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Abstract

This paper presents a 3D non-rigid registration algo-

rithm between histological and MR images of the prostate

with cancer. To compensate for the loss of 3D integrity

in the histology sectioning process, series of 2D histolog-

ical slices are first reconstructed into a 3D histological vol-

ume. After that, the 3D histology-MRI registration is ob-

tained by maximizing a) landmark similarity and b) cancer

region overlap between the two images. The former aims to

capture distortions at prostate boundary and internal blob-

like structures; and the latter aims to capture distortions

specifically at cancer regions. In particular, landmark sim-

ilarities, the former, is maximized by an annealing process,

where correspondences between the automatically-detected

boundary and internal landmarks are iteratively established

in a fuzzy-to-deterministic fashion. Cancer region overlap,

the latter, is maximized in a joint cancer segmentation and

registration framework, where the two interleaved prob-

lems – segmentation and registration – inform each other

in an iterative fashion. Registration accuracy is established

by comparing against human-rater-defined landmarks and

by comparing with other methods. The ultimate goal of

this registration is to warp the histologically-defined cancer

ground truth into MRI, for more thoroughly understanding

MRI signal characteristics of the prostate cancerous tissue,

which will promote the MRI-based prostate cancer diagno-

sis in the future studies.

1. Introduction

Over decades of technological and clinical progress,

Magnetic Resonance Imaging (MRI) has emerged as one of

the most important tools for diagnosing abnormalities and

cancers in a variety of human organs. Recently, MRI has

been increasingly used to diagnose prostate cancer, the most

common cancer and the second leading cause for cancer-

related death in American men [3]. However, limited di-

agnostic accuracy has been reported [1, 2], mainly because

the relationship between the MRI imaging signals and the

underlying anatomic properties of the prostate cancerous

tissue is far from being completely understood. To more

thoroughly understand the MRI signal characteristics of the

prostate cancerous tissue, cancer ground truth is required in

the prostate MR images.

To label cancer ground truth in prostate MR images,

one often has to refer to histological images of the same

prostate. This is because histology could reveal the under-

lying anatomic reality of the cancerous tissue at the mi-

cro level, providing the authentic cancer ground truth. To

warp the histologically-defined cancer ground truth to MR

images, registration between the two images is required.

Therefore, this paper focuses on registration between his-

tological and MR images of the same prostate.

Histology-MRI registration is often severely challenged

in the following two respects. The first challenge is the

2D/3D distortions in histological images. The distortions

are introduced when the prostate is extracted from the body

and embedded into a paraffin box, causing inevitable dehy-

dration, tissue extraction and the loss of blood irrigation.

Distortions are also introduced when the prostate is sec-

tioned into series of 2D slices, causing the loss of 3D in-

tegrity. In the presence of those 2D/3D distortions, regis-

tration between histological and MR images has to be non-

rigid, although they are acquired from the same prostate.

The second challenge is the inherent differences of the

imaging characteristics between histology and MRI. As can

be observed in Fig. 1, those inherent differences cause cer-

tain features and contrasts evidently visible in one image but

hardly visible in the other. Meanwhile, the intensity distri-

butions between the two images do not follow a consistent

relationship, which violates the fundamental assumption of

the commonly-used mutual information (MI) [4] based reg-

istration methods. Therefore, an ideal registration method

should have a robust similarity metric to establish corre-

spondences between those two images.

Because of the aforementioned challenges, the literature

specifically dealing with histology-MRI registration is rel-
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Figure 1. Typical histological image (A) and MR image (B) of the

same prostate. Cancer ground truth is defined in histology (inside

the red contour in subfigure (A)), but largely unknown and left to

be estimated in MRI (B). For display purpose, only 2D slices are

shown, but our algorithm is in 3D.

atively limited. Pioneer work [5, 6] used affine registration

to align histology-MRI of the brain and presented promis-

ing results, but affine transformation has limited ability to

deal with the non-linear distortions. To deal with non-

linear distortions, Pitiot et al [7] automatically partitioned

images into pieces and used piece-wise affine model with

the final integrated deformable deformations. They have

shown impressive results in brain images, but the prostate

images are more difficult to be naturally partitioned into

anatomically-meaningful pieces. Another approach by Ja-

cobs et al [8] used a surface matching method to align rat

brain boundaries, followed by the thin-plate-spline based

warping, but the internal distortions were not well cap-

tured. To better capture internal distortions, other methods

[9][10][11] built correspondences on internal landmarks,

but the landmark detection and matching processes often

need human interventions, which is time-consuming and ir-

reproducible. To avoid human interventions, recent work

[12][13][14] automated the landmark detection and match-

ing processes. In their work, the internal landmarks are au-

tomatically detected as those anatomically-salient blob-like

structures. However, due to the lack of blob-like structures

within and around cancer regions, few or no internal land-

marks can be detected there. Consequently, the distortions

at cancer regions are less likely to be captured. This causes

a severe problem, especially when cancer regions are the

main regions of interest in this histology-MRI registration

context (keep in mind that, our goal in this paper is to warp

the histologically-defined cancer regions into MR image).

This paper presents a novel 3D non-rigid registration

algorithm between histological and MR images of the

prostate. Our algorithm initializes with the coarse recon-

struction of the series of 2D histological slices into a 3D

volume, in order to recover 3D integrity of histology. Then,

3D histological and 3D MR images are registered based

on two criteria: maximization of landmark similarities and

maximization of cancer region overlap. The former aims

to capture 2D/3D distortions in the boundary and internal

(non-cancer) regions. The latter aims to capture distortions

specifically within and around cancer regions, which can be

hardly captured by the internal landmarks in the first crite-

rion. In particular, the former is obtained by an annealing

process where correspondences on boundary and internal

landmarks are established in a fuzzy-to-deterministic fash-

ion. The latter is obtained by a joint cancer segmentation

and registration framework, where the two interleaved prob-

lems – segmentation and registration – benefit each other in

an iterative fashion. Finally, the registration accuracy is es-

tablished by comparing against human-rater-defined land-

marks and by comparing with other methods.

This paper builds upon the work of [13] and has the fol-

lowing two extensions. First, the landmark-based direct reg-

istration method in [13] is now extended into a joint cancer

segmentation and registration framework, using the regis-

tration result from [13] as the initialization. In the joint

framework, the two interleaved processes – segmentation

and registration – benefit each other and iteratively improve

the overall accuracy, especially the accuracy at the cancer

regions, which are the regions of interest in this histology-

MRI context (since our objective is to use the registration

to warp cancer regions from histology to MRI). Second, the

forward landmark matching (histology → MRI) in [13] is

extended to a forward-backward landmark matching (his-

tology ↔ MRI) in this work, therefore more reliable corre-

spondences can be established [21], and better initialization

result can be obtained for the subsequent joint cancer seg-

mentation and registration framework.

The remainder of this paper is organized as follows. Sec-

tion 2 presents details of the registration algorithm, with re-

sults on simulated and real data shown in Section 3. The

whole paper is discussed and concluded in Section 4.

2. Method

2.1. Data Acquisition

T2-weighted MR images are acquired with a whole body

Siemens Trio MR scanner, using fast spin echo (FSE) se-

quence, TE 126 msec., TR 3000 msec., 15.6 khz, and 4 sig-

nal averages. The MR image size is typically 256×256×64

voxels and voxel size is 0.15mm×0.15mm×0.75mm. His-

tological slices are acquired in four steps: first, a rotary

knife sections the embedded gland starting at its square

face. (To facilitate the sectioning procedure, each section

is further cut in quadrants). Each section is 4 µm thick and

the interval between neighboring sections is 1.5 mm. Then,

each histological section is H/E stained and microscopically

examined by pathologists to label cancer ground truth. Af-

ter that, the quadrants of each section are scanned using a

whole slide scanner and carefully aligned into a 2D histo-

logical slice using Adobe Photoshop R© by the pathologists.

Finally, histological slices are converted into gray level im-

ages and resampled from their original resolution to match

the resolution of MR images. Overall, MR and histological

images for five prostate specimens are acquired.
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2.2. Overall Energy Function

Given histological image H : ΩH ⊂ ℜ3 7→ ℜ and MR

image M : ΩM ⊂ ℜ3 7→ ℜ of the same prostate, the 3D

non-rigid (deformable) registration algorithm in this paper

seeks a transformation h : ΩH 7→ ΩM that warps every

point u ∈ ΩH to its counterpart h(u) ∈ ΩM , by maximizing

an overall energy function

E(h) = αELandmarkSimilarity

(
h; {BH , BM}, {IH , IM}

)

+ βECancerRegionOverlap

(
h; CH , CM

)

− γR(h). (1)

Here ELandmarkSimilarity , the first registration criterion,

is the similarity metric on both boundary landmarks (sets

BH&BM ) and internal landmarks (sets IH&IM ) in the

two images. ECancerRegionOverlap , the second registra-

tion criterion, is the similarity metric between the cancer

ground truth CH in histological image and the cancer re-

gion CM in MR image. (Note that CM is largely unknown

and to be estimated by the registration process). R(h) is

the regularization of the transformation, which is described

by the ”bending energy” [23] of h in our algorithm, i.e.,

R(h) =
∫∫∫

(x,y,z)∈ΩM

(
∂2h

∂x2 + ∂2h

∂y2 + ∂2h

∂z2

)2

dxdydz. α, β and

λ are balancing parameters. The notation of each part of the

registration framework is illustrated in Fig. 2.

In the subsequent sections, Section 2.3 will elaborate

the 3D histology reconstruction in the pre-processing stage;

based on that, Section 2.4 and 2.5 will elaborate each of the

two registration criteria in details.

2.3. Coarse Reconstruction of Histological Volume

In the pre-processing, series of 2D histological slices are

coarsely reconstructed into a 3D volumetric image, in or-

der to partially account for the loss of 3D integrity during

the histological sectioning. The construction is coarse at

this pre-processing stage because it will be refined by the

3D non-rigid registration with MRI in the subsequent Sec-

tions 2.4 and 2.5. The coarse reconstruction is iteratively

obtained; in each iteration, every histological slice is rigidly

registered to the central histological slice based on mutual

Figure 2. Notations: the registration seeks matching boundary

landmarks ({pH
i } & {pM

j }), internal landmarks ({qH
k } & {qM

l }),

and cancer regions (CH & CM ) between the two images.

information metric, then the tentatively reconstructed 3D

histological volume is affinely registered with the 3D MRI

volume based on correlation coefficient metric. The choice

of rigid model for across-histological-slice registration and

the choice of affine model for across-volume registration

agree with existing work [5, 6]. The resultant 3D histolog-

ical volume provides initialization for the subsequent 3D

non-rigid registration with MR image.

2.4. Registration Criterion 1: Maximization of
Landmark Similarities

The first registration criterion seeks to maximize similar-

ities on boundary and internal landmarks, so as to capture

distortions on boundary and internal blob-like structures.

Boundary Landmarks. Boundary landmarks are auto-

matically detected as vertices on the 3D surface of the

prostate capsule. They are denoted as BH = {pH
i |i =

1, 2, . . . , I} and BM = {pM
j |j = 1, 2, . . . , J} in histo-

logical and MR images, respectively. Each boundary land-

mark is represented by a feature vector f (·), which repre-

sents the curvature-based geometry around the landmark at

various scales [15]. Similarity on two boundary landmarks

pH
i ∈ BH and pM

j ∈ BM is measured by the Euclidean

distance between their geometric feature vectors – smaller

distance indicates higher similarity between them,

SIMBnd

(
h

(
pH

i

)
, pM

j

)
= −‖f

(
h

(
pH

i

))
− f

(
pM

j

)
‖.
(2)

Internal Landmarks. Internal landmarks are automati-

cally detected as centers of blob-like structures using a scale

space analysis method [16]. They are denoted as IH =
{qH

k |k = 1, 2, . . . , K} and IM = {qM
l |l = 1, 2, . . . , L}

in histological and MR images, respectively. Similarity on

two internal landmarks qH
k ∈ IH and qM

l ∈ IM is defined

as the normalized mutual information (NMI)[17] between

the two blobs NH

(
qH

k

)
and NM

(
qM

l

)
, i.e.,

SIMInt

(
h

(
qH

k

)
, qM

l

)
= NMI

(
NH

(
h

(
qH

k

))
, NM

(
qM

l

))
.

(3)

Total Similarities on Landmarks. The total landmark

similarities (including boundary and internal) to be maxi-

mized are then defined as:

max
h

ELandmarkSimilarity

(
h; {BH , BM}, {IH , IM}

)

=

I∑

i=1

J∑

j=1

aij

[
SIMBnd

(
h

(
pH

i

)
, pM

j

)]

+

K∑

k=1

L∑

l=1

1

2
bkl

[
SIMInt

(
h

(
qH

k

)
, qM

l

)
+ SIMInt

(
qH

k , h−1
(
qM

l

))]

+





I∑

i=1

J∑

j=1

aij log (aij) +

K∑

k=1

L∑

l=1

bkllog (bkl)



 . (4)
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Here aij ∈ [0, 1] (bkl ∈ [0, 1]) is the fuzziness of the

matching between two boundary (internal) landmarks pH
i

and pM
j (qH

k and qM
l ). They are defined the same as

those in [18, 13, 14, 19, 20], satisfying
∑J+1

j=1 aij = 1

and
∑L+1

l=1 bkl = 1, with an extra column ((J + 1)th and

(L+1)th) to handle outliers. Transformation is modeled by

thin-plate-spline (TPS) [23], a commonly-used model that

minimizes the ”bending energy” of the transformation h.

Remarks. The similarity definitions and landmark match-

ing processes in Eqns. (2)(3)(4) have the following three

merits to promote matching accuracy and reliability:

1. In our algorithm, boundary landmarks are matched

by the surface geometries around them, and in-

ternal landmarks are matched by the anatomically-

meaningful blob-like structures around them. The

geometric/anatomic property based matching is rela-

tively independent of the underlying intensity distribu-

tions. Therefore, although the intensity distributions

from histological and MR images do not follow con-

sistent relationships, where traditional mutual infor-

mation [4] based matching methods tend to fail, our

algorithm could establish reliable correspondences be-

tween those two images.

2. The fuzzy correspondence weights {aij} and {bkl} are

iteratively updated in an annealing process. In this an-

nealing process, landmark correspondences converge

from fuzzy to deterministic, transformation converges

from coarse to fine, and the accuracies of both pro-

cesses are improved. Due to the space limitation, read-

ers are referred to [18] for more details.

3. Forward-backward matching mechanism is used to en-

courage two-way matching uniqueness. Ideally, corre-

spondence should be established between a histologi-

cal internal landmark qH
l and a MR internal landmark

qM
k if and only if a) in the forward matching (h), qM

k

is most similar to qH
l among all MR internal land-

marks; and b) in the backward matching (h−1), qH
l

is most similar to qM
k among all histological internal

landmarks. In extension of [13], which only performed

matching in the forward direction, our approach en-

forces forward-backward matching consistence, there-

fore encourages two-way matching uniqueness.

2.5. Registration Criterion 2: Maximization of
Cancer Region Overlap

Those boundary and internal landmarks described in the

first registration criterion aim to capture 2D/3D distortions

at prostate boundary and internal blob-like structures. How-

ever, due to the lack of blob-like structures around cancer

regions, very few or even no internal landmarks can be de-

tected within and around cancer regions. Consequently, the

distortions around cancer regions are less likely to be cap-

tured. This causes a severe problem, since cancer regions

are the main regions of interest in our histology-MRI regis-

tration context (recall that our goal is to use the registration

to warp cancer regions from histology to MRI).

To specifically capture distortions at cancer regions, the

second registration criterion is proposed: maximization of

cancer region overlap between the two images, i.e.,

max
h; CM

ECancerRegionOverlap(h; CH , CM ) =
|h(CH) ∩ CM |

|h(CH) ∪ CM |
,

(5)

where | · | is the cardinality of a set, CH is the pathologist-

defined cancer ground truth region in histological image,

and CM is the actual cancer region in MR image, which

is to be segmented in the MR image but the segmentation

itself is a challenging task that will be addressed below.

Rationale for Joint Cancer Segmentation and Registration.

Note, however, that there are two unknowns in Eqn. (5): h,

the registration between two images, and CM , the cancer

segmentation in MR image. Those two unknowns represent

two interleaved processes that can potentially benefit each

other – better registration h can provide a better initializa-

tion h(CH) for more accurately segmenting CM in MR

image; in return, a more accurately segmented MR cancer

region CM could provide additional correspondences

with the histological cancer regions CH , leading to better

registration h between the two images.

To take advantage of the mutual benefits between those

two interleaved processes, we herein propose a joint can-

cer segmentation and image registration framework. This

framework is initialized by the registration obtained from

Eqn. (4); after initialization, cancer segmentation and regis-

tration refinement are iteratively conducted. Those two pro-

cesses are described below – given the tentative registration

hz−1 from the (z − 1)th iteration, arriving at better cancer

segmentation CM
z and thereafter the registration refinement

hz in the zth iteration.

Cancer Segmentation. Cancer segmentation is obtained

based on learning cancer characteristics in MR image from

the tentatively warped cancer regions (e.g., the regions out-

lined by the red contour in Fig. 3(a)). As can be observed

from Fig. 3(a), the learning-based segmentation in MR im-

age encounters two difficulties: 1) MRI intensities are often

inhomogeneous and subtle-varying, causing voxels of the

same tissue type to appear differently; and 2) cancer regions

in MRI usually do not have clear edges/boundaries, so that

the traditional edge-driven methods tend to fail.

To address those two difficulties, our segmentation con-

sists of two steps, as shown in Fig. 3: 1) generating a cancer

probability map in MR space (c.f. Fig. 3(b)) – in this way,

the inhomogeneous and subtle-varying MR image inten-

sities are converted into homogenous cancer probabilities
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Figure 3. Demonstration of the two steps in the learning-based,

region-driven cancer segmentation. (a) MRI image, with the ten-

tatively warped cancer region outlined by red contour; (b) Proba-

bility map, generated by learning cancerous tissue characteristics

from the warped cancer regions; (c) Segmented cancer region (in

red contour), by evolving a deformable model that is region-driven

rather than edge/boundary-driven.

[24]; and 2) segmenting cancer regions by evolving a de-

formable model on the probability map (c.f. Fig. 3(c)) – the

segmentation is region-driven rather than edge/boundary-

driven, in order to produce reliable results even when cancer

boundary/edge can not be clearly detected [27, 26].

Cancer probability map is generated by a supervised

classifier (support vector machine (SVM) [25] in this

study). The classifier learns Gray Level Co-occurrence Ma-

trix (GLCM) [22] textures of cancerous voxels in the ten-

tatively warped region hz−1(C
H) and subsequently assigns

a cancer probability to each voxel in the MR image. The

resulting cancer probability map is denoted as Pr(·). SVM

classifier is chosen because it incorporates an implicit sam-

ple selection mechanism [25], which is capable of removing

outliers that have been incorrectly included into the warped

cancer regions because of registration errors at this stage.

On the probability map Pr(·), an evolving surface Γ is

used to refine cancer segmentation in this zth iteration, lead-

ing to CM
z in the MR image. The evolving surface Γ is ini-

tialized with the surface constructed from the warped cancer

region hz−1(C
H). It then evolves to segment cancer region

CM
z , by maximizing the following energy function ε(Γ) in

a level-set implementation, i.e.,

CM
z = inside(Γ∗), (6a)

where

Γ∗ = arg max
Γ

ε(Γ) (6b)

and ε(Γ) = λ1

∫

x∈inside(Γ)⊂ℜ3

Pr(x)dx

︸ ︷︷ ︸

Overall Cancer Likelihood

− λ2

∫

x∈inside(Γ)⊂ℜ3

|Pr(x) − mIn|dx

︸ ︷︷ ︸

Cancer Region Inhomogeneity

.

(6c)

Here mIn =

∫

x∈inside(Γ)⊂ℜ3 Pr(x)dx
∫

x∈inside(Γ)⊂ℜ3 dx
is the mean cancer prob-

ability inside the evolving surface. λ1 and λ2 are the empir-

ically determined balancing parameters.

Understanding the two terms in Eqn. (6c) is essential to

the understanding of the region-driven cancer segmentation

in our approach. Generally, those two terms in Eqn. (6c)

aim to locate the evolving surface Γ at places such that 1)

voxels inside the surface are overall most likely to be can-

cer (the first term); and 2) voxels inside the surface are most

similar to each other so they all belong to the same tissue

type, and the segmented region is therefore most homoge-

neous (the second term). Accordingly, the first term tends

to expand the surface, because the overall cancer likelihood

inside the surface will increase if the surface includes more

voxels; whereas the second term tends to shrink the sur-

face, because the regional inhomogeneity (also the voxel-

wise variation) will decrease if the surface includes less

voxels. Both terms rely on regional information other than

edge/boundary information, therefore the segmentation is

purely region-driven, and is capable to arrive at reliable seg-

mentation results, even though the cancer boundary is diffi-

cult to be detected directly. Meanwhile, the implementation

is based on level set formulation, so that it can accommo-

date to the topology variations of cancer regions.

Refinement of Registration. The tentative cancer seg-

mentation CM
z in MRI in the zth iteration provides addi-

tional correspondences with cancer regions CH in the his-

tological image. This additional correspondence help refine

registration from hz−1 to hz , such that the cancer region

overlap is maximized in this zth iteration, i.e.,

hz = argmax
h

ECancerRegionOverlap

(
h; CH , CM

z

)
. (7)

Here ECancerRegionOverlap(·; ·, ·) is defined in Eqn. (5).

CM
z = inside(Γ∗) is the cancer segmentation result by the

evolving surface in the zth iteration. In implementation of

Eqn. (7), the refined registration hz is obtained by matching

surfaces between the segmented cancer region CM
z in MR

image and the ground truth cancer region CH in histological

image, using an adaptive surface matching method in [15].

The arrival at hz then finishes the zth loop of cancer seg-

mentation and registration refinement. This loop iterates

until convergence. Convergence is satisfied when the cancer

region overlap between two successive iterations reaches a

high percentage such as 95%.

It is worth noting that the idea of interleaving segmen-

tation and registration in a unified framework was first de-

veloped perhaps in [29]. Since then it had found successful

applications in a number of studies [30, 31, 32, 33, 24, 34].

A distinctive feature of our joint cancer segmentation and

registration approach is that, it is specifically designed for

images from two fundamentally different imaging modali-

ties (i.e., histology and MRI), while others were for images

necessarily from similar or even identical modalities (e.g.,

MRI).
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2.6. Summary of the Algorithm

Fig. 4 summarizes the whole registration algorithm. Our

algorithm begins with coarsely reconstructing series of 2D

histological slices into 3D volume. Then it pursues the reg-

istration in 3D, first by maximizing boundary and internal

landmark similarities (the first registration criterion). After

that, the algorithm deals specifically with the registration of

cancer regions – the regions of interest in our study – by

maximizing cancer region overlap (the second registration

criterion), which is implemented in a joint cancer registra-

tion and image registration framework. Those two criteria

together lead to the final 3D non-rigid registration between

histological and MR images (overall energy function).

Figure 4. Summary of our non-rigid registration algorithm.

3. Results

Our algorithm is validated on the histological and MR

image pairs described in Section 2.1. All experiments were

operated in C code on a 2.8 G Intel Xeon processor with

UNIX operation system. The computational time for regis-

tering two images of size 256×256×64 is typically around

25 minutes. This includes a) the 3D coarse reconstruction

of histology in the pre-processing stage, b) the maximiza-

tion of landmark similarities (criterion 1), and c) the max-

imization of cancer region overlap (criterion 2). For each

of those three components, qualitative and/or quantitative

results on simulated and/or real data are provided. Finally,

Figure 5. Coarse reconstruction for simulated (top row) and real

(bottom row) data. (a1,a2) Series of distorted slices stacked to-

gether without reconstruction; (b1,b2) Reference volume; (c1,c2)

Reconstructed volume. In each sub-figure, bottom left – sagittal

view; bottom right – axial view; top right: coronal view.

the overall registration accuracy is established by compar-

ing against human-rater-defined landmarks and by compar-

ing with other registration methods.

3.1. Results for Coarse Reconstruction of Histology

As shown in Fig. 5, experiments on simulated and real

data are provided to show that the coarse reconstruction

is able to capture the linear part of the 3D/2D distortions

and to partially recover the 3D integrity of the volumetric

image. In the simulated case, we have simulated 2D/3D

linear distortions, by first applying 3D affine distortion on

the original volume, followed by series of 2D distortions

(different slices undergo different 2D distortions indepen-

dently), resulting in the series of 2D/3D distorted slices

in Fig. 5(a1). The reconstructed volume in Fig. 5(c1)

has recovered the linear 2D/3D distortions almost perfectly.

Then, the same reconstruction method is applied to recon-

struct the series of real histological slices (Fig. 5(a2)), with

results in Fig. 5(c2). This provides a good initialization for

the subsequent 3D non-rigid registration with MRI volume.

Note that this coarse reconstruction only captures the lin-

ear part of the 2D/3D distortions and only partially recovers

the 3D integrity at this stage; the non-linear distortions are

left for the subsequent 3D non-rigid registration process.

3.2. Results for Max. Landmark Similarities

Fig. 6 shows results for the detection and matching of

the boundary and internal landmarks. They are conducted

in 3D, but for display purpose, the matched landmarks are

only shown in 2D in Fig. 6.
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(a) Boundary Landmark Matching (b) Internal Landmark Matching

Figure 6. Boundary and internal landmark detection and matching

results. (A1,B1) Surface of prostate capsule. (A2,B2) Correspond-

ing boundary landmarks (red and yellow dots). (C1,D1) Detected

internal landmarks (not matched) by blue and red circles; (C2,D2)

Corresponding internal landmarks by blue and red crosses.

3.3. Results for Max. Cancer Region Overlap

The second registration criterion aims to increase regis-

tration accuracy specifically for the cancer regions, and is

satisfied by jointly solving two interleaved problems – can-

cer segmentation and registration (Section 2.5).

Fig. 7 demonstrates how those two interleaved processes

benefit each other. On one hand, the tentative registration

warps the histologically-defined cancer ground truth (red

contour in Fig. 7(A)) onto MR image. The warped region

(yellow contour in Fig. 7(B)(C)) provides prior knowledge

of cancer characteristics in MRI. Based on this prior knowl-

edge, cancer regions can be more accurately segmented, as

the segmented result (blue contour in Fig. 7(C)(D)) is now

closer to the manually-delineated cancer regions (red con-

tour in Fig. 7(D)). In this way, registration benefits can-

cer segmentation by providing prior knowledge of cancer

characteristics. On the other hand, the segmented cancer re-

gion in MR image (blue contour in Fig. 7(C)(D)) provides

additional correspondence with its counterpart in histolog-

ical image (red contour in Fig. 7(A)), which can be used

to improve registration accuracy. In this way, cancer seg-

mentation also benefits registration. Overall, it is their mu-

tual benefits that motivate the joint cancer segmentation and

registration framework.

Figure 7. Demonstration of the mutual benefits between cancer

segmentation and registration, and their roles in promoting regis-

tration accuracy at cancer regions. Please refer to text for details.

3.4. Overall Accuracy

Registration accuracy is established by a) comparing

against landmarks defined by two independent human

raters, and b) comparing with other registration methods.

For the former, two raters independently defined correspon-

dences on anatomically salient landmarks. The landmark

errors between registered results and manual definitions are

listed in Table 1, which shows that the accuracy of our al-

gorithm is comparable to that of the human experts’ visual

registration. Results for the latter is shown in Table 2, where

the registration accuracies of four different methods (in-

cluding ours) are compared, in terms of the overlap between

the warped cancer regions in MR image and the manually

label cancer regions in MR image – higher overlap indicates

higher accuracy. From Table 2, our method has obtained

the highest registration accuracy. The significant improve-

ment of accuracy over the third method (method M3 [13],

based on boundary and internal landmarks) underlines the

advantage of introducing the additional registration crite-

rion specifically at cancer regions.

Table 1. Comparison of landmark errors among human raters and

our algorithm (R1-rater1; R2-rater2).

Diff R1 vs R2 R1 vs Ours R2 vs Ours

Mean (mm) 0.93 0.62 0.96

Std (mm) 0.65 0.43 0.79

Table 2. Overlap between warped and manually labeled cancer re-

gion in MRI, by different methods. (M1-mutual information (MI)-

based affine method [4]; M2-surface matching method [15]; M3-

boundary and internal landmark based method [13].)

Overlap M1 M2 M3 Ours

Max 82.9% 87.5% 88.3% 95.4%

Min 55.9% 60.4% 64.1% 79.6%

Mean 71.6% 75.5% 79.1% 85.4%

4. Discussion

This paper presents a 3D non-rigid registration algorithm

between histological and MR images of the same prostate.

To compensate for the loss of 3D integrity during histol-

ogy sectioning, our algorithm initializes with the coarse re-

construction of series of 2D histological slices/sections into

a 3D volume. Then, to cope with the distortions in his-

tological images and the fundamental imaging differences

between histology and MRI, our algorithm registers the

two images by maximizing landmark similarities and can-

cer region overlap between the two images. The former

aims to capture distortions at prostate boundary and internal

blob-like structures; and the latter aims to capture distor-

tions specifically at the cancer regions. The overall registra-

tion accuracy is established by comparing against human-

rater-defined landmarks and by comparing with other meth-

ods. With this registration, the histologically-defined cancer
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ground truth can be warped to MR images, promoting more

thorough understanding of the MR characteristics of the

prostate cancerous tissue, which will help the MRI-based

prostate cancer diagnosis in the future studies.

The main contributions of this work are the introduction

and the implementation of the second registration criterion

– maximization of cancer regions. By introducing this crite-

rion, registration accuracy within and around cancer regions

has been significantly improved, as qualitatively shown in

Fig. 7 and quantitatively demonstrated in Table 2. This is

important because cancer regions are the regions of inter-

est in this histology-MRI registration context (keep in mind

that our objective is to warp cancer regions from histology

to MRI). In implementing this criterion, a joint cancer seg-

mentation and registration framework is proposed, where

the two interleaved processes benefit each other and itera-

tively increase the overall accuracy. Furthermore, the can-

cer segmentation is region-driven other than edge-driven,

which is more reliable when the cancer edges/boundaries

are difficult to be detected in MR images.

Our future work calls for a more sophisticated trans-

formation mechanism to better deal with the histological

cuts/tears (c.f., Fig. 1), and the consequent loss of corre-

spondence. Actually, lack of such a sophisticated mecha-

nism is an inherent limitation for most histology-MRI reg-

istration methods including ours. Our plan is to develop

a well-formulated ”confidence”-based mechanism. In this

mechanism, those regions having high confidence to estab-

lish correspondences will become the main driving force

for deformations, and those regions having difficulty es-

tablishing correspondences (such as histological cuts/tears)

will have low impact for the deformation. A recently de-

veloped method [28] uses this confidence mechanism and

shows promise to reduce the negative impact of cuts/tears

in the simulated data. More experiments are still expected

on real histology-MRI data.

In conclusion, this paper presents a 3D non-rigid regis-

tration algorithm between histological and MR images of

the same prostate. Future work calls for a more sophisti-

cated transformation mechanism to better deal with histo-

logical cuts/tears, and more validations on real data.
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