
Adding Structure to Unstructured Data

MS-CIS-96-21

Peter Buneman, Susan Davidson, Mary Fernandez, Dan Suciu

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

Adding Structure to Unstructured Data

Peter Buneman Susan Davidson Mary Fernandez Dan Suciu

December 19, 1996

Abstract

We develop a new schema for unstructured data. Traditional schemas resemble the type
systems of programming languages. For unstructured data, however, the underlying type may
he much less constrained and hence an alternative way of expressing constraints on the data is
needed. Here, we propose that both data and schema be represented as edge-labeled graphs.
We develop notions of conformance between a graph database and a graph schema and show
that there is a natural and efficiently computable ordering on graph schemas. We then examine
certain subclasses of schemas and show that schemas are closed under query applications.
Finally, we discuss how they may be used in query decomposition and optimization.

1 Introduction

T l l ~ ability to represent and query data with little or no apparent structure arises in several areas:
biological databases, database integration, and query systems for the World-Wide Web[PGMW95,
TlID92. BDHS96a, MMM96, QRS'95, KS95, CM901. The general approach is to represent data
(1s a labeled graph. Data values and schema information, such as field and relation names, are kept
111 one data structure, blurring the distinction between schema and instance.

rllthough these models merge schema and data, distinguishing between them is important, be-
(ctuse schemas are useful for query decomposition and optimization and for describing a database's
stnlcture to its users. The biological database system ACeDB [TMD92] allows flexible representa-
tion of data, but also has a schema-definition language that limits the type and number of edges
stored in a database. The OEM [PGMW95] model supports database integration by providing a
structure in which most traditional forms of data (relational, object-oriented, etc.) can be modeled.
E\.cn the lL70rld-Wide Web, which appears to be completely unstructured, contains structured sub-
graphs. Fig. 1 depicts a fragment of the web site h t t p : //www . ucsd . edu, in which pages connecting
schools, departments, and people are structured. Queries applied to this graph's link structure can
1)rnefit from structural information, for example, by knowing there exists a t most one department
on any path from the root to a leaf and that every paper is reachable from a department.

11-e describe a new notion of schema appropriate for an edge-labeled graph model of data.
\I+ use this model to formulate, optimize, and decompose queries for unstructured data [BDS95,
BDHSSGa, Suc961. Informally, a database is an edge-labeled graph, and a schema is a graph whose
rtlges are labeled with formulas. A database D B conforms t o a schema S if there is a correspondence
1)rt~vrrri the edges in D B and S , such that whenever there is an edge labeled a in D B , there is a
(oircsponding edge labeled with predicate p in S such that p(a) holds. This notion of conformance

Academic

Schools

Figure 1: A fragment of h t t p : //www . ucsd. edu.

is a generalization of similarity [HHK95]. We investigate the properties of such schemas, and
show that there is a natural subsumption ordering on schemas - a generalization of similarity. We
then investigate a "deterministic" subclass of schemas and argue that it is appropriate to have
tleterministic schemas although data may be "nondeterministic". Finally, we examine queries on a
database with a known schema and consider when we can compute a schema for the result of the
clilerp. We also discuss how schemas can improve the optimization and decomposition of queries in
UiiQL [BDHS96a].

2 Basic Definitions

Let U be the universe of all constants (U = Int U String U Boo1 U . . .). We adopt the data model
of' [BDHS96a], where a graph database is a rooted graph with edge labels in U. Formally, D B =
(1 : E, vo), where V is a set of nodes, E C V x U x V, and vo E V is a distinguished root. Fig. 1 is an
c>sarnple of a graph database. We denote an edge with u 3 v, instead of the official (u, a , u) E E.
Tliis model is powerful enough to encode relational databases, as illustrated in Fig. 2(a), which
t~iicodcs a relation R(A : Int, B : Int, C : String), but flexible enough to represent unstructured
data, like Fig. 2(b) and (c). There is no distinction in this model between set, record, and variant
nodes. Graphs may have arbitrary cycles and sharing. Two graphs are considered equal if they are
btszrnzlar [BDHS96b]. Briefly, D B and DB' are bisimilar if there exists a binary relation z from
the nodes of D B to those of DB' such that (1) vo = uh where vo, vt, are the two roots, and (2)
n-hcnever u % u', then for every u 3 v in DB, there exists u' 3 v' in DB' such that u z u', and
S o l every 71' 3 I:' in DB', there exists u 3 u in D B such that v = u'.

In earlier work [BDHS96a], we introduced a notation for specifying graphs, e.g., the tree database
111 Fig. 2(c) is written as { t u p ~ {A, {D + (3)))). Also, we defined a union operation on two graph
tlatabases DBl U DB2 in which their two roots are collapsed (Fig. 3(a)). For example, in Fig. 3(b)
D B , = {a + {b),c), DB2 = {a + {d)), and DB1 U DB2 = {a + {b), c, a + {d)).

To define graph schema, consider a set of base predicates over U, denoted PI, P2, . . ., such that
tlic first order theory T generated by U (i.e. the first order sentences true in U) is decidable. A
orrnry formula is a formula with at most one free variable.

Definition 2.1 A graph schema is a rooted, labeled graph, in which the edges are labeled with

Figure 2: Three examples of graph databases

Figure 3: Union of graph databases.

isr~~ary formulas.

illthollgh our results apply to every decidable theory, we use theories generated by unary pred-
~c;ttes, with equality and with names for all constants in our universe. Typical predicates include
Iiit(.c), String(x), Nat(x), Bool(x), which denote x E Int, x E String, x E Nat, x E Bool, and user-
cl(1fincd unary predicates, P (x) . The theory has an equality operator, so we have predicates such
A S I = 5 arid x = "abc". Such a theory is decidable [DG79].

Fig. 1 (a) depicts a graph schema S. By convention, we drop the free variable from unary
foirriulas which are boolean combinations of unary predicates, thus writing A, Int, and Int V String
~listead of s = A, Int(x), and Int(x) V String(x) respectively. Intuitively, a graph schema captures
\om? knowledge about the structure of a graph database. In particular, the graph schema S says
i l la t a graph database that conforms to S has only tup-edges emerging from the root, possibly
follonr~d by A, B, or C edges, and these possibly followed by integers or strings respectively. The
giapli database encoding a relational database in Fig. 2(a) conforms to this graph schema, but the
grnph in Fig. 2(c) does not. The database in Fig. 2(b) also conforms to this schema, although it
(lop\ riot encode any relational database.

In schemas (c), (d), (e), (f) in Fig. 4, isDept(x) and isPaper(x) are user-defined predicates testing
n-iicther .r is a string denoting a department (e.g., "Computer Science Department" or "Electrical
E~iginecring Department") or a paper. Schema (d) says that there is at most one department on
c1\,c>rv path starting at the root, while that in (e) says that no paper edge may occur before a
clcpaitmcnt edge. The database in Fig. 1 conforms to both these schemas. We will comment later
<11)01it schcmas (c) and (f).

Sclierria (b) in Figure 4 is of special interest: it says that the database may have any labels
w h a t \ o c ~ e r (they have to satify true), thus it does not impose any structure on the databse. We
tlenote it with ST.

Definition 2.2 A database DB conforms to a graph schema S, in notation DB 5 S , if there exists
i i sirrlulation from DB to S , i.e. a binary relation 5 from the nodes of DB to those of S satisfying:

"11; string r n t f 111,

not@ ept) 0
Figure 4: Six examples of graph schema.

*
Nat A Nat

Figure 5: A graph schema S and its infinite expansion Sw

(1) I,?,,(: ~ o o t .n,oclles of D B and S are in the relation 5 , (2) whenever ,II, 5 v' and u 3 v is a n edge
Inlir~lcd (1 i n D B , then there exists some edge u' 4 v' i n S such that p(n,) is true and zj 3 v ' .

.\ g ~ ; \ , ~ ~ l i sc:l-lcrna cannot enforce the presencc of somc labcl. This is coilsistent with the notion
0 1 ' ~(:l101lli\ i11 A4CeDB [TMD92]. In particular, thc cnipty database (one node, no cdges) conforms
to ;lily graph schcrna S, i.c., O) 5 S. A graph schema cannot, rrioclel variant's, nor can it prevent
; r ~iotlo horn Il;~ving multiplc occurrences of thc samc labcl, as occurs i11 Fig. 2(b). Finally, any
r l i ~ t.ill);lsc D R can be viewed as a schema, by replacing every label a with the unary formula x = a.
111 1);1.~t,i(.llli~1. this gives us a notion of simulation betu~eeri tlat,abases, D B 5 DB' .

111 l<c.cping with our view that two graphs arc considcrcd equal if they arc hisimilar, we can sliow
I 11i1.1 i I' DB 5 S a,nd D B and DB' are bisimilar, then DB' 5 S. However, note that D B 5 DB'
; \ l i t1 LIB' 3 D B does not necessarily imply that D B , DB' arc bisirriilar: c.g. take D B = {a a
{ I , . c } . ,I + { h)) arid DB' = { (I , + {(h, c)) .

N t (14r;~1)11 schc~nas can he vicwcd a,s infinite databases. For example, we view an edge 11 3 v in
0 1 2

,S'. as l.cq)~'c~scnting irifiriitcly rriany edges, 71, + 71, 11, + T I , u + 11, nTe call t,hc expansion of S,
(1(>11ot ('(1 Ss? t . 1 ~ (possibly infinite) database obtained frorn replicating each edge in S once for every
c.011st i l ~ r t i t] tlic uriivcrsc U satisfying the unary formula on that edge. See Fig. 5 for an cxamplc. If
; I I I J - o f t,hc> sc-hrma edges is labeled with the formula false, that edgc disappears in Sw.

Oil(> (.a11 e i ~ ~ i l y checli that for any database D B and gra,ph schema S, D B 5 S iff D B 5 SDO,

n.1.m-c the latter relation is a simulation between two databases, one of which may be infinite.

Complexities

Paige and Tarjan [PT87] give an O(m log n) algorithm for the relational coarsest partition problem,
which computes a bisimulation relation on a graph, where n is the number of nodes and m the
r~umber of edges. Their algorithm can easily be adapted to test whether two rooted graphs GI and
G2 are bisimilar: take their disjoint union G, compute a bisimulation z on G, then test whether the
two roots of GI and G2 are in m. Although bisimulation and simulation are related, they require
different algorithms. Henzinger, Henzinger, and Kopke [HHK95] have recently found an O(mn)
tiirie algorithm t o compute the simulation between two graplis with labeled nodes.

Seither algorithm applies directly to our framework, because they associate labels with nodes,
not edges. We can reduce the problem of finding a (bi)simulation of two edge-labeled graphs with
a total of n nodes and m edges to that of finding a (bi)simulation between two node-labeled graphs
with a total of m f n nodes and 2m edges. We split each labeled edge x 3 y into two unlabeled edges
r i z + y, in which z is a new node labeled a, and we label all other nodes with a new, unique label.
Finally, we compute a (bi)simulation for the new graphs, in time O(2m log(m + n)) = O (m log m)
foi bisimulation, or O((m + n)2m) = O(m2) for simulation. We may assume m > n , because the
g ~ a p h s GI , G2 are connected, but unlike in [HHK95], we no longer necessarily have m < n2. This
still does not allow us to test D B 5 S, because when we expand S into a database we get an infinite
g1apl1 \Ire can, however, adapt the algorithm in [HHK95] to get:

Proposition 3.1 Suppose one can test validity of sentences of the theory T in t ime t . T h e n there
e.~; ists an algorithm for checking whether D B 5 S that runs i n t ime O(m2t) . Here rn is the total
n,~l.mber of edges in D B and S , which are each assumed to be connected.

Proof: Consider the algorithm EJgicientSimilarity of [HHK95]. The only place where it checks
(.quality of node labels is in the initialization phase. Given D B and S, we replace this initialization
step wit,h one which compares whether a label a from D B and a predicate p from S satisfy U + p(a):
f his can be done in time t . The rest of the algorithm remains unchanged.

4 Expressiveness of graph schemas

Graph schemas differ from relational or object-oriented schemas. A relational database has only
oiie scl.iema. A graph database, however, may conform to several graph schemas such as those in
Fig. 4 (d) and (e). Moreover, there exists a schema ST (Fig. 4 (b)) to which all graph databases
(.onform. Since graph schemas are meant to capture partial information about the structure of data
~vith the purpose of optimizing queries, we could store multiple graph schemas for the same data
i ~ n d offer multiple "hints" to a query optimizer.

'l'he relationship between graph database and graph schemas raises several questions. First,
giwn two graph schemas S and S', how do we know if S says more about some database than Sf?
T-I~Tv do we know that graph schemas S and S' are "equivalent", i.e. D B 5 S iff D B 5 S', for any
DB'? For. example, the graph schema in Fig. 4(f) captures more information about a database than
~ i t h e r schema in (d) or (e), in that any database conforming to the schema in (f) will also conform

to the schernas in (d) and (e). Formally, we define [q { D B I D B j S). Given two schemas
,S. S'. wcx want to check whether [d [St] and [S] = [SI. We show that both [S] [St] and [S] = [St]
(.ail be checked in polynomial time.

Second, given two graph schemas S and St, which express different constraints on a database,
(.ail ~ v c describe with a single graph schema S" their combined constraints ? We want some graph
\(.hema St' such that D B 3 S A D B 3 S' iff D B 3 S". We show that S" always exists. For
example, when S, St are those in Fig. 4 (d), (e), then S" is the schema in (f).

Last, when D B $ S, what "fragment" DBo of D B does conform to S ? This question is
important if we wish to use graph schema as data guides [Abi97]. Assume we optimize queries
h a s ~ d on the assumption that the Web site in Fig. 1 follows schema S in Fig. 4 (d) as a guide.
Since the schema does not enforce conformance it is unclear what the optimized query means when
.~pplied to some D B which fails to conform to S . We show here that for any database D B and
scl.iema S there exists a canonical "fragment" DBo of D B that conforms to S . Moreover, whenever
DB 3 S, then DBo is D B . We can now state what we expect from an optimizer. Given a query Q
niitl schema S, we expect a correct optimizer to produce an optimized query Qopt such that for any
(latabasc D B , Qopt(DB) = Q(DBo). This implies that Qopt(DB) = Q(DB) whenever D B j S .

IT(. address these three issues in the sequel.

4.1 Subsumption of graph schemas

\TTr dcfine schema subsumption and equivalence as follows.

Definition 4.1 Given two graph schemas S, S' we say that S subsumes St , in notation S 5 St , if
tir.ere exists a binary relation 5 between the nodes of S and S' such that: (1) vo 5 vh, where UO, u;
1 1 ~ 7 . ~ the roots of S, St, (2) whenever u j u', for every labeled edge u 3 v in S and every a E U s.t.

U p (a) , there exists an edge u' 4 IJ' in St s.t. U p'(a) and v 3 a'. S and S' are equivalent if
S 5 St n,n,d S' 5 S .

IZThen S. St are databasses (i.e. each predicate is equality with a constant), then the subsumption
rcllation conincides with the simulation relation between databases.

Recall that a graph schema S represents its possibly infinite expansion, Sm, i.e., an edge x 3 y
~opresents infinitely many edges, one for each a for which 24 p(a). Each such edge may be

iiiriulated in S' by some unary formula. First, we choose a t LI, then decide which edge x' % y' in
S' will .'mimicn the edge x 3 y in S. To justify our choice for condition (2), consider the example
in Figure 6, where S = {Nat V String + {5)), St = {Nat + {Nat), String + {Nat)). Clearly
S" 5 S'", so we expect S 3 St, and indeed condition (2) is satisfied when u, u' the roots: for any
n s.t . -Vat(a) V String(a), we can have either Nat(a) or String(a). In the first case we "move" to
tlic lcft in St (i.e. pick v' to be the left node) else we "move" to the right. Now consider a more
iigid choice for condition (2) above, requiring: 'v'u 5 u', and for every labeled edge u % v in S,
rhrrc exists an edge u' 3 v' in S' s.t. U + p + p'. Then we would not have had S 3 St, because
neither A2Tr2t V String + Nat nor Nat V String + String holds.

Proposition 4.2 S 5 S' i f Sm 5 SJm. The latter is the simulation relation between (possibly
xn,fin,ite) databases.

Figure 6: Simulat,ion between two graph sclierrias S and St

I t 1 + { (I , 1 11 E nodes(S), u' E nodes(S1))
while ranv c'liarigc do

lint1 (1 1 , 1 , ') E R and edge 7~ 3 1) in S
sii(-Ii t h i ~ t 24 3a. (p(a) A (Az=] ,k i p i (a)))

P'
wllore 11' 4 1 4 , 1 = 1, k are all edges from u' in St

I? + R - { (l l , (1 '))

return ((r j o . r (,) E R)

Figurc 7: An algorithm checking whether S 5 St.

Proof: Si i~~pose S 5 St and lct 3 be a subsumption relation. S" and St" have the same nodes
, IS S. St ~c~,pc~ctivelv: wc. prove that 3 satisfies conditions (1) and (2) in Definition 2.2. (1) is
~~~li l ict l iatc  For ( 2 )  Id u 5 u' and let u 3 v in S". That is, there exists (1 3 0 in S s. t .  U p(a). 
131 ( 2 )  of Ui$initiori 4.1 there exists u' 3 D' in St s.t. U pl (a )  anrl 1) j r!'. But this implies that 
I l loi(> ~ ~ i \ t \  x i  edge (1' 3 1:' in Stm 

( ' ~ I I I  c~sc.1~7, let S" 5 St", and let 5 be a simulation relation. We \how t l l i~t  5 satisfies condition 
( 2 )  of Dcfillitiorl -2.1 (condition ( I )  is immediate). So let u 5 u', 71 4 11 in S and U p ( a ) .  Then 
1 1  4 ( s  15 a n  edge in S" hence, by Definition 2.2, thcrc exists in St" an mlge also labeled a, u' 3 v' 

r i ' It follows immediately that St must have some eclgr 11' 4 11' s.t. U t pl(a). 

111 1)i1itl('lllil~, ii database DB confornls to a graph schema S ,  DB 5 S ,  iff D B  whcn vicwcd as 
,I  y,r,ll)li sc.lierna silhsiimes S, for which we use the same notation DB 5 S. 

\ \ ( I  11o1v cwnsidcr thc problem of determining whcthcr S 5 St .  Frorri [HHK95], this problem is 
( lo (  1t1ill)lo. LIorcover, our algorithm in Fig. 7 checks whether S 5 St in polynorriial time. 

Proposition 4.3 The  a,l,gorithm in Fig. '7 checks i n  t ime m,o(l)t wh,ethe.r S 5 S': where t i s  the 
l , a ~ r a t :  11,ec'(6ed to  check validity of (I, sentence in, th,e theory T .  

ivrlnt to usc this algorithm to check whether [S] C [St]. Corollary 4.5 below, which says that 
I.?] C [.$'I is ccluivalent t,o S 5 S t ,  allows us to  do that. To prow it ,  we obscrvc that tllc subsumption 
I ('lrltiol~ 5 0 1 1  gli11)h sclierrias is ~)reorcier (from Proposition 4.2), anti this allows us t o  define the 



I(\;\st upper bound (lub) of a set of graph schemas, as in any preordered set. We review here the 
clcfinit,ion of a lub, for completeness. Let D be a set of graph schemas. S is a least upper bound for 
D if (1) VSo E D ,  So 5 S, and (2) whenever another graph schema S' has this property, i t  follows 
I hilt S 5 S'. We use U D for the set of least upper bounds of D .  Since 5 is a preorder rather than 
,111 older relation. U D may have more than one element, but all are equivalent, i.e. S,  S' E U D ===+ 
S' 5 S' and S' 5 S .  This justifies abbreviations like U 2) 5 U D' for 3s E U D , 3 S 1  E U Dl, S 5 St. 
.l7ll(> follonrirlg theorem relates the order relation 5 to  the meaning of a graph schema, [S]: 

Theorem 4.4 I f  D = [S] then S E U D 

Before proving this result, we prove a corollary: 

Corollary 4.5 S 5 S' iff [S] C [St]. Hence S, S' are equivalent iff [S'l = [Sq. 

Proof: Obviously, S 5 S' + [fl C [Sq. The converse follows from Theorem 4.4, because [S] C [St] 
iinplicts U[S] 5 UIS1], hence S 5 St. 

Togc.ther. Corollary 4.5 and Proposition 4.3 imply that [S] [St] and [S] = [S'] are decidable 
111 pol~rnornial time. The rest of this subsection contains the proof of Theorem 4.4. The idea 
15 to  approxirriate graph databases with trees. A tree database is a database whose graph is a 
hnito tree. For a database D B ,  the approximatzons of D B  is the set appr ( D B )  = { T D B  I 
T D B  a TDB 5 D B ) .  When D B  is cycle-free, then appr ( D B )  is a finite set; when D B  is a tree 
tliltat)ase itself, then D B  Eappr (DB).  When D B  has cycles, appr (DB)  is infinite, and can be 
I liought of as the set of all finite unfoldings of DB.  Approximations allow us to  infer simulations: 

Proposition 4.6 appr ( D B )  cappr (DB') z f f  D B  5 DB'. 

Proof: Obviously, D B  5 DB'  implies appr (DB)  Cappr (DB').  For the converse, let u be some 
~ ~ o t l c  in D B ,  and DB, be the same graph database D B ,  but whose root is u. More precisely, when 
D B  = (1; E. I : ~ )  then DB, = (V, E, u). We define the relation 5 from the nodes of D B  to those 
01' DB' to  be u 5 u' iff appr (DB,) Cappr (DBI,) .  Obviously, vo 5 vh, where vo, vk are the roots 
of D B .  D B '  rcspectively. Now we have to prove that 5 is a simulation. Assume u 5 u' and let 
11 4 I ,  an edge in D B .  The tree ({u, v), { (u, a ,  v) } , u) (consisting of a single edge u 4 u with 
I oot 1 1 )  is in appr (DB,), hence it is in appr (DBL,), so there exists a t  least one a-labeled edge 
I(.ir~-ing u'. Let u' 3 vi, . . . , u' 3 v(, be the set of all such edges, k > 1. We use the fact that 
I 111s scit is finite and show that there exists some i s.t. appr (DB,) cappr (DB;,), implying u 5 v:. 
S ~ ~ p p o s e  l,y contradiction that this is not true: then for each i, = I, k there existstsome tree database 
1-DB,  Eappr (DB, )  s.t. TDB,  #appr (DBI,).  Consider the tree T D B  = {a+(TDB1u. .  .uTDBk)) .  
\IT(. Ira\-(> T D B  tappr (DB,), but T D B  gdppr (DBI,) - a contradiction. 

Tllis proposition also holds for some infinite databases. Let us call some infinite database, DB, 
lohel ,finzte if for any node u and label a ,  the set of outgoing edges u 4 is finite. In fact, we have 
1)roven a stronger version of Proposition 4.6: 

Proposition 4.7 Let appr (DB) cappr (DB'),  with D B ,  DB' possibly infinite databases, but with 
IIB' babel-.finite. Then  D B  5 DB'. 



Figure 8: _An example of two infinite databases with appr ( D B )  Cappr (DB') but D B  5 DB'. Here 
DBt is not label-finite. 

TZ'itholxt the label-finitedness condition, Proposition 4.7 fails, as illustrated in the following 
~ ~ ~ i l ~ r l l > l ~ .  

Example 4.8 Let D B  = {a + {0,1 ,2 , .  . .)) and DB' = {a + to ,  a t l ,  a + t 2 , .  . .), where tk = 

0 1 ,  k - 1, k + 1, k + 2 , .  . .), see Figure 8. Then appr (DB)  =appr (DB') but D B  $ DB', 
~i,o\-ing t,llat, Proposition 4.7 fails when DB'  is not label finite. 

T\. now prove Theorem 4.4 using Proposition 4.7. We extend the notation appr to  graph 
sc.l~crnas, i.e. appr (S) = { T D B  I T D B  5 S, T D B  is a tree d.b.) =appr (5'"). Suppose St satisfies 
V D I ?  E 23. D B  5 Sf: we have to  prove S 3 St .  First we show appr (S) Cappr (Sf): T D B  5 S ===+ 
T D B  E V ===+ T D B  5 St T D B  Eappr (Sf).  Now we observe that Sf" is label-finite, hence 
Pioposition 4.7 implies S" 5 Sf". Finally Proposition 4.2 implies S 5 St.  

4.2 GLB's and LUB's of graph schemas 

S(lst,. IT0 show how to construct a schema S that expresses the combined constraints of two graph 
sc.lienias S, and S2. Given two schemas S1 and S2, we show that there exists a schema S s.t. 
[S] = [Sl] n [S2]. Take the nodes of S to  be pairs (ul,  uz) ,  with ui a node in Si, i = 1 ,2 ,  and 

P l  AP2 ti1,ke edges to be (ul, uz) -+ (vl, u2) ,  for any two edges ui 3 vi in Si, i = 1,2 .  One can show 
IS'] = [S,] n [S2]. It follows that  S is the greatest lower bound of S1 and S2, in notation S1 n S2. 
For (\sample, wlien Sl, S2 are given by Fig. 4(d) and (e), then Sl n S2 is given by the schema in (c) 
\rl~icli is equivalent to that of (f), assuming the predicates isDept and ispaper are disjoint. 

-4 similar fact does not hold for union or complement. Let us say that  a set D of databases 
is rcpresenta,ble if it is of the form D = [S] for some graph schema S .  Then it is easy to 
s l ~ o n .  that any representable set D is an ideal [Gun92], i.e.: (1) D is nonempty, (2) 27 is down- 
\v;~r.ds closed, i.e. D B  5 DB'  and DB'  E D implies D B  € D ,  and (3) D is directed, i.e. 
l lR1.  DB2 E D implies 3 D B  E D s.t. DBl  5 D B  and DBz 5 D B .  It  follows immediately 
1 hilt,, if V I  arid D2 are representable, then the complement of Dl  and Dl U D2 are, in general, not 
~.opl.eserit,sble. Let idl(D) denote the ideal generated by the set D ,  i.e. idl(D) = {DB1 U . . . U DBk I 
3DB' , .  . . . DBL E D ,  s . t .  DBi 5 DBk, i = 1, k) .  Then we can prove that wlien Dl ,  D2 are rep- 
~.(~lsentable, so is id1 (Dl U D2). For S1, S2 graph schemas representing Dl and D2 respectively, we 
cl(\fine S to be their union (Section 2). It  follows that [S] = idl([S1] U [S2]) and that  S is the least 
ii]~p(\l. hoiincl of S1, S2, in notation S1 U S2. 



4.3 Fragments of databases 

Finally, nrc address the problem of finding for some database D B  and graph schema S, a canonical 
-fragment" DBo of D B  such that DBo 5 S .  This is important if we wish t o  use graph schemas 
(1s data guides [Abi97]. Instead of insisting that a database D B  strictly conforms to some schema 
7. n.? require that  there be a "large fragment" of D B  which conforms t o  S. By "fragment" we 
Illcan a database DBo s.t. DBo 3 D B .  The name "fragment" is justified, because whenever 
D B,, 5 D B ,  there exists some graph DB' which is bisimilar to  D B  (hence, D B  and DB' denote 
I 1 1 ~  same data) of which DBo is a subgraph. E.g. consider the graph schema S in Fig. 4 (a),  and 

D B  = {tup + {A ,  D + (3))) be the database in Fig. 2(c). Then DBo = {tup + { A ) ) .  
\T7c\ ol~scrvc that for any D B ,  S, the empty database 0 (one node, no edges) is a fragment 

wt isf'ving the requirement above, i.e. 0 5 D B  and 8 5 S .  This is not the "canonical" fragment we 
\ ~ , i r ~ t .  b ~ c a u s r  it is not the largest fragment under the simulation relation 5. By taking DBo %f 
Dl? n S nre can prove: 

Proposition 4.9 For any graph database D B  and graph schema S, there exists some database DBo 
.s. 1,. ( I )  DBo 5 D B  and DBo 5 S, and (2) for any other databa,se DB; satisfying this property, 
DB;, 5 DBo.  Moreover DBo can be computed in PTIME, and zf D B  5 S then DBo is  bisimilar to 
D B.  T/Ve cud1 DBo the canonical fragment of D B  satisfying S .  

5 Determinism 

.\'o<lcs in a schema have the potential to classify nodes in a database. For example, consider the 
tliltal~ase D B  in Figure 1 ,  which conforms to the schema S in Figure 4(d). Let us denote with vo, vl 
tllc. two nodes of schema S .  Then S classifies DB's  nodes into two categories: those "conforming" 
t o  '1:0,  and those "conforming" to  v l .  Informally, the first category consists of all nodes before a 
D(.partmerit edge, and the second category of nodes after some Department edge. But not for 
i\ny schcma does the classification work so nicely. For example, consider the schema in Fig. l (e) ,  
n-it,ll t ~ o  nodes uo, 7L1, and suppose the database contains some Department without papers. Then 
r llo iiodes in D B  following that Department link can be either classified as uo or as ul. What 
clistinguishes between the two schemas is that the first one is deterministic while the second one is 
110t'. 

In object-based graph database models, determinism is natural. For example, the semantics of 
.4CeDB t'rees imposes that instance databases be deterministic, and in the Tsimmis data model, 
cl;~c:li node has a unique object identifier making the instance database deterministic. In our graph 
11iode1, however, a deterministic representation of relational databases requires adding unnecessary 
o l ) j (~ : t  identifiers to sets. For example, in order to make the tree representation of a relational 
t l i~ t , i~b ;~~( '  in Fig. 2(a) deterministic we would use a different object identifier for every t u p  edge, 
.;;I!. t l i p l ,  t u p 2 ,  tup3. Determinism for graph schemas in any model, however, is natural. Note that 
I I i ( 1  trcc rcpresentation of the relational graph schema in Fig. 4 (a) for the database of Fig. 2(a) is 
t l(~t,c~rrniilistic. 

T;\'(. show that  certain nondeterministic schemas are not equivalent to any deterministic ones. 
Sincct we argued that deterministic schemas are more suitable than nondeterministic once, one 
~ ~ o u d e r s  what we may loose by restricting to  deterministic schemas. We show that  for any nonde- 
t c>rininistic: schema S, there exists a canonical Sd which best "approximates" S. 



V T e  call an edge-labeled graph G deterministic if for every node x and label a ,  there exists a t  
illost one edge labeled a going out of x .  This definition is not invariant under bisimulationl. A 
clatabasc D B  is deterministic if there exists some deterministic graph bisimilar t o  it. Similarly, 
IYP call a graph schema S deterministic iff Sm is deterministic. We will show below that testing 
n.hct,hcr a schema S is deterministic is decidable. The following is a sufficient condition for checking 
~ f '  a gra.ph schema S is deterministic: 

P r o p o s i t i o n  5.1 Let S be a graph schema. S i s  deterministic i f  for  a n y  node u and a n y  two 

illsh~i,ct edqes u 4 u, u % u', zue have U /= ~ ( l x . p ( z )  A pl(x)).  

Deterministic graph schemas are important because of the following: 

P r o p o s i t i o n  5.2 Let S be deterministic and T D B  a tree database s.t .  T D B  5 S .  T h e n  T D B  
conforms t o  S "in a unique way". More precisely there exists a function cp from the nodes of T D B  
to those of S s.t. for any  simulation 5 from T D B  t o  S, and for every node u of T D B ,  u 5 cp(u). 

This follows from the observation that nodes in a tree database are in 1-1 correspondence with 
secluences of labels, a1 . . . a,. Such a sequence is mapped uniquely into some node in S, because S 
is cleterniinistic, and this defines the function cp. Moreover, p(u)  classifies nodes: u and u are in the 
si1rrle class iff p(u)  = c p ( ~ ) .  

Deterministic schemas are less "expressive" than nondeterministic ones. For example, the non- 
c1c.tcrministic graph schema S = {a + {b), a + {c)) is not equivalent to any deterministic graph 
schema, i.e. # [sd] for any deterministic graph schema Sd. The "closest" we can get is the deter- 
ministic: graph schema Sd = {a+{b, c ) ) .  In general, for any nondeterministic graph schema S, there 
cxists a "closest" deterministic graph schema Sd. The latter is constructed in a way reminiscent of 
t h(. DF-4 equivalent to  an NDFA: 

P r o p o s i t i o n  5.3 For a n y  graph schema S ,  there exists some deterministic graph schema Sd with 
tlbe following properties: (1) S 5 Sd, (2) whenever S 5 S' and S' i s  determinist ic  then  Sd 5 S'. 

Proof: \rlJe use a powerset construct to  get Sd. Let S = (V, E, v O )  Then Sd = (Vd, Ed, uOd), where: 
the nodes are nonempty sets of nodes of S, Vd = F ( V ) ,  the root u0d is {uo), and the edges are 

Pm cicfined as follows. Let U = { u l , .  . . , u,), n 2 I, be a node in Sd, and let u,, % vl, . . . , uZm + v,, 
I ~ I  > 0. be all edges in S whose source is in this set. For any nonempty subset J {1,2, .  . . , m), 
Ict' 1 - = { u J  1 j E J}. We introduce an edge U + V in Sd labeled with the unary formula q,, 
wllclc q, = p, when J E J, and q, = l p ,  otherwise. Note that a t  least one unary formula p, is 
uot negated. Note also that Sd is deterministic, because for any two outgoing edges U + V and 
I' + 1 " there exists a t  least some unary formulap, which is negated on the first edge but unnegated 
111 the second one. or vice versa. To show S 5 Sd we prove that the relation u 5 U u u E U is 
,I simulation. For u 5 U ,  u 3 v an edge in S and a E U s.t. U p(a) ,  using the notations above 
WP define J = { I  1 U + p, (a))  and V = {u, I j E J ) .  Finally we have t o  prove item (2). Let 3 be 
(1 ~irriulation from S to S', with S' deterministic. Define 5' to  be the following relation from the 
iiodes of Sd to those of S': U 5' u' iff Vu E U ,  u 5 u'. For U 5' u', edge U + V in Sd labeled V, q, 

'The tree { a }  is deterministic and bisimilar to the tree { a ,  a ) ;  but the latter is not deterministic. 
, . . . , v,,, are not necessarily distinct. 

11 



( u o t  iltlorl~ CIS above), and n E U s.t. U V, q7((1), we use the fkct that 5 is a simulation, so for 

1 1 1 ,  3 TI , ,  with 3 E d thrrr  has t,o be some transition u' 5 o' with U + p'(a), and with 
4 I Hcrc we 11s~ the fact that S' is deterministic, to  conclude t,li;lt p' arrd 11' are the same, for I /  - 

,111 1 E .I. It follows that V 5' v'. 

Irl 1 ) ; ~  t icular, the construction of Sd gives 11s a procedure for checking whcther S is deterministic: 

Corollary 5.4 Given a schema S, it is  decidable wether S is deterministic or not. 

Proof: S is clctcrrriinistic iff Sd 5 S:  the lat,ter relation is decidable. 

\II intcl~c~\tlng case is when S is a tlatabase (i.e. all unary forrmilas on its edges are equalities 
\ritlr (orrstai~ts); then Sd is prccisclv the deterministic automata obtained from S. For the example 
I I I wliic 11 S' = { ( I  + { h ) ,  n + {c)), we get Sd = {a + (6, c)).  

111 gc~i~c~r~il.  the number of nodes in Sd is exponential in that of S. But when S is a tree database, 
t li('i1 tlr(1 11111rrt)~r of nodes in S,, is less than or equal to that of S [PcrSO, pp.71. When we generalize 
to Ilriillr foirrililas, then the number of nodes in Sd may be clxponential, even when S is a tree. For 
('\r~~rlpl(>, 1 ~ t  iSI = {pl ,p2, .  . . ,p,), then Sd = { r O , r l , .  . . , r 2 n P l ) .  where each r, = V,=O,nP, q,, with 
(1, = I ) ,  01 (1, = l p J ,  depending on whcther the 7's bit in the binary representation of 1 is 1 or 0. Such 
(11 l)itl;lr\ \t>( 5 of' lirrary forrrllllas p l ,  p2, . . . , pn rarely occur in practice, because the base predicates 
( 1 1  o II(Y ( onstarits, or takcn from a list of dis.joint prcdicatcs, like Int,  String, Bool, Nat,  zsDept. 

I I N \  glrll)ll sclie~ri;~s in Figure 4 havc this propcrt,y. Theri mre can prove. 

Proposition 5.5 Let S be a tree schema in which .for every two distinxt u,n,(iry formulas p(x) ,  p1(x), 
('at11,c.r. is (I ,  (:onstant (2.e. of the form x = a), or they are disjoint (i.e. U + 13x. (p(x)  A pl(x))). 
T~I,( ,TI  S(, 11,ns at most as many nodes as S ,  and can be computed in, polynomial time. 

6 Graph Schemas and Queries 

I I I [RTIHS9G;l]. rv(. propose UnQL, a languag' for querying anti restructuring graph databases. UnQL 
1 5  ( olrlpo~tioii;al, has a simplc select . . . where . . . construct, supports flcxiblc path expressions, and 
1 C I I I  O X ~ ) ~ C S \  ('orriplex restructuring of thc graph database. Considcr the simplc UnQL query Q: 

select {x + {x)) where \x t D B  

() t ;ll<os iI gl.aph dat,abasc of the forrn {al + t l ,  . . . , a, + t , )  and returns the graph database 
( ( 1 1  + { ( I , ~ ) , .  . . ? n . ,  + {(I,,}}, i.e., Q doubles each edge in the first level of edges in D B .  

11(~;111 from Soction 2 that  graph schemas can be thought of as finite descriptions of infinite sets 
0 1 '  ( l i l t  ;11);1sc>s: i.e. S defines the set [S] = {DB I DB 5 S). WC consider whether, given a schema S 
;111(1 ill1 T;rl(JL c1lxer.y Q ,  we can describe the set {Q(DB) I D B  5 S) by a scllerna S'. This question 
is ill~l)oi.t,i~,nl: for t,wo reasons. First,, we plan to use graph scl~errias in qiiery optirnization of UnQL. 

Si~rcc. 1Trr(,JT, is corrlpositiorml, when we optirrrizc a composed query Q(DB)  Q2(QI (DB))  whose 
i t r l ) l ~ i  (:onlo~.rris t,o some graph scherna, DB 3 S, u7e first optimize Q1 according to graph schema S, 
t l ~ c > r r  opt,irnizc Q2 according t,o the graph schema of the sct { Q ,  ( D B )  1 D B  3 S), hence the need 

1 0  ( . o ~ n l ~ ~ t , c  t,llc liitter. Second, UnQL queries carr br oscd to define vicws, likr V Q(UB).  Given 



I l i ,~t D B  3 S, TV(. want to opt,iniize queries against, the view. This recluirc.s a graph schcma for the 
\t11 { (J (DB) I D B  5 S). 

(:i\-c\l~ a graph schema S anti a query Q, there is a natural way to  compute a graph schema 
OjS). with the. property: 

Sir~c,tl LnOL ililcries arc just graph transformations, wc can corriputc Q(S)  rnuch in the same way 
i l l  \vllic.11 ~vc. c:ornpute d,)(DB). Where the construct is less obvious, we take a conservative action. 
I. 'OI .  c~silrriplo. for a subquery Q ( D B )  = {:x: + D B ) ,  having a free variable .x bound in a surrounding 
i ~ o ~ ~ t i ~ s l ,  [ ~ c '  tlefirie Q(S)  to  be { t n ~ o  +S), or if any predicate P(:r;) is known about the variable 
. I .  (c'.g. (2 oc:c:urs in the then branch of an if P ( x )  then . . . else . . . const,ruct), then we take 
()j.S) = { P + S). This ensures that Equation 1 holds, but Q(S)  may not ncccssarily get the 
I igl~t,clst. i1csi:ription of the set {Q(DB) I DB 5 S). It follo~rs however that Q(S)  can be computed 
i l l  I''l'TI\lE: illld that it satisfies Equation 1. But this car1 be trivially satisfied by taking Q(S)  = ST 
i Fig. -1 ( I ) ) ) ,  which is a maximal element in the partial order 5 .  LVc wolxld like to  make the claim 

( 5 )  = { ( D B )  1 D B  5 S), tli~rs showing that Q(S)  describes precisely the set 2) {Q(DB) I 
LIB 3 5'). IJi~fort,unately, this cloes not hold. MTorse, there arc cxarriples of simple queries Q and 
,q1.;11)11 sc.llornil S for which U D does not exist, as illustrated in tlic followirlg exarnple. 

Example 6.1 Corisidcr the graph schcma S = {Nat) and the UriQL query Q from above. This 
(1,ri1r J dolihlcs wcry label in the database, e.g. on the database DB = {2,4, 5) Q returns (2 + 
( 2 ) .  4+{4), 5+{5)). When we apply oiir method to the schema S ant1 query Q, we obtain the graph 
sc I ~ t ~ ~ i i i ~  S' = Q ( S )  = {Nat + {Nat)). But this is not UD,  and in fact one can show that  U D  does 
I I O ~  c1sist5 Illsteitil of giving t,he formal proof, wc. cxplain what is going on. Consider the sequence 
0 1  glrl1)l~ \ i ' l ~ ~ l ~ i i l ~  So, S1, S2,  . . . where S, = (0 + {O), 1 + {I) ,  . . . .7t - 1 + {n - 1),pTL =+ {Nat)}, 
\rrtli I),, ( I ) = ( X. # 0 A . . . A .C # n - 1 A Nat(x)).  In particular S' = So. Each of them is an upper 
1 ~ , 1 1 i i t l  of D,  (iiitl t h ~ y  form an infinite, strictly cdcscending chain of graph schernas. Hence none of 
I li(~i11 15 il li'i~st I X I ) ~ ~ L  bound for D.  

Tlli. ri>~l\on why graph schernas cannot describe all sets of the form {Q(DB) ( D B  5 S) is 
I ) ( > (  ,1115~ thev i.aririot irnposc equality constraints on edges in the dat,at)r~s(~. We can partially fix 
I l I I s I )\ (1st cxntling thc notion of graph schema to  allow equality constraints bctwcen certain values 
o r  g Fo~mallv, lire define an ~ r t e n d e d  graph scherna with n > O variables xl, . . . , x, to be a 
I oot c ~ l  g~ ,lph (1: E, ( l o ) ,  in which the edges are labeled with formulas as explained below, and with n 
i l~s t ingl i~~hi~t l  subgraphs, denoted G,, , . . . , GZn. Each subgraph G, is called the scopc of the variable 

,111tl is gir.er1 1 ) ~  (1) a set of nodes k', C V ,  (2) a set of edges Ez C E, s.t. fol cvcrv edge r~ + I: in 
I '  1)ot 11 r r  m d  11 are in I/,, (3) a set of input nodes I, C L',, and (4) a set of ontpnt riotles 0, C V,. 
\\7, 1111l)ose i 11e following four conditions on c>xteritled graph schemas: 

a For e\-rry edge u + v ent,eririg somc graph G, (i.e. u @ V, and 1 :  E I)',), 21 is one of the inputs 
of (4, . 

Silnilrlrlv, ilvi.ry edge u + u leaving some graph G, exits from an output nodc, u E 0,. 

a Hirc.11 f'oirnl~lr-1 labclirig some edge in tlic scopc of k variables x,, , . . . , x,, rrlay have k + 1 free 
\.i\ii;~k)lcs: z,, , . . . , z,, and a distinguished variable n: (as before). 



Figiirc 9: Two examples of extended graph schemas and their expansions. 

T l i ~  scopes of variables follow traditional rules in programming languages: for x # x', either 
G.. C G,,. or G,, C G,, or G, and G,, are disjoint. 

(:I cjl)li \ c  li('rriils arc. particular cases of extended graph schc.mas with no variables (n  = 0). As 
\ \  1 1  11 glirp11 sc.licmas, an extended graph schema S can be modcltd l ~ v  its infinite expansion S", 
\\ 11i( 11 wr (l~sc'libc formally below. Intuitivelj~, each graph G, is replicated oncc for each value x E U. 

Example 6.2 Figure 9 contains two examples of cxtcndcd graph schemas, both with a single 
\ r i l ~ r l l ) l ( > ,  r. 111 (d ) ,  G, = G,  I, consists of a single node (the root), and 0, = 0. In its expansion, 
nril rc1l)lac i' r with every value in the universe, U, but for vahics oiitside Nat we obtain predicates 
o ( ~ I I I I ~ I ~ ( ' I ~ ~  1 0  fals~. This infinite expansion describes precisely the set { Q ( D B )  I DB 5 S), where 
( 2  {1ii(1 S (IICI fro111 Example 6.1. In (b), G, is a proper subgraph of G,  with c.ach of I, and 0, 
( oi~\is t i i~g 01 one riotle. The "expansion" depicted in (h) is incomplete: not(0) should be further 
o \0~111 (1 (~1  11 ith all atoms a E U ,  a # 0, and similarly for not( l) ,  not(2), . . . 

I '01 rrl,lll\, for il given extended schema S = E, 110, G,, , . . . , GZn ) o v ~ r  va~iables x1, . . . , xTL, we 
tl(lhi~c> ,S" to the following infinite database. Its nodes arc tuples (11, (11,. . . , ak), where 11 E V, k 
1 5  t lw ruirii1)c~r of variables zl ,  . . . , x, in whose scope u is, and a l ,  . . . , ak arc elements of the universe 
14 I\. ( ,111 nodes of the form (u, al, . . . , ak) copzes of 11. The root of S" is a fresh node uo, and 
I 1 1 1 x 1 ~ 1  i ~ r  E-rtlges from to  all "copies" of the old root uo (see [BDHS96a] for a definition of E 

otlgc.5) For (1dc.h edge 11 4 11 in S we construct copy edges in S" as follows. Let u he in the scope 
0 1  ,, , Due to the scoping rules for the graphs G,, only on(. of the following thrcc cases can 
110 l)l)(>ll 

Aotl(> r 7  i5 in thc scope of the same variables. Then we add and cdgc labeled a between any 
1 no siniilar copies of 11 and v, for which a E U "satisfies" p: morc precisely, we add an edge 
(11. ( 1 , ,  . . . . , ( I , ~ )  4 (v, a,, , . . . ,a,,) whenever p(a,, , . . . , a,,, a )  is truc. 

Soclr 1 1  is in the scope of strictly more variables, i.e. of z,, , . . . , z,,, with k < I .  Then from 
1 1  copy (11, a,, , . . . , a,,) of u we add "fan-out" edges to  copies of v extending that  of u: more 

~) io(*is~lv .  wc add an edge (11, a,, , . . . , a,,) 3 ( u ,  a,, , . . . , a,,) whenever p(a,, , . . . , a,, , a )  is true. 

Y o t l ~  r: is in t,he scope of strictly less variables, i.e. of zi, , . . . , zi,, with k > I .  Then into each 
1 . 0 1 ) ~  ( 1 1 ,  (I,,,, , . . . , ai,) of v we add "hn-in" edges from c:opies of 11, extending that  of v: more 
])rt\(.isely, we i~d(l an cdgc (u, ai, , . . . , a,,) 3 ( v ,  ail,  . . . , a,,) whenever p(ai , ,  . . . , a,, , a )  is true. 



Sote  that unlike graph schemas, in the case of extended graph schemas S" has infinitely many 
~iocles. 

Sincc cxtended graph schemas are nothing more than an elaborate way of specifying the infinite 
giapli Sm, we can extend previous results for graph schemas. We can define what it  means for a 
t1;ltabase DB to  conform t o  an extended graph schema S, D B  5 S, and for an extended graph 
iclielria S to  subsume some other extended graph schema St, S 5 St, etc. From [HHK95], both 
D R  5 S and S 5 St are decidable. 

BY adc-ling extended graph schemas, we have enriched our set of schemas. As a consequence, 
11 1)efor.t. S was the least upper bound of some set of databases 27, S = U D,  this may no longer 
I)(> the c a s ~  once we introduce extended schemas. So we have to reconsider Theorem 4.4. In fact, 
I I O W  it fails: even when S is a non-extended schema, it need not be the least upper bound of [q, as 
~llilstiated in the following example. 

Example 6.3 Let S = { a  3 { N a t ) ) .  Then S" = D B  with D B  from Example 4.8, and [S] =appr 
(DB).  \Ye show that  S # U[S]. Take St to be the extended schema given by the graph G = G, = 

I = o A S a t ( z )  Nat ( x )Ax#z  
{ I  + v + w) with Iz = {u) and 0, = 0. Then St" = DB' of Example 4.8, and Sf 
is ilri upp~rbound  of IS] but S 6 St.  Intuitively, Sf is better than S = {a  + { N a t ) )  because it says 
tliilt a f t ~ r  ~ a c h  a-edge, a t  least one natural number is missing. This proves that S # U[S]. One 
\~outlers whether S' = U[S]: this is also false, because by using two variables zl ,  z2 we can write an 
(I\-( rndpd schema St' saying say that a t  least two natural numbers are missing on each branch etc. 
Iii fact the set [S] does not have a least upper bound in the preordered set of extended schemas. 

Tlie reason ~vhy  Theorem 4.4 fails in the set of all extended graph schemas is because, for an 
c\utcncletl schema S, S" is not generally label-finite. It  still holds in the following weaker form: if 
D = [S] and S' is an upper bound of 27, then if St" is label finite, i t  follows that S 5 St .  In particular, 
t 1.115 hol(-ls for deterministic St .  Generalizing this, we prove the following theorem, which is the most 
c.o~liplcx rcsult of this paper. Here a positive UnQL query is a query whose translation into UnCAL 
iloos not list. isempty (isempty is the only non-monotone operator in UnCAL, see [Sue961 for a more 
i lot ailcd tlisc~lssion) . 

Theorem 6.4 Let Q be a positive UnQL query. Then  for every (extended) graph schema S there 
l'.,:z.st.s (1,?1, extended graph schema Q(S), computable i n  P T I M E  such that: for every deterministic, 
r':r;te~,,$ed gmph schema St ,  if YDB 5 S + Q ( D B )  5 St,  then Q(S)  5 S t .  

Proof: Follo~ving [BDHS96b], we define the posztzve fragment of UnCAL, denoted UnCAL+, to  be 
t 110 language described by the rules in Figure 10. We refer the reader to  [BDHS96b] for a semantics 
of tlie language. It  is "positive" in that the operator isempty is missing. It suffices to  proof the 
\t;~tcrnent of the theorem for queries in UnCAL+. 

UnC;1L+ manipulates graph data whose structure is more general than the rooted, labeled 
q~~rl)lls defined in Section 2: namely they are graphs with m distinguished inputs, n distinguished 
oiitputs ant1 with &-edges. As in [BDHS96b] we "distinguish" nodes by labeling them with markers: 
-c>clges arc simply silent transitions. To describe such graphs in terms of schemas, we generalize 

0111 (rxtended) schemas to graphs with m inputs, n outputs and &-edges too. All definitions and 
~)lop(~it ies  of graph schemas generalize mutatis mutandis to  the new framework. 

iIG will show how to  construct S' = Q(S)  by induction on the structure of the query Q. More 
~)~c~clscl\-, lct y,. . . . , y, be the free label variables, and t l ,  . . . , t ,  be the free tree variables of Q, 



a € U  y a label variable t  a tree variable of type Treex 
a : Label y : Label t : Treex 

X E X  1 : Label Q : Treex 
{) : Treex X : Treex {I + Q) : Treex 

L I  : Label 12 : Label lI : Label . . . 6, : Label p a predicate 
11 = 12 : Boo1 p(l1, . . . , L n )  : Boo1 

b :  Bool Q1 : Treex Q2 : Treex 
i f  b then Qi else Q2 : Treex 

y label variable t tree variable of type Treey Ql : ~ r e e $  Q2 : Treey 

gextx(A(y, t )  .&I)  (Qz) : 

X clrnotes a finite set of markers. Treex denotes rooted graphs whose output markers are in the 
t S. ~ r r r ;  denotes graphs whose input markers are X and whose output markers are in y. 

Figure 10: The rules for the positive fragment of UnCAL, denoted UnCALf. 

ill notation Q(y l ,  . . . , y,, t l ,  . . . , t,), and let S1, .  . . , S, be n given extended schemas over variables 
def :, . . . . . ,:,. Then we show how to construct a new extended schema St = Q(yl, . . . , y,, 5'1,. . . , S,) 

o\-or \-ilri;tbles y l , .  . . , y,, XI , .  . . , zp such that for any labels a l ,  . . . , a,, then the following two con- 
(lit ions hold: 

1 .  For any databases DB1, .  . . , DB, conforming to S1, .  . . , Sn we have: 

Q(a1, . . . , a,, DB1, . . . , DB,) 5 Sf[a/5] (2) 

2 .  Foi- any tree database TDB'  Eappr (Sf[a/y]) there exists n tree databases TDB1, .  . . , T D B ,  
conforming to  S1,. . . , S, respectively, such that: 

TDB'  ~ [ a / y , T D B / t l  

\\-llPn CJ is a query with a single free variable (the input database), then condition 2 implies that 
,S" is an upper bound of {Q(DB) I D B  5 S), while condition 3 implies (by Proposition 4.7) that 
,Sf will be below any other label-finite upper bound, in particular below any deterministic upper 
1 )Olllld. 

11. now illustrate the more interesting cases for Q. 

Tree variable Q = ti. Take St sf Si. 



Singleton construct Q = { I  + Q1) First apply induction hypothesis to  Q1, and obtain schema 
S;. The label expression I is either a constant a ,  or a variable y. In the first case return the 
sc>herna {(x = a )  + Si). In the second case return {(x = y) =+ Si). 

Union (2 = QI U Q2. Obtain Si and S; first, then take S' S S i  U S;. 

Conditional Q = if b then Q1 else Q2. Construct Si, S; first. Then define S' to  have a new 
root, and two &-edges into Si and Sh respectively, labeled with b and l b  respectively. That  
is, b and l b  are predicates with free variables yl, . . . , ym (not the distinguished variable x). 
..Labeling" an E edge with a predicate means that  we enable it when the predicate is true, and 
clisilble it when it  is false. In the case of S', exactly one of the two E edges will be enabled, 
for each m-tuple a l ,  . . . ,a,. For example to  check Equation 3 above, let a l ,  . . . , a, be given, 
ilil(1 TDB'  be some database in appr (S1[a/y]). Then exactly one of b[a/y] or lb[a/ij] must be 
tl.11~. In the first case we reason that TDB'  is also in appr (Si[a/?j]), hence there exists tree 
databases T D B l  5 S1,. . . , TDB, 5 S, such that TDB'  5 Q l ( a l , .  . . ,a,, TDB1, .  . . , TDB,), 
which also implies that TDB'  5 Q ( a l , .  . . , a,, TDB1, .  . . , TDB,). The second case is similar. 

Gext ,lssume, for sake of illustration, that the gext construct has a single marker, i.e. Q = 

ge~t~,..) (X(y, t ) . ( X  := Ql))(Q2). First we apply induction hypothesis to  Q2 and obtain 
iolrie extended schema Sh with variables yl, . . . , y,, zl, . . . , x,. Our schema S' will consists 
of the nodes of Sh, with some subschemas replacing the edges in S;. The subschemas are 
ol~tained from the edges of S; as follows. For each edge u 3 u in S;, we apply induc- 
tion hypothesis to  Q1, in which we "bind" the variable t to  the schema S;,, that  is having 
tlie salrie nodes and edges as S;, but with u as its root. We obtain an extended schema 
Si ( I I , ~ .  V )  = Q1(yl, . . . , y,, S1, . . . , S,, Siv), over the variables y,, . . . , y,, y, xi, . . . , x' 9' We as- 
sumc zl.. . . , z, to be distinct from xi, . . . , xi (else we rename some of them). Then we join u 
with the root r of S i (u ,p ,  u) by a chain of two &-edges: u 4 w,,~,, 4 r (here w,,~,, is a fresh 
node). We label the first edge with true, and the second with p[y/x] (which is a predicate 
with variables yl, . . . , y,, y, 21, . . . , 2,). We denote with w,,~,,  4 Si (u, p, u) the extended sub- 
scl.ierria consisting of the root w,,,,, and the &-edge labeled p[y/z] into the root of S i (u ,p ,  u) :  
its mriables are yl, . . . , y,, y, 21, . . . , zp, x i ,  . . . , xi, and we define the scope of y to  be the entire 
jiidph I~I,,,,, 4 Si(u ,p ,  u). In constructing St from S;, we replace the edge u 3 u with this 
iut)scherna. LtTe repeat this construct for every edge u 3 G, and call S' the resulting schema. 
I t i  variables are yl, . . . , y,, y, zl, . . . , zp, xi, . . . , xb. (Technically, we have to  rename all dif- 
i~re i i t  occurrences of the variables y, xi, . . . , xi from different subschemas Si (u, p, u); we omit 
some of the details.) We prove now Equation 3. Let a l ,  . . . , a,, T D B l  5 S1,. . . , TDB, 5 S, 
l>e given. Let TDB'  Eappr (S1[ii/y]), which means TDB'  5 [(S1[a/y])]. Since TDB' is a tree, 
there exists a simulation which is a many-to-one mapping from the nodes of TDB'  to  those 
of (S1[n/y])". We will decompose TDB'  into another tree TDB; and a number of subtrees, 
which we generically denote TDB;. The nodes of TDBL consists of those nodes in T D B '  which 
~ i l ~  mapped by 5 into nodes of (S1[a/y])" lying only within the scopes of z l ,  . . . , z,, and not of 
I .  , . .zk. Consider such a node u in TDB;. Any path in TDB'  from u t o  some other node u 
111 TDB2,  without going through any other node in TDB2,  has, on all its edges, the same values 
of the variables y, xl, . . . , 2,. Moreover, all such paths from the same u have the same values of 
- 
d l  7 

. , z,, but they may differ on y. Then we construct edges in TDB; as follows. We add a 



new node u, for each value y = a taken by y on such a path, draw an edge labeled a from u to 
o , .  then draw &-edges from u, to  all nodes v reachable in TDB'  from u through a path on which 
rj = a .  Obviously TDB; 5 (SJ[ii/fj])". Next, we define the trees TDB;  to  be small pieces 
which correspond to  the same y. More precisely, for each node u in TDB;, and for each value a 
foi which there exists some path in TDB'  from u to another node v in TDB;, we define the tree 
T D B ;  (11, a)  to  consists of all nodes accessible from u through paths having y = a. Each tree 
TDB;  (ZL. a )  is mapped by 5 to  some W,I,~,,I 4 S;(u1,p, v'). By induction hypothesis for Q1, 
Lo1 each T D B l  (u, a )  we find n tree databases T D B l  5 S1, . . . , TDB, 5 S,, T D B ( u ,  a)  5 S;,, 
si~(.li that T D B l  5 Ql(a/y,  a l y ,  T D B / <  T D B l t ) .  First, we notice that  w.1.o.g. we may 
assume that  T D B l  is the same for all trees TDB;(u ,a) :  else take their l.u.b., which is 
simply their union. But we may have different trees T D B ( u ,  a )  for different TDB;  (u, a)'s, 
lwral~sc they have to  conform to  different schemas S;,, (the v' differs). Then, let us de- 
rlotc TDB; the tree obtained by expanding TDBh with all trees T D B ( u ,  a) ,  and by adding 
an E edge from each node u, to  the root of T D B ( u ,  a) .  This definition of TDB; implies 
that T D B '  5 gext(A(y, t).Ql[a/y, W / d ) ( T D B ; ) .  Next we observe that  TDB; still con- 
forms to (SJ[li/y])", because the newly added trees T D B  conform to  correct subschemas 
S .  Hence we apply induction hypothesis to Q 2 ,  and conclude that  there exists n tree 
c1atab;~ses T D B l  3 S1,. . . , TDB, 5 S, (we may assume w.1.o.g. that  these are the same 
21s heforc: else, take their g.1.b.) such that TDB; 5 Q 2 [ a / i j , m / f l .  It  follows that 
TDB' 5 gext(A(y, t )  .Ql [a/& m/fl) ( Q 2  [a /g ,  W / f l ) .  

7 Conclusions and Future Work 

\T'l~~ri c41lerying unstructured data, the ability to  use whatever structure is known about the data 
1,111 ~ ~ H T ' C I  significant impact on performance. Examples abound in optimizations for generalized 

t1-1 cxpression (see [CACS94, CCM961, among others). We have explored a new notion of a graph 
-( 11c>ma appropriate for edge-labeled graph databases. Since the known structure of graph databases 
111,n bc weaker than that  of a traditional database, we use unary formulas instead of constants for 
cdgc lal~cls IJJe describe how a graph database conforms to  a schema and observe that a graph 
(Lltahase rriay conform t o  multiple schemas. Since there is a natural ordering on graph schemas, it is 
~1ossi1)le to take the least upper bound of a set of schemas and combine into a single schema all their 
( oristiailits. IVP then describe a "deterministic" subclass of schemas that uniquely classifies nodes 
of (trc3c) databases. When optimizing queries for distributed graph databases, node classification 
~1lon.s 11s to  decompose and specialize the query for a target site [Suc96]. 

111 culrent work, we are using schemas for query optimization and query decomposition. Consider 
t I I ( ~  following UnQL query Q [Suc96], which selects all papers in the Computer Science Department 
111 Fig. 1. 

select "Papers".t where -*. "CS-Departmentn.-*. "Papersn.t t D B  

\T7itlio~lt anp Itnowledge about the data's structure, one has to search the entire database. We can 
t ~ p l o i t  liriowledge about the structure of the data in order to prune the search. For example, if we 
Iii~ow that the data conforms to  the the schema in Fig. 4(d), we can prune the search after every 
tlrpartrncnt edge that is not a Computer Science Department. This can be described by another 
( i i ~ ( ~ i \ ~ .  Qol,t. -4" interesting question is what happens if the database D B  fails to  conform to  the 



i c  licrna S, which is likely in unpredictable data sources like the Web. As discussed in Subsection 4.3, 
o r l c l  ( n n  still describe the precise semantics of Qopt(DB), namely as Q ( D B o ) ,  where DBo is the 
( ,\uonical fragment of D B  conforming to S (Subsection 4.3). Similarly, we plan to  address query 
clocoinposition. [Suc96] describes a query decomposition technique that ignores any information 
c~l)ol l t  the structure of the data, or how it is distributed. Assuming the database DB is distributed 
011 tn-o iitcs, the technique in [Suc96] poses three different queries on each site. We plan to  use 
c l o t  c.iministic schemas to describe data in a distributed environment. For example, we could use 
ill(. schema in Fig. 4(d) to  describe how the nodes in the database are located on the two sites and 
I otl~lcr the queries posed a t  each site from three to one. Maximizing the benefits of these techniques 
lo1 clucr: drcomposition and optimization is an area of future work. 

Tlic definition of a graph schema we have given is extremely general. For example, i t  cannot 
( ol~strain a graph to  be an instance of a relation in the sense that Fig. 2(a) describes a relation, be- 
( ,l~lsc~ rlililtiplc edges with the same attribute name are allowed in the graph instance. Furthermore, 
0111 scheiiias only place outer bounds on what edges may emanate from a node. In future work, we 
I I I , I \ -  ( onsitler a dual notion of schema that places inner bounds on edges by requiring certain edges 
r o (.xist. Onc could consider further constraints that restrict the number of edges that emanate 
honi a, node, as is done in [TMD92] to model variants. 

References 

i ]  Serge Abiteboul. Querying semi-structured data. In ICDT, 1997. 

[DDHS96a] Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. A query language 
and optimization techniques for unstructured data. In SIGMOD, 1996. 

[BDHSSGb] Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. A query language 
and optimization techniques for unstructured data. Technical Report 96-09, University 
of Pennsylvania, Computer and Information Science Department, February 1996. 

[BDS95] Peter Buneman, Susan Davidson, and Dan Suciu. Programming constructs for un- 
structured data. In Proceedings of DBPL '95, Gubbio, Italy, September 1995. 

7('I-lCS94] 1'. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured documents 
to novel query facilities. In Richard Snodgrass and Marianne Winslett, editors, Pro- 
ceedings of 1994 ACM SIGMOD International Conference on Management of Data, 
hlinneapolis, Minnesota, May 1994. 

[CC1\196] 1'. Christophides, S. Cluet, and G. Moerkotte. Evaluating queries with generalized 
path expressions. In Proceedings of 1996 A CM SIGMOD Internatzonal Conference on 
Management of Data, Montreal, Canada, June 1996. 

[C'lI9O] 11. P. Consens and A. 0. Mendelzon. Graphlog: A visual formalism for real life re- 
cursion. In Proc. ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database 
Sys., Nashville, TN,  April 1990. 

(DC+79] D. Dreben and W.  D. Goldfarb. The Decision Problem,: Solvable Classes of Quantzfi- 
ca,tional Formulas. Addison-Wesley, 1979. 



I (  : 11ri02] Carl A. Gunter. Semantics of Programming Languages: Structures and Techniques. 
Foundations of Computing. MIT Press, 1992. 

[HHI<95] LIonika Henzinger, Thomas Henzinger, and Peter Kopke. Computing simulations on 
finite and infinite graphs. In Proceedings of 20th Symposium on Foundations of Com- 
puter Science, pages 453-462, 1995. 

,I<S95] David Konopnicki and Oded Shmueli. Draft of W3QS: a query system for the World- 
1;l'ide Web. In Proc. of VLDB, 1995. 

[ I ]  .A. hfendelzon, G. Mihaila, and T. Milo. Querying the world wide web. In Proceedings 
o,f the Fourth Conference on Parallel and Distributed Information Systems, Miami, 
Florida, December 1996. 

[Prr90] D. Perrin. Finite automata. In Formal Models and Semantics, volume B of Handbook 
of Theoretical Computer Science, chapter 1, pages 1-57. Elsevier, Amsterdam, 1990. 

[1'Gl111T95] Y. Papakonstantinou, H. Garcia-Molina, and J .  Widom. Object exchange across hetero- 
geneous information sources. In IEEE Internationall Conference on Data Engineering, 
RIarch 1995. 

[PT87] Robert Paige and Robert Tarjan. Three partition refinement algorithms. SIAM Journal 
of Computing, 16:973-988, 1987. 

(/RS+95] D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom. Querying semistruc- 
t,ure heterogeneous information. In International Conference on Deductive and Object 
Oriented Databases, 1995. 

[Si1c.96] Dan Suciu. Query decomposition for unstructured query languages. In VLDB, Septem- 
ber 1996. 

[TIID921 ,J. Thierry-Mieg and R. Durbin. Syntactic Definitions for the ACEDB Data Base 
llanager. Technical Report MRC-LMB xx.92, MRC Laboratory for Molecular Biology, 
Cambridge,CB2 2QH, UK, 1992. 


