
Generating Embedded Software from Hierarchical
Hybrid Models∗

Rajeev Alur, Franjo Ivančić, Jesung Kim, Insup Lee and Oleg Sokolsky
Department of Computer and Information Science

University of Pennsylvania

ABSTRACT
Benefits of high-level modeling and analysis are signifi-
cantly enhanced if code can be generated automatically
from a model such that the correspondence between the
model and the code is precisely understood. For embed-
ded control software, hybrid systems is an appropriate
modeling paradigm because it can be used to specify
continuous dynamics as well as discrete switching be-
tween modes. Establishing a formal relationship be-
tween the mathematical semantics of a hybrid model
and the actual executions of the corresponding code is
particularly challenging due to sampling and switching
errors. In this paper, we describe an approach to com-
pile the modeling language Charon that allows hierar-
chical specifications of interacting hybrid systems. We
show how to exploit the semantics of Charon to gener-
ate code from a model in a modular fashion, and identify
sufficient conditions on the model that guarantee the
absence of switching errors in the compiled code. The
approach is illustrated by compiling a model for coor-
dinated motion of legs for walking onto Sony’s AIBO
robot.

Categories and Subject Descriptors
D.2.2 [Software]: Software Engineering—Design Tools
and Techniques

General Terms
Languages

∗This research was supported in part by NSF CCR-
9988409, NSF CCR-0086147, NSF CCR-0209024,
NSF ITR/SY-0121431, ARO DAAD19-01-1-0473, and
DARPA ITO MOBIES F33615-00-C-1707.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’03, June 11–13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-647-1/03/0006 ...$5.00.

Keywords
Hybrid system, embedded software, formal language,
code generation, modularity

1. INTRODUCTION
An embedded system typically consists of a collec-

tion of digital programs that interact with each other
and with an analog environment. As computing tasks
performed by embedded devices become more sophisti-
cated, the need for a sound discipline for writing em-
bedded software becomes more apparent (c.f. [20, 25]).
Model-based design paradigm, with its promise for greater
design automation and formal guarantees of reliability,
is particularly attractive in this domain. Contempo-
rary industrial control design already relies heavily on
tools for mathematical modeling and simulation. Even
though many such tools support automatic code gener-
ation from the model (for example, Simulink [30]), the
emphasis has been performance-related optimizations,
and many issues relevant to correctness are not satisfac-
torily addressed. First, the precise relationship between
the model and the generated code is rarely specified or
formalized. Second, the continuous blocks are either
ignored, or discretized before code generation. Finally,
code generation typically means generation of tasks, and
does not incorporate scheduling. Consequently, the cor-
respondence between the model and the code is lost,
and analysis results established for the model are not
meaningful for the code. The desire to bridge this gap
motivates our research.

Traditionally, control theory and related engineering
disciplines have addressed the problem of designing ro-
bust control laws to ensure optimal performance of sys-
tems with continuous dynamics. For example, given
system dynamics ẋ = f(x, u), where x represents the
system state and u represents the control input, one can
design a control law u = g(x) with respect to the given
specification (c.f. [6, 11]). To implement this control
law, one must first determine the sampling period ∆.
The software, then, is a task that consists of “sense x;
compute u = g(x); send u to actuators,” which must be
scheduled every ∆ time units. Compared to the math-
ematical model ẋ = f(x, u); u = g(x), the behavior of
the generated code may be different for many reasons:
the system state x may not follow the model ẋ = f(x, u)
precisely, sampling introduces discretization errors, and

there may be numerical errors in computing g. However,
the discrepancy can be bounded if we assume that the
system state follows the model closely, there is a bound
on numerical errors, and the control law is robust.

Typical controllers, however, are rarely purely con-
tinuous. Discreteness arises due to a variety of rea-
sons such as communication, concurrency, and multi-
ple modes of operation. An appropriate mathematical
model is, then, a hybrid system. A hybrid system com-
bines the traditional state-machine-based model of dis-
crete control with continuous models of differential and
algebraic equations [1, 27]. Hybrid systems is the fo-
cus of increasing research in control theory as well as in
formal modeling and verification in recent years (c.f.[5,
26]). Consider a system with two modes. Initially the
system is in the mode M1 with dynamics ẋ = f1(x, u).
It can stay in the mode M1 as long as the invariant
a(x) holds, and switches to the mode M2 if the condi-
tion p(x) holds. The dynamics is ẋ = f2(x, u) in the
mode M2. Suppose we design the controllers u = g1(x)
and u = g2(x) for the two modes separately. The soft-
ware corresponding to this controller samples the sys-
tem state x every ∆ time units. It has a mode variable
which is initially M1, and it is updated to M2 if p(x)
evaluates to true. The control output u is computed
by evaluating either g1(x) or g2(x) based on the value
of the mode variable. In terms of discrepancy between
the high-level model and the code, in addition to errors
in implementing continuous controllers in the individ-
ual modes, now there can be errors in switching from
the mode M1 to M2 which can cause significant prob-
lems. There is no general theory of approximation and
robustness of controllers in presence of switching. If a
switch is missed, the resulting trajectory can be entirely
different. Detecting switching events as accurately as
possible has been a topic of research for simulation of
hybrid systems (c.f.[16]), but such techniques cannot be
implemented in real-time. In this paper, we initiate the
study of formulating and limiting discrepancies between
the model and the generated code for hybrid systems.
We show that if the invariant a(x) of a mode and the
guard p(x) of a switch out of this mode overlap for a du-
ration greater than the sampling period, then the code
will not miss the switching event. Such a condition can
be checked statically, at least for systems with linear dy-
namics. It is worth noting that this requirement implies
that the model is inherently non-deterministic: semanti-
cally, the switch may happen at any time in the duration
for which the invariant and the guard overlap. This is
in contrast with the hypothesis that modeling languages
for reactive systems should have deterministic reactions
to external inputs to be implementable (c.f. [8, 25]).

The second focus of this paper is generating the code
in a modular fashion from hierarchical descriptions. Mod-
ern software design paradigms, such as UML, promote
hierarchy as one of the key constructs for structuring
complex specifications [9, 29]. We distinguish between
two distinct notions of hierarchy. In architectural hi-
erarchy , a system with a collection of communicating
agents is constructed by parallel composition of atomic
agents, and in behavioral hierarchy , the behavior of an

individual agent is described by hierarchical sequential
composition. The former hierarchy is present in almost
all concurrency formalisms, and the latter, while present
in all block-structured programming languages, was in-
troduced for state-machine-based modeling in State-

charts [18]. The logical concurrency in architectural
hierarchy leads to a set of tasks, and issues such as
scheduling and distribution among multiple processors
have been well studied in the real-time systems commu-
nity (c.f.[10]). We are concerned with compiling a hier-
archically structured mode in a modular manner so that
sub-modes can be compiled separately allowing reuse.

Our ideas are demonstrated in the context of the
modeling language Charon, a design environment for
specification and analysis of embedded systems [2]. In
Charon, the building block for describing the system
architecture is an agent that communicates with its en-
vironment via shared variables. The language supports
the operations of composition of agents to model con-
currency, hiding of variables to restrict sharing of in-
formation, and instantiation of agents to support reuse.
The building block for describing flow of control inside
an atomic agent is a mode. A mode is basically a hi-
erarchical state machine, that is, a mode can have sub-
modes and transitions connecting them. Variables can
be declared locally inside any mode with the standard
scoping rules for visibility. Modes can be connected to
each other only via well-defined entry and exit points.
We allow sharing of modes so that the same mode defi-
nition can be instantiated in multiple contexts. Discrete
updates in Charon are specified by guarded actions la-
beling transitions connecting the modes. Some of the
variables in Charon can be declared analog, and they
flow continuously during continuous updates that model
passage of time. The evolution of analog variables can
be constrained in three ways: differential constraints,
algebraic constraints, and invariants which limit the al-
lowed durations of flows. Charon supports composi-
tional trace semantics for both modes and agents [4].
For analysis it supports simulation, and formal verifica-
tion of safety properties for a restricted subset, namely,
models with finite discrete state and linear continuous
dynamics in every mode [2, 3].

We exploit the hierarchical semantics of Charon to
generate the code in a modular fashion. Each mode is
compiled as a C++ class, and the discrete and continuous
update methods for a mode simply call the correspond-
ing methods for sub-modes in a hierarchical manner.
As a case study, we have developed a compiler from
Charon to Sony’s AIBO robots [15]. The code genera-
tion, of course, has to address all the details in mapping
the logical constructs. The specific model described in
this paper corresponds to coordinating the four legs to
make the robot walk. The individual leg has four modes
and the switching conditions demonstrate the flexibility
offered by high-level modeling in mixing time-triggered
and event-triggered switching: some switches are trig-
gered by updates of discrete variables by other agents,
some are triggered by elapse of time for a specified dura-
tion, and some are triggered by conditions on continuous
variables. This example also shows benefits of model-

y

x

(x, y)

j1

j2

L1

L2

Figure 1: Leg model

ing: the Charon model is simple and small, hides all
the messy platform-dependent details of programming
AIBO, and can be subjected to simulation and reacha-
bility analysis to prove formally safety properties.

Related work. Commercial modeling tools such as
RationalRose and Simulink support code generation,
but the discrepancy between the model and code is not
formally addressed. Code generation from synchronous
languages for reactive systems, such as Statecharts [18],
Esterel [8], and Lustre [17], is significantly more rig-
orous. However, these languages do not support specifi-
cation of continuous activities. Issues such as efficiency
of the generated code and dealing with logical concur-
rency and communication are addressed, but they do
not exploit sequential hierarchy for modular compila-
tion. Shift is a language for dynamic networks of hy-
brid automata [12], and it supports code generation,
but the focus is not on modularity and correctness is-
sues. A complementary project is the time-triggered
language Giotto that allows describing switching among
task sets so that timing deadlines can be specified in a
platform independent manner separately from the con-
trol code [21, 22]. This concern is orthogonal, and in
fact, Charon can be compiled into Giotto. Model-
based development of embedded systems is also pro-
moted by other projects with orthogonal concerns: Ptolemy
supports integration of heterogeneous models of compu-
tation [14] and GME supports integration of multiple
views of the system [23].

2. MODELING LANGUAGE
We introduce the formal modeling language Charon,

illustrating it with an example, and give the intuition
for its semantics. More details can be found in [4]. To
enhance presentation, we use a pictorial view of the lan-
guage constructs. The language supports both visual
and textual representations. Throughout the paper we
use a case study to illustrate the modeling concepts of
the language, the salient aspects of our code generation
approach, and how they relate to each other. The case
study models the walking process of a four-legged robot
and uses this model to generate code for the robot dog
AIBO, manufactured by Sony. The controller for walk-
ing is based on the description in [19].

The conceptual model for a leg is shown in Figure 1.

 LegRF
 LegRR

 LegLF
 LegLR

Brain

v

token

j
1

R

F

j
2

R

F

j
1

L

F

j
2

L

F

j
1

R

R

j
2

R

R

g

r
o

u

n

d

R

F

g

r
o

u

n

d

L

F

g

r
o

u

n

d

R

R

j
1

L

R

j
2

L

R

g

r
o

u

n

d

L

R

v

v

v

v

token

token

token

token

x

x
 x

x
y

y
 y

y

j1

j1
 j1

j1

j2

j2

j2

j2

Dog

xRF yRF xLF yLF xRR yRR xLR yLR

ground

ground
 ground

ground

(a) Architectural hierarchy

GetUp

OnGround

UpDown(1)

UpDown(-1)

Forward

token==MYTOKEN

y_lift = y-LIFT

y <= y_lift

ground

token = (token + 1)%4

init

ex

Leg(L1, L2, D, STANCE, LIFT, MYTOKEN)

// L1,L2 - joint lengths, D - front or rear, STANCE - step size,

// LIFT - step height, MYTOKEN - leg number

g_stop

Walk

begin

begin

Walk(L1,L2,D,STANCE,LIFT,MYTOKEN)

// kinematics: converting (x, y) to joint angles

alge { j1 == atan(orient*x/y) -

 acos((x*x
+y*y
+L1*L1
-L2*L2
)/(2*L1*sqrt(x*x
 + y*y
)));

 j2 == acos((x*x
 + y*y
 - L1*L1
 - L2*L2
)/(2*L1*L2)); }

(b) Behavioral hierarchy

Figure 2: Model hierarchy

The controller assumes that each leg has the hip and the
knee joints that can be controlled by giving the desired
angular position of the joint (i.e., angles j1 and j2 in
Figure 1). The control objective for each leg is to ensure
that the leg moves in such a way that the paw (i.e., the
end of the knee joint) follows the shown trajectory. The
global control objective is to ensure that only one leg
is up in the air at any moment and that the center of
mass for the robot is within the triangle given by the
three legs on the ground.

2.1 Agents and Architectural Hierarchy
An agent represents an autonomous entity that op-

erates by communicating with other agents via shared
variables. We distinguish between atomic and compos-
ite agents. A composite agent 〈SA, V 〉 consists of a set
of variables V and a non-empty set of sub-agents SA.

An atomic agent 〈M, V 〉 does not have any sub-agents
and its behavior is given by a mode M , as described
in the next section. Figure 2(a) shows the architecture
of the model represented as the top-level agent Dog. It
contains five concurrent sub-agents representing the legs
and the brain of the dog. The brain agent serves as the
controller for the leg agents. Note that the leg agents
are instances of the same agent Leg, which we describe
below. The variables of an agent are partitioned into
private, input, and output variables. Each agent has
a well-defined interface which consists of its typed in-
put and output variables, represented visually as blank
and filled squares, respectively. Connections between
variables represent data flows between the agents in the
model. The Brain agent reads variables x and y, rep-
resenting leg positions, from the Leg agents, renaming
them appropriately. That is, the variable x of agent
LegRF is renamed to xRF in the agent Brain, and so on.
The agent Brain provides the desired speed of the dog
represented by the variable v, which is read by the Leg

agents. The variable token, shared among all agents and
indicates which leg is currently in the air, can be mod-
ified by each of them. All of these variables, however,
are internal to the Dog agent. The interface variables of
the Dog agent are eight output variables that represent
commands sent to the joint motors in each leg, and four
input variables that represent ground contact sensors in
each leg. The agent Leg is atomic. Its interface contains
the position variables x and y, the joint commands j1
and j2, the token variable, and two input variables, v

provided by the Brain agent, and ground provided by
the external sensor.

2.2 Modes and Behavioral Hierarchy
Modes represent behavioral hierarchy in the system

design. Each mode describes a continuous behavior and
a single thread of discrete control. A mode can be active
or inactive during an execution, depending on whether
the discrete control resides within the mode or not.
Formally, a mode M is a tuple 〈E,X, V, SM,Cons , T 〉,
where E is a set of entry control points, X is a set of
exit control points, V is a set of variables, SM is a set of
sub-modes, Cons is a set of constraints, and T is a set
of transitions. Each mode has a well-defined data inter-
face consisting of typed global variables used for sharing
state information, and also a well-defined control inter-
face consisting of entry and exit points, through which
discrete control enters and exits the mode. A top-level
mode, which is activated at the start of an execution
and is never deactivated, has a special entry point init.
Each mode has a default, unnamed entry point and a
default exit point. The set SM can contain a number
of sub-modes connected by transitions from the set T .
We distinguish between entry transitions, leading from
an entry point of M to an entry point of a sub-mode of
M , exit transitions, leading from an exit point of a sub-
mode to an exit point of M , and internal transitions,
connecting an exit point of a sub-mode to an entry point
of another sub-mode. Each transition has a guard and
an action, and is used to transfer discrete control from
one sub-mode to another. During an execution, transi-

tions occur instantaneously and can be taken when its
guard is satisfied. When the transition is taken, an as-
sociated action is executed, assigning new values to the
variables of the mode. In addition to discrete steps, the
variables of the mode continuously evolve with the pas-
sage of time according to the set of constraints Cons. A
mode can contain three kinds of constraints. Continu-
ous trajectories of a variable x can be given by either an
algebraic constraint Ax, which defines the set of admis-
sible values for x in terms of values of other variables,
or by a differential constraint Dx, which defines the ad-
missible values for the first derivative of x with respect
to time. Additionally, Cons can contain an invariant I,
which is a boolean predicate over the mode variables.
Only those trajectories are allowed that continuously
satisfy the invariant of the mode.

We represent modes visually as state machines with
transitions between them. Transitions are labeled by
guards and actions. To make it easier to visually dis-
tinguish between guards and actions, actions are boxed.
Entry and exit points are denoted as blank and filled
circles, respectively. Transitions incident to a default
entry or exit point, which are not shown on the picture,
are visually attached directly to the box representing
the mode.

The mode LegMode, the top-level mode of the agent
Leg, is shown in Figure 2(b). Invariants as well as the
complicated expression for the guard g stop, are omit-
ted to avoid cluttering the picture. The mode contains
five sub-modes. The sub-mode GetUp is entered during
initialization and ensures that the dog is standing be-
fore walking begins. It has its own internal structure,
which we do not discuss here. The other four modes
correspond to the four segments of the leg trajectory in
Figure 1. Note that the two sub-modes that move the
leg up and down are instances of the same mode with
different parameter values.

To ensure stability of the robot, only one leg can be in
the air at any time. We use the shared variable token to
switch legs. A leg can lift off the ground only if the token
is equal to its number (given as the mode parameter
MYTOKEN). The leg then moves diagonally upwards until
the desired height is reached, and the mode is switched
to begin horizontal movement. When the leg is moved
forward enough, another mode switch happens and the
leg is moved diagonally down. When the leg reaches
ground, a signal from the paw sensor sets the variable
ground, the mode switch occurs and the token is passed
to the next leg by the action of the transition.

At the lowest level of the behavioral hierarchy are
atomic modes. They describe purely continuous behav-
iors. For example, Figure 3 illustrates the behavior pre-
scribed by the mode UpDown, which specifies the desired
trajectory for the paw moving diagonally up or down by
means of a differential constraint that asserts the rela-
tionship between the horizontal and vertical velocities
of the paw, represented as the first time derivatives of
the paw coordinates x and y, and the input variable v,
representing the desired speed. The trajectory is also
constrained by the invariant specifying a range of valid
vertical positions.

mode UpDown(real dir) {
read real v;
write real x, y;
diff { d(x) == 3*v; d(y) == dir*3*v; }
inv { y ≥ y limit; y ≤ y upper limit; }

}

Figure 3: An atomic mode

2.3 Semantics
The Charon language has modular trace-based for-

mal semantics. That is, the semantics prescribes how
to construct the set of executions of an agent or mode
based on its sub-agents (or sub-modes) and constraints
within the mode. Instead of presenting the formal se-
mantics for modes and agents, which can be found in [4],
we give an informal description of an admissible execu-
tion here. Later, in Section 4, we present a simulator
that agrees with the semantics at certain discrete points
in time, and constructs the execution in a precise (albeit
non-modular) fashion.

An execution of a mode M is constructed as follows.
The state of a mode includes the values of the mode vari-
ables and, in a non-atomic mode, an additional variable
that records the currently active sub-mode. A mode be-
comes active when the control is transferred to one of
its entry points. The mode can remain active as long
as its invariant is satisfied. As soon as the invariant
is violated, time cannot progress any further, and the
mode is forced to transfer the control to one of its exit
points via an exit transition. If the invariant is satis-
fied, the mode can take a continuous step, during which
time progresses, and the state of the mode is contin-
uously updated according to the differential and alge-
braic constraints of the mode and its active sub-mode.
Discrete control is not affected by a continuous step.
Alternatively, if a mode has an enabled transition t, it
can execute a discrete step, during which time does not
progress and t is executed. Mode variables are updated
according to the action of t and, if the target of t is
an entry point of a sub-mode m, m becomes the active
sub-mode. A transition t is enabled if the guard of t

is satisfied and the control has been transferred to the
control point that is the source of t.

Consider the example in Figure 2(b). The transition
in the mode Leg from the sub-mode GetUp to the sub-
mode Walk can be taken whenever GetUp completes its
execution by transferring control to its exit point ex. By
contrast, when the leg touches the ground and the vari-
able ground is set, the transition interrupts the execu-
tion of the sub-mode UpDown(1) and transfer the control
to OnGround.

An execution of an agent is constructed by either tak-
ing a discrete step in one of its sub-agents or by taking
a continuous step in all sub-agents simultaneously. The
execution stops if time cannot be advanced (that is, one
of the modes has a violated invariant) and no mode has
an enabled transition. In this case, the model is dead-
locked. If a model is deadlock-free, that is, whenever
an invariant is violated, there is an enabled transition

agent

mode

analog var

diff eqn

transition

class agent

class mode
diff()
trans()

class var

scheduler

API

CHARON objects C++ objects
Execution

environment
Target

platform

front-end back-end

Figure 4: Code generator.

in one of the modes, we call the model a non-blocking
hybrid system.

3. CODE GENERATION
In this section, we present the code generator that

compiles Charon models for the target platform. The
process can be decomposed into two phases as shown
in Figure 4. The front-end transforms the Charon

model into a high-level language representation. One
of the main differences between Charon models and
high-level language programs is that in the former the
state is defined in the continuous-time domain whereas
in the latter the state changes in a discrete fashion. We
approximate the continuous behavior by updating the
state of the continuous model periodically every ∆ time
units. Obviously, we lose certain properties of the model
due to approximation, but we can guarantee that tran-
sitions are not missed if the period ∆ is small enough.
We will come back to this issue later in Section 4.

The code generated by the front-end is platform-
independent and needs to be ported to the execution
environment of a specific target platform. The back-
end performs platform-specific adaptation of the code to
bind abstract objects of the model to concrete objects of
the platform. The resulting code can be compiled into
a platform-specific binary form using a target compiler,
as we will explain in Section 3.2.

Faithful implementation of the Charon semantics in
a code generation algorithm is complicated by the fact
that, conceptually, executions of agents proceed concur-
rently, while on a single-processor platform they will, by
necessity, be executed sequentially. Therefore, we have
to ensure that the order of evaluation of the agents is
consistent with the dependencies among variables in the
model. For example, if an algebraic constraint for a vari-
able x in a mode contains the variable y in its right-hand
side, the constraint updating y, possibly in a mode of
another agent, must be processed before the constraint
for x. The same applies for the evaluation of guards:
before the guard of a transition is evaluated, we have
to ensure that all the variables it uses have been up-
dated. These dependencies can change dynamically as
the execution moves from mode to mode, and hence,
dependencies will have to be updated with each mode
switch. To make manipulation of dependencies easier,
we assume that there are no cyclic dependencies in any
state of the system during its execution.

3.1 Front-end
The role of the front-end is to parse the given Charon

model into an abstract syntax tree and map each node
of the tree into an object of the target programming
language. We chose C++ as an intermediate target lan-
guage, mainly because the object-oriented features of
the language best suit Charon and make the code gen-
eration process simpler, and also because the language
has been deployed in many real systems, including AIBO.

Modularity of the original model is captured by ag-
gregating objects belonging to the same mode in a C++

class that can be compiled separately. The C++ class
consists of methods implementing equations and tran-
sitions, pointers to the external variables and the sub-
modes. The code generator produces a C++ class for
a given abstract syntax tree of a mode M = 〈E, X, V,

SM,Cons , T 〉 consisting of entry points E, exit points
X, variables V , sub-modes SM , constraints Cons, and
transitions T , as described in Algorithm 1 in Appendix.
The algorithm makes a recursive call for each sub-mode
m ∈ SM to generate a corresponding separate class.
Note that the algorithm does not reference any elements
of upper-level modes or any elements of sub-modes ex-
cept for the sub-mode interface. This implies that the
generated code is modular and can be compiled and ex-
ecuted independent of other modes. In the following,
we describe the algorithm in more detail for each ele-
ment of a mode. To simplify the algorithm description,
we assume a utility function GenStmt() that produces
a syntactically correct C++ statement from given inputs.

Variable. Variables in Charon are either local or
global. Each local variable v ∈ Vl is translated into
a variable class instance, while each global variable v ∈
V \Vl is translated into a reference to a variable class in-
stance that is instantiated at an upper-level mode where
the same variable is declared as a local variable. Vari-
ables are represented by instances of class var that has
methods read() and write(), used to get the value and
assign a new value to the variable. Top-level variables
need to be handled differently, since they are mapped to
platform specific APIs. This mapping is done by over-
riding read() and write() methods in a derived class of
var by the back-end, without modifying the code pro-
duced by the front-end.

Differential constraint. A differential constraint
Dx of the form ẋ = fDx

declares that a variable x should
evolve continuously at a rate given by the expression
fDx

over variables which may be continuous. Theoreti-
cally, this requires evaluation of the expression fDx

and
valuation of the variable x at every infinitesimal period.
We approximate this specification into an assignment
statement that is executed at every period to increment
the variable in proportion to the length of the period,
which is given by the parameter delta of the function.
For example, Figure 5 shows the code for differential
equations of the mode UpDown (ẋ = 3v; ẏ = d ir · 3v)
given in Figure 3. This approximation, known as Eu-
ler’s method , is efficient to compute and produces good
results for our models. More advanced, but more ex-
pensive methods can be used to improve accuracy [24].

Algebraic constraint. An algebraic constraint de-

void UpDown::diff(double delta) {
x += (3*v) * delta; // d(x) == 3*v;
y += (dir*3*v) * delta; // d(y) == -dir*3*v;

}

Figure 5: Generated code for differential equa-

tions.

clares equations involving variables that should be sat-
isfied at all times. In Charon, an algebraic constraint
Ax ∈ Cons of a variable x is specified in the form of an
equation x = fAx

, where fAx
is an expression containing

other variables. Such constraints are translated into as-
signment statements, which are evaluated in the depen-
dency order. This requires a dynamic dependency graph
between equations that is updated by mode switches. A
dependency tracking mechanism is implemented in the
base class for modes and does not depend on the gen-
eration algorithm. We omit the implementation details
due to lack of space.

Invariant. An invariant Ix ∈ Cons declares a condi-
tion that should be satisfied at all times while the mode
is active. In general, violation of an invariant means
that the implementation is not faithful to the specifi-
cation, or the model is infeasible. We translate each
invariant to an assertion statement for run-time check-
ing of correctness. Our framework also provides a means
for static analysis of invariant violations as explained in
Section 4.

Transition. Transitions specify the control flow of
the model. A transition t ∈ T is translated into an if-
then statement where the if-block contains the guard
g and the then-block contains the optional discrete ac-
tions α as shown separately in Algorithm 2 in Appendix.
In addition to the guard, when the transition specifies
a specific control point in the source mode, the if-block
also checks the location of control. When the guard is
true and control has been transferred to the source con-
trol point, the associated discrete action in the form of
a set of assignments is executed. Note that this imple-
mentation enforces the transition is taken as soon as its
enabling is detected. While the Charon semantics does
not impose this urgency (that is, an enabled transition
does not have to be taken immediately), the urgent in-
terpretation is more amenable to avoid switching errors
as we will explain in the next section. After executing
the discrete action, control is passed to the destination
control point by invoking the corresponding method of
the destination mode. Evaluation of guards also pro-
ceeds in the order of variable dependencies as described
above. When more than one transition are enabled and
there is no dependency between them, the code executes
the transitions in the order chosen by the code gener-
ator randomly. Note that any arbitrary choice among
enabled transitions is valid provided that the model is
non-blocking (i.e., taking the transition does not lead to
violation of the invariant).

Control Point. The code generator produces for
each entry point e ∈ E a corresponding method e()

that implements the entry transition (see Algorithm 3
in Appendix). Each generated method checks the guard
g, performs the associated discrete actions α when the

guard is true, and invokes the method corresponding to
the destination entry point m′.e′() to trigger a cascade
of entry transitions leading to a leaf mode. In addition,
it updates the pointers in the data structure that rep-
resents the variable dependency. On the other hand,
for each exit point x ∈ X, a method is generated that
tests whether control has been transferred to the con-
trol point. The method checks a flag exitCode that is
set by the function trans() when an exit transition is
performed.

Mode. The class for modes has two methods,
continuousStep() and discreteStep() that performs
evaluation of the mode. Each method is invoked by the
corresponding method of the parent mode. They are
implemented in a base class mode since they are com-
mon to all the modes. The class also contains run-time
information such as the pointer to the currently active
sub-mode. This pointer constitutes a linked list of ac-
tive sub-modes from the top-level mode to some leaf
mode. The methods of the top-level mode are invoked
by the corresponding methods in the class for agents.

Agent. We have implemented a single-threaded code
generation scheme, since hybrid models generally have
much finer granularity concurrency than that is sup-
ported by the traditional multitasking mechanism of the
operating system. That is, execution of concurrent sub-
agents are interleaved at the granularity of the period
∆ in a single thread of execution. The top-level agent
has a single method update() that is called periodically
at every ∆ by the timer or a periodic task of the plat-
form. It executes first the continuous steps and then
the discrete steps of all the sub-agents.

3.2 Back-end
The C++ code generated by the front-end can be com-

piled into binary object code suitable for the target plat-
form once a target compiler is given. The next step is
to relate variables to specific objects in the target plat-
form. For example, if the model denotes a joint of the
head of the robot as a variable x, we need to relate the
variable x to the servo motor that controls the position
of the head. In other words, we need to bind objects
in the model to objects in the target platform just like
high-level language compilers bind variables to memory
addresses.

While variables in programming languages are gen-
erally bound only to memory addresses, variables in
the model may be bound to a hardware register, an
I/O port, or a parameter or the return value of a sys-
tem call/API, as well as a memory address, depending
on the abstraction level of the program execution envi-
ronment. These bindings require extra code that glues
objects in the model and the platform. Compiled and
linked together, the glue code allows the generated code
to communicate with the platform transparently. The
back-end generates the glue code when information on
binding is given.

We use a Makefile-like script to describe relationship
between objects in the model and objects in the plat-
form. Specifically, the script consists of colon-separated
dependency relations and optional rules (i.e., code frag-

Script

x.write: HEAD_JOINT
syscall(HEAD_JOINT, x);

HEAD_JOINT:
#include "system.h"

system.h

#define HEAD_JOINT "PRM:/r1/c1-Joint2:j1"
void syscall(const char *, double);

Figure 6: Script for binding.

ments) to relate the two. For example, a script that
relates a variable x to an API function syscall() and
a constant HEAD_JOINT used as a parameter is shown in
Figure 6. The script shown in the figure lets the back-
end translate write access to the variable x to a API call
syscall(HEAD_JOINT, x), with an additional parame-
ter HEAD JOINT defined in the API header file system.h.
This code fragment is appended without modifying the
code generated from the front-end by creating a derived
class that overrides the default write() method.

3.3 Modular Compilation
The generated code is modular in the sense that each

mode and agent is mapped to a C++ class that can be
compiled separately and reused in different contexts.
Each module can be reused not only for modeling pur-
poses, but also at the code level. For example, the code
for the walking process can be used in a larger applica-
tion without modifying the original model or the gener-
ated code.

In addition to reusability, modularity is salient in two
aspects. First, hybrid system models in many cases
contain both the controller and environment, and they
need to be decoupled since only the former is subject
to code generation. Our code generator allows code
generation only for selected modes/agents, and the de-
coupling comes naturally. Second, modularity of the
generated code is essential when the target platform
is a distributed system consisting of multiple process-
ing elements. We can port each module to a different
execution environment, possibly using different target
compilers and/or compilation options. The distributed
modules can interact with each other when the API for
communication is associated to the variable class, since
variables are the only interface between modules.

4. DISCRETIZATION ERRORS
In this section, we analyze code generation from a

given hybrid system model, that is, we analyze the ac-
curacy of the generated code with respect to the math-
ematical semantics of the hybrid system. There are a
variety of errors that are introduced to the system dur-
ing the generation of discrete code with fixed sampling
step-size. An overview of the various classes of errors
is given in Section 1. Here, we only consider the er-
rors due to the discretization of a hybrid system. For
this we will assume, without loss of generality, that our
hybrid system consists of n concurrent atomic agents
A1, A2, . . . , An. For an atomic agent A = 〈M, V 〉 we
denote the set of all variables in any sub-mode assum-
ing naming conflicts have been resolved by VA, and the

set of valuations of these by ΣA. An active mode of an
agent A consist of a path from the top-level mode of
the agent A to some leaf mode. A state of an atomic
agent then consists of an active mode and a value to all
its variables VA. The set of states for an atomic agent
A is denoted by XA, and the initial set of states is de-
noted by X 0

A ⊆ XA. We can then define the set of active
constraints Cons(M ′) given a state x = (M ′, v) as the
union of all the constraints in all the modes in M ′, the
set of active invariants I(M ′) as the union of all the in-
variants in M ′, and the set of active transitions T (M ′)
as the set of all the transitions of modes in M ′, such
that the source of the transition is an exit control point
of a mode in M ′. We denote the set of valuations of
VA that satisfy all invariants of an active mode M ′ with
I(M ′) ⊆ 2ΣA .

We want to check feasibility of the code generation
task for a sampling period ∆. The environment of an
agent plays a central role in determining this kind of
feasibility. We consider closed system of agents, as-
suming without loss of generality that naming conflicts
have been resolved. We define the set of globally active
modes MA for an agent A = 〈{A1, . . . , An}, V 〉, where
each agent Ai is atomic, as the cross-product of the ac-
tive modes of its sub-agents. The set of all variables
of A denoted by VA is the union of all variables of its
sub-agents, and the set of valuations of all variables is
denoted by ΣA. A state of the agent A then consists of
a globally active mode and an evaluation of all its vari-
ables. The set of all states of an agent A is denoted by
XA, and the set of initial states is denoted by X 0

A ⊆ XA.
The set of globally active constraints Cons(M ′) given a
state x = (M ′, v) is the union of all active constraints of
its sub-agents, the set of globally active invariants I(M ′)
is the union of all active invariants of its sub-agents, and
the set of globally active transitions T (M ′) is the union
of all active transitions of its sub-agents. We call a
function Φ : ΣA ×

�
≥0 → ΣA an admissible flow for the

globally active mode M ′, if ∀v ∈ ΣA : Φ(v, 0) = v and
Φ(v, t) is a solution to all globally active algebraic and
differential constraints in M ′.

We define a fixed step-size simulator for a given hy-
brid system as a first step towards the generated code.
The fixed step-size simulator with period ∆ for a given
Charon model can be seen as a computable approxima-
tion of the mathematical hybrid system model. Given
an admissible initial state of an agent, we evaluate the
behavior of an agent at time points 0, ∆, 2∆, 3∆, . . .

As mentioned earlier, we assume that the dependency
graph of atomic agents based on their globally active
transitions is acyclic.

Definition 1. A fixed step-size simulator with
period ∆ given a closed agent A = 〈SA, V 〉 of atomic
sub-agents SA = {A1, . . . , An} computes a potentially
partial function fA : � → XA. The function fA is de-
fined as fA(0) ∈ X 0

A, and fA(k + 1) = fn(fA(k)), with

1. f0(M, v) = (M, Φ(v, ∆)) where Φ is an admissible
flow in M , such that ∀t ∈ [0, ∆] : Φ(v, t) ∈ I(M);
and

2. there exists an admissible ordering o : {1, . . . , n} →

SA, that corresponds to a full ordering of the par-
tial order given by the dependency graph of atomic
agents based on their active transitions, such that
one of the following two evaluations is used for
1 ≤ i ≤ n:

(a) if the invariants of the active modes Mo(i) of
atomic sub-agent o(i) are not violated, then
fi(M, v) = fi−1(M, v); or

(b) if there exists an enabled active transition t ∈
T (Mo(i)), that is guard t(v) = true, where t

is switching to the globally active mode M ′,
then fi(M, v) = (M ′, actions t(fi−1(M, v))).

Please note that a fixed step-size simulator with pe-
riod ∆ for a non-blocking hybrid system H may dead-
lock. In fact, there are non-blocking hybrid systems
such that there is no step-size ∆, that would produce
a non-blocking fixed step-size simulator. It should also
be noted that this definition describes the computation
of a function with non-deterministic choices. A fixed
step-size simulator thus can compute a set of admissi-
ble functions according to this definition. The goal of
the forthcoming analysis is to assure the feasibility of
computing one such admissible function using the gen-
erated code. Lastly, it should be noted that the invari-
ant of some active mode may be violated in the case
2.(b). Part 2 models instantaneous transitions jumps
between modes, which are allowed to pass through in-
termediate, zero time invariant violations. However, for
a non-blocking behavior of the fixed step-size simula-
tor, one needs to assure that fA(k) is not violating any
invariant for all k ∈ � .

This model assumes that the simulator can sense the
world, compute necessary updates, and act accordingly
all in zero time. This is not a realistic model of em-
bedded systems. An embedded system needs to accom-
modate a time delay for sensing the world, as well as
computation and execution time. We will describe prop-
erties of the fixed step-size simulator though as a first
approximation of a model for our generated code. We
define a class of hybrid systems for which we can prove
that a fixed step-size simulator is an appropriate execu-
tion model. We denote an execution to be appropriate
if it corresponds to a valid trace of the hybrid system
constrained to sampling points. We now define a class of
closed agents for which we can show that it can be faith-
fully simulated by the aforementioned fixed step-size
simulator. Intuitively, we consider the class of closed
agents for which guards and invariants over continu-
ously updated variables overlap for a duration greater
than the sampling period. We use the non-determinism
of the continuous flow to allow a simulation to switch
modes at discrete time points. We define a function
PostΦ : 2ΣA ×

�
≥0 → 2ΣA for an admissible flow Φ

of an agent A of atomic sub-agents as: PostΦ(X, τ) =
{v ∈ ΣA | ∃x ∈ X, 0 ≤ t ≤ τ : Φ(x, t) = v}.

Definition 2. Given a globally active mode M for a
closed agent A = 〈SA, V 〉 of atomic sub-agents SA =
{A1, . . . , An} and an admissible flow Φ, define the guards
set G ⊆ I(M) as the set of valuations of VA such that

at least one globally active transition t is enabled. A
globally active mode M for the agent A is called an ε-
lookahead mode, iff

PostΦ(I(M) \ G, ε) ⊆ I(M). (1)

An ε-lookahead agent A = 〈SA, V 〉 is a closed agent
of atomic sub-agents such that all its globally active modes
are ε-lookahead modes.

It can be shown that a ∆-lookahead agent can be
faithfully simulated by a fixed step-size simulator with
period ∆; that is, the fixed step-size simulator as de-
fined above computes a trace at steps 0, 1, 2, 3, . . . that
corresponds to a real trace of the ∆-lookahead agent
at the time points 0, ∆, 2∆, 3∆, . . . It is clear that ur-
gent switching, which is taking a transition whenever
a guard is enabled, guarantees non-blocking simulation
using period ∆.

Theorem 1. A non-blocking ∆-lookahead agent A can
be faithfully simulated by a fixed step-size simulator with
period ∆; that is for any admissible trace rA :

�
≥0 →

XA of the ∆-lookahead agent A there exists a simula-
tion trace f that can be computed by a fixed step-size
simulator, such that ∀k ∈ � : r(k∆) = f(k).

Although Theorem 1 guarantees faithful simulation
of a ∆-lookahead agent, it does not mean that gener-
ated code embedded in a physical system will produce
a faithful trace. One still needs to address issues such as
timing delays introduced through sensing, computation
and actuation. However, if we consider the case that
we are trying to discretize an agent using a period ∆,
when the agent is not a ∆-lookahead agent, it is appar-
ent that even a fixed step-size simulator cannot guaran-
tee a faithful simulation if condition (1) is not met for
some reachable pair of guards set and invariant set. The
condition (1) can be tested efficiently for systems with
linear continuous dynamics using over-approximations
[7]. Additionally, it should be noted that it is enough
to prove that a mode is an ε-lookahead mode, if we can
show that all pairs of active transition guard sets and
invariant sets exhibit a big enough overlapping following
an analogous definition. This modular proof technique
is used in Section 5 to show feasibility of the code gen-
eration approach for Sony’s robotic dog AIBO.

5. CASE STUDY
To apply our model-based approach to a real sys-

tem, we used Sony’s four-legged robot, AIBO, as our
experimental platform. The robot is a typical exam-
ple of a hybrid system, consisting of analog devices for
input and output, and a digital control system to con-
trol the device. The control system is an embedded
computer based on a MIPS microprocessor running at
384 MHz, and equipped with 32 MB main memory and
16 MB flash memory. The robot contains servo mo-
tors controlling position of the joints in the legs and the
head, an LED display to simulate emotional expression,
a speaker for voice, and input devices such as camera,
microphones, and touch sensors. In this study, we are

using the servo motors to make the dog walk and the
touch sensors to detect ground contact. Applications
can actuate motors so that the joints are positioned at
a desired angle by sending a message containing the
command. The system can process a vector of com-
mands to the motors as frequently as once every eight
milliseconds (i.e., ∆ ≥ 0.008).

A typical program for the robot is coded as a C++

class that contains methods invoked whenever a mes-
sage arrives to the object. These methods typically im-
plement a finite state machine that determines a be-
havioral mode of the system. In each state, it composes
and sends a message containing the desired angle of each
joint that is determined by the dynamics of the current
state and the elapsed time since the last update of the
joint. Since there is no explicit means to deal with time
and dynamics in C++, code becomes easily awkward and
hard to understand. In addition, the message-driven ex-
ecution style tends to cause code for iterative jobs un-
structured because control of execution leaves at every
iteration. As the behavior becomes more complicated,
code may become unmanageably huge for hand coding
and debugging.

In contrast, Charon supports hierarchical state ma-
chines, explicit time manipulation, differential equations
describing dynamics, and static/dynamic analysis for
correctness, making it ideal for modeling event and time
synchronized behavior of robots. Figure 7 shows an ex-
ample message handling routine that utilizes the gener-
ated code replacing hand-coded if-then-else statements
and joint value calculation routines. The method update()

traverses active modes to trigger evaluation of equa-
tions, which assign a new value to the left-hand side
variable. As explained in Section 3, the assignment op-
erator is redefined such that it triggers a call to the
method write(), which can be overridden by a cus-
tomized function that finally calls platform specific APIs
as shown in the figure. To demonstrate modularity of
the generated code, we combined a sample program that
comes with the official SDK for the robot [28], with code
generated from a Charon model. The original sample
program moves the legs to a set position and then con-
trols the position of the head towards an object (pink
ball). We added our walking model to this program,
by slightly modifying the if-then-else statements of the
original program such that it has an additional state
that invokes the generated Charon code. The dog then
tracks the ball while walking.

The error analysis as it has been described in sec-
tion 4 can be used to show that our walking model
can be faithfully simulated on the mathematical model
of a fixed step-size simulator. Consider, for example,
the sub-mode UpDown(-1): The invariant y>=y limit;

y<=y upper limit and the guard y<=y lift overlap as-
suming that y limit ≤ y lift ≤ y upper limit, while
the dynamics are ẏ = −3v. Clearly, a fixed step-size
simulator with time step ∆, such that 3v∆ ≤ y lift −
y limit will guarantee a faithful simulation. On the
other hand, if y lift− y limit is too small for a given
∆, a fixed step-size simulator cannot guarantee a faith-
ful discretization, when 3v∆ > y lift−y limit. Notice

void Walk::Ready(const OReadyEvent& event) {
rgn = FindFreeRegion();

charon->update(DELTA);

subject[event.SbjIndex()]->SetData(rgn);
subject[event.SbjIndex()]->NotifyObservers(rgn);

}

class joint : public var {
public:

joint(int id) { this->id = id; }
virtual void write(double value) {

SetJointValue(rgn, id, value, newValue);
}

private:
int id;

};

Figure 7: Generated code.

the inherent duality of this approach: A given time-
step suggests a minimum guard-invariant overlap, while
a given overlap suggests a maximum time-step. Also no-
tice that if the model is deterministic (y lift−y limit =
0 in this example), a fixed step-size simulator is unreal-
izable because it implies that ∆ should be zero.

6. CONCLUSION
We presented a framework for automatic code gener-

ation of embedded software from high-level hybrid sys-
tems models and its implementation for a robotic plat-
form. We believe that a model-based approach for em-
bedded software development is beneficial for complex
hybrid systems. Traditionally, software development for
robot control includes a lot of hand-crafting to ensure
correct timing and desired performance. Furthermore,
debugging is more difficult because reasoning is done at
the level of code, rather than at the level of the abstract
model. In contrast, automatic code generation should
result in faster development with higher quality code
since it eliminates errors, which are often the result of
manual coding. In addition, it is easy for the designer to
concentrate on higher-level design issues, such as more
efficient walking style. We spent only a few days to
make the walking dog example work, even though we
have very little experience of robot programming and
walking is known to be one of the complex behaviors to
program.

Several aspects of the code generation framework have
been left for future work. First direction concerns en-
suring adequate performance of the generated code to
satisfy real-time constraints. In our target platform,
performance requirement was that the code should be
executed once every 8 msec. The computation power
provided by the embedded computer insided the robot
was sufficient in our experiment. However, as the model
becomes complicated and requires more computation
power, code optimization can be an important issue.
Second challenge is more systematic generation of the
glue code that connects platform-independent generated
code to the target platform. Ideally, we need a platform

specification language that will capture, in addition to
the platform API, the resources of the platform such as
the number and types of processors, available memory,
communication bandwidth, etc. The code generation
back-end can use this information to generate more ef-
ficient code and consider various implementation trade-
offs. Third issue concerns better understanding of the
relation between continuous model and discretized code.
In this paper, we considered errors under the assump-
tion that sensing, computation and actuation are per-
formed instantaneously at the beginning of each period.
For an execution model with total period ∆ that explic-
itly includes timing delays we need to require a (2∆)-
lookahead hybrid system. Assuming that sensing, com-
putation and actuation can be performed within ∆, the
system reacts to inputs in at most 2∆ time-units. To
illustrate this, assume a non-zero time delay δS for sens-
ing. The sensed inputs representing the values at some
time k∆ are available at time k∆ + δS only. If a com-
putation delay of δC is assumed, the system can react
only at time k∆ + δS + δC . If no guard is enabled at
time k∆, this implies that the system could react to a
transition only at time (k + 1)∆ + δS + δC . Given that
δS + δC ≤ ∆, to be safe, we require a (2∆)-lookahead
system.1 Finally, the framework needs to be extended
to multi-threaded and multi-processor code generation.
We described generation of single-threaded implementa-
tions. We have also implemented multi-threaded imple-
mentation with tight synchronization between threads.
It is interesting to consider generation of multi-threaded
code with different periods for different tasks. This will
require us to explore the scheduling of agent threads and
more sophisticated error analysis. Multi-processor code
generation is a more long-term goal and will require us
to map shared variables of the model into message pass-
ing and consider communication delays.

Acknowledgements
We would like thank the members of the Hybrid Sys-
tems Group of the University of Pennsylvania for their
various contribution to the Charon framework. Special
thanks go to Yerang Hur, who helped us during the ini-
tial development of the code generator, and to Jim Os-
trowski, Pradyumna Mishra, and Sachin Chitta of the
GRASP Lab, for their help with the AIBO platform.

7. REFERENCES
[1] R. Alur, C. Courcoubetis, N. Halbwachs, T.A.

Henzinger, P. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis
of hybrid systems. Theoretical Computer Science,
138:3–34, 1995.

[2] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivančić,
V. Kumar, I. Lee, P. Mishra, G. Pappas, and

1A similar (2∆) bound has been derived for the im-
plementability of switching behaviors on PLCs (pro-
grammable logic controllers), where ∆ is the upper
bound on the length of a PLC cycle consisting of polling
inputs, computation and delivery of outputs using a
timed-automata variant framework [13].

O. Sokolsky. Hierarchical modeling and analysis of
embedded systems. Proceedings of the IEEE,
91(1), 2003.

[3] R. Alur, T. Dang, and F. Ivančić.
Counter-example guided predicate abstraction of
hybrid systems. In Proceedings of the Ninth
International Conference on Tools and Algorithms
for the Construction and Analysis of Systems,
LNCS 2619, pages 208–223. Springer-Verlag, 2003.

[4] R. Alur, R. Grosu, I. Lee, and O. Sokolsky.
Compositioal refinement of hierarchical hybrid
systems. In Hybrid Systems: Computation and
Control, Fourth International Workshop, LNCS
2034, pages 33–48, 2001.

[5] R. Alur, T.A. Henzinger, and E.D. Sontag,
editors. Hybrid Systems III: Verification and
Control. LNCS 1066. Springer-Verlag, 1996.
Proceedings of the Third International Workshop.

[6] P. Antsaklis and A. Michel. Linear Systems.
McGraw Hill, 1997.

[7] E. Asarin, O. Bournez, T. Dang, and O. Maler.
Approximate reachability analysis of
piecewise-linear dynamical systems. In Hybrid
Systems: Computation and Control, Third
International Workshop, LNCS 1790, pages 21–31.
2000.

[8] G. Berry and G. Gonthier. The synchronous
programming language esterel: design,
semantics, implementation. Technical Report 842,
INRIA, 1988.

[9] G. Booch, I. Jacobson, and J. Rumbaugh. Unified
Modeling Language User Guide. Addison Wesley,
1997.

[10] G.C. Buttazo. Hard real-time computing systems:
Predictable scheduling algorithms and applications.
Kluwer Academic Publishers, 1997.

[11] C.T. Chen. Linear System Theory and Design.
Oxford University Press, 1999. 3rd Edition.

[12] A. Deshpande, A. Göllu, and P. Varaiya. SHIFT:
a formalism and a programming language for
dynamic networks of hybrid automata. In Hybrid
Systems V, LNCS 1567. Springer, 1996.

[13] H. Dierks. PLC-automata: A new class of
implementable real-time automata. Theoretical
Computer Science, 253(1):61–93, December 2000.

[14] J. Eker, J. Janneck, E.A. Lee, J. Liu, X. Liu,
J. Luvig, S. Neuendorffer, S. Sachs, and Y. Xiong.
Taming heterogeneity–the Ptolemy approach.
Proceedings of the IEEE, 91(1):127–144, 2003.

[15] Entertainment Robot AIBO.
http://www.aibo.com.

[16] J. Esposito, V. Kumar, and G.J. Pappas.
Accurate event detection for simulating hybrid
systems. In Hybrid Systems: Computation and
Control, Fourth International Workshop, LNCS
2034, pages 204–217, 2001.

[17] N. Halbwachs, P. Caspi, P. Raymond, and
D. Pilaud. The synchronous dataflow
programming language Lustre. Proceedings of the
IEEE, 79:1305–1320, 1991.

[18] D. Harel. Statecharts: A visual formalism for
complex systems. Science of Computer
Programming, 8:231–274, 1987.

[19] B. Hengst, D. Ibbotson, S. B. Pham, and
C. Sammut. Omnidirectional locomotion for
quadruped robots. In RoboCup 2001: Robot soccer
world cup V, LNAI 2377, pages 368–373.
Springer-Verlag, 2002.

[20] T. Henzinger and C. Kirsch, editors. Embedded
Software, First International Workshop. LNCS
2211. Springer, 2001.

[21] T.A. Henzinger, B. Horowitz, and C.M. Kirsch.
Giott: A time-triggered language for embedded
programming. Proceedings of the IEEE,
91(1):84–99, 2003.

[22] T.A. Henzinger and C.M. Kirsch. The embedded
machine: Predictable, portable, real-time code. In
Proceedings of the ACM Conference on
Programming Language Design and
Implementation, pages 315–326, 2002.

[23] G. Karsai, J. Sztipanovits, A. Ledeczi, and
T. Bapty. Model-integrated development of
embedded software. Proceedings of the IEEE,
91(1):145–164, 2003.

[24] J. Kim and I. Lee. Modular code generation from
hybrid automata based on data dependency. In
Proceedings of the 9th IEEE Real-Time and
Embedded Technology and Applications
Symposium, 2003. To appear.

[25] E.A. Lee. What’s ahead for embedded software.
IEEE Computer, pages 18–26, September 2000.

[26] N. Lynch and B.H. Krogh, editors. Hybrid
Systems: Computation and Control. LNCS 1790.
Springer, 2000.

[27] O. Maler, Z. Manna, and A. Pnueli. From timed
to hybrid systems. In Real-Time: Theory in
Practice, REX Workshop, LNCS 600, pages
447–484. Springer-Verlag, 1991.

[28] OPEN-R SDK. http://www.aibo.com/openr.

[29] B. Selic, G. Gullekson, and P.T. Ward. Real-time
object oriented modeling and design. J. Wiley,
1994.

[30] Simulink. http://www.mathworks.com.

APPENDIX:
Code Generation Algorithm

Algorithm 1 CodeGen (M = 〈E, X, V, SM, Cons, T 〉)

GenStmt(“class”, M , “: public mode”);

/* sub-modes */
for all m ∈ SM do

GenStmt(“mode *”, m);
if m is not visited then

CodeGen (m); /* recursive call */

/* variables */
for all v ∈ V do

if v ∈ Vl then
GenStmt(“var&”, v);

else
GenStmt(“var”, v);

/* differential equations */
GenStmt(“void diff(delta)”);
for all Dx ∈ Cons do

/* integration */
GenStmt(x, “+=”, fDx

, “* delta”);

/* algebraic equations */
GenStmt(“int alge(int id)”);
GenStmt(“switch (id)”);
for all Ax ∈ Cons do

GenStmt(“case”, Ax.id)
GenStmt(x, “=”, fAx

); /* assignment */
GenStmt(“return 0”)

GenStmt(“return -1”)

/* invariants */
GenStmt(“bool inv()”);
for all Ix ∈ Cons do

GenStmt(“if (assert(”, fIx
, “))”

GenStmt(“return false”);
GenStmt(“return true”);

/* transitions and control points */
CodeGenTrans(T); /* Algorithm 2 */
CodeGenCtrlPoint(E, X); /* Algorithm 3 */

Algorithm 2 CodeGenTrans (T)

GenStmt(“mode *trans(mode *h)”);

for all t = 〈m.x
g|α
−→ m′.e〉 ∈ T do

/* internal transition from m.x to m′.e */
GenStmt(“if (h ==”, m, “&&”, m.x, “()”, “&&”, g, “)”);
for all ax ∈ α do

GenStmt(x “=” fax
); /* discrete actions */

for all ax ∈ α do
GenStmt(x,“.sync()”); /* synchronization */

/* update dependency links */

for all t′ = 〈m.x
g|α
−→ m′.e〉 ∈ T do

for all ax ∈ α do
GenStmt(x, “.unlink(”, M , t′.id , “)”)

GenStmt(m′.e, “()”); /* entry transition */

for all t′ = 〈m′.x
g|α
−→ m′′.e〉 ∈ T do

for all ax ∈ α do
GenStmt(x, “.link(”, M , t′.id , “)”)

GenStmt(“return”, m′);

for all t = 〈m.x
g|α
−→ M.x′〉 ∈ T do

/* exit transition from m.x to M.x′ */
GenStmt(if (h ==”, m, “&&”, m.x, “()”, “&&”, g, “)”);
for all ax ∈ α do

GenStmt(xa, “=”, fax
); /* discrete actions */

for all ax ∈ α do
GenStmt(x,“.sync()”); /* synchronization */

GenStmt(“exitCode =”, m.x); /* set exit code */
/* remove dependency links */

for all t′ = 〈m′.x
g|α
−→ m′′.e〉 ∈ T do

for all ax ∈ α do
GenStmt(x, “.unlink(”, M , t′.id , “)”)

for all Ax ∈ Cons do
GenStmt(x, “.unlink(”, M , Ax.id , “)”)

GenStmt(“return null”);

Algorithm 3 CodeGenCtrlPoint (E, X)

/* entry point */
for all e ∈ E do

GenStmt(“void”, e, “()”);
/* reset exit code */
GenStmt(“exitCode = null”);

for all t = 〈m.e
g|α
−→ m′.e′〉 ∈ T do

GenStmt(“if (”, g, “)”);
for all a ∈ α do

GenStmt(a.LHS, “=”, a.RHS);
GenStmt(m′.e′, “()”); /* destination entry */
/* update dependency links */
for all Ax ∈ Cons do

GenStmt(x, “.link(”, M , Ax.id , “)”)

for all t′ = 〈m′.x
g|α
−→ m′′.e〉 ∈ T do

for all ax ∈ α do
GenStmt(x, “.link(”, M , t′.id , “)”)

GenStmt(“return”);

/* exit point */
for all x ∈ X do

GenStmt(“bool x()”);
/* test if the mode exited through x */
GenStmt(“return exitCode ==”, x);

