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Abstract

The goal of this paper is to study the impact of competition on a firm’s technology choice (product-

flexible or product-dedicated) and capacity investment decisions. Specifically, we model two firms com-

peting with each other in two markets characterized by price-dependent and uncertain demand. The

firms make three decisions in the following sequence: choice of technology (technology game), capacity

investment (capacity game) and production quantities (production game). The technology and capacity

games occur while the demand curve is still uncertain and the production game is postponed until after

the demand curve is revealed.

We formally characterize a Markov-perfect Nash equilibrium in the capacity and production games

and under suitable assumptions solve the games in closed form. Further, we develop best-response

functions for each firm in the technology game and compare how a monopolist and a duopolist respond

to a given flexibility premium. We show that the cost premium which the duopolist is willing to accept,

when investing in flexbile technology, is higher (smaller) than the premium which the monopolist is

willing to accept, if the competitor invests in dedicated (flexible) technology. Finally, we characterize

situations that give rise to each of the three possible equilibrium outcomes of the technology game: both

firms may invest in dedicated technology, both may invest in flexible technology or one firm may invest

in dedicated and the other in flexible technology. The last (asymmetric) outcome can arise even if firms

are perfectly symmetric.
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1 Introduction

In the last decade, firms in a variety of industries have come under intense pressure to offer a large variety

of products in response to highly variable and ever changing customer tastes. Consequently, in order to

compete effectively in the marketplace, it is necessary to switch from manufacturing one product to another

with ease. The answer to this challenge came in the form of flexible manufacturing systems (FMS). Apart

from the obvious benefit of being able to hedge against uncertainty in demand (by cutting production of

goods for which demand turns out to be much lower than forecasted and increasing production of goods

that turn out to have high demand), some studies suggest that FMS also empowers the firm with other

advantages such as a strategic weapon against competition (see Fine 1993). Our aim in this paper is

to marry these two advantages of flexibility and study the strategic value of flexibility in an uncertain

environment characterized by inter-firm competition.

Though it seems beyond doubt that FMS is a powerful competitive weapon, we find that in practice

some companies still prefer to utilize dedicated technology (that can manufacture only a single product on

a production line). While dedicated technology does not provide a hedge against uncertainty, it typically

has the advantage of lower production costs. For instance, Upton (1995) studies 61 plants in the paper

industry, an industry in which products are quite comparable across manufacturers (e.g., letter-size paper)

and the same fundamental processes are used everywhere. Nevertheless, some firms have adopted flexible

manufacturing technology while others have not. Therefore, in the market, products manufactured by

different companies - and hence different technologies - compete directly.

The literature has showcased flexible manufacturing as a strategic competitive edge and as a hedge

against uncertainty (Fine 1993, Roller and Tombak 1991). For example, Mackintosh (2003) notes that

“... given all the benefits of flexibility, the surprise is that it has taken US manufacturers so long to start

emulating their Japanese rivals”. At the same time, normative models that actually quantify the benefits

of product flexibility and aid in decision making under both uncertainty and competition are hard to come

by. Moreover, given the evidence that dedicated and flexible technologies often co-exist, it is not at all clear

that investment in flexibility is a universal competitive response. We thus address the following questions:

What should the firm’s best response be if the competitor invests in flexible (dedicated) technology? Does

the technology investment depend on the competitor’s choice of technology? Is the impact of problem

parameters different with and without competition? Since answers to these questions are difficult to find

in the extant literature, this paper makes an attempt to fill this void.

Using a stylized model, we analyze the technology choice, dedicated (D) or flexible (F ) , of a firm under

competition in an environment with stochastic demand. We focus on product flexibility which entails the

ability to produce several products on the same capacity without incurring major switch-over costs as a
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response to uncertainty in demand1. Specifically, two firms each manufacture two products that are sold

in two markets. The firms can invest in either two dedicated (cheaper) production lines or one flexible

(more expensive) production line. Independent of the technology choice, both firms manufacture both

products and are in direct competition with each other in two different markets. The firms make three

sequential decisions. The first is the choice of production technology (technology game). The second

is capacity investment given the technology decision (capacity game). These two decisions are ex-ante

before demand is revealed. Our setting, in which technology and capacity are decided before demand

uncertainty is resolved, reflects the long lead time involved in capacity acquisition. The final decision

concerns the quantities to be produced (production game) constrained by the earlier two decisions and is

ex-post (responsive manufacturing). The market price is a function of the total amount of product offered

to the market by the two firms (Cournot competition).

We formally characterize a Markov-perfect Nash equilibrium (MPNE) in the capacity and production

games. For ex-ante symmetric firms and under appropriate assumptions on the demand distribution, we

solve for the capacities in closed form and derive closed form expressions for expected prices and expected

profits. Further, we develop best-response functions for each firm for a given strategic choice of technology

by the rival as a function of the mean and the variance of the demand distribution and the costs of the

two technologies. The effect of competition on the technology choice of firms is distilled by contrasting the

actions of a duopolist with those of a monopolist. We show that the cost premium which the duopolist

is willing to accept, when investing in flexible technology, is higher (smaller) than the premium which the

monopolist is willing to accept, if the competitor invests in dedicated (flexible) technology. Thereafter, we

establish the Nash Equilibrium in the technology game. We show that any of the two symmetric - (F,F )

and (D,D) - or two asymmetric - (D,F ) , (F,D) - equilibria can arise depending on the specific values

of the problem parameters. We show that the bias towards flexibility is increasing with rising demand

uncertainty, increasing cost of the dedicated technology, decreasing mean demand and increasing product

substitutability. Somewhat surprisingly, even when two firms are completely symmetric, it is possible for

an asymmetric equilibrium to emerge (i.e., flexible and dedicated technologies co-exist). This is because

when both firms invest in flexible technology, the benefit of flexibility gets divided between them. Since

flexible technology is expensive, one of the firm finds it profitable to invest in dedicated technology instead.

The rest of the paper is organized as follows. Section 2 surveys related literature while emphasizing the

positioning of our work. In Section 3 we formulate the stochastic 3-stage game and, moving backwards,

solve the last two stages using a Markov-perfect Nash equilibrium. In Section 4 the technology game is

solved under appropriate assumptions on the demand distribution and our findings are summarized and

discussed in Section 5.

1Hence, the flexible firm can adjust the allocation of capacity between products in response to demand uncertainty.
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2 Literature Survey

Two streams of literature are relevant to our study: the first explores flexibility as a hedge against demand

uncertainty and the second studies flexibility as a strategic weapon under competition. These are combined

in our study for we believe they are equally important in practice. To the best of our knowledge, there are

no other papers that model technology choice in a stochastic environment and under competition (Fine

1993 notes that there are only a few game-theoretic models that analyze competitive dynamics involving

flexible manufacturing technology). Some of the relevant papers specifically focus on the FMS while others

more generally analyze “flexible capacity” investment, either manufacturing or some other. We do not

make a distinction between FMS and flexible capacity since our model applies to both.

Papers in the first stream consider investment in flexible vs dedicated capacity in the absence of

competition and analyze the trade-off between the higher cost of flexible capacity and its ability to hedge

against demand uncertainty by manufacturing multiple products. All papers in this stream consider a

monopolistic firm. Fine and Freund (1990) model a firm manufacturing n products within two decision

epochs. In the first stage, the firm must choose the capacity levels for the n dedicated resources as well

as for one flexible resource that can manufacture all n products. In the second stage (after demand

realization) the firm decides on production quantities given the capacity constraints. Fine and Freund

(1990) show that the decision to invest in flexible technology is based on the cost differential between

the dedicated and flexible technologies. Van Mieghem (1998) develops a similar model and finds that

flexibility is beneficial even with perfect positive correlation if one product is more profitable than the

other. Other works that have looked at similar issues are Harrison and Van Mieghem (1998) and Netessine

et al. (2002). In all these papers, product prices are exogenous to the model. Chod and Rudi (2004)

endogenize pricing decisions and analyze a firm manufacturing two products while investing in a flexible

resource only. The capacity decision is ex-ante and the production decision is ex-post; moreover, the

price of a product is a function of production quantity. Hence, Chod and Rudi (2004) look at responsive

pricing and responsive manufacturing and categorize their impact on the management of a flexible resource.

They conclude that the flexible capacity and expected profits are increasing in demand variance, and that

positive correlation increases capacity investment while decreasing expected profits. Further, the benefits

of flexibility are quantified by comparing a firm investing in flexible technology with a firm investing in

two dedicated production lines under the assumption that investment costs for a flexible resource and

dedicated resources are the same. The work of Chod and Rudi (2004) is close to ours since we utilize

the same base model: the production/pricing decision is made after demand uncertainty is realized and

capacity investment is made before. However, we account for the different costs of the two technologies

and, more importantly, introduce competition. As opposed to Chod and Rudi where flexibility was always

preferred, we provide conditions under which flexibility is not adopted in equilibrium or when it is adopted
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by one firm but not the other. Hence, the model of Chod and Rudi (2004) is a special case of ours. Bish

and Wang (2003) consider a problem setting similar to Chod and Rudi (2004) but allow the firm to invest

simultaneously into dedicated and flexible capacities.

The second stream of literature looks at the strategic value of flexibility in the absence of demand

uncertainty. Hence, flexibility is shown in the light of economies of scope. Fine and Pappu (1990) and

Roller and Tombak (1990, 1993) model two firms each manufacturing two products and competing with

each other. The firm investing in flexible technology can enter both markets, while the firm investing in

dedicated technology finds it economical to enter only one market. The technology choice is modeled as

a 2x2 game in strategic form. The firms are trapped in a Prisoner’s Dilemma like situation: while each

can choose one market and make monopoly profit in it, both end up choosing flexible technology and

hence intensifying competition under the threat that the rival might choose flexible technology and invade.

As a result, these papers show that flexible technology makes firms worse off. In addition, Roller and

Tombak (1990, 1993) show that both symmetric and asymmetric equilibria can exist and the prices are

lowest when both firms choose flexible technology. They also show that decreasing product substitutability

promote flexible technology. As opposed to Roller and Tombak, we model the situation in which the firm

investing in the dedicated technology participates in both markets. Hence, in our model flexibility does

not inherently fuel competition. Accordingly, prices in our model are not the lowest for the case in which

both firms invest in flexible technology (they are, in fact, the highest). Moreover, decreasing product

substitutability does not necessarily favor flexible technology in our work. The reason for this difference is

that we model demand stochasticity as opposed to the deterministic case analyzed by Roller and Tombak.

As detailed in section 4.4, the effect of an increase in the substitutability parameter is to decrease the

“non-stochastic” component of the profit function (consistent with Roller and Tombak) and to increase

the “stochastic component” (not modeled in Roller and Tombak). In another related work, Anand and

Girotra (2003) analyze the benefits of delayed differentiation under competition. Delayed differentiation is

similar to manufacturing flexibility since it allows the firm to hedge against demand uncertainty. However,

in their model firms compete in one market only while being monopolists in the other market they serve.

Hence, the setup and resulting insights are very different.

Several other papers that do not fit into the two streams above are, nevertheless, relevant to our work.

In their seminal paper, Jordan and Graves (1995) look at total flexibility vs partial flexibility through the

concept of chaining (a chain consists of product-plant links: more links correspond to higher flexibility).

They find that adding limited flexibility in the right place can achieve nearly all the benefits of total

flexibility in terms of hedging against demand uncertainty. Graves and Tomlin (2003) further extend this

work to a multi-echelon supply chain setting. Finally, Parker and Kapuscinski (2003) study the role of

flexible technology in entry deterrence (we do not model entry decisions).
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To summarize, the prior literature has only partially addressed the question of technology choice un-

der both demand uncertainty and competition: the focus has been on one or the other but not on both.

Since the value of flexibility as a hedge against demand uncertainty has attracted significant attention

in the literature, it seems imperative to understand how this value is affected by competition. Such an

understanding will help us advise practicing managers on the strategic value of flexibility in a competitive

environment. Hence, we contribute to the extant literature on manufacturing/capacity flexibility by simul-

taneously studying the impact of both demand uncertainty and competitive pressures on the technology

choice of firms and attempting to bridge the gap between these two streams of literature. While our model

is somewhat similar to Roller and Tombak (1990, 1993) and Fine and Pappu (1990) in which a “two-firm

two-product” competitive scenario is modeled, we also incorporate demand uncertainty similar in spirit to

the works of Fine and Freund (1990), Van Mieghem (1998) and particularly Chod and Rudi (2004).

3 The Model

There are two firms indexed by i and j, i, j = 1, 2. The firms are assumed to be risk neutral and are

expected profit maximizers. Each firm manufactures two products indexed by y = 1, 2 and is engaged

in competition in both markets with the other firm. By making the market entry decision exogenous

to the model, we create a level playing field for the two technologies in terms of economies of scope

and hence isolate flexibility as a hedge against uncertainty in a competitive environment. As detailed in

the introduction, this is a three-stage sequential game: the technology game, the capacity game and the

production game. Each stage is a simultaneous-move non-cooperative game with complete information.

These are simplifying assumptions: in practice decisions might be neither simultaneous nor immediately

observable by the competitors. Relaxing these assumptions is a valuable direction for future research but is

outside of the scope of our paper. In the first stage, each firm can invest either in a flexible technology (F )

that manufactures both products on the same line or in a dedicated technology (D) for each of the products

separately. The firm cannot invest in flexible and dedicated technology simultaneously: this restriction

may be imposed in practice due to the administrative costs associated with producing the same product

in more than one production facility. Moreover, assuming that only one technology can be chosen allows

us to emphasize the trade-off of main interest: dedicated vs flexible technology.

Depending on the technology choices in the first-stage game, three equilibria (which we refer to as

markets) can potentially emerge. The superscripts refer to the type of market in which the firms operate:

(m) refers to the mixed market in which one firm invests in flexible and the other in dedicated technology

(also referred to as the D,F or F,D market), (f) refers to a pure flexible (F,F ) market and (d) refers

to a pure dedicated (D,D) market. The subscripts refer to the type of capacity, whether flexible (f) or
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dedicated (d), which can also be indexed by y for each of the products. If it is necessary to differentiate

firms, the firm index i, j will appear in the subscript as well.

In the second stage (the capacity game), each firm invests in production capacity (one capacity if the

firm pursues flexible technology and two capacities if the firm pursues dedicated technology) denoted by

K. For instance, Kf
fi is the flexible capacity of firm i in the pure flexible market. Capacity investment

is costly: let the cost of purchasing the flexible resource be cf per unit and the cost of the dedicated

resource be c per unit for each product with cf > c, which is similar to Fine and Freund (1990) and several

subsequent papers. Investment costs are linear in capacity and are the same for both firms, reflecting a

common set of technologies available to the competitors. The expected optimal profit of the firm in this

stage is denoted by Π so, for example, Πmdi denotes the expected profit of firm i competing in the mixed

market and investing in dedicated capacities Km
1i and K

m
2i .

The last stage of the game is ex-post and is concerned with the quantities (denoted by q) to be put in

the market given the first two decisions and demand realization. This decision is ex-post, reflecting that

at the time of production the firm is better aware of market conditions. The inverse demand function for

product y is Py(Qy, Q3−y) = Ay−Qy−βQ3−y for all y = 1, 2 where Qy is the total quantity of product y put
in the market by the two firms combined (Cournot competition model). The parameter β ∈ (−1, 1) is the
cross-elasticity2 parameter where β > 0 (β < 0) signifies that the products are substitutes (complements)

in a Cournot game. Note that substitutability implies that the demand for a product increases with the

increase in price of the other product and vice versa for complementarity. The quantity of product y

put in the market by firm i is qyi so that Qy = qyi + qyj . The demand intercepts, Ay ∈ <+, are random
draws from a bivariate continuous distribution function F (., .) with a density function f(., .). Whenever

independence is assumed, the joint distribution simply becomes the product of the marginal distributions.

Denote the mean of the marginal distribution by µy and the variance by σ2y . Profits in the production

game are denoted by π.

The following standard conventions are used throughout. E denotes the expectation operator with

respect to the random variables Ay. The state-space for realizations of (A1, A2) is divided into disjoint sets

denoted by Ωl. To avoid trivialities, we impose the assumption that cf < µy, y = 1, 2 (i.e., marginal cost

is lower than expected maximum price — otherwise capacity investment is not profitable in expectation).

The marginal cost of production is assumed to be the same for both technologies (Fine and Pappu 1990,

Roller and Tombak 1990, 1993) and is normalized to zero. For expositional purposes, we now let β = 0

but this assumption will be relaxed in the last section.

We solve the problem backwards. The production game of the third stage is solved first and qyi and

2We use “cross-elasticity” term loosely in the paper to mean the measure of product substitutability/complementarity. The

mathematical definition of cross-elasticity is somewhat different.
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qyj are obtained for every demand intercept realization. Using MPNE solutions in each stage, we work our

way backwards to the capacity decision and finally to the Nash Equilibrium in the technology game.

3.1 Problem formulation

Consider the technology game in Figure 1 that is schematically represented as a 2x2 matrix typical for

strategic-form games (e.g., Prisoner’s dilemma). Each firm is endowed with two strategies (D and F ) and

matrix entries signify second-stage profits.

D

F

F

D

Firm i

Firm j

d
j

d
i ΠΠ     ,  

f
j

f
i ΠΠ     ,  

m
fj

m
di ΠΠ     ,  

m
dj

m
fi ΠΠ     ,  

Figure 1. The technology game.

The equilibrium technology choice in Figure 1 is a pure strategy MPNE of the 2x2 non-cooperative

game in strategic form. As is typical for such games, the solution is obtained by considering the best-

response functions of each firm given the technology choice of the other firm. Since we are unable to

predict the equilibrium of the technology game up front, we proceed by analyzing capacity and production

choices in all possible equilibrium outcomes of the technology game. The optimization problem for a firm

i that invests in either a dedicated or a flexible technology in any market given some strategic choice by

rival (firm j) is

Firm i invests in dedicated technology Firm i invests in flexible technology

Πi = max
K1i,K2i

{EA (πi)− c (K1i +K2i)}

πi =max
q1i,q2i

2X
y=1

[(Ay − (qyi + qyj)) qyi]

s.t. 0 ≤ qyi ≤ Kyi, y = 1, 2.

Πi =max
Kfi

{EA(πi)− cf (Kfi)}

πi =max
q1i,q2i

2X
y=1

[(Ay − (qyi + qyj)) qyi] ,

s.t. q1i + q2i ≤ Kfi, qyi ≥ 0, y = 1, 2.
Table 1. The general problem formulation.

We now proceed by solving each of the three optimization problems (since markets D,F and F,D

are symmetric). Solutions for the quantity and capacity games are lengthy and tedious. Hence, we

provide only an outline of the methodology below (full solutions to the quantity game and structural

results concerning the existence/uniqueness of MPNE in capacities and production quantities as well as

optimality conditions for equilibrium capacity choices are found in Goyal and Netessine 2004). We then

impose certain assumptions on the distribution of demand intercepts to obtain solutions to the capacities

and the firm profits in closed form. Thereafter, the technology game is analyzed in full.
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3.2 The production and capacity games

In general, even though we assume that the two firms are ex-ante symmetric, it is possible that the

equilibrium outcome of the technology game is asymmetric. Moreover, even if two firms end up in a pure

(flexible or dedicated) market, i.e., a symmetric equilibrium, they might still select different capacities. In

the Goyal and Netessine (2004), we solve production and capacity games for arbitrary (possibly asymmetric)

capacity choices. However, we focus here on symmetric equilibria in the capacity game. This is a standard

assumption in multi-stage Cournot games (see Salant and Shaffer 1999) and we are able to show that the

symmetric equilibrium in the capacity game in these markets is unique. Moreover this restriction does

not eliminate any equilibria in the technology game (i.e., the mixed market still arises) so the symmetry

assumption does not reduce the richness of the game.

1

3

6

9

A1

A2 f
f

f
fi

f
fj KKK ==

f
fKAA 321 =−

f
fKAA 321 =+

    3 f
fK

    3 f
fK

Figure 2. Pure flexible market

A2

A1
     3 1
dK

1

34

2

     3 2
dK

Figure 3. Pure dedicated market
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f KK 13      3
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mK

     3 m
fK

m
f

mm KKKAA 22121 +−=−

m
fKAA 321 =−

m
fKAA 321 =+

m
f

m KKAA 422 121 +=−1

10

8

9

11

6

5

7

3

2

12

Figure 4. The mixed market.

We begin with the production game. Imagine that the firms have already played the earlier two stages

of the game, the technology and the capacity games, i.e., the firms are endowed with a technology (D

or F ) and a capacity level. In the last stage, firms play a constrained Cournot duopoly game (with

profits represented by π in Table 1). The visual state-space representation of the production game is given

in Figures 2-4 for all the three markets. Along the axes we have all possible realizations of the demand

intercepts3. Capacity constraints split the state-space into different areas. For instance, consider the mixed

market (Figure 4): in area Ω1 none of the firms is capacity constrained, in area Ω11 both firms are capacity

constrained and in area Ω7 the dedicated firm is capacity constrained for product 1 and the flexible firm

manufactures only product 1 (due to a high enough realization of A1 as compared to A2), etc. In each

of the areas in all the markets, firms compete on Cournot quantities and hence, from standard economic

theory, we know that the equilibrium in the production game exists and is unique. The firms solve for

the optimal production quantities in each of the areas. Price is determined as per Cournot competition

and profits are gleaned. The expected profit Πi for a given capacity choice in each market is calculated

by weighing the profits in each of the areas by the probability of realizing that area. Differentiating this

3Remember that this is a game of complete information. Hence, each firm noiselessly observes the capacity and technology

choice of the other firm as well as the demand intercept realizations.
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expected profit gives us the first-order conditions for the capacity game.

4 The Technology game

Having analyzed the production and the capacity games, we are now ready to move ahead to the choice of

technology. However, the problem in its current form is rather intractable. Although optimality conditions

for capacities are available, they define capacities implicitly rather than explicitly since each integral in the

first-order conditions has limits Ωl, ∀l which depend on capacity decisions themselves. In order to solve
the technology game, we need to compare profits, which, needless to say, cannot be compared without first

obtaining capacity investment decisions in closed form. In order to simplify the problem, while making no

assumptions on the form of the marginal distributions for the demand intercepts, we do impose restrictions

on the domain of the distribution. These assumptions A-1 through A-3 are summarized below.

A-1. The first simplification is to assume that the probability distributions of demand intercepts are in-

dependent, i.e., dF (x1, x2) = f(x1)f (x2) dx1dx2. The main qualitative insights are invariant to this

assumption since correlation between products can easily be incorporated at the cost of added com-

plexity (see Chod and Rudi 2004). The impact of correlation is no different in our model than what

has been shown in earlier works: negative correlation favors flexible technology and the advantage of

flexibility decreases as correlation rises.

A-2. We assume that both products are always manufactured by the flexible firm. This implies that it is

never the case that the demand intercept realization is so high for one product so as to render the

other product uneconomical. This is a plausible assumption from a practical perspective: it is highly

unlikely that a capacity able to produce two products would be built without a high enough level

of certainty that both products would actually be produced later on. As we will see shortly, such

an assumption does not take away the essence of the problem (hedging against demand uncertainty

under competition) as all the components of the problem (demand variability, cost differential, etc.)

are still at play. Mathematically, this translates to the following: in the pure flexible market, we

assume that Pr{(A1, A2) ∈ Ω6,9} = 0 (see Figure 2) and in the mixed market we assume that

Pr{(A1, A2) ∈ Ω7,8,9,10,12} = 0 (see Figure 4).

A-3. We assume that each firm follows a clearance strategy as opposed to a holdback strategy in all

markets. Clearance implies that firms always produce to capacity. This is a common assumption

in the literature; for example, in addition to Chod and Rudi (2004), it is used by Deneckere et al.

(1997), Anand and Girotra (2003). In practice, many firms find it difficult to cut back production

below capacity in view of large fixed costs associated with production ramp-up and commitments to
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suppliers (these issues are not modeled explicitly here). For instance, as Mackintosh (2003) points

out, car makers have been forced to slash prices to keep lines running as models fall out of favor with

the public rather than keep plants idle. This implies that firms in the automotive industry follow

a strategy close to clearance. Mathematically, q1i + q2i = Kfi, i = 1, 2 if a firm invests in flexible

capacity and qyi = Kyi, y, i = 1, 2 if a firm invests in dedicated capacity.

Assumptions A-2 and A-3 are in the spirit of Chod and Rudi (2004). The result of assumptions A-2

and A-3 is that the only area having a non-zero probability is Ω3 in the pure flexible and the pure dedicated

markets and Ω11 in the mixed market. Even though our assumptions may actually hold naturally in many

problem settings, we nevertheless develop appropriate analytical restrictions on the domain of the prob-

ability distributions of demand intercepts. Hence, rather than assuming that firms behave sub-optimally

according to assumptions A-2 and A-3, we restrict the distribution of (A1, A2) so that assumptions A-2

and A-3 always hold (see Lemma 1 after Propositions 1, 2 and 3 which develop some results necessary to

prove the Lemma). Note also that Chod and Rudi (2004) test assumptions A-2 and A-3 numerically and

find that they generally yield solutions that are very close to optimal.

A few more comments are in order here. First, note that the clearance assumption essentially renders

trivial the last-stage (production) decisions for the firm investing in dedicated technology. However, the

firm investing in flexible technology (in both the pure flexible and the mixed market) still has to allocate

its capacity to each of the two products. Hence, production decisions are not trivial for a firm investing in

flexible technology and the capacity game and the production game still need to be considered separately.

Second, we need to worry about the non-negativity of prices in light of assumption A-3 (though negative

prices may be tenable in many situations). Non-negativity of prices was ensured as we essentially solved

a Cournot duopoly game in each of the areas for all three markets (this is shown formally in Goyal and

Netessine 2004). But now, by imposing A-3, we break away from the standard Cournot game in areas where

the capacity does not bind (such as area Ω1 in Figure 2) and non-negativity of prices cannot be assured in

these areas. However, by imposing Lemma 1, we ensure that no realization of demand intercepts is such

that we fall in these areas where the capacity does not bind. Hence, in effect, by invoking the Lemma, we

automatically rule out non-negative prices.

We now obtain closed-form solutions and profit expressions for each of the three markets under the

above three assumptions. Note that since the solutions are unique, there is a unique equilibrium in the

capacity game in each of the three markets under these assumptions. The next three Propositions provide

the solution for the three markets (proofs are in Goyal and Netessine 2004).

Proposition 1 For firms operating in the pure flexible market,

(i) the MPNE in capacity is Kf
f = (µ1 + µ2 − 2cf )/3,
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(ii) the expected profit at equilibrium is Πff = (µ1 − cf )2/9 + (µ2 − cf )2/9 +
¡
σ21 + σ22

¢
/18,

(iii) the expected price for a product y = 1, 2 is P fy = (µy + 2cf ) /3.

Note that while equilibrium capacity and prices are functions of the mean of the demand intercepts and

of the cost of flexible capacity only, profit is also an increasing function of the variance of the distribution

of the demand intercepts. Naturally, a higher cost of flexible capacity leads to higher prices, lower capacity

investment and lower profits. A higher mean of the demand intercepts leads to higher prices, capacities

and profits. All these results are similar to Chod and Rudi (2004). We consider the pure dedicated market

next.

Proposition 2 For firms operating in a pure dedicated market,

(i) the MPNE in capacity is Kd
y = (µy − c)/3, y = 1, 2,

(ii) the expected profit at equilibrium is Πdi = (µ1 − c)2/9 + (µ2 − c)2/9, i = 1, 2,
(iii) the expected price for a product y = 1, 2 is P dy = (µy + 2c) /3.

The game in the pure dedicated market simplifies to the standard Cournot competition results since

the two markets are independent of each other. Finally, we turn to the mixed market.

Proposition 3 For the firms operating in the mixed market:

(i) the MPNE in capacity for a

(a) flexible firm is: Km
f = (µ1 + µ2 + 2c− 4cf ) /3,

(b) dedicated firm is: Km
y = (5µy − µ3−y + 4cf − 8c) /12, y = 1, 2,

(ii) the expected profit at equilibrium for a

(a) flexible firm is: Πmf = (µ1 − µ2)2/32 + (µ1 + µ2 + 2c− 4cf )2 /18 +
¡
σ21 + σ22

¢
/8,

(b) dedicated firm is: Πmd = (µ1 − µ2)2/16 + (µ1 + µ2 + 2cf − 4c)2 /18,
(iii) the expected price for a product y = 1, 2 is Pmy = (7µ1 + µ2 + 8cf + 8c) /24.

The solution for the mixed marked is evidently the most convoluted. Now capacity choices and profits

of both firms depend on all problem parameters: e.g., optimal product-flexible capacity depends on the cost

of dedicated capacity and vice versa. We see that, quite intuitively, as c rises (cf falls), flexible capacity

rises, dedicated capacity falls, profit of the firm investing in dedicated capacity falls and profit of the firm

investing in flexible capacity rises. Prices, however, rise in both c and cf . The effects of changing µs and

σs are intuitive as well.

Having derived the solution for the capacity game under assumptions A-1 through A-3, we now take

a step back and develop the lemma that specifies conditions under which assumptions A-2 and A-3 do

not alter the solution. In the interest of simplicity, we henceforth assume that the two distributions are

symmetric, i.e., µ1 = µ2 = µ and σ1 = σ2 = σ.
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Lemma 1 If there exist Amax and Amin such that Pr{A ∈ (Amin, Amax)} = 1 and Amax − Amin ≤
min [c, (4/3) (µ+ c− 2cf )], then A-2 and A-3 hold with probability one. In other words, A-2 and A-3

hold if cf does not exceed value cf(crit) = (µ+ c) /2− (3/8)min ((Amax −Amin) , c) .

Proof. We prove the lemma in two stages. We first develop bounds on the realizations A1 and A2

such that A-2 holds with probability one for the pure flexible and the mixed markets. We then develop

conditions under which A-3 holds. Combining the two completes the proof.

For the pure flexible market, A-2 holds if Pr
n
|A1 −A2| ≤ 3Kfh

f

o
= 1 (we add a superscript h to

indicate that this is the optimal capacity under hold-back to distinguish it from the capacity derived

under A-1 through A-3). It can be shown that Kfh
f > Kf

f . (Since Π
fh
i is concave, one can show that³

∂Πfhi /∂K
f
f

´
|
Kf
f
≥ 0; see Chod and Rudi 2004 for details). Hence, Pr

n
|A1 −A2| ≤ 3Kf

f

o
= 1 ⇒

Pr
n
|A1 −A2| ≤ 3Kfh

f

o
= 1. For A-2 to hold in the pure flexible market, we must have

Pr {|A1 −A2| ≤ 2 (µ− cf )} = 1 by Proposition 1. Similarly for the mixed market, it is sufficient

to show that Pr
n
A1 −A2 < Kmh

1 −Kmh
2 + 2Kmh

f

o
= 1 and Pr

n
A2 −A1 < Kmh

2 −Kmh
1 + 2Kmh

f

o
= 1.

Since for a symmetric distribution Kmh
1 = Kmh

2 , we have Pr
n
|A1 −A2| < 2Kmh

f

o
= 1. Again one

can show that Km
f ≤ Kmh

f . Hence, the necessary condition for A-2 to hold in the mixed market is

Pr {|A1 −A2| < (4/3) (µ+ c− 2cf )} = 1 by Proposition 3. Given that c < cf < µ, it can easily be

shown that (4/3) (µ+ c− 2cf ) < 2 (µ− cf ) . Hence, we have Pr {|A1 −A2| < (4/3) (µ+ c− 2cf )} = 1 for
A-2 to hold. This holds with probability one if |A1 −A2|max < (4/3) (µ+ c− 2cf ) or in other words if
Amax −Amin < (4/3) (µ+ c− 2cf ) .

If A-3 holds, then no realization of A1 and A2 falls in area Ω1 in Figures 2 and 4 and clearance is

optimal since it coincides with holdback. For this to happen we need

Pr
n
A1 +A2 > 3K

mh
f

o
= Pr

n
A1 +A2 > 3K

fh
f

o
= Pr

©
Ay > 3K

dh
y

ª
= 1 for y = 1, 2. Take the case of

a pure flexible market. Let Kfu
f be the optimal capacity in the deterministic case when A1 = A2 = Amax.

Then,Kfu
f = (2/3) (Amax − cf ) ≥ Kfh

f and Pr {A1 +A2 > 2 (Amax − cf )} = 1⇒ Pr
n
A1 +A2 > 3K

fh
f

o
=

1. For this to hold for all realizations of A, we must have Amin+Amin > 2 (Amax − cf ) or Amax−Amin < cf .
Similarly for the mixed market, Amax − Amin < 2cf − c and for the dedicated market Amax − Amin < c.

Hence, for clearance to be optimal we must have Amax−Amin < c. Taking the intersection of the conditions
for A-2 and A-3, we finally obtain Amax −Amin ≤ min [c, (4/3) (µ+ c− 2cf )] .

4.1 Comparison of prices and capacities

It is insightful at this point to compare the total capacity into which firms invest and the corresponding

(expected) prices in all possible technology equilibria (we continue working with symmetric distributions of

intercepts to minimize the number of variables). Under the clearance strategy, the total capacities translate
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directly into expected prices. Hence, we can compare prices/capacities across different outcomes of the

technology game as follows:

Proposition 4 The total capacities in each of the markets compare as follows:
³
Kd
1i +K

d
2i +K

d
1j +K

d
2j

´
>³

Km
f +K

m
1 +K

m
2

´
>
³
Kf
fi +K

f
fj

´
. The expected prices compare as follows: P f > Pm > P d.

The total capacity (of the two firms combined) is always lowest in the pure flexible market. This implies

that expected price is highest in a pure flexible market. This result is due to the cost differential between

the dedicated and flexible technologies (note that if c = cf all expected prices and capacities are the same).

This result is different from some of the earlier works (see Roller and Tombak 1990, 1993 and Fine and

Pappu 1990) that model flexibility of scope in the sense that the flexible firm has the ability to serve

two markets while the dedicated firm serves a single market. Hence, in their models, flexibility enhances

competition. However, in our case, given that both firms serve both markets, the pure flexible market is

the least competitive (in the sense that prices are the highest). This result has found some support in the

popular press. For example, Mackintosh (2003) points out: “Introducing flexible technology in factories

should help moderate the fierce price wars under way in North America and Europe ...” which is consistent

with our analytical results.

4.2 Best-response functions

We are ready to characterize the best responses of the firms in the technology game. We characterize

the best response of firm i to a given technology choice for firm j and analogous results hold for the best

response of firm j. However, before we do this, it will be helpful to first look at how a monopolist would

behave under identical circumstances; that is, under which conditions would a monopolist choose dedicated

or flexible technology. This will help us in distilling the effect of competition on the technology choice of

the firm. Suppose that the monopolist manufactures the same two products and invests in either one

flexible production line or two separate dedicated production lines. It can be shown that if the monopolist

invests in flexible technology, then under assumptions A-1 through A-3, his optimal capacity investment

is given by KM
f = (µ− cf ) and he makes an expected profit of ΠMf =

¡
σ2/4

¢
+ (µ− cf )2 /2 (see Chod

and Rudi 2004 for details). If he invests in dedicated technology, then the capacity for the two products

combined is KM
d = (µ− c) and the total expected profit is ΠMd = (µ− c)2 /2. Comparing the two profits,

it is straightforward to show that for cf < cfM (µ,σ, c) =

µ
µ−

q
(µ− c)2 − σ2/2

¶
, the monopolist invests

in flexible technology and otherwise invests in dedicated technology.4

4Notice that we choose to express the monopolist’s decision in terms of a threshold on the cost of flexible capacity for we

feel that this is the most intuitive comparison. Evidently, the same could be done for c, µ and σ.
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For convenience, Table 2 below summarizes the profits for the firms for a given set of technology choices

in the competitive environment (the first entry is for the row player and the second entry is for the column

player).

D F

D (2/9) (µ− c)2, (2/9) (µ− c)2 (2/9) (µ+ cf − 2c)2,σ2/4 + (2/9) (µ+ c− 2cf )2
F σ2/4 + (2/9) (µ+ c− 2cf )2, (2/9) (µ+ cf − 2c)2 σ2/9 + (2/9) (µ− cf )2,σ2/9 + (2/9) (µ− cf )2

Table 2. Profit for each outcome of the technology game.

To characterize the best-response function for a firm i, we consider two possible choices of firm j:

investment in either flexible or in dedicated technologies.

Proposition 5 When firm j invests in dedicated technology

(i) The best response of firm i is to invest in flexible technology as long as cf < cf (µ, c,σ) where

cf (µ, c,σ) =

µ
µ+ c−

q
(µ− c)2 − (9/8)σ2

¶
/2.

Else firm i invests in dedicated technology.

(ii) cf (µ, c,σ) is convex increasing in σ2, increasing in c and decreasing in µ.

(iii) cf (µ, c,σ) ≥ cfM (µ,σ, c) .

Proof. To show (i), define the incremental profit firm i will make by investing in flexible technology

rather than in a dedicated technology given that firm j invests in dedicated technology as

∆ΠF−Dji = {Πmfi −Πdi | firm j invests in dedicated technology}
= σ2/4 + (2/9) (µ+ c− 2cf )2 − (2/9) (µ− c)2.

The best response of firm i is to invest in flexible technology as long as ∆ΠF−Dji > 0 or else it invests in

dedicated technology. We will look for the best-response function vis-a-vis the cost of flexible capacity.

∆ΠF−Dji is quadratic convex in cf . Roots can be found as

µ
µ+ c±

q
(µ− c)2 − (9/8)σ2

¶
/2 and call the

lower root cfL and the upper root cfU . It can be shown that the minima of the convex curve is achieved

for cf = (µ+ c) /2 = cf min > cf(crit). Also by geometry we know that cfL ≤ cf min ≤ cfU . Since the upper
root is always above the critical value cf(crit) we can safely ignore it.

5 By convexity, ∆ΠF−Dji > 0 for

5Observe that, without the restriction cf > cf(crit), we would be left with an unsatisfying result that the flexible technology

becomes more attractive as the cost of flexibility increases for some set of problem parameters. This observation further justifies

our effort in developing a proper technical condition in Lemma 1 rather than assuming that the firm behaves suboptimally

according to A-2 and A-3.
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cf < cfL = cf and the result follows. Result (ii) can be shown through differentiation. To show (iii),

observe first that for σ = 0, cf (µ, c,σ) = cfM (µ, c,σ) = c. For σ > 0,

∂cf/∂
¡
σ2
¢
= (9/32)

µq
(µ− c)2 − (9/8)σ2

¶−1
> (1/4)

µq
(µ− c)2 − σ2/2

¶−1
= ∂cfM (µ,σ, c) /∂

¡
σ2
¢
.

Hence, cf (µ, c,σ) increases faster in σ2 than cfM (µ,σ, c) does so that cf (µ, c,σ) ≥ cfM (µ,σ, c) .
The above proposition gives us the best response to a competitor investing in dedicated capacity in the

form of a threshold value for cf , cf (µ, c,σ) . Hence, for c < cf < cf (µ, c,σ) the best response of firm i to

a choice of dedicated technology by firm j is to invest in flexible technology. For cf > cf firm i usually

invests in dedicated technology, but not always since for σ2 > 8/9 (µ− c)2 , cf /∈ < (in other words, the
equation ∆ΠF−Dji = 0 has no real roots). This implies that for high enough variance firm i will always

prefer flexible technology if firm j invests in dedicated technology.

cf (µ, c,σ) is a function that is convex increasing in the variance of the distribution of the intercepts.

Hence, the higher the variance, the higher the threshold and firm i prefers flexible technology for a wider

range of costs cf . Furthermore, the threshold also increases in the cost of dedicated technology and

decreases in the mean of the demand intercepts. Finally, from part (iii) of the proposition we obtain the

impact of the competitive presence on the behavior of a firm. Visual representation of this result is shown in

Figure 5, where the cost threshold of the monopolist is juxtaposed against the cost threshold of a duopolist

when the competitor invests in dedicated technology. Note that cf (µ, c,σ) > cfM (µ,σ, c) and cf (µ, c,σ)

is more convex. Hence, when a firm faces competition and the competitor invests in dedicated technology,

the firm invests in flexible technology for a wider range of costs than it would without any competition.

In other words, competition raises the threshold beyond which flexible technology is not desirable. Yet

another way to emphasize this effect is to say that for cfM (µ,σ, c) < cf < cf (µ, c,σ) , a firm facing no

competition would not invest in a flexible resource but a duopolist would when there is a competitor who

invests in dedicated technology. We now turn to analyzing the best response to a competitor investing in

flexible technology.

Dedicated

2σ

fc

c

Infeasible Region

Flexible

( )critfc

( )σµ ,,cc fM

( )σµ ,,cc f

Figure 5. Best response to the dedicated technology.

Dedicated

2σ

fc

c

Infeasible Region

Flexible

( )critfc

( )σµ ,,cc fM

( )σµ ,,cc f

Figure 6. Best response to the flexible technology.
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Proposition 6 When firm j invests in flexible technology

(i) The best response of firm i is to invest in flexible technology as long as cf < cf (µ, c,σ) where

cf (µ, c,σ) = c+ σ2/ (8 (µ− c)) .

Else firm i invests in dedicated technology.

(ii) cf (µ, c,σ) is linearly increasing in σ2, increasing in c and decreasing in µ.

(iii) cf (µ, c,σ) ≤ cfM (µ,σ, c).

Proof. Similar to the previous proposition, define

∆ΠF−Fj =
n
Πfi −Πmdi | firm j invests in flexible

o
= σ2/9 + (2/9) (µ− cf )2 − (2/9) (µ+ cf − 2c)2,

which is the incremental profit that firm i makes by choosing flexible technology over dedicated technology.

Firm i invests in flexible technology as long as ∆ΠF−Fj > 0. It is easy to verify that ∆ΠF−Fj is linearly

decreasing in cf . The root of the equation∆Π
F−Fj = 0 is cf (µ, c,σ) = c+σ2/8 (µ− c) . Hence, ∆ΠF−Fj >

0 for cf < cf (µ, c,σ) and the result follows. To show (iii), observe that for σ = 0, cf (µ, c,σ) = cfM (µ,σ, c) .

For σ > 0, it is easy to see that

∂cf (µ, c,σ) /∂
¡
σ2
¢
= (1/8) (µ− c)−1 < (1/4)

µq
(µ− c)2 − σ2/2

¶−1
= ∂cfM (µ,σ, c) /∂

¡
σ2
¢

and the result follows.

Similar interpretation can be attached to cf (µ, c,σ) with respect to the three variables as was done

for cf (µ, c,σ) . This time, however, comparing the decision of a duopolist with that of a monopolist gives

an opposite interpretation. From Figure 6, we see that the duopolist’s best response when the competitor

invests in flexible technology lies below the threshold curve for a monopolist. This means that when a firm

faces competition and the competitor invests in flexible technology, the firm invests in flexible technology

over a smaller range of costs than it would if there were no competition. For example, for costs such that

cf (µ,σ, c) < cf < cfM (µ, c,σ) , a monopolist invests in flexible capacity while a duopolist does not if there

is a competitor investing in flexible technology.

The above two propositions show that a firm behaves differently under competition when making its

technology choice than without competition. When the rival invests in dedicated technology, the firm is

more insensitive to the cost of flexible technology than a monopolist and invests in it for higher costs. On

the other hand, if the rival firm invests in flexible technology, the firm’s cost threshold curve dips below

that of a monopolist. The firm is now more cost sensitive and finds it economically viable to invest in

flexible technology for lower costs than a monopolist. We provide the following intuition behind this result.
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It is convenient to think about total market potential as consisting of two parts: one is deterministic and

depends on the mean of the demand intercepts, while the other is stochastic and depends on the variance

of the distribution of the demand intercepts. Recall further that profit of the firm investing in dedicated

technology depends on the mean of the demand intercepts, but the profit of the firm investing in flexible

technology also depends on (it is actually increasing in) the variance of the distribution of the demand

intercepts. Hence, the firm investing in flexible technology is able to appropriate both deterministic and

stochastic components of the market potential while the firm investing in dedicated technology is able to

appropriate only the deterministic component. Further, given that the competitor invests in dedicated

technology, the firm ought to anticipate that he will use all his capacity in each market. This reduces the

deterministic component of the market potential but leaves the stochastic component unchanged. Hence,

flexible technology is more attractive. If, in contrast, the competitor invests in flexible technology, the

firm should anticipate that he will chase the larger market once demand intercepts are realized. This, in

effect, dampens the variability that the firm perceives: a spike in the size of one market due to a favorable

demand realization will be moderated by the competitor flooding that market. The effective variability

falls and flexible technology is less valuable.

Hence, if only one firm in the market invests in flexible technology, this firm enjoys higher benefits from

uncertainty (the threshold cost in Figure 5 is convex increasing). However, if two firms invest in flexible

technology, the benefits to each firm from the stochastic component gets divided (the threshold cost in

Figure 6 is linear increasing). Hence, we conclude that flexibility is more valuable when the competitor

is not using it. Conversely, when the competitor is using flexible technology, the benefits of flexibility

diminish.

4.3 The Nash Equilibrium of the technology game

The best-response functions derived in the previous section put us in a position to determine the equilibria

for the technology game. We limit our analysis only to the pure strategy equilibria that are described in

the following proposition.

Proposition 7 The Nash equilibrium in the technology game is characterized as follows:

Case 1: cf < cf (µ, c,σ) then (F,F) is the unique MPNE.

Case 2: cf > cf (µ, c,σ) then (D,D) is the unique MPNE.

Case 3: cf (µ, c,σ) < cf < cf (µ, c,σ) then (F,D) and (D,F) are the two MPNE.

The Nash Equilibrium in the technology game is illustrated in Figure 7, which is obtained by merging

Figures 5 and 6. Roughly speaking, low uncertainty and high cost of flexibility lead to an equilibrium

in which both firms prefer dedicated technology, and high uncertainty and low cost of flexibility lead to
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an equilibrium in which both firms invest in flexible technology. These results are expected given the

knowledge of choices that the monopolist makes. What is more interesting is that the interplay between

the two upper bounds for the cost of flexibility, each for a different strategy by the other firm, results

in the interesting case of an asymmetric equilibrium even though the two firms are entirely symmetric.

This observation suggests that different technologies may co-exist in a competitive market and no firm

will want to deviate from its choice, which is consistent with Upton (1995). Of course, in the asymmetric

equilibrium, a natural question arises as to which firm would choose dedicated technology and which firm

would choose flexible technology. One possible solution to resolve this indeterminacy is mixed strategies:

each firm would select either F or D with some probability such that in equilibrium, each is indifferent

towards choosing F or D. Finally note that the response of a monopolist as measured by the threshold

cost cfM (µ,σ, c) is shown against the two best responses of a duopolist in Figure 7. In some sense, a

monopolist’s behavior averages out the limiting behavior of a duopolist.

(D,D)

2σ

fc

c

Infeasible Region

(F,F)

( )critfc

( )σµ ,,cc fM

( )σµ ,,cc f

( )σµ ,,cc f

(D,F) and (F,D)

Figure 7. Nash Equilibrium in the technology game.
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Figure 8. Pure flexible market, β > 0.

4.4 Dependent products: cross-elasticity of demand

In the previous analysis we have made an assumption that the two products manufactured by firms are

entirely independent, i.e., the price of one product does not depend on the price/amount put on the

market of the other product. In practice, however, we would expect some level of complementarity or

substitutability between the products. Hence, we now relax the independence assumption between the two

products and allow the demand to be linked by a cross-elasticity parameter.

In this section, we look into a pure flexible market in some detail. Specifically, we look at how the

cross-elasticity parameter affects the production game and how the state space of the problem is modified.

The intuition gained here applies equally well to the other two markets and hence we do not reproduce the

modified state-space representation for them. Under assumptions A-1 through A-3 we solve the capacity
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game explicitly. Thereafter, we show how our results are modified by the cross-elasticity parameter.

Consider the case of the pure flexible market. To gain intuition with regard to the impact of the

cross-elasticity parameter, consider the production game under the assumption that there is no capacity

constraint. It is easy to show that the profit-maximizing quantity for a firm in any of the markets for

product y is quny = (Ay − βA3−y) /3(1− β2). Evidently, for Ay < βA3−y, quny < 0, production quantity is

negative. Hence, given β > 0, there is a set of demand intercept realizations for which it is never optimal

to produce product y and consequently modification of the state space is needed to ensure quantities are

non-negative. This is shown for the pure flexible market in Figure 8 (for expositional convenience, we

restrict our attention to a symmetric case). By this, we also ensure that prices are non-negative since in

effect we solve a Cournot Game with non-negative optimal quantities in each of the areas (see Goyal and

Netessine (2004) for details).

Areas Z1 and Z2 do not appear without cross-elasticity. In these areas, it is never optimal to manu-

facture products 2 and 1, respectively. Contrast this with the cases in which β = 0 and β < 0. For the

former, unless the demand intercept realization for product y, Ay, is zero, the unconstrained production

quantity is strictly positive. However, for β > 0, even though 0 < Ay < A(3−y)β, it is optimal not to

manufacture product y. For β < 0, even though Ay = 0, it is still optimal to manufacture product y

(quny = A(3−y)β/3(1 − β2)). Here is the intuition: when β < 0, the quantity demanded for product y

increases as the quantity of product (3− y) increases since the products are complements. Hence, even
though the demand for a product is zero, due to its positive impact on the sale of the other product, it

may still be beneficial to manufacture it. For instance, companies manufacture and sell printers at a loss

and make money on the cartridges.

To summarize, the effect of β > 0 is to squish the state space by bringing the two vertical axes closer

together. This gels well with the notion of substitutability: because the products are substitutable (or in

other words are similar), the state space is no longer defined by a set of perpendicular boundaries. Rather,

the two axes come closer together as β increases. Hence, as β → 1, the production area in the pure flexible

market approaches zero (there is no need for flexible capacity). Note that the equations that define the

various boundaries of the state space are now a function of β. It is easy to see that Figure 8 merges into

Figure 2 for β = 0. Similar conclusions follow for the pure dedicated and the mixed markets. It is worthwhile

to note that the products being substitutable has no connection to the dependence/independence of the

distributions for the demand intercepts.

In Goyal and Netessine (2004) we show that the symmetric equilibrium in the capacity game for the

pure dedicated market is unique for β < 1/3 and for the pure flexible market it is unique for all β.We now

move on to the solution of the game under assumptions A-1 through A-3 and β < 1/3. In Tables 3 and 4

below we summarize optimal capacities and profits.
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D F

D 2(µ− c)/3 (1 + β) , 2(µ− c)/3 (1 + β) 2(µ+ cf − 2c)/3 (1 + β) , 2(µ+ c− 2cf )/3 (1 + β)

F 2(µ+ c− 2cf )/3 (1 + β) , 2(µ+ cf − 2c)/3 (1 + β) 2(µ− cf )/3 (1 + β) , 2(µ− cf )/3 (1 + β)
Table 3. Total capacities for each outcome of the technology game.

D F

D
2(µ− c)2
9 (1 + β)

,
2(µ− c)2
9 (1 + β)

2(µ+ cf − 2c)2
9 (1 + β)

,
σ2

4 (1− β)
+
2(µ+ c− 2cf )2
9 (1 + β)

F
σ2

4 (1− β)
+
2(µ+ c− 2cf )2
9 (1 + β)

,
2(µ+ cf − 2c)2
9 (1 + β)

σ2

9 (1− β)
+
2(µ− cf )2
9 (1 + β)

,
σ2

9 (1− β)
+
2(µ− cf )2
9 (1 + β)

Table 4. Profit for each outcome of the technology game.

The following observations are in order. The capacity investment decreases in β for all markets.

Hence, the more substitutable the products, the lower the investment in capacity. This is consistent with

the findings of earlier papers modeling cross-elasticity (e.g.,. Roller and Tombak 1993). However, more

interesting is the behavior of the profit function for each of the markets. It is easy to see that the profit

unambiguously decreases in β for the firms investing in dedicated technology in both the pure dedicated

and the mixed markets. For the firm investing in flexible technology, however, there are two different

directions in which the profit can move with an increase in cross-elasticity.

The effect of an increase in β is to amplify the profit contribution of the stochastic term and reduce the

profit contribution of the non-stochastic term (i.e., terms depending on variance and the mean of demand

intercepts, correspondingly). That the non-stochastic portion of the profit decreases in β is consistent

with previous findings (Roller and Tombak 1993). But the stochastic portion was not modeled in earlier

works. One possible explanation for the increase in the stochastic component with β is that for β > 0,

the products are strategic substitutes resulting in negative externality (∂2πi/∂qy∂q3−y = −β < 0). This

implies that the demand for product y falls with the rise in demand for product (3− y) all else held
constant. Hence, the demands for the two products move in opposite directions. With high variance, one

therefore gets troughs and crests in demand for the two products, which the flexible capacity is better

able to cope with. With complementary products, demand falls and rises in tandem for the two products.

Hence, the benefit of flexibility is less with the rise in variance. On a more analytical note, the profit

for the flexible firm is convex in β. Hence, there exists a β∗ (µ, cf ,σ) such that for β > β∗, the profit for

the flexible firm is increasing in β and for β < β∗ it is decreasing in β. For instance, in a pure flexible

market, β∗f (µ, cf ,σ) =
¡
(µ− cf )− σ/

√
2
¢
/
¡
(µ− cf ) + σ/

√
2
¢
. Observe that β∗f decreases in σ. Similar

observations can be made for the mixed market.

Let us now focus on the form of the best-response thresholds, cf and cf , and the way they depend on
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β. It can be shown that

cf (µ,σ, c,β) =

µ
µ+ c−

q
(µ− c)2 − (9/8)σ2 (1 + β) / (1− β)

¶
/2,

cf (µ,σ, c,β) = c+
¡
(1/8)σ2 (1 + β) / (µ− c) (1− β)

¢
.

We suggest the following way to think about the impact of β on the equilibrium of the technology game.

The impact of β is to modify the variance from σ2 to eσ2 = (1 + β)σ2/ (1− β). Note that eσ2 is convex
increasing in β. Hence, the effect of β on the two thresholds reinforces the effect of variance even further.

Recall that cf was convex increasing in σ2. Hence, with increasing β the convexity is amplified and bias

towards flexible technology for high variance increases with increasing and positive β. The same holds for

cf . In fact, this threshold was linear in the variance for β = 0 but now it increases in a convex manner

with rising β.

To summarize our discussion of the impact of cross-elasticity, it is safe to say that as products become

more substitutable, firms are more favorably inclined towards investing in flexible technology.

5 Conclusion

In this paper we have looked at the technology choice and capacity investment of firms facing stochastic

price-dependent demand in a competitive market. Each firm makes three decisions: technology choice,

capacity choice and production quantity choice. Hence, we cover all three levels of firms’ decisions: strate-

gic, tactical and operational. We proved that the equilibrium exists and that the symmetric equilibrium is

unique for the capacity game under rather general conditions, and we derived optimal production quanti-

ties and capacities. After simplifying the problem appropriately, we were able to solve the entire game in

closed form. We developed the best responses of the firms in the technology game and compared the best

response of a duopolist with the behavior of a monopolist. We concluded that flexibility becomes more

valuable when the rival firm invests in dedicated technology. On the other hand, if the rival invests in flex-

ible technology, the value of flexibility diminishes. The intuition behind this result is as follows. The total

market potential consists of two parts: one is deterministic and depends on the mean demand, while the

other is stochastic and depends on the variance of the demand distribution. The firm investing in flexible

technology is able to appropriate both deterministic and stochastic components of the market potential

while the firm investing in dedicated technology is able to appropriate only the deterministic component.

We showed that all four equilibria - (F,F ) , (D,D) , (D,F ) and (F,D) - could result depending on the spe-

cific values of the problem parameters. Specifically, asymmetric equilibria can result even if the two firms

are completely symmetric and hence different technologies might co-exist in the market. We generalized

our findings to incorporate cross-elasticity and showed that as products become more substitutable, the

value of flexibility rises.
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Our findings provide systematic answers to questions regarding the value of flexibility as a competitive

weapon. Anecdotal evidence from the popular press suggests that flexibility is universally “good” in a

competitive environment. Our results, however, point out that a variety of equilibrium outcomes are

possible, including some in which both firms invest only in dedicated capacity or two different production

technologies may co-exist. We also identify technology choice as an important dimension of competition

that can alleviate other dimensions of competition (e.g., on price). Overall, we show that flexible technology

is not a panacea for all evils — there are conditions under which dedicated technology emerges in equilibrium.

Our results come with several limitations. In our work we did not endogenize economies of scope.

Further, we did take a restrictive view of flexibility as product flexibility only and not, for example, volume

flexibility. By incorporating reduction in lead times, economies of scope, and the advantage for new product

development, the benefits of flexibility would definitely be increased further. It would also be interesting

to study flexibility as an entry deterrence tool under stochastic demand. Moreover, allowing the flexible

firm to enter another market, i.e., allowing it to manufacture a third product would influence the choice

of technology for the rival firm. Many firms have focused on the role of flexible technology on developing

prototypes thereby drastically shortening the time to market for a new product development. However,

analytic models to this effect are few. This should prove to be an interesting problem for further research.
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technical appendix to:

Strategic Technology Choice and Capacity

Investment under Demand Uncertainty.

Manu Goyal∗ Serguei Netessine†

November 2003, Revised July 2004

In this technical appendix, we detail the solutions to the production game. Further, we formally

show the existence of equilibrium in the capacity game for all three markets and prove that the sym-

metric equilibrium in capacity choice is unique for the pure flexible and the pure dedicated markets.

Finally, we formally derive optimal capacities, profits and prices under assumptions A-1 through A-3

for all three markets for a general case of β 6= 0 and formally show non-negativity of ex-post prices in
the pure flexible market1.

Recall that the price for product y is Py (Qy,Q3−y) = Ay −Qy − βQ3−y. Profit expressions for the

last-stage production game can be calculated as follows:

bπxi = 2X
y=1

Py
³ bQy, bQ3−y´ bqxyi = 2X

y=1

³
Ay −

³bqxyi + bqxyj´− β
³bqx(3−y)i + bqx(3−y)j´´ bqxyi (1)

where x = f, d,m depending on the type of market in which the firm operates (pure flexible, pure

dedicated or mixed). The superscript ˆdenotes the optimal values of profits/decision variables.

Bold letters denote vectors. All vectors are column vectors and the superscript T denotes the trans-

pose. For example, AT represents the vector (A1, A2). All vectors are compared component-wise.

For the production game, we assume that the firms follow the optimal holdback strategy, i.e., the firm

produces the optimal profit maximizing quantity in the production game subject to capacity constraints.

∗goyalm@wharton.upenn.edu
†netessine@wharton.upenn.edu
1The non-negativity of prices is shown in the pure flexible market for illustrative purposes only. Proofs for the other

markets are along similar lines.
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If necessary, the firm holds back some capacity in case the optimal production quantity is less than

installed capacity.

1 The pure flexible market
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Figure 1. Pure flexible market - asymmetric solution, β = 0.

1

3

6

9

A1

A2 f
f

f
fi

f
fj KKK ==

f
fKAA 321 =−

f
fKAA 321 =+

    3 f
fK

    3 f
fK

Figure 2. Pure flexible market - symmetric solution, β = 0.
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Figure 3. Pure flexible market-symmetric solution, β > 0.

Suppose both firms decide to invest in flexible technology that can produce both products and

2



consider the last stage of the game (the production game). Assume without any loss of generality that

firm j has a higher capacity than firm i, i.e., the outcome of the capacity game is such that Kf
fi ≤ Kf

fj .

Given these capacities and a vector of demand realizations AT , firms decide upon production quantities.

The decision for one firm in isolation has been obtained by Chod and Rudi (2004). For two firms, the

last-stage optimization problem can be formulated using Lagrange multipliers as follows:

max Lfi (ui, q
f
1i, q

f
2i) =

2X
y=1

³
Ay − (qfyi + qfyj)

´
qfyi − ui

³
qf1i + q

f
2i −Kf

fi

´
, i = 1, 2. (2)

Combinations of the Lagrange multipliers and the slack variables give rise to 9 different optimization

problems. It is convenient to represent the possible outcomes of the production game using the state-

space diagram in Figure 12. The various areas have an intuitive explanation. For instance, area

Ω1 represents the set of demand realizations such that no firm is capacity constrained. Similarly,

area Ω3 represents the case in which both firms are capacity constrained. For area Ω2, only firm i

is capacity constrained. Areas Ω6 and Ω9 arise when the demand for one product is so high that,

when the firms are capacity constrained, they prefer to manufacture only one product. In areas Ω4

and Ω7, firm i is capacity constrained while firm j is not, whereas in areas Ω5 and Ω8 both firms are

capacity constrained. Moreover, in these last four areas, firm i finds it economical to produce only one

product but firm j produces both products. A mathematical description of the areas follows (we assume

Ay ≥ βA3−y, y = 1, 2 to ensure non-negativity of quantities):

Ω1 =
n
A : 1TA ≤ 3Kf

fi (1 + β)
o
,

Ω2 =
n
A : 1TA ≥ 3Kf

fi (1 + β) ,1TA ≤
³
2Kf

fj +K
f
fi

´
(1 + β) , |A1 −A2| ≤ 3Kf

fi (1− β)
o
,

Ω3 =
n
A : 1TA ≥

³
2Kf

fj +K
f
fi

´
(1 + β) , |A1 −A2| ≤ 3Kf

fi (1− β)
o
,

Ω4,7 =
n
A : |A1 −A2| ≥ 3Kf

fi (1− β) ;1TA ≥ 3Kf
fi (1 + β) ,1TA ≤

³
2Kf

fj +K
f
fi

´
(1 + β)

o
,

Ω5,8 =
n
A : 3Kf

fi (1− β) ≤ |A1 −A2| ≤
³
2Kf

fj +K
f
fi

´
(1− β) ;1TA ≥

³
2Kf

fj +K
f
fi

´
(1 + β)

o
,

Ω6,9 =
n
A : |A1 −A2| ≥

³
2Kf

fj +K
f
fi

´
(1− β)

o
.

In each area, the production game can be solved in closed form (and the MPNE is trivially unique).

The first-order KKT conditions are (it is straightforward to verify that the objective function is concave

so these conditions are also sufficient):

A1 − 2qf1i − qf1j − β
³
qf2i + q

f
2j

´
− βqf2i − ui + v1i = 0,

v1iq
f
1i = 0,

2Note that though Figure 1 is for β = 0, the solutions are expressed for β 6= 0. Figure 2 represents a symmetric flexible
market with β = 0 and Figure 3 represents a symmetric market with β > 0.
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A2 − 2qf2i − qf2j − β
³
qf1i + q

f
1j

´
− βqf1i − ui + v2i = 0,

v2iq
f
2i = 0,

qf1i + q
f
2i + v3i = Kf

fi,

uiv3i = 0,

where vli are the slack variables. For firm j we have similar expressions with the Lagrange multipliers

and the slack variables labelled as uj , vlj , l = 1, 2, 3. The expressions for optimal quantities and profits

for the various areas of the state-space diagram are obtained by taking appropriate values of the various

Lagrange multipliers and the slack variables. Unless specified otherwise, all quantities will be assumed

to be positive and hence the slack variables vli = vlj = 0 for l = 1, 2.

Capacity is not binding (area Ω1).

ui = uj = 0 and v3i,v3j > 0 by complementary slackness. Solving for quantities we get

bqfyi = bqfyj = Ay −A3−yβ
3 (1− β2)

,

Py =
Ay
3
.

The quantities are non-negative as long as Ay ≥ A3−yβ. As shown in Figure 3, this is true as long as
we are outside areas Z1 and Z2. The prices are, of course, positive.

Capacity is binding for firm i but not for firm j (area Ω2).

ui > 0 while uj = 0. From complementary slackness, we have,

bqfyi =
Ay −A3−y
6 (1− β)

+
Kf
fi

2
, bqfyj = ((5− β)Ay + (1− 5β)A3−y)

12 (1− β2)
− K

f
fi

4
,

Py =
5Ay +A3−y − 3 (1 + β)Kf

fi

12
for y = 1, 2.

It can also be shown that ui = (1/4)
³
A1 +A2 − 3Kf

fi (1 + β)
´
> 0 and v3j > 0 ⇒ (A1 +A2) ≤³

2Kf
fj +K

f
fi

´
(1 + β) , which gives the defining equation for Ω2 when β = 0 in Figure 1. The price

is non-negative if 5Ay + A3−y ≥ 3 (1 + β)Kf
fi. However, we know that

³
A1 +A2 − 3Kf

fi (1 + β)
´
> 0

since ui > 0. Hence prices are non-negative.

Capacity is binding for both firms (area Ω3).

ui, uj > 0. Solving for quantities we get

bqfyi =
Ay −A3−y
6 (1− β)

+
Kf
fi

2
, bqfyj = Ay −A3−y

6 (1− β)
+
Kf
fj

2
,
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Py =
4Ay + 2A3−y − 3 (1 + β)

³
Kf
fi +K

f
fj

´
6

, y = 1, 2.

uj = (1/2)
³
A1 +A2 −

³
Kf
fi + 2K

f
fj

´
(1 + β)

´
> 0 gives the defining equation for Ω3 in Figure 1.

Quantities are non-negative if A3−y − Ay ≤ 3Kf
fi (1− β) . To show that prices are non-negative is

a bit more involved. We shall show the non-negativity of prices for β ≥ 0. It may be noted that

if prices are non-negative for β ≥ 0, then they are non-negative everywhere. The prices are non-

negative if 4Ay + 2A3−y ≥ 3 (1 + β)
³
Kf
fi +K

f
fj

´
. We know that Ay + A3−y ≥ 3 (1 + β)Kf

fi and

Ay +A3−y ≥
³
Kf
fi + 2K

f
fj

´
(1 + β) from uj > 0. Adding these two we get,

2 (Ay +A3−y) ≥ (1 + β)
³
4Kf

fi + 2K
f
fj

´
. (3)

Also, we know from the geometry of the state space (Figure 1) that the minimum value of Ay (call

it Aminy ) is obtained from the intersection of lines A3−y − Aminy = 3Kf
fi (1− β) and A3−y + Aminy =³

Kf
fi + 2K

f
fj

´
(1 + β) . From these two equations we get Aminy = (1 + β)Kf

fj − (1− 2β)Kf
fi > 0. Hence,

2Ay ≥ (1 + β)Kf
fj − (1− 2β)Kf

fi. (4)

Adding inequalities (3) and (4) , we get

4Ay + 2A3−y ≥ 3 (1 + β)
³
Kf
fi +K

f
fj

´
+ 3βKi

fi ≥ 3 (1 + β)
³
Kf
fi +K

f
fj

´
, (5)

since β ≥ 0. This proves the non-negativity of prices in the two markets in Ω3.

Difference in demand states is very large with capacity constraint for firm i (areas Ω4,7).

We solve in Ω4 first. Firm i has a capacity constraint and the difference in the demand for the two

products is so large that firm imanufactures only one product. Firm j has no capacity constraint and can

manufacture both products. The values of various variables for firm i are as follows: qf2i = v3i = v1i = 0

with qf1i, ui,v2i > 0. For firm j, uj = v1j = v2j = 0 with the corresponding duals being positive. Solving

with the above parameters gives us v2i =
³
A1 −A2 − 3Kf

fi (1− β)
´
/2 > 0. From this condition we get

the defining equation for the region as A1 −A2 > 3Kf
fi (1− β) . Solving similarly for area Ω7, we get

bqfyi = Kf
fi, bqf(3−y)i = 0, bqfyj = Ay − βA3−y

2 (1− β2)
− K

f
fi

2
, bqf(3−y)j = A3−y − βAy

2 (1− β2)
,

Py =
Ay −Kf

fi

2
, P3−y =

A3−y − βKf
fi

2
.

and A ∈Ω4,7 where y = 1 for A ∈Ω4 and y = 2 for A ∈Ω7. It is relatively straightforward to see that
the quantities and prices are non-negative.
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Firm i manufactures one product and firm j has a capacity constraint (areas Ω5,8).

We solve in Ω5 first. Firm i has a capacity constraint and manufactures only one product while

firm j, though capacity constrained, manufactures both products. The values of various variables for

firm i are as follows: qf2i = v3i = v1i = 0 with q
f
1i, ui,v2i > 0. For firm j, v3j = v1j = v2j = 0 with the

corresponding duals being positive. Again by forcing v2i > 0 we get the defining equation similar to the

one derived above. The complete solution for Ω5,8 is

bqfyi = Kf
fi, bqi3−y = 0, bqjy = Ay −A3−y

4 (1− β)
− K

f
fi

4
+
Kf
fj

2
, bqj3−y = A3−y −Ay

4 (1− β)
+
Kf
fi

4
+
Kf
fj

2
,

Py =
3Ay +A3−y − (3 + β)Kf

fi − 2 (1 + β)Kf
fj

4
, P3−y =

Ay + 3A3−y − (1 + 3β)Kf
fi − 2 (1 + β)Kf

fj

4
.

and A ∈Ω5,8 where y = 1 for A ∈Ω5 and y = 2 for A ∈Ω8. It is straightforward to show that the

quantities are non-negative (follows from the boundary equations for these areas). Now Py ≥ 0, if

3Ay + A3−y ≥ (3 + β)Kf
fi + 2 (1 + β)Kf

fj . We know that for Ω5, Ay − A3−y ≥ 3Kf
fi (1− β) and

Ay +A3−y ≥
³
Kf
fi + 2K

f
fj

´
(1 + β) . Adding these two inequalities, we get

2Ay ≥ Kf
fi (4− 2β) +Kf

fj (2 + 2β) . (6)

Now, adding (6) and Ay +A3−y ≥
³
Kf
fi + 2K

f
fj

´
(1 + β) we get

3Ay +A3−y ≥ Kf
fi (5− β) + 2Kf

fj (2 + 2β) ≥ (3 + β)Kf
fi + 2 (1 + β)Kf

fj . (7)

To show P3−y ≥ 0, we need Ay+3A3−y ≥ (1 + 3β)Kf
fi+2 (1 + β)Kf

fj . This follows from Ay+A3−y ≥³
Kf
fi + 2K

f
fj

´
(1 + β) and 2A3−y ≥ 2βKf

fi.

Both firms are capacity constrained and manufacture one product (areas Ω6,9).

We solve in Ω6 first. Both firms are capacity constrained and the difference in demands is so high

that they manufacture only one product. The values of the parameters for firm i are qf2i = v3i = v1i = 0

and for firm j are qf2j = v3j = v1j = 0 with the corresponding duals being positive. The optimal

quantities and prices are

bqiy = Kf
fi, bqjy = Kf

fj , bqi3−y = bqj3−y = 0,
Py = Ay −

³
Kf
fi +K

f
fj

´
, P3−y = A3−y − β

³
Kf
fi +K

f
fj

´
,

where A ∈Ω6,9 with y = 1 for A ∈Ω6 and y = 2 for A ∈Ω9. Moreover,
v2i =

³
A1 −A2 − (1− β)

³
2Kf

fi +K
f
fj

´´
> 0 gives us A1 −A2 >

³
2Kf

fi +K
f
fj

´
(1− β) and forcing

v2j > 0 gives us A1 −A2 >
³
Kf
fi + 2K

f
fj

´
(1− β) . Since Kf

fj > K
f
fi the defining equation for the areas

is A1 −A2 >
³
Kf
fi + 2K

f
fj

´
(1− β) .
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It is straightforward to see that the quantities and the prices are non-negative.

The FOC in the capacity game.

The first-order condition for firm i in the capacity game can be expressed as3

E
∂πfi

∂Kf
fi

= cf ⇒
X
l

ZZ
Ωl

∂πfi

∂Kf
fi

dF (x1, x2) = cf .

Differentiating the profit function w.r.t. Kf
fi in each area and using Leibniz’ Rule gives us the

first-order condition for firm i:

cf =

ZZ
Ω2

1

4

³
x1 + x2 − 2Kf

fi (1 + β)
´
dF (x1, x2) (8)

+ (1/2)

ZZ
Ω3

³
x1 + x2 −

³
2Kf

fi +K
f
fj

´
(1 + β)

´
dF (x1, x2)

+ (1/2)

ZZ
Ω4

³
x1 − 2Kf

fi

´
dF (x1, x2)

+ (1/4)

ZZ
Ω5

³
3x1 + x2 − 2 (3 + β)Kf

fi − 2Kf
fj (1 + β)

´
dF (x1, x2)

+

ZZ
Ω6

³
x1 − 2Kf

fi −Kf
fj

´
dF (x1, x2) + (1/2)

ZZ
Ω7

³
x2 − 2Kf

fi

´
dF (x1, x2)

+ (1/4)

ZZ
Ω8

³
x1 + 3x2 − 2 (3 + β)Kf

fi − 2Kf
fj (1 + β)

´
dF (x1, x2)

+

ZZ
Ω9

³
x2 − 2Kf

fi −Kf
fj

´
dF (x1, x2),

and similarly for firm j:

cf = (1/2)

ZZ
Ω3

³
x1 + x2 −

³
Kf
fi + 2K

f
fj

´
(1 + β)

´
dF (x1, x2)

+ (1/2)

ZZ
Ω5,8

³
x1 + x2 − (1 + β)

³
2Kf

fj +K
f
fi

´´
dF (x1, x2)

+

ZZ
Ω6

³
x1 − 2Kf

fj −Kf
fi

´
dF (x1, x2)

+

ZZ
Ω9

³
x2 − 2Kf

fj −Kf
fi

´
dF (x1, x2).

3Note that we interchanged differentiation and integration. This is justified if the function under differentia-

tion/integration is Lipschitz-continuous of order one (see Glasserman 1994). This is easily verified since the first derivative

is clearly bounded.
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In the following proposition, we show uniqueness of a symmetric equilibrium. Proving uniqueness

for an asymmetric capacity investment is difficult because one needs to differentiate the first-order

conditions and these are not continuous at the boundaries of the various regions when capacities are

asymmetric. Since the boundaries are themselves functions of the capacities of the two firms, differenti-

ating the first-order conditions does not result in tractable expressions. However, above we did obtain

the optimality conditions for the capacity game without assuming symmetry. Therefore, all asymmetric

equilibria can be found numerically (or in closed form for some probability distributions). The same

comment applies for the pure dedicated market analyzed in the next section.

Proposition TA 1 Equilibrium in the capacity game for the pure flexible market exists and the

symmetric equilibrium is unique ∀β ∈ (−1, 1) .
Proof. The concavity of the objective functions was demonstrated by Chod and Rudi (2004), which

immediately implies existence of the equilibrium. Uniqueness is proved by showing that the slope of

the best-response function for each firm is less than one (Cachon and Netessine 2004). Using implicit

differentiation, the absolute value of the slope of the best-response function for, say firm j, is found as¯̄̄
∂2Πfj /∂K

f
fi∂K

f
fj

¯̄̄
/

¯̄̄̄
∂2Πfj /∂

³
Kf
fj

´2 ¯̄̄̄
.

Note that for a symmetric case, Figure 1 simplifies into Figure 2 (which is a special case of Figure 3 for

β = 0) and hence areas 4, 5, 7 and 8 disappear. It is easy to check that the integrands in equation (8) are

continuous at the boundaries of the areas once we assume symmetry. For instance, the boundary of areas

3 and 6 is given as A1 − A2 =
³
2Kf

fj +K
f
fi

´
(1− β) . Evaluating the integrands of Ω3 and Ω6 (say for

firm j) at this boundary gives (1/2)
³
2x2 +

³
2Kf

fj +K
f
fi

´
(1− β − 1− β)

´
=
³
x2 − β

³
2Kf

fj +K
f
fi

´´
for Ω3 and

³
x2 −

³
2Kf

fj +K
f
fi

´
(1− 1 + β)

´
=
³
x2 − β

³
2Kf

fj +K
f
fi

´´
for Ω6. Hence, we can safely

ignore differentiating the limits of the integrals when we apply Leibniz’ Rule as the corresponding terms

get cancelled.

Now, ¯̄̄̄
¯̄̄ ∂2Πfj

∂
³
Kf
fj

´2
¯̄̄̄
¯̄̄ =

ZZ
Ω3

(1 + β) dF (x1, x2) + 2

ZZ
Ω6,9

dF (x1, x2),

¯̄̄̄
¯̄ ∂2Πfj

∂Kf
fi∂K

f
fj

¯̄̄̄
¯̄ =

1

2

ZZ
Ω3

(1 + β) dF (x1, x2) +

ZZ
Ω6,9

dF (x1, x2).

Clearly,
¯̄̄
∂2Πfj /∂K

f
fi∂K

f
fj

¯̄̄
/

¯̄̄̄
∂2Πj/∂

³
Kf
fj

´2 ¯̄̄̄
= 1/2 < 1. Similarly, for firm i.
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Hence, the symmetric equilibrium in the capacity game is unique for all β ∈ (−1, 1). The first-order
conditions simplify to (Kf

fi = K
f
fj = K

f
f ):

cf = (1/2)

ZZ
Ω3

³
x1 + x2 − 3Kf

f (1 + β)
´
dF (x1, x2) (9)

+

ZZ
Ω6

³
x1 − 3Kf

f

´
dF (x1, x2) +

ZZ
Ω9

³
x2 − 3Kf

f

´
dF (x1, x2).

We now solve for the optimal capacity and profit for a firm in the pure flexible market under as-

sumptions A-1 through A-3.

Proposition TA 2 Under assumptions A-1 through A-3, for firms operating in the pure flexible

market,

(i) the MPNE in capacity is

Kf
f =

(µ1 + µ2 − 2cf )
3 (1 + β)

,

(ii) the expected profit at equilibrium is

Πff =

¡
σ21 + σ22

¢
18 (1− β)

+
(µ1 − cf )2 + (µ2 − cf )2

9 (1 + β)
,

(iii) the expected price for product y = 1, 2 is P fy = (µy + 2cf ) /3.

Proof. The first-order condition from (9) under symmetry (i.e. Kf
fi = Kf

fj = Kf
f ) can be written

using assumption A-3 as

cf = (1/2)

ZZ
Ω

³
x1 + x2 − 3Kf

f (1 + β)
´
dF (x1, x2) +

+ (1/2)

ZZ
Ω6

³
2
³
x1 − 3Kf

f

´
−
³
x1 + x2 − 3Kf

f (1 + β)
´´
dF (x1, x2)

+ (1/2)

ZZ
Ω9

³
2
³
x2 − 3Kf

f

´
−
³
x1 + x2 − 3Kf

f (1 + β)
´´
dF (x1, x2),

where Ω represents the entire state space. Using A-2 and A-1 we can further simplify it

(1/2)

ZZ
Ω

³
x1 + x2 − 3Kf

f (1 + β)
´
f1(x1)f2(x2)dx1dx2 = cf ,

9



and the result for the capacity follows. Further, under assumptions A-1 through A-3 the expression for

the firm’s profit becomes

Πfi =

µ
1

6

¶ZZ
Ω

 2X
y=1

³
4xy + 2x3−y − 6 (1 + β)Kf

f

´µ(xy − x3−y)
(1− β)

+ 3Kf
f

¶
fy(xy)f3−y(x3−y)dx1dx2

−cfKf
f .

After substituting the expression for the equilibrium capacity into the equation for profit, the result

follows after tedious algebra.

2 The pure dedicated market.

Figures 4 and 5 below represent the state-space for a pure dedicated market. The figures are drawn for

β = 0. In the interest of simplicity, the modified state-space representation for β 6= 0 is omitted here.
However, for β 6= 0, the same precautions and comments apply in the pure dedicated market as are

applicable in the pure flexible market (see Section 4.4 of the main paper).

A2

A1
  2 11
d
i

d
j KK +

1

7 9

3

     3 2
d
iK

4 65

2

8

Firm i

Firm j

     3 1
d
iK

  2 22
d
i

d
j KK +

Figure 4. Pure dedicated market - asymmetric solution.

A2

A1
     3 1
dK

1

34

2

     3 2
dK

Figure 5. Pure dedicated market - symmetric solution.

Suppose that both firms invest in dedicated technology, i.e., there is a dedicated production line

for each product (see Figures 4 and 5). Note the assumption that the capacity investment for firm j

is higher than that of firm i in both markets. It needs to be emphasized that this is in not a unique

representation. For instance, the capacity of firm j could be higher than firm i in one market but lower

in another. We could solve the production game in closed form for any of these scenarios. However, the

above assumption is for expositional convenience only. Later we restrict our attention to the symmetric

equilibrium, which is shown to be unique.

Compared to the pure flexible market, the interpretations of the areas in Figure 4 are much simpler.

For instance, area Ω1 represents no capacity constraint for either firm. In areas Ω2 and Ω4, firm i has

capacity constraint for products 1 and 2 respectively while firm j has no capacity constraint for either.

Since in each area the production game can be solved uniquely, the MPNE in the production game is

10



trivially unique.

The Lagrangian can be written as:

maxLdi (q
d
1i, q

d
2i,u) =

2X
y=1

(Ay − (Qy + βQ3−y)) qdyi − uyi(qdyi −Kd
yi).

A similar expression can be obtained for firm j with the Lagrange multipliers u1j and u2j . The KKT

conditions for firm i are:

A1 − 2qd1i − qd1j − β
³
qd2i + q

d
2j

´
− βqd2i − u1i + v1i = 0,

qd1iv1i = 0,

A2 − 2qd2i − qd2j − β
³
qd1i + q

d
1j

´
− βqd1i − u2i + v2i = 0,

qd2iv2i = 0,

qd1i + v3i = Kd
1i,

v3iu1i = 0,

qd2i + v4i = Kd
2i,

v4iu2i = 0,

where vli, l = 1, 2, 3, 4 are the slack variables. We now provide closed-form solutions for the optimal

quantities, while the equilibrium profits can be obtained from (1). All quantities are positive and hence,

unless specified otherwise, vli = vlj = 0 for all l.

Capacity is not binding (area Ω1).

uli = ulj = 0 for l = 1, 2. The optimal production quantities are

bqdyi = bqdyj = Ay −A3−yβ
3 (1− β2)

.

Capacity is binding for one product for firm i (areas Ω2,4).

For Ω2, u2i = 0 and ukj = 0 for k = 1, 2. However, since capacity binds for product 1 for firm i,

u1i > 0. The corresponding duals are positive by complementary slackness. Solving for quantities we

get

bqdyi = Kd
yi, bqd(3−y)i = A3−y − 3βKd

yi

3
, bqdyj = Ay − βA3−y −Kd

yi

¡
1− β2

¢
2 (1− β2)

,

bqd(3−y)j =
A3−y

¡
2 + β2

¢− 3βAy
6 (1− β2)

+
βKd

yi

2
.

and A ∈Ω2,4 where y = 1 for A ∈Ω2 and y = 2 for A ∈Ω4.
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Capacity is binding for both products for firm i (area Ω5).

We have u1i, u2i > 0, u1j = u2j = 0. Other variables are positive by complementary slackness and

production quantities are

bqd1i = Kd
1i, bqd2i = Kd

2i, bqd1j = A1 − βA2 −
¡
1− β2

¢
Kd
1i

2 (1− β2)
, bqd2j = A2 − βA1 −

¡
1− β2

¢
Kd
2i

2 (1− β2)
.

Capacity is binding for both firms for the same product (areas Ω3,7).

For Ω3 we have u1i, u1j > 0, u2i = u2j = 0 and more generally:

bqdyi = Kd
yi, bqd(3−y)i = A3−y − 3βKd

yi

3
, bqdyj = Kd

yj , bqd(3−y)j = A3−y − 3βKd
yj

3
,

and A ∈Ω3,7 where y = 1 for A ∈Ω3 and y = 2 for A ∈Ω7.

Capacity is binding for one product for firm j and both products for firm i (areas Ω6,8).

For Ω6 we have u1i, u2i > 0, u2j = 0, u1j > 0. Other variables are non-zero by complementary

slackness and we obtain

bqdyi = Kd
yi, bqd(3−y)i = Kd

(3−y)i, bqdyj = Kd
yj , bqd(3−y)j = A3−y −Kd

(3−y)i − β(Kd
yi + 2K

d
yj)

2
,

and A ∈Ω6,8 where y = 1 for A ∈Ω6 and y = 2 for A ∈Ω8.

Capacity is binding for both products for both firms (area Ω9).

We have uli, ulj > 0 for l = 1, 2. The optimal solution is simply

bqdyi = Kd
yi; bqdyj = Kd

yj .

The FOC in the capacity game.

For firm i, the first-order condition can be expressed as ∂
³
Eπdi

´
/∂Kd

yi = c which translates into

c = (1/2)

ZZ
Ω2

³
x1 − x2β − 2

³
1− β2

´
Kd
1i

´
dF (x1, x2)

+

ZZ
Ω3

³
x1 − βx2 −

³
1− β2

´³
2Kd

1i +K
d
1j

´´
dF (x1, x2)

+ (1/2)

ZZ
Ω5

³
x1 − 2Kd

1i − 2βKd
2i

´
dF (x1, x2)

+

ZZ
Ω6

³
x1 −

³
2Kd

1i +K
d
1j

´
+ β

³
−x2 + 2β

³
Kd
1i +K

d
1j

´
− 2Kd

2i

´
/2
´
dF (x1, x2)

+ (1/2)

ZZ
Ω8

³
x1 − 2βKd

2i − 2Kd
1i

´
dF (x1, x2)

+

ZZ
Ω9

³
x1 −

³
2Kd

1i +K
d
1j

´
− β

³
2Kd

2i +K
d
2j

´´
dF (x1, x2).

12



Analogously, ∂E
³
πdi

´
/∂Kf

2i = c yields:

c = (1/2)

ZZ
Ω4

³
x2 − x1β − 2

³
1− β2

´
Kd
2i

´
dF (x1, x2)

+ (1/2)

ZZ
Ω5

³
x2 − 2Kd

2i − 2βKd
1i

´
dF (x1, x2)

+ (1/2)

ZZ
Ω6

³
x2 − 2βKd

1i − 2Kd
2i

´
dF (x1, x2)

+

ZZ
Ω7

³
x2 − βx1 −

³
1− β2

´³
2Kd

2i +K
d
2j

´´
dF (x1, x2)

+

ZZ
Ω8

³
x2 −

³
2Kd

2i +K
d
2j

´
+ β

³
−x1 + 2β

³
Kd
2i +K

d
2j

´
− 2Kd

1i

´
/2
´
dF (x1, x2)

+

ZZ
Ω9

³
x2 −

³
2Kd

2i +K
d
2j

´
− β

³
2Kd

1i +K
d
1j

´´
dF (x1, x2).

For firm j, E
³
∂πdj /∂K

d
1j

´
= c translates into:

c =

ZZ
Ω3,6

h
x1 − βx2 −

³
1− β2

´³
2Kd

1j +K
d
1i

´i
dF (x1, x2) (10)

+

ZZ
Ω9

h
x1 −

³
2Kd

1j +K
d
1i

´
− β

³
2Kd

2j +K
d
2i

´i
dF (x1, x2),

and finally from E
³
∂πdj /∂K

d
2j

´
= c we get

c =

ZZ
Ω7,8

h
x2 − βx1 −

³
1− β2

´³
2Kd

2j +K
d
2i

´i
dF (x1, x2)

+

ZZ
Ω9

h
x2 −

³
2Kd

2j +K
d
2i

´
− β

³
2Kd

1j +K
d
1i

´i
dF (x1, x2).

The following proposition states the existence and the uniqueness of equilibrium in the capacity

game.

Proposition TA 3 Equilibrium in the capacity game for the pure dedicated market exists ∀β ∈
(−1, 1) and the symmetric equilibrium is unique for β ∈ (−1, 1/3) .
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Proof. It can be easily verified that each objective function is concave so a pure strategy Nash

Equilibrium exists. The Hessian for this game can be written as:

Hd =



∂2Πdi
∂(Kd

1i)
2

∂2Πdi
∂Kd

1i∂K
d
2i

∂2Πdi
∂Kd

1i∂K
d
1j

∂2Πdi
∂Kd

1i∂K
d
2j

∂2Πdi
∂Kd

1i∂K
d
2i

∂2Πdi
∂(Kd

2i)
2

∂2Πdi
∂Kd

2i∂K
d
1j

∂2Πdi
∂Kd

2i∂K
d
2j

∂2Πdj
∂Kd

1j∂K
d
1i

∂2Πdj
∂Kd

1j∂K
d
2i

∂2Πdj

∂(Kd
1j)

2

∂2Πdj
∂Kd

1j∂K
d
2j

∂2Πdj
∂Kd

2j∂K
d
1i

∂2Πdj
∂Kd

2j∂K
d
2i

∂2Πdj
∂Kd

2j∂K
d
1j

∂2Πdj

∂(Kd
2j)

2


.

Following Cachon and Netessine (2004), a condition sufficient for the uniqueness of the Nash equi-

librium is the diagonal dominance that translates into¯̄̄̄
¯̄̄ ∂2Πdi

∂
³
Kd
yi

´2
¯̄̄̄
¯̄̄ >

¯̄̄̄
¯ ∂2Πdi
∂Kd

yi∂K
d
(3−y)i

¯̄̄̄
¯+

¯̄̄̄
¯ ∂2Πdi
∂Kd

yi∂K
d
yj

¯̄̄̄
¯+

¯̄̄̄
¯ ∂2Πdi
∂Kd

yi∂K
d
(3−y)j

¯̄̄̄
¯ , y = 1, 2, (11)

¯̄̄̄
¯̄̄ ∂2Πdj

∂
³
Kd
yj

´2
¯̄̄̄
¯̄̄ >

¯̄̄̄
¯ ∂2Πdj
∂Kd

yj∂K
d
(3−y)j

¯̄̄̄
¯+

¯̄̄̄
¯ ∂2Πdj
∂Kd

yj∂K
d
yi

¯̄̄̄
¯+

¯̄̄̄
¯ ∂2Πdj
∂Kd

yj∂K
d
(3−y)i

¯̄̄̄
¯ , y = 1, 2. (12)

Because of symmetry assumption, we show the analysis for one firm only (say firm j). We re-write

the first-order conditions (10) for firm j for the symmetric case (note that Figure 4 changes to Figure

5). These are

c =

ZZ
Ω2

h
x1 − βx2 −

³
1− β2

´³
2Kd

1j +K
d
1i

´i
dF (x1, x2) (13)

+

ZZ
Ω3

h
x1 −

³
2Kd

1j +K
d
1i

´
− β

³
2Kd

2j +K
d
2i

´i
dF (x1, x2),

and

c =

ZZ
Ω4

h
x2 − βx1 −

³
1− β2

´³
2Kd

2j +K
d
2i

´i
dF (x1, x2)

+

ZZ
Ω3

h
x2 −

³
2Kd

2j +K
d
2i

´
− β

³
2Kd

1j +K
d
1i

´i
dF (x1, x2).

The numbering of the areas is now with respect to Figure 5. We again verify that the integrands

are continuous across the areas. To show a specific case, take areas 2 and 3 of Figure 5. The boundary

condition is A2 = β
³
Kd
1i + 2K

d
1j

´
+
³
Kd
2i + 2K

d
2j

´
. The integrand of Ω2 in equation (13) reduces to

x1 −
³
2Kd

1j +K
d
1i

´
− β

³
2Kd

2j +K
d
2i

´
which is the same as the integrand of Ω3. Hence, we ignore the

limits while differentiating using Leibniz’ Rule.
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Next we derive conditions for (12) to hold. We first show the result for y = 1 :¯̄̄̄
¯̄̄ ∂2Πdj

∂
³
Kd
1j

´2
¯̄̄̄
¯̄̄ =

ZZ
Ω2

2
³
1− β2

´
dF (x1, x2) +

ZZ
Ω3

2dF (x1, x2),

¯̄̄̄
¯ ∂2Πdj
∂Kd

1j∂K
d
2j

¯̄̄̄
¯ =

ZZ
Ω3

2βdF (x1, x2),

¯̄̄̄
¯ ∂2Πdj
∂Kd

1j∂K
d
1i

¯̄̄̄
¯ =

ZZ
Ω2

³
1− β2

´
dF (x1, x2) +

ZZ
Ω3

1dF (x1, x2),

¯̄̄̄
¯ ∂2Πdj
∂Kd

1j∂K
d
2i

¯̄̄̄
¯ =

ZZ
Ω3

βdF (x1, x2).

It is straightforward to show that the inequality holds for each of the areas except for Ω3. For the

inequality to hold in Ω3 we need β < 1/3. The same result for y = 2 can be shown analogously. Hence,

there is a unique symmetric Nash Equilibrium in the capacities for β ∈ (−1, 1/3).
The symmetric first-order conditions can now be represented as (see Figure 5 with Kd

yi = K
d
yj = K

d
y )

c =

ZZ
Ω2

³
x1 − βx2 −

³
1− β2

´ ³
3Kd

y

´´
dF (x1, x2) +

ZZ
Ω3

³
x1 − 3Kd

y (1 + β)
´
dF (x1, x2), (14)

c =

ZZ
Ω4

³
x2 − βx1 −

³
1− β2

´ ³
3Kd

y

´´
dF (x1, x2) +

ZZ
Ω3

³
x2 − 3Kd

y (1 + β)
´
dF (x1, x2).

Proposition TA 4 Under assumptions A1-A3, for firms operating in a pure dedicated market,

(i) the MPNE in capacity is

Kd
y =

(µy − c)
3 (1 + β)

, y = 1, 2,

(ii) the expected profit at equilibrium is

Πdi =
(µ1 − c)2 + (µ2 − c)2

9 (1 + β)
, i = 1, 2,

(iii) the expected price for a product y = 1, 2 is P dy = (µy + 2c) /3.

Proof. From equation (14) , the symmetric first-order conditions in a pure dedicated market can be

written as

c =

ZZ
Ω3

³
x1 − 3Kd

y (1 + β)
´
dF (x1, x2),

c =

ZZ
Ω3

³
x2 − 3Kd

y (1 + β)
´
dF (x1, x2).

The expressions for capacities and profits follow after tedious algebra.
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3 The mixed market.
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Figure 6. The mixed market.

Suppose that firm i decides to invest in dedicated capacity and firm j decides to invest in flexible

capacity. We alter our notation for the purpose of this section only: for clarity we remove the sub-

scripts i and j (subscripts d and f will be used if necessary for the flexible and the dedicated firm). For

instance, Km
1 represents dedicated capacity for product 1 and qm1f represents the quantity of product

one produced by the flexible firm. Similar to the previous two cases, a number of areas arise due to

the capacity constraints of both firms (see Figure 6)4 and the production game can be solved uniquely

for each area. However, this is not a unique representation (i.e., there are other possibilities that could

give rise to a different set of areas). Figure 6 is based on the assumption that Km
1 > Km

f > Km
2 . For

instance, there could be an area 4 similar to area 3 instead of area 12 in the figure. The presence of

these areas depends on the assumptions on the capacity levels for the firms. Hence, Figure 6 is only

a schematic representation of how the areas are placed with respect to each other. However, because

there are multiple representations of the state-space, we suspect that there might be multiple equilibria

in the capacity game in the mixed market associated with each such representation.

The areas in Figure 6 have intuitive explanations. For instance, in area Ω1 no firm has a capacity

constraint, while in area Ω2 the flexible firm has a capacity constraint. In area Ω3, the dedicated firm

has a capacity constraint for product 1, etc.

Using the methodology below, one can solve for all possible ways of representing the mixed market.

For ease of understanding, some of the areas can be referenced back to Figure 6. Others (like area Ω4)

which do not find representation in Figure 6, can be understood from the text detailing what they stand

4Figure 6 represents the state-space for a mixed market for β = 0. The modified state-space representation for β 6= 0 is
omitted for simplicity.
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for.

The Lagrangian formulation for the flexible firm is

maxLmf (uf , q
m
1f , q

m
2f ) =

2X
y=1

(Ay − (Qy + βQ3−y)) qmyf − uf (qm1f + qm2f −Km
f ).

The KKT conditions are (since the objective function is concave these are also sufficient):

A1 − 2qm1f − qm1d − β
³
qm2f + q

m
2d

´
− βqm2f − uf + v1f = 0,

v1fq
m
1f = 0,

A2 − 2qm2f − qm2d − β
³
qm1f + q

m
1d

´
− βqm1f − uf + v2f = 0,

v2fq
m
2f = 0,

qm1f + q
m
2f + v3f = Km

f ,

ufv3f = 0,

where vlf are the slack variables for l = 1, 2, 3. For the dedicated firm, the Lagrangian is

maxLmd (q
m
1d, q

m
2d,u) =

2X
y=1

³
(Ay − (Qy + βQ3−y)) qdyi − uyd(qmyd −Km

y )
´
.

The KKT conditions for the firm employing dedicated technology are:

A1 − 2qm1d − qm1f − β
³
qm2d + q

m
2f

´
− βqm2d − u1d + v1d = 0,

qm1dv1d = 0,

A2 − 2qm2d − qm2f − β
³
qm1d + q

m
1f

´
− βqm1d − u2d + v2d = 0,

qm2dv2d = 0,

qm1d + v3d = Km
1 ,

v3du1d = 0,

qm2d + v4d = Km
2 ,

v4du2d = 0,

where vld, l = 1, 2, 3, 4 are the slack variables. We proceed by finding the optimal production quanti-

ties. Unless otherwise specified, the quantities are all positive and hence vlf = vld = 0, l = 1, 2. Similar

in spirit to the case of a pure flexible market, the Lagrange multipliers often define the boundary con-

ditions for the various areas of integration. For the sake of simplicity, we do not show the values of the

Lagrange multipliers whenever they are positive. We do, however, show some interesting cases below
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in which the slack variables are positive.

Capacity is not binding (area Ω1).

uf = u1d = u2d = 0. The unconstrained solution is

bqmyf = bqmyd = Ay −A3−yβ
3 (1− β2)

, y = 1, 2.

Only the flexible firm is capacity constrained (area Ω2).

For the flexible firm uf > 0. For the dedicated firm ukd = 0 for k = 1, 2. The optimal production

quantities are:

bqmyf =
Ay −A3−y
6 (1− β)

+
Km
f

2
for y = 1, 2,

bqmyd =
(5− β)Ay +A3−y (1− 5β)

12 (1− β2)
− K

m
f

4
for y = 1, 2.

The flexible firm is not capacity constrained while the dedicated firm is capacity con-

strained for both products (area Ω2̃).

Note that this area is not represented in Figure 6. Here, uf = 0 and ukd > 0 for k = 1, 2. The

optimal production quantities are

bqmyf =
Ay − βA3−y −Km

y

¡
1− β2

¢
2

, for y = 1, 2,

bqmyd = Km
y .

The flexible firm is not capacity constrained while the dedicated firm is constrained for

product 2 for area Ω3 and product 1 for area Ω4.

Area Ω4 is not in Figure 6. For the flexible firm uf = 0 with the corresponding duals being non-zero.

For the dedicated firm we have uyd = 0 and u(3−y)d > 0. In what follows, y = 1 for area Ω3 and y = 2

for area Ω4. Solving for quantities we get:

bqmyf =
Ay
¡
2 + β2

¢− 3βA3−y + 3βKm
(3−y)

¡
1− β2

¢
6 (1− β2)

,

bqm(3−y)f =
A3−y − βAy −Km

(3−y)
¡
1− β2

¢
2 (1− β2)

, bqmyd = Ay − 3βKm
(3−y)

3
, bqm(3−y)d = Km

(3−y).

Capacity is binding for the flexible firm and for one product for the dedicated firm

(area Ω5,6).
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For the flexible firm uf > 0. For the dedicated firm, uyd > 0 and u(3−y)d = 0 where y = 1 for A ∈Ω5
and y = 2 for A ∈Ω6. The solution is:

bqmyf =
2Ay −A(3−y) (1 + β)− 2Km

y (1− β2) + 3Km
f (1− β)

7− β (6 + β)
,

bqm(3−y)f =
−2Ay +A3−y (1 + β) + 2Km

y

¡
1− β2

¢
+Km

f

¡
4− 3β − β2

¢
7− β (6 + β)

,

bqmyd = Km
y , bqm(3−y)d = Ay + 3A3−y −Km

y (1 + 7β)− 2Km
f (1 + β)

7 + β
,

and A ∈Ω5,6 where y = 1 for A ∈Ω5 and y = 2 for A ∈Ω6.

Capacity is binding for the flexible firm and for one product for the dedicated firm.

The flexible firm manufactures one product (areas Ω7,8).

In area Ω7 the difference in demand realizations is so high that the flexible firm manufactures only

product 1. Hence, for the flexible firm, uf > 0 and v2f > 0 so that bqm2f = 0. For the dedicated firm

u1d > 0. Upon solving we get v2f = (1/2)
³
2A1 −A2 (1 + β) − 2Km

1

¡
1− β2

¢− Km
f

¡
4− 3β − β2

¢´
>

0. For β = 0 this reduces to the boundary condition 2A1 −A2 > 2Km
1 +4K

m
f as is evident in Figure 6.

The optimal quantities are:

bqmyf = Km
f , bqm(3−y)f = 0, bqmyd = Km

y , bqm(3−y)d = ³
A3−y − 2βKm

y − βKm
f

´
/2,

and A ∈Ω7,8 where y = 1 for A ∈Ω7 and y = 2 for A ∈Ω8.

Capacity is binding for the flexible firm and for both products for the dedicated firm.

The flexible firm manufactures one product (areas Ω9,10).

The only change from the preceding case is that for the dedicated firm we have u1d, u2d > 0. Solving

in area Ω9 we get v2f = A1 −A2 − (Km
1 −Km

2 + 2K
m
f ) (1− β) > 0. From here we obtain the boundary

condition for these areas as shown in Figure 6. Solving for the optimal quantities, we get:

bqmyf = Km
f , bqm(3−y)f = 0, bqmyd = Km

y , bqm(3−y)d = Km
(3−y),

and A ∈Ω9,10 where y = 1 for A ∈Ω9 and y = 2 for A ∈Ω10.

Both firms are capacity constrained (area Ω11).

All slack variables are zero for both firms. Solving for quantities we get

bqmyf = Ay −A3−y
4 (1− β)

+

³
Km
(3−y) −Km

y

´
4

+
Km
f

2
, bqmyd = Km

y , y = 1, 2.
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The flexible firm is capacity constrained and manufactures one product: product 1 for

area Ω12 and product 2 for area Ω13.

Area Ω13 is not in Figure 6. Take y = 1 for area Ω12 and y = 2 for area Ω13. For the flexible firm,

uf > 0 and v(3−y)f > 0 so that bqm(3−y)f = 0. For the dedicated firm, uld = 0 for l = 1, 2. Solving we get
v(3−y)f = (1/2)

³
Ay −A3−y − 3Km

f (1− β)
´
> 0 which gives us the boundary condition for this area.

The optimal production quantities are:

bqmyf = Km
f , bqm(3−y)f = 0, bqmyd = Ay −A(3−y)β −Km

f

¡
1− β2

¢
2 (1− β2)

, bqm(3−y)d = A3−y −Ayβ
2 (1− β2)

.

The FOC in the capacity game.

For the flexible firm, the FOC is given by E
³
∂πmf /∂K

m
f

´
= cf , which translates into:

cf =

ZZ
Ω2

1

4

³
x1 + x2 − 2Km

f (1 + β)
´
dF (x1, x2)

+

ZZ
Ω5

1

(7 + β)2

 (17− β)x1 + (16− β (1− β))x2

+(−17 + β) (1 + β) ((1− β)Km
1 + 2K

m
f )

 dF (x1, x2)
+

ZZ
Ω6

1

(7 + β)2

 (17− β)x2 + (16− β (1− β))x1

+(−17 + β) (1 + β) ((1− β)Km
2 + 2K

m
f )

 dF (x1, x2)
+

ZZ
Ω7

³
x1 − (βx2/2)−

³
1− β2

´
Km
1 − (2− β2)Km

f

´
dF (x1, x2)

+

ZZ
Ω8

³
x2 − (βx1/2)−

³
1− β2

´
Km
2 − (2− β2)Km

f

´
dF (x1, x2)

+

ZZ
Ω9

³
x1 −Km

1 − βKm
2 − 2Km

f

´
dF (x1, x2)

+

ZZ
Ω10

³
x2 −Km

2 − βKm
1 − 2Km

f

´
dF (x1, x2)

+ (1/2)

ZZ
Ω11

³
x1 + x2 − (1 + β)

³
Km
1 +K

m
2 + 2K

m
f

´´
dF (x1, x2)

+

ZZ
Ω12

1

2

³
x1 − 2Km

f

´
dF (x1, x2) +

ZZ
Ω13

1

2

³
x2 − 2Km

f

´
dF (x1, x2).

For the dedicated firm we have ∂E (πmd ) /∂K
m
1 = c, which translates into

c = (1/2)

ZZ
Ω2̂

(x1 − 2 (Km
1 + βKm

2 )) dF (x1, x2) + (1/2)

ZZ
Ω4

³
x1 − x2β − 2

³
1− β2

´
Km
1

´
dF (x1, x2)

+
1

(7 + β)2

ZZ
Ω5

 (33− β (2− β))x1 + (1− β (34− β))x2

− (17− β)
¡
1− β2

¢ ³
4Km

1 +K
m
f

´
 dF (x1, x2)
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+

ZZ
Ω7

³
x1 − βx2 −

³
1− β2

´ ³
2Km

1 +K
m
f

´´
dF (x1, x2)

+

ZZ
Ω9

³
x1 −

³
2Km

1 + 2βK
m
2 +K

m
f

´´
dF (x1, x2)

+

ZZ
Ω10

³
x1 −

³
2Km

1 + 2βK
m
2 + βKm

f

´´
dF (x1, x2)

+ (1/4)

ZZ
Ω11

³
3x1 + x2 − 2

³
(3 + β)Km

1 + (1 + 3β)K
m
2 + (1 + β)Km

f

´´
dF (x1, x2),

and ∂E (πmd ) /∂K
m
2 = c yields:

c = (1/2)

ZZ
Ω2̂

(x2 − 2 (βKm
1 +K

m
2 )) dF (x1, x2) + (1/2)

ZZ
Ω3

³
x2 − x1β − 2

³
1− β2

´
Km
2

´
dF (x1, x2)

+
1

(7 + β)2

ZZ
Ω6

 (33− β (2− β))x2 + (1− β (34− β))x1

− (17− β)
¡
1− β2

¢ ³
4Km

2 +K
m
f

´
 dF (x1, x2)

+ (1/4)

ZZ
Ω11

³
3x2 + x1 − 2

³
(3 + β)Km

2 + (1 + 3β)K
m
1 + (1 + β)Km

f

´´
dF (x1, x2)

+

ZZ
Ω8

³
x2 − βx1 −

³
1− β2

´ ³
2Km

2 +K
m
f

´´
dF (x1, x2)

+

ZZ
Ω9

³
x2 − 2Km

2 − 2βKm
1 − βKm

f

´
dF (x1, x2)

+

ZZ
Ω10

³
x2 − 2Km

2 − 2βKm
1 −Km

f

´
dF (x1, x2).

Proposition TA 5 Equilibrium in the capacity game for the mixed market exists for all β ∈ (−1, 1) .
Existence follows from the concavity of the objective functions, which can be easily verified. Unique-

ness is analytically difficult to show in this case as there is no symmetry argument that we can invoke.

In fact, we conjecture that for a holdback strategy, the equilibrium in the mixed market may not be

unique. This follows from the fact that there is more than one way to represent the capacity of the two

firms as detailed by Figure 6 and, as we pointed out in the body of the paper, Figure 6 is not a unique

representation.

Proposition TA 6 For the firms operating in the mixed market:

(i) the MPNE in capacity for a

(a) flexible firm is: Km
f = (µ1 + µ2 + 2c− 4cf ) /3 (1 + β) ,

(b) dedicated firm is: Km
y = (5µy − µ3−y + 4cf − 8c) /12 (1 + β) , y = 1, 2,
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(ii) the expected profit at equilibrium for a

(a) flexible firm is: Πmf =
¡
σ21 + σ22

¢
/8 (1− β)+(µ1−µ2)2/32 (1 + β)+(µ1 + µ2 + 2c− 4cf )2 /18 (1 + β) ,

(b) dedicated firm is: Πmd = (µ1 − µ2)2/16 (1 + β) + (µ1 + µ2 + 2cf − 4c)2 /18 (1 + β) ,

(iii) the expected price for product y = 1, 2 is Pmy = (7µ1 + µ2 + 8cf + 8c) /24.

Proof. For the mixed market under assumptions A-2 and A-3, the optimality condition of the firm

investing into flexible technology is:

(1/2)

ZZ
Ω

³
x1 + x2 − (1 + β) (Km

1 +K
m
2 )− 2Km

f

´
dF (x1, x2) = cf ,

while the profit is

Πmf =
1

16 (1− β)2

ZZ
Ω

 2X
y=1

³
(3− 4β)xy + x3−y − (1− β)

³
3Km

y +K
m
3−y + 2K

m
f

´´
×
³
xy − x3−y + (1− β)

³
Km
3−y −Km

y

´
+ 2Km

f

´i
dF (x1, x2)− cfKm

f .

The optimality conditions of the firm investing into dedicated technology are:

(1/4)

ZZ
Ω

³
3xy + x3−y − 2

³
(3 + β)Km

y + (1 + 3β)K
m
3−y + (1 + β)Km

f

´´
dF (x1, x2)dF (x1, x2) = c, y = 1, 2

while the profit is

Πmd =
2X
y=1

µ 1

4 (1− β)

¶ZZ
Ω

³
(3− 4β)xy + x3−y − (1− β)

³
3Km

y +K
m
3−y + 2K

m
f

´´
Km
y dF (x1, x2)− cKm

y

 .
The results follow after some algebra.
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