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ABSTRACT 

SYSTEMS BIOLOGY OF PLATELET ACTIVATION 

Mei Yan Lee 

Scott L. Diamond 

 

Platelet intracellular calcium mobilization [Ca(t)]i is a measure of platelet activation and 

controls important events downstream that contribute to hemostasis such as granule release, 

cyclooxygenase-1 and integrin activation, and phosphatidylserine (PS) exposure. Accurate 

simulations of blood clotting events require prediction of platelet [Ca(t)]i in response to 

combinatorial agonists. Therefore, a data-driven human platelet calcium calculator was developed 

using neural network (NN) ensemble trained on pairwise agonist scanning (PAS) data. PAS 

deployed all single and pairwise combinations of six important agonists (ADP, convulxin, 

thrombin, U46619, iloprost and GSNO used at 0.1, 1, and 10 x EC50 to stimulate platelet 

P2Y1/P2Y12, GPVI, PAR-1/PAR-4, TP, IP receptors, and guanylate cyclase, respectively, in 

Factor Xa-inhibited (250 nM apixaban), diluted platelet rich plasma (PRP). PAS of 10 healthy 

donors (5 male, 5 female) provided [Ca(t)]i data for training 10 neural networks (NN, 2-layer/12-

nodes) per donor. Trinary stimulations were then conducted at all 0.1 x and 1 x EC50 doses (160 

conditions) as was a sampling of 45 higher ordered combinations (four to six agonists).  The NN-

ensemble average accurately predicted [Ca(t)]i beyond the single and binary training set for 

trinary stimulations (R = 0.924).  The 160 trinary synergy scores, a normalized metric of 

signaling crosstalk, were also well predicted (R = 0.850) as were the calcium dynamics (R = 

0.871) and high-dimensional synergy scores (R = 0.695) for the 45 higher ordered conditions.  

The calculator even predicted sequential addition experiments (n = 54 conditions, R = 0.921).  

NN-ensemble is a fast calcium calculator that proved to be useful for multiscale clotting 
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simulations that include spatiotemporal concentrations of ADP, collagen, thrombin, thromboxane, 

prostacyclin, and nitric oxide. 

From sequential addition experiments done in PAS, it was discovered that activating 

platelets with thrombin in platelet-rich plasma (PRP) caused an attenuation of convulxin-induced, 

GPVI platelet receptor-mediated, calcium mobilization when convulxin was added to PRP eight 

minutes later. This attenuation effect was not observed when ADP and thromboxane analog, 

U46619 was used in place of thrombin. When PAR-1 and PAR-4 receptor agonists (AYPGKF 

and SFLLRN) were used instead of thrombin for the initial dispense, the subsequent convulxin-

induced calcium response was also unaffected, demonstrating thrombin’s unique role in causing 

attenuation of subsequent convulxin-induced calcium mobilization. Thrombin, unlike ADP, 

U46619 or the PAR-1 and PAR-4 receptor agonists, is able to polymerize fibrinogen into fibrin. 

When Gly-Pro-Arg-Pro (GPRP) was added to prevent polymerization of fibrin, initial platelet 

activation by thrombin did not result in attenuation of convulxin- induced calcium mobilization. 

This experiment was repeated using a mixture of washed platelets and fibrinogen instead of PRP 

and yielded similar results. The presence of polymerized fibrin also reduced platelet deposition in 

a microfluidic assay on a collagen surface. These results suggest that polymerized fibrin binds to 

and downregulates platelet GPVI, a platelet receptor that is important to thrombus growth and is 

central to mediating hemostasis.   
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 Introduction 

1.1 Platelet Activation 

Platelets are small anucleate blood cells that mediate thrombosis and hemostasis. In response 

to vessel wall injury, platelets are activated, forming a hemostatic plug to prevent further 

bleeding. Plate activation occurs in three overlapping phases: initiation, extension and 

perpetuation [1].  

In the initiation phase, platelets are initially captured, activated and adhere to the site of the 

vessel wall injury [2]. More specifically, at the vessel wall injury site, endothelium is disrupted, 

exposing collagen and von Willebrand factor (vWF). Platelets bind to vWF via platelet integrins 

GPIbα and αIIbβ3. Platelets then bind to collagen via platelet surface receptors (integrin α2β1 and 

glycoprotein (GP) VI). This forms a platelet monolayer on the collagen surface [2]. Binding of 

these platelet receptors to collagen also initiates intracellular signaling pathways that result in 

calcium mobilization, which is a measure of platelet activation. 

 In the extension phase, additional platelets are recruited to the growing thrombus. In this 

phase, activated platelets produce soluble agonists ADP (via granule release) and thromboxane 

(via arachidonic acid). Furthermore, platelets accelerate local thrombin generation via its 

membrane surface. These locally generated ADP and thromboxane binds to platelets and 

activates them via G protein coupled receptors (GPCRs) causing an increase in cytosolic calcium 

concentration and further release of ADP and thromboxane. Thrombin also activates platelets via 

binding of platelet PAR-1 and PAR-4 receptors, resulting in platelet calcium mobilization. 

Thrombin, ADP and thromboxane all activate platelets via G protein-coupled receptors (GPCRs) 

[2]. This positive feedback loop amplifies the initial signals and enables rapid activation and 

recruitment of platelets into a growing thrombus [1].  Specifically, platelet activation via GPCRs 
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triggers intracellular signaling processes that convert platelet integrin αIIbβ3 into its active 

confirmation αIIbβ3a, resulting in fibrinogen/vWF-mediated platelet aggregation [2]. Platelets start 

to adhere to each other and accumulate on top of the initial platelet monolayer via fibrinogen-

αIIbβ3a and/or via fibrinogen-vWF bridges [3]. 

Events in the perpetuation phase take place to stabilize and to prevent premature 

disaggregation of the hemostatic platelet plug [2]. Ligand binding to platelet integrin αIIbβ3 

facilitates platelet adhesion and aggregation and triggers outside-in signaling [4]. Outside-in 

signaling ultimately results in platelet spreading, further granule secretion and stabilization of 

platelet adhesion and aggregation as well as clot retraction [4].  

Thrombin is also generated via Factor Xa via the tissue factor pathway [5]. In addition to 

activating platelets via its receptors PAR-1 and PAR-4, thrombin cleaves fibrinopeptide A from 

fibrinogen Aα-chains, thus initiating and catalyzing fibrin polymerization [6].  Fibrin cross-links 

and stabilizes the hemostatic plug, preventing premature disaggregation. The endothelium also 

synthesizes prostacyclin (increases adenyl cyclase activity) and nitric oxide (prevents degradation 

of cAMP by intracellular phosphodiesterases). Ultimately prostacyclin and nitric oxide increase 

intracellular cAMP levels and downregulates platelet signaling [7].  

1.2 Role of Thrombin 

Thrombin is a central enzyme involved in blood coagulation and platelet aggregation [8]. 

Thrombin is derived from prothrombin, a glycoprotein that is synthesized from the liver and 

released into the blood.  

During activation of the coagulation cascade, prothrombin is converted to thrombin with 

the help of prothrombinase, a complex that comprises serine protease FXa, cofactor Va, anionic 

phospholispholipids on platelet surface, as well as calcium ions [8]. Thrombin mediates 
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hemostasis through multiple functions. Most notably, thrombin catalyzes conversion of 

fibrinogen to fibrin, which helps stabilize hemostatic plugs in response to vessel wall injury. 

Thrombin also converts FXIII to FXIIIa, which adds structural integrity to fibrin network by 

covalent cross-linking of glutamine and lysine residues on fibrin molecules. Thrombin also 

activates platelets by binding to proteinase-activated receptors PAR-1 and PAR-4 found on 

platelets. Thrombin is an especially potent platelet agonist that mobilizes cytosolic calcium and 

results in granule release of soluble agonists, platelet aggregation, as well as surface expression of 

phosphatidylserine (PS, a procoagulant phospholipid) [9, 10].   

Because of thrombin’s multiple roles in mediating hemostasis, as well as its high potency 

as a platelet agonist in vivo, efficient regulation of thrombin activity is crucial to ensure proper 

clot formation. There are several serine protease inhibitors (serpin) that block the function of 

thrombin, most notably antithrombin. Antithrombin is present in blood at relatively high 

concentrations (2.3 µM) [8]. Many antiplatelet therapies have been developed to target thrombin 

function. For example, Factor Xa inhibitors such as rivaroxaban, apixaban and edoxaban have 

been developed to limit thrombin generation and coagulation, useful for stroke prevention and 

deep vein thrombosis (DVT) management.  PAR-1 and PAR-4 inhibitors have also been 

developed. For example, PAR-1 inhibitor vorapaxar has been approved as a treatment for patients 

with a history of myocardial infarction and peripheral artery disease [11].  

1.3 Role of Fibrin 

During coagulation, thrombin catalyzes the conversion of the soluble molecule, fibrinogen, 

to an insoluble molecule, fibrin. At the conclusion of hemostasis, fibrinolysis occurs to aid 

healing at the site of injury [12]. Plasmin is the enzyme that catalyzes fibrinolysis, it converts the 

stable insoluble fibrin clot into soluble products that can be cleared by the liver. Plasmin is 

derived from the activation of its zymogen, plasminogen (abudant in circulation, 2 µM) [12]. This 
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activation is catalyzed by tissue-type plasminogen activator (tPA, 70 pM in plasma) that is 

generated by endothelial cells [12]. Its function is regulated by plasminogen activator inhibitor 1 

(PA1-1). Plasmin hyperfunction results in bleeding at injury sites, whereas hypofunction has been 

associated with hypercoagulability and thrombosis. Many conditions such as trauma and DIC are 

marked by an increase in fibrin degradation products (FDP) such as D-dimers. Hyperfibrinolysis 

has been implicated in trauma-induced coagulopathy [13]. Several clinical assays have therefore 

been developed to quantify D-dimers [12].  

Trauma-induced platelet dysfunction is well observed but the underlying mechanisms are 

poorly understood [14]. Some studies show that in trauma patients, flow cytometric markers of 

platelet activation were elevated, despite impaired functional aperture closure times (both 

collagen/ADP and collagen/epinephrine closure times) [15]. Furthermore, platelet function falls 

within the first six hours of hospital admission but remains suppressed even up to 120 hours after 

injury [14]. These studies suggest that immediate platelet activation in response to the initial 

tissue injury may induce a prolonged refractory state, where a fraction of activated platelets have 

impaired function but remain in circulation [14]. Therefore, further studying the interaction 

between platelet and fibrin may shed light on potential mechanisms behind joint hyperfibrinolysis 

and platelet dysfunction as seen in patients following trauma.  

1.4 Role of GPVI 

GPVI is an immunoglobulin superfamily receptor that is expressed on platelet surface in 

association with the Fc receptor γ chain (FcRγ chain) [16]. There are approximately 3,700 copies 

of GPVI per platelet.   

GPVI plays an important role in thrombosis and hemostasis. It is well known that GPVI 

supports adhesion during the initiation phase of platelet activation via its interaction with 
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collagen. Collagen also activates platelets, resulting in elevated and sustained levels of cytosolic 

calcium that prompt important platelet procoagulant activity, such as procoagulant 

phosphatidylserine (PS) exposure, granule secretion and soluble platelet agonist secretion such as 

ADP and thromboxane that further activate platelets. In addition to these well-known GPVI 

functions, recently, GPVI has also been demonstrated to contribute significantly to thrombus 

growth and stabilization [16]. For example, in GPVI-deficient and GPVI-depleted mice with 

FeCl3 injury, the time to occlusion was prolonged, but not the initiation of thrombus formation  

[17]. In another study, GPVI has been shown to mediate thrombin generation in a collagen-

independent manner [18]. A common explanation in these findings is that fibrin is a ligand for 

GPVI, and the binding of fibrin to GPVI promotes thrombin generation.  

Because of the importance of GPVI in promoting thrombus growth and stabilization, GPVI 

has been highlighted recently as a desirable target for antithrombotic drug development. The 

inhibition or downregulation of GPVI was shown to impair thrombus formation but not disrupt 

hemostasis (does not increase bleeding), due to existing compensatory pathways.  

1.0 A human platelet calcium calculator trained by pairwise agonist 

scanning 

2.1 Abstract 
 

Since platelet intracellular calcium mobilization [Ca(t)]i controls granule release, 

cyclooxygenase-1 (COX-1) and integrin activation, and phosphatidylserine exposure, blood 

clotting simulations require prediction of platelet [Ca(t)]i in response to combinatorial agonists.  

Pairwise Agonist Scanning (PAS) deployed all single and pairwise combinations of six agonists 

(ADP, convulxin, thrombin, U46619, iloprost and GSNO used at 0.1, 1, and 10xEC50; 154 
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conditions including a null condition) to stimulate platelet P2Y1/P2Y12, GPVI, PAR-1/PAR-4, TP, 

IP receptors, and guanylate cyclase, respectively, in Factor Xa-inhibited (250 nM apixaban), 

diluted platelet rich plasma that had been loaded with the calcium dye Fluo-4 NW. PAS of 10 

healthy donors provided [Ca(t)]i data for training 10 neural networks (NN, 2-layer/12-nodes) per 

donor. Trinary stimulations were then conducted at all 0.1x and 1xEC50 doses (160 conditions) as 

was a sampling of 45 higher ordered combinations (four to six agonists).  The NN-ensemble 

average was a calcium calculator that accurately predicted [Ca (t)]i beyond the single and binary 

training set for trinary stimulations (R = 0.924).  The 160 trinary synergy scores, a normalized 

metric of signaling crosstalk, were also well predicted (R = 0.850) as were the calcium dynamics 

(R = 0.871) and high-dimensional synergy scores (R = 0.695) for the 45 higher ordered 

conditions.  The calculator even predicted sequential addition experiments (n = 54 conditions, R 

= 0.921).  NN-ensemble is a fast calcium calculator, ideal for multiscale clotting simulations that 

include spatiotemporal concentrations of ADP, collagen, thrombin, thromboxane, prostacyclin, 

and nitric oxide (NO).   
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2.2 Introduction 
 

Platelet activation during heart attack and stroke occurs through combined signaling 

pathways involving various receptors responding to collagen, thrombin, ADP, and thromboxane. 

Endothelial production of prostacyclin is highly protective against thrombotic platelet activation 

as revealed by the known cardiovascular risks of COX-2 inhibitors. Similarly, endothelial 

production of NO has many cardiovascular effects via vasodilation and platelet inhibition. The 

clinical importance of these pathways is seen in the number of drugs in clinical trials or approved 

that target GPVI signaling, thromboxane, ADP, or thrombin. More than 50 million U.S. adults 

take aspirin to inhibit platelet COX-1 production of thromboxane in order to reduce long-term 

risk of cardiovascular disease [19]. Clopidogrel antagonizes ADP activation of platelet P2Y12 

receptors and is widely prescribed. Numerous anticoagulants are approved to target the 

generation or activity of thrombin. 

Platelet activation occurs through multiple signaling pathways in which agonists bind 

specific receptors on the platelet to trigger signaling in a dose-dependent manner. During a 

clotting episode, platelets respond to exposed surface collagen, released ADP, synthesized 

thromboxane, and the serine protease thrombin, all while being simultaneously modulated by 

endothelial derived nitric oxide and prostacyclin. These receptor-mediated signaling pathways are 

not independent and significant crosstalk can occur (Figure 1-1). 

The Pairwise Agonist Scanning (PAS) method was first developed by Chatterjee et 

al.(2010) using EDTA-treated platelet rich plasma (PRP) to quantify and predict the interactions 

between multiple pathways (Figure 1-2) [20]. The PAS method measures platelet calcium 

responses to all individual and pairwise combinations of agonists at low, medium and high 

concentrations (154 conditions total for six agonists at 0.1, 1, and 10 x EC50, including a null 

condition). 
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Because EDTA chelates extracellular calcium and prevents store operated calcium entry 

(SOCE), the measured calcium data obtained using EDTA-treated PRP is enriched in the 

regulatory events surrounding IP3-mediated calcium release from the dense tubular system 

(DTS). 

With PAS data, Chatterjee et al. were able to train an artificial neural network (NN) to 

predict platelet calcium response to combinations of agonists beyond the training data, such as 

trinary combinations, sequential additions of agonists, and combinatorial responses of four to six 

agonists [20].  

The NN model builds an estimate of higher order interactions (response to >2 agonists) 

by combination of the measured binary interactions. A metric called the pairwise synergy score 

was defined to quantify the extent of cross-talk between pairs of agonists (Figure 1-1B) [20]. The 

pairwise synergy score (Sij) was defined to be the difference between the integrated area (area 

under the curve) for the combined response to agonists i and j relative to the integrated area for 

both the individual agonist responses added together, normalized to the maximum absolute 

Sij[20]. In other words, the synergy score is a measure of deviation of the platelet response from 

the simple additive response of each agonist. A positive Sij value indicates synergistic behavior 

between agonists i and j whereas a negative Sij value indicates antagonistic or saturating behavior 

and Sij = 0 represents a purely additive response.  
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Figure 1-1 Platelet signaling pathway and neural network architecture. (A) The six agonists used in this study 

(ADP, convulxin, U46619, thrombin, iloprost, GSNO) and their respective platelet signaling pathways, all of which 

converge upon intracellular calcium mobilization. (B) A two-layer, 12-node neural network architecture was employed. 

Agonist concentrations at a given time point were fed into the processing layers; the layers then integrated the input 

signal with feedback at t = 1, 2, 4, 8, 16, 32, 64 and 128 seconds to calculate [Ca2+]i at the next time point. The pairwise 

synergy score (Sij) was also defined as the difference in integrated calcium response to two agonists used together and 

integrated response to agonists used individually, normalized by the maximum synergy score in the experiment. 
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Since many platelet pathways are triggered distally of IP3-released calcium and SOCE, 

the intracellular calcium concentrations can be used as a global metric of platelet activation. 

Calcium is the central “node” in platelet signaling, in that elevated calcium levels are central to 

downstream clotting events such as integrin activation, granule release, shape change, and 

phosphatidylserine exposure by platelets [21-23]. The ability to predict dynamic calcium traces 

for combinations of agonists enables the targeting of specific platelet pathways to increase or 

decrease platelet activity so as to achieve desired clinical outcome. NN trained on PAS data 

provides accurate calcium responses to different dose combinations of important agonists and is 

essential for simulating platelet function under flow. As an in silico predictor of calcium 

regulation, the NNs trained by PAS can be embedded in multi-scale simulations of platelet 

deposition under flow conditions. In the work of Flamm et al. (2011) [24], NN were trained via 

PAS using calcium-containing PRP and then used to predict platelet deposition rates on collagen 

in the absence of thrombin by accounting for platelet signaling in response to laboratory analogs 

of collagen, ADP, thromboxane, and prostacyclin. 

A universal platelet calcium calculator provides a reference for platelet function of a 

healthy human. Platelet gain of function or loss of function in patients can therefore be measured 

in a high dimensional approach using the PAS method. Furthermore, since the specific pathways 

in the platelet that contribute to platelet gain or loss of function can be identified by PAS as well, 

PAS can be used to predict the sensitivity and resistance of drugs that target those specific agonist 

pathways, even loss of function mutations have been discovered with PAS [24]. Additionally, the 

calcium calculator can be embedded into a multiscale simulation of clotting under defined 

hemodynamic conditions. 

In the current study, the PAS method was expanded for the use of exogenously added 

thrombin in the presence of normal calcium and included the potent platelet inhibitors iloprost 

and nitric oxide (NO). Thrombin is an extremely potent platelet activator via cleavage of platelet 
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PAR-1 and PAR-4 receptors. Additionally, to estimate average healthy human platelet responses, 

calcium data was obtained from 10 healthy donors as an ensemble-averaged predictor of platelet 

calcium. Distinct from the prior PAS in Chatterjee et al. (2010) where PAR-1 and PAR-4 agonist 

peptides were used with platelet rich plasma (PRP) treated with EDTA, the current study required 

a means to study exogeneously added thrombin without endogenous production of thrombin in 

PRP with normal calcium. In the current experimental design, blood was drawn into 250 nM 

apixaban (Ki = 0.08 nM) [25], a direct Factor Xa inhibitor, which does not alter extracellular 

calcium levels but prevents endogenous thrombin generation. This assay therefore allows the 

contribution of SOCE and includes the signaling distal of thrombin proteolytic activity on PAR-1 

and PAR-4. Furthermore, the NN-ensemble method was employed to increase accuracy and 

robustness in NN predictions. 

 

2.3 Materials and Methods 
 

2.3.1 Pairwise Agonist Scanning (PAS) 

Whole blood was drawn by venipuncture from healthy donors according to the University 

of Pennsylvania Institutional Review Board guidelines (protocol number: 805305), into a syringe 

containing apixaban (SelleckChem) with a final concentration of 250 nM. Donors self-reported to 

be free of any medications or alcohol use for three days prior to the blood draw. Female donors 

self-reported to not using oral contraceptives. Platelet rich plasma (PRP) was then obtained by 

subjecting the whole blood sample to centrifugation at 120g for 12 minutes. Then, 2 ml of PRP 

was incubated with a vial (single microplate size) of Fluo-4 NW dye mixture (Invitrogen) 

reconstituted with 7.8 ml of HEPES buffer and 200 μL of 77 mg/ml reconstituted probenecid 

(Invitrogen) for 30 minutes [20]. All single and pairwise combinations of six agonists (ADP, 

convulxin, thrombin, U46619, iloprost and GSNO) at low, medium and high concentrations (0.1, 
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1, and 10X EC50), as well as a buffer condition (154 conditions total x 2 replicates) were 

dispensed into a 384-well plate (called the ‘agonist plate’) using a high throughput liquid handler 

(PerkinElmer Janus). The PAS agonists were: ADP (P2Y1/ P2Y12 activator, EC50 = 1 μM), 

convulxin (GPVI activator, EC50 = 2 nM), thrombin (PAR-1/PAR-4 activator, EC50 = 20 nM), 

U46619 (TP activator, EC50 = 1 μM), iloprost (IP activator, EC50 = 0.5 μM) and GSNO (NO 

donor, EC50 = 7 μM) (Figure A-1). ADP and GSNO were obtained from Sigma-Aldrich, 

convulxin from Pentapharm, thrombin from Haematologic Technologies Inc., U46619 and 

iloprost from Tocris Bioscience. After incubation with dye, the PRP was dispensed into a 384-

well plate (called the ‘read plate’). Both the agonist and read plate were loaded into a Molecular 

Devices FlexStation 3, a fluorescence reader with auto-pipetting capabilities. Agonists were 

dispensed to a column of wells containing the PRP, where well fluorescence F(t) was read and 

normalized by the pre-dispense baseline. Specifically, 20 μL of agonist was added to 30 μL of 

PRP in each well, giving a final volume of 50 μL. In each well, the final concentration of PRP 

after agonist addition was 12% PRP by vol., and the volume of calcium dye was 15 μL (30% dye 

by vol.). Readings were taken in intervals of 2.5 seconds. The fluorescence was read for 20 

seconds before dispense, and readings were taken for 210 seconds after each dispense (EX/EM, 

485 nm/525 nm). The entire plate was read, column-wise, in under 90 minutes. PAS was 

conducted on PRP from ten donors (50% male), each in replicate on two different days (20 PAS 

experiments total). In separate tests using indomethacin (Sigma-Aldrich) to block COX-1 and 

apyrase (Sigma-Aldrich) to degrade released ADP, there was no evidence for autocrine signaling 

in the dilute PRP conditions of the experiment (Figure A-2), as previously found with EDTA-

treated PRP [20].  
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Figure 1-2 Pairwise Agonist Scanning experimental method. 

 

2.3.2 Trinary, Higher Order Combinations and Sequential Addition Experiments 

In experiments with trinary mixtures of agonists, all single and trinary combinations of 

the same six agonists at two different concentrations (0.1x and 1x EC50), as well as a null buffer 

condition (173 conditions total x 2 replicates) were prepared in the agonist plate. This experiment 

was done once for each of the 10 PAS donors. There are 3,402 possible conditions involving four, 

five, or six agonists (higher order combinations of agonists) at low, medium and high 

concentrations. The higher order combination space was sampled in equal proportions 

(approximately 1.3% each of 4 to 6 agonist conditions). Thus, a total of n = 45 higher order 

combinations were sampled (16 four-agonist, 19 five-agonist, and 10 six-agonist conditions). 
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These experiments were done seven times spanning five donors (two repeat experiments for two 

of the donors), neither of which were present in the PAS training set. In the sequential addition 

experiments, all conditions involving sequential addition of three agonists (ADP, convulxin and 

U46619) at three different concentrations and a null buffer condition (55 conditions total x 2 

replicates) were prepared in the agonist plate. The sequential addition experiment was done once 

on a single donor. 

2.3.3 Calculation of Synergy Scores 

The pairwise synergy score (Sij) was defined to be the difference between the integrated 

calcium for the combined response to ij-agonists and the sum of the integrated calcium for both 

the individual agonist responses used independently, normalized by scaling to the maximum 

absolute synergy score observed in the experiment (Figure 1-1B) [20]. Synergy scores range from 

-1 to 1 (positive, synergistic; 0, additive; negative, antagonistic). Trinary synergy scores (Sijk) 

were also similarly calculated as the difference of the combined response to ijk-agonists from the 

response for all three individual agonist responses. In general, synergy scores (Sn) are defined by 

Eq. 1, where the variable Ai represents the integrated calcium for the response to agonist i used 

independently, and A1. . .n is the area under the curve for the response to agonists 1 through n used 

simultaneously (n = 6 maximum for the six agonists deployed). 
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2.3.4 Neural Network Training and Averaging 

The replicate wells in each PAS experiment duplicate were averaged before training. A 2-

layer, 12-node dynamic neural network (NN), as employed in Chatterjee et al. (2010), was trained 



 

15 

 

on each averaged PAS experiment 10 times (n = 100), each time with a different set of initial 

weights and randomized division of 154 single and pairwise time course data into training and 

validation sets (90%/10%) (Figure 1-1B). All neural network model construction and training 

were done using the MATLAB Neural Network Toolbox (MathWorks). Training on a NN was 

done for a maximum of 1000 epochs, where each epoch was one pass through the training set 

followed by testing of the validation set. The training set vectors were used to optimize the NN 

weights and the validation set was used to test the weights during training so as to ensure the NN 

did not over fit to the training set. Early stopping was also employed, in which training would 

stop if the validation set error did not improve after five epochs. At the end of the training of each 

NN, the optimized NN weights would typically match the predicted time series to the 

experimental time series with a mean squared error anywhere on the order of 10
–4

 to 10
–2

. 

Each of the 100 trained NNs was then given the trinary experiment agonist concentration 

inputs and the resulting calcium time trace predictions were averaged to give an overall prediction 

for the average trinary experiment platelet response. The resulting synergy scores were also 

calculated and compared to the actual synergy scores for the trinary experiments. Similarly, each 

of the 100 trained NNs were given the higher order combination and sequential addition 

experimental concentration inputs, and the resulting calcium time trace predictions were 

compared to the measured values. A summary of the experimental and computational workflow is 

shown in Figure 1-3. In the testing of NN predictive abilities, output from all 100 NNs were 

averaged to give a final prediction. This approach is an ensemble method [26]. Ensemble methods 

are commonly used to overcome the inherent instability problem with NNs [26]. NNs (along with 

decision trees, multivariate adaptive regression splines etc.) are inherently unstable in that small 

differences in training data or conditions (e.g. initial weights) may cause variations in final 

predictions. Generating an ensemble of NNs and combining their outputs to produce a single 
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prediction has been proven by Cunningham et al. (2000) to be a robust solution to this problem 

[26]. 

 

Figure 1-3 Experimental and computational workflow. The dataset consists of PAS experiments done in duplicate 

on PRP donated by ten donors (five male, five female). The duplicate experiments were averaged before training, i.e. n 

= 10. Each PAS experiment comprised a set of 154 calcium time traces, responses to all combinations of six agonists at 

three different concentrations and a buffer condition. A neural network was trained on each of the average PAS 

experiments giving a total of n = 100 trained neural networks. A different set of assay conditions (in this case, trinary 

combinations of the same six agonists at low and medium concentrations) are then input to each of the 100 trained 

neural networks (collectively called the ensemble NN) to generate predictions, which are then averaged and compared 

to the experimental average calcium time traces. These trinary combination experiments were done once each on the 

same ten donors, i.e. n = 10. 

 

In the testing of the NN on higher order combination experiments, two additional donors 

(one male, one female) were used in the training set (12 donors for a total of 120 NNs). None of 

the 12 donors used in the training set were present in the testing donor set (five donors for a total 

of seven experiments). The success of the higher order combination predictions suggests that the 

ensemble NN was sufficiently robust to predict outcomes of donor aggregates without their 
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donor-specific PAS data during training, and that the NN ensemble has learned calcium 

mobilization patterns of an average healthy human. Furthermore, the sequential addition 

experiment predictions points to the ability of the ensemble NN to predict the outcome of an 

individual donor, not just aggregate outcomes of donors, and without having PAS data of that 

specific testing donor during training. 

2.4 Results 

2.4.1 Neural network prediction of platelet responses to binary agonist stimulation 

The 10 x 10 NN-ensemble was trained on the pairwise agonist scanning (PAS) 

experiments of 10 donors and predicted the measured average pairwise calcium traces of those 

donors (Figure 1-4A-C) with a correlation coefficient of R = 0.975 (Figure 1-4C). Figure 1-4A 

indicates all 154 single and pairwise conditions used in the PAS with the corresponding calcium 

time traces (Figure 1-4B) and NN-predicted calcium time traces (Figure 1-4C). From Figure 

1-4A-C, the calcium response to convulxin rose slowly, but became highly elevated and was 

sustained. In contrast, calcium responses to ADP or U46619 displayed rapid onset but were 

weaker and more transient than calcium responses to convulxin and thrombin. Interestingly, the 

thrombin response displayed rapid calcium mobilization, prominent elevation, and was more 

sustained than calcium responses observed in earlier studies with PAR-1 and PAR-4 agonist 

peptides [20]. A total of 135 binary synergy scores (all pairs of six agonists at three 

concentrations) for the PAS experiment and the NN-prediction are shown in vector form (Figure 

1-4), representing the average human platelet phenotype. Both experimental and NN-predicted 

synergy values were plotted in heat map form in Figure 1-4D. Similar to the time series 

prediction, the NN ensemble was able to predict the measured average pairwise synergy scores of 

those ten donors (R = 0.937) (Figure 1-4E). Many synergy values clustered around the center of 

the range (Sij~0, additive) with slightly more negative values extending to full antagonism (Sij~ -
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1). The maximum synergy score did not exceed 0.5. The most negative synergies were found with 

pairwise mixtures that included iloprost. The experimental and NN-predicted synergy scores were 

also arranged by dose and agonist pairs (Figure 1-4F). From Figure 1-4F, iloprost was inhibiting 

for all agonists used in combination with it. GSNO was also inhibiting for most conditions, 

however, low dose GSNO slightly potentiated thrombin-induced calcium response. The 

combination of medium or high dose thrombin with medium dose convulxin was particularly 

synergistic, consistent with several findings [27, 28]. Also, thrombin signaling was synergistic 

with thromboxane signaling which is a novel observation since both agonists signal through Gq. 
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Figure 1-4 Neural network fit of PAS experiments. (A) PAS experiment input conditions: all single and pairwise 

combinations of six agonists at low, medium and high concentrations. (B) Measured average calcium time courses of 

ten donors in the PAS experiments. (C) The neural network trained on the PAS experiments of ten donors was able to 

fit the measured average pairwise calcium traces of those ten donors with a correlation coefficient of R = 0.975. (D) 

The experimental and NN-predicted 135 pairwise synergy scores for the PAS experiment. (E) The neural networks 

were able to fit the measured average pairwise synergy scores of those ten donors with a correlation coefficient of R = 

0.937. (F) The experimental and NN-predicted synergy scores arranged by dose and agonist pairs. 
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2.4.2 Neural network prediction of platelet responses to trinary agonist stimulation 

To test the predictive capability of the NN-ensemble beyond the training set, the NN-

ensemble was used to predict the calcium output of trinary agonist stimulations. To avoid 

saturation effects of agonist induced signaling, the trinary combination experiments comprised all 

trinary combinations of six agonists at only the low and medium doses (Figure 1-5). The NN 

ensemble trained only on the PAS experiments of ten donors in duplicate was able to predict the 

measured average trinary calcium traces of those donors with high accuracy (R = 0.924) (Figure 

1-5B-C). This demonstrated the de novo predictive capability of the neural network model. There 

were 160 trinary synergy scores for the trinary experiment consisting of all trinary combinations 

of six agonists at two different concentrations (0.1 and 1 x EC50). The NN trained only on the 

PAS experiments of ten donors in duplicate was able to predict the measured average trinary 

synergy scores of those ten donors with a correlation coefficient of R = 0.850. (Figure 1-5D). The 

synergy scores plotted for the trinary experiments in Figure 1-5D, though also clustered around 

zero, extended more toward 1 (synergistic) compared to the binary synergy scores (Figure 1-4E), 

which extended toward -1 (antagonistic). This is expected, in part, because the trinary 

experiments were sampled across only the low and medium dose ranges, thus, there were fewer 

instances of saturation due to platelet activation by high doses of multiple agonists. Furthermore, 

only low and medium doses of the inhibitors iloprost and GSNO were used, so their strongest 

inhibitory/antagonistic effects at 10x EC50 were not present in the trinary data (but were present in 

the binary experiments). To illustrate the predictive power of the NN-ensemble, the full time 

series plots of a random sampling of the 160 trinary conditions are shown in Figure 1-6. Full time 

series plots of all 160 trinary conditions rescaled to 0.5 are also shown in Figure A-3. For the 

trinary stimulations, the predicted calcium time traces fit the experimental data over the full time 

domain with remarkable accuracy. The trinary agonist experiments embed information about 
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platelet signaling during in vivo hemostasis, thrombosis, or bleeding. For example, during the 

early stages of vessel wall injury, platelets are activated by collagen of the damaged vessel wall 

[29] which can also generate thrombin via the extrinsic pathway (distal of tissue factor). 

Concomitantly, endothelium-derived nitric oxide and prostacyclin modulate platelet functions. 

Therefore at this early stage the platelet is mainly exposed to these three agonists: exposed 

collagen, prevailing nitric oxide and prostacyclin, while thrombin is dynamically generated. 

Soluble agonists such as ADP and thromboxane become critically important during platelet mass 

build-up (sometimes called secondary aggregation) when activated platelets release ADP from 

dense granules and generate thromboxane via COX-1. Recent in vivo and in vitro studies reveal 

that the platelets in the “core” are exposed to high levels of thrombin, while the outer shell of 

platelets see little thrombin but are especially sensitive to the presence of thromboxane [30-34]. 

 

Figure 1-5 Neural network prediction of trinary experiments. (A) Trinary experiment input conditions: all trinary 

combinations of six agonists at low and medium concentrations. (B) Measured average calcium time courses of ten 

donors in the trinary experiments. (C) The neural network trained on the PAS experiments of ten donors was able to fit 

the measured average trinary experiment calcium traces of those ten donors with a correlation coefficient of R = 0.924. 

(D) There are 160 trinary synergy scores for the trinary combination experiment. The neural networks were able to fit 

the measured average trinary synergy scores of those ten donors with a correlation coefficient of R = 0.84982. 
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Figure 1-6 Examples of NN-predicted and measured calcium time traces for the trinary combination 

experiment. Plots of 84 of the 160 conditions in the trinary combination experiment (all trinary combinations of 

agonists at two concentrations: 0.1 x EC50 and 1 x EC50). 
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2.4.3 Neural network prediction of higher order combination experiment 

The higher order test of the NN-ensemble comprised a 45-condition sampling of the full 

experimental space in equal proportions (n = 45 total combinations: 16 four-agonist, 19 five-

agonist, and 10 six-agonist conditions) (Figure 1-7A). In this subsequent higher order experiment, 

the donor pool for the generation of the PAS training dataset was expanded to 12 individuals, 10 

of which were also previously used in the prediction of trinary combination outcomes. The higher 

order experiments were an aggregate of seven experiments spanning five donors, none of whom 

were utilized in the PAS training dataset. The NN-ensemble trained only on the PAS experiments 

of 12 donors was able to predict the calcium traces of the higher order combination experiments 

with sufficiently high accuracy (R = 0.871) (Figure 1-7A-C). This higher order experiment 

represented a most challenging test of the de novo predictive capability of the neural network 

model, more so than the trinary combination experiments of Figure 1-5. With up to six stimuli 

present, this experiment triggers an extraordinary range of signaling complexity in the platelet. 

The NN-ensemble trained only on the PAS experiments was able to predict the measured synergy 

scores with a correlation coefficient of R = 0.6953 (Figure 1-7D). Compared to the synergy 

scores of the binary (Figure 1-4E) and trinary experiments (Figure 1-5D), the synergy scores of 

the higher order combination experiments tended to be more antagonistic due to saturation 

effects. Many of the measured and predicted higher ordered synergy scores were additive (S~0) 

with none being highly synergistic (all S < 0.25) which occurs for saturated signaling by only a 

few of the agonists in the mixture. During saturation, a maximal amount of calcium is released by 

IP3 or conveyed by SOCE. Therefore, the actual calcium mobilization caused by high doses of  

≥4 activating agonists was not expected to exceed the sum of calcium release due the individual 

agonists. The time series plots of all 45 conditions in the higher order combination experiment 

(Figure 1-7C and Figure 1-8) indicated that the NN-predicted time calcium time traces tended to 
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consistently under predict calcium traces involving high dose convulxin. This may be because the 

NN had not been trained on any data that involves calcium levels as high as that triggered by 

combinations of 4–6 agonists including a high dose of the potent activator convulxin. Another 

theory is that the NN may have over predicted the saturation effects in calcium responses that 

may result from combinations of multiple agonists in addition to high dose convulxin. 

Furthermore, the NN predictions underestimated the effect of iloprost and GSNO, in that 

combinations that involved those agonists tended to have calcium level predictions that were 

higher than the experimental values. However, the overall shape of almost all the predictions fits 

the experimental time traces rather well, indicating that the NN ensemble was able to capture the 

kinetics of these higher order combination experiments. There was no apparent trend in calcium 

trace prediction accuracy with increasing number of agonist (four-agonist conditions had R = 

0.82332, five-agonist conditions had R = 0.90699, six-agonist conditions had R = 0.79398). 

However, this sampling of 45 conditions was only 1.3% of the complete experimental space of 

3,402 possible conditions. 
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Figure 1-7 Neural network prediction of higher order combination experiments. . (A) Experimental input 

conditions that are a random sample (n = 45) of the complete experimental space involving four, five, and six agonists 

at low, medium and high concentrations (n = 3,402). (B) Average measured calcium time courses of seven experiments 

spanning five donors in the higher order combination experiment. (C) The neural network trained on the PAS 

experiments of 12 donors was able to fit the measured experimental calcium traces with a correlation coefficient of R = 

0.871. (D) The neural networks were able to fit the measured average synergy scores of those ten donors with a 

correlation coefficient of R = 0.6953. 
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Figure 1-8 Calcium time traces for the higher order combination experiment. Plots of the 45 conditions in the 

higher order combination experiments. 

 

2.4.4 Neural network prediction of sequential addition combination experiment 

A sequential addition experiment was done with all permutations for a two-dispense 

experiment of three agonists (ADP, convulxin and U46619) in the full dose range, i.e. 54 

conditions total (Figure 1-9A). Calcium time traces were plotted in heat map form in Figure 1-9 

B; the arrows indicate the time at which the corresponding agonists in Figure 1-9A were 

dispensed. The NN trained on the PAS experiments, in which agonist pairs were added 

simultaneously, was also able to predict the calcium output of the sequential addition experiment 
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with a correlation coefficient of R = 0.921 (Figure 1-9C). The plots of both the experimental and 

predicted time series are shown in Figure 1-10. Due to limitations of working with isolated 

platelets in vitro (requiring use within 3 hours from venipuncture), the PAS calcium readings for 

sequential addition tests required a 260 second window per column for the 24 columns of the 

384-well plate. The shorter 260 second training interval still provided accurate predictions for the 

whole 780 second window because many of the PAS calcium traces following agonist-mediated 

increases had decayed to resting levels within the 260 second training interval. This was true of 

all agonist combinations except for those involving convulxin, which generated sustained calcium 

levels in the 260 second window. Within this training interval, the PAS had captured the full 

kinetic effects of all the agonists except for convulxin. Extending the training window to 300 

seconds, where the second dispense in the sequential addition experiment had happened, would 

not confer additional information to the NN because convulxin responses would not have started 

decaying at the end of 300 seconds. Therefore, the NN trained on the PAS equipped with this 

kinetic information, in addition to crosstalk information between these six agonists from the 

pairwise conditions, was able to predict calcium responses to two agonists added sequentially 

with sufficiently high accuracy (R = 0.921), with a tendency for mild over prediction of calcium 

compared to the experimental time series. Nonetheless, the shape of the NN and measured 

calcium traces were quite similar (Figure 1-10). As expected, in conditions where convulxin was 

added first in the sequential addition experiments, the NN predicted a sustained calcium level 

instead of a slight decay in calcium response toward the end of the 780 second window, since this 

decay had not been captured in the 260 second window of the PAS experiment used in NN 

training. 
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Figure 1-9 Neural network prediction of sequential addition experiments. (A) Experimental sequential input 

conditions (n = 54) for three agonists (ADP, convulxin and U46619). (B) Measured calcium time courses of Donor Y 

in the sequential addition experiment. (C) The neural network trained on the PAS experiments of ten donors was able 

to predict the measured sequential addition calcium traces of Donor Y with high accuracy (correlation coefficient, R = 

0.921). 
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Figure 1-10 Calcium time traces for the sequential addition experiments. Plots of the 54 conditions in the 

sequential addition experiments. 

 

2.4.5 Analysis of synergy scores 

The synergy scores (Sij) reduced more than 25,000 calcium time points from a PAS 

experiment to a 135-parameter vector. Each synergy score is the most succinct first order measure 

of crosstalk between specific pairs of agonists at specific doses. The discovery of new synergistic 

and antagonistic effects between specific combinations of agonists via synergy scores can 
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motivate efforts to study the underlying biochemical mechanisms (e.g. the thrombin-thromboxane 

positive synergy is unexpected since both signal through Gq). Furthermore, the synergy score may 

underlie a drug risk (as seen with COX-2 inhibition therapy [20]), a patient-specific drug 

sensitivity or resistance. Future bottom-up models that predict the 135-parameter synergy vector 

may require interactions and pathways not explicitly represented in the currently prevailing 

platelet signaling model of Figure 1-1A. 

Synergy scores of the 10-donor, 20-experiment averaged PAS experiments were further 

analyzed to gain insight into platelet signaling. The same was done for the averaged trinary 

combination experiments and the higher order combination experiments. The mean of the 

standard deviation between donors for a given synergy score in the experiment is 0.0932 for 

binary dataset, 0.1722 for the trinary dataset, and 0.2029 for the higher order dataset. This reflects 

the variation in a given synergy score between donors. As the number of agonists involved 

increased, signaling complexity increased, resulting in larger donor variations in a given synergy 

score. 

The mean of the pairwise Sij was very close to zero (Sij = - 0.0626), and the maximum 

synergy score was 0.3461. The mean of the trinary synergy scores was slightly less negative (Sijk 

= -0.0401), and the maximum synergy score was 1, meaning that the maximum absolute synergy 

score is a synergistic one. Because trinary conditions were only sampled at the low and medium 

dose, calcium saturation from multiple high doses of agonists was avoided, therefore the synergy 

scores tended to be more synergistic. The mean of the higher order combination synergy scores 

was quite antagonistic (S = -0.3484), and the maximum synergy score was also very small (S = 

0.1085). As more agonists are involved, platelet signaling tends to reach saturation, which shifts 

the mean synergy score towards antagonism, and lowers the maximum synergy score. 

For the PAS and higher order combination experiments, the synergy score with the 

maximum magnitude was antagonistic (i.e. minimum synergy score is -1 for binary and higher 
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order experiment averages) because iloprost and GSNO are both strong inhibitors in this assay. 

For the average PAS experiment, the most antagonistic synergy score involved a high dose of 

iloprost; for the higher order experiment, it involved low dose iloprost and high dose GSNO. The 

most antagonistic synergy score for the trinary experiment is -0.5395 and it involves medium 

dose iloprost. Interestingly, the synergy metric indicates that IP receptor activation by iloprost, a 

prostacyclin mimetic, was a more potent inhibitor of calcium mobilization compared to that 

observed with the activation of guanylate cyclase via GSNO release of NO (Figure 1-4F). This 

was confirmed by the calculation of GSNO and iloprost percent inhibitions of various agonists 

used in this assay (Table 1-1 Percent inhibition of medium dose iloprost and GSNO on medium 

doses of various agonist.). It is also interesting to note that low and medium dose of GSNO 

slightly potentiated the medium dose thrombin-induced calcium release (15.73% and 13.32% 

increase respectively), consistent with previous findings that low levels of the NO donor sodium 

nitroprusside slightly potentiated thrombin-induced calcium release via store-operated calcium 

entry (SOCE), whereas higher levels inhibited thrombin-induced increases in calcium [35]. 

Similarly, in our assay, high dose GSNO inhibited the calcium release of medium dose thrombin 

(39.11% inhibition). The maximum synergy score for the PAS experiment involved a high dose 

of convulxin and medium dose of thrombin (Sij = 0.3461); the maximum of the trinary 

experiment involved medium dose convulxin, thrombin and GSNO (Sijk = 1); the maximum of the 

higher order combination experiment involved high dose ADP, medium dose thrombin, high dose 

U46619 and low dose GSNO (S = 0.1085). 

 
% inhibition by 

Iloprost 

% inhibition by 

GSNO 

ADP 71.74% 34.08% 

CVX 99.71% 18.58% 

Thrombin 76.37% -13.32% 

U46619 91.55% 67.09% 

Table 1-1 Percent inhibition of medium dose iloprost and GSNO on medium doses of various agonist. 
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In fact, four of the five strongest positive pairwise synergies involved convulxin and 

thrombin (the fifth was medium dose thrombin and U46619). Of the five strongest positive 

synergies in the trinary experiments, medium dose convulxin and thrombin were involved in all 

of them, low and medium dose GSNO was involved in two of them. Of the five strongest positive 

synergies in the higher order experiments, thrombin and U46619 were present in four of them; 

low and medium dose GSNO is involved in four of them, convulxin and thrombin were present in 

two of them. It is apparent that convulxin and thrombin used together gave the strongest 

synergistic effects, thrombin and U46619 used together also accounted for some of the strongest 

synergistic effects. For the trinary and higher order experiments, the presence of low and medium 

dose GSNO was also implicated in the highest synergy scores, and only when thrombin was 

present, which supports the previous finding that low levels of NO potentiates thrombin-induced 

calcium release via SOCE [35]. 

The synergistic effects between convulxin and thrombin were similarly found by Keuren 

et al. [27] and it was thought that thrombin-mediated influx of platelet extracellular calcium 

(through PAR-1 but not PAR-4) enhances the collagen induced procoagulant response. This may 

explain why the synergistic effects between convulxin and the PAR-1 agonist were not as 

prominent in previous PAS work that was done in the absence of extracellular calcium [19]. 

Another study that found similar synergistic effects between sub threshold concentrations of 

thrombin and GPVI showed that the synergism was independent of Src kinases and Syk [28]. As 

previously observed with EDTA-treated PRP activated by PAR-1 agonist peptide and U46619 

[20], thrombin activation of PAR-1/PAR-4 and the thromboxane mimetic U46619 were 

synergistic (Sij = 0.1127 at medium dose of thrombin and low dose U46619), and especially at 

medium doses of thrombin and U46619 (Sij = 0.1766). 
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2.4.5 Inhibition of calcium release by iloprost 

Iloprost and GSNO when used alone or together with each other had no effect on platelet 

calcium (top 9 binary conditions of Figure 1-4A-C), as expected. However, these compounds 

elevate cAMP and cGMP to attenuate calcium mobilization [36-38] and this inhibition was 

clearly seen in the calcium traces (Figure 1-6, Figure 1-8). 

Iloprost was a potent, rapid, and sustained inhibitor of convulxin activity (99.6–99.7% 

inhibition overall) (Figure 1-11B, H), indicating that IP signaling was more rapid than GPVI 

signaling. Furthermore, iloprost was more potent than GSNO in inhibiting activity of all agonists 

this assay, for example, medium dose GSNO caused only 18.6% inhibition of convulxin activity 

(Table 1-1). Convulxin caused slow platelet activation since it must multimerize GPVI to induce 

signaling [39]. During thrombin activation of PAR-1/4, the inhibition by iloprost was also rapid 

(as seen by the offset in peak calcium levels), but was incomplete initially and became more 

pronounced after approximately 25 seconds post-stimulation (Figure 1-11D, J.). Low and 

medium levels of iloprost (0.1 and 1 x EC50) resulted in similar inhibition of thrombin calcium 

release (~76.3 to 78.9% inhibition (Figure 1-11D, J). In the experiments with thrombin, iloprost 

may have a diffusive and kinetic advantage over thrombin which must cleave PAR-1/4 whereas 

iloprost simply must the bind IP receptor. A similar pattern was observed for ADP (Figure 

1-11M, N.). However, there was no offset in peak calcium levels, potentially due to similar 

diffusive and binding kinetics of these two small molecules for their respective receptors. The 

inhibition by iloprost of ADP signaling only began after ADP-induced calcium level peaked 

around 20 seconds post-stimulation (41.5% to 71.7% inhibition at 0.1 and 1 x EC50, respectively). 

During U46619 stimulation of TP receptor, the inhibition by iloprost was apparent immediately 

after dispense and increased after calcium levels peaked (~20 sec post-stimulation). Iloprost was 

slightly more potent against U46619 compared to ADP, causing 87.4% to 91.6% inhibition at 0.1 
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and 1 x EC50, respectively (Figure 1-11F, L.). Overall, iloprost was more fast-acting and potent 

against the slower signaling agonists such as convulxin (99.6–99.7% inhibition) or thrombin 

(~76–79% inhibition) that required receptor multimerization or enzymatic cleavage, compared to 

small molecules that rapidly equilibrated with their receptors such as U46619 (87–92% 

inhibition) or ADP (41–72% inhibition). Iloprost may be less active against ADP compared to 

U46619 since ADP also binds the P2Y12 receptor which antagonizes cAMP pathways (Figure 

1-1A). 

When ADP and convulxin were used simultaneously, ADP signaling dominated early 

calcium mobilization while convulxin signaling maintained sustained calcium levels. (Figure 

1-11A, G) With combined ADP/convulxin stimulation, medium dose iloprost resulted in only 

71.1% inhibition (Figure 1-11G) since it was not a complete blocker of the early signaling (at t < 

30 sec) induced by ADP. A similar trend occurred with thrombin/convulxin co-stimulation 

(Figure 1-11C, I), however, iloprost was more effective in this case (83.5% inhibition with 

medium dose iloprost, Figure 1-11I) since thrombin/convulxin co-stimulation elevated calcium 

relatively slowly. When the weaker agonist U46619 (compared to ADP) was used with 

convulxin, iloprost remained a very potent inhibitor (98.9% inhibition with medium dose iloprost, 

Figure 1-11E, K). 
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Figure 1-11 Analysis of iloprost inhibition effects 

 

  



 

38 

 

2.4.6 Range of individual neural network prediction and donor responses 

The range (i.e. intradonor variation) of individual NN predictions over 10 to 12 donors 

for single and pairwise agonist conditions (Figure 1-12) was comparable to the experimental 

observations, as expected for NNs trained exactly on those conditions (Figure 1-12A, B). 

Similarly, the range of NN predictions for trinary agonist conditions matched the range for the 

experimental values as well (Figure 1-12C). The range of the higher order NN predictions (≥ 4 

agonists) was somewhat larger than the range observed in the corresponding individual 

experiments (Figure 1-12D–F). Clearly for ≥ 4 agonists, the signaling pathways span a very 

complex platelet biology beyond the dimensionality of the pairwise training data. Nonetheless, 

the range of the NN predictions reflected to a large degree the range of the experiment itself. For 

example, the range of the NN predictions in Figure 1-12E was smaller than the range in Figure 

1-12D; the same trend was reflected in the range of the actual experiments. Furthermore, for ≥ 4 

agonists, the experimental data comprises seven experiments spanning five donors, whereas the 

NN used in training spanned 12 donors, which in part explains why simulation ranges were larger 

than ranges of experimental observations. The NN range over all 120 NNs in Figure 1-12D was 

larger than the experimental ranges, potentially reflecting donor variation but more importantly 

reflecting the difficulty of predicting higher dimensional responses. Despite the substantial range 

of individual NN predictions for the four-agonist condition depicted in Figure 1-12D, the mean of 

the NN predictions predicted the mean response of the actual experiments, a benefit of the NN-

ensemble approach for predicting a pooled population dynamic. 
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Figure 1-12 Range of individual neural network responses and donor responses 
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2.5 Discussion 
 

While the full complexity of receptor mediated signaling in platelets extends well beyond 

the known pathways indicated in Figure 1-1A, a top-down approach using pairwise agonist 

scanning (PAS) provides an efficient data-driven method to predict platelet function. By using 

data obtained from multiple donors and training multiple NNs for each donor, a NN-ensemble 

(Figure 1-3) allowed accurate prediction of 135 binary stimulations and 135 synergy parameters 

(Figure 1-4). The synergy vector composed of the 135 synergy parameters is an experimentally 

measured human platelet phenotype (healthy adult male and female) that is fully predicted by the 

NN-ensemble. Furthermore, the NN-ensemble provided suitable prediction beyond the binary 

training set to predict trinary responses (Figure 1-5, Figure 1-6), higher ordered responses 

(Figure 1-7, Figure 1-8), and response to sequential stimuli (Figure 1-9, Figure 1-10). The major 

components of hemostasis and thrombosis that regulate platelet activation state are now 

quantitatively captured in the NN-ensemble. For large scale simulation of blood function, a user 

may specify or calculate any combination of the six agonists at different concentrations to 

produce a dynamic platelet calcium response representative of a healthy human donor. 

The NN is able to do this mainly because individual and pairwise interactions dominate platelet 

calcium signaling crosstalk in this assay, and because all single agonists are sampled across each 

of their full dose ranges [20]. An ordinary differential equation (ODE) model describing the 

calcium mobilization mediated by all six PAS agonists would likely require an estimated >500 

kinetic parameters, many of which are unavailable [20]. 

From the perspective of a data-driven and top-down approach, NNs have proven quite 

robust and well matched to PAS data sets. Also NNs are ideal for multiscale simulations that 

involve crosstalk between receptors. However, NNs are not mechanistic models for identification 

or quantification of basic biochemical mechanisms. The full calcium dataset generated in this 
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work can also facilitate future mechanistic model building. For example, future mechanistic 

models of receptor signaling and crosstalk should be testable against the 135-parameter synergy 

map we measured. Such mechanistic models should account for RGS proteins, PKC, 

cAMP/PKA, cGMP/PKG, and phosphodiesterase pathways, as well as receptor desensitization 

pathways including ITIM/Shp2 phosphatase, receptor internalization, and receptor shedding 

pathways, along with regulation of store operated calcium entry. Improved predictive capability is 

not necessarily an outcome of constraining of NN nodes and linkages to a preconceived reaction 

topology as in Figure 1-1. 

The calcium experiments that the NN was trained on included the contributions of SOCE 

because Apixaban was used in place of a calcium chelator as an anticoagulant. The effect of 

autocrinic effects by ADP and thromboxane secretion, however, were not significant in the PAS 

assay due to the dilute conditions of the assay (Figure A-2). Such autocrinic effects however are 

naturally captured in multiscale simulations that include convection-diffusion of soluble agonists 

[24]. Other important inside-out signaling downstream of calcium mobilization, such as integrin 

engagement, granule release, shape change, and phosphatidylserine exposure can be simulated by 

incorporating the calcium model into a larger fine or coarse-grain model. For example, in Flamm 

et al. (2011), NN were trained via PAS using calcium-containing PRP and then used to predict 

platelet deposition rates on collagen in the absence of thrombin by accounting for platelet 

signaling in response to laboratory analogs of collagen, ADP, thromboxane, and prostacyclin 

[24]. Alternatively, the PAS methodology has also been adapted by Jaeger et al. [40] for flow 

cytometry instead of calcium measurements, so as to quantify inside-out signaling events such as: 

integrin αIIbβ3 activation, P-selectin exposure, and PS exposure using PAC-1, anti-P-selectin 

antibody, and annexin V, respectively.  

The NN ensemble trained only on pairwise data was able to predict the calcium output of 

higher order agonist combination experiments with reasonably high accuracy. This was 
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potentially due to a sparsity-of-effects principle: a system is largely dictated by main effects and 

lower order interaction [41]. Adding trinary conditions to the training data might theoretically 

improve prediction accuracy when it comes to higher order combinations. The improvement in 

accuracy should be a measure of the information content of trinary data. In separate studies, we 

tested the utility of adding trinary stimulation data to the PAS training set in order to enhance the 

predictive capability of the NN-ensemble. Trinary data were incorporated into the NN ensemble 

in 3 different ways, each time controlling for the number of NNs in the ensemble. The first set of 

trinary data collected comprised 160 trinary combinations of all six agonists at only low and 

medium concentrations, repeated on 10 donors. Adding this trinary data reduced the higher-order 

combination prediction accuracy from R = 0.824 to R = 0.784, and synergy score accuracy 

decreased from 0.66936 to 0.66145. The second set of trinary data collected comprised 27 

combinations of only three agonists (ADP, convulxin, U46619) in the full dose range, repeated on 

eight donors. Adding this trinary data did not substantially affect the prediction accuracy (calcium 

trace accuracy from R = 0.810 to R = 0.806, and synergy correlation from R = 0.66367 to R = 

0.68387). The third set of trinary data collected was an unbiased, random sampling (n = 54) of the 

complete trinary space done on a single donor, who was not part of the original PAS dataset. 

Adding this trinary data increased prediction accuracy of the time courses (from R = 0.871 to R = 

0.906), but reduced the accuracy of synergy scores prediction from R = 0.6953 to R = 0.53925. 

We conclude that incorporating a randomly sampled trinary dataset can moderately increase 

prediction accuracy, whereas adding a biased sample of the trinary space does not increase 

accuracy. In fact, adding a sample of the trinary space that does not span the full dose range may 

reduce accuracy. However, even in the best of the three scenarios tested, adding trinary data to 

the PAS training dataset did not substantially improve accuracy. 

The 120-NN ensemble (R = 0.87134, mean-squared error, MSE = 0.0129) was more 

accurate than the average individual NN within the ensemble (R average = 0.6566, MSE average 
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= 0.0501) in predicting the calcium traces of higher order combination experiments. Even though 

the most accurate individual NN in the 120-NN ensemble (R = 0.91391, MSE = 0.0092) was 

more accurate than the ensemble itself, its prediction output was significantly noisier, and its 

synergy score prediction accuracy was much lower (R = 0.6953 to R = 0.4609). The ensemble 

approach reduced variances in prediction output, increased accuracy above the average NN in the 

120-NN ensemble, consistent with previous findings [42], and is generally thought to be more 

robust [43-46]. Ensemble pruning is often used to eliminate individual models from the ensemble 

based on certain criteria so as to improve the new ensembles predictive ability[46]. Using the 

interquartile range (IQR) outlier detection method, eight high outliers spanning seven different 

donors were identified in the mean-squared error (MSE) measurements of each of the 120 

individual NNs. Removing the eight most inaccurate individual NNs from the ensemble did not 

improve the ensemble accuracy (R-value improved slightly from 0.87134 to 0.87768, but MSE 

increased slightly from 0.0129 to 0.0148, synergy score R decreased slightly from 0.6953 to 

0.68632, and noise in ensemble predictions increased). Diversity of the models (in this case 

originating from the different random initial weights generated at the beginning of each NN 

training) comprising an ensemble is important for accuracy and robustness [47-49]. To increase 

diversity, heterogeneous ensembles may be used instead; for example, changing the training 

parameters of select individual NNs or incorporating into the NN-ensemble regression models 

other than NNs [46]. 

We found that the NN-ensemble was able to account for the dynamics and magnitude of 

one pathway relative to that of another. Iloprost was a very potent antagonist in this assay. In 

vivo, prostacyclin activates IP to increase cAMP and cGMP-dependent protein kinases pKA and 

pKG. Both pKA and pKG phosphorylate RGS18 (a G-protein regulator), which eventually turns 

off Gq-signaling, the main activation pathway for U46619 and thrombin (via PAR-1) [50]. ADP 

signaling through P2Y1 also goes through Gq-signaling. However, ADP also signals through the 
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P2Y12 receptor, which involves the Gi protein (Figure 1-1A).Thrombin signaling through PAR-4 

can go through either Gq or Gi. The existence of alternate signaling routes (through Gi) explain 

why iloprost inhibition is markedly less potent for ADP, and slightly less effective for thrombin 

as well. Furthermore, signaling through the Gi protein inhibits the rise in adenylate cyclase 

(precursor of cAMP which decreases intracellular calcium levels). As expected from studies of 

“coated” platelets [51] and studies with similar findings [27, 28], convulxin and thrombin were 

quite synergistic in the PAS assay. Additionally, thrombin and TP receptor signaling were 

somewhat synergistic, consistent with previous findings [20, 24]. In future work, the NN-

ensemble can be incorporated in multi-scale and hierarchical simulations of bleeding or clotting 

with linkages to vascular pathophysiology. While exogenously added thrombin was used in PAS, 

not all of this thrombin may reach the platelet due to antithrombin. This may right shift the 

thrombin potency [52]. Iloprost and GSNO were also included in this assay to recapitulate 

endothelial-derived prostacyclin and nitric oxide effects on platelet function. The development of 

a healthy human platelet calcium calculator can enable various applications such as predicting 

thrombosis or hemostasis under flow condition or extracting information from in vitro 

diagnostics, potentially using platelets from patients with cardiovascular disease risks. 

Furthermore, the generalizability of the neural network may be quickly improved, by 

training the ensemble NN on more donors. On the other hand, the human platelet calcium 

calculator may also be easily and quickly tailored for a specific individual by using NN trained on 

PAS data of only that donor. It would not be easy for the equivalent to be done for a mechanistic 

ODE model, as each of the many kinetic parameters has to be re-optimized for the new data.  One 

of the potential applications for this calculator is for use in a multiscale simulation of thrombus 

formation. Since calcium is the central node of platelet signaling, the healthy human platelet 

calcium calculator can enable simulation of physiologic scenarios where agonist concentrations 

vary continuously, which is difficult to obtain experimentally. For example, Figure 1-13 depicts 
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three theoretical phases that occur in succession for platelet activation during injury, the 

theoretical agonist concentration experienced by platelets at each phase, as well as corresponding 

simulation of calcium levels for each phase.  The first phase represents the early phase of the 

coagulation pathway: a monolayer of platelets is exposed continuously to collagen surface on the 

injured endothelium.  This can be represented in the PAS assay as a steady level of convulxin.  

The resulting simulation captures the effects of iloprost and GSNO, analogs of PGI2 and nitric 

oxide, which are also released by the endothelium during clotting. The NN predicts a sustained 

intracellular mobilization in the studied time frame of 0 - 4 minutes. The second phase represents 

the autocrinic signaling phase: Calcium mobilization from phase 1 prompts dense granule 

secretion, releasing ADP, which further prompts thromboxane generation. Calcium mobilization 

also causes phosphatidylserine exposure and thus thrombin production. This is illustrated in the 

agonist concentration profiles. As a result the calcium levels peak slightly after ADP release, but 

are in general lower and less sustained than before. Phase three represents the late phase of 

clotting. ADP levels (released from platelet dense granules previously) decline; thromboxane 

levels increase slightly from phase but eventually declines. Thrombin levels continue to rise from 

phase 2 to a higher level than thromboxane because of contribution from both the intrinsic and 

extrinsic pathway, but declines eventually. The resulting calcium prediction has two peaks: one 

when both thrombin and thromboxane levels are rising and then a later, smaller peak when 

thrombin peaks but platelet-derived thromboxane and ADP have been depleted. In general, while 

both PGI2 and NO act to inhibit calcium mobilization, the effect of PGI2 is more pronounced and 

sustained. This agrees with Radomski et al., who found that the IC50 of NO was about two orders 

of magnitude higher than that of PGI2 for platelet aggregation when stimulated by ADP, collagen, 

thrombin and U46619 [36]. 
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Figure 1-13 Simulations of platelet calcium levels based on theoretical agonist distribution in vivo. (A) 

Progression of platelet activation in vivo upon endothelial injury, defined in three phases. (B) The top row represents 

agonist concentrations in the three defined phases. Concentrations are mapped between 0 and 1 (0 being not present 

and 1 being 10xEC50). The bottom row represents the corresponding predicted calcium time traces. 

 

All the above mentioned attributes of the calcium calculator, especially its ability to 

simulate physiologic scenarios where agonist concentrations vary continuously, makes it ideal for 

incorporation into a larger multiscale model of clotting. Such a model can have further 

applications such as predicting thrombosis or hemostasis under flow condition. In fact, in a paper 

currently in preparation by Lu et al. [53],  a multiscale approach was developed with a goal of 

patient-specific simulation of thrombosis from single platelets to the whole clot, to account for: 
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platelet signaling (neural network trained by pairwise agonist scanning, PAS-NN), platelet 

positions (lattice kinetic Monte Carlo, LKMC), wall-generated thrombin (76-species ODE 

model), multicomponent convection-diffusion (PDE), and flow over a growing clot (lattice 

Boltzmann). At all times, intracellular calcium was calculated for each platelet by the PAS-NN 

(also known as human platelet calcium calculator) developed here, in response to its unique 

exposure to local collagen, ADP, thromboxane, and thrombin. When compared to microfluidic 

experiments of human blood clotting on collagen/TF under flow driven by constant pressure drop, 

the model accurately predicted clot morphology and growth with time. For TF at 0.1 and 10 

molecule/μm2 and initial wall shear rate of 200 s
-1

, the occlusive blockade of flow for a 60-μm 

channel occurred relatively abruptly at 500 and 400 seconds, respectively, in both experiment and 

simulation. Prior to occlusion, intrathrombus concentrations reached 50 nM thrombin, ~1 μM 

thromboxane, and ~10 μM ADP, while the wall shear rate on the rough clot surface peaked at 

~500-1000 s
-1 

[53]. This demonstrates the utility and universality of the human platelet calcium 

calculator in predicting physiologic events.  

 

2.0 Downregulation of platelet GPVI signaling following thrombin 

stimulation 

3.1 Abstract 
 

Activating platelets with thrombin in platelet-rich plasma (PRP) caused an attenuation of 

convulxin-induced calcium mobilization when convulxin was added to PRP 480 seconds later. 

This attenuation effect was not observed when ADP and thromboxane analog, U46619 was used 

in place of thrombin. The attenuation effect increased with higher doses of thrombin and longer 

times between initial thrombin dispense and later convulxin addition. When PAR-1 and PAR-4 
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receptor agonists (AYPGKF and SFLLRN) were used instead of thrombin for the initial dispense, 

the subsequent convulxin-induced calcium response was unaffected, supporting thrombin’s 

unique role in causing attenuation of subsequent convulxin-induced calcium mobilization. 

Thrombin, unlike ADP, U46619 or the PAR-1 and PAR-4 receptor agonists, is able to polymerize 

fibrinogen into fibrin. When GPRP was added to prevent polymerization of fibrin, initial platelet 

activation by thrombin did not result in attenuation of convulxin- induced calcium mobilization as 

it did when GPRP was not present. This experiment was repeated using a mixture of washed 

platelets and fibrinogen monomers instead of PRP, resulting in similar results as before: the 

addition of thrombin to fibrinogen mixture caused an attenuation of convulxin-induced calcium 

mobilization when convulxin was added to the mixture 480 seconds later, but not when GPRP 

was added to inhibit fibrin polymerization. The presence of polymerized fibrin also reduced 

platelet deposition in a microfluidic assay on a collagen surface. These results suggest that 

polymerized fibrin binds to and downregulates platelet GPVI function.  

3.2 Introduction 
 

Platelet GPVI is an immunoglobulin superfamily receptor expressed on platelet surface in 

association with the FcRγ chain (Fc receptor γ chain) [16]. There are approximately 3,700 copies 

of GPVI on a platelet [54]. When GPVI is bound by collagen, GPVI receptors cluster, resulting in 

Src kinase-dependent tyrosine phosphorylation of the FcRγ chain immunoreceptor tyrosine-based 

activation motif [16]. This leads to the signaling protein recruitment (e.g. the Src kinase, the 

tyrosine kinase Syk, PLCγ2, phosphoinositide 3-kinase (PI3K) and MAPKS[55, 56]), all of which 

set of a signaling pathway, triggering calcium mobilization within platelets and initiating the 

inside-out activation of the integrin αIIbβ3 and the release of the secondary soluble mediators, such 

as ADP and thromboxane (TxA2)[57]. This leads to platelet aggregation mediated by fibrinogen 

binding between platelet integrins αIIbβ3 and results in thrombus formation [57]. GPVI has many 
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activating ligands including collagen, collage-related peptide (CRP), convulxin [6, 7]. Recently it 

has also been found that GPVI interacts with fibronectin [58], vitronectin [59] and laminins [60], 

which, in addition to GPVI-collagen interaction might contribute to the role of GPVI in thrombus 

formation.  

Platelet GPVI has been highlighted recently as a desirable target for antithrombotic drug 

development [61-65] because it’s blockade and downregulation in in vitro experiments, as well as 

functional GPVI deficiency in animal models have been shown to impair thrombus formation, but 

not disrupt hemostasis [62, 65-67]. Compared to the current standard treatment of dual 

antiplatelet therapy combining aspirin with an ADP receptor antagonist (Clopidogrel, prasugel, 

tricagelor), which may be effective but increases bleeding risk [68, 69], anti-GPVI treatment 

could have the potential to be both effective yet safe. One option is to target events downstream 

of GPVI activation, such as GPVI-induced calcium mobilization. In the following experiments, 

polymerized fibrin (as a result of added thrombin), has been shown to downregulate convulxin-

induced GPVI calcium mobilization. Understanding the mechanism underlying this observation 

could be important in developing a viable GPVI-targeted antithrombotic therapy. Furthermore, 

since elevated soluble fibrin levels have been implicated in trauma and disseminated intravascular 

coagulation (DIC) [70-73], understanding the mechanism behind the downregulation of GPVI 

signaling by polymerized fibrin has clinical importance. 

The fact that GPVI is a receptor for polymerized fibrin was recently discovered [16, 18]. 

According to those recent studies, GPVI binding to fibrin increases platelet procoagulant activity 

[16], amplifies collagen-independent thrombin generation and platelet recruitment at clot surface 

[18], and eventually contributes to thrombus growth and stabilization [16, 74]. However, the 

mechanism of interaction of GPVI and fibrin is not clear, especially as it pertains to GPVI-

mediated calcium signaling. Furthermore, the many procoagulant properties that fibrin-GPVI 
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binding reportedly confers depend on that interaction’s ability to promote thrombin generation. 

The focus of the following experiments will be on the impact that GPVI-fibrin interaction has on 

GPVI-mediated calcium mobilization in apixaban-treated conditions (apixaban binds specifically 

to factor Xa to prevent endogenous thrombin production).  

3.3 Materials and Methods 
 

3.3.1 Platelet Calcium Assays 

Whole blood was drawn by venipuncture from healthy donors according to the University 

of Pennsylvania Institutional Review Board guidelines (protocol number: 805305), into a syringe 

containing apixaban with a final concentration of 250 nM. Donors self-reported to be free of any 

medications or alcohol use for three days prior to the blood draw. Female donors self-reported to 

not using oral contraceptives. 

Platelet rich plasma (PRP) was then obtained by subjecting the whole blood sample to 

centrifugation at 120g for 12 minutes. Then, 2 ml of PRP was incubated with a vial (single 

microplate size) of Fluo-4 NW dye mixture reconstituted with 7.8 ml of HEPES buffered saline 

(HBS, sterile filtered 20mM HEPES and 140mM NaCl dissolved in deionized water, adjusted to 

pH7.4 with NaOH ) and 200 µL of 77 mg/ml reconstituted probenecid for 30 minutes. At this 

stage, for conditions involving GPRP and/or vorapaxar, GPRP and/or vorapaxar was added and 

incubated along with the dye in the PRP mixture to give a final concentration of 500 µM and 100 

nM respectively. Meanwhile, a 384-well plate containing platelet agonists (called the ‘agonist 

plate’) was assembled. The agonists included thrombin, ADP, U46619 (a thromboxane analog), 

SFLLRN and AYPGKF (PAR-1 and PAR-4 receptor agonists), as well as convulxin (a collagen 

analog). After incubation with dye, the PRP was dispensed into a 384-well plate (called the ‘read 

plate’). Both the agonist and read plate were loaded into a Molecular Devices FlexStation 3, a 



 

51 

 

fluorescence reader with auto-pipetting capabilities. Agonists were dispensed to a column of 

wells containing the PRP, where well fluorescence F(t) was read and normalized by the pre-

dispense baseline. For conditions involving two dispenses, 10 L of agonist was first added to 30 

L of PRP in each well, and at a later specified time, 10 L of convulxin was first added, giving a 

final volume of 50 L. For conditions involving only one dispense, 20 L of agonist was added 

to 30 L of PRP in each well, giving a final volume of 50 L. In each well, the final 

concentration of PRP after agonist addition was 12% PRP by vol., and the volume of calcium dye 

was 15 L (30% dye by vol.). The fluorescence was read for 20 seconds before first dispense, and 

readings were taken in intervals of 2.5 seconds (EX/EM, 485 nm/525 nm).  For all experiments, 

the entire plate was read, column-wise, in under 90 minutes. In previous tests using indomethacin 

(Sigma-Aldrich) to block COX-1 and apyrase (Sigma-Aldrich) to degrade released ADP, there 

was no evidence for autocrine signaling in the dilute PRP conditions of the experiment [75].  

For the calcium assay involving washed platelets (Figure 2-5), washed platelets were first 

obtained by subjecting whole blood to centrifugation at 200g for 14 minutes to obtain PRP. Then, 

2 ml of PRP was incubated with a vial (single microplate size) of Fluo-4 NW dye mixture 

(Invitrogen) reconstituted with 5 ml of HBS and 200 µL of 77 mg/ml reconstituted probenecid 

(Invitrogen) for 30 minutes. After incubation, Tyrode’s buffer containing PGE1 (1 μM) and 

apyrase (1 U/mL) was added to the PRP mixture in a volume ratio of 1:5. The mixture was then 

spun at 1200g for 14 minutes to obtain a platelet pellet after removing the resulting supernatant. 

The platelet pellet was then resuspended in 1.1ml of HBS to obtain a washed platelet suspension. 

Then human research grade fibrinogen was added to the washed platelets mixture for a final 

concentration of 500nM. For the condition involving GPRP, GPRP was also added at this stage. 

After 10 minutes of incubation, the washed platelet and fibrinogen mixture was then dispensed 
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into the read plate.  Then both read plate and prepared agonist plate were loaded onto the 

fluorescence reader and read in the same manner as all other calcium assays.  

Apixaban was obtained from SelleckChem, Fluo-4 NW dye and probenecid from 

Invitrogen, ADP, GPRP, PGE1 and apyrase from Sigma-Aldrich, convulxin from Pentapharm, 

thrombin and human research grade fibrinogen from Haematologic Technologies Inc., PAR-1 and 

PAR-4 agonists from Bachem, U46619 from Tocris Bioscience, and vorapaxar from Ryan 

Scientific. 
 

3.3.2 Microfluidic assays 

L of GPRP (or HBS for control condition) was added to 19.7 L of fluorescent 

fibrinogen from human plasma (Alexa Fluor® 647 conjugate), and allowed to incubate for 15 

minutes. Then 2.3 L of thrombin was added (final concentration 2.5 nM) was added to the 

mixture to induce polymerization of fibrinogen into fibrin. After 300 seconds, 2 L of D-

Phenylalanyl-prolyl-arginyl Chloromethyl Ketone (PPACK) was added (final concentration 

100 M) to stop thrombin activity. The mixture was then diluted 10 fold into whole blood that 

was drawn via venipuncture into PPACK (100 M) and apixaban (1 M). The resulting 

fibrinogen/fibrin solutions were diluted by a factor of 10 in PPACK/apixaban-treated whole blood 

with either 5 mM GPRP or HBS then perfused through an 8-channel microfluidic device at 200s
-1

 

over a collagen surface. The resulting platelet and fibrin fluorescence were recorded once a 

minute for 6 minutes. The microfluidic device preparation and perfusion was performed by 

another Diamond lab member, Brad Herbig. 

Fluorescent fibrinogen was obtained from Thermo Fisher Scientific, PPACK was 

obtained from Haematologic Technologies Inc. 
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3.4 Results 
 

3.4.1 Thrombin uniquely attenuates subsequent platelet calcium response to convulxin 

When thrombin is first added to PRP and convulxin (a collagen analog) is added 480 

seconds afterward, the calcium signal in response to convulxin is significantly reduced compared 

to the control condition in which PRP was not first activated by thrombin (Figure 2-1A). This 

phenomenon was apparent at all low to medium doses of thrombin (1 nM to 10 nM or 0.5 to 5 x 

EC50) (Figure 2-1A). However, this phenomenon was not observed when ADP or U46619 was 

added instead of thrombin. When ADP was added instead of thrombin, very low dose of ADP (10 

nM or 0.01 x EC50) did not affect subsequent calcium response to convulxin compared to the 

control condition (Figure 2-1B). Low to medium doses of ADP (100 nM to 1 μM or 0.1 to 1 x 

EC50) very slightly increased subsequent calcium response to convulxin (Figure 2-1B). High dose 

of ADP (10 μM or 10 x EC50) resulted in noticeable reduction in subsequent platelet calcium 

response to convulxin, but not to the extent seen in the case of thrombin (Figure 2-1B). When 

U46619 was added in place of thrombin, very low to medium doses of U46619 (10 nM to 1 μM 

or 0.01 to 1 x EC50) did not affect subsequent calcium response to convulxin compared to the 

control condition (Figure 2-1C). Similarly, as seen in the case of ADP, high dose of U46619 (10 

μM or 10 x EC50) resulted in a detectable reduction in subsequent platelet calcium response to 

convulxin, but not to the extent caused by any dose of thrombin (Figure 2-1C).  
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Figure 2-1 Different effects in attenuation of subsequent platelet convulxin calcium response by thrombin 

compared to ADP and thromboxane. (A) Platelet activation by thrombin causes a significant reduction in subsequent 

convulxin-induced calcium response 480 seconds later. This effect is seen for all low to relatively high doses of 

thrombin (1 – 10nM). (B) Platelet activation by ADP does not significantly attenuate subsequent convulxin-induced 

calcium response. Lower doses of ADP (10nM – 1uM) slightly enhance subsequent convulxin response. The high dose 

of ADP (10uM) slightly attenuates subsequent convulxin response. (C) Platelet activation by the thromboxane analog, 

U46619, also does not significantly attenuate subsequent convulxin-induced calcium response. Lower doses of ADP 

(10nM – 1uM) have no effect on subsequent convulxin response. Similarly to ADP, the high dose of U46619 (10uM) 

slightly attenuates subsequent convulxin response. 
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3.4.2 Extent of attenuation of convulxin calcium response increases with incubation time and 

thrombin dose 

When convulxin is added after incubation time, tinc = 150, 210 and 335 seconds after low 

dose thrombin (1 nM or 0.05 x EC50) is first added to PRP, the calcium signal in response to 

convulxin is comparable to the control condition in which PRP was not first activated by 

thrombin (Figure 2-2A). When incubation time increases to 480 seconds, subsequent calcium 

response to convulxin decreases significantly, and is decreased further when incubation time 

increases to 600 seconds (Figure 2-2A). When a slightly higher dose of thrombin (2 nM or 0.15 x 

EC50) is first added to PRP, subsequent calcium response to convulxin is not attenuated until 

incubation times increase to 210 seconds or higher (Figure 2-2B). Similarly, the extent of 

attenuation of convulxin calcium response generally increases with longer incubation times 

(Figure 2-2B). In general, a minimum incubation time must be met for noticeable attenuation of 

subsequent calcium response to convulxin, after which increasing incubation times tend to 

increase the extent of attenuation. This observed trend is illustrated in Figure 2-2C. The time 

needed to reach 95% of peak convulxin calcium response for the control condition is t95 = 86.7 

seconds. Subsequent convulxin-induced calcium fluorescence intensity at t95 = 86.7 seconds for 

all conditions in Figure 2-2A and Figure 2-2B were measured and expressed as a percentage of 

the 95% peak convulxin response of the control condition with no thrombin pre-treatment, in 

Figure 2-2C. The resulting plot was fitted with a Hill function (Figure 2-2C). When platelets are 

pre-treated with the lower thrombin dose (1nM), reduction of convulxin response starts after only 

after approximately 450 seconds and drops rapidly to the maximum reduction (~80%) after 

approximately 500 seconds. At the higher thrombin dose (2nM), reduction of convulxin response 

starts much earlier (~200s) and reaches the maximum reduction (~80%) after approximately 220 

seconds (Figure 2-2C). Perhaps because both doses of thrombin used were low (1 nM and 2 nM), 
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the dose of thrombin does not appear to influence the maximum extent of reduction. However, a 

slightly higher dose of thrombin (2 nM vs. 1 nM) reduced the incubation time needed to observe a 

significant reduction in subsequent convulxin response. The steep shape of the Hill function for 

both conditions also indicates a switch-like minimum threshold in incubation time needed for 

significant attenuation of subsequent convulxin response.  
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Figure 2-2 Effect of time and dose of thrombin in attenuation of subsequent platelet convulxin calcium response. 

(A) When platelets are first activated by low dose thrombin (1nM), the extent of reduction of subsequent platelet 

convulxin increases with time. When convulxin is introduced up to 335 seconds after thrombin, convulxin response is 

comparable to the control condition. When time between the two dispenses (incubation time) increases to 480 seconds 

and beyond, the reduction in convulxin response is significant, and increases with higher incubation times. (B) When 

platelets are first activated by a slightly higher dose (2nM), notable reduction of subsequent platelet convulxin starts at 

shorter incubation times (210 seconds and beyond) compared to (A). The extent of convulxin response reduction 

increases with increasing incubation times. (C) The time needed to reach 95% of peak convulxin response for the 

control condition is t95 = 86.7 seconds. Convulxin-induced calcium fluorescence intensity at t95 = 86.7 seconds was 

measured and calculated as a percentage of the 95% peak convulxin response of the control condition with no thrombin 

pre-treatment for all conditions in (A) and (B). The resulting plot was fitted with a Hill function. 
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3.4.3 Activating PAR-1 and PAR-4 do not result in attenuation of subsequent platelet calcium 

response to convulxin 

Even though thrombin signals through PAR-1 and PAR-4 receptors, when PAR-1 and 

PAR-4 agonists (SFLLRN and AYPGKF) are first added instead of thrombin, subsequent platelet 

calcium response to convulxin is unaffected compared to the control condition (Figure 2-3A). 

This suggests that thrombin plays a unique role. When vorapaxar, a PAR-1 specific inhibitor is 

added, calcium signaling in response to thrombin is blocked (Figure 2-3B). This indicates that in 

these platelet calcium assays, thrombin-induced calcium mobilization is dependent on PAR-1 and 

cannot solely happen through PAR-4 signaling. Interestingly, when thrombin is first added to 

PRP incubated with vorapaxar, subsequent calcium response to convulxin is also attenuated to the 

same extent as the condition without vorapaxar (Figure 2-3C). This indicates that the convulxin 

response attenuation effect can happen solely through PAR-4 signaling. 
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Figure 2-3 Platelet convulxin calcium response attenuation effect is not observed by pretreatment with PAR-1 

and PAR-4 agonists(A) Despite thrombin signaling through PAR-1 and PAR-4, platelet activation by PAR-1 and 

PAR-4 specific agonists (SFLLRN and AYPGKF) does not reduce subsequent convulxin response as thrombin does, 

and results in convulxin response levels similar to the control condition. (B) Vorapaxar, a PAR-1 specific antagonist, 

blocks thrombin-induced calcium signaling. (C) The convulxin calcium response attenuation after thrombin pre-

treatment effect is still apparent when Vorapaxar, a PAR-1 specific antagonist is present. 
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3.4.4 Fibrin plays an essential role in attenuation of subsequent platelet calcium response 

When thrombin is first added to PRP incubated with GPRP, which blocks polymerization 

of fibrinogen into fibrin, subsequent calcium response to convulxin is unaffected compared to the 

control condition where thrombin was not first added (Figure 2-4A). This indicates that fibrin is 

essential for the thrombin-induced attenuation of subsequent convulxin response. Unlike 

thrombin, ADP does not induce polymerization of fibrinogen into fibrin. Therefore, as expected, 

when the experiment in Figure 2-4A is repeated with ADP instead of thrombin, GPRP does not 

affect subsequent calcium response to convulxin (Figure 2-4B). This indicates that thrombin-

induced fibrin generation may be responsible for attenuation of subsequent calcium response to 

convulxin. It is also interesting to note that in all calcium responses to thrombin, the calcium 

signal trends upward. However, in cases with GPRP present, thrombin induced calcium 

mobilization is transient and eventually returns to baseline (Figure 2-4C).  
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Figure 2-4 Fibrin plays important role in platelet convulxin response attenuation effect (A) GPRP inhibits 

fibrinogen polymerization by directly binding the fibrinogen polymerization sites. The downregulation of platelet 

calcium GPVI signaling by thrombin was not observed when GPRP was present. (B) Because platelet activation by 

ADP does not cause fibrinogen to polymerize into fibrin, GPRP has no effect on subsequent convulxin response. (C) In 

thrombin-induced platelet calcium signaling, calcium levels trend upward after peak. However, in the presence of 

GPRP, thrombin-induced calcium signaling is transient and returns to baseline levels after the peak. 
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3.4.5 Platelet convulxin response attenuation effect is reproduced in washed platelets and 

fibrinogen environment 

Washed platelets were incubated with human research-grade fibrinogen (500 nM) with 

and without GPRP for 10 minutes before the calcium fluorescence reading (Figure 2-5). Unlike 

the experiments in Figure 2-1 to Figure 2-4 that were done in PRP, in this experiment involving 

only washed platelets and fibrinogen, antithrombin is not present. Nonetheless, a low dose of 

thrombin (1nM) similarly attenuated subsequent convulxin response after 480 seconds (Figure 

2-5).  Also, similar to experiments involving PRP, the condition involving GPRP had subsequent 

convulxin response levels similar to the control condition where no thrombin was added (Figure 

2-5). This indicates that fibrin, rather than antithrombin or other components of plasma, is 

responsible for the attenuation of subsequent calcium response to convulxin after platelet pre-

treatment with thrombin.   

 

Figure 2-5 Platelet convulxin response attenuation effect is reproduced in washed platelets and fibrinogen 

mixture. (A) Schematic of work flow. (B) In a washed platelet and fibrinogen (500 nM) mixture, low dose of thrombin 

(1 nM) at 480 seconds incubation time significantly attenuated subsequent convulxin response, as seen in Figures 3-1 to 

3-4 in PRP.   
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3.4.6 Presence of fibrin reduces platelet adhesion on collagen in microfluidic assay 

Fluorescent fibrinogen was incubated in either 5mM GPRP (to inhibit fibrin formation) 

or HBS (control condition) for 10 minutes. Following incubation, 2.5nM thrombin was added to 

both conditions. After 300s, thrombin was quenched with 100µM PPACK in order to stop 

thrombin-induced fibrin polymerization. The resulting fibrinogen/fibrin solutions were diluted by 

a factor of 10 in PPACK/apixaban-treated whole blood (PPACK quenches thrombin and apixaban 

prevents endogenous thrombin production by binding to factor Xa) with either 5 mM GPRP or 

HBS then perfused through an 8-channel microfluidic device at 200s
-1

 over a collagen surface. As 

seen in Figure 2-6, as expected, 5mM GPRP (which inhibits polymerization of fibrinogen into 

fibrin) decreased fibrin deposition compared to the HBS control. Interestingly, in Figure 2-6B, 

GPRP increased platelet deposition on the collagen surface after 60s. This suggests that the fibrin 

in the control condition resulted in reduced platelet adhesion to collagen surface. In this 

experimental setup, thrombin is absent (due to quenching by PPACK at two different stages as 

well apixaban-prevention of thrombin production), which indicates that the reduction in platelet 

deposition is due to interaction between fibrin and GPVI, rather than an interaction between 

thrombin and GPVI. This result also lends strength to the argument that the attenuation effects 

seen in the previous calcium experiments is due to interaction between fibrin and GPVI rather 

than an interaction between fibrin and the collagen analog, convulxin. At 120s, low levels of 

fibrin resulted in more platelet deposition (+GPRP), while high levels of fibrin resulted in less 

platelet deposition on the collagen surface (Figure 2-6D).  GPRP had the same effect on platelet 

and fibrin deposition after 240s (Figure 2-6E).  
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Figure 2-6 Presence of fibrin reduces platelet adhesion on collagen (A) Experimental design. Fluorescent fibrinogen 

is exposed to 2.5 nM thrombin with either 5 mM GPRP (inhibit fibrin formation) or HBS (control). After 300 s, the 

thrombin is quenched with 100 μM PPACK to stop the fibrin polymerization reaction. This reacted fibrinogen/fibrin 

solution is diluted by a factor of 10 in PPACK/apixaban-inhibited whole blood with either 5 mM GPRP or HBS and 

then perfused through the 8-channel microfluidic device at 200 s-1 over a collagen surface. (B) GPRP increases platelet 

deposition on the collagen surface after 60 s. (C) Fibrin deposition is significantly decreased when with 5 mM GPRP 

from the HBS control. (D) At 120 s, low levels of fibrin resulted in more platelet deposition (+GPRP), while high 

levels of fibrin resulted in less platelet adhesion. (E) The same effects on platelet and fibrin deposition were observed 

after 240 s.  
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3.5 Discussion 
 

The fact that the addition of thrombin to PRP, but not ADP or the thromboxane mimetic, 

U46619, results in attenuation of convulxin-induced calcium mobilization when convulxin is 

added to PRP 480 seconds later indicates that the underlying mechanism for the downregulation 

of GPVI-induced calcium signaling is related to the unique function of thrombin in this assay. 

One of the functions of thrombin that is distinct from ADP and thromboxane in this assay is its 

ability to polymerize fibrinogen monomers into fibrin. The production of fibrin could play a role 

in the observed downregulation of GPVI-induced calcium signaling. Thrombin, with the help of 

metalloproteinases, has also been shown to induce low levels of GPVI-shedding [76, 77], albeit 

not to the extent that FXa and collagen or convulxin induces GPVI shedding. Another theory 

could be that thrombin induces SphK1 expression which increases formation of sphingosine 1-

phosphate (Sph-1-P) in platelets through PAR-1 signaling [78], and Sph-1-P has been shown to 

moderately but specifically abolish convulxin-induced intracellular calcium mobilization [78], 

although this is not quite likely given that the effect seen in Figure 2-1 was strong, not moderate.  

The results in Figure 2-2 indicate that the extent of the attenuation effect increases with 

thrombin dose as well as incubation time (time between initial thrombin dispense and subsequent 

convulxin dispense). The time scale in Figure 2-2C indicates that a maximum GPVI-signal 

attenuation effect was achieved at around 250 to 500 seconds (under 10 minutes), whereas 

thrombin-induced GPVI-shedding reached its maximum effect quite a bit later, around 30 to 40 

minutes [76]. In several experiments measuring thrombin-induced fibrin polymerization, fibrin 

levels were measured for a maximum of 15 minutes [79, 80], as the maximum value was usually 

reached before then. This time scale is more compatible with the timescale of the attenuation 

effect of convulxin-induced GPVI calcium signaling seen in Figure 2-2C.  This indicates that 
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polymerized fibrin binding to GPVI may better explain the observed GPVI-induced calcium 

response attenuation effect rather than thrombin (or fibrin) -induced GPVI shedding. 

Unlike thrombin, PAR-1 and PAR-4 receptor agonists cannot catalyze the polymerization 

of fibrinogen monomers into fibrin. The inability of PAR-1 and PAR-4 receptor agonists to 

reproduce the attenuation effect of convulxin-induced calcium response as created by thrombin 

(Figure 2-3) supports the hypothesis that fibrin plays an essential role in the subsequent 

convulxin-induced calcium attenuation effect. Thrombin activates PAR-1 with approximately 30 

times greater sensitivity than PAR-4, and PAR-1 activation induces a rapid increase in 

intracellular calcium that quickly returns to baseline, whereas the PAR-4 signaling provides a 

slower but more prolonged calcium increase [81]. Vorapaxar, a PAR-1 specific inhibitor, was 

able to completely abolish 10 nM thrombin-induced calcium signal (Figure 2-3B). This may  be 

because at 10 nM, which is a low to medium concentration of thrombin (5 x EC50), the thrombin-

induced calcium signaling might be dominated by signaling through PAR-1 rather than PAR-4, 

which is likely since thrombin activates PAR-1 with about 30 times greater sensitivity than PAR-

4  [81].  It has also been shown that PAR-4 receptor agonist (but not PAR-1) induced full platelet 

spreading on a fibrinogen matrix [82], which can be attributed to sustained calcium mobilization 

required for platelet spreading. The platelet spreading is thought to be mediated by activated 

integrin αIIbβ3, but the relatively new finding that fibrin binds to GPVI [16], may suggest another 

mechanism (through GPVI) by which platelets also spread on the fibrinogen matrix. This, along 

with the results in Figure 2-3C, may indicate that the interaction between platelet and fibrin that 

causes attenuation in GPVI-induced calcium signaling is largely dictated by PAR-4 rather than 

PAR-1.   

In Figure 2-4, GPRP (which inhibits the polymerization of fibrinogen into fibrin) 

abolishes the thrombin-induced attenuation effect on subsequent convulxin calcium response. 
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This strongly suggests that fibrin, not thrombin, is responsible for the attenuation effect. 

Furthermore, as seen in Figure 2-4C, GPRP also abolishes the upward calcium trend following 

thrombin peak (after thrombin addition to PRP), suggesting that the mechanism by which this 

phenomenon happens involves increasing calcium mobilization. This leaves four possible 

explanations: polymerized fibrin binding to GPVI, fibrin binding to convulxin/collagen, fibrin 

binding to another platelet integrin that mediates convulxin/collagen activation of platelets (such 

as integrin α2β1) or fibrin inducing GPVI-shedding. 

It has been discovered recently that platelet GPVI binds to polymerized fibrin (rather than 

fibrinogen monomers) [16, 18], which activates platelets (as shown by increased PS exposure) 

and promotes thrombin generation as well as thrombus growth [17]. In the platelet calcium assays 

done in this study, apixaban, a direct factor Xa inhibitor is used, which prevents endogenous 

thrombin generation. These results may shed light on the effect and nature of the fibrin-GPVI 

binding independent of thrombin generation.  

Regarding the possibility that fibrin induces GPVI-shedding, Factor Xa, collagen and 

convulxin, and to a much lesser extent, thrombin, have been shown to cause GPVI shedding [76, 

77]. To our knowledge, fibrin has not been studied as a potential cause of GPVI shedding. It 

could be that during the duration of thrombin-induced calcium mobilization, thrombin 

polymerizes fibrinogen into fibrin, which binds to and activates GPVI [16, 18], causing fibrin to 

cleave GPVI during the process, such that by the time convulxin is added, not enough GPVI is 

left on platelet membrane to be activated so as to lead to a GPVI-induced calcium influx. This 

may also explain the upward trend of thrombin-induced calcium mobilization in Figure 2-4A and 

Figure 2-4C; after an initial decrease after peak thrombin response, newly polymerized fibrin 

may activate platelets via binding to GPVI and induce calcium mobilization while cleaving 

GPVI, such that when convulxin is added a 480 seconds, very little GPVI is left intact to be 
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activated. In the condition involving GPRP (Figure 2-4C), thrombin-induced calcium 

mobilization is transient and returns to baseline because fibrin is not formed and therefore not 

continuously activating GPVI.  Similarly, when PAR-1 and PAR-4 receptor agonists were used to 

induce calcium mobilization, even though the peak calcium response was slightly higher than that 

of the thrombin-induced calcium response, calcium response was transient and returned to 

baseline because PAR-1 and PAR-4 cannot induce fibrin polymerization. The upward trend of 

thrombin-induced calcium mobilization may be also by aided by PAR-4 which has been shown to 

provide later but more sustained calcium mobilization than PAR-1 [83, 84].  GPVI shedding is 

regulated primarily by a-disintegrin-and-metalloproteinase 10 (ADAM10) [85]. Some other 

sources have also found that other members of the a-disintegrin-and-metalloproteinase family 

(such as ADAM17) also facilitate GPVI shedding [86]. These metalloproteinases (MMPs) are 

present in platelet rich plasma but is not present in washed platelets. In this washed platelet 

environment, we still see an attenuation of GPVI-induced calcium mobilization following 

thrombin addition in the control environment where fibrinogen is able to polymerize into 

fibrinogen, but not in the GPRP fibrin-inhibited environment. This makes it less likely that the 

attenuation effect seen here is due to polymerized fibrin cleavage of GPVI into sGPVI. 

Furthermore, as mentioned previously, the time scale in Figure 2-2C indicates that a maximum 

GPVI-signal attenuation effect was achieved at around 250 to 500 seconds (under 10 minutes), 

whereas thrombin-induced GPVI-shedding reached its maximum effect quite a bit later, around 

30 to 40 minutes [76]. Taken together, this weakens the argument that the attenuation effect is 

due to polymerized fibrin cleavage of GPVI into sGPVI. This can be further confirmed by 

repeating the experiments in Figure 2-4 in the presence of a broad spectrum metalloproteinase 

inhibitor such as GM6001 (since MMPs are essential for GPVI shedding). If the attenuation 

effect is still observable with successful GM6001 blocking of MMPs, then it is very unlikely that 

polymerized fibrin is causing GPVI shedding. 
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There is also the possibility that fibrin binds to convulxin, reducing its availability to bind 

to and activate platelet GPVI, resulting in the observed attenuation of convulxin-induced calcium 

mobilization. It is difficult to tell whether or not this is the case in the experiments done so far. To 

test this hypothesis, ligand binding assays can be done to examine the specific interaction 

between fibrin and convulxin or fibrin and collagen. 

  The procoagulant collagen surface in this microchannel causes platelet activation via 

GPVI and mediates adhesion through activated platelet integrin α2β1 [87-89]. Platelets tend to 

bind directly to the exposed collagen through two major receptors, integrin α2β1 and GPVI, only 

at high shear conditions are GPIb-V-IX receptor complex and its main ligand von Willebrand 

Factor additionally needed for firm platelet adhesion to the vessel wall [90]. Therefore, in this 

specific microfluidic assay, where shear rates are low (200s
-1

, corresponding to venous shear 

rates), the two possible mechanisms by which platelet deposition on collagen is reduced is via 

reduced platelet GPVI binding to collagen and/or reduced platelet integrin α2β1 binding to 

collagen. According to Niewswandt et al., GPVI but not α2β1 plays the central role in platelet-

collagen interactions under flow. GPVI facilitates platelet-collagen interactions by activating 

different adhesive receptors, including α2β1integrin; however, unlike GPVI, α2β1 integrin was 

found to strengthen adhesion without being essential to adhesion [91]. Therefore it is more likely 

that the reduction in platelet deposition on collagen observed here is due to reduction in GPVI 

binding to collagen rather than reduced α2β1 binding to collagen. Furthermore, it has been 

demonstrated that anti-GPVI antibody, but not anti-α2β1 antibody, inhibits convulxin-induced 

[Ca
2+

]i increase [92]. This also indicates that in convulxin-induced [Ca
2+

]i assays prior, attenuation 

effects seen were due to disrupted GPVI rather than α2β1 signaling. This leads to the most likely 

explanation of this observation: polymerized fibrin binds to GPVI. 
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In similar microfluidic assays, platelets tend to adhere to localized collagen surface 

within the first minute. Between approximately 1 minute and about 105 seconds, platelet 

coverage on the collagen surface grows in two dimensions. After 105 seconds, thrombus tends to 

grow in height (the third dimension) due to secondary platelet-platelet aggregation, mediated by 

soluble agonists such as ADP (around 105 seconds) and thromboxane (around 150 seconds) [93]. 

Therefore, in this experimental setup, to examine platelet GPVI interaction with collagen, the 

focus needs to be on the time window before 105 seconds. As seen in Figure 2-6B, around 60-

105 seconds, the GPRP platelet fluorescence intensity (FI) continuously increases over the 

control, indicating that platelet GPVI binding to collagen is reduced in the presence of fibrin. Pre-

60 seconds, there tends not to be a big difference, probably because fibrin is just being introduced 

into the system and the fibrin levels for the GPRP and control condition have not diverged 

enough yet (Figure 2-6C). To more closely examine this effect, the time resolution could be 

increased in the primary deposition phase (< 105 seconds). In the secondary platelet aggregation 

phase > 105 seconds, the platelet FI for the GPRP conditions continues to increase and diverge 

over the control condition, but appears to converge very slightly after 180 seconds. This could 

mean that polymerized fibrin disrupting the GPVI binding to collagen also has an initial effect on 

secondary aggregation that is corrected eventually, but this would require a repeat of the same 

experiment with higher time resolution to verify. There has been recent evidence that GPVI plays 

a critical role in thrombus growth and stability [16, 18] in addition to initiation; the fact that 

secondary aggregation as indicated by platelet FI > 105s continues to be reduced in the presence 

of fibrin suggests that fibrin binding to important sites on GPVI may be weakening its ability to 

grow and stabilize the thrombus > 105s.  

In Figure 2-6D, at both 120 and 240 seconds, fibrin, even in the control condition, does 

not show up in the spaces between the platelets (which is indicative of fibrin formed under flow), 
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which means that PPACK and apixaban have effectively prevented endogenous thrombin 

production as well as fibrin polymerization under flow. Further, the areas of fibrin fluorescence 

seem to overlay quite well onto areas of platelet fluorescence, indicating that platelets are where 

the fibrin is, which adds strength to the argument that platelets are binding to fibrin, possibly via 

GPVI. In previous work by Colace et al., whole blood (CTI-treated to inhibit coagulation by 

contact pathway) was perfused over tissue-factor treated collagen surface under pressure relief 

mode (which is a more physiologically relevant then the constant flow mode in Figure 2-6, 

because flow is diverted from thrombotic occluding channels to open channels which allows 

thrombus to grow to full occlusion) at a venous inlet flow (200s
-1

) [94]. The resulting average 

platelet mass formed in the presence of GPRP showed 20% more platelets than that formed 

without GPRP, suggesting a modest role for fibrin in slowing platelet deposition and clot growth, 

which supports our observation [94]. The effect of GPRP in our experimental setup, however, 

indicates a stronger role (platelet deposition seemed to decrease by slightly more than 50% in 

Figure 2-6B). 

In conclusion, the most likely explanation for reduced platelet deposition on collagen, 

reduced secondary aggregation, as well as attenuated calcium response to convulxin in the 

presence of polymerized fibrin is that polymerized fibrin binds platelet GPVI and therefore 

reduces GPVI-mediated platelet activation. However, the mechanism by which fibrin reduces 

GPVI-mediated platelet activation is not so clear. Fibrin could act as an antagonist or agonist (or 

both) when it binds to platelet GPVI. One way fibrin could act as an antagonist is by blocking or 

competing for GPVI-collagen and GPVI-convulxin binding sites when it binds to GPVI. 

However, recent findings show that fibrin binds to GPVI and promotes thrombin generation and 

thrombus growth [16, 18], effectively acting as a platelet agonist. This is not necessarily in 

contradiction to our findings; our experiments have examined this interaction in experimental 
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conditions where endogenous thrombin production is not possible due to use of Apixaban as the 

anticoagulant. Furthermore, in all calcium assays, thrombin-induced calcium signaling trends 

upward after the peak, but when GPRP is present to block fibrin polymerization, thrombin-

induced calcium signaling returns to baseline after the peak Figure 2-4C. This points to the 

possibility that fibrin produced by thrombin addition continuously activates platelets such that 

when convulxin is added 480 seconds later, platelets are already desensitized, resulting in the 

observed attenuated calcium signal. The mechanism for platelet desensitization still unknown but 

is important to further study. Patients with trauma-induced coagulopathy tend to have elevated 

markers of platelet activation but reduced responsivity to platelet agonists [15]. Trauma-induced 

coagulopathy is also marked by an increase in thrombin and fibrin generation [95]. The central 

observation in this work is a recapitulation of these trauma conditions in vitro: addition of 

thrombin initially activates platelets and initiates fibrin formation, resulting in platelet 

desensitization (manifested as an attenuated calcium response) to a strong platelet agonist, 

convulxin, when it was added 480 seconds later. Therefore, further investigating the underlying 

mechanism behind this central observation could be useful in understanding the mechanism 

behind platelet desensitization during trauma-induced coagulopathy.   

 

3.0 Future Work 

4.1 Further Investigation of Fibrin-GPVI Interaction  

The nature and effect of fibrin-GPVI interaction on platelet function, as highlighted in 

Chapter 3, requires further investigation.  

First, platelet GPVI also facilitates platelet aggregation indirectly by activating platelets 

and exposing phosphatidylserine (PS). An experiment could be conducted to study collagen-
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induced platelet aggregation in the presence of fibrin and without, in order to shed light on the 

effect of fibrin-GPVI interaction on platelet aggregation behavior, which is a platelet function not 

previously studied in Chapter 3. The experiment would entail drawing blood into 10% v/v sodium 

citrate and 250nM apixaban (to prevent endogenous production of thrombin).  Sodium citrate is 

required to prevent instant platelet aggregation upon agitation (from stir bars in cuvette), and does 

not affect the ability of thrombin to form polymerized fibrin from fibrinogen. The whole blood 

sample would be spun into PRP for light transmission aggregometry (LTA) to be performed. 

Vorapaxar , a PAR-1 inhibitor,  would be added to prevent full aggregation upon first dispense of 

thrombin but still allow thrombin to polymerize fibrinogen into fibrin. At the start of 

aggregometry reading, low dose thrombin (2 nM) would be added to PRP with or without GPRP 

(5mM) to inhibit fibrin polymerization. At 10 minutes after the first dispense, collagen would be 

added to induce platelet aggregation, the rate and final aggregation % would be read and 

compared between the conditions with and without GPRP to determine whether or not the fibrin-

GPVI interaction reduces platelet aggregation.  

As mentioned briefly in Chapter 3, it is unlikely that polymerized fibrin downregulates 

GPVI by inducing GPVI-shedding, as the attenuation effect is observable in washed platelets 

where the metalloproteinases (MMPs) needed for GPVI-shedding is theoretically absent. This 

statement can be verified by repeating the PRP calcium assay with GM6001, a broad spectrum 

inhibitor of metalloproteinases. It is expected that the results would be similar compared to that 

highlighted in Chapter 3 even in the presence of GM6001.  

Finally, the microfluidic assays performed in Chapter 3 may be improved with higher 

time scale resolution (higher than once per minute), especially since the important primary 

deposition phase occurs < 105. This allows us to better determine the timescale of the effect of 

fibrin-GPVI interaction on platelet deposition on collagen. 
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4.2 Extending human platelet calcium calculator to include individuals with 

familial hypercholesterolemia 

 The neural network-based calcium calculator (NN) built in Chapter 2 can be extended to 

include patient populations. This study would involve individuals with familial 

hypercholesterolemia (FH) and individuals without known coronary heart diseases who visit the 

doctor’s office to get a computed tomography coronary angiography (CTCA) scan. Pairwise 

agonist scanning (PAS) as described in Chapter 2 can be done on study participants and a NN 

trained exclusively on FH patients can be built. This FH-NN output can be compared to the 

healthy NN output [75] to shed light on the effect of FH on calcium signaling phenotypes. 

Furthermore, this NN can be combined with microfluidic experiments to build and validate a 

multiscale model to simulate thrombus growth and vessel occlusion triggered by collagen/tissue 

factor. This model may also be compared to the multiscale model built on healthy donors [53] to 

study how FH affects normal thrombus growth. Furthermore, with enough FH/healthy donors and 

PAS experiments, a classification model can potentially be built to identify and diagnose patients 

with FH based on their calcium signaling phenotype (for example using pairwise synergy scores).  

4.3 Combining platelet calcium calculator to build an NN-ODE model 

The neural network-based calcium calculator (NN) built in Chapter 2 can be coupled to 

an ODE model to predict important platelet activation phenomena in real time. Specifically, the 

NN built in Chapter 2 (which describes platelet receptor mediated calcium mobilization) can be 

coupled to a coarse-grained ODE model that further describes the effects of platelet activation 

events downstream of calcium mobilization such as: granule release, thromboxane and thrombin 

production, inside-out signaling and cell contraction. The production of secondary soluble 

mediators due to these events (such as ADP, thromboxane and thrombin) can be fed back into the 



 

75 

 

NN as inputs (in the form of agonist concentrations), resulting in a more comprehensive and 

accurate model of platelet activation and autocrinic signaling. It is important to note that the NN 

does not account for endogenous thrombin production and therefore does not capture the effects 

of autocrinic signaling [75]. Since the NN training incorporates feedback at 8 previous time 

points, history is important in the training of the NN. To enable the NN to more accurately give 

dynamic predictions in this ODE-NN coupling, the NN should additionally be trained on PAS 

experiments where agonists are added sequentially to improve the predictive power of the NN 

and avoid stability issues.  

The ODE model can be built to describe five important platelet activation events 

downstream of calcium mobilization, as shown in Figure 3-1. First, inputs (agonist 

concentrations) are to be specified. The NN can then predict intracellular calcium levels based on 

the inputs. All five events described in the ODE model are a triggered, at least in part, by 

intracellular calcium. Three of these events lead to production of soluble secondary mediators 

(ADP, thromboxane and thrombin). The ODE model will calculate the concentration of these 

secondary mediators based on intracellular calcium levels. The agonists concentrations will be 

fed back into the NN and the NN would predict the resulting intracellular calcium levels. This 

cycle continues until steady state is reached.  The signaling pathways triggered by elevated 

intracellular calcium levels in platelets are still largely unknown
 
[64].  Many of the kinetic 

parameters in the reactions that are involved in the known pathways events are unavailable/ 

difficult to determine experimentally [64]. Therefore a coarse-grained ODE approach can be 

used. Specifically, steady state experimental data that gives the concentrations of intermediates as 

a function of intracellular calcium levels can be found in literature, or if the literature is not 

available, it may be done experimentally (Table 1-1). With this coarse-grained ODE approach it 

is estimated that about 30 ODEs would be required to describe these five events.  

  



 

76 

 

 

 

Figure 3-1 ODE-NN model of platelet 

  

 Event Intermediates Studied/Coarse Grained Source 

1 ADP release Ca
2+

  Dense-granule release (coarse grained) 

Lenoci et al. (2011) [96] 

Jonnalagadda et al. (2012) 

[97] 

2 
Thromboxane 

release 

Ca
2+

  COX-1 activation  (Experiment) 

COX-1 activation  TxA2 production  (Experiment) 

3 
Thrombin 

release 

Ca
2+

  PS exposure (Experiment) 

PS exposure  Thrombin production  Chatterjee et al. (2010) [98] 

4 Aggregation  

Ca
2+

  α2bβ3activation (PAC-1)  Lenoci et al. (2011)
 
[96] 

α2bβ3activation   aggregation (KMC) 
Tandon et al. (1997) [99] 

Laurenzi (1997) [100] 

5 Contraction 
Ca

2+
myosin activation (Experiment) 

myosin activation  contraction   

 

Table 3-1 Platelet activation events described in ODE model 
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Some of the coarse-graining experiments that can be done to measure those platelet 

activation events as a function of calcium, so as to obtain an effective rate, Keff, [96] include: for 

PS exposure as a function of [Ca
2+

]i , using Annexin V to measure PS exposure over time [101], 

concurrently measure [Ca
2+

]i using the same PRP sample and obtain a [PS-positive] vs. [Ca
2+

]i 

dataset. For TxA2 production as a function of [Ca
2+

]i, measure TxB2 (TxA2 converts to TxB2 

rapidly) using ELISA [102], concurrently measure [Ca
2+

]i using the same PRP sample, obtain a 

[TxA2] vs. [Ca
2+

]i dataset. Similarly, for phosphorylated myosin as a function of [Ca
2+

]i, measure 

myosin-P using [32P] – phosphorylated MLC12, concurrently measure [Ca
2+

]i using the same 

PRP sample, and obtain a [myosin-P] vs. [Ca
2+

]i dataset. 

Once the model ODE-NN model is built, experiments can be conducted to measure 

model performance. Inputs can be specified as agonist concentrations at t = 0, and a reliably 

measurable output would be thrombin concentration at t = tend.  Simulation can be run for ~10 

minutes (typical time for aggregation to plateau). Thrombin generation in response to agonists 

can then be measured in experiments using a thrombin-specific substrate, such as Boc-VPR-

MCA, in the well plate. The experimental thrombin generation result can then be compared to the 

simulation result in order to calculate accuracy and evaluate ODE-NN model performance.      

4.4 Higher order PAS  

The NN model that was trained on PAS (pairwise agonist scanning) in Chapter 2 can be 

improved by training the model on high-dimensional agonist scanning. The high-dimensional 

agonist scanning would include the effects of more than six agonists and improve accuracy of 

calcium level predictions.  

The complete experimental space for six agonists at null, low, medium and high 

concentrations (such as in PAS) is 4
6
 = 4096 conditions. There are approximately 20 more 

agonists not studied by PAS in Chapter 2 that are important in calcium signaling and platelet 
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activation as well (Table 3-2). The full experimental space grows exponentially with increasing 

number of agonists, the full experimental space for 20 agonists is 4
20 

, or approximately 1 trillion 

combinations.  Furthermore, we are limited to approximately conditions per experiment, mostly 

due to the lifetime of PRP in 250nM apixaban. Therefore it is important to establish a systematic, 

“smart”, efficient sampling method to sufficiently inform the neural network such that is able to 

make reasonably accurate predictions about the complete experimental space.  

In Pairwise Agonist Scanning (PAS), platelets are activated with all single and pairwise 

combinations of six agonists at three different conditions (154 conditions total including a null 

condition). Each agonist activates different receptors on the platelet. Significant crosstalk occurs 

between these different receptor-mediated signaling, but they all converge on calcium 

mobilization. As explained previously in Chapter 2, NN trained only on the resultant calcium 

time traces of single and pairwise interactions in the full agonist dose range was able to predict 

trinary, higher order (4-6 agonists) and sequential interactions with reasonably high accuracy 

[75]. The trinary, higher order and sequential experiments were done separately and was not part 

of the training set. The fact that just single and binary conditions were enough to inform the NN 

about conditions involving 3-6 agonists points to the possibility that there are redundancies in the 

information provided by some of the combinations. In other words, certain agonist combinations 

may not be so informative or important in describing the full experimental space. The search 

method may be guided by the synergy score metric previously developed by Chatterjee et al. 

(2010) [20].  Synergy scores are a measure of the direction and extent of cross-talk between 

agonist combinations [20]. Synergy scores (Sij) range from -1 to 1. A positive Sij value indicates 

synergistic behavior between agonists i and j whereas a negative Sij value points to antagonistic 

behavior; a Sij value of 0 represents a purely additive response. Combinations with high synergy 
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scores contain information about cross talk between signaling pathways beyond the additive 

response of the single agonists that the combination comprises. 

In other words, the complete experimental space for six agonists at null, low, medium 

and high concentrations is 4
6
 = 4096 conditions. A method can be developed to probe the 

important directions (i.e. perform “smart” sparse sampling of combinations) such that the NN is 

sufficiently informed and able to predict calcium time traces of the full combinatorial space 

(specifically higher-order interactions). This is a fractional factorial design problem: the full 

combinatorial experimental space is strategically sampled by utilizing the sparsity-of-effects 

principle so as to reduce screening effort. The sparsity-of-effects principle states that a system is 

usually dominated by main effects and low-order interactions. That method can then be utilized to 

determine specific combinations of agonist (not limited to the six mentioned in Chapter 2) that 

would be most informative, so that experiments can be done to obtain corresponding calcium 

time traces and a neural network can be trained on just those calcium traces but still be able to 

predict calcium response to > 6 agonists.   

One possible method to develop the “smart” sparse sampling method is to use synergy 

scores (Sij) to point toward combinations that are most informative.  For a given combination, 

high absolute Sij values of synergy scores indicate that significant cross-talk takes place between 

the signaling pathways mediated by agonists involved in that given combination. In other words, 

that combination is information-dense. On the other hand, combinations for which Sij values are 

close to zero demonstrate only the additive response of the single agonists that make up that 

combination – this information is already captured by the single agonist conditions. 

Experimentally, we are limited to approximately 190 conditions per experiment. Full main effects 

for the complete 4
6
 (6 agonist) experimental space as well as the full n = 135 second order 

interactions (100% of 135 possible interactions) are already sampled. The Sij for each of the 135 

sampled combinations should then be examined, and combinations that satisfy a certain threshold, 
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e.g. |Sij| > 0.3 can be picked. Utilizing data from Chapter 2, there are about 20 (out of a total of 

160) combinations that satisfy this criteria for example. This process would then be repeated for 

each interaction order (third and higher). Next, n = 190 third order interactions would then be 

randomly sampled and the corresponding Sij calculated. If the same example threshold was set, 52 

(out of 160) combination satisfy this criteria. This is then repeated for each order interaction (4, 5 

and 6). The sample size n for each order interaction will also have to be scaled to each order 

interaction combination space (i.e. sample size for the six-agonist experimental space has to be 

larger than the three-agonist experimental space).  Other rules or methods for picking the samples 

may also be explored (e.g. Random Sampling-High Dimensional Model Representation, Markov 

Chain Monte Carlo, Non-linear PCA/ Diffusion maps, Locality-sensitive hashing).  

Next, prediction R values (representing accuracy of model) will have to be plotted against 

sampling effort (effectively number of combinations sampled). We would stop at a point (i.e. pick 

the number of combinations sampled) where prediction ability plateaus with increasing sampling 

effort. Then the full 20-agonist experimental space 4
20

 can be sampled with approximately 20 

experiments using one of the methods above to obtain a reasonable R value for prediction.  
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List of Important Platelet Agonists [103]
 
 

  Agonist Receptor Phase 

1 Collagen (Convulxin) GPVI 

Recruitment, Adhesion, Aggregation 2 

Fibrinogen, vWF, 

fibronectin, vitronectin, TSP-1 α2bβ3 

3 Fibronectin α5β1 

4 Laminin α6β1 

5 ADP P2Y1, P2Y12 

Amplification 

6 Thrombin PAR-1, PAR-4 

7 Thromboxane (U46619) TP 

8 

1-O-alkyl-2-acetyl-sn-

glycero- 

3-phosphocholine PAF receptors 

9 Lysophosphatidic acid Lysophosphatidic acid receptor 

10 Vasopressin V1a vasopressin receptor 

11 Adenosine A2a adenosine receptor 

12 Epinephrine b2 adrenergic receptor 

13 

Serotonin (5-

hydroxytryptamin) Serotonin receptor 

14 Dopamine Dopamine receptor 

15 ATP P2X1 

16 TPO c-mpl 

17 Leptin Leptin receptor 

18 Insulin Insulin receptor 

19 PDGF PDGF receptor 

20 Ephrine Ephr 

Stabilization 

21 Gas-6 Axl/Tyro3/Mer 

22 PSGL-1,GP1b,TF P-selectin 

23 

TSP1, oxLDL, VLDL,  

oxPHL, collagen type V CD36 

24 PACAP VPAC1 

Negative Regulation 

25 PECAM-1 PECAM-1 

26 PGI2 IP 

27 PGE2 EP1-4 

28 PGD2 receptor PGD2 

Table 3-2 List of Important Platelet Agonist compiled from Kauskot et al. (2012) 
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4.5 Building a classification based on platelet calcium mobilization 

phenotypes as measured by pairwise agonist scanning 

The project described in section 4.2 (PAS experiments of FH patients) may be combined 

with large quantities of available PAS experimental data of healthy donors in past years as well as 

in the future to build a data-driven classification model that distinguishes patients from healthy 

donors based on PAS calcium phenotypes (for example synergy scores). If proven to be accurate, 

such a model may be able to aid in clinical diagnosis in the future. Once trained on PAS data of 

both healthy donors and patients, the model would be able to classify new donors as ‘healthy’ or 

‘patient’ based on their PAS calcium phenotype. A plausible approach to building a classification 

model that exploits the wealth of platelet function information in the PAS experiments is 

described below.  

In this example, I built a classification model that distinguishes male donors from female 

donors using a PAS dataset generated by a previous Diamond Lab member, Manash Chatterjee.  

The PAS experiments were performed by Manash Chatterjee as previously described [20]. I 

decided to use the 135-parameter synergy score of each PAS experiment as the calcium 

phenotype to build my classification model on. As mentioned previous in Chapter 2, synergy 

scores (Sij) are a measure of the direction and extent of cross-talk between agonist combinations. 

The synergy score is defined as the difference between the observed and the predicted additive 

calcium level response, normalized by scaling to the maximum synergy score observed in the 

entire dataset. Synergy scores range from -1 to 1. Negative values for a particular pair of agonist 

conditions indicate antagonistic behavior, whereas positive values indicate synergistic behavior. 

A synergy score of 0 indicates a perfectly additive response. In previous work, synergy scores of 

replicate PAS experiments done on the same donor on different days self-clustered [20], 

demonstrating that synergy scores is a quantifiable platelet phenotype that describe an 
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individual’s unique platelet function. In addition to predicting the sex of the donor based on the 

donor’s PAS data, the classification model may also be used to point toward the key 

physiological differences that are the most informative, in this case, isolate the specific synergy 

scores (specific combinations of agonist) that are most predictive of donor sex. 

4.5.1 Gender clustering patterns 

To first demonstrate that the gender of donors had an effect on PAS synergy scores, 

hierarchical clustering was done on the 135-element synergy score vectors of 40 PAS 

experiments.  The Euclidean distance between synergy score vectors between all pairs of synergy 

score vectors were calculated and was used as the measure of similarity between each vector. 

Experiments from the same donor self-clustered at the lowest level On a higher level, male 

donors (black text) tended to cluster together on the left and female donors (red text) tended to 

cluster together on the right (Figure 3-2). This indicates that both the identity and gender of 

individual donors can be distinguished based on their PAS synergy scores, and alludes to a 

potential phenotypical difference between male and female platelet reactivity.  
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Figure 3-2 Clustering of synergy scores based on donor gender 
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4.5.2 Sources of variability in synergy scores 

Inter-donor variability was calculated by first taking the average synergy scores of the 

replicate experiments of each donor, then calculating the standard deviation of average synergy 

scores among donors. The biggest differences in sources of variability between male and female 

donors come from medium and low CVX interactions (Figure 3-3). Among female donors 

(Figure 3-3 middle panel), as opposed to among male donors (Figure 3-3 top panel), those 

interactions did not contribute very much to variability. PAR-1 receptor agonist, AYPGKF 

pathways also contributed to variability among donors, but its contribution is significant both in 

men and women (Figure 3-3bottom panel). This indicates that GPVI signaling and crosstalk 

accounted most strongly for the functional differences between the male and female platelets. 

 

 

 

 

 

 

 

 

 

 

 



 

86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-3 Sources of variability in synergy scores 
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4.5.3 SVM model building and performance 

The classification model was built using support vector machines (SVM). SVM was 

implemented using libSVM software written for MATLAB. The dataset was first organized into a 

40 x 135 matrix of synergy scores. Each row comprised of a synergy score vector of a particular 

PAS experiment. There were 20 total donors in this dataset, 10 of which were female and 10 

others were male. Each donor had a set of two replicate experiments, giving a total of n = 40 PAS 

synergy score vectors. There were m = 135 pairwise conditions of the 6-agonist PAS experiment. 

Labels were then prepared as a binary column vector with 0 representing the male donors and 1 

representing female donors. The synergy scores ranged from -1 to 1. To reduce computational 

time, the dataset was first preprocessed into integers that ranged from 1 to 64. All datasets were 

also kernelized using the intersection kernel before being trained on by the Support Vector 

Machine (SVM) algorithm. The new dataset was then normalized by dividing synergy scores by 

the maximum value of each condition. The dataset was then randomly divided in an 80/20 

proportion into training and testing sets, with the constraint that there were equal numbers of male 

and female donors in the training and testing sets. This constraint was put in place because of the 

relatively small size of the dataset (n = 40); making sure that the training set had equal numbers 

of male and female donors would enable the SVM method trained to be more accurate despite the 

small size of the dataset. Leave-one-out-cross-validation (LOOCV) was then performed on the 

training set (consisting of 32 examples) to determine the best C-parameter to use for the actual 

training and testing. The C-parameter in SVM represents the extent to which the SVM algorithm 

allows classification errors during training. In LOOCV, one example is randomly set aside as a 

test sample and the rest are trained with SVM using a chosen value. This is repeated 100 times to 

obtain an overall error rate. This procedure is repeated with different C-parameters (100, 200, 

500, 1000 and 10000), and the final C parameter chosen would be the one that produces the 
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lowest error rate. Then the SVM is trained on the original training set using the cross-validated C-

parameter value and finally tested to obtain the test error. This entire procedure we repeated 1000 

times to obtain an overall 1000-run test error.   

In this SVM implementation, the dataset was split randomly into training and testing sets 

in an 80/20 proportion, with the constraint that there were equal number of male and female 

donors in each of the training and testing set. The training set further underwent LOOCV and 

SVM training using the cross-validated C parameter. This procedure was repeated 1000 times, 

each time the dataset was split randomly. As a result the average error rate over 1000-runs was 

5.975%. The error matrix is a visualization of this experiment (Figure 3-4a); each row represents 

a test example, each column represents a single run of the procedure. Green represents instances 

that gender was correctly predicted, black represents instances where gender was incorrectly 

predicted  (Figure 3-4a). The top four vectors in the figure represent male donors whereas the 

bottom 4 test vectors represent female donors (recall that these may not be the same donors each 

run because of the random split of testing and training data) (Figure 3-4a). Though there are 
20

C4 

X 
20

C4  possible splits of the data (about 23 million), a 1000-run sampling is enough to get a 

representative error rate. The procedure was also repeated 10,000 times, and for that run the error 

rate was very similar: 5.7888%.  

 

4.5.6 Agonist elimination to elucidate platelet calcium signaling pathways most predictive of 

gender 

To determine which agonist interactions in the synergy scores were most important in 

determining the gender, synergy scores involving certain agonists were omitted from the training  

and the resulting overall 1000-run test error compared. In each of the 1000 runs, the data was first 

randomly divided into training and testing sets before each agonist was omitted. This was to 
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ensure that differences in random training/testing set divisions did not contribute to the 

differences obtained between 1000-run test error trained on the full dataset and that of the 

agonist-omitted dataset. If the 1000-run test error of a particular agonist-omitted dataset was 

higher than that trained on the full dataset, then that agonist is useful in predicting the gender of 

donors. Each agonist-omitted dataset were also compared to each other so as to rank the 

importance of each agonist in predicting gender of donors. This would provide insight as to which 

agonist pathways were most different between males and females.  

The average 1000-run prediction error is plotted for each agonist omission. (Figure 3-4 

top right panel) The highest average prediction error (12.325%) occurred when synergy 

conditions involving the convulxin agonist were omitted from the training set. (Figure 3-4 top 

right panel)This result agrees with the inter-donor variability of synergy scores (Figure 3-3). The 

most notable differences in sources of inter-donor variability of synergy scores between and male 

and female donors came from interactions of medium and high-dose convulxin. This difference 

could have contributed to the predictive power of the SVM algorithm when convulxin-related 

synergy scores were included in training set. Since convulxin is a GPVI receptor, this result also 

alludes to a possible underlying phenotypical difference in GPVI-activation pathways between 

male and female donors. Neeves et al. (2013) reported that women had higher platelet 

accumulation than men on fibrillar collagen in microfluidic flow assays [104].
 
However, women 

also had higher Von Willebrand Factor (vWF) levels than men, so these variables were not 

decoupled [104]. So far, there aren’t any conclusive differences between male and female platelet 

function. The error rate dropped below the original prediction error with no omission of 5.6625% 

when AYPGKF, the PAR-1 agonist peptide was omitted from the training dataset (2.838%) 

(Figure 3-4 top right panel). In other words, the algorithm did better (prediction error halved) 

when AYPGKF-related synergy conditions were removed from the training dataset. This could 
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mean that there are little differences in platelet activation pathways via PAR-1, and the relatively 

high contribution of AYPGKF to inter-donor variability of synergy scores added to the noise of 

the training dataset, and therefore caused SVM method trained to be less effective at predicting 

error. The agonist-omission error bar plots were created for male donors and female donors 

separately (Figure 3-4 right middle and right bottom panel).  There seemed to be differences in 

predictive powers of the algorithm for male donors versus female donors, which could be fixed 

with introducing a bias term in the SVM algorithm. 
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Figure 3-4 (a) SVM model performance (b) Impact of specific agonist elimination on SVM model performance 
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4.5.3 Implementation of SVM on reduced dimension (3D) dataset 

This exercise was done for the purpose of visualization and understanding of the SVM 

method used to build this classification model. The 135-dimension PAS synergy score dataset 

was projected onto its top three principal components using the principal component analysis 

(PCA) function in MATLAB. The top three principal components are the dimensions in which 

the largest variability of the data is captured. The 135-dimension synergy scores are then 

projected onto those three principal components to produce the 40 data points as visualized in 

Figure 3-5.  When SVM was implemented on the reduced dimension (3D) dataset, the resulting 

maximum margin hyperplane is a flat 3-D plane, with quite a few classification errors on each 

side (Figure 3-5).  When SVM was done on the full 135-D dataset, the test error over 100-runs 

was 5.75% (Figure 3-4), whereas that for the 3-D dataset was 32.12%. Even when SVM was 

trained on the PCA-reduced 30-D dataset, the 100-run error only decreased to 22.5%. This 

indicates that none of the synergy scores are extraordinarily uninformative in predicting gender of 

the donors. In other words, the synergy score vectors data is not noisy. When the training data is 

3-D, the SVM hyperplane is a 3-D plane. In this dataset, the training data is 135-D, though it is 

difficult to visualize the hyperplane that separates the two classes spans 135 dimensions. 
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Figure 3-5 Implementation of SVM on reduced dimension (3D) dataset 
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Appendix A: Dose Response Curves for Platelet Agonists 

 

Figure A-3-6 Dose response curves of each agonist. This set of dose response curves were obtained for a single donor 

done in quadruplicate, and is representative of the dose response curves for the total of six donors used to calculate the 

average EC50 values shown in the table inset. EC50 values were calculated by fitting a four-parameter hill function 

curve (dashed lines) to the area under curve of the baseline-normalized fluorescence intensity (F/F0) calcium time 

course. For the dose response of platelet antagonist iloprost, platelets were simultaneously stimulated with PAR-1 

agonist SFLLRN (40μM). For the dose response of platelet antagonist GSNO, platelets were simultaneously stimulated 

with 1μM ADP 
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Appendix B: Investigation of Autocrinic Signaling Effects in PAS 

 

Figure A-2 Investigation of autocrinic signaling effects. To determine whether or not significant secondary 

autocrinic amplification effects by ADP and thromboxane secretion were present in the PAS assays, apyrase (ADP 

hydrolyzing enzyme, 2 Units/ml) and indomethacin (COX-inhibitor,15μM) were used. GSNO, Iloprost, U46619, 

thrombin and convulxin at 0.1, 1, or 10 X EC50 were added to platelets in similar conditions as in the PAS experiments 

(12% PRP, 250nM Apixaban). In the case of the inhibitors GSNO and Iloprost, platelets were co-stimulated with 

60mM SFLLRN, a PAR-1 activator. Only one of the 60 conditions tested with added inhibitors produced a detectable 

reduction in calcium signal (one-tailed T-test P < 0.05).   
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Appendix C: Neural Network Prediction of Trinary Combinations 

 

Figure A-3 Neural network prediction of the trinary combination experiment. Experimental and NN-predicted 

calcium traces are plotted for all 160 trinary conditions (all single and trinary combinations of agonists at two 

concentrations: 0.1x EC50 and 1x EC50). Rescaled to 0.5 for easy visualization. 
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Figure A-3 Neural network prediction of the trinary combination experiment. Experimental and NN-predicted 

calcium traces are plotted for all 160 trinary conditions (all single and trinary combinations of agonists at two 

concentrations: 0.1x EC50 and 1x EC50). Rescaled to 0.5 for easy visualization. 
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