirical evidence could further elucidate
the usefulness and limitations of the theoretical results and inform the design of public policy
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regarding information dissemination when information sources are scarce or costly.*!

In Section 4.5, we proved Lemma 4.3 as an intermediate step in the proof of Theorem 4.2.
In simple terms it states the following: given a generic set of priors, consensus implies learning.
The proof of this lemma makes no use of the structure of the model being studied in Chapter 4.
Indeed, the result continues to hold in a much more general framework. Consider a group of
agents who are endowed with a common prior over some state space and who reach an agree-
ment in their beliefs about an event of interest based on some information. Lemma 4.3 states
that such agents would generically not further benefit from direct communication of their infor-
mation as their beliefs already reflect all the information relevant to the event of interest. This
is the case irrespective of the opinion dynamic that lead the agents to consensus. In future re-
search, we intend to generalize this result by showing that our topological notion of genericity
can be substituted with a measure-theoretic one, and to study its implications for problems such
as information aggregation in markets.

Finally, we remark that although the results of Chapter 4 were proved under the assumption
that the agents’ preferences are represented by a quadratic utility function, the insights of our
analysis do not hinge on the particular functional form of the utility function. In fact, similar
results can be proved for more general symmetric coordination games with payoffs that can be
approximated well with a quadratic function. Similarly, the assumption on the myopia of the
agents could be dispensed with if the agents were assumed to be atomistic. An interesting future
research direction is to develop a formal model that relaxes the assumptions on quadratic utility
function and myopic agent behavior.

411 would like to thank Dimitri Vayanos for suggesting this research direction.
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APPENDIX A

BLACKWELL'S ORDERING AND UNIFORM INFORMATIVENESS

Blackwell (1953) defines a decision-theoretic notion of what it means for a signal structure to be
more informative than another. According to this notion, a signal structure is more informative
than another if a decision maker with any utility function would prefer to use the former over the
latter when facing any decision problem.

It is well-known that Blackwell’s requirement for the ordering of signal structures is very
strong and that most signal structure pairs are not comparable in the sense of Blackwell. One can
define a related and weaker notion of informativeness (Jewitt (2007)): an information structure
is said to be Blackwell more informative than another on dichotomies if the former is Blackwell
more informative than the latter on all dichotomous subsets {6, é} cO.

The next result shows that our notion of uniform informativeness defined in Section 3.3 pro-
vides a more complete order over the set of signal structures than either of the notions above.

Proposition A.1. Suppose that ¢ is Blackwell more informative than ¢' on dichotomies. Then, ¢
is uniformly more informative than ¢'.

Proof. By the theorem of Blackwell and Girshick (1954, p.328), ¢ is Blackwell more informative
than ¢’ on dichotomies, if and only if

i 10
29(s) ¢ (s)), Al

6 0
20 (S)¢(€9(s)) 0! (s)d)(ﬁ"’(s)

seS seS

for all 6,0 € © and all convex functions ¢. Given that ¢(x) = —log(x) is convex, this immediately
guarantees that informativeness in the sense of Blackwell (on dichotomies) implies informative-
ness in the uniform sense. O

Notice that the above proof also establishes that the inverse of Proposition A.1 does not
hold in general. In particular, for a signal structure to be more informative than another on
dichotomies in the sense of Blackwell, inequality (A.1) should hold for all convex functions ¢,
whereas for uniform informativeness, it is sufficient that (A.1) is satisfied for ¢p(x) = log(x). Thus,
unlike most other information orders (such as Lehmann (1988)’s), uniform informativeness does
not coincide with Blackwell’s order on dichotomies.
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APPENDIX B

REGULARITY AND NETWORK SYMMETRY

Acemoglu et al. (2012) define a measure of symmetry of network structures according to which
network A is more symmetric than network A’ if |v|l, < [|v/|l2, where v and v’ are the centrality
vectors corresponding to A and A’, respectively. The next result relates this notion to the notion
of regularity defined in Section 3.5.

Proposition B.1. Ifsocial network A is more regular than A', then |v|, < ||V'|».
Before presenting the proof, we state and prove a simple lemma.

Lemma B.1. Suppose that vector y' majorizes vector y as defined in (3.7). Then, for any nonneg-
ative vector X,

n n
!
PR IEDD Xt Viip-
i=1 i=1
Proof. By assumption,
k k
2 Vi =2y
Y= 2V
i=1 i=1

for all k = n. Multiplying both sides of the above inequality by the nonnegative number x —
Xik+1) and summing over all k imply

n k n k
Z (Xt = Xpges)) Z i) = Z (X = X(ges)) Z J’fi]’
k=1 i=1 k=1 i=1

with the convention that x(,+1) = 0. Finally, noticing that
n k n

> (e = xpgerny) 2 v = X Xy

k=1 i=1 i=1
completes the proof. O
Proof of Proposition B.1 Given that A is more regular than A’, the eigenvector centrality v is
majorized by v'. Thus, by Lemma B.1,

n

n
2
lvll; = Z Vv = Z Uli] Vfi]'
i=1 i=1
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Applying Lemma B.1 once again implies
9 n n
nm2 _ o .
lvls = 21 Vi Vi 2 Xi VI V-
i= i=

Combining the above two inequalities completes the proof.
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APPENDIX C

STABILITY OF RANDOM DYNAMICAL SYSTEMS

Dynamical Systems

The definitions regarding dynamical systems are standard and can be found, among many other
places, in the book of Sastry (1999).

A discrete-time dynamical system on the Euclidean space (henceforth simply called dynam-
ical system) is a mapping ¢ : N x R* — R¥ that gives the time ¢ consequent ¢;(x) to a state x.
The trajectory of dynamical system ¢ with initial state xy is the time-ordered collection of states
Xg, X1,... such that x; = @;(x,—) forall teN.

A dynamical system is called linear if ¢,(x) = M, x for some M, € R*** and all £ € N. The
trajectory of a linear dynamical system with initial state xy is given by x; = ®(#) x9, where ®(#) is
the evolution operator (or the state transition matrix) given by

®() =M, M (C.1)

for all r e N.
A fixed point (or equilibrium) of ¢ is a state xeq such that xeq = @+ (xeq) for all r € N.

Lyapunov Exponents

The concepts of Lyapunov exponents, regularity, and Lyapunov stability date back to Lyapunov.
A modern treatment for the case of ergodic ODEs can be found in the book by Barreira and Pesin
(2002).

Let ¢+(x) = M;x be a linear dynamical system with bounded M;. The Lyapunov exponent of
the trajectory ®(¢)x of the dynamical system starting with initial state x is the mapping A : R¥ —
R U {—oo} defined as

A(x) =limsup 1 logll®(#)x]l. (C.2)

t—oo [

The Lyapunov exponents do not depend on the matrix norm used.
The function A takes at most a number r < k of distinct values on R¥ \ {0}. Write

—o0<A, <1< <A1 <0

for different values of A(x) and call them the Lyapunov exponents of the dynamical system. 1;
is called the top Lyapunov exponent. The sets V; = {x € Rk : A(x) < Ai} are linear subspaces of RK
fori=1,...,r. The integer d; = dim V; —dim V},, is called the multiplicity of 1;.

78



The sequence ®(¢) is said to be Lyapunov regular if
! 1
)" d;A; =liminf-log|det ®(z)|.
i=1 n—oo f
For a Lyapunov regular system all lim sup’s in (C.2) are in fact limits.

Lyapunov Stability
Let x; be the trajectory of dynamical system ¢ with initial state xp. Also assume that
@i(x) =M x + fi(x) (C.3)

for all £ € N and x € R*. Without loss of generality, we assume that the origin is a fixed point of ¢.

The origin is stable if for every neighborhood U of the origin and all 7y € N there is a neigh-
borhood V € U of the origin such that if x;, € V, then x, € U for all ¢ = 1.

The origin is uniformly stable if in the preceding definition V can be chosen independent of
to.

The origin is asymptotically stable if it is stable and additionally V can be chosen so that
x;—0ast—ooforall x, eV.

The origin is uniformly asymptotically stable if it is uniformly stable and additionally V can
be chosen so that x; — 0, uniformly in %y, as t — oo for all x,, € V.

The origin is exponentially stable if there is a neighborhood V of the origin and constants
¢, A > 0 such that if x;, € V, then || x|l < ce™ (=) || x, || for all £ = 1.

We say that the above properties hold globally if the neighborhood V can be chosen to be the
entire Euclidean space.

A central question in Lyapunov stability theory is whether stability of a fixed point of a linear
dynamical system is preserved when the system is subject to small perturbations. The follow-
ing result is a partial answer to this question for Lyapunov regular systems. The following is a
corollary of Theorems 1 and 2 of Barreira and Valls (2007).

Theorem (Barreira and Valls). Consider the dynamical system @(x) = M;x+ f;(x) with trajectory
x; € R¥, where M, € R**k for all t. Also, suppose that the following hold:

(a) The linear dynamical system M; is Lyapunov regular.

(b) The Lyapunov exponents corresponding to M; are all negative, that is,
!
A = lim —log||M;M;_y... M; || <O.
t—oo

(©) fi(x) is a continuous map with f;(0) =0 forall t.

(d) There are constants C,q > 0 such that || f;(x) — fy(p)Il = Cllx -y (lellq + ||y||"),f0r all t and all
x,y € Rk,

Forall ty ande > 0, there exist a neighborhood V of the origin and a constant K such thatifx,, €V,
then forall t = ty,
lxell < Kelt=0hrowetx, .
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Oseledets’ Theorem

Oseledets’ multiplicative ergodic theorem (MET) is the most fundamental theorem in the study
of random dynamical systems. The following result, which can be found in Oseledets (2008), is
part of one of various versions of the MET.

Let 9~ be a measure preserving transformation of a probability space (Q, %,P) and

Ow;t) =M T "w)... Mw), (C.4)

where M is a measurable map to the space of invertible k x k real valued matrices satisfying
fmax{logllM(w) lI,0} dP < co.

Theorem (Oseledets). The function t — ®(w; t) is Lyapunov regular for P-almost every w.
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