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A C K N O W L E D G E M E N T S

At the current moment in time, a PhD is the highest academic degree awarded
in the United States. As such, this thesis reflects over two decades of formal
education and schooling across multiple institutions. It also reflects the author’s
life experience to date, which is formed in many informal and non-academic
ways. Accounting for all of these influences and giving credit where credit is
due is an impossible task; however, I would like to take some time to thank the
many hands which helped this thesis come to be. Given the public nature of this
document, I will not always name names, but I will make clear the contributions
of my colleagues and teachers.

First and foremost I must thank my parents for bringing me into the world.
While my father was in the Navy, my mother had the strongest influence on my
education. Instilling a love of reading is, besides giving me life itself, the greatest
gift she has given to me. I remember distinctly being told that, given our socio-
economic status, receiving a scholarship was the only way I would make it to a
university one day, and that reading would take me there. My sense of reverence
for reading, among other things, is entirely due to my mother. In contrast, my
father engaged me in philosophical dialog at a young age, which is how I gained
my first experience with critical thinking. He was never much of a reader; he
preferred to sort things out for himself. My entire family — aunts, uncles, cousins
and grandparents included — have supported me every step of the way and they
know I owe them a great deal.

If anyone thinks that obtaining a PhD comes after an endless stream of suc-
cesses, they are mistaken. I failed many times, and fortunately I was given many
second chances. The educators in the Virginia Beach public school system gave
me my first second chance by letting me retake a placement exam for the gifted
and talented program. Mr. Ausberry, at Thomas Harrison Middle School, re-
quested that I be accelerated a year in mathematics. Mr. Frutuozo made being
a scientist seem fashionable, by being a rock star himself. At Harrisonburg High
School, I had many excellent instructors, but I felt the strongest direction and
guidance from Henry Buhl, Myron Blosser, Andrew Jackson, Patrick Lintner and
David Loughran. Without these hardworking and underpaid teachers, I don’t
think I would have gotten to go to MIT.

Attending MIT as an undergrad was one of the most formative experiences of
my life. It certainly tested and broke the mental toughness that I thought I had.
Sitting as a freshman in Denis Auroux’s 18.100B and getting my first taste of point-
set topology was like stepping in to another dimension. It was too much, too fast,
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and for a moment I thought that the gate of mathematics was closed to me. Ger-
ald Sussman helped steer me back towards mathematics by preaching the value of
the MIT quadrivium: logic/programming, analysis, algebra, geometry, topology,
relativity and quantum mechanics. Haynes Miller gave me my second second
chance by overlooking my shabby mathematical preparation and letting me study
for the Part 1B tripos at Churchill College, as part of the Cambridge-MIT exchange
program. Cambridge exposed me to one of the greatest mathematical cultures to
ever exist. The integrated nature of the classes and the year-long preparation for
the tripos helped me gain independence and synthesize my lessons into a unified
whole. It was in the Churchill buttery, where Part II and III students waxed poetic
about Riemann surfaces and topoi before I even knew what a ring was, that I de-
cided I had to pursue mathematics for graduate school. Returning to MIT, Haynes
exposed me to even more advanced mathematics through summer projects and
an IAP project with Aliaa Barakat on integrable systems. Working with Aliaa and,
later, Victor Guillemin gave me lots of practice with writing mathematics. All of
this has served me well for graduate school.

The University of Pennsylvania appealed to my theory-building nature, but
it was having to retake the preliminary exams that helped me become a bet-
ter problem-solver. While drudging through the Berkeley Problems in Mathemat-
ics [dSS04] book, my classes gave me something to look forward to. Tony Pan-
tev made the first-year algebra sequence geometric for me, by introducing us to
the Serre-Swan correspondence, categories, simplicial sets, spectra and sheaves.
Jonathan Block balanced the algebraic and the geometric in Penn’s lengthy topol-
ogy sequence and introduced us to “Brave New Algebra.” The graduate student
body at Penn helped contextualize my mathematical lessons, while my roommate,
Elaine So, gave me lessons in how to be a better human.

My advisor, Robert Ghrist, believed in me when I did not believe in myself. He
taught me to have good taste in mathematics and introduced me to Morse theory,
Euler calculus, integral geometry and much more. When I first became his stu-
dent, the idea that no mathematical object is too abstract to be incarnate resonated
deeply with me then, as it does today. Rob outlined a beautiful vision for applied
mathematics and worked very hard to realize his ambitious plan. By bringing
Yasu Hiraoka, Sanjeevi Krishnan, David Lipsky, Michael Robinson and Radmila
Sazdanovic together, Rob augmented my graduate training in profound ways.
Given this investment, Rob was extremely generous to let me wander geographi-
cally and intellectually. Because of him and Penn’s Exchange Scholar program, I
was able to live in Princeton for the last few years of my graduate career.

At Princeton, I approached Bob MacPherson in person, who luckily was think-
ing about applied sheaf theory because of my advisor and Amit Patel, and he
agreed to organize a seminar at the Institute for Advanced Study. Listening and
watching Bob lecture was like getting to peer through a telescope into the far
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reaches of the mathematical kingdom. The attendees of this seminar were a mot-
ley crew of thinkers and Bob was our shepherd. Bob never said more than was
necessary, never wanted his own perspective or understanding to crowd out a
newly forming one, and did his best to cultivate each individual’s diverse set of
mental connections, life experiences and accompanying insights.

Many people helped me directly and indirectly while finishing my thesis.
Mark Goresky taught me the subtleties of stratification theory, set a high stan-
dard for mathematical precision and was enthusiastic and supportive of all
my efforts. David Treumann and Jon Woolf both clarified details concerning
this work via email. Greg Henselman, Sefi Ladkani, Michael Lesnick, and Jim
McClure all provided editorial comments on early drafts of this thesis. Vin de
Silva, Matthew Kahle, Dmitriy Morozov, Vidit Nanda, Primoz Skraba and Mikael
Vejdemo-Johansson all provided moral support. Ryan and Cate Hodgen kept
me sane during my frequent trips to Virginia, where I helped my Dad through
the painful process of fighting, and losing to, bladder cancer. My fiancée, Sasha
Rahlin, encouraged me to pursue a math major when we first started dating
as sophomores, made my junior year abroad doubly wonderful, navigated the
stressful two-body aspect of picking a graduate school as a senior, helped me
through all of the ups and downs of graduate school along with losing my father,
and continues to dazzle me with her focus, drive, beauty and brains. You and
Simone are the best.
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A B S T R A C T

S H E AV E S , C O S H E AV E S A N D A P P L I C AT I O N S

Justin Michael Curry

Robert W. Ghrist

This thesis develops the theory of sheaves and cosheaves with an eye towards
applications in science and engineering. To provide a theory that is computable,
we focus on a combinatorial version of sheaves and cosheaves called cellular
sheaves and cosheaves, which are finite families of vector spaces and maps
parametrized by a cell complex. We develop cellular (co)sheaves as a new tool for
topological data analysis, network coding and sensor networks. We utilize the
barcode descriptor from persistent homology to interpret cellular cosheaf homol-
ogy in terms of Borel-Moore homology of the barcode. We associate barcodes to
network coding sheaves and prove a duality theorem there. A new approach to
multi-modal sensing is introduced, where sheaves and cosheaves model detection
and evasion sets. A foundation for multi-dimensional level-set persistent homol-
ogy is laid via constructible cosheaves, which are equivalent to representations
of MacPherson’s entrance path category. By proving a van Kampen theorem,
we give a direct proof of this equivalence. A cosheaf version of the ith derived
pushforward of the constant sheaf along a definable map is constructed directly
as a representation of this category. We go on to clarify the relationship of
cellular sheaves to cosheaves by providing a formula that takes a cellular sheaf
and produces a complex of cellular cosheaves. This formula lifts to a derived
equivalence, which in turn recovers Verdier duality. Compactly-supported sheaf
cohomology is expressed as the coend with the image of the constant sheaf
through this equivalence. The equivalence is further used to establish relations
between sheaf cohomology and a herein newly introduced theory of cellular sheaf
homology. Inspired to provide fast algorithms for persistence, we prove that the
derived category of cellular sheaves over a 1D cell complex is equivalent to a
category of graded sheaves. Finally, we introduce the interleaving distance as
an extended metric on the category of sheaves. We prove that global sections
partition the space of sheaves into connected components. We conclude with an
investigation into the geometry of the space of constructible sheaves over the real
line, which we relate to the bottleneck distance in persistence.
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P R E FA C E

The motivation behind this thesis is that sheaves are useful for science and en-
gineering applications. In their most impressionistic form, sheaves are nothing
more than a way of tethering data to a space. Passing messages over a net-
work, gathering intelligence in temporal or spatial domains, and characterizing
the shape of data as a function of parameter value are all applications where
the theory of sheaves and cosheaves are well-adapted. There are hopefully many
other, yet to be discovered, applications of sheaves that are waiting for the right
person to come along and flesh them out. However, the author is of the opinion
that applied sheaf theory must confront three issues:

foundations for technology transfer and communication: The standard for-
mulations of sheaves and derived functors are difficult to communicate to
researchers outside of “pure” mathematics. Simpler, alternative descriptions
of the sheaves and cosheaves must be presented in an easily accessed format.

computations in practice, on a computer, and theoretically: Any application
of sheaf theory must be programmable on a computer in an efficient manner.

perturbations by noise and approximation: Any technique for modeling the
world must be able to account for noise. Being able to test or reject hy-
potheses formed in a model is essential for interfacing with data from exper-
iments.

In addition to making a first pass at applications of sheaf theory to topological
data analysis (TDA) in Chapter 8, network coding in Chapter 9 and sensor net-
works in Chapter 10, this thesis addresses the above three issues.

A great deal of hard work has already been done to address the first two
issues. Combinatorial descriptions of sheaves have been discovered indepen-
dently by Masaki Kashiwara [Kas84], Robert MacPherson and Christopher Zee-
man [Zee62a]. The notion of a cellular sheaf, developed by Allen Shepard [She85]
under MacPherson’s direction, requires only linear algebra to understand: given
a cell complex, a cellular sheaf consists of a choice of vector space for each cell and
a choice of linear map from each cell to each of its cofaces, compatible with com-
position. This notion of a sheaf is easily programmable on a computer, as is its
cohomology, which can be further simplified via discrete Morse theory [CGN13].
Unfortunately, Shepard’s thesis was never published and the other contributions
of Kashiwara and Zeeman overshadowed these modest-looking discoveries; they
were developed no further.
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In this thesis we attempt to revive the theory of cellular sheaves by developing
them for applications and embedding them into a larger mathematical context as
well. Although Shepard never explained this, cellular sheaves are actual sheaves
when viewed through the Alexandrov topology, as we explain in Chapter 4. This
perspective emphasizes the view that cellular sheaves are functors from the face-
relation poset. The relationship between functors modeled on posets to sheaves
has been explored in many works [Bac75, Yuz81, Yan01, BBR07, Lad08] as well
as many others. Cellular sheaves can also be viewed as a special instance of
constructible sheaves, which are equivalent to representations of MacPherson’s
exit path category [Tre09], which we develop in its cosheaf version in Chapter 11

for the first time. To connect these perspectives to a more standard presentation of
sheaves, we explain the general theory of sheaves familiar to most mathematicians
in Chapter 2. The length of the thesis is in part due to the fact that it attempts to
speak in multiple languages to multiple specialists and non-specialists alike.

The use of cosheaves is initially motivated for one simple reason: homology.
The applied topology community has made headway into convincing scientists
that homology is a useful bit of linear algebra. One can visualize circles in
data [Car09] or holes in sensor networks [dSG06a] and nod when the theory
agrees, however cohomology is the theory best suited to sheaves and it is not
easily visualized in the absence of Poincaré duality. To continue to use homology
when speaking to researchers in other fields, one must work with cosheaves instead.
However, cosheaves have gained prominence in current research mathematics as
well. Costello and Gwilliam’s work on factorization algebras in quantum field the-
ory [CG]; Lurie and Salvatore’s work on nonabelian Poincaré duality; Ayala, Fran-
cis and Tanaka’s work on factorization homology and manifold calculus [AFT12];
have all made use of variations on cosheaves. Consequently, setting down a
general theory for cosheaves seemed to be well-timed. This thesis provides a
proof of the existence of cosheafification for Vect-valued pre-cosheaves, which
is non-obvious since cofiltered limits and finite limits do not commute in Vect;
one cannot simply dualize a pre-cosheaf into a pre-sheaf and use Grothendieck’s
sheafification procedure in the opposite category. Fortunately, cellular cosheaves
never need to be cosheafified because of their strong finiteness properties. To clar-
ify their relationship with Shepard’s theory, we prove that cellular sheaves and
cosheaves are derived equivalent in Chapter 12. There is another deeper reason
why cosheaves should be studied, which is explained in Chapter 13. Just as ten-
sors take in vectors and spit out numbers, cosheaves act on sheaves and produce
vector spaces.

Theoretical computability is one of sheaf theory’s greatest strengths. The glu-
ing axiom provides a form of algorithmic compression: if one wants to query the
data lying over a large space, it suffices to pass to a cover, compute each piece
separately and then glue together the results via a limit (kernel of a matrix). In-
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deed, the classic Mayer-Vietoris long exact sequence can be viewed as a special
case of cellular sheaf cohomology, as Section 8.2.2 explains. Unfortunately, for
higher-order stitching together of data, a spectral sequence is required, where
Leray differentials frustrate the compression of data offered by sheaves and coho-
mology. In Chapter 14 we prove in a precise sense that these differentials can be
ignored when working over graphs.

The thesis concludes with a first attack on developing a perturbation theory
for sheaves. By borrowing the idea of interleavings [CCSG+

09], in Chapter 15

we introduce an extended metric on the category of sheaves over a metric space.
Using this metric we can prove that the assignment from maps f : Y → X to
sheaves f∗kY is 1-Lipschitz in these metrics. The broader problem of developing a
theory of statistics for sheaves is wide open.

xvi



Part I

A M AT H E M AT I C A L I N T R O D U C T I O N

This part serves multiple groups of people and can be used in different
ways:

• For those who are category theory neophytes, a reading of Chap-
ter 1 is advised, after which they should move on to Part ii, with
particular emphasis on the beginning of Chapter 4 and Chapter 6.

• Chapter 2 is designed for those who want a general definition of
sheaves and cosheaves on a topological space. After looking at the
definition, one should proceed as quickly as possible to Chapter 3

to get some simple examples.

• Section 2.2 is meant for people who have always found the ex-
pression of the sheaf axiom as an exact sequence a little opaque.
Such people are usually frustrated by the notation used in Čech
homology, which is the subject of Section 2.3.

• Sections 2.5 and 2.5.4 are for those who think of cosheaves simply
as sheaves valued in the opposite category.

1



1
A P R I M E R O N C AT E G O RY T H E O RY

“A healthy new seed was planted some twenty odd years ago in the well fertil-
ized soil of the mathematical periodical literature — the notion of a category.
It sprouted, took root, flowered, attracted bees, and by now the landscape is
dotted with its progeny. It is a beneficent plant: mathematical gardeners have
come to appreciate its usefulness in holding down the topsoil and preventing
dust storms; indeed, some half dozen books have appeared within the past
dozen years putting it to this use. It is a beautiful plant too, whose rapid
proliferation has produced many unique and exotic variants; but, perhaps be-
cause of its increasingly multiform variety, the book extolling all its loveliness
has not yet been written.”

— F.E.J. Linton [Lin65]

Categories emerged out of the study of functors, which were originally con-
ceived as a principled way of assigning algebraic invariants to topological spaces.
Thus, category theory is part and parcel of the study of algebraic topology. How-
ever, from its conception in Samuel Eilenberg and Saunders Mac Lane’s 1945 pa-
per on a “General Theory of Natural Equivalence” [EM45], it was realized that the
language of categories provides a way of identifying formal similarities through-
out mathematics. The success of this perspective is largely due to the fact that
category theory — as opposed to set theory — emphasizes understanding the
relationships between objects rather than the objects themselves.

In this section, we provide a brief review of the parts of category theory needed
to understand the abstract definitions of a sheaf and cosheaf in Chapter 2. Most
importantly, the reader should be able to do the following before moving onto
that section:

• Think of the set of open sets of a topological space X as a category.

• Understand how to summarize the behavior of various functors via limits
and colimits.

2



1.1 categories 3

We have tried to provide a self-contained introduction to category theory, but
the reader is urged to consult Mac Lane’s “Categories for the Working Mathemati-
cian” [Mac98] for a book that very well may be the book anticipated by the quote
above.

1.1 categories

One should visualize categories as graphs with objects corresponding to vertices
and maps as edges between vertices, subject to relations that specify when follow-
ing one sequence of edges is equivalent to another sequence. One can think of
some of the axioms of a category as gluing in triangles and tetrahedra to witness
these relations.

• // •

•

��
•

??

// •

•

��

// •

•

?? 77

// •

OO

Definition 1.1.1 (Category). A category C consists of a class of objects denoted
obj(C) and a set of morphisms HomC(a,b) between any two objects a,b ∈ obj(C).
An individual morphism f : a → b is also called an arrow since it points (maps)
from a to b. We require that the following axioms hold:

• Two morphisms f ∈ HomC(a,b) and g ∈ HomC(b, c) can be composed to
get another morphism g ◦ f ∈ HomC(a, c).

• Composition is associative, i.e. if h ∈ Hom(c,d), then (h ◦ g) ◦ f = h ◦ (g ◦ f).

• For each object x there is an identity morphism idx ∈ HomC(x, x) that satis-
fies f ◦ ida = f and idb ◦ f = f.

When the category C is understood, we will sometimes write Hom(a,b) to mean
HomC(a,b).

One can usually ignore the technicality that the collection of objects forms a
class rather than a set. A class is a collection of sets that one can refuse to quantify
over in a logical sense. This prohibits Russell-type paradoxes gotten by consider-
ing the category of all categories that do not contain themselves. Colloquially, one
says a proper class is “bigger” than a set. In order to avoid certain machinery that
accompanies the use of classes, we will often consider categories that are “small”
in a precise sense.1

1 The machinery we are referring to is that of Grothendieck universes.
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Definition 1.1.2 (Small and Finite Categories). A category is small if its class of
objects is actually a set. A category is finite if its set of objects has finite cardinality.

Example 1.1.3 (Discrete Category). Any set X can be regarded as a discrete cate-
gory X̄ with only the identity morphism idx sitting over each object. There are no
non-identity morphisms.

Recall that a relation R on a set X is a subset of the product set X× X. If two
elements are related by R, one writes xRy to mean that (x,y) ∈ R. We now give
an example of some relations on a set that endow that set with the structure of a
category.

Example 1.1.4 (Posets and Preorders). A preordered set is a set X along with a
relation 6 that satisfies the following two axioms:

reflexivity — x 6 x for all x ∈ X

transitivity — x 6 y and y 6 z implies x 6 z

A partially ordered set, or poset for short, is a preordered set that additionally
satisfies the following third axiom:

anti-symmetry — x 6 y and y 6 x implies x = y

Any preordered set (X,6) defines a category by letting the objects be the elements
of X and by declaring each Hom set Hom(x,y) to either have a unique morphism
if x 6 y or to be empty if x � y.

We now reach our example of fundamental importance.

Example 1.1.5 (Open Set Category). The open set category associated to a topo-
logical space X, denoted Open(X), has as objects the open sets of X and a unique
morphism U→ V for each pair related by inclusion U ⊆ V .

There is an example very closely aligned with the category of open sets that
is allegedly due to Raoul Bott, who gave it as an example of a topological cate-
gory [Bot72, LHM+

10].

Example 1.1.6 (Pointed Open Set Category). The pointed open set category
Open∗(X) associated to a topological space X has pairs (U, x), where U is an open
set and x is a point in U, for objects and a unique morphism (U, x) → (V ,y) if
U ⊂ V and x = y.

This pointed open set category takes us nicely over to a category whose objects
are points of a topological space. First, we introduce some terminology.
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Definition 1.1.7 (Groupoid). A groupoid is a category where every morphisms
is invertible. In other words if G is a groupoid, then for every pair of objects
x,y ∈ obj(G) and every morphism α ∈ HomG(x,y) there exists a morphism β ∈
HomG(y, x) such that α ◦β = idy and β ◦α = idx.

Exercise 1.1.8. Let G be a groupoid with only one object. Show that the structure
axioms of a category along with the property of being a groupoid guarantees
that G is a group. Observe that this gives us a way of treating every group
as a category, where multiplication in the group corresponds to composition of
morphisms.

Definition 1.1.9 (The Fundamental Groupoid). Let X be a topological space. The
fundamental groupoid π1(X) has points x ∈ X for objects and homotopy classes
of paths relative endpoints for morphisms. Specifically,

Homπ1(X)(x,y) := {γ : [0, 1]→ X |γ(0) = x,γ(1) = y}/ ∼

where γ ∼ γ ′ if there exists a third continuous map h : [0, 1]2 → X such that
h(0, t) = γ(t), h(1, t) = γ ′(t), h(s, 0) = x and h(s, 1) = y.

Remark 1.1.10 (Poincaré∞-Groupoid). To a topological space X, one can consider
a generalization of the fundamental groupoid, called the Poincaré ∞-groupoid
π∞(X), which has an object for each point of X, a morphism for every path γ :

[0, 1] → X , a “2-morphism” for every continuous map σ : ∆2 → X, and so on
for higher ∆n. The 2-morphisms should be regarded as providing a homotopy
between σ|0,2 and σ|1,2 ◦ σ|0,1, i.e. a morphism between morphisms. Here σ|i,j
is the restriction of the map σ to the edge going from vertex i to j. As stated,
this is an example of an∞-category, which is currently vying to replace ordinary
category theory as the foundation for mathematics [Lur09a].

The above examples of categories are quite small when compared to the cate-
gories that Eilenberg and Mac Lane first introduced. The categories considered
there correspond to data types and we will usually refer to them with the letter
D. For this paper D will usually mean one of the following:

Set — the category whose objects are sets and whose morphisms are all set maps
(multi-valued maps are prohibited as are partially defined maps)

Ab — the category whose objects are abelian groups and whose morphisms are
group homomorphisms

Vect — the category whose objects are vector spaces and whose morphisms are
linear transformations
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vect — the category whose objects are finite-dimensional vector spaces and linear
transformations

Top — the category whose objects are topological spaces and whose morphisms
are continuous maps

The category vect is an example of a subcategory, which we now define.

Definition 1.1.11 (Subcategories). Let C be a category. A subcategory B of C con-
sists of a subcollection of objects from C and a choice of subset of the morphism
set HomC(x , y) for each pair x , y ∈ obj(B). We require that these morphism
sets have the identity and be closed under composition so as to guarantee that B
is a category. We say that a subcategory is full if HomB(x , y) = HomC(x , y).

Categories have a built-in notion of directionality. For example, in Set every
object X has a unique map from the empty set ∅, but there are no maps to the
empty set. We can abstract out this property, so as to make it apply in other
situations.

Definition 1.1.12 (Initial and Terminal Objects). An object x ∈ obj(C) is said to
be initial if for any other object y ∈ obj(C) there is a unique morphism from x

to y. Dually, an object y is said to be terminal if for any object x there is a unique
morphism from x to y.

As already mentioned, in Set the empty set is initial, but it is not terminal. On
the contrary, the terminal object is the one point set {?} since there is only one
constant map. Similarly, for Open(X) the empty set is initial, but the whole space
X is terminal. In Vect the initial and terminal objects coincide with the zero vector
space. In some sense, the difference between the initial and terminal objects in
a category measure how different it is from its reflection. We now say what we
mean by a category’s reflection.

Example 1.1.13 (Opposite Category). For any category C there is an opposite cat-
egory Cop where all the arrows have been turned around, i.e. HomCop (x , y) =

HomC(y , x).

Remark 1.1.14 (Duality and Terminology). Because one can always perform a
general categorical construction in C or Cop every concept is really two concepts.
As we shall see, this causes a proliferation of ideas and is sometimes referred to as
the mirror principle. The way this affects terminology is that a construction that
is dualized is named by placing a “co” in front of the name of the un-dualized
construction. Thus, as we will see shortly, there are limits and colimits, products
and coproducts, equalizers and coequalizers, among other things.



1.1 categories 7

Now we introduce the fundamental device that assigns objects and morphisms
in one category to objects and morphisms in another category. Historically, this
device was introduced first and categories were summoned into existence to pro-
vide a domain and range for this assignment.

Definition 1.1.15 (Functor). A functor F : C → D consists of the following data:
To each object a ∈ C an object F(a) ∈ D is associated, i.e. a  F(a). To each
morphism f : a → b a morphism F(f) : F(a) → F(b) is likewise associated. We
require that the functor respect composition and preserve identity morphisms, i.e.
F(f ◦ g) = F(f) ◦ F(g) and F(ida) = idF(a). For such a functor F, we say C is the
domain and D is the codomain of F.

Remark 1.1.16. We can phrase the definition of a functor differently by saying
that we have a function F : obj(C) → obj(D) and functions F(a,b) : HomC(a,b) →
HomD(F(a), F(b)) for every pair of objects a,b ∈ obj(C). We require that these
functions preserve identities and composition. When F(a,b) : HomC(a,b) →
HomD(F(a), F(b)) is injective for every pair of objects we say F is faithful. When
F(a,b) is surjective for every pair of objects we say F is full. When a functor is
both full and faithful, we say it is fully faithful.

Exercise 1.1.17. Check that the definition of a subcategory guarantees that the
inclusion B ↪→ C is a functor.

An example familiar to every topologist is that of homology and cohomology
with field coefficients. In every non-negative degree i, these invariants define
functors

Hi(−;k) : Top→ Vect and Hi(−;k) : Topop → Vect

respectively. Here we have used the opposite category as an alternative way of
saying cohomology is contravariant.

Historically, there was a plethora of different homology theories — simplicial,
singular, Čech, Vietoris, Alexander, et al — and every time one was introduced
a long repetition of the basic properties of that homology theory ensued. Under-
standing the precise relationships between these motivated the notion of a map
between functors, which led in turn to the Eilenberg-Steenrod axioms [Mac89,
p.335].

Definition 1.1.18 (Natural Transformation). Given two functors F,G : C → D a
natural transformation, sometimes written η : F ⇒ G, consists of the following
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information: to each object a ∈ C, a morphism η(a) : F(a) → G(a) is assigned
such that for every morphism f : a→ b in C the following diagram commutes:

F(a)
η(a) //

F(f)
��

G(a)

G(f)
��

F(b)
η(b) // G(b)

By commutes, we mean G(f) ◦ η(a) = η(b) ◦ F(f).

Definition 1.1.19. Two functors F,G : C→ D are said to be naturally isomorphic
if there is a natural transformation η : F⇒ G such that for every object a ∈ C the
morphism η(a) is an isomorphism, i.e. it is invertible. These inverse maps η(a)−1

define an inverse natural transformation η−1 : G⇒ F.

Functors and natural transformations assemble themselves into a category in
their own right. Since an arrow is an arrow by any other symbol, we will some-
times use the notation F→ G to denote a natural transformation, instead of F⇒ G.
In the functor category, we will see that naturally isomorphic functors are isomor-
phic objects. This demonstrates again the linguistic efficiency of category theory.

Example 1.1.20 (Functor Category). Fun(C, D) denotes the category whose objects
are functors from C to D and whose morphisms are natural transformations.

Certain functors deserve special attention. These are the ones that allow us to
identify two different categories. One approach to identifying categories is to say
that two categories C and D are isomorphic if there are functors F : C → D and
G : D → C such that G ◦ F = idC and F ◦G = idD. This definition is so restrictive
that it rarely occurs. Thus, we have a looser notion that includes isomorphism as a
special case. Instead of asking that F ◦G be equal to idD, we only require that they
be isomorphic as objects in Fun(D, D) and similarly for G ◦ F and idC in Fun(C, C).
The reader should compare this with the notion of homotopy equivalence.

Definition 1.1.21. A pair of functors F : C → D and G : D → C together define
an adjoint equivalence of categories if there are two natural isomorphisms of
functors ε : F ◦G→ idD and η : idC → G ◦ F.

We will see that this notion of a equivalence is a special instance of an adjunc-
tion, which is taken up in Section 1.5

Equivalence can also be phrased in a way that doesn’t require us to construct G
as a “weak inverse” of F.
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Definition 1.1.22 (Fully Faithful and Essentially Surjective). A functor F : C → D
induces an equivalence of categories if it is bijective on Hom sets (fully faithful)
and is essentially surjective. This last property means that for every object d ∈ D
there is an object c ∈ C such that F(c) is isomorphic to d, i.e. F is bijective on
isomorphism classes of C and D.

The notion of equivalence allows us to find compressed presentations of a cate-
gory.

Definition 1.1.23 (Skeletal Subcategory). Suppose C is a category, then a subcate-
gory S is skeletal if the inclusion functor is an equivalence, and no two objects of
S are isomorphic.

If C is small, then we can describe explicitly how to construct a skeletal subcat-
egory S. On the objects of C we define an equivalence relation that says x ∼ x ′

if and only if x and x ′ are isomorphic. To define a skeletal subcategory we pick
one object x ∈ x̄ from each equivalence class and define the morphisms to be
HomS(x̄, ȳ) := HomC(x,y).

Exercise 1.1.24 (Fundamental groupoid). Suppose X is a path connected space.
Show that for any point x0 ∈ X, the fundamental group π1(X, x0) is a skeletal
subcategory of π1(X).

Finally, let’s analyze how working in the opposite category impacts functors
and natural transformations. Observe, first and foremost, that formality allows
us to take a functor F : C → D and define a functor Fop : Cop → Dop. Moreover,
a natural transformation η : F ⇒ G translates to a natural transformation ηop :

Gop ⇒ Fop. This observation allows us to state the equalities

Fun(Cop, Dop) = Fun(C, D)op or Fun(Cop, Dop)op = Fun(C, D)

since (Cop)op is isomorphic to C (not just equivalent). See the wonderful work
“Abstract and Concrete Categories: The Joy of Cats” [AHS09a] for more on duality
and category theory more generally.
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1.2 diagrams and representations

Categories and functors allow us to develop an algebra of shape, the shapes being
modeled on the domain category of a functor. For example, we will be interested
in studying data arranged in the following forms:

• //

��

•

•

•

�� ��

•

• •

•

��
• // •

If we imagine the identity arrows in a category as being the vertices themselves,
and thus not drawn independently of the objects, each of these shapes gives an
example of a finite category.

Definition 1.2.1 (Diagram). Suppose I is a small category and C is an arbitrary
category. A diagram is simply a functor F : I→ C.

Example 1.2.2 (Constant Diagram). For any category I there is always a diagram
for each object O ∈ C, called the constant diagram, constO : I → C where
constO(x) = constO(y) = O for all objects x,y ∈ I. Every morphism in I goes
to the identity morphism.

Definition 1.2.3 (Representation). A representation of a category C is a functor
F : C→ Vect.

One should note that this definition generalizes the notion of a representation
of a group. Every group, say Z for example, can be considered as a small category
with a single object ? and Hom(?, ?) = Z. A representation of Z then corresponds
to picking a vector space V and assigning an endomorphism of V for each element
of Z, i.e. it is a functor.

? //

g

��

V

ρ(g)
��

? // V

Maps of representations correspond precisely with natural transformations of
such functors. Isomorphic representations are naturally isomorphic functors.2

These basic notions carry over to the representation theory of arbitrary categories,
which allows us to compare different situations in one language.

2 Confusingly, the term “equivalent representations” is often used.



1.3 cones and limits 11

1.3 cones and limits

The next two sections are devoted to studying one way (and a dual way) of sum-
marizing a functor’s behavior. This gives a way of compressing the data of a func-
tor into a single object. These concepts are fundamental to the study of sheaves
and cosheaves.

Definition 1.3.1 (Cone). Suppose F : I→ C is a diagram. A cone on F is a natural
transformation from a constant diagram to F. Specifically, it is a choice of object
L ∈ C and a collection of morphisms ψx : L → F(x), one for each x, such that if
g : x → y is a morphism in I, then F(g) ◦ψx = ψy, i.e. the following diagram
commutes:

F(x)
F(g) // F(y)

L
ψx

``

ψy

==

In other words, ψy = F(g) ◦ψx.

Definition 1.3.2. The collection of cones on a diagram F form a category, which
we will call Cone(F). The objects are cones (L,ψx) and a morphism between two
cones (L ′,ψ ′x) and (L,ψx) consists of a map u : L ′ → L such that ψ ′x = ψx ◦ u for
all x

A limit is simply a distinguished or universal object in the category of cones on
F.

Definition 1.3.3 (Limit). The limit of a diagram F : I → C, denoted lim←− F is the
terminal object in Cone(F). This means that a limit is an object lim←− F ∈ C along
with a collection of morphisms ψx : L → F(x) that commute with arrows in the
diagram such that whenever there is another object L ′ and morphisms ψ ′x that also
commute there then exists is a unique morphism u : L ′ → lim←− F that additionally
commutes with everything in sight, i.e. ψ ′x = ψx ◦ u for all x.

F(x)
F(g) // F(y)

lim←− F

ψx
bb

ψy
<<

L ′

ψ ′x

YY

∃! u
OO ψ ′y

EE
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Remark 1.3.4 (Glossary). Quite confusingly, the following terms are synonyms
for limits: inverse limits, projective limits, left roots, lim and lim←− are all common.

We now consider some examples of limits over discrete categories.

Example 1.3.5 (Products). Consider the following index category and diagram:

• • F(i) F(j)

The limit of this diagram is called the product and is usually written

F(i)
∏

F(j).

More generally, we define the product to be the limit of any diagram F : I → C
indexed by a discrete category and write

∏
i F(i). Sometimes one writes ×iF(i)

for the product.

We give an unusual example of a product that will prepare the reader for think-
ing about the category of open sets.

Example 1.3.6 (Open Sets: Limits are Intersections). Suppose Λ = {1, . . . ,n} is
a finite discrete category, i.e. it has n objects and the only morphisms are the
identity morphisms. Now let X be a topological space and let C = Open(X) be the
category of open sets in X. This is a category that has an object for each open set
and a single morphism U → V if U ⊂ V . A functor F : Λ → Open(X) is nothing
more than a choice of n not necessarily distinct open sets. A cone to F is an open
set that includes into all the open sets picked out by F. The limit of F is the largest
possible open set that includes into all the open sets picked out by F, i.e.

lim←− F = ∩
n
i=1F(i).

Example 1.3.7. Consider the following small category I along with some represen-
tation F : I→ Vect.

• //

��

•

•

U
A //

B
��

V

W

By thinking about the definition, one can see that

lim←− F
∼= U.
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Example 1.3.8 (Pullbacks). Consider the category J = Iop and a representation
F : J→ Vect.

•

��
• // •

V

A
��

W
B
// U

With some thought one can describe the limit set-theoretically as

lim←− F
∼= {(v,w) ∈ V ×W|Av = Bw},

which is called the pullback. If U = 0, then we re-obtain the product of V and W
and one usually writes V ×W.

Example 1.3.9 (Equalizers and Kernels). Consider the following category K and
an arbitrary functor F : K→ D.

• //
// • X

g
//

f //
Y

The limit of this diagram, which is also called the equalizer, is an object E along
with a map h that satisfies f ◦ h = g ◦ h.

E
h // X

g
//

f //
Y

If D = Vect and one sets g = 0, then the equalizer is the kernel. Thus, if one
wants to mimic kernels in data types lacking of zero maps and objects, equalizers
can be substituted.

Finally, we finish with an example from representation theory.

Example 1.3.10 (Invariants). Suppose that V is a vector space with an endomor-
phism T : V → V , i.e. a k[x]-module. Just as a group can be viewed as a category
with one object, a ring can be viewed as a category with multiplication corre-
sponding to composition of morphisms and addition corresponding to addition
of morphisms, thus such a category has extra structure. Thus the k[x]-module de-
termined by V and T is equivalent to a functor k[x]→ Vect that sends the unique
object ? to V and sends x to T . The limit of such a functor is called the invariants
of the action, i.e.

I = {v ∈ V | T(v) = v}.
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1.4 co-cones and colimits

Here we invoke the mirror principle to dualize the theory of cones and limits. In
accordance with usual terminology, we refer to these as cocones and colimits.

Definition 1.4.1 (Co-Cone). Given a diagram F : I → C, a cocone is a natural
transformation from F to a constant diagram. In other words, it consists of an
object C ∈ C along with a collection of maps φx : F(x) → C such that these maps
commute with the ones internal to the diagram.

C

F(x)
F(g)

//

φx
==

F(y)

φy
aa

Similarly, there is a category of cocones to a diagram F, denoted CoCone(F). A
colimit is a distinguished object in this category.

Definition 1.4.2 (Colimit). The colimit of a diagram F is the initial object in the
category CoCone(F). One should practice dualizing the explicit description of the
limit in order to understand the following diagram:

C ′

lim−→ F

∃! u

OO

F(x)

φx

<<
φ ′x

EE

F(g)
// F(y)

φy

bb

φ ′y

YY

Remark 1.4.3 (Glossary). The following terms are synonyms for colimits: direct
limits, inductive/injective limits, right roots, colim and lim−→ are all used.

To better understand the similarities and differences between limits and colim-
its, let us re-examine the same examples in the previous section.

Example 1.4.4 (Coproducts). Consider the following index category and diagram:

• • F(i) F(j)
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The colimit of this diagram is called the coproduct and is usually written

F(i)
∐

F(j).

More generally, we define the product to be the limit of any diagram F : I → C
indexed by a discrete category and write

∐
i F(i). Alternative notations for the

coproduct, depending usually on whether the target category is Set, Vect, Ab or
Top include ⊕

i

F(i) and
∑
i

F(i) and
⊔
i

F(i).

Example 1.4.5 (Open Sets: Colimits are Unions). Suppose Λ = {1, . . . ,n} is a finite
discrete category. Let C = Open(X) be the category of open sets in X. A functor
F : Λ → Open(X) is a choice of n not necessarily distinct open sets. A cocone to
F is an open set that contains all the open sets picked out by F. The colimit of F
is the smallest possible open set containing all the open sets picked out by F, i.e.
the union:

lim−→ F = ∪
n
i=1F(i)

One should note that since the arbitrary union of open sets is still open one could
have worked over a larger indexing category Λ.

Example 1.4.6 (Pushouts). Consider the following small category I and a repre-
sentation F : I→ Vect.

• //

��

•

•

U
A //

B
��

V

W

Contrary to the case of the limit, this one requires a bit more thought. Let’s start
with something that is not a cocone, but is nevertheless naturally built out of
pieces of the diagram.

U
A //

B
��

B⊕A
##

V

ιV
��

W ιW
//W ⊕ V

This is not a cocone because the diagram does not commute since (Bu, 0) 6=
(Bu,Au) 6= (0,Au). We can force commutativity by forcing the equivalence re-
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lation [(Bu, 0)] ∼ [(0,Au)] or equivalently [(Bu,−Au)] ∼ [(0, 0)]. We thus conclude
that

lim−→ F =W⊕V/im(B⊕−A) φU = q ◦ ιWB = q ◦ ιVA φW = q ◦ ιW φV = q ◦ ιW

where q is the quotient map. One should note that this is clearly dual to the
limit computation in 1.3.8 with the added complication that whereas the limit is
a sub-object, the colimit is a quotient object.

Like before, if U = 0 then the pushout reduces to the coproduct of V and W
and one writes it as V ⊕W.

Example 1.4.7. Consider the example J = Iop and corresponding representation
F : J→ Vect.

•

��
• // •

V

A
��

W
B
// U

One can see that
lim−→ F

∼= U.

Example 1.4.8 (Coequalizers and Cokernels). Consider the same category K as
before and a functor F : K→ D.

• //
// • X

g
//

f //
Y

The colimit, which is called the coequalizer, is an object E and map h such that
h ◦ f = h ◦ g.

X
g
//

f //
Y

h // E

If D = Vect and one sets g = 0, then the coequalizer is the cokernel. Thus if
one wants to mimic cokernels in data types lacking of zero maps and objects,
coequalizers can be substituted.

Example 1.4.9 (Co-invariants). As described in Example 1.3.10, a vector space V
with an endomorphism T is equivalent to a functor k[x] → Vect. The colimit of
this functor is called the coinvariants of T , i.e.

C = V/ < Tv− v > .
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1.5 adjunctions

Adjunctions allow us to derive interesting relationships with almost no effort; they
are in essence dualities. For the individual interested in using category theory to
model the world, facile manipulations of adjunctions is essential. One often can
transform a complicated problem into a simpler one via an adjunction, thereby
gaining a computational payoff at the cost of abstraction. This is why using ad-
junctions between the functors defined in Section 5.1 is one of the key technical
skills every sheaf theorist must master. Adjunctions also have played an essential
role in the development of sheaf theory. Finding an adjoint to the functor f! was
one of the primary reasons that the notion of a derived category was invented.
Only by enlarging the domain could a new, adjoint functor f! be defined. Here
we introduce the general theory.

Definition 1.5.1. Suppose F : C → D and G : D → C are functors. We say that
(F,G) is an adjoint pair or that F is left adjoint to G (or equivalently G is right
adjoint to F) if we have a natural transformation η : idC → G ◦ F and a natural
transformation to ε : F ◦G→ idD such that

G
ηG // GFG

Gε // G , F
Fη // FGF

εF // F

We call η the unit of the adjunction and ε the counit of the adjunction.

There are about a half-dozen different, but equivalent, ways of defining an
adjunction; see [Mac98, p.81] for a list. One can just specify η and ask that it is
universal,3 i.e. for each x ∈ C and for every y ∈ D there is a map ηx : x → GF(x)

such that if we have f : x → G(y), then there exists a unique map f ′ : F(x) → y

with G(f ′) ◦ ηx = f.
x

ηx //

f !!

GF(x)

��
G(y)

Of course we could have just defined ε and asked that it is universal in a dual
sense.4 The point is this: an adjunction is equivalent to specifying for every x ∈ C
and y ∈ D a natural bijection ϕx,y

HomD(F(x),y) ∼= HomC(x,G(y)).

3 In other words, initial in a particular comma category; see [Mac98, p.56]
4 It is final in a different comma category.
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The following theorem gives us an abstract criterion for determining when a
functor has an adjoint.

Theorem 1.5.2 (Freyd’s Adjoint Functor Theorem). Let D be a complete category
and G : D→ C a functor, then G has a left adjoint F if and only if G preserves all
limits and satisfies the solution set condition. This condition states that for each
object x ∈ C there is a set I and an I-indexed family of arrows fi : c→ G(ai) such
that every arrow f : x → G(a) can be factored as x → G(ai) → G(a), where the
first map is fi : x→ G(ai) and the second is G applied to to some t : ai → a.

The solution set condition holds nearly all the time, so in practice one only
needs to check that G preserves limits, in which case G is a right adjoint (has a
left adjoint). Dually, for a functor to be a left adjoint it needs to preserve colimits.



2
T H E T H E O RY O F S H E AV E S A N D C O S H E AV E S

“Nous nous proposons d’indiquer sommairement comment les méthodes par
lesquelles nous avons etudié la topologie d’un espace peuvent être adaptées à
l’étude de la topologie d’une représentation.”1

— Jean Leray [Ler46]

In its most general form, the subject of this thesis involves the assignment of
data to subsets of a space X. This should sound like a very useful thing to do.
After all, we have in both pure and applied mathematics many an occasion to
record data or solutions in a local, spatially distributed way. Immediate questions
arise: To which subsets should we assign data? What should these assignments
be used for? What are they to be called?

The author believes such assignments are to be called sheaves or cosheaves
depending on whether it is natural to restrict data from larger spaces to smaller
spaces or by extending data from smaller spaces to larger ones. The evolution of
these ideas deserves some discussion and the eager historian should consult John
Gray’s “Fragments of the History of Sheaf Theory,” [Gra79] for a more thorough
account. However, we outline three basic opinions on what a sheaf (or cosheaf) is
really:

• A sheaf is a system of coefficients for computing cohomology that weighs
and measures parts of the space differently. A cosheaf, in like manner, is a
system of coefficients for homology that varies throughout the space.

• A sheaf is an étalé space E along with a local homeomorphism π : E → X.
Analogously, a cosheaf is a locally-connected space D, called the display
locale, that maps to X [Fun95].

• A sheaf (or a cosheaf) is an abstract assignment of data — a functor — that
further satisfies a gluing axiom expressed by limits (or colimits).

1 “We propose to state briefly how the methods by which we have studied the topology of a space
can be adapted to the study of the topology of maps.”

19
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Historically, the system of coefficients perspective came first. In a 1943 pa-
per Norman Steenrod defined a new homology theory determined by assigning
abelian groups directly to points of a space X and group isomorphisms to (homo-
topy classes of) paths between points [Ste43]. This theory was vastly generalized
in 1946 by Jean Leray where a faisceau (or sheaf) was defined to be a way of
assigning modules to closed sets in an inclusion-reversing way.

V //

  

X

W

>> F(V) F(X)oo

{{
F(W)

cc

Although this strengthened the abstract assignment perspective, Leray was still
concerned with the cohomological ideas developed by Georges de Rham, Kurt
Reidemeister and Hassler Whitney.

By the early 1950s, Henri Cartan and his seminar revised Leray’s definition of
a sheaf to consist of a local homeomorphism π : E → X. One could re-obtain the
assignment perspective by attaching to each open set U the set of sections of this
map over U:

U {s : U→ E |π ◦ s(x) = x}

One plausible explanation for using open sets is provided by the open pasting
lemma, which states2 that if X = ∪Ui is a (potentially infinite) union of open sets
equipped with continuous sections si : Ui → E that agree on overlaps, then the
set-theoretically defined section s : X → E will also be continuous. If closed sets
are used, then this gluing argument only works for covers consisting of finitely
many closed sets.

Finally, the Weil conjectures in algebraic geometry motivated the introduction
of a more general notion of a topology and cohomology. Following sugges-
tions of Jean-Pierre Serre, the domain of a sheaf was abstracted by Alexander
Grothendieck from subsets U ⊆ X to collections of mappings U → X that satisfy
certain conditions reminiscent of an open cover [MM92]. Defining a sheaf on a
Grothendieck topology ushered in the abstract formulation of sheaves using cat-
egories, functors and equalizers (limits) found in Michael Artin’s 1962 Harvard
notes on the subject [AoM62].

All three of these models are useful for thinking about sheaves and cosheaves,
but the abstract assignment model is powerful and elegant enough to capture

2 Munkres calls this the “local formulation of continuity” in theorem 18.2(f) [Mun00]. Munkres
reserves the term “pasting lemma” for the closed set version, which is stated directly afterwards
as theorem 18.3.
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the other two. Moreover, whereas the étalé space perspective can be adapted
from sheaves of sets to sheaves of more general data types, the display space
perspective on cosheaves appears to only be valid for set-valued cosheaves and
cannot be adapted more generally. In particular, since homology requires working
with abelian groups or vector spaces, the display space model and the homology
perspective describe different types of cosheaves. Thus, the only vantage point
capable of reasoning about cosheaves in a unified way is the functorial perspective,
where the dualities of category theory can be employed.

In this section, we provide the general definition of sheaves and cosheaves, but
restrict ourselves to considering open sets and covers in a topological space. We
phrase things using limits and colimits that take the shape of a simplicial complex:
the nerve of a cover. The sheaf or cosheaf condition says that the value of this limit
or colimit is independent of the cover chosen. To make the limits and colimits
over covers more computable, we reduce to equalizers and coequalizers. We then
specialize to the data type of vector spaces, where Čech homology for a cover
is introduced. This evolves into a discussion of why singular zeroth homology
defines a cosheaf. As set up for the discussion on general differences between
sheaves and cosheaves, we consider how refinement of covers plays with the sheaf
and cosheaf property.

2.1 the general definition

In elementary mathematics one learns that functions are devices for assigning
points in one set to points in another. Motivated by differential calculus, one
learns properties of functions on metric and topological spaces such as continuity.
In its simplest form, continuity of a function states that if f : X → Y is a function
and {xn}

∞
n=1 is a sequence of points in X converging to some point x, then

lim
n→∞ f(xn) = f( lim

n→∞ xn) = f(x),
i.e. f commutes with the limits one learns in analysis. Moreover, there is an
independence result: The value f(x) is independent of which sequence one used
to approximate the point x.

The exact analogous situation occurs in category theory. A functor assigns
objects and morphisms of one category to objects and morphisms in another. If
a functor commutes with the categorical notion of a limit, then we also say that
the functor is continuous. However, since there are so many different shapes of
limits in arbitrary categories, this notion is too restrictive. A sheaf is a functor that
commutes with limits coming from open covers. Applying the duality principle
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in category theory, a cosheaf is a functor that preserves colimits coming from open
covers.

Definition 2.1.1. Let X be a topological space and U an open set in X. An open
cover of U is a collection of open sets U := {Ui}i∈Λ whose union is U.

Pavel Alexandrov introduced in 1928 a method3 for associating to every open
cover an abstract simplicial complex [Ale28]. We will use these shapes to model
our limits and colimits of interest.

Definition 2.1.2. Suppose U := {Ui}i∈Λ is an open cover of U. We can take the
nerve of the cover to get an abstract simplicial complex N(U), whose elements are
subsets I = {i0, . . . , in} for which UI := Ui0 ∩ · · · ∩Uin 6= ∅. We can regard N(U) as
a category whose objects are the finite subsets I such that UI 6= ∅ with a unique
arrow from I → J if J ⊆ I. Since our intersections are only finite, and the finite
intersection of open sets is open, we get natural functors

ιU : N(U)→ Open(X) or ι
op
U : N(U)op → Open(X)op.

Remark 2.1.3. Sometimes we will use the notation N(U), NU and N interchange-
ably, depending on the context.

figure 1: Covers and Their Nerves

In Figure 1 we have drawn two different arrangements of open sets and their
corresponding nerves, which we have represented graphically to the right. We
have added points to each open set to make it clear how many open sets are in
the cover. Note that in general, there is nothing to prevent a disconnected open
set from being marked by a single label.

The nerve is purely an algebraic and combinatorial model for the cover — it
need not respect the topology of the union. However, the nerve theorem of Leray

3 In Definition 8.2.16 we consider the “correct” generalization of the nerve.
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and Borsuk [Ler45, Bor48] states that if the intersections are contractible then the
nerve and the union have the same homotopy type. The example on the left in
Figure 1 gives a positive example of the nerve lemma, whereas the example on
the right gives a negative one.

The definition of a sheaf or cosheaf requires the synthesis of covers and data.
We now introduce the functor that assigns data to open sets.

Definition 2.1.4 (Pre-Sheaf and Pre-Cosheaf). A pre-sheaf is a functor F :

Open(X)op → D and a pre-cosheaf is a functor F̂ : Open(X) → D. If V ⊂ U, then
we usually write the restriction map as ρFV ,U : F(U) → F(V) and the extension

map as rF̂U,V : F̂(V)→ F̂(U). Often we omit the superscript F or F̂.

If one imagines the pre-cosheaf that associates a copy of the field k to every
connected component of an open set, then the following diagrams of vector spaces
emerge from Figure 1:

k

k

::

��

k

dd

��

k

dd

OO

::

zz

��

$$
k k

k

dd ::

k k3oo // k

We will examine various ways for computing the colimits of these diagrams explic-
itly. Since the colimits occur over simplicial complexes, we introduce a structure
theorem that allows us to use coequalizers. In the vector space case, this reduces
to linear algebra — the colimit will be H0 of a suitable chain complex.

We want to express the fact that since the colimit of a cover N(U)→ Open(X) is
just the union U = ∪Ui, the data associated to U should be expressible as the col-
imit of data assigned to the nerve. Moreover, this should be independent of which
cover we take. Examples where this does not occur are given in Example 2.5.1 and
Example 2.5.2.

Definition 2.1.5 (Sheaves and Cosheaves). Suppose F is a pre-sheaf and F̂ is a pre-
cosheaf, both of which are valued in D. Suppose U = {Ui} is an open cover of U.
We say that F is a sheaf on U if the unique map from F(U) to the limit of F ◦ ιopU ,
written

F(U)→ lim←−
I∈N(U)

F(UI) =: F[U],
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is an isomorphism. Similarly, we say F̂ is a cosheaf on U if the unique map from
the colimit of F̂ ◦ ιU to F̂(U), written

F̂[U] := lim−→
I∈N(U)

F̂(UI)→ F̂(U),

is an isomorphism. We say that F is a sheaf or F̂ is a cosheaf if for every open set
U and every open cover U of U, F(U) → F[U] or F̂[U] → F̂(U) is an isomorphism.
For a catchy slogan, we say

On an open set (co)sheaves turn different covers into isomorphic (co)limits.

Remark 2.1.6 (Stable Under Finite Intersection). Most authors do not introduce
the nerve as any part of the definition of a sheaf or cosheaf. Instead, some will
require that the cover U is “stable under finite intersection,” i.e. if Ui,Uj ∈ U,
then Ui ∩Uj ∈ U. This allows those authors to just consider the limit or colimit
over the cover and not over some auxiliary construction, like we have done. This
works because one can take any cover and then add the intersections after the fact,
but this tends to be done unconsciously and without any warning to the reader.
Our approach is equivalent to that approach, but we believe it has some added
benefits.

We have not stated any requirements on the data category D, but in order to
even parse the statement of the (co)sheaf axiom we require that the (co)limits
coming from such covers exist. For the most part, we will work in categories
where all limits and colimits exist. In analogy with analysis, a category where the
limit of any diagram F : I → D exists is called complete. Similarly, if the colimit
of an arbitrary diagram exists, we say D is co-complete. The category Vect is both
complete and co-complete.

A particular consequence of the axiom is that for a sheaf, F(∅) must be the limit
over covers of the empty set, but since there are no such covers4 this is the limit
over the empty diagram, i.e. Cone(∅) = D, whose terminal object is the terminal
object of D. Similarly, for a cosheaf F̂(∅) must be the initial object in D. For
D = Vect the initial and terminal objects coincide with the zero vector space.

It is true that if D has pullbacks (see Example 1.3.8 in Section 1) and a terminal
object then it has all finite limits. The dual statement that having an initial object
and pushouts (see Example 1.4.6) implies finitely co-complete is also true. Thus,
if one focuses on sheaves and cosheaves valued in vect (the category of finite

4 Alternatively one argues that the empty set covers itself and hence the value there is chosen to
be the initial/terminal object of the category D.
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dimensional vector spaces and linear maps), then the collection of covers of U
one can consider must be restricted. In particular, if the sheaf or cosheaf axiom
holds for open covers with two sets, then we can only guarantee that it holds for
covers with finitely many open sets. As a purely philosophical point, one wonders
whether working with the cover of the complement of the Cantor set given by

U = {(
3k+ 1

3n
,
3k+ 2

3n
) ⊂ [0, 1]|0 6 k 6 3n−1 − 1, 0 6 n <∞}

would ever be computationally tractable. One might wish to systematically revise
the notion of a “cover,” and this would lead to the notion of a Grothendieck site,
which we do not address here.

We now examine the axioms just for covers with only two open sets.

figure 2: Sheaves and Cosheaves of Functions

Example 2.1.7 (Cover by Two Sets). Suppose D = Set, and suppose U = {U1,U2}
is a cover of U. The sheaf condition says that

F(U) ∼= {(s1, s2) ∈ F(U1)
∏

F(U2)|ρU12,U1(s1) = ρU12,U2(s2)} =: F[U],

i.e. F(U) lists the set of consistent choices of elements from F(U1) and F(U2). In
particular, F[U] is a sub-object of the product of F(U1) and F(U2). For an example,
one can let F be the assignment

U {f : U→ R | continuous}.

The sheaf axiom then says in order for two functions (or sections) s1 = f1 : U1 → R

and s2 = f2 : U2 → R to determine an element in U = U1 ∪U2 it is necessary and
sufficient that the functions f1(x) and f2(x) agree on the overlap U12 = U1 ∩U2.

The cosheaf condition for D = Set is slightly strange. It says that

F̂(U) ∼= (F̂(U1)
∐

F̂(U2))/ ∼

s1 ∼ s2 ⇔ ∃s12 s1 = rU1,U12(s12) s2 = rU2,U12(s12).
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In contrast to the sheaf case, the notion of consistent choices no longer applies for
cosheaves, because it requires thinking in terms of quotient objects — something
human beings are not accustomed to. However, a useful analogy is that one
must subtract out or identify those elements that might be counted twice because
they come from the intersection. For an example similar in spirit to the sheaf
of real-valued functions, we begin by considering the pre-cosheaf of compactly
supported functions gotten by the assignment

U {f : U→ R | continuous and compactly supported}.

Extending by zero provides the extension map and identifying the two copies of
a function whose support is contained in U12 = U1 ∩U2 prevents double counting
on U. However, this is not all that the cosheaf axiom requires. Any compactly
supported function should appear as one supported in U1 or U2, but this is not al-
ways true. Some compactly supported functions are not compact when restricted
to any particular open set in a cover. Thus, this pre-cosheaf is not a cosheaf.

The reader familiar with partitions of unity will realize that if X a paracompact
Hausdorff space then we can express any compactly supported function f(x) de-
fined on all of U as a sum of compactly supported functions on U1 and U2. By
taking a partition of unity subordinate to the cover U we get two functions λ1(x)
and λ2(x) such that

f(x) = f1(x) + f2(x) where f1(x) := λ1(x)f(x) and f2(x) := λ2(x)f(x).

By carrying out the colimit in a data category equipped with sums, such as D =

Vect of Ab, then compactly supported functions do define a cosheaf valued there.

More generally, if D = Vect, then the cosheaf axiom for the cover says the
sequence

F̂(U12)→ F̂(U1)⊕ F̂(U2)→ F̂(U)→ 0

is exact, where the maps are (−rU1,U12 , rU2,U12) and rU,U2 + rU,U1 . Dually, the sheaf
axiom says the dual sequence

0→ F(U)→ F(U1)× F(U2)→ F(U12)

is exact, where the second map is ρU12,U2 + ρU12,U1 and the first map is
(−ρU1,U, ρU2,U).
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2.2 limits and colimits over covers : a structure theorem

The sheaf and cosheaf axioms as stated are meant to emphasize that if one is
comfortable with the operations of limits and colimits, then one is already com-
fortable with sheaves and cosheaves. However, the limits and colimits considered
in Definition 2.1.5 have a special structure. This structure comes from the fact that
the indexing category — the nerve — is a simplicial complex.

The first observation one can make is that for any functor F : N(U)op → D
the limit can be thought of as “sitting inside” the product over the vertices — the
vertices corresponding to the elements of the cover through the nerve construction.
Dually, the colimit of a functor F̂ : N(U) → D can be thought of as a quotient of
the coproduct of the functor over the vertices. Said using formulas, this is

lim←− F ↪→
∏

F(i)
∐

F̂(i)� lim−→ F̂.

The way to see this is to note that any cone or cocone’s morphism must factor
through a vertex. However, the difference between the limit or colimit from the
functor’s aggregate value on vertices is measured by edges in the nerve. This is a
reflection of a more general theorem, which we now state.

Theorem 2.2.1. A category D has all (co)limits of an appropriate size if it has all
(co)products and (co)equalizers of same such size. Here “size” corresponds to the
cardinality of the indexing category of the (co)limit in question.

Proof (Sketch). One should consult [Awo10, Prop. 5.22-3] for a complete proof. To
give the reader the idea, one can compute the limit of F : I → D by taking the
product over all the objects x ∈ I and separately the product over all morphisms
in the indexing category I. The limit is isomorphic to the equalizer going from
the first product to the latter, i.e.

lim←− F
//
∏
x∈I F(x) //

//∏
x→x ′ F(x

′) .

By dualizing, one can prove the analogous result for colimits.

This theorem gives us effective means for computing limits and colimits for gen-
eral data types. We now specialize this result to the limits and colimits pertinent
to sheaves and cosheaves.
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2.2.1 Rephrased as Equalizers or Co-equalizers

The method outlined in Theorem 2.2.1 for computing limits and colimits contains
too much redundant information for the case I = N(U)op. As such, we state
the precise, simplified formulation here. The sheaf and cosheaf axioms can be
rephrased as saying that the following sequences

F(U)
e //
∏
F(Ui)

f+
//

f− //∏
i<j F(Ui ∩Uj)

∐
i<j F̂(Ui ∩Uj)

g−
//

g+ //∐
F̂(Ui)

u // F̂(U)

are an equalizer and a co-equalizer respectively.

Exercise 2.2.2. Prove that the limit or colimit over the nerve of a cover can be
determined after considering only the elements of the cover and their pairwise
intersections. Do this by observing that the limit or colimit over the 1-skeleton5 of
the nerve defines a cone or cocone over the whole nerve and employing universal
properties. Then apply the equation from Theorem 2.2.1 and its dual version to
prove that the re-written axioms of Section 2.2.1 and Section 2.2.2 are correct.

To describe the maps explicitly requires some work. First, we choose an order-
ing of the indexing set of the cover U = {Ui}i∈Λ. To specify a map to a product
it suffices to specify maps to each factor of the product. Similarly, maps from
a coproduct are specified by maps from each factor. This is summarized by the
identities

Hom(X,
∏
i

Yi) ∼=
∏
i

Hom(X, Yi) and Hom(
∐
i

Xi, Y) ∼=
∏
i

Homi(Xi, Y).

To define the maps e and u we declare ei := ρUi,U and ui := rU,Ui . For the maps
f± and g± we define for each pair i < j the maps

f+ij := ρij,j ◦ πj f−ij := ρij,i ◦ πi g+ij := rj,ij ◦ ιij g−ij := ri,ij ◦ ιij

where πi :
∏
F(Ui)→ F(Ui) is the natural projection and ιij : F̂(Uij)→

∐
F̂(Uij) is

the natural inclusion.

5 In higher homotopy analogs of sheaves and cosheaves one works over the whole Čech tower of
a cover [DI01, Dou07, GG].
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The reader might find it helpful to think of the maps in between the products
as being represented by matrices. In the case of a cover with three elements
U = {U1,U2,U3} all of whose pairwise intersections are non-empty, we can write

f+ =

∗ ρ12,2 ∗
∗ ∗ ρ13,3

∗ ∗ ρ23,3

 f− =

ρ12,1 ∗ ∗
ρ13,1 ∗ ∗
∗ ρ23,2 ∗

 .

The equalizer condition now reads that f+(s1, s2, s3) = f−(s1, s2, s3), i.e.

(ρ12,2(s2), ρ13,3(s3), ρ23,3(s3)) = (ρ12,1(s1), ρ13,1(s1), ρ23,2(s2)).

2.2.2 Rephrased as Exactness

If D = Vect, then we can add and subtract maps and look for kernels and coker-
nels instead of equalizers and co-equalizers. The sheaf and cosheaf axioms then
reduce to linear algebra. The modified axioms now read as

0 // F(U) //
∏
F(Ui)

d0 //
∏
i<j F(Ui ∩Uj)

⊕
i<j F̂(Ui ∩Uj)

∂1 //
⊕
F̂(Ui) // F̂(U) // 0

where d0 is the matrix whose rows are parametrized by pairs i < j and whose
columns are parametrized by k with entries given by d0ij,k = [k : ij]ρij,k where

[k : ij] =


0 if k 6= i 6= j
1 if k = j

−1 if k = i

The matrix ∂1 is similarly defined except that the rows are indexed by k and
columns are indexed by pairs i < j with entries (∂1)k,ij = [k : ij]rk,ij. Thus the
sheaf axiom says that F(U) ∼= ker(d0) and the cosheaf axiom says that F̂(U) ∼=
coker(∂1).



2.3 čech homology and cosheaves 30

In our example of a three set cover U = {U1,U2,U3} all of whose pairwise
intersections are non-empty, the definition of d0 corresponds to taking f+ − f−,
i.e.

d0 = f+ − f− =

−ρ12,1 ρ12,2 0

−ρ13,1 0 ρ13,3

0 −ρ23,2 ρ23,3


where each of the ρij,k’s need to be filled in with some matrix representative of
that linear map. The kernel is then identified with F[U].

2.3 čech homology and cosheaves

In Section 2.2.1 we rephrased the limits and colimits coming from covers as equal-
izers and coequalizers. For the data category D = Vect we showed how to reinter-
pret this as an exact sequence. This perspective is indicative of a deeper and more
computational idea, namely that of homology. We now show how to associate to
any pre-cosheaf6 of vector spaces F̂ and an open cover U = {Ui}i∈Λ a complex of
vector spaces whose zeroth homology computes F̂[U]. This allows us to compute
the homology of data.

Definition 2.3.1 (Čech Homology). Given a pre-cosheaf of vector spaces F̂ and an
open cover U = {Ui}i∈Λ, we define the Čech homology on U to be the homology
of the complex

(Č•(U; F̂),∂•) where Čp(U; F̂) :=
⊕

|I|=p+1

F̂(UI) for I ∈ N(U).

By choosing an ordering on the index set Λ, we define the differential by extend-
ing the formula defined on elements sI ∈ F̂(UI) by linearity, i.e.

∂p : Cp(U; F̂)→ Cp−1(U; F̂) ∂p(sI) :=

p∑
k=0

(−1)kr
U
(k)
I ,UI

(sI),

where the symbol U(k)
I = Ui0 ∩ . . . ∩Uik−1 ∩Uik+1 ∩ . . . Uip indicates the intersec-

tion that omits the kth open set. Thus we can define by the usual formula the pth
Čech homology group

Ȟp(U; F̂) :=
ker∂p

im∂p+1
i.e. Hp(Č•(U; F̂)).

6 Or pre-sheaf, but we’ll leave it to the reader to dualize.



2.3 čech homology and cosheaves 31

To guarantee that Čech homology is well-defined we verify the following
lemma:

Lemma 2.3.2. The differential ∂ in the Čech complex for a cover U and a pre-
cosheaf F̂ of vector spaces satisfies ∂p ◦ ∂p+1 = 0.

Proof. The combinatorial nature of the nerve of a cover guarantees that ∂2 = 0.
Specifically, there are two ways of going between incident simplices of dimension
differing by two. Thus, we get the following diagram of open sets and data:

U
(j,k)
I

U
(j)
I

==

U
(k)
I

aa

UI

bb <<

OO
F̂(U

(j,k)
I )

F̂(U
(j)
I )

::

F̂(U
(k)
I )

dd

F̂(UI)

dd ::

OO

Let’s follow a typical element sI ∈ F̂(UI) through the diagram on the right upon
applying the formula ∂ ◦ ∂. First note that the fact that F̂ is a pre-cosheaf implies
that the square commutes, i.e.

r
U
(j,k)
I ,U(j)

I

◦ r
U
(j)
I ,UI

(sI) = rU(j,k)
I ,U(k)

I

◦ r
U
(k)
I ,UI

(sI) = rU(j,k)
I ,UI

(sI).

The first application of ∂ yields (−1)jr
U
(j)
I ,UI

(sI) and (−1)kr
U
(k)
I ,UI

(sI) as just two

components in the formula for ∂(sI). Assuming j < k and applying the definition
of the boundary map to elements in F̂(U(j)

I ) implies that we must actually delete
the k− 1st entry of I− {j} since removing j has caused everything above j to shift
down in the ordered list. Thus the image of ∂2(sI) in F̂(U(j,k)

I ) is

(−1)k−1(−1)jr
U
(j,k)
I ,UI

(sI) + (−1)k(−1)jr
U
(j,k)
I ,UI

(sI) = 0.

Example 2.3.3. Consider the covers in Figure 1. The pre-cosheaf we described
there assigned to each connected component of an open set a copy of the field k.
First we consider the cover on the left of Figure 1 with three open sets. We label
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the three vertices of the nerve, starting with the bottom left one and working
counter-clockwise, x,y and z respectively. The Čech complex takes the form

kxyz
∂2 // kxy ⊕ kxz ⊕ kyz

∂1 // kx ⊕ ky ⊕ kz // 0

where, using the lexicographic ordering for a basis, the matrix representatives for
∂2 and ∂1 take the following form:

∂2 =

 1−1
1

 ∂1 =

−1 −1 0

1 0 −1

0 1 1


One can easily verify that the ker∂1 = im∂2 and consequently Ȟ1 = 0. Fur-
thermore, Ȟ0 ∼= k, which happens to reflect that the union has one connected
component. Similarly, one can consider the cover at the right of Figure 1. The
Čech complex for this cover and the same pre-cosheaf is as follows:

k3
∂1 // k2 // 0 where ∂1 =

[
−1 −1 −1

1 1 1

]

Clearly Ȟ0 ∼= k, whose dimension agrees with the number of connected compo-
nents of the union, but also Ȟ1 ∼= k2, which witnesses the presence of two holes
in the union.

One can dually define Čech cohomology with coefficients valued in a pre-sheaf
F. The discussion of Section 2.2.2, along with the examples just presented, can be
interpreted as saying a pre-sheaf F or pre-cosheaf F̂ is a sheaf or cosheaf if and
only if

F(U) ∼= Ȟ0(U; F) or Ȟ0(U; F̂) ∼= F̂(U).

for any choice of cover U of U.
We would like to use this isomorphism to supply examples of sheaves and

cosheaves from standard machinery in algebraic topology. Suppose one has an
independent notion of homology, such as singular homology, and one can show
it is isomorphic to Čech homology for suitably fine covers (see Section 2.4 to see
why fineness matters) on nice spaces, then one can also define a cosheaf using
those values. To make this rigorous, and to also provide a useful criterion for
proving when a pre-cosheaf is a cosheaf, we recall a theorem:
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Theorem 2.3.4. Suppose F̂ is a pre-cosheaf, then F̂ is a cosheaf if and only if the
following the following two properties hold

• For all open sets U and V the following sequence is exact

F̂(U∩ V)→ F̂(U)⊕ F̂(V)→ F̂(U∪ V)→ 0.

The first morphism is (−rU,U∩V , rV ,U∩V) and the second is rU∪V ,U + rU∪V ,V .

• If {Uα} is directed upwards by inclusion, i.e. for for every pair Uα and Uβ
there exists Uγ containing both, then the canonical map

lim−→
α

F̂(Uα)→ F̂(∪Uα)

is an isomorphism.

Dually, turning arrows around and using inverse limits gives a useful criterion
for determining when a pre-sheaf is a sheaf.

Proof. Using induction one can prove that the cosheaf property for two sets im-
plies the cosheaf property for finitely many sets (see [Bre97, p. 418] for a proof).
We now show that this implies the cosheaf axiom for arbitrary covers. Suppose
{Uα}α∈Λ is a cover indexed by a potentially large, but ordered set Λ. For each
finite subset I ⊂ Λ we know that⊕

α<β∈I
F̂(Uα,β)→

⊕
α∈I

F̂(Uα)→ F̂(
⋃
α∈I
Uα)→ 0

is exact. We know that the collection of finite subsets I forms a directed system
and that in Vect direct limits preserve exactness. As such we have that

lim−→
I

⊕
α<β∈I

F̂(Uα,β)→ lim−→
I

⊕
α∈I

F̂(Uα)→ lim−→
I

F̂(
⋃
α∈I
Uα)→ 0

is exact as well, but by using the second property and the fact that the direct limit
of the I’s is Λ we have⊕

α<β∈Λ
F̂(Uα,β)→

⊕
α∈Λ

F̂(Uα)→ F̂(
⋃
α∈Λ

Uα)→ 0

is exact. This proves the reverse direction. The other direction is clear.
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This theorem then provides us with a useful example of a cosheaf that we have
implicitly used to generate examples. We now make this example explicit.

Example 2.3.5. The assignment to an open set U the 0th singular homology of U

U H0(U;k)

is a cosheaf. This follows from the fact that the singular chain complex (see later
for a definition) C•(−;k) can be defined for any subset U of X and homology
commutes with direct limits, thus the second property of the theorem holds. The
first property in the theorem follows from exactness at the last two spots in the
Mayer-Vietoris sequence:

H1(U∩ V ;k) // H1(U;k)⊕H1(V ;k) // H1(U∪ V ;k)

// H0(U∩ V ; F) // H0(U;k)⊕H0(V ;k) // H0(U∪ V ;k) // 0

The moral from this example is that, in essence,

Any functor that satisfies Mayer-Vietoris is a cosheaf.

2.4 refinement of covers

We have defined the sheaf and cosheaf axioms for a cover U. The coarsest possible
cover of an open set U is the cover with one element {U}. Thus, one way of
interpreting the sheaf and cosheaf axiom is that F[U] and F̂[U] are independent
of the cover chosen. A logical question to ask is if the axiom holds for some
cover, but not all, then for what other covers does the axiom hold? To answer this
question, we review some relevant concepts.

Definition 2.4.1 (Refinement of Covers). Suppose U and U ′ are covers of U, then
we say that U ′ refines U if for every U ′i ∈ U ′ there is a Uj ∈ U and an inclusion
U ′i → Uj. Note that every cover refines the trivial cover {U}.

Definition 2.4.2. The refinement relation endows the collection of covers of U
with the structure of a category Cov(U), whose objects are covers U with a unique
morphism U ′ → U if the former refines the latter.
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Note that if U ′i1 → Uj1 and U ′i2 → Uj2 , then U ′i1 ∩ U
′
i2
→ Uj1 ∩ Uj2 . So a

refinement induces a functor between nerves, but it depends on which inclusions
were chosen.

Open(X)

N(U ′)

99

// N(U)

ee
Open(X)op

N(U ′)op

77

N(U)op

ff

oo

The next lemma shows that these choices don’t matter on the level of limits and
colimits for pre-sheaves and pre-cosheaves.

Lemma 2.4.3. Let F̂ and F be a pre-cosheaf and a pre-sheaf respectively. Suppose
U ′ refines another cover U of an open set U. Then there are well-defined maps

F̂[U ′]→ F̂[U] and F[U]→ F[U ′],

i.e. we get functors F̂ : Cov(U)→ D and F : Cov(U)op → D.

Proof. We’ll detail the proof for a pre-cosheaf F̂ since the case for pre-sheaves
can be found in the literature or obtained here via dualizing appropriately. A
refinement U ′ → U defines a natural transformation F̂ ◦ ιU ′ ⇒ F̂ ◦ ιU. The colimit
defines a natural transformation from F̂◦ ιU to the constant diagram F̂[U]. Since the
composition of natural transformations is a natural transformation, this induces
a cocone F̂ ◦ ιU ′ ⇒ F̂[U] which, by the universal property of the colimit, defines a
unique induced map there, i.e.

F̂ ◦ ιU ′ ⇒ F̂ ◦ ιU ⇒ F̂[U] implies ∃! F̂[U ′]→ F̂[U].

However, if in choosing the inclusions for the refinement we had made a different
set of choices, U ′i → Uk rather than Uj, then a priori we might have expected
different maps F̂[U ′]→ F̂[U]. Let us show this choice does not matter. If there is a
choice, then we can takeU ′i → Uj∩Uk as a common refinement. As a consequence
of F̂ being a functor from the open set category, the different maps to the colimit
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must agree, as they factor through whatever is assigned on the intersection, i.e.
the following diagram commutes:

F̂(Uj)

��

F̂(U ′i)
//

44

**

F̂(Uj ∩Uk)

99

%%

// F̂[U]

F̂(Uk)

OO

Corollary 2.4.4. If F̂ is a cosheaf or F is a sheaf for the cover U ′, then it is a cosheaf
or sheaf for every cover it refines.

Proof. Suppose we have a series of refinements

U ′ → U→ {U}.

To say that F̂ or F is cosheaf or sheaf for U ′ is to say that the following induced
maps are isomorphisms:

F̂[U ′] //

∼=

%%

F̂[U] // F̂(U) F(U) //

∼=

%%

F̂[U] // F̂[U ′]

However, by functoriality, the factored maps must themselves be isomorphisms,
i.e.

F̂[U]
∼= // F̂(U) F(U)

∼= // F[U] .

We will make use of this corollary as we begin to consider sheaves and
cosheaves on spaces where there is a finest cover. Checking the sheaf or cosheaf
axiom there then guarantees it for all covers.

2.5 generalities on sheaves and cosheaves

Sheaves have proved to be highly successful tools in pure mathematics over the
past 60-70 years. This is largely because sheaves provide precise mechanisms for
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determining global unknowns from local knowns. These mechanisms are greatly
enhanced by considering the operations such as Hom and ⊗ on sheaves, as well
as the pushforward and pullback of a sheaf along a map, which we define in
Section 2.5.2. Some of these operations are only available after applying a certain
repair to turn a presheaf into a sheaf, also known as sheafification, which we
define in Section 2.5.1 after some preliminary discussion of examples.

One would like to know if a similar story is true for cosheaves. After all,
any functor F̂ : Open(X) → D is exactly equivalent to specifying a functor F :

Open(X)op → Dop. However, certain asymmetries prevent such an observation
from being as useful as one might hope. These asymmetries are outlined in Sec-
tion 2.5.3 and obstruct the use of Grothendieck’s version of sheafification to define
an analogous cosheafification. However, we prove that such a device must exist
in Section 2.5.4 without knowing a particular construction.

2.5.1 Pre-sheaves and their Associated Sheaves

Sheaves are fundamentally local structures. Informally stated, a pre-sheaf can fail
to be a sheaf in two independent ways:

• Non-Local: If a pre-sheaf has a section s ∈ F(U) that cannot be constructed
from sections over smaller open sets in U — a cover of U, for example —
then F fails to be a sheaf.

• Inconsistent: If a pre-sheaf has a pair of sections s 6= t ∈ F(U) such that when
restricted to every smaller open set they define the same section, then F fails
to be a sheaf.

Let’s illustrate both of these failures with two examples.

Example 2.5.1 (Non-local). Let F be a presheaf of vector spaces over the real line
R, defined as follows:

F(U) =

k if (−1, 1) ⊂ U

0 o.w.

In particular, F assigns the zero vector space to every open ball Br(x) centered at
x ∈ R with r 6 1/2. This collection of balls covers the real line thus if F were a
sheaf, then F(R) = 0, but it is the vector space k instead.

An incarnation of this example, depicted in Figure 3, is the pre-sheaf that as-
signs to every open set U, the first cohomology of the inverse image of U under a
map f : S1 → R, i.e.

U H1(f
−1(U);k).
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figure 3: Cohomology Pre-sheaf is Non-Local

Example 2.5.2 (Inconsistent). Let F be a presheaf of sets over the real line R, de-
fined as follows:

F(U) =

{a,b} if U = X

{?} o.w.

This presheaf is like two friends that agree on every possible political issue, but
still belong to two different political parties.

Fortunately, there is a general method of repair that can make any presheaf F
into a sheaf F̃. Although this method modifies the value of F on open sets, it leaves
at least one feature of the presheaf unchanged. This is the stalk of the presheaf.

Definition 2.5.3. Let F be a pre-sheaf on a topological space X and x ∈ X a point.
The stalk of F at x is the direct limit of F over open sets U containing x:

Fx := lim−→
U3x

F(U)

The stalk is the “local value” of a presheaf at x. Notice that every element t ∈ F(U)
with x ∈ U has an associated value tx, which is the image of t in the direct limit.

Remark 2.5.4. Since F only assigns data to open sets, one often uses the direct
limit construction to assign data to arbitrary sets of X; the stalk is just a special
example of this principle.
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Now we introduce the procedure for turning an arbitrary presheaf of sets, vec-
tor spaces or groups into a sheaf of the same type.

Sheafification

We begin our introduction to the sheaf associated to a presheaf with a careful
introduction to products and disjoint unions, following [DL12].

Definition 2.5.5 (Disjoint Unions and Products in Set). Suppose {Xs}s∈S is a family
of sets indexed by S. The disjoint union is a union that tracks the indexing set:⊔

s∈S
Xs :=

⋃
s∈S
Xs × {s}

The product can be written as a set of maps:∏
s∈S
Xs := {f : S→

⊔
s∈S
Xs | f(s) ∈ Xs ∀s ∈ S}

The projection maps
πs ′ :

∏
s∈S
Xs → Xs ′

are defined by evaluation πs ′(f) = f(s ′).

Definition 2.5.6 (Sheafification). Let F : Open(X)op → Set be a presheaf of sets
and let Fx denote the stalk of F at x. Now for each open set U, form the product∏
x∈U Fx. The sheafification F̃ of F assigns to every open set U the functions in∏
x∈U Fx that “locally extend,” i.e.

F̃(U) := {s ∈
∏
x∈U

Fx |∀x ∈ Us(x) ∈ Fx ,∃V 3 xV ⊂ Ut ∈ F(V) s.t. ty = s(y) ∀y ∈ V}

There is a natural transformation θ : F → F̃ that takes every element s ∈ F(U) to
the map s : x ∈ U 7→ sx ∈ Fx. In particular, θx : Fx → F̃x is an isomorphism.

One can summarize sheafification more elegantly in the language of categories.
Since every sheaf is also a pre-sheaf, we have an inclusion functor

ι : Shv(X; Set) ↪→ Fun(Open(X)op, Set) =: PreShv(X; Set)

that has a left adjoint, i.e. there is a universal natural transformation θ : idPreShv →
ι ◦ (̃−), see Section 1.5 for a reminder. Such a subcategory is called reflective.
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This guarantees, for example, that if F is an arbitrary pre-sheaf and G is a sheaf
regarded as a pre-sheaf G = ι(G), then we have the following universal property:

F̃

∃!
��

F

θF

>>

ϕ // ι(G)

Pulling back along θF induces the natural isomorphism of Hom-sets:

HomShv(F̃,G) ∼= HomPreShv(F, ι(G))

2.5.2 Grothendieck’s Operations

What makes sheaf theory such a powerful machine is that there are many natural
operations on sheaves and well understood adjunctions between these operations.
However, many of these operations only exist with the aid of sheafification. In
particular, there are the following six operations, grouped into three adjoint pairs,
the third of which exists only in a suitable enlargement of the category of sheaves.

(f∗, f∗) (⊗,Hom) (f!, f!)

Here we will consider only four out of the six in order to forego this extra diffi-
culty of “enlarging” the category of sheaves.

Definition 2.5.7 (Pushforward Sheaf). Let f : Y → X be a continuous map and let
G be a sheaf on Y. The pushforward sheaf is defined by the formula:

f∗G(U) := G(f
−1(U))

There should be an inverse operation that takes a sheaf F on X and pulls back
along f : Y → X. After all, if i : W ↪→ X is the inclusion of an open set, then a
natural candidate for the pullback sheaf i∗Fwould be the restriction of the domain
of definition of F to only those open sets contained in W.

F|W(U) = F(U)

However, if f : Y → X is not an open map, then there is no hope for an easy
definition. Sheafification, however, comes to the rescue.
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Definition 2.5.8 (Pullback Sheaf). Let f : Y → X be a continuous map and F a sheaf
on X. The pullback sheaf, written f∗F is the sheafification of the pre-sheaf

U lim−→
V⊃f(U)

F(V)

Example 2.5.9 (The Stalk). Let i : {x} ↪→ X be the inclusion of a point into a space
with a sheaf F defined on it. The sheaf i∗F ∼= Fx is the stalk at x.

Exercise 2.5.10. Verify for i :W ↪→ X that i∗F = F|W

The next pair of interest is the middle pair.

Definition 2.5.11 (Sheaf Hom). Suppose F and G are sheaves of abelian groups
over a single space X. The sheaf hom Hom(F,G) assigns to every open set

Hom(F,G)(U) := HomShv(U)(F|U,G|U)

For the algebraically minded, there should be a knee-jerk response for an asso-
ciated tensor sheaf, however the naïve assignment needs to be sheafified.

Definition 2.5.12. Suppose F and G are sheaves of abelian groups over a single
space X. The tensor product of sheaves F⊗G is defined to be the sheafification
of the assignment

U F(U)⊗G(U)

The reader is encouraged to work through the following exercise, borrowed
from [Ach07] with a few extra hints.

Exercise 2.5.13. Let Q be the sheaf of sections of the map f : S1 → S1 defined via
complex coordinates as f(z) = z2, i.e.

Q(U) := {s : U→ S1 | f ◦ s(z) = z}.

Check that this sheaf has no global sections. Now let Qk be the sheaf which
assigns to each open set U the k vector space freely generated by the set Q(U).
Show by taking a carefully chosen cover of S1 that

F : U Qk(U)⊗Qk(U)

is not a sheaf. Observe that we have a natural method for tensoring elements of
Qk(U) together via pointwise multiplication. Any element s ∈ Qk(U) satisfies
(s⊗ s)(z) = s(z)2 = z, but there are interesting cross-multiple terms.
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Although working out the above exercise is rewarding, the category theorist
knows that since tensor products are colimit constructions and the sheaf axiom
involves limits, one should instantly be suspicious of such a construction defining
a sheaf. However, one can construct cosheaf-theoretic analogs of the above func-
tors and there the tensor cosheaf is naturally a cosheaf, but cosheaf Hom needs to
be “cosheafified,” if such a thing exists.

2.5.3 Failures to Commute

Unfortunately, the universe appears to have a sort of handedness that makes cer-
tain constructions for sheaves natural, but not so for cosheaves. This is because
most data categories D, such as Set, Vect or Ab, are not equivalent to their opposite
categories. Thus the topological simplification of reducing cosheaves to sheaves
comes at the cost of making the algebraic thinking more difficult. In particular,
certain properties of D = Set, Vect or Ab are used in the development of sheaf
theory, which do not necessarily hold in Dop. The centerpiece of this discussion
will be understanding that filtered colimits commute with finite limits in D, but
cofiltered limits do not necessarily commute with finite colimits in D. Let us now
relay the necessary definitions.

Definition 2.5.14. A non-empty category C is called filtered if the following two
properties are satisfied:

• For every pair of objects x,y ∈ C there is a third object z ∈ C with x→ z and
y→ z.

• For every pair of parallel morphisms f,g : x → y there is a third object and
morphism h : y→ z such that h ◦ f = h ◦ g.

A category C is called cofiltered if Cop is filtered. Sometimes, when the category
is especially simple, we will simply call a cofiltered category filtered.

Example 2.5.15. In Section 2.4 we considered the category of covers Cov(U) of an
open set U. By noting that any two covers have a common refinement, one sees
that this is an example of a cofiltered (or cofiltrant) category.

Definition 2.5.16. Suppose I is a filtered indexing category with F : I → D and
G : Iop → D diagrams in some category. We will call the colimit of F a filtered
colimit and the limit of G a cofiltered limit.

Now we give an example already introduced in the context of sheafification.
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Example 2.5.17 ((Co)Stalks). Suppose X is a topological space and x is a point in
X. The set of open sets containing x defines a cofiltered subcategory of Open(X)
or a filtered subcategory of Open(X)op. Consequently for a pre-sheaf F or a pre-
cosheaf F̂, the following

Fx := lim−→
U3x

F(U) lim←−
U3x

F̂(U) =: F̂x

define a filtered colimit and cofiltered limit, respectively. These are called the
stalk at x of a pre-sheaf F and the costalk at x of a pre-cosheaf F̂. Of course, to
make such a statement meaningful, one needs to assume the data category D has
the relevant limits and colimits.

The following theorem illustrates one of the fundamental differences between
sheaves and cosheaves. It is expressed through the following algebraic fact, which
the reader might like to compare with the Fubini theorem.

Theorem 2.5.18. Let I be a filtered indexing category and J a finite category. Then
any functor α : I× J → D where D = Set, Vect, or Ab, has the property that the
natural map

lim−→
I

lim←−
J

α(i, j)→ lim←−
J

lim−→
I

α(i, j)

is an isomorphism. We say for short that “filtered colimits and finite limits com-
mute” in these categories.

Proof. For a proof of this statement, we refer the reader to theorem 3.1.6 in [KS06].
First note that the product category I× J is just a product in Cat - the category
of all categories. We can describe the objects of I× J as pairs of objects, one from
each category, and the morphisms as tuples of morphisms, one for each object.
One can take α and then define a new functor lim←−J α : I→ D gotten by assigning
to each object i ∈ obj(I) the limit over J of α(i,−) : J→ D. Taking the colimit over
I defines the first expression. Similar reasoning defines the second.

For an application of this theorem we introduce some ideas to the world of
pre-sheaves valued in Vect. Recall that a complex of vector spaces

· · · → V1 → V2 → V3 → · · ·
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is exact at a term in a sequence if the image of the incoming map coincides with
the kernel of the outgoing map. A sequence of pre-sheaves7 is exact if and only if
for each open set U the associated sequence of vector spaces is exact, i.e.

0→ E→ F→ G→ 0 iff 0→ E(U)→ F(U)→ G(U)→ 0

Theorem 2.5.18 then implies that for any point x ∈ X the induced sequence of
stalks

0→ Ex → Fx → Gx → 0

is exact. Intuitively this is because we can view E as a kernel of the pre-sheaf map
F → G and as already demonstrated, kernels are examples of finite limits. Thus
taking the kernel of the stalk map Fx → Gx is the same as taking the stalk of the
kernel of F→ G.

Proposition 2.5.19. For D = Set, Vect or Ab it is not true that cofiltered limits and
finite colimits commute. Consequently, ifA,B,C : Nop → Ab (or Vect) are functors
from the category of natural numbers equipped with the opposite ordering, with
natural transformations A→ B→ C such that

0 // Ai // Bi // Ci // 0

is exact for every i, then it is not always the case that the induced sequence on
limits is exact.

0 // lim←−A
// lim←−B

// lim←−C
// 0

Proof. We borrow an example from Jason McCarthy’s notes [McC]. Consider the
following system of short exact sequences of groups:

...

��

...

��

...

��

...

��

...

��
0

��

// Z

n+1
��

n // Z

n+1
��

// Z/n //

id
��

0

��
0

��

// Z

n+1
��

n // Z

n+1
��

// Z/n //

id
��

0

��
0 // Z

n // Z // Z/n // 0

7 The corresponding statement for sheaves is not true.
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The inverse limit of the first (and second) column with non-zero entries must be
zero. To see why, note that the inverse limit can be described as

lim←−
Nop

Zi = {(xi) ∈
∏
i

Zi | xi = (n+ 1)j−ixj ∀j > i},

where we have viewed the indexing category as the natural numbers with the
opposite ordering. Any non-zero element of the limit would have some non-
zero factor xi and consequently all other factors would be non-zero (since the
map a → (n + 1)a is injective). In particular, all higher xj must be equal to
xi/(n+ 1)j−i, but letting j be suitably large would imply that xj must be less than
one — an impossibility. Thus the induced map of inverse limits is

0 // 0 // 0 // Z/nZ // 0

which is not exact. If the reader prefers an example in the category of vector
spaces, one should see Schapira’s example 4.2.5 in his notes [Sch].

Thus the statement that short exact sequences of pre-cosheaves induces a short
exact sequence on costalks cannot be guaranteed. There is a subtle work-around
that says under suitable hypotheses8 exactness can be guaranteed. This holds
for categories like vect, the category of finite-dimensional vector spaces, and ab,
the category of finite abelian groups, because this is where the descending chain
condition holds [AM69].

This last comment about vect provides justification for performing some du-
alization to obtain results about cosheaves from sheaves. After all, for finite-
dimensional vector spaces it is true that

Homvect(−,k) : vectop → vect

establishes an equivalence of categories.9 However, issues of stalks versus costalks
is not the primary obstacle that the asymmetry of Theorem 2.5.18 presents. That
obstacle has to do with a process known as sheafification, which provides a uni-
versal tool for turning any pre-sheaf into a sheaf. For most texts on sheaf theory
it is presented before almost any other theory is developed.

The most general sheafification process outlined by Grothendieck takes a pre-
sheaf F and defines a new pre-sheaf F+ that assigns to each open set U the filtered

8 i.e. the Mittag-Leffler condition. See [KS02, Sec. 1.12] or [AHS09b, pp. 211-214] for more details.
9 This does not extend to an equivalence between Vect and its opposite category. In fact, Vectop

is equivalent to the category pro − vect, cf. [Isa02, Rmk.6.2].
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colimit of F : Cov(U)op → D, see [KS06, Sec. 17.4] for a modern exposition. Apply-
ing this construction twice defines a sheaf. However, in order to guarantee that
this F++ is a sheaf one uses the properties of Theorem 2.5.18. This now gets us to
the more fundamental reason why the study of cosheaves may be so obscure: The
non-exactness of lim←− thwarts the Grothendieck prescription for cosheafification.
For pre-cosheaves valued in Set, Ab or Vect there is simply no hope in using the standard,
most general, cosheafification.

There are a very small handful of approaches that have been used to circumvent
this problem:

1. Čech Homology and Smoothness: One approach developed by Bre-
don [Bre68, Bre97] is to define an equivalence relation on pre-cosheaves,
more nuanced than isomorphism, which is constructed through zig-zag
diagrams of local isomorphisms. Bredon develops an operation which uses
Čech homology to take in one pre-cosheaf and produce another. In the
event that the starting pre-cosheaf was equivalent to a cosheaf (Bredon calls
such a pre-cosheaf smooth), he proves that his construction yields a cosheaf.

2. Pro-Objects: Another notable approach is to use pro-objects, i.e. functors
P : Iop → C where I is filtrant. This theory is engineered in such a way that
all the desired algebraic properties exist. This approach was perhaps first
used by Jean-Pierre Schneiders [Sch87] to develop a rich theory of cosheaves.
The problem with pro-objects is its conceptual and algebraic difficulty. For
the visually minded, cosheaves of pro-objects are infinite diagrams of infinite
diagrams, which obscure the many natural examples of pre-cosheaves and
cosheaves that one might want to capture. More recent work [Sug01, Pra11],
has also used this setup for cosheaves.

3. Topology: Here, one eschews full generality and works only with certain
cosheaves known as constructible cosheaves, which can be thought of as
cosheaves on particular finite spaces. Cosheafification in this setting exists
and is natural. Often one does not even think about needing to cosheafify,
because the diagrams are modeled on the points of the space. This school of
thought, motivated by the vision and unpublished ideas of Bob MacPherson,
has some recent trace in the literature, see [Woo09, MT12].

For the most part, we choose to sidestep the issues of sheafification and cosheafi-
fication by focusing on the third approach. We believe that this provides a better
way of learning sheaf theory as it removes the ever-present phrase “let blank be
the sheafification of blank” and focuses on the more important technical machin-
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ery first. However, we provide a proof that cosheafification does exist in the next
section.

2.5.4 The Existence of Cosheafification

Grothendieck gave us a general construction of the sheafification functor (̃−) that
works in more general data categories D, which comes from applying a certain
functor (−)+ twice. The requirement on the category D includes, among other
things, that filtered colimits and finite limits commute. If we were to regard a
pre-cosheaf F̂ : Open(X)→ D as a pre-sheaf valued in Dop, then the condition that
filtered colimits and finite limits commute in Dop would become the condition
that cofiltered limits and finite colimits commute in D, which is patently false
when D = Set, Vect or Ab, as the example in Proposition 2.5.19 showed.

Consequently, we do not have a clear answer to the question: Does the inclusion
functor ι have a right adjoint (−)#?

ι : CoShv(X; D) ↪→ Fun(Open(X), D) =: PreCoshv(X; D)

so that the dual universal property is satisfied, i.e. if F̂ is a pre-cosheaf and Ĝ is
a cosheaf with a morphism Ĝ → F̂, then there is a unique way of completing the
diagram.

F̂#

��

Ĝ

@@

// F̂

In the case where D = Set, Jon Woolf’s paper [Woo09] contains a construction
of cosheafification. Unfortunately, this cannot be adapted to categories like Vect
or Ab. For a high-level reason why, Mac Lane and Moerdijk explain on page 95

of [MM92] that a sheaf of abelian groups can be identified with an abelian group
object in the category of sheaves. Since sheafification preserves finite products,
sheafification of pre-sheaves of sets lifts to a functor between abelian group objects.
Moreover, since the forgetful functor for : Ab → Set preserves limits (but not
colimits), any sheaf of groups defines a sheaf of sets. Trying to repeat this last
line of reasoning for cosheaves of groups fails, i.e. a cosheaf of groups does not,
by forgetting, define a cosheaf of sets.

Our approach is to verify abstractly whether cosheafification exists without
constructing it. Of course, one would like to use Freyd’s Adjoint Functor The-
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orem 1.5.2, but we will use a different theorem [AR94, Thm 6.28] that is easier to
check.

Theorem 2.5.20. Assuming Vopenka’s principle (a large cardinal axiom), every
full subcategory B of a locally presentable category C, where B is closed under
colimits, is coreflective, i.e. the inclusion functor ι : B ↪→ C has a right adjoint (a
cofree functor).

We will leave Vopenka’s principle as a black box and assume it, even though
many category theorists cringe at its very name. We prove that cosheafification
exists by verifying the hypotheses of the above theorem for our case of interest.

Corollary 2.5.21. The category of cosheaves of vector spaces is a coreflective sub-
category of Fun(Open(X), Vect), i.e. cosheafification exists.

Proof. It is clear that the category of cosheaves is closed under colimits, since
we can define the colimit to be the pre-cosheaf, which open-by-open assigns the
colimit of vector spaces over that open set. This pre-cosheaf is a cosheaf, because
for a fixed cover, each vector space in the diagram is expressed as a colimit and
colimits commute with colimits.

It remains to be seen that the category of pre-cosheaves is locally presentable.
this means that the category is locally small, has small colimits, has a small set
of objects S that generates PreCoshv(X; Vect) in the sense that every pre-cosheaf
is a colimit of objects in S, and every object is small. The first two statements are
easily addressed. Open(X) is a small category and Vect is locally small, so the
functor category is locally small. Colimits of pre-cosheaves are defined open-by-
open. Since Vect is cocomplete, pre-cosheaves valued in Vect is also cocomplete.
Now we address the existence of a generating set.

Define, for each open set U ∈ Open(X), the following pre-cosheaf:

ĥU(V) =

{
k ifU ⊂ V
0 o.w.

We’d like to say that every pre-cosheaf is a colimit of pre-cosheaves of the above
form. The corresponding statement for pre-sheaves is proved in pages 41-42

of [MM92]. We will go ahead and repeat the argument here. Note that if Ĝ is
an arbitrary pre-cosheaf, then

HomPreCoshv(ĥU, Ĝ) ∼= Ĝ(U).
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Observe that if U ⊂ U ′, then we get a map of pre-cosheaves (a natural transfor-
mation) ĥU ′ → ĥU. This in turn induces a map

HomPreCoshv(ĥU, Ĝ)→ HomPreCoshv(ĥU ′ , Ĝ)

which coincides with the internal extension map of Ĝ, that is rU ′,U : Ĝ(U) →
Ĝ(U ′). In other words, the functor

R : PreCoshv(X; Vect)→ PreCoshv(X; Vect)

G (U 7→ HomPreCoshv(ĥU, Ĝ) ∼= Ĝ(U))

is isomorphic to the identity functor. Since adjoints are unique up to isomor-
phism, then we can conclude that its (left) adjoint must also be isomorphic to the
identity functor. However, we will construct explicitly the adjoint, which, com-
bined with the fact that it must be the identity functor, exhibits Ĝ as the colimit
of pre-cosheaves of the form ĥU.

For each pre-cosheaf Ĝ, define the following category of elements J
Ĝ

.10 The
objects of J

Ĝ
are pairs

(U, x) where U ∈ Open(X) x ∈ Ĝ(U).

A morphism (U, x) → (U ′, x ′) is defined if U ⊂ U ′ and x ′ = rU ′,U(x). Clearly,
there is a projection functor π

Ĝ
: J
Ĝ
→ Open(X) and by formality, there is a dual

functor πop
Ĝ

: Jop
Ĝ
→ Open(X)op.

Denote by Y the functor

Y : Open(X)op → PreCoshv(X; Vect) U ĥU.

We claim that the left adjoint L to the functor R considered above can be con-
structed object-wise as follows: for each pre-cosheaf Ĝ define

L(Ĝ) := lim−→Y ◦ πop
Ĝ

.

We claim that Ĝ is the colimit. This is already given from the fact that L must be
isomorphic to the identity functor, but let’s at least check how Ĝ is a co-cone, to
make the statement more plausible. For each object (U, x) in J

Ĝ
the map to Ĝ is

defined by
x ∈ Ĝ(U) ∼= HomPreCoshv(ĥU, Ĝ) 3 ψU,x

10 It should be noted that in [MM92], the category of elements is written
∫
Ĝ.
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where ψU,x is the natural transformation that sends 1 ∈ ĥU(U) to x ∈ Ĝ(U) and
then for any larger open set U ⊂ U ′ sends 1 ∈ ĥU(U ′) to rU ′,U(x). Observe that if
U ⊂ U ′ and (U ′, x ′)→ (U, x) is a morphism in Jop

Ĝ
, so rU ′,U(x) = x ′, then we have

the following commutative diagram:

(U ′, x ′)

��

// ĥU ′

��

ψU,x ′

��
(U, x) // ĥU ψU,x

// Ĝ

At the risk of demonstrating the obvious, the above diagram commutes if the the
following diagram commutes for an arbitrary triple of open sets V ⊂ V ′ ⊂ V ′′.
We will check it for the interesting boundary case U ⊂ U ′ ⊂ U ′′.

ĥU ′(U
′′) = k 1 // ĥU(U

′′) = k
rU ′′,U ′(x)// Ĝ(U ′′)

ĥU ′(U
′) = k 1 //

1

OO

ĥU(U
′) = k

1

OO

rU,U ′(x)=x
′
// Ĝ(U ′)

rU ′′,U ′

OO

ĥu ′(U) = 0 //

OO

ĥU(U) = k
x //

1

OO

Ĝ(U)

rU ′,U

OO

This completes the plausibility check. We use the observation that L is isomorphic
to the identity functor to conclude that Ĝ is actually the colimit. The conclusion
is that

Ĝ ∼= lim−→Y ◦ πop
Ĝ

i.e. Ĝ is expressible as a small colimit of pre-cosheaves of the form ĥU where the
size of the indexing set is bounded by the product of the cardinality of Open(X)
and the maximum cardinality of Ĝ(U) over varying U.

Now it remains to check the smallness of objects in PreCoshv(X; Vect). An object
Ĝ is small if there exists a regular cardinal κ such that Hom(Ĝ,−) commutes with
directed colimits of diagrams indexed by categories of cardinality at most κ.

Observe that for one of our pre-cosheaves ĥU is compact since if (F̂i) is a direct
system of pre-cosheaves, then

lim−→Hom(ĥU, F̂i) ∼= lim−→ F̂i
∼= Hom(ĥU, lim−→ F̂i).
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As already shown, for every pre-cosheaf Ĝ there exists a diagram whose cardinal-
ity is the cardinality of J

Ĝ
, which we will call κJ. Now, we know how to express

Ĝ as a colimit of ĥU’s. Thus,

Hom(Ĝ, lim−→
i

F̂i) ∼= Hom(lim−→
U

ĥU, lim−→
i

F̂i)

∼= lim←−
U

Hom(ĥU, lim←−
i

F̂i)

∼= lim←−
U

lim−→
i

Hom(ĥU, F̂i)

∼= lim←−
i

lim−→
U

Hom(ĥU, F̂i)

∼= lim−→
i

Hom(lim−→
U

ĥU, F̂i)

∼= lim−→
i

Hom(Ĝ, F̂i)

The third line follows from compactness of ĥU. The fourth line follows from
the fact that in Set, κJ small colimits commute with κJ -filtered colimits. This
completes the proof.



3
P R E L I M I N A RY E X A M P L E S

“The content of a mathematical theory is never larger than the set of examples
that are thoroughly understood.”

— Vladmir Arnol’d [Arn04]

Theories should be motivated by examples. In this chapter we develop the com-
mon themes these examples share. Broadly speaking, all sheaves are realized via
local sections associated to a particular map. This principle is rigorously embod-
ied by the étalé perspective. Similarly, all cosheaves of sets are realized by connected
components of the fiber of a map, embodied by the display perspective, which is a
generalization of the Reeb graph construction outlined in Definition 3.4.1.

3.1 sheaves model sections

Recall that if f : Y → X is a continuous map then a section is a continuous map
g : X→ Y such that f(g(x)) = x for all x. This definition has the property that f is
surjective. Sometimes a map admits a locally-defined section over a subset U ⊂ X,
but not a global one. There is a sheaf that tracks this data.

Definition 3.1.1 (Sheaf of Sections of a Map). Suppose π : E → X is a continuous
map. Then we can associate a sheaf of sections to this map as follows:

U F(U) := {s : U→ π−1(U) continuous |π(s(x)) = x}.

Clearly, if F(X) 6= ∅, then we can answer positively the question “Does π : E→ X

have a section?”
E

π
��
X

?

VV

To see why this is a pre-sheaf valued in D = Set note that what is assigned
to an open set U is a set of maps. A map whose domain of definition is U can

52



3.1 sheaves model sections 53

always be restricted to a smaller open subset V ⊂ U to define a map on V . This
process of restricting the domain of definition we write as ρV ,U(s) := s|V , which is
what makes this assignment a pre-sheaf.

Let us prove this defines a sheaf. Suppose U ⊂ X and U = {Ui}i∈Λ is an arbitrary
open cover of U. We must prove that the map

F(U)→ F[U] := lim←−(N(U)op → Open(X)op → Set)

is an isomorphism. Recall that the limit can be described in terms of products
and equalizers. As such, every element of the limit is described by a collection
of continuous sections si : Ui → π−1(Ui), one for each element of the cover, such
that on intersections ρij,i(si) = ρij,j(sj).1 The natural map from F(U) to F[U] simply
takes a section s ∈ F(U) to the collection of restricted sections {si := s|Ui}. If two
sections over U differ at a point x, then they will define different sections over
Ui 3 x, thus the natural map is injective. To check surjectivity, note that an
element in the limit defines a section over U by setting s(x) = si(x) if x ∈ Ui
and this will be continuous by the pasting lemma described at the beginning of
Chapter 2.

Example 3.1.2. For a simple example, consider the projection onto the first coordi-
nate πt : [0, 1]× [0, 1] → [0, 1], which we regard as taking a time-space coordinate
(t, x) to its time coordinate t. There are lots of sections of this map. The map
that assigns to each time t a fixed position p ∈ [0, 1] defines a section, so there are
uncountably many sections.

Now consider a different map that comes from restricting the time projection
map to a subset E ⊆ [0, 1]× [0, 1], i.e. π := πt|E : E→ [0, 1] is the restricted map. A
drawing can be found in Figure 4 where E is the region bound between the two
curves. Does it have any global sections, i.e. is F(X) 6= ∅?

The answer is clearly no. The example in Figure 4 illustrates a concept central
to sheaf theory. Although about each point in time t there is some ε > 0 such
that on the open set (t− ε, t+ ε) a continuous section can be defined, there is no
globally defined section. Thus local sections (local solutions) exist, but they do
not always glue together to define a global section (global solution). This is why
we say

Sheaves mediate the passage from local to global.

Example 3.1.3 (Square Map). Suppose f : C → C is the map sending a complex
number z to z2. For a point w = reiθ with r 6= 0 there are two points in the fiber:

1 Here we have adopted the shorthand of referring to open sets via elements of the nerve.
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figure 4: Is There a Section?

z =
√
reiθ/2 and z ′ =

√
reiθ/2+π. Consequently, for a small connected neighbor-

hood aboutw there are two corresponding continuous sections. There is no global
section because the square root map is necessarily multi-valued when considered
all the whole complex plane.

Lists of similar examples abound in geometry and topology, most of which are
concerned with the following mathematical structure.

Definition 3.1.4. A fiber bundle over X consists of total space E equipped with a
continuous surjective map π : E → X satisfying the property that for each point
x ∈ X there exists an open neighborhood U such that the following diagram
commutes.

π−1(U)
hU //

π
##

U× F

πU||
U

Here F is the fiber space, hU is a homeomorphism and πU is projection onto the
first factor. If F is a discrete space then we usually write X̃ instead of E and say
that π : X̃ → X is a covering space. If each fiber π−1(x) is endowed with the
structure of a group, i.e. F = G with the discrete topology, so that hU induces a
group isomorphism between π−1(x) and G, then E is called a bundle of groups.
Analogous definitions hold for fiber a ring or a module.

The map π : M → S1 where M := S1 ×R/ ∼ with (x,y) ∼ (x+ 2π,−y) is an
example of a fiber bundle over S1. Restricting the domain of π to the subspace
S1 × [−1, 1] allows one to think of this map as projecting the Möbius bundle to
its core circle. The projection π has a section that embeds S1 as the zero section,
but there are no sections which avoid S1 × {0}. The “hairy ball” theorem is the
analogous statement except for the tangent bundle to the two sphere S2. Sheaf
theory is the lingua franca for bundle theory and category theory. Thus even the
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most trivial example of a product bundle, E = X× k → X where k is a field, is of
interest.

Definition 3.1.5 (Constant Sheaf). Suppose A is an R-module equipped with the
discrete topology and E = X×A→ X is the product bundle. The sheaf of sections
of this map is called the constant sheaf AX. If A = R is a field k or the ring Z we
will just say the constant sheaf and write kX or ZX. We will almost always work
over a field k.

If π : E→ X is not necessarily the product bundle, but has fiber A, then we call
the sheaf of sections of π the locally constant sheaf F with value A.

For locally connected spaces the constant sheaf kX assigns to any open set U the
product of the field k for as many connected components as U has. To see this, let
us be more precise about how the algebraic structure of the module/vector space
interacts with the topological structure of a fiber bundle [Mac91, Sec. 7.2.1].

Definition 3.1.6 (Local Systems). Let k be a field viewed as a topological space
with the discrete topology. A local system is a covering space π : L→ X equipped
with the structure of a k-vector space on each fiber. Specifically, an n-dimensional
local system on a topological space X is a topological space L, a map of spaces
π : L→ X, and, for each point p ∈ X, a k-vector space structure on π−1(p) with the
following property: Every point p ∈ X has a neighborhood U such that there is a
homeomorphism hU : π−1(U)→ U× kn such that πU ◦hU = π and for each x ∈ U
the vector space structure on π−1(x) is induced by h from the one on {x}× kn.

Our definition of the locally constant sheaf F in Definition 3.1.5 is more accu-
rately defined as an n-dimensional local system L, at least when A is a k-vector
space. Consider one of the distinguished open neighborhoods U of a point x ∈ X
provided by the definition. Here we have a commutative diagram:

π−1(U)
hU //

π
##

U× kn

πU
{{

U

For a locally connected space we can assume U is connected by replacing U with
whatever connected component of U contains x. Consider a section of π : L → X

over U. Since kn has the discrete topology any section s over U has to be constant
since the image of a connected set is always connected. This implies that every
section s has the form hU ◦ s(y) = (y, (v1, . . . , vn)) for every y ∈ U and for some
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fixed vector v̄ ∈ kn. Consequently, for the distinguished neighborhood U, the set
of sections

F(U) = AX(U) ∼= kn ∼= A.

Moreover, by the local system condition, we can form any linear combination of
sections s1, s2 ∈ F(U) to obtain a third section αs1 + βs2 ∈ F(U). This implies
that the locally constant sheaf is actually a sheaf valued in Vect — the category
of vector spaces. Arguing in the same way for each connected component tells us
that over a union U ′ of disjoint, connected, distinguished neighborhoods, a locally
constant sheaf has the value

F(U ′) ∼= Aπ0(U
′) ∼= H0(U ′;A) ∼= H0(U ′;k)n.

This illustrates that a locally constant sheaf can be thought of as taking H0 of a
space with “twisted” coefficients.

3.2 local systems : a bridge between sheaves and cosheaves

Formulating locally constant sheaves as a twisted H0 presents an obvious dualiza-
tion in terms of H0. Moreover this duality reaches higher by considering higher
cohomology and homology as well. To understand this, we will need to under-
stand local systems better.

Definition 3.2.1. The collection of local systems over X forms a category Loc(X).
A morphism of between two local systems π : L → X and π ′ : L ′ → X is a map
ϕ : L→ L ′ such that π ′ ◦ϕ = π and the restricted map ϕx : π−1(x)→ π

′−1(x) is a
linear transformation.

The following theorem is classical and allows us to use two definition of local
systems interchangeably.

Theorem 3.2.2. If X is a locally connected and locally simply connected space,
then the category of local systems is equivalent to the category of representations
of the fundamental groupoid of X, i.e.

Loc(X) ' Rep(π1(X)).

Recall that the objects of Rep(π1(X)) are functors L : π1(X)→ Vect.

Remark 3.2.3. For a connected space X fixing a base point x0 provides a skeletal
subcategory π1(X; x0) ↪→ π1(X). Precomposing L with this inclusion defines a
representation of the fundamental group π1(X; x0).
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figure 5: Trivial Circle Bundle over the Circle

Proof (Idea). The functor that realizes this equivalence is very easy to describe.
Given a local system L one defines a representation L : π1(X)→ Vect by assigning
to points x ∈ X, the vector space π−1(x) =: L(x). Now suppose γ : [0, 1] → X is
a path connecting x to y. Since π : L → X is a covering space, there is a unique
lift γ̃ connecting any element of π−1(x) to an element in π−1(y). These lifts piece
together to define a monodromy map µγ : L(x) → L(y). Since local systems are
fiber bundles, a homotopy of paths pulls back to a trivial bundle, which shows
that the map µγ is invariant under homotopy classes of paths rel endpoints.

Moreover, one can construct a space associated to a functor L : π1(X)→ Vect by
considering the product L :=

∏
x∈XL(x) and topologizing suitably. For example,

one could consider a basis of open sets around a point v ∈ L(x) given by the
collection of elements {w ∈ L |∃γ, s.t.µγ(v) = w}. This construction mirrors the
usual construction of a classifying space given in Hatcher [Hat02, Sec. 1.3] or
Munkres [Mun00, Ch. 13].

This equivalence allows us to define plenty of examples of local systems coming
from fiber bundles.

Proposition 3.2.4 (Fiber Bundles Give Local Systems). Suppose π : E → X is a
fiber bundle, then for each i the homology of the fiber Hi(π−1(x);k) defines a
local system. Dually, for each i the cohomology of the fiber Hi(π−1(x);k) defines
a representation of the fundamental groupoid and consequently a local system.
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figure 6: Identification Spaces for the Torus and Klein Bottle

Proof. This is easily seen because any path γ : [0, 1] → X determines a pull-
back bundle γ∗E which is trivial, so there is an isomorphism Hi(π

−1(γ(0));k) →
Hi(π

−1(γ(1));k). Moreover, any homotopy of paths H : [0, 1]2 → X determines a
trivial pullback bundle H∗E.

Let us now consider two examples. Firstly, in Figure 5 we drew a map from the
torus to a circle. To define this map one considers the torus as the space S1 × S1
and defines the map to be projection onto the first factor. Secondly, consider the
analogous projection map from the Klein bottle to the circle. An identification
space model is depicted for both of these maps are drawn in Figure 6 with the left
hand side being the torus with its map and the right hand side being the Klein
bottle with its map.

Consider the local system gotten by taking H1(−;k) of the fiber πT : T → S1.
Between any two points s and s ′ there are two homotopy classes of paths connect-
ing them: one that in the identification space model proceeds directly from s to s ′

and one that wraps around the circle using the implied identification. Choosing
a basis for the vector space H1(π−1T (−);k) involves choosing a cycle along with an
orientation. If one considers the monodromy map associated to either path, one
can see that in the bases indicated for H1(π−1T (s);k) and H1(π−1T (s ′);k) in Figure 7

both monodromies are trivial (i.e. the identity map k → k) as indicated by the
green arrows.
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s s’! s s’!

figure 7: Trivial Action with the Torus Map

Now consider the local system gotten by taking H1(−;k) of the fiber for πK :

K → S1. Choosing the same bases as before the monodromy associated to the
longer path that wraps around the identification space is non-trivial

H1(π
−1
K (s ′);k) = k −1 // k = H1(π

−1
K (s);k)

as indicated by the red arrows in Figure 8.
We now will show that these examples actually provide examples of locally

constant cosheaves, or sheaves if cohomology is taken. First, we will need some
alternative definitions.

Definition 3.2.5. Let X be a locally connected space. A sheaf AX or cosheaf ÂX on
X valued in Vect is constant with value A if for every open set U they make the
following assignments:

AX : U A×π0(U) ÂX : U A⊕π0(U).

A sheaf F or cosheaf F is locally constant if for each point x there is an open
neighborhood U such that F or F is constant, i.e. there is a vector space A such
that F|U ∼= AX or F|U ∼= ÂX.

As a consequence of this definition and the topological assumptions on X, a
locally constant sheaf or cosheaf possesses for each point x ∈ X a collection of
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s s’! s s’!

figure 8: Non-trivial Action from the Klein Bottle

connected neighborhoods containing x all of which take identical values. As a
consequence F(U)→ Fx or Fx → F(U) is an isomorphism. Moreover, for any other
point x ′ contained in U, the stalk or costalk at x ′ can be chosen to be isomorphic
to F(U) or F(U) respectively. By chaining together these sorts of isomorphisms,
one can show the following theorem:

Theorem 3.2.6. Suppose X is a locally path connected, locally simply-connected
paracompact Hausdorff space. A locally constant sheaf determines a a local sys-
tem, where a local system is defined to be a representation of the fundamental
groupoid of X, i.e.

L : π1(X)→ Vect.

Similarly, any locally constant cosheaf valued in Vect determines a local system.

Proof. By taking stalks or costalks we can define the functor L on objects x ∈ X to
be Fx or Fx, respectively. Since the theorem is well known (see [Ach07] for a proof,
which we follow here) for sheaves we present the cosheaf-theoretic proof instead.
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Call a subset K of X fine2 for a cosheaf F if it is connected and is contained in
a connected open set V such that F|V is a constant cosheaf. For any set of points
{xi} in a fine set K we have a collection of isomorphisms

F(V)

Fxi

πi
<<

Fxj

πj

OO

Fxk

πk
bb

that when composed together allows us to define an invertible map from Fxi →
Fxk via π−1k πi. Of course this map agrees with the composition of the analogously
defined map

Fxi → Fxj → Fxk

because π−1k πjπ
−1
j πi = π

−1
k πi.

Now we claim that given a path γ : [0, 1] → X there exists a sequence of points
0 = a0 < a1 < · · · < an = 1 so that for all i the set γ([ai,ai+1]) is fine. This is
the case because every point γ(t) possesses a fine neighborhood and by continuity
there are open intervals Vt of t such that γ(Vt) is fine. If we choose intervals [a,a ′]
contained in each Vt, the interiors of these intervals will form an open cover of
[0, 1]. By compactness, finitely many of these intervals will do. Choosing such a
finite list, merging and ordering the endpoints, gives the requested sequence.

From the sequence we can define the map ρ(γ) : Fγ(0) → Fγ(1) to be the com-
posite

Fγ(a0) → Fγ(a1) → · · · → Fγ(an).

This map is well defined by virtue of the fact that it is invariant under the addition
of extra points a ′ to the sequence above. Consequently, if any different sequence
was chosen we could have merged it with this one and deduced that these maps
were the same.

A similar argument can be used to show that for homotopies H : [0, 1]× [0, 1]→
X there are sequences {ai}

n
i=1 and {bj}

m
j=1 so that the sets H([ai,ai+1]× [bj,bj+1])

are fine. Using the same concatenation of isomorphisms proves that if γ and γ ′

are homotopic relative endpoints, then the above defined maps Fγ(0) → Fγ(1) and
Fγ ′(0) → Fγ ′(1) are the same.

Moreover, one can show that representations of the fundamental groupoid give
rise to locally constant sheaves and cosheaves. This will require a slightly more
sophisticated version of van Kampen’s theorem found in [Bro67, May99].

2 In [Ach07] they use the word “good.”
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Proposition 3.2.7 (van Kampen’s Theorem). Suppose X is a locally connected topo-
logical space, and suppose U = {Ui} is a cover of X by path-connected open sub-
sets, then the van Kampen theorem states that

π1(X) ∼= lim−→
I∈N(U)

π1(UI),

i.e. the functor π1 : Open(X) → Grpd is a cosheaf for the cover U. However,
since any cover is refined by its connected components, which are open by assum-
ing local connectivity, the arguments of Section 2.4 imply that the fundamental
groupoid is a cosheaf.

Theorem 3.2.8. A representation of a fundamental groupoid L : π1(X) → Vect
determines a locally constant sheaf and a locally constant cosheaf respectively.

Proof. Again the sheaf theoretic version of this statement is well known
(see [Ach07]), so we carry out the cosheaf version. Assume we have a local
system L, then we define the associated cosheaf to be

L̂ : U H0(U;L) := lim−→
x∈U

L|U,

which is a cosheaf on account of the fact that colimits commute with colimits. The
fact that L̂ is locally constant comes from the fact that each point x has a simply
connected neighborhood U for which the local system H0(U;L) ∼= L(x) for any
x ∈ U.

Although it is not pointed out in the literature, the classical proof for sheaves
follows by making the exact dual assignment.

L : U H0(U;L) := lim←−
x∈U

L|U

Remark 3.2.9 (Alternative Proof). The introduction of an apparently superfluous
H0(−;L) is an invocation of the principle that H0 is a cosheaf. This principle,
expressed in Theorem 2.3.4, actually states that “H0 for any homology theory that
satisfies Mayer-Vietoris is a cosheaf.” This is true again for this case, but it requires
that the reader know that local systems allow us to define a homology theory with
“twisted coefficients.” This theory, which uses singular chains with coefficients
determined by L, satisfies the Eilenberg-Steenrod axioms [Whi78, Ch. 6] and thus
Mayer-Vietoris [Spa94, Ch. 4.6]. To complete our alternative proof of the above
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theorem, we check one more hypothesis of Theorem 2.3.4. We observe that for an
upward increasing sequence of open sets {Ui} we have a directed system of chain
complexes of twisted singular chains whose right most end point looks like the
(non-exact) sequence

C1(Ui;L)→ C0(Ui;L)→ 0.

Taking H0 involves only taking a cokernel, which commutes with direct limits.
This proves that H0(−;L) is a cosheaf.

This establishes the following corollary, justifying that local systems do indeed
form a bridge between locally constant sheaves and cosheaves.

Corollary 3.2.10. With the above topological assumptions on X, the category of
locally constant sheaves and locally constant cosheaves are equivalent.

We leave the details to the reader, who should note that any local system L

defines a sheaf by taking H0(−;L) and a cosheaf by taking H0(−;L).

3.3 cosheaves model topology

The omnipresence of sheaves in geometry and topology should come with no
surprise to many researchers in the algebraic cousins of these fields. Remarkably,
cosheaves are just as abundant, but this fact is less well appreciated. This might
stem from a desire to avoid excessive terminology as very classical constructions
in topology might be called cosheaves, but we will briefly reverse this wisdom to
provide ourselves with lots of examples.

Perhaps the closest parallel to the sheaf of sections is the cosheaf of pre-images,
but the presence of topology makes it a richer object of study.

Definition 3.3.1 (Cosheaf of Pre-images). Suppose f : Y → X is a continuous
map. We can define the pre-cosheaf of topological spaces F̂ : Open(X) → Top by
assigning to an open subset the pre-image f−1(U) ∈ Open(Y) endowed with the
subspace topology, i.e.

U f−1(U).

Since colimits in the open set category are just unions and f−1(∪iUi) = ∪if−1(Ui),
this defines a cosheaf.

Example 3.3.2 (Feature Function). Suppose we have a topological space X, popu-
lated with features of interest, expressed as a function P : {1, . . . ,n}→ X. We get a
cosheaf of sets via F̂(U) = P−1(U). A slightly different cosheaf is gotten by letting
Ĝ(U) = U∩ im(P), which cannot distinguish points with identical images.
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In the case n = 1 we can linearize this last example to define an example
analogous to an example commonly encountered when studying sheaves.

figure 9: Topological Model for Skyscraper Cosheaf

Definition 3.3.3 (Skyscraper Cosheaf). Suppose x ∈ X and V is an k-vector space.
Let’s define the skyscraper cosheaf at x with value V to be

ŜVx (U) =

{
V if x ∈ U
0 otherwise.

When V = k, we drop the superscript for notational convenience.
A topological incarnation for the skyscraper is depicted in Figure 9. Here one

makes the assignment
U H0(f

−1(U);k)

where f is the map that maps the circle to the point x, i.e. the constant map with
value x.

We could adopt the perspective of cosheaves of pre-images as an alternative to
continuous functions. This has been suggested in the past by John von Neumann
and his derisively-named pointless topology, where in place of topological spaces
one uses the poset of open sets as a primary notion — an example of a locale —
and one observes that every continuous map of spaces f : Y → X induces a functor
between categories f◦ : Open(X) → Open(Y). This perspective will be of use later
as we introduce operations on sheaves and cosheaves.

The cosheaf of pre-images will provide us with lots of examples of cosheaves
pertinent to topology. However, viewing the entire information of the fiber (pre-
image) is often too much to consider. Instead, one can consider invariants of the
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fiber and get a sometimes simpler, but still content-rich cosheaf (pending certain
properties of the invariant).

Definition 3.3.4 (Cosheaf of Connected Components). Given a continuous map of
spaces f : Y → X, one can define a pre-cosheaf of the components of the pre-image
(not path components) F̂ : Open(X)→ Set. This is done via the assignment

U π0(f
−1(U)).

This is not always a cosheaf. However, if Y happens to be locally connected, i.e.
the connected components of an open set are open, then it is. Alternatively, one
can observe that the functor π0 : Toplc → Set is left adjoint to the discrete space
functor and so it preserves colimits [Woo09].

Example 3.3.5 (The Square Map, Again). Consider the cosheaf of connected com-
ponents associated to the map f : S1 → S1 defined in complex coordinates as
f(z) = z2. For every point p ∈ S1 there are two connected components in the fiber
over p. However, there is only one connected component over the whole of S1.
This illustrates a sort of “twisted” H0 already alluded to.

Exercise 3.3.6. Work out the cosheaf of connected components associated to the
map π : E→ X found in Figure 4.

The next example provides a derived version of the principle that H0 is a
cosheaf.

Example 3.3.7 (Singular p-chains). Fix X a topological space and an open subset
U. A singular p-chain on U is nothing more than a R-linear combination of maps
of the form σ : ∆p → U. Since we can always post-compose a p-chain on U with
an inclusion U ↪→ V , this defines a pre-cosheaf

Cp(U) = {
∑
σ

λσσ|λσ ∈ R,σ : ∆p → U}.

This is, however, not a cosheaf as defined. Try writing down a chain on a union of
two open sets as a linear combination of chains on the two sets. A chain needs be
sub-divided into pieces coming from each open set, each piece being represented
as a map from a fixed simplex. As such, if we define

Ĉp(U) := lim−→Cp(U)

where the colimit is being performed over iterated subdivision, then we obtain a
cosheaf [Bre97].
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figure 10: Barycentric Subdivision of a Singular Chain

Remark 3.3.8 (Mayer-Vietoris and Cosheaves). Another way of seeing that singu-
lar p-chains do not define a cosheaf is to recall that the proof of the Mayer-Vietoris
theorem starts with the observation that the sequence

0→ Cp(U∩ V)→ Cp(U)⊕Cp(V)→ Cp(U+ V)→ 0

is exact. Here the Cp(U+V) is just notation for the cokernel of the previous map,
thus the sequence is by definition exact. The elements of the cokernel are linear
combinations of singular chains strictly contained in either U or V . One then uses
barycentric subdivision to show that the complexes C•(U+ V) and C•(U ∪ V) are
chain homotopy equivalent. Letting R = k be a field, this motivates defining a
cosheaf valued in D = Kb(Vectk) by assigning

U C•(U;k)

and this will be a cosheaf.3 The category Kb(Vectk) will be discussed later in the
paper where it plays a more important role, but briefly stated it is the category
whose objects are chain complexes of vector spaces of finite length and whose
morphisms consist of equivalence classes of maps where we have identified those
that are chain homotopic. This makes

C•(U+ V) ∼= C•(U∪ V)

thereby forcing the cosheaf axiom to hold. Of course the way this isomorphism is
proven is via the use of barycentric subdivision, so we can avoid using cosheaves
of chain complexes by working with the cosheaf Ĉp directly.

The cosheaves of singular chains serve a role precisely dual to the sheaves of
co-chains commonly encountered in the literature. Consequently, homology is
most naturally associated with cosheaf theory and cohomology is naturally asso-
ciated with sheaf theory. However, there is a deeper duality between sheaves and
cosheaves. When considering compactly-supported cohomology or closed (Borel-

3 The author has recently learned that Jacob Lurie calls this a homotopy cosheaf.
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Moore) homology the natural habitats reverse. The kernel of this idea is present
in the following example.

Example 3.3.9 (Compactly Supported Functions). Suppose X is a locally compact
Hausdorff space. Consider the following assignment:

Ω0c : U {f : U→ R | supp(f) compact}

Compactly supported functions defined locally can always be extended to larger
open sets via extension by zero. If X is a manifold, then we get more cosheaves of
compactly supported differential p-forms Ωpc for p > 0.

3.4 taming of the sheaf . . . and cosheaf

As argued, the canonical example of a sheaf is the sheaf of sections of a map. This
stands in contrast with the cosheaf of pre-images. However, a legitimate concern
of both examples is its lack of computability. This concern is heightened given
that the digital computer is becoming an increasingly common tool for modern
mathematics.

A natural question might then be “Can we store the sheaf of sections on a
computer?” Even in the example depicted in Figure 4, it seems unlikely. On a
small open set the sheaf of sections is in bijection with the set

{f : (x− ε, x+ ε)→ (a,b) | continuous},

which is uncountable. Moreover, for simple spaces like the closed unit interval
with its Euclidean topology, there are uncountably many open sets that we need
to assign data to.

To handle the first problem of “too many sections” in a somewhat ad hoc man-
ner, we can conduct some pre-processing on the input data π : E→ X. As a moti-
vating example, we can consider a construction normally defined when X = R.

Definition 3.4.1 (Reeb Graph). Suppose Y is a topological space and f : Y → R is
a continuous map. The Reeb graph [Ree46] is defined to be the quotient space
R(f) := Y/ ∼ where y ∼ y ′ if and only if y and y ′ belong to the same connected
component of the fiber f−1(t).

Y
q //

f ��

R(f)

π
}}

R
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Observe that R(f) still possesses a map to R. There is clearly a direct generaliza-
tion for arbitrary base spaces X.

For an example of the Reeb graph, consider our zig-zag from Figure 4. Now
let’s work out what the sheaf of sections for R(π) is and what the cosheaf of
connected components is as well. Observe that we can probe the sheaf or the
cosheaf on [0, 1] ⊂ R by asking what it assigns to open sets of the form (x− ε, x+
ε). Clearly it is constant except when the open set intersects a “critical value.”
We express this observation by assigning values directly to cells in the visible
decomposition of the codomain of the function. The data over incident edges and
vertices are related, but the direction of that relation is dependent on whether
we are considering a sheaf or a cosheaf. Making this observation rigorous has
tremendous pay off because it allows us to avoid storing infinitely many open
sets by instead working with finitely many cells.

figure 11: Sheaf of Sections figure 12: Cosheaf of Components



Part II

L I N E A R A L G E B R A O V E R C E L L C O M P L E X E S

In this part we emphasize that cellular sheaves and cosheaves are noth-
ing more than linear algebra parametrized by a cell complex. The
use of the term “sheaf” is justified by the Alexandrov topology, which
makes functors out of posets into sheaves or cosheaves. Explicit proofs
are presented since the primary reference of Shepard [She85] is unpub-
lished and not easily accessed. Cellular sheaf cohomology and cosheaf
homology are presented computationally in Chapter 6 and then put on
the firm foundation of derived categories in Chapter 7. The novel con-
tributions from this part, aside from working explicitly with cosheaves,
are the introduction of “barcodes” to interpret cellular sheaf cohomol-
ogy and cosheaf homology and exploiting the existence of enough pro-
jectives for cellular sheaves to define sheaf homology.
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4
C E L L U L A R S H E AV E S A N D C O S H E AV E S

“Sheaf theory is [where] you do topology horizontally and algebra vertically.”

— attributed to Maurice Auslander by [Gra79]

We can take it as an experimental observation from Figures 11 and 12 that in
certain situations a sheaf or a cosheaf can be described as assigning data directly
to the cells of a cell complex. Since cell complexes will be objects of primary
importance to us, we review some definitions that may be non-standard.

4.1 cell complexes and the face-relation poset

Definition 4.1.1 (Regular Cell Complex [Mac14b]). A regular cell complex X is
a space equipped with a partition into pieces {Xσ}σ∈PX such that the following
properties are satisfied:

1. Locally Finite: Each point x ∈ X has an open neighborhood U intersecting
only finitely many Xσ.

2. Xσ is homeomorphic to Rk for some k (where R0 is one point).

3. Axiom of the Frontier:1 If X̄τ ∩ Xσ is non-empty, then Xσ ⊆ X̄τ. When this
occurs we say the pair are incident or that Xσ is a face of Xτ. The face
relation makes the indexing set PX into a poset by declaring σ 6 τ.

4. The pair Xσ ⊂ X̄σ is homeomorphic to the pair int(Bk) ⊂ Bk, i.e. there is a
homeomorphism from the closed ball ϕ : Bk → X̄σ that sends the interior of
the ball to Xσ.

Remark 4.1.2 (Notation). Another common way of notating a cell complex is as a
pair (|X|,X) where X is the set of cells and |X| is the topological space being parti-
tioned. To each cell σ ∈ X there is a corresponding topological subspace |σ| ⊆ |X|.

1 The frontier of a subspace A is the complement of A in its closure, i.e. fr(A) := Ā−A. In some
forms this axiom reads: if Xσ 6= Xτ and Xσ ∩ X̄τ 6= ∅ then Xσ is contained in the frontier of Xτ.

70
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Our definition’s notation says that (X,PX) is a cell complex. Our correspondence
between cells and subspaces is σ  Xσ. However, we will have occasion to use
both of these notations, and will sometimes use all three symbols σ, |σ| and Xσ to
mean the same thing.

It is true that every regular cell complex can be further decomposed so that the
resulting space is the homeomorphic image of a simplicial complex. However,
for ease of computations we want to work with a class of spaces more general
and natural than regular cell complexes. As such, we work with cell complexes,
adopting the same convention as in Allen Shepard’s thesis.

Definition 4.1.3 (Cell Complex [She85, Mac14b]). A cell complex is a space Xwith
a partition into pieces {Xσ} that satisfies the first three axioms of a regular cell
complex. Moreover, we require that when we take the one-point compactification
of X, then the cells {Xσ} ∪ {∞} are the cells of a regular cell complex structure on
X∪ {∞}.

Example 4.1.4. The open interval (0, 1) decomposed with only one open cell is not
a cell complex. Its one-point compactification is the circle decomposed with one
vertex {∞} and one edge (0, 1) whose attaching map is not an embedding, thus
contradicting the fourth axiom.

Definition 4.1.5 (Cell category). To a cell complex (X, {Xσ}σ∈PX) we can associate a
category Cell(X; {Xσ}), which is the indexing poset PX viewed as a category. This
means that there is one object σ for each Xσ and a unique morphism σ → τ for
each incident pair Xσ ⊆ X̄τ. When there is no risk of confusion, or a cell structure
is specified at the beginning, then we will suppress the extra notation and just use
Cell(X) or X.

We now introduce diagrams indexed by the cell category. These were defined
in Shepard’s 1985 thesis [She85, p. 6], but were known as “stacks” in the first
published volume of Zeeman’s 1954 thesis [Zee62a, p. 626]. However, this term
came to be used for an entirely different construction in the landmark paper of
Pierre Deligne and David Mumford [DM69], which introduced the fundamental
concept of algebraic and moduli stacks for algebraic geometry. Zeeman’s usage of
the term is now extinct, but his work anticipates MacPherson’s cellular perverse
sheaves (cf. Definition 6.3.25) although MacPherson was unaware [Mac14a] of
the content of Zeeman’s thesis [Zee62a, Zee62b, Zee63]. To keep the presentation
simple, we give Shepard’s definition and its appropriate dualization.

Definition 4.1.6 (Cellular Sheaves and Cosheaves). A cellular sheaf F valued in D
on X is a functor F : Cell(X)→ D, i.e. it is
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figure 13: Bott’s Height Function on the Torus

• an assignment to each cell Xσ in X an object F(σ),

• and to every pair of incident cells Xσ ⊂ X̄τ a restriction map2 ρFσ,τ : F(σ) →
F(τ).

Dually, a cellular cosheaf F̂ valued in D on X is a functor F̂ : Cell(X)op → D, i.e.
an assignment of an object F̂(σ) for each cell, and an extension map rσ,τ : F̂(τ) →
F̂(σ) for every pair of incident cells Xσ ⊂ X̄τ.

Let us consider a few natural examples.

Example 4.1.7 (Bott’s Torus). The following example was first popularized by
Raoul Bott in his book on Morse theory [Mac14a]. Consider the height function
on the torus, rotated by 90circ so that the real line is underneath the torus, as
shown in Figure 13. By taking the pre-image of the star of each cell, one obtains a
diagram of spaces F̂ : Xop → Top. By post-composing this diagram with H1(−;k),
one obtains the cellular cosheaf indicated in Figure 14.

Example 4.1.8 (Klein Bottle Revisited). As seen in Section 3.2, a Klein bottle can
be viewed as a non-trivial S1 bundle over the circle. We’ve already seen how

2 Shepard calls these co-restriction maps since they point from faces to co-faces, but we will see
they are restriction maps in the Alexandrov topology.
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0! k! k2! k2! k2! k! 0!

figure 14: Cellular Cosheaf by Taking H1 of the Star pre-images

the this leads to a representation of the fundamental groupoid π1(S1). We can
concoct a cellular cosheaf that describes this bundle in a different way. Let s and
s ′ denote two vertices in a cell decomposition which includes two edges a and b,
as in Figure 8. We can imagine calling the edge a the short edge between s and
s ′ and let b be the long edge. To each cell F̂ assigns the homology of the fiber to
that cell. The actions are encoded using maps between the cells. This gives us a
diagram of vector spaces in the shape of a cell structure on S1:

F̂(b)

−1

}}

1

""

F̂(s) F̂(s ′)

F̂(b)

1

aa

1

<<

Example 4.1.9. Let Y = (0, 1) be the open unit interval in R. Denote the inclusion
of Y into R by j. To the constant sheaf on Y, written kY , we can associate two
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figure 15: Cellular Description of j∗kY and j!kY respectively

sheaves on R: j∗kY and j!kY . To describe these sheaves, we can think cellularly.
For the first sheaf j∗kY the cellular sheaf is simply the diagram of vector spaces

0← k→ k← k→ 0.

For j!kY the cellular sheaf is the diagram of vector spaces

0← 0→ k← 0→ 0.

The key difference being that the latter sheaf is zero on the endpoints {0} and {1}.
However, one can recover the classical, open set description of the sheaves j∗kY
and j!kY by considering any ordinary (Hausdorff) open set on the real line and
then computing the limit of the diagram that lies over the open set. In Figure 15

we have drawn the two cellular sheaves of interest and the value of the limit over
each open set. Of course, one can dualize the discussion and consider cosheaves
instead and use colimits to get functors from the open set category as defined in
Chapter 2. This perspective is developed more fully in Section 11.2.3.

Since functors between categories assemble themselves into a category of their
own, we get categories of cellular sheaves and cosheaves.

Definition 4.1.10. We denote the category of cellular sheaves on X by

Shv(X; D) := Fun(Cell(X), D)

and the category of cellular cosheaves by

CoShv(X; D) := Fun(Cell(X)op, D).

Morphisms are natural transformations of functors. If D = Vect, then we will
omit the notation after the semicolon and write Shv(X) and CoShv(X) instead.
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The notation deliberately coincides with the notation used for categories of
sheaves and cosheaves on an arbitrary topological space, i.e. functors out of the
open set category that satisfy the appropriate axiom. This conflict will be resolved
in Section 4.2 in one way, and in Chapter 11 in an entirely different way.

4.2 partially ordered sets : finite spaces and functors

Cellular sheaves and cosheaves earn their finiteness by assigning data directly to
cells, rather than open sets. This turns out to not be entirely true; Cellular sheaves
and cosheaves are simply operating on a different topology than the one we are
accustomed to. Partially ordered sets can be endowed with a topology making
cellular sheaves and cosheaves into actual sheaves and cosheaves on this topology.

Here one can illuminate all of the general machinery of classical sheaf theory,
but with a combinatorial finiteness that bends the theory to direct computation
and understanding. Some of the explicit treatment of sheaves on posets is con-
tained in the clear and concise work of Sefi Ladkani [Lad08], but we streamline
the discussion by using Kan extensions, which clarifies how cosheaves on a poset
X differ from sheaves on Xop.

4.2.1 The Alexandrov Topology

In this section we introduce a class of non-Hausdorff spaces called Alexandrov
spaces. The reader should note that although this topology is non-Hausdorff, it is
highly relevant to concepts in algebraic topology. There is a remarkable theorem
due to Michael McCord [McC66] that states that every finite simplicial complex
is weakly homotopy equivalence to an Alexandrov space. Thus, if one is inter-
ested in the topological properties of simplicial complexes, one should care about
(non-Hausdorff) Alexandrov spaces. McCord even gives constructions of classical
operations in algebraic topology, including suspension, in the Alexandrov setting.
However, our ambitions for this section are far more limited. Let us begin with
the necessary definitions.

Definition 4.2.1. A pre-order consists of a set P and a relation 6 that is reflexive
and transitive. A poset is a pre-order where the relation is also anti-symmetric,
i.e. x 6 y and y 6 x implies x = y. A map f of pre-orders is one that respects 6.
That is if x 6 y then f(x) 6 f(y). Pre-orders and order preserving maps form a
category Preorder. The collection of all posets form a subcategory of this category.
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Every pre-order can be equipped with a topology. However, it was first defined
for finite posets by Pavel Alexandrov [Ale37, Ale47] and the general definition
carries his name.

Definition 4.2.2. On a pre-order (P,6) define the Alexandrov topology to be the
topology whose open sets are the sets that satisfy the following property:

x ∈ U x 6 y ⇒ y ∈ U

A basis is given by the sets of the form Ux := {y ∈ P|x 6 y} — what we will call
the open star at x. Similarly, we define the closure of x by x̄ := {y ∈ P|y 6 x}.
When P is a finite poset, then a basis of closed sets is given by the x̄’s.

Any pre-order P has an associated poset. This poset is gotten by defining an
equivalence relation on P via x ∼ y if and only if x 6 y and y 6 x. One can check
that this surjection is order-preserving. This construction defines a right adjoint
to the inclusion of posets into pre-orders [Woo09].

Remark 4.2.3 (P will mean a poset). Although spaces equipped with a pre-order
are an interesting class of structures to consider, we will now work exclusively
with posets. We do this to prevent closed loops from occurring in chains of related
elements, as this would complicate our story.

Example 4.2.4. Consider (R,6) with the usual partial order. The open sets are
all those open or half open intervals such that the right-hand endpoint is +∞.
Observe that the closed set (−∞, 0) cannot be written as an intersection of closed
sets of the form t̄. Thus the closures at t do not form a basis.

The dictionary between cellular complexes and Alexandrov spaces is easily de-
scribed. First we introduce another definition.

Definition 4.2.5 (Star). Let (X, {Xσ})σ∈PX be a cell complex. Every cell Xσ has a
star, which is a set that consists of all those cells Xτ such that Xσ 6 Xτ.

star(Xσ) := {Xτ |Xσ 6 Xτ}

Since this definition only depends on the incidence relation of cells, we often
drop the distinction between Xσ and its label σ. Thus the star is also described as
a subset of the poset PX consisting of those labels τ such that σ 6 τ.

The Alexandrov topology on the indexing poset PX of a cell complex allows us
to define a continuous surjective map that comes from sending each cell Xσ to
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its label σ. This continuous surjective map gives an alternative way of describing
how the Alexandrov topology arises. It is the quotient space where we identify
two points x and y if and only if they belong to the same cell.

X

q
��

PX := X/ ∼

The inverse image of the star of σ is an open union of cells, which is open. Thus
this map is continuous and the topology that makes this map continuous is the
Alexandrov topology.

figure 16: Alexandrov Space Associated to the Unit Interval

Example 4.2.6 (The Interval). Suppose X = [0, 1] is the unit interval given a cell
complex structure with two vertices and one open interval. The face relation poset
PX takes the following form:

•

•

??

•

__

The Alexandrov topology has basic open sets corresponding to the star of each
cell. The stars of the two vertices intersect each other. In Figure 16, we have drawn
the basic open sets.

4.2.2 Functors on Posets

We want to understand how data modeled on posets can be treated as a sheaf or
cosheaf on the Alexandrov topology. To do so we use the elegant, but sophisti-
cated, approach of Kan extensions. To motivate this concept we will consider the
relationship between a poset and its topology.



4.2 partially ordered sets : finite spaces and functors 78

Observe that the correspondence between the relation internal to the poset P
and the containment relation for the open sets in the Alexandrov topology is
order-reversing. Said more succinctly, we have an inclusion functor that is con-
travariant, i.e.

ι : P → Open(P)op p 7→ Up.

A natural question to ask is

“Given a functor F : P → D, is there a consistent way of extending F to
a functor R : Open(P)op → D?”

One can hope to perform this extension since the image of the inclusion ι : P →
Open(P)op is a basis for the topology. Consequently, we can express arbitrary
open sets as unions (colimits or limits in the opposite category) of basic open sets
ι(p) = Up. A candidate extension would be to define

F(U) := lim←−
Up⊂U

F(p)

or as the colimit of F over Up ⊂ U. However, we should have some consistency.
If one views Up = {p ′|p 6 p ′} as a subcategory of the category P, then it has an
initial object p and thus the limit of the diagram F|Up is F(p), i.e.

lim←−
p6p ′

F(p ′) ∼= F(p).

This guides us to the following possible extension.

P
F //

ι
��

D

Open(P)op
lim←− F(p)
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This extension is nice for many reasons. By using limits to define data on larger
open sets we have forced the sheaf axiom to hold, so this extension is in fact a
sheaf. Moreover it illustrates through example a more general concept, which we
now define.

Remark 4.2.7 (Caveat). We will make use of Kan extensions at a few points
throughout the paper, but its immediate application is a theorem that says func-
tors out of posets can be identified with sheaves. The proof of this theorem is
described casually without the language of Kan extensions in [Lad08], but adopt-
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ing this language will be powerful and will make certain categorical properties
transparent.

Definition 4.2.8 (Kan Extensions). Suppose B, C and D are categories, F : B → D
and E : B → C are functors, then the right Kan extension of F along E written
R = RanEF : C → D is a functor and a natural transformation ε : RE → F that
is universal in the following sense. For every functor H : C → D with a natural
transformation α : H ◦E→ F there exists a unique natural transformation σ : H→
R, i.e. Nat(H,R) ∼= Nat(H ◦ E, F).

B F //

E
��

D

C
R=RanEF

??

The left Kan extension of F along E written L = LanEF : C→ D is a functor with
a natural transformation η : F → L ◦ E that is universal as well. If H : C → D is
a functor with a natural transformation ω : F → H ◦ E, then there exists a unique
τ : L→ H, i.e. Nat(L,H) ∼= Nat(F,H ◦ E).

B F //

E
��

D

C
L=LanEF

??

Remark 4.2.9 (Existence of Kan Extensions). Kan extensions do not always exist,
but we have already alluded to a situation where they do. If D has enough limits
and colimits, then we can give point-wise formulae for the left and right Kan
extensions respectively:

LanEF(c) := lim−→
E(b)→c

F(b) RanEF(c) := lim←−
c→E(b)

F(b)

One of the reasons that sheaves and cosheaves on Alexandrov spaces are so well-
behaved is that every open set has a finest cover, so in particular, by Corollary
2.4.4, we only need to check the (co)sheaf axiom on this cover, and it will be
guaranteed for all others. Furthermore, every point in an Alexandrov space has
a smallest open neighborhood, and the (co)stalks are just the values on these
minimal open sets. This is how we can use Kan extensions to create a dictionary
between (co)sheaves on Alexandrov spaces and functors out of posets.
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Theorem 4.2.10. Let P be a poset and D a category that is both complete and
co-complete. Then the following categories are equivalent

Fun(P, D) ∼= Shv(P; D) Fun(Pop, D) ∼= CoShv(P; D)

Proof. We claim that taking the right Kan extension of F : P → D along the inclu-
sion ι : P → Open(P)op produces a sheaf. Suppose U is an open set in the Alexan-
drov topology, i.e. one for which p ∈ U and p 6 p ′ ⇒ p ′ ∈ U. It is true that every
open set can be expressed as a union U = ∪p∈UUp and thus the finest possible
cover is {Up}p∈U. The right Kan extension then defines F(U) := F[{Up}p∈U] so the
sheaf axiom holds for that cover, but by Corollary 2.4.4, this means that F is a sheaf.
To go from a sheaf to the diagram, one simply takes stalks at every point. Since
the smallest neighborhood containing p is Up, we get that Fp = F(Up) = F(p).

The dual argument for cosheaves is completely analogous: we take the left Kan
extension of F̂ : Pop → D along the inclusion ι : Pop → Open(P) to get a cosheaf.
Taking costalks returns a diagram from a cosheaf.

Remark 4.2.11 (Stalks and Costalks on Posets). To elaborate on the proof, let us
compute some invariants. Recall that the stalk and costalk at a point p ∈ P for
a sheaf and cosheaf respectively is described via the use of filtered colimits and
limits.

Fp := lim−→
U3p

F(U) and F̂p := lim←−
U3p

F̂(U)

In both cases when P is a poset with the Alexandrov topology there is a smallest
open set containing p, namely Up = {q|p 6 q}, so Fp ∼= F(Up) = F(p) and F̂p =

F̂(Up) = F̂(p).

Definition 4.2.12 (Sections). Let (P,6) be a poset and F : P → D a sheaf and
F̂ : Pop → D. let Z ⊂ P be any subset. We define the sections over Z to be

Γ(Z; F) := lim←− F|Z and lim−→ F̂|Z =: Γ(Z; F̂).

When Z = P, we call these global sections. Note that Γ(Z;−) is context dependent:
different definitions are used pending whether a sheaf or cosheaf is used.

The above theorem provides the simplest explanation of why cellular sheaves
and cosheaves deserve to be called sheaves and cosheaves. When Theorem 4.2.10

is specialized to the face relation poset PX of a cell complex, also called the cell
category PX = Cell(X) in Definition 4.1.3, we get that the category of sheaves in
Definition 4.1.10. We summarize these observations in the following corollary.
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Corollary 4.2.13. Let (X,PX) be a cell complex. A cellular sheaf on X is a sheaf on
PX equipped with the Alexandrov topology. Such a sheaf is uniquely determined
by a functor F : PX → D. A cellular cosheaf on X is a cosheaf on PX with
the Alexandrov topology. Such a cosheaf is uniquely determined by a functor
F̂ : PopX → D.

To close, we point out one of the symmetries that Alexandrov spaces possess.

Claim 4.2.14. In the Alexandrov topology, arbitrary intersections of open sets are
open and arbitrary unions of closed sets are closed. Thus, every Alexandrov space
possesses a dual topology by exchanging open sets with closed sets.

This observation would have pleased Leray. It demonstrates that one can also
think of a functor F : P → D on a poset as either a sheaf or as a “cosheaf on closed
sets.” What distinguishes these two though is whether we use limits or colimits to
extend to larger sets. We will consider this perspective in greater detail in Section
5.1.4.



5
F U N C T O R S A S S O C I AT E D T O M A P S

“Qui sème le foncteur récolte la structure.”1

— Bourbaki

Since sheaves and cosheaves as defined here assign data to open sets, maps be-
tween spaces should only make reference to open sets. In Section 2.5.2 we briefly
introduced how to pushforward or pullback a sheaf along a map between spaces.
In the case where our spaces are partially ordered sets endowed with the Alexan-
drov topology, it suffices to work directly with points since they are in bijection
with a basis for the topology. However, playing these perspectives off of each
other adds depth to the theory. In particular, by restricting our attention to these
spaces, and using Kan extensions, we define the basic functors on (co)sheaves
without making use of (co)sheafification. Pedagogically this is advantageous be-
cause the operation of sheafification tends to obfuscate the underlying ideas of
sheaf theory. The lack of an explicit cosheafification process has historically been
a stumbling block for the theory.

Recall that the definition of a continuous map f : X → Y says that the inverse
image of an open set of Y is an open set of X. This observation can be expressed
by saying that we have a functor

f̊ : Open(Y)→ Open(X) U ⊆ Y  f−1(U) ⊆ X.

By formality, we also have a functor from the corresponding opposite categories

f̊ : Open(Y)op → Open(X)op.

1 “Who sows the functor reaps the structure.”

82
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We have purposely suppressed the op superscript on f̊ for legibility. Now suppose
we are given a pre-sheaf G on X, then we get a naturally associated pre-sheaf on
Y by observing that the diagram

Open(X)op G // D

Open(Y)op
f̊

OO ::

has a natural completion given by pre-composition.

Definition 5.0.15 (Pushforward Sheaf and Cosheaf). Suppose f : X → Y is a con-
tinuous map of spaces, G and Ĝ a pre-sheaf and pre-cosheaf respectively, then
define the pushforward or direct image pre-sheaf and pre-cosheaf via f∗G(U) :=
G(f−1(U)) and f∗Ĝ(U) := Ĝ(f−1(U)). Because f−1 commutes with unions, we
get that if G or Ĝ is a sheaf or cosheaf, then so is the pushforward. Moreover,
this operation is functorial with respect to maps between (co)sheaves, so we get
functors

f∗ : Shv(X; D)→ Shv(Y; D) f∗ : CoShv(X; D)→ CoShv(Y; D).

There is also a pullback functor associated to a continuous map f : X → Y, but
it’s construction is less obvious. Namely, if G is a pre-sheaf on Y, then there is no
clear way to define a pre-sheaf on X because for an open set on X, f(U) may not
be open. The solution usually used is to take a system of approximations of f(U)
by open sets and to define the pullback sheaf as the limit of these approximations.

f∗G(U) := lim−→
V⊃f(U)

F(V).

Thinking categorically, the problem of “approximation” has been encountered
before. Namely, how can we complete the following diagram?

Open(Y)op G //

f̊
��

D

Open(X)op
?

::

Again, by assuming that D has sufficient colimits, we can could fill in the diagram
by taking the left Kan extension of G along f̊ and that will yield the candidate for-
mula for the pullback just presented. Unfortunately, this definition for the pull-
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back of a sheaf does not always define a sheaf. In sheaf theory over general spaces,
this defect is circumvented by sheafification, as in Section 2.5.2. Fortunately, for
the Alexandrov topology, this circumvention is unnecessary.

5.1 maps of posets and associated functors

As already noted, sheaves and cosheaves on posets are easier to manipulate. The
functors associated to a map of posets are explicitly defined without extra process-
ing. Since posets can be made into a topological space the functors which exist
for sheaves on general spaces can be studied here is a more tightly controlled lab-
oratory. Moreover, since Alexandrov spaces have extra symmetries new functors
not normally encountered exist here.

Definition 5.1.1 (Map of Posets). Suppose (X,6X) and (Y,6Y) are posets. A map
of posets is a map of sets f : X → Y that is order-preserving, i.e. if x 6X x ′ then
f(x) 6Y f(x ′). Alternatively, since a poset can be viewed as a category, a map of
posets is just a functor. When it is clear from context we will abbreviate (X,6X)
by just X.

Remark 5.1.2 (Notation and Cell Complexes). In our effort to treat posets as
spaces, we have used X and Y to denote partially ordered sets equipped with
the Alexandrov topology. This might cause confusion since our canonical exam-
ple of a poset will be the indexing poset of a cell complex (X,PX). Note that cell
complexes consist of a pair of spaces, one is X, the Hausdorff space that is parti-
tioned into pieces Xσ, the other is PX, the poset of labels σ. From here on out we
will work primarily with the poset PX as this is the combinatorial approximation
to X. Thus, keeping in line with Shepard [She85], we change our notation from
(X,PX) to (|X|,X). Thus we have the following dictionary:

Dictionary Old Notation New Notation

Underlying Hausdorff Space X |X|

Underlying Alexandrov Space PX X

Set of Points in a “Cell” Xσ |σ|

“Cell” viewed as a point σ σ

Cellular Sheaf F : PX → D F : X→ D
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5.1.1 Pullback or Inverse Image

Recall that a sheaf on a poset (Y,6Y) is a functor G : Y → D. Similarly, a cosheaf
is a functor F̂ : Yop → D. For both structures the pull-back functor f∗ is easily de-
scribed. It is the obvious pre-composition that completes the following diagram.

Y
G // D

X

f

OO ??

Definition 5.1.3 (Pullback for Poset Maps). Given a sheaf G on Y and a map of
posets f : X → Y, we can define the pullback or inverse image sheaf f∗G on X as
follows:

• f∗G(x) = G(f(x))

• If x 6 x ′, then let ρf
∗G
x ′,x = ρ

G
f(x ′),f(x)

• If η : G → H is a morphism in Shv(Y), i.e. a natural transformation of
diagrams over Y, then f∗η : f∗G → f∗H is a morphism in Shv(X) defined
by declaring f∗η(x) : f∗G(x) → f∗H(x) to be equal to η(f(x)) : G(f(x)) →
H(f(x)).

The same definition and arguments go through for a cosheaf on Y with suitable
modification, i.e rf

∗G
x,x ′ = r

G
f(x),f(x ′). Thus, we get functors

f∗ : Shv(Y; D)→ Shv(X; D) f∗ : CoShv(Y; D)→ CoShv(X; D).

The definition of the pullback seems almost too good to be true, but one can
check that the pre-sheaf description we outlined earlier agrees with this definition.
Observe that if one applies that definition then

f∗F(Ux) := lim−→
V⊃f(Ux)

F(V) ∼= F(Vf(x)) = F(f(x)),

where we have used the fact that the smallest open set containing f(Ux) =

f({x ′|x 6 x ′}) is Vf(x) = {y|f(x) 6 y}.

Example 5.1.4 (Constant Sheaf and Cosheaf). Consider the constant map p : X→
?. A sheaf G on ? consists of a single vector space W and the identity morphism
so we’ll just call G by the name W. We define the constant sheaf on X with value
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W to be WX := p∗W. One sees that it is a sheaf that assigns W to every cell with
all the restriction maps being the identity. Similarly, the constant cosheaf with
value W is ŴX := p∗W.

5.1.2 Application: Subdivision

In the case where the poset is the face relation of a cell complex certain natural
maps present themselves, such as subdivision.

Definition 5.1.5 ([She85] 1.5, p.29). A subdivision of a cell complex X is a cell
complex X ′ with |X ′| = |X| and where every cell of X is a union of cells of X ′.

Untangling the definition a bit we see that if σ is a cell of X, then there is a
collection of cells {σ ′i} such that ∪i|σ ′i| = |σ|. As such, we can define a surjective
map of posets s : X ′ → X defined by making s(σ ′) = σ if |σ ′| ⊆ |σ|.

Claim 5.1.6. Subdivision of a cell complex X induces an order preserving map
s : X ′ → X of the corresponding face-relation posets.

Proof. The ordering on X ′ is given by the face relation. Suppose σ ′ 6 τ ′, then
either s(σ ′) = s(τ ′) or not. If not, then σ ′ and τ ′ belong to the subdivision of two
cells σ 6 τ.

We are going to use this fact to define the subdivision of a sheaf in a cleaner
manner than is found in [She85].

Definition 5.1.7. Suppose F is a sheaf on X and s : X ′ → X is a subdivision of X,
then we define the subdivided sheaf F ′ := s∗F.

5.1.3 Pushforward or Direct Image

By adopting a point-theoretic picture rather than an open set-theoretic picture of
sheaves and cosheaves over posets, we got an easy definition for the pullback func-
tor. In the introduction we outlined a general definition for the pushforward func-
tor f∗ on sheaves and cosheaves on an arbitrary topological space. Interestingly
enough, although f∗ had a simple description using open sets, the point-level
description requires thought.

Definition 5.1.8 (Pushforward for Poset Maps). Given a sheaf F on X and a map
of posets f : X→ Y we can define a sheaf on Y as follows:
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• The pushforward of a sheaf is the right Kan extension of F along f, i.e.
RanfF.

f∗F(y) = lim←−
f(x)>y

F(x)

• Suppose y 6 y ′, then {x|f(x) > y ′} ⊆ {x|f(x) > y}. Any limit over the bigger
set defines a cone over the smaller set by restriction, thus the universal prop-
erty of limits guarantees the existence of a unique map f∗F(y)→ f∗F(y

′) that
we will call ρf∗Fy ′,y.

• Suppose η : F → G is a map of sheaves, i.e. a natural transformation of
diagrams over X. Then for any sub-poset U of X, post-composing the limit
over U of F with the arrows in the natural transformation defines a cone
over G restricted to U. By the universal property of limits there must be an
induced map.

lim←−
x∈U

F→ lim←−
x∈U

G

For cosheaves, the dual arguments go through with the slight modification that
we use the left Kan extension along fop : Xop → Yop.

f∗F̂(y) := lim−→
f(x)>y

F̂(x).

Since both of these constructions are functorial, we have redefined two functors:

f∗ : Shv(X; D)→ Shv(Y; D) f∗ : CoShv(X; D)→ CoShv(Y; D)

Example 5.1.9 (Global Sections). This functor is extremely useful as it gives us a
way of defining the global sections of a sheaf or a cosheaf. For the constant map
p : X→ ? we offer the following definitions:

p∗F(?) ∼= F(X) = Γ(X; F) = H0(X; F) p∗F̂(?) ∼= F̂(X) = Γ(X; F̂) = H0(X; F̂)

In Section 7 we will use this definition as the prototype for defining “higher”
pushforward or direct image functors.

5.1.4 f†, Pushforwards and Closed Sets

One of the advantages of describing the standard functors of sheaf theory in the
setting of posets is the presence of extra symmetries. Abstract definitions lend
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themselves to being dualized. In particular, in our point-theoretic definition of
the pushforward we made use of Kan extensions, which come in two variants:
left and right. In this section we consider the other variant and give a topological
explanation for its origin.

Remark 5.1.10 (Caveat). The functor f† defined below is the left adjoint to f∗ (for
cosheaves it will be the right adjoint). There seems to be a strong trend to call the
left adjoint of f∗ by a different name: f!. According to Joel Friedman ([Fri11] p. 22)
the tradition goes back to Grothendieck in [AGV72] SGA Exposé I, Proposition
5.1. The same notation is used by Ladkani [Lad08], Lurie, Beilinson, Bernstein
and others.

This is unfortunate, since the notation f! is perhaps even more firmly established
for the pushforward with compact supports functor used in classical sheaf theory.
The reason seems to be that for general sheaves, there is no left adjoint to f∗, so
it would be clear from context which was meant. However, for cellular sheaves,
both functors exist and are useful.

Definition 5.1.11 (Pushforward with Open Supports). Given a sheaf F on X and a
map of posets f : X→ Y we can define a sheaf on Y as follows:

• The pushforward with open supports of a sheaf is the left Kan extension of
F along f, i.e. LanfF.

f†F(y) = lim−→
f(x)6y

F(x)

• If y 6 y ′, then {x|f(x) 6 y} ⊆ {x|f(x) 6 y ′} and since any colimit over
the bigger set defines a cocone over the smaller set by restriction, we get a
unique map ρf†Fy ′,y : f†F(y)→ f†F(y

′).

• If we have a map of sheaves η : F → G, then pre-composing the arrows for
colimG with η defines a co-cone over F. By universal properties we get an
induced map

lim−→
x∈V

F→ lim−→
x∈V

G.

Dually, for cosheaves we use the right Kan extension along fop.

f†F̂(y) := lim←−
f(x)6y

F̂(x)

Both of these constructions are functorial and thus we have defined two functors:

f† : Shv(X; D)→ Shv(Y; D) f† : CoShv(X; D)→ CoShv(Y; D)
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This functor appears to be quite unusual, despite its naturality from the categor-
ical perspective. To explain its topological origin, we revisit some of the original
ideas of Alexandrov.

When Alexandrov first defined his topology he did two things differently:

1. He only defined the topology for finite posets.

2. He defined the closed sets to have the property that if x ∈ V and x ′ 6 x, then
x ′ ∈ V .

Let us repeat the initial analysis of sheaves and diagrams indexed over posets,
where we now put closed sets on equal footing with open sets. Observe that as
before we have an inclusion functor:

j : (X,6)→ Closed(X) x x̄ := {x ′|x ′ 6 x}

Consequently, we have a similar diagram for a functor F : X→ D as before.

X
F //

j
��

D

Closed(X)
?

99

If we choose the left Kan extension, we’d like to say the extended functor is
a cosheaf on closed sets, i.e. use the definition of a cosheaf but replace open
sets with closed sets. Unfortunately, this concept is not well defined for general
topological spaces because the arbitrary union (colimit) of closed sets is not always
closed. For Alexandrov spaces this property does hold and this illustrates one of
the extra symmetries this theory possesses.

However, in order for the Kan extension to take a diagram and make it into a
cosheaf, we need to know whether the image of the inclusion functor defines a ba-
sis for the closed sets. In Example 4.2.4 we showed that this is not always the case.
The topology generated by the image of this functor is called the specialization
topology and it suffers from certain technical deficiencies. In particular, order-
preserving maps are not necessarily continuous in this topology, thus it fails to
give a functorial theory. Fortunately, for finite posets these topologies agree and
we can talk about cosheaves on closed sets without any trouble.

We now can give a topological explanation for the existence of the functor f†. It
is the functor analogous to ordinary pushforward where we have adopted closed
sets as the indexing category for cosheaves and sheaves. If f : X → Y is a map of
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posets, then fc is the induced map between closed sets. The dagger pushforward
is then the obvious completion of the diagram.

Closed(X) F // D

Closed(Y)
fc

OO

f†F

::

In Section 7.4 this functor provides the foundation for defining sheaf homology
and cosheaf cohomology — theories that don’t exist for general spaces.

5.1.5 f!: Pushforward with Compact Supports on Cell Complexes

The three functors f∗, f∗ and f† induced by a map of posets are well defined for
any poset and any diagram. However, when Shepard wrote his thesis the only
posets that he considered were posets coming from cell complexes. By working
in this smaller class and imitating the theory of constructible sheaves, Shepard
described another functor that is not defined for arbitrary Alexandrov spaces: the
pushforward with compact supports f!.

This fourth functor is meant to provide a cellular (constructible) analog of a
functor naturally defined for sheaves on more general topological spaces and the
name is borrowed from there. The reader must keep this in mind since every set
in a finite Alexandrov space is compact. Thus, when we say “pushforward with
compact supports” we mean a discrete model for the pushforward with compact
supports functor defined for locally compact Hausdorff spaces.

Following Shepard, this functor f! will only be defined for cellular maps, which
are stratified (or even definable) maps naturally adapted to cell complexes.

Definition 5.1.12 (Cellular Map [She85] pg. 32). Let X and Y be cell complexes.
A cellular map (|f|, f) consists of a map of posets f : X → Y and a continuous
“geometric” map |f| : |X|→ |Y| satisfying the following compatibility conditions:

1. For every σ ∈ X, |f|(|σ|) is the cell |f(σ)|.

2. The restricted map |f||σ| : |σ| → |f(σ)| is the projection Rn+k → Rn onto the
first n coordinates.

3. Given σ ∈ X and y, z ∈ |f(σ)|, |f|−1(y)∩ ¯|σ| is compact if and only if |f|−1(z)∩
¯|σ| is.
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Remark 5.1.13. The first and second conditions clearly restrict the types of maps
of posets that can be considered. It appears that the third condition is redundant
given the first two, but this is how it is recorded in Shepard’s thesis.

Example 5.1.14. Let X = [0, 1) be given the cell structure x = 0 and b = (0, 1).
Let Y = [0, 1)× [0, 1) be given the simplest possible cell structure. The underlying
posets for these spaces are as follows:

b

x

?? σ

a

??

b

__

x

__

OO

??

Here x refers to the vertex, a and b the open edges, and σ is the open face. Clearly,
f(x) = a and f(b) = σ would be a map of these posets, but it is not a cellular map.

The definition of f! uses kernels and other standard linear algebra operations.
As such, we now assume D = Vect and suppress it from our notation.

Definition 5.1.15 (Pushforward with Compact Supports). Given a sheaf F on X
and a cellular map f : X → Y, we can define the pushforward with compact
supports sheaf on Y as follows:

• f!F(τ) = {s ∈ Γ(f−1(τ); F) | s(σ) = 0 if |σ̄|∩ f−1(y) not compact for y ∈ |τ| }

• Let γ 6 τ be cells in Y, and let s ∈ f!F(γ) and t ∈ f!F(τ). We define ρf!Fτ,γ(s) = t

if for every σ ∈ f−1(τ) and every λ ∈ f−1(γ) such that λ 6 σ ρFσ,λ(s(λ)) = t(σ).
If there is no such t ∈ f!F(τ) then we define ρf!Fτ,γ(s) = 0.

The notation Γ(−; F) for sections is explained in Definition 4.2.12. The verification
that f!F is actually a sheaf and that it is functorial, is much more drawn out and
is done in detail in [She85] pp. 35-38. As such we have defined a functor

f! : Shv(X)→ Shv(Y)

Remark 5.1.16 (Compact Supports for Cosheaves). The definition for cosheaves
cannot be written so simply because the vector space of “compactly supported”
sections of a cosheaf, is a quotient of the space of all sections. The simplest
definition would be, assuming F̂ : Xop → vect, to take transposes and turn F̂ into
a sheaf F and apply the definition above. We will not make use of the cosheaf
version of this functor.
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5.2 calculated examples

In this section we compute explicit examples of the functors defined above. To
avoid clutter, we consider only sheaves and leave it the reader to dualize and
check the corresponding functors on cellular cosheaves. We further assume that
D = Vect and leave it as implicit that all operations are to be performed in vector
spaces.

The notation 2 will be a place holder for any one of the three symbols ∗, †, !.

5.2.1 Projection to a point

We consider the constant map p : X → ?. The output of p2F is a single vector
space, namely p2F(?).

x’! a’!
X=! =Y!

p!

figure 17: Projection to a Point

Without too much effort we compute the following:

• p∗F = lim←−{F(x
′)→ F(a ′)} ∼= F(x ′)

• p† = lim−→{F(x ′)→ F(a ′)} ∼= F(a ′)

For the pushforward with compact supports, we will be extra careful.
Recall the definition states that p!F(τ) = {s ∈ Γ(p−1(τ); F)|s(σ) = 0 if |σ̄| ∩
p−1(y)not compact fory ∈ |τ|}.

In our example y can be the only point ? and p−1(?) = X. Thus we have only
two cells to check whether their closures are compact or not. Clearly x̄ ′ = x ′ is
compact, but ā ′ = X is not compact. The definition then says that we only allow
sections whose value on a ′ is zero.

• p!F = ker(ρx ′,a ′ : F(x ′)→ F(a ′))

5.2.2 Inclusion into a Closed Interval

Here we encounter an open inclusion j : X → Y. The first thing to note is that
in this case, the value of j!F is not going to change since either j−1(y) = {x} or
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x’! a’!
X=! =Y!

x! a! y!j!

figure 18: Inclusion into a Closed Interval

it is empty. Since points are closed and bounded, the compactness condition on
|σ̄|∩ {j−1(y)} is always satisfied.

We see in this example that

• j∗F(x) = lim←−{F(x
′) → F(a ′)} ∼= F(x ′), j∗F(a) = F(a ′), and less intuitively,

j∗F(y) ∼= F(a ′).

• j†F(x) = F(x
′), j†F(a) ∼= F(a ′), and j†F(y) = lim−→{∅} = 0.

• j!F ∼= j†F.

5.2.3 Map to a Circle

Here is an example where the function is bijective and continuous (in both topolo-
gies), but not an embedding, i.e. the domain is not homeomorphic with its image.

x’! a’!
X=!

x!

y!

a! b! =Y!
f!y’! b’!

figure 19: Map to a Circle

All three sheaves agree on the values and the restriction maps f2F(y) ∼= F(y ′)→
F(a ′) ∼= f2F(a). We concentrate on the other two cells.

• Here diagram we are taking the limit over is disconnected because the in-
verse image of the star of x in Y is disconnected. Consequently, f∗F(x) =

lim←−{F(x
′)→ F(a ′) F(b ′)} ∼= F(x ′)⊕ F(b ′) and f∗F(b) = F(b ′).

• Here f†F(x) = F(x ′), but for similar reasons as before f†F(b) = lim−→{F(x ′) F(y ′)→
F(b ′)} = F(x ′)⊕ F(b ′).
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• As noted, f is injective thus the value of f!F on any cell in the image is un-
changed. However, we need to pay careful attention to how the restriction
map is defined. The map f is injective so the fiber over a is a ′ and over x is
x ′, but x ′ � a ′ so the restriction map must be zero.

5.3 the push-pull adjunctions

Recall from Section 1.5 that adjunctions allow us transform a complicated problem
into an easy one. To derive these adjunctions, we can take two approaches: Use
Freyd’s adjoint functor theorem 1.5.2, or explicitly construct the adjunction. Since
in our construction of the functors associated to a map, we made explicit use of
limits and colimits, corresponding to the right and left Kan extensions respectively,
and (co)limits commute with (co)limits, the following theorems are automatic.
However, we check them explicitly for sheaves and leave the dual proof for the
reader to fill out on their own.

Theorem 5.3.1. The functors f∗ : Shv(Y)→ Shv(X) and f∗ : Shv(X)→ Shv(Y) form
an adjoint pair (f∗, f∗) and thus

HomShv(X)(f
∗G, F) ∼= HomShv(Y)(G, f∗F).

Dually, the functors for cosheaves satisfy the opposite adjunction (f∗, f∗)

HomCoShv(Y)(f∗F̂, Ĝ) ∼= HomCoShv(X)(F̂, f
∗Ĝ).

Proof. Recall that f∗(f∗F)(x) = (f∗F)(f(x)). Using the fact that (f∗F)(f(x)) =

lim←−{F(z)|f(z) > f(x)}, we get a map to F(x) since x ∈ f−1(f(x)) and this morphism
is final for each x. This implies there is a natural transformation of functors
f∗ ◦ f∗ → id, which is universal (final).

Similarly, f∗(f∗G)(y) = lim←−{f
∗G(x) = G(f(x))|f(x) > y} and since y 6 f(x) we

can use the restriction map ρGf(x),y : G(y) → G(f(x)). The universal property of
the limit guarantees a map G(y) → lim←−G(f(x)) = f∗f

∗G(y) and thus a natural
transformation of functors id→ f∗f

∗.

Theorem 5.3.2. The functors f† : Shv(X)→ Shv(Y) and f∗ : Shv(Y)→ Shv(X) form
an adjoint pair (f†, f∗) and thus

HomShv(Y)(f†F,G) ∼= HomShv(X)(F, f
∗G).
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Dually, the functors for cosheaves satisfy the opposite adjunction (f∗, f†)

HomCoShv(X)(f
∗Ĝ, F̂) ∼= HomCoShv(Y)(Ĝ, f†Ĝ).

Proof. f†(f∗G)(y) = lim−→{G(f(x))|f(x) 6 y} so again we can use the restriction maps
to define maps toG(y). The universal property of colimits gives a map f†f∗G(y)→
G(y) and thus a map of functors f†f∗ → id. Similar arguments give a map id →
f∗f†

To conclude, we derive the first interesting consequence of an adjunction. In
effect it reduces all the possible natural transformations between a certain pair of
functors to a single vector space.

Proposition 5.3.3. If F : X → Vect is a sheaf and p : X → ? is the constant map,
then

HomShv(X)(p
∗k, F) ∼= HomVect(k,p∗F) ∼= F(X) = H0(X; F).

Proof. The first isomorphism is the adjunction (p∗,p∗). The second isomorphism
is simply the observation that every linear map is determined by where it sends
1, i.e. HomVect(k,W) ∼=W.



6
H O M O L O G Y A N D C O H O M O L O G Y

“The de Rham complex may be viewed as a God-given set of differential equa-
tions, whose solutions are the closed forms.... A measure of the size of the
space of ‘interesting’ solutions is the definition of the de Rham cohomology.”

— Raoul Bott and Loring Tu [BT82, p. 15]

In Section 4.2 and Chapter 5 we worked over arbitrary posets. We did this
because it was natural and some applications may need this level of generality.
In this section, we eschew this generality and restrict ourselves to posets arising
as the face relation of a finite cell complex. This is beneficial not only because
cell complexes are of great interest, but because sheaves and cosheaves over them
have easily defined cohomology and homology theories.

We will start by describing a simple generalization of cellular cohomology and
homology where we have augmented the coefficients by placing vector spaces
over individual cells and linear maps between incident cells. This is a generaliza-
tion in the sense that if one restricts to the case where every cell is assigned the
one-dimensional vector space k and all the incident linear maps are the identity,
we recover classical cellular (co)homology. However interesting this special case
may be, it misses a theory general enough to compute homological invariants of
data varying over a cell complex.

The theory presented is combinatorial and computable. One needs only a good
working knowledge of linear algebra to be able to use it. However, one can com-
pute cellular sheaf cohomology without understanding it. To clarify the meaning
of these computations we adopt a representation-theoretic perspective. This al-
lows us to break up sheaves and cosheaves into the basic building blocks of in-
decomposable representations of the cell category. Thus, borrowing terminology
from the persistent homology community, we use “generalized barcodes” to see
the topology of data in a wider world of applications. These ideas are be put into
practice in Chapters 8, 9, and 10, where many examples are considered.

96
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6.1 chain complexes and homology

Definition 6.1.1. A Z-graded vector space V∗ is a collection of vector spaces
{V i}i∈Z with one for each integer. A graded map is a collection of linear maps
f : V i → Wi. The category of Z-graded vector spaces, grVect, has graded vector
spaces V∗ for objects and graded maps for morphisms.

A (co)chain complex is a graded vector space with extra structure.

Definition 6.1.2. A cochain complex consists of a collection of vector spaces called
cochain groups {V i}i∈Z and a collection of linear maps called differentials di :
V i → V i+1 that satisfy di+1 ◦ di = 0 for every i ∈ Z. We denote a cochain
complex by (V•,d•). Alternatively said, a cochain complex is a graded vector
space equipped with a degree one increasing map that when composed twice
gives the zero map.

A chain complex is a cochain complex with different notation. The chain
groups {Vi}i∈Z and boundary maps ∂i : Vi → Vi−1 are decorated with subscripts;
this is the only difference. The maps satisfy ∂i−1 ◦ ∂i = 0 for every i ∈ Z. We
denote a chain complex by (V•,∂•).

Remark 6.1.3. Since chain complexes and cochain complexes are the same thing,
merely dressed up in different notation, we will usually just say “Let (V•,d•) be
a chain complex” and let the mathematical notation be precise. As an aside, one
can also say that a chain complex is homologically indexed if it is written as (V•,∂•)
or cohomologically indexed if it is written as (V•,d•).

Remark 6.1.4. Sometimes we drop the subscript or superscript • and write (V ,∂)
or (V ,d) to refer to a chain complex or cochain complex. Dropping the superscript
can lead to overloaded notation. For example, the expression d2 = 0 is a synonym
for “d is a differential,” i.e. di+1 ◦ di = 0 for ever i ∈ Z, but it could also mean
that the map V2 → V3 is zero. This is one of the perils of cohomological indexing
for chain complexes, but the ambiguity is resolved by scoping the context. If we
are speaking at the high-level of viewing a chain complex as a different sort of
structure, then the former interpretation is intended. If we are talking about the
particulars of a given chain complex, then the latter is meant.

Definition 6.1.5. The category of chain complexes, Ch•(Vect), has chain com-
plexes for objects, and chain maps f• : (V ,dV) → (W,dW) for morphisms, i.e. a
collection of maps fi : V i →Wi such that fi+1 ◦ diV = diW ◦ fi.



6.1 chain complexes and homology 98

There is a natural functor ι : grVect → Ch(Vect) that treats a Z-graded vector
space as a chain complex with zero differentials, i.e.

{V i}i∈Z  (V•, 0)

Taking cohomology of a chain complex defines a functor going the other way.

Definition 6.1.6. Cohomology is a functor H∗ : Ch(Vect)→ grVect, which takes a
chain complex (V ,d) and places the quotient vector space

Hi(V ,d) := ker(di)/im(di−1)

in degree i. Without too much work one can show that a chain map f• induces
maps of the associated cohomology spaces Hi(f) : Hi(V ,dv)→ Hi(W,dw), making
H∗ into a functor.

6.1.1 The Combinatorics of Cell Complexes and Homology

The motivation for chain complexes and homology comes from computing in-
variants of topological spaces. As already indicated, posets can be regarded as
topological spaces, but not every poset has the nice structure that the face-relation
poset of a cell complex has. This nice structure is what determines whether certain
sequence of vector spaces and maps defines a chain complex.

Definition 6.1.7. We write σ 6i τ if the difference in dimension of the cells is i.

Lemma 6.1.8. If σ 62 τ, then there are exactly two cells λ1, λ2 where σ 61 λi 61 τ.

We want to invent a sign condition that distinguishes these two different se-
quences of incidence relations.

τ

λ1

>>

λ2

``

σ

`` >>

Definition 6.1.9 (Signed Incidence Relation). A signed incidence relation is an
assignment to any pair of cells σ, τ ∈ X a number [σ : τ] ∈ {0,±1} such that

• if [σ : τ] 6= 0, then σ 6161 τ, and
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• if γ and τ are any pair of cells, the sum
∑
σ[γ : σ][σ : τ] = 0.

One way to get a signed incidence relation is to choose a local orientation
(via the homeomorphism of each cell |σ| with Rk) for each cell without regard to
global consistency. Then for every pair of incident cells σ 6 τ we have a number
[σ : τ] = ±1 given by +1 if the orientations agree and −1 otherwise.

Another way is motivated by working with regular cell complexes, where we
can subdivide so that we have a simplicial complex. We can refer to any cell by
a list of its vertices. If we order the set of vertices, then we have a procedure
for orienting the cells. A local orientation of a cell σ ∈ X consists of divvying
up the set of ordered lists representing σ into classes each of which are invariant
under even permutations. We can then pick the class with the list of vertices in
increasing order as “the” orientation. Either method enables us to define a chain
complex associated to a cell complex.

Proposition 6.1.10 (Cellular Cohomology). Let X be a cell complex equipped with
a sign relation. Let Cn(X;k) be the vector space spanned by the n-dimensional
calls of X. We define a map δ : Cn → Cn+1 on the basis by defining δ(σ) =

∑
τ[σ :

τ]τ. Clearly δ2 = 0.

6.2 computational sheaf cohomology and cosheaf homology

We now provide formulae for computing cellular sheaf cohomology and cellular
cosheaf homology that is completely analogous to cellular cohomology.

6.2.1 Cellular Sheaf Cohomology

Definition 6.2.1 ([Zee62a, She85]). Given a cellular sheaf F : X→ Vect we define its
compactly supported k co-chains to be the product1 of the vector spaces residing
over all the k-dimensional cells.

Ckc(X; F) =
⊕
σk

F(σk)

1 Here we implicitly assume that X has finitely many cells in a given dimension so products and
direct sums agree.
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These vector spaces are graded components in a complex of vector spaces C•c(X; F).
The differentials are defined by

δkc =
∑
σ6τ

[σk : τk+1]ρτ,σ.

The cohomology of this complex

0 // ⊕F(vertices)
δ0c // ⊕F(edges)

δ1c // ⊕F(faces) // · · · = C•c(X; F)

is defined to be the compactly supported cohomology of F, i.e. Hkc(X; F) =

ker δkc/imδk−1c .

Lemma 6.2.2. (C•c(X; F), δ•c) is a chain complex.

Proof. To see why the chain complex condition δk+1c δkc = 0 is assured, Lemma
6.1.8 is crucial. This is the very same lemma that proves that ordinary cellular
homology is computed via a chain complex. One must now observe that varying
data over the cells does not change the result.

δcδc =
∑
σ61τ

[σ : τ]ρτ,σ(δc)

=
∑
σ61τ

[σ : τ]ρτ,σ(
∑
γ61σ

[γ : σ]ρσ,γ)

=
∑

γ61σ61τ

[γ : τ]ρτ,σρσ,γ

=
∑

γ61σ61τ

[γ : τ]ρτ,γ

=
∑

γ61σ61τ

([γ : σ1][σ1 : τ] + [γ : σ2][σ2 : τ])ρτ,γ

= 0

To define the arbitrarily-supported cochain complex associated to a cellular
sheaf F on X, we simply remove all the cells from X without compact closures
and apply the same formula.

Definition 6.2.3 (Ordinary Cohomology). Let X be a cell complex and F : X→ Vect
a cellular sheaf. Let j : X ′ → X be the subcomplex consisting of cells that do not
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have vertices in the one-point compactification of X. Define the ordinary cochains
and cohomology by

C•(X; F) = C•c(X
′; j∗F) Hi(X; F) := Hic(X

′; j∗F)

The situation may seem a bit unusual. The naturally defined chain complex
computes a more restrictive type of cohomology. To get the standard cohomol-
ogy, one needs to remove non-compact cells. When we define cohomology via
the derived perspective of Section 7, this quirk of linear algebra disappears. Or-
dinary cohomology will fall out naturally using limits and injective resolutions,
and compactly-supported sheaf cohomology will require some finesse.

Example 6.2.4 (Compactly Supported vs. Ordinary Cohomology). To see why
the naïve chain complex computes compactly supported cohomology, consider
the example of the half-open interval X = [0, 1) decomposed as x = {0} and a =

(0, 1). Now consider the constant sheaf kX. To compute compactly supported
cohomology, we must first pick a local orientation of our space. By choosing the
orientation that points to the right, we get that [x : a] = −1. The cohomology of
our sheaf is computed via the complex

k
−1 // k ,

which yields H0c = H1c = 0. If we follow the prescription for computing ordinary
cellular sheaf cohomology, then we must remove the vector space sitting over a
in our computation. The resulting complex is simply the vector space k placed in
degree 0, so H0(X;kX) = k and is zero in higher degrees.

x!
a! b!

figure 20: Minimal Cell Structure on an Open Interval

Example 6.2.5 (Open Interval). If we pretended for a moment that the pure stra-
tum Y = (0, 1) is a cell complex2 with no other cells, then computing the compactly
supported cohomology of the constant sheaf would yield a vector space in degree
one and nowhere else, hence H1c(Y;kY) = k.

2 Recall that we require a cell complex to have a one point compactification that is a regular cell
complex.
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To make this example a legitimate example, as in Figure 20, we place a vertex
at x = 1/2. We call our new cells a = (0, 1/2) and b = (1/2, 1). If we orient our 1-
cells to point to the right, then [x : a] = 1 and [x : b] = −1. Using the lexicographic
ordering on our cells to get a basis for C1c(Y;kY) we can compute explicitly the
compactly supported cohomology.

δ0c =

[
1

−1

]
: kx → ka ⊕ kb ⇒ H0c = 0 H1c = k

6.2.2 Cellular Cosheaf Homology

For cellular cosheaves the exact dual construction works, but the terminology is
slightly different.

Definition 6.2.6 (Borel-Moore Cosheaf Homology). Let X be a cell complex and
let F̂ : Xop → Vect be a cellular cosheaf. Define the Borel-Moore homology of
HBM• (X; F̂) to be the homology of the following complex:

CBM• (X; F̂) = · · · // ⊕F̂(faces)
[e:σ]re,σ// ⊕F̂(edges)

[v:e]rv,e// ⊕F̂(vertices) // 0

Definition 6.2.7 (Ordinary Cosheaf Homology). Let X be a cell complex and let
F̂ : Xop → Vect be a cellular cosheaf. By discarding all the cells without compact
closure, we obtain the maximal compact subcomplex X ′. If we write j : X ′ ↪→ X

for the inclusion, then we can define the ordinary chain complex to be

C•(X; F̂) = CBM• (X ′; j∗F̂).

Applying the definition above gives the ordinary cosheaf homology H•(X; F̂) of a
co-sheaf.

All of the examples of cellular sheaf cohomology dualize to give interesting
examples of cellular cosheaf homology. Let us define the functor that performs
this operation.
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Definition 6.2.8 (Linear Duality). Let V̂ : Shv(X; vectk)op → CoShv(X; vectk) be
the contravariant equivalence from sheaves to cosheaves, both valued in finite
dimensional vector spaces, defined as follows:

F(τ) // F(τ)∗

ρ∗τ,σ
��

V̂(F)(τ)

rσ,τ
��

F(σ)

ρτ,σ

OO

// F(σ)∗ V̂(F)(σ)

Lemma 6.2.9. Taking linear duals preserves cohomology, i.e. Hi(X; V̂(F)) ∼=
Hi(X; F) and HBMi (X; V̂(F)) ∼= Hic(X; F).

6.3 explaining homology and cohomology via indecomposables

Sheaf cohomology is notoriously difficult to interpret. Every time a successful
interpretation is discovered, a cornerstone of a theory waiting to be fleshed out
is put into place. For example, the Cousin problems of complex analysis asks
whether a meromorphic function with a given divisor (zeros and poles) exists or
not. When Cartan and Serre interpreted this problem in terms of sheaf theory,
sheaf cohomology groups gave a complete classification and obstruction theory;
see [Gra79] p. 17. The narrative that falls out of those historical successes is that
sheaf cohomology gives calculable obstructions to finding solutions.

However, when the above interpretation fails, we need to compute examples
and extract new interpretations. When computing sheaf cohomology, one en-
counters a plethora of choices that obfuscate the natural meaning of the vector
spaces Hi(X; F): picking ordered bases for each F(σ), choosing local orientations,
computing kernels and quotients, taking representative elements of cohomology
or homology, etc. Each of these lead one farther from a workable interpretation
of the topology of data.

The experience of the author in computing examples of sheaf cohomology has
led him to believe that the best way of circumventing these issues is to borrow
an idea from the representation theory of quivers. Specifically, if one knows the
direct sum decomposition of a sheaf into indecomposable sheaves, then one gets
a distinguished basis for sheaf cohomology. These indecomposables allow one to
see how data travels through a space.
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6.3.1 Persistence Modules and Barcodes

To begin the introduction of representation theory gently, we will describe a con-
venient visualization technique called a barcode, which was first described by
Carlsson, Zomorodian, Collins and Guibas [CZCG04]. The motivation for those
authors was to provide a simple shape descriptor for data that could be used by
scientists not trained in representation theory, but we will adapt it for understand-
ing sheaves and cosheaves.

To begin, let us recast a chain complex as a special instance of the following
structure:

Definition 6.3.1. A persistence module consists of a collection of vector spaces
{V i}i∈Z, one for each integer, and a collection of linear maps ρiV : V i → V i+1. If
i 6 j, then we define ρVi,j := ρ

j−1
V ◦ · · · ◦ρiV to be the uniquely determined map from

ρVi,j : V
i → V j. We denote a persistence module by (V , ρV), but we may suppress

the V in ρV or even drop the ρV all together.

Observe that one can add two persistence modules to create a third persistence
module, i.e. if (V•, ρV) and (W, ρW) are two persistence modules, then one obtains
a third persistence module (U, ρU) by defining Ui := V i ⊕Wi and ρiU := ρiV ⊕ ρiW .
We denote the sum by (V ⊕W, ρV ⊕ ρW) or more simply by V ⊕W.

There is a fundamental structure theorem for persistence modules, due to
Crawley-Boevey [CB12], that explains how any persistence module can be written
as a direct sum of simpler persistence modules. We now introduce these simpler
persistence modules.

Definition 6.3.2. Recall that an interval in (Z,6) is a subset I ⊂ Z having the
property that if i,k ∈ I and if there is a j ∈ I such that i 6 j 6 k, then j ∈ I. An
interval module kI assigns to each element i ∈ I the vector space k and assigns
the zero vector space to elements in Z \ I. All maps ρi,j are the zero map, unless
i, j ∈ I and i 6 j, in which case ρi,j is the identity map.

Since interval modules are completely determined by the interval where they
assign non-zero vector spaces, we can draw a bar to represent an interval mod-
ule. The following structure theorem shows that any persistence module can be
represented by a collection of bars, called a barcode.

Theorem 6.3.3 (Decomposition for Pointwise-Finite Persistence Modules). If
(V , ρV) is a persistence module for which every vector space V i is finite-
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figure 21: Barcodes associated to T : R3 → R2 for rank(T) = 0, 1, 2

dimensional, then the module is isomorphic to a direct sum of interval modules,
i.e.

V ∼=
⊕
I∈D

kI.

Here D is a multi-set of intervals. A multi-set is a set allowing repetitions, i.e. a
set equipped with a function µ indicating the multiplicity of each given element.

Remark 6.3.4. We will refer to the length of the bar as `(I) = j− i

This theorem summarizes a great deal of elementary linear algebra and quiver
representation theory. For linear algebra, it has the fundamental theorem of linear
algebra as a consequence [Str93], i.e. any map of vector spaces T : V → W

has a matrix representation that is diagonal with 0 and 1 entries, the number
of 1s corresponding to the rank of the matrix, cf. [Art91] Chapter 4, Proposition
2.9. Said differently, there are vector space isomorphisms making the following
diagram commute:

V
T //

ϕ ∼=
��

W

ψ∼=
��

im(T)⊕ ker(T)
id⊕0

// im(T)⊕ cok(T)

Here im(T), ker(T), and cok(T) refer to the image, kernel and cokernel of T respec-
tively. Although the image of T is properly a subspace ofW, the first isomorphism
theorem identifies it with V modulo the kernel.

Example 6.3.5 (Barcodes for Linear Algebra). Consider any linear map T : R3 →
R2 as a persistence module by extending by zero vector spaces and maps. There
are three isomorphism classes of such persistence modules determined by the
rank of T . The associated barcodes are depicted in Figure 21.

Example 6.3.6 (Barcodes for Filtrations). Barcodes with longer bars appear in fil-
trations of topological spaces. For example, consider the standard height function
on the torus h : X→ R. By choosing a discrete set of points {t0 < t1, . . .} to sample
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the function h at, we get a sequence of spaces {X6ti = h−1(−∞, ti]}, which after
taking homology in some degree i > 0 defines a persistence module. Such an
example is depicted in Figure 22.

X6t0 ↪→ X6t1 ↪→ · · ·  Hi(X6t0 ;k)→ Hi(X6t1 ;k)→ · · ·

figure 22: Barcodes for the filtration of a Torus

Now we reach an example that will be useful when we undertake the derived
category of chain complexes.

Example 6.3.7 (Barcodes for Chain Complexes). As already remarked, a chain
complex of vector spaces is a special example of a persistence module and, con-
sequently, has a barcode decomposition. With a moment’s reflection one can see
that any chain complex can be written as the direct sum of two types of modules:
the length zero interval modules

Si : · · · → 0→ k→ 0→ · · ·

and the length one interval modules.

Pi : · · · → 0→ k→ k→ 0→ · · ·

Figure 23 gives a visual depiction of such a barcode decomposition.
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figure 23: Barcodes for a Chain Complex

6.3.2 Representation Theory of Categories and the Abelian Structure

For the purposes of this section, there is no real difference between cellular
sheaves and cosheaves — they are both representations of the cell category Cell(X).
Recall, for any category C the category of representations is defined to be the cat-
egory of functors to Vect:

Rep(C) := Fun(C, Vect)

This category has the structure of an abelian category, which we explain in this
section. In effect, this means we can do everything in Rep(C) that we can do
in Vect: take kernels and cokernels of maps between representations, talk about
images of maps, add maps and so on. We will introduce these properties as we
need them.

Claim 6.3.8. For C a category, Rep(C) is an exact category. This means we can
talk about exact sequences. Specifically:

• There is a zero representation given by sending all objects and morphisms
to the zero object and the zero morphism.

• Between any two representations F and G there is a zero map, which can be
factored through the zero representation.
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• Since any morphism η : F → G is a natural transformation occurring in-
side Vect, there are associated kernel and cokernel representations denoted
ker(η) and coker(η) defined by taking kernels and cokernels object wise:

ker(η(c ′)) // F(c ′)
η(c ′) // G(c ′) // coker(η(c ′))

ker(η(c)) //

OO

F(c)
η(c) //

F(f)

OO

G(c) //

G(f)

OO

coker(η(c))

OO

• There is an image representation im(η) defined as the object-wise image.

As usual, we say that a sequence of representations A → B → C is exact at
B if the kernel of the outgoing morphism is equal to the image of the incoming
morphism. A longer sequence is exact if it is exact at each place with an incoming
and outgoing morphism.

We are going to do a brief sketch of some representation theory for categories,
using the terminology introduced.

Definition 6.3.9. A subrepresentation E consists of a choice of subspace E(c) →
F(c) for each object that is invariant under all the linear maps F(f). Restriction
of F(f)|E(c) =: E(f) makes E into a representation of its own right. Said more
succinctly, E → F is a natural transformation of functors that is object wise an
inclusion, i.e.

0→ E→ F

is an exact sequence. Dually, we can say G is a quotient representation by saying
F→ G→ 0 is an exact sequence.

Definition 6.3.10. Suppose F : C→ Vect and G : C→ Vect are two representations
of a small category C, then we can define the direct sum of these two represen-
tations H = F⊕G by defining on objects H(c) := F(c)⊕G(c) and on morphisms
H(f) = F(f)⊕G(f) : H(c)→ H(c ′).

The above definition further clarifies the structure of Rep(C).

Claim 6.3.11. For C a category, Rep(C) is both an exact and an additive category.
This latter definition requires the following:

• For any two representations F and G the set HomRep(C)(F,G) has the struc-
ture of an abelian group (with the zero map being the additive identity)
making composition bilinear.
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• The direct sum of two representations is a representation.

A category that is exact and additive is defined to be abelian. Thus Rep(C) is an
abelian category.

Remark 6.3.12. In any additive category, it can be shown that having finite di-
rect sums (finite coproducts) implies the existence of finite direct products (finite
products) and these are isomorphic.

Definition 6.3.13 (Indecomposable). A representation F : C→ Vect is called inde-
composable if whenever F is written as a direct sum of representations one of the
representations is the zero one; i.e. every direct sum decomposition is trivial.

Said using sequences, a representation F is indecomposable if whenever we
have a short exact sequence of representations

0→ E→ F→ G→ 0

with neither E nor G the zero representation, then F � E⊕G, i.e. the sequence
does not split.

Exercise 6.3.14. Verify that the interval modules in Definition 6.3.2 are indecom-
posable representations. What is the underlying category that these modules
represent?

Remark 6.3.15 (Splitting Lemma). There is a general lemma called the splitting
lemma, which provides equivalent ways of saying that F is indecomposable. It
states that writing F as a direct sum is equivalent to either having a map back
from F to E, which precomposed with the inclusion E → F yields the identity, or
having a map back from G to F, which post-composed with the surjection is the
identity on G.

Definition 6.3.16 (Remak Decomposition). A direct sum decomposition of an ob-
ject F ∈ Rep(C)

F ∼= F1 ⊕ · · · ⊕ Fn
where each Fi is indecomposable and non-zero is called a Remak decomposition.

A fact that we would very much like to know is whether every representation
admits a Remak decomposition. The structure theorem 6.3.3 provides an example
where this is the case. Sir Michael Atiyah considered such a question in the very
general setting of abelian categories [Ati56]. He developed a bi-chain condition
and proved that under this condition every non-zero object admitted a Remak
decomposition. We use a stronger condition of finite-dimensionality that Atiyah
showed implied his bi-chain condition.
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Theorem 6.3.17 (Krull-Schmidt Theorem for Representations [Ati56]). Suppose A
is an abelian category, further satisfying

1. For every pair of objects HomA(A,B) is a finite dimensional vector space,
and

2. Conjugation is linear, i.e. for every pair of morphisms ϕ : A → B and
ψ : B ′ → A ′ the following map is linear

HomA(B,B ′)→ HomA(A,A ′) η 7→ ψ ◦ η ◦ϕ

then the Krull-Schmidt theorem holds. This says that every non-zero object A has
a Remak decomposition and for any two such decompositions

A ∼= A1 ⊕ · · · ⊕An A ∼= A ′1 ⊕ · · · ⊕A ′m

n = m and after re-ordering Ai ∼= A ′i.

For A = Rep(C) the second condition is certainly satisfied. The first condition
imposes significantly stronger conditions. First of all, we must restrict to the full
subcategory of finite dimensional representations.

Repf(C) := Fun(C, vect) ⊂ Fun(C, Vect) =: Rep(C)

Secondly, one must observe that for any two representations F and G the space
of natural transformations is a subspace of a potentially infinite product of finite
dimensional spaces.

Hom(F,G) ⊆
∏
c∈C

Homvect(F(c),G(c))

One severe restriction one can make to insure that Atiyah’s first condition holds
is to assume that the category C has finitely many objects. This is not strictly
necessary, but it does provide us with the following corollary:

Corollary 6.3.18 (Sheaves and Cosheaves on Finite Posets have Remak Decompo-
sitions). Suppose (X,6) is a finite poset, then Shv(X) and CoShv(X) satisfy the
Krull-Schmidt theorem.

The example that we have in mind, of course, is the poset associated to a a
cell complex X. In this situation, one can recognize a large set of examples of
indecomposable representations.
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Lemma 6.3.19 (Constant (Co)Sheaves are Indecomposable). Suppose X is a con-
nected cell complex, then the constant sheaf kX and the constant cosheaf k̂X are
indecomposable.

Proof. We’ll state the proof for sheaves and leave it to the reader to dualize for
cosheaves. Suppose for contradiction that kX ∼= F⊕G where neither F nor G is the
zero sheaf. Now as a consequence of neither F nor G being zero, and kX being
one dimensional on each cell, there must be a pair of cells σ and τ such that one
is in the support of F and the other is in the support of G. We argue that we can
choose σ and τ such that one is the face of the other. If not, then the support of F
(or G) would be closed under the following operations

σ ⊂ supp(F) and τ ⊂ σ̄ or σ ⊂ τ̄ then τ ⊂ supp(F)

which by connectedness of X would imply that supp(F) = X; a contradiction to
the supposition that neither F nor G was the zero sheaf. (To see why supp(F) = X,
one can imagine drawing the Hasse diagram of the poset X and realizing that
connectedness means that the diagram is connected.) Thus we have such a pair
σ ⊂ τ with one in the support of F and the other in the support of G, but this also
can not occur since the identity cannot be written as a sum of zero maps.

k→ k 6= (k→ 0)⊕ (0→ k).

6.3.3 Quiver Representations and Gabriel’s Theorem

“These graphs arise in a multitude of classification problems in mathemat-
ics, such as classification of simple Lie algebras, singularities, platonic solids,
reflection groups, etc. In fact, if we needed to make contact with an alien civi-
lization and show them how sophisticated our civilization is, perhaps showing
them Dynkin diagrams would be the best choice!” [EGH+

11]

There are natural examples of representations of categories where these ideas
and their consequences have been studied. One such example is the category
associated to a directed graph.

Definition 6.3.20. A quiver or directed graph is defined by a pair of sets consist-
ing of “edges” E and “vertices” V along with a pair of functions h, t : E → V ,
which we think of as denoting the head and tail of a directed edge respectively.
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Alternatively, a quiver can be topologically regarded as a one-dimensional cell
complex equipped with a local orientation of its edges.

One should be careful to note that a directed graph is not a category in and
of itself, but there is a natural category associated to a directed graph, which we
now define.

Definition 6.3.21. To a quiver we can associate a category called the free category
or path category written Free(X) . The objects are vertices and the morphisms
are directed paths between vertices. Since paths are just concatenated edges, we
think of the morphisms as being freely generated by the edges. We must consider
simply sitting at a vertex as the identity directed path connecting the vertex to
itself.

Definition 6.3.22. A quiver representation is thus nothing more than a functor
F : Free(X) → Vect. Because a general path is simply a sequence of edges, such a
functor is equivalent to specifying a vector space for each vertex in V and a linear
map for each edge in E that goes from the source to the target.

Every finite dimensional quiver representation can be decomposed into a direct
sum of indecomposable representations. However, this list can be very unwieldy.
Gabriel’s theorem provides an precise description of which quivers admit a finite
list of indecomposable representations.

Theorem 6.3.23 (Gabriel’s Theorem [DW05]). Let Q denote a quiver. The category
of representations Rep(Q) has finitely many indecomposables if and only if the
underlying undirected graph of Q is a union of Dynkin graphs of type An, Dn,
E6, E7 or E8. These are depicted in Figure 24.

6.3.4 A Remark on Quivers and Perverse Sheaves

From a quiver representation, one can always construct a cellular sheaf or cosheaf
over a one-dimensional base space. This is done by turning every map

F(s(e))
ρt,s // F(t(e))

into one of the following diagrams:

F(s(e))
ρt,s // F(t(e)) = F(e) F(t(e))

idoo F(s(e)) F(t(e)) = F(e)
idoo ρt,s // F(t(e))
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figure 24: Simply Laced Dynkin Diagrams

The former choice would make a quiver representation into a cellular sheaf, the
latter into a cellular cosheaf.

There are dangers in trying to use quiver theory as a substitute for cellular sheaf
or cosheaf theory. One might try to think of a poset as a certain type of quiver
with vertices corresponding to elements and an edge between two elements if
s(e) 6 t(e). For example, consider the poset coming from the face relation of the
cell complex Y = [0, 1)× [0, 1):

σ

a

??

b

__

x

__

OO

??
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A quiver representation produces a diagram of vector spaces

F(σ)

F(a)

<<

F(b)

bb

F(x)

bb

OO

<<

that does not commute. In contrast, if F were a cellular sheaf, then the two trian-
gles would commute. If we were to impose “relations” on the quiver representa-
tion by identifying different paths, then we could recover cellular sheaves.

A relaxed version of this observation generates a combinatorial model for per-
verse sheaves, which was invented by Bob MacPherson [GMV96] and explored by
Maxim Vybornov [Vyb97, Vyb98].

Definition 6.3.24. A perversity p : Z>0 → Z is a function from the non-negative
integers to the integers such that p(0) = 0 and p takes every interval {0, . . . ,k}
bijectively to an interval {a, . . . ,a+ k} where a ∈ Z60.

Definition 6.3.25 (Cellular Perverse Sheaves). Let X be a cell complex and PX its
associated poset. Let p : Z>0 → Z be a perversity. Define a quiver QX whose
vertices are the elements of PX and whose edges have the property that if τ→ σ is
an edge, then σ is incident to τ and p(dim τ) = p(dimσ) + 1. A cellular perverse
sheaf assigns to each vertex of QX a vector space P(v) and to each edge from
τ to σ a linear map κσ,τ : P(τ) → P(σ). These maps satisfy the chain complex
condition for any pair of vertices γ, τ∑

σ

κγ,σ ◦ κσ,τ = 0

where σ ranges over all vertices containing with an edge from τ and to λ.
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T H E D E R I V E D P E R S P E C T I V E

“The maker of a sentence launches out into the infinite and builds a road into
Chaos and old Night, and is followed by those who hear him with something
of wild, creative delight.”

— Ralph Waldo Emerson [Eme60, p.59]

The need for a derived perspective can be stated with one picture. In Figure 25

two maps are drawn to the two-sphere S2. One is defined on the wedge sum
S2 ∨ S1 and maps the S1 to a point. The other is defined on the closed disk D2

and maps the boundary circle to a point. If one is only allowed to look at the
homology of the fiber for both of these maps, they will not be able to tell them
apart. The derived category is the universal solution to this problem, as well as
many others.

In the derived category, one does not consider a sheaf in isolation, but rather
one considers complexes of sheaves or, alternatively said, sheaves of complexes.
In order to solve the problem presented by Figure 25, one works with the sheaf
of cochains on each fiber, along with their differentials. This transition is formally
motivated via an analogy with Taylor series in Section 7.1. Injective and projective
sheaves are introduced as the basic building blocks for the derived category, just
as polynomials are the basis for Taylor series. Because the Alexandrov topology
is so simple, we can described explicitly the elementary injective and projective
(co)sheaves in Section 7.1.1. Injective and projective resolutions are then intro-
duced in Section 7.1.2.

Section 7.2 gives a high-level introduction to the homological algebra tech-
niques necessary to understanding the derived category. The explicitness of cellu-
lar sheaves allows us to give concrete examples of what is usually taken on faith
when first learning the subject. The notion that maps are unique up to homo-
topy and that sheaves can be “quasi”-isomorphic without being isomorphic, are
demonstrated in Examples 7.2.3 and 7.2.8.

The derived definition of cosheaf homology is given in Section 7.3 and the
derived definition of sheaf cohomology can be dualized from there or looked

115
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figure 25: MacPherson’s Motivating Example for the Derived Category
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up in Shepard’s thesis [She85]. These definitions should be regarded as the true
definition of cosheaf homology and sheaf cohomology. The compactly supported
variant, which we call Borel-Moore cosheaf homology, is defined in Section 7.3.1.
The derived functor formalism allows us to resolve the question of invariance
under subdivision in Section 7.3.2 with considerable ease.

Finally, we exploit the special features of the Alexandrov topology to develop
two new theories: sheaf homology and cosheaf cohomology. Although these theories
are invariant under subdivision in the domain of a map, they are not invariant
under subdivision in the target of a map. These theories are sensitive to both the
cell structure and the embedding. We compute some explicit examples of these
theories in Section 9.3.

7.1 taylor series for sheaves

When first learning about the derived perspective a helpful analogy might be the
following. We can approximate suitably nice functions around a point via the use
of Taylor series:

f(x) ' f(a) + f ′(a)(x− a) + f
′′(a)

2!
(x− a)2 + · · ·

The working physicist or engineer appreciates deeply how by only using a few
terms, one can make serious headway into the analysis of integrals or other prob-
lems involving f.

In similar spirit one might start approximating or “taking the Taylor series ex-
pansion” of a topological space X via its homotopy or homology groups:

π0(X, x) π1(X, x) π2(X, x) · · · | · · · H2(X) H1(X) H0(X)

One should realize that both of these series expansions arise from more funda-
mental sequences:

X→ ΩxX→ Ω2xX→ · · · | · · · → C2(X;k)→ C1(X;k)→ C0(X;k)

Here ΩxX denotes the space of loops in X based at x (and iterated applications
thereof) and Cp(X;k) denotes the p-chains.

For a sheaf F on a topological space X one also has a similar process. Namely,
there is an exact sequence called a resolution

0→ F→ I0 → I1 → I2 → · · ·
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that when evaluated on an open set U ⊂ X produces a sequence

0→ F(U)→ I0(U)→ I1(U)→ I2(U)→ · · ·

that is exact at F(U) and I0(U).1 Like the physicist with their Taylor series, one
can discard the original sheaf and work solely with the terms in the sequence
I•(U). This sequence is a chain complex with potentially interesting cohomology.
For each i, these cohomologies piece together to provide a pre-sheaf description
of the complex of sheaves I• — the derived replacement for F.

U Hi(I•(U)) =: Hi(U; F).

If we specialize to the constant sheaf F = kX, then we obtain another familiar
series expansion of the space X: the cohomology. However, this series is much
more general, as it encodes the cohomology of each open set in X. Consequently,
even if one embeds X into the contractible cone CX, the constant sheaf and its
derived replacement will remember the topology on X.

However, just as the reason that Taylor series are amenable to analysis because
polynomials have simple properties, for general sheaves we must develop an al-
gebraic analogue of a polynomial, which are the injective sheaves.

7.1.1 Elementary Injectives and Projectives

In this section we consider the basic building blocks of the derived category, which
are injective or projective objects. These objects are characterized by universal
mapping properties. For cellular sheaves and cosheaves the injectives and projec-
tives can be described explicitly.

Injectives

Definition 7.1.1. A representation of a small category I : C → Vect is injective
if, for any natural transformation η : A → I and any injection ι : A ↪→ B, there
is an extension η̃ : B → I such that η = η̃ ◦ ι. Said using diagrams, they are
characterized by the usual universal property:

0 // A
ι //

η
��

B

∃η̃��
I

1 There is no guarantee for exactness at higher terms.
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Exercise 7.1.2. Use the universal property of an injective representation to prove
the following statements:

• Every short exact sequence

0→ I→ A→ Q→ 0,

where I is injective, splits, i.e. if ι : I ↪→ A is an inclusion, then A ∼= I⊕ cok(ι).

•
∏
Ai is injective if and only if each Ai is injective.

We will make use of these properties in Lemma 7.1.6.

For our first example of an injective representation, we consider an injective cell
sheaf. These sheaves are supported on the closures of cells.

Definition 7.1.3. An elementary injective cell sheaf on X concentrated on σ ∈ X
with value W ∈ Vect is given by

[σ]W(τ) =

W if τ 6 σ,

0 other wise.

where the only possible non-zero restriction maps are the identity.

In order to prove that this sheaf is actually injective we introduce an alternative
definition of injective sheaves and cosheaves defined on arbitrary posets. This
definition makes use of the functors f∗ and f†.

Definition 7.1.4. Let ix : ? → X be the map that assigns to the one element poset
the value x ∈ X, i.e. x = ix(?). Define the elementary injective sheaf on x ∈ X
with value W ∈ Vect to be [x]W = (ix)∗W and the corresponding elementary
injective cosheaf to be {x̂}W := (ix)†Ŵ.

One can see that for cosheaves, the elementary injectives are concentrated on
the open stars of cells. To prove these objects are actually injective we make use
of the adjunctions already defined.

Lemma 7.1.5. The sheaf [x]W = (ix)∗W and cosheaf {x̂}W := (ix)†Ŵ are injective.

Proof. The proof is immediate from the following adjunctions

HomShv(X)(A, (ix)∗W) ∼= HomVect(A(x),W)

HomCoShv(X)(Â, (ix)†Ŵ) ∼= HomVect(Â(x), Ŵ)

and the fact that in the category of vector spaces every object is injective.
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There is one last lemma that tells us that the considering sheaves of the form
[x]W suffices for understanding all injective sheaves over a cell complex. The proof
is presented in [She85, Thm. 1.3.2, p.19-20], but we will give the direction needed
for our derived equivalence proof given in Theorem 12.2.1.

Lemma 7.1.6 (All Injectives are Sums). Let X be the face-relation poset of a cell
complex. A sheaf I is injective if and only if it is isomorphic to a one of the form
⊕σ[σ]Vσ .

Proof. One can easily check that the direct sum of elementary injective sheaves is
injective, so this proves the ‘if’ direction.

To prove that every injective is isomorphic to a direct sum of injectives — the
‘only if’ direction — requires a little work. Assume for induction that every injec-
tive sheaf I that is non-zero on at most k 6 n− 1 cells is isomorphic to ⊕σ[σ]Vσ .
Now consider an injective sheaf that is non-zero on exactly n cells. Let σ be a cell
of maximal dimension where I(σ) =: V 6= 0. Since I is zero on all higher cells
incidence to σ, there is a non-zero map η from the skyscraper sheaf SVσ to I with
η(σ) = idV . There is also a non-zero map ι : SVσ → [σ]V . This gives us a diagram

0 // SVσ
ι //

η

��

[σ]V

∃η̃
}}
I

and the implicated existence of a map η̃ : [σ]V → I. If τ 6 σ, then by the fact that
η̃ is a sheaf map,

idV = η̃(σ) ◦ ρ[σ]σ,τ = ρ
I
σ,τ ◦ η̃(τ)

the map η̃ is injective. By the second property of Exercise 7.1.2, we can deduce
that I ∼= [σ]V ⊕ cok(η̃). Since cok(η̃) is zero wherever I is and also zero on σ, it is
non-zero on at most n− 1 cells and the induction hypothesis applies. The zero
sheaf is clearly equal to a direct sum of elementary injectives with the zero vector
space, which checks the base case, completing the induction.

Projectives

There is a dual universal object that is called projective.
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Definition 7.1.7. A representation of a small category P is projective if for any
natural transformation ε : P → A and any surjection π : B � A, there is a map
ε̃ : P → B such that ε = π ◦ ε̃. Said using diagrams:

P

ε
��

∃ε̃
��

B π
// A // 0

As before, we have some dual consequences:

• Every short exact sequence

0→ A→ B→ P → 0

where P is projective, splits.

• ⊕Bi is projective if and only if each Bi is projective.

Since the adjunctions will be our guide we make the following definitions.

Definition 7.1.8. Let ix : ? → X be the map that assigns to the one element poset
the value x ∈ X, i.e. x = ix(?). Define the elementary projective sheaf on x ∈ X
with value W ∈ Vect to be {x}W = (ix)†W and the corresponding elementary
projective cosheaf to be [x̂]W := (ix)∗Ŵ.

We leave it to the reader to check that these objects are actually projective.

Mapping Identities

Before moving on to the derived definition of sheaf cohomology, we record some
useful identities that should be evident from the definition and the adjunctions.

HomShv([τ]
U, [σ]W) =

HomVect(U,W) if σ 6 τ,

0 o.w.

HomShv({τ}
U, {σ}W) =

HomVect(U,W) if σ 6 τ,

0 o.w.

HomCoShv([σ̂]
W , [τ̂]U) =

HomVect(W,U) if σ 6 τ,

0 o.w.



7.1 taylor series for sheaves 122

HomCoShv({σ̂}
W , {τ̂}U) =

HomVect(W,U) if σ 6 τ,

0 o.w.

7.1.2 Injective and Projective Resolutions

As promised, we aim to prove every sheaf has a resolution by injective sheaves.
This follows from the following claim, which we now prove. Although this theo-
rem is true for general spaces, we work with Alexandrov spaces arising as posets
as usual.

Claim 7.1.9. Every sheaf F : X → Vect on a poset (X,6) possibly of infinite size,
F admits an inclusion into an injective sheaf. Dually, every cosheaf admits is
surjected onto by a projective cosheaf.

0→ F→ I

Proof. We construct I explicitly. It is given by

0→ F→ I :=
∏
x

[x]F(x) =
∏
x

(ix)∗F(x).

The map to I is defined easily using the standard adjunctions

ι ∈ Hom(F,
∏
x

(ix)∗F(x)) ∼=
∏
x

Hom(F,
∏
x

(ix)∗F(x)) ∼=
∏
x

Hom(F(x), F(x)) 3
∏
x

idF(x).

We encourage the reader to describe this map is explicitly, by seeing how a single
idF(x) traces through this adjunction, which we’ll call ιx ∈ Hom(F, (ix)∗F(x)).

Similarly, for a cosheaf F̂ : Xop → Vect on an Alexandrov space we could have
built a projective surjection by taking

P̂0 :=
⊕
x

(ix)∗F̂(x)→ F̂→ 0

where the map π0 : P0 → F̂ is gotten through the corresponding adjunction for
cosheaves and using the contravariance of Hom in the first slot

Hom(
⊕
x

(ix)∗F̂(x), F̂) ∼=
∏

Hom((ix)∗F̂(x), F̂) ∼=
∏

Hom(F̂(x), F̂(x)).
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Corollary 7.1.10. Every sheaf F : X → Vect has an injective resolution. Dually,
every cosheaf F̂ : Xop → Vect has a projective resolution.

Proof. Since cokernels exist in the category of sheaves by taking element-by-
element quotients and by iteratively applying the claim, we obtain an injective
resolution of F:

F
ι0 // I0

π0 ""

ι1=j1π0 // I1
ι2=j2π1 //

π1 ""

I2 · · ·

cok(ι0)
j1

<<

cok(ι1)
j2

<<

· · ·

Iterating the analogous process for projective cosheaves, replacing kernels
where one sees cokernels above, one obtains an exact sequence of cosheaves
called the projective resolution of F̂:

· · · P̂2 → P̂1 → P̂0 → F̂→ 0.

These exact sequences can be used to replace F or F̂ in a suitable sense, de-
fined by the derived category. Before moving onto that discussion, we note one
interesting point.

Proposition 7.1.11. The length of injective resolution of any sheaf F ∈ Shv(X) is
bounded by the length of longest chain in the poset. In particular for X a cell
complex, it is bounded by the dimension.

Proof. Pick a maximal ordered subset in X and consider its top element, say x ′,
then I0(x ′) = F(x ′) since nothing is larger than x ′. The cokernel sheaf of ι0 eval-
uated on x ′ is then cok(id : F(x ′) → F(x ′)) = 0. So for any maximally ordered
chain in X, I1 is zero on the top-most element. Arguing inductively finishes the
proof.

7.2 the derived category and homotopy theory of chain com-
plexes

The purpose of the derived category is to replace the category of sheaves with
a category of complexes where certain operations are more natural. We have
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already shown that one can replace a sheaf by its injective resolution and a cosheaf
by its projective resolution. This will define our derived replacement on the level
of objects, but we have not yet shown how a map of sheaves or cosheaves induces
a map on the level of resolutions.

If φ : F̂ → Ĝ is a map of cosheaves, then it can be checked from the universal
properties of projective objects, that this induces a map of complexes

· · · P̂2 //

φ2
��

P̂1 //

φ1
��

P̂0 //

φ0
��

F̂

φ
��

// 0

· · · Q̂2 // Q̂1 // Q̂0 // Ĝ // 0

where all the squares in sight commute. For a hint on how to see this, consider
the composite map P̂0 → F̂ → Ĝ and let Ĝ = A and B = Q̂0 in the definition
of the universal property defining a projective object. This induces our first map
P̂0 → Q̂0. To get the next, all important step, one must recognize that having
maps from P̂0 → Q̂0 and F̂ → Ĝ induces maps between the kernels of the map
P̂0 → F̂ and Q̂0 → Ĝ. Since Q̂1 surjects onto the kernel of the latter map repeating
the initial argument provides a map from P̂1 to Q̂1. This shows that the projective
replacement of cosheaves is functorial.

Aside from functoriality, there is one more snag that needs to be mentioned:
For a sheaf or a cosheaf it is possible that the choice of injective or projective
resolution is not unique. If one really wants to use these as replacements for the
original sheaf or cosheaf, there must be a strong relationship between these two
complexes. This is best seen by specializing the functoriality discussion above to
the case φ = id.

· · · P̂2 //

φ2
��

P̂1 //

φ1
��

P̂0 //

φ0
��

F̂

id
��

// 0

· · · Q̂2 // Q̂1 // Q̂0 // F̂ // 0

The resulting map of complexes need not be a term-by-term isomorphism with
all squares in sight commuting, but rather a more general notion must be substi-
tuted, namely the definition of chain homotopy. Before giving that, let us give an
example.
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Example 7.2.1 (Non-Unique Projective Resolutions). Let us work again over our
test space of the closed unit interval X = [0, 1] stratified as x = 0, y = 1 and
a = (0, 1). The constant cosheaf k̂X is then modeled as

k
1

��

1

��
k k

Revisiting the definition of the elementary projective cosheaves, there is one obvi-
ous projective resolution because the constant cosheaf on this stratification of the
unit interval is already projective, so we have the identity map

P̂• : [â]→ k̂X.

On the other hand, following blindly the prescription provided for computing
the projective resolution of an arbitrary cellular cosheaf would have lead us to the
following “canonical” resolution:

Q̂• : [x̂]⊕ [ŷ]→ [â]⊕ [x̂]⊕ [ŷ]→ k̂X

Definition 7.2.2 (Chain Homotopy). Suppose (A•,dA) and (B•,dB) are two (co-
homological) chain complexes and φ• and ψ• are two chain maps, then a chain
homotopy h• is a chain map hi : Ai → Bi−1

· · · // Ai−2

��

// Ai−1

{{

//

ψi−1φi−1
��

Ai

||

//

ψiφi
��

Ai+1

||
ψi+1φi+1
��

// · · ·

· · · // Bi−2 // Bi−1 // Bi // Bi+1 // · · ·

such that
φi −ψi = hi+1diA + di−1B hi.

In which case we say that φ ∼ ψ are chain homotopic.

Consider now two chain maps φ : A• → B• and ψ : B• → A•, such that

φ ◦ψ ∼ id and ψ ◦φ ∼ id

then one says A• and B• are chain homotopy equivalent.
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Example 7.2.3 (Non-unique, but equivalent). Consider again the case of the two
different projective resolutions of the constant sheaf k̂X on the closed unit interval.
On the one hand the composite

0

��

// [â]

��
[x̂]⊕ [ŷ]

��

// [x̂]⊕ [â]⊕ [ŷ]

��
0 // [â]

is clearly the identity on P̂•, but the composite

[x̂]⊕ [ŷ]

��

// [x̂]⊕ [â]⊕ [ŷ]

��
0

��

// [â]

��
[x̂]⊕ [ŷ] // [x̂]⊕ [â]⊕ [ŷ]

cannot possibly be the identity because one map factors through zero. However,
if we employ a self-homotopy of Q̂• by defining a homotopy for the only possible
degree to be

h0 : [â]⊕ [x̂]⊕ [ŷ]→ [x̂]⊕ [ŷ]

which is zero on the a component and the identity elsewhere. One can then check
that this defines a homotopy between the identity map and the map indicated in
the second composite.

The conclusion from the example should be that although one can use differ-
ent projective resolutions, the choice is irrelevant up to homotopy. The derived
category should not be able to discriminate between them. As such, we make the
following definitions.

Definition 7.2.4. Let A be an abelian category, such as the category of sheaves or
cosheaves. The category of chain complexes in A, written Cb(A) has objects that
are chain complexes and morphisms that are chain maps.

The homotopy category of complexes Kb(A) of an abelian category A has the
same objects as Cb(A), but where we have identified chain homotopic maps.
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Definition 7.2.5. For A = Shv(X) we define the bounded derived category of
sheaves Db(Shv(X)) to be Kb(Inj −Shv(X)) the homotopy category that uses only
complexes of injective sheaves.

Similarly, for A = CoShv(X), we define the bounded derived category of
cosheaves Db(CoShv(X)) by Kb(Proj − CoShv(X)) where complexes of projective
cosheaves are used instead.

This definition, is an equivalent reformulation of another definition of the de-
rived category. This other perspective is built on the foundational notion of a
quasi-isomorphism, which is in turn built on the idea of a cohomology sheaf or
homology cosheaf.

Definition 7.2.6. Suppose we are given a complex of cellular sheaves

(F•,d•) : · · · → Fi−1 → Fi → Fi+1 → · · · ,

i.e. for each cell σ we have a complex of vector spaces. For each i we can define
the ith cohomology sheaf as the assignment

Hi(F•) : σ Hi(F•(σ))

which is a cellular sheaf. The restriction maps being defined as the induced map
on cohomology for the chain map F•(σ)→ F•(τ) for σ 6 τ.

Considering all i at once defines a functor from the category of complexes of
sheaves and the category of graded sheaves (sheaves of graded vector spaces with
level preserving restriction maps)

H∗ : Cb(Shv(X))→ Shv(X; grVect) F•  
⊕
i

Hi(F•).

There are completely dual notions of homology cosheaves, where we generally
use homological indexing and notation (F̂•,∂•).

Definition 7.2.7 (Quasi-Isomorphisms). A map of complexes of sheaves (or
cosheaves) α• : F• → G• such that the induced map

H(α•) : Hi(F•)→ Hi(G•)

is an isomorphisms for every i, is called a quasi-isomorphism.

The term “quasi-isomorphism” reflects the fact that if α• : F• → G• is a quasi-
isomorphism, then there does not always exist an inverse map β• that gives the
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identity, or even chain homotopic to the identity, any map back may simply not
exist.

Example 7.2.8. Consider again the unit interval X = [0, 1] decomposed into two
vertices x and y and an open interval a. Consider the stalk sheaf Sa that assigns
k to a and is zero everywhere else. It’s injective resolution defines a chain map

0 //

��

Sa //

��

0

��
0 // [a] // [x]⊕ [y]

which is a quasi-isomorphism. However, there does not exist a map of sheaves
[a]→ Sa.

The slogan most commonly associated with the derived category is that one
“formally inverts the quasi-isomorphisms.” This is formalized by the process
of localizing categories. Namely, if Q is a collection of morphisms in B that is
closed under certain operations, then we can consider the following universal
problem: suppose L : B → C is a functor such that if α ∈ Q, then L(α) is an
isomorphism, then every such functor factors through the category localized at
Q, written B[Q−1].

B L //

##

C

B[Q−1]
∃

;;

An alternative approach to the derived category of an abelian category A is to
define

D(A) := K(A)[Q−1] Q = {quasi − isomorphisms}

where we have removed the boundedness hypothesis.
One then proves the following claim to re-obtain the definition we provided

here

Theorem 7.2.9 ([Alu09] Thm 6.7). Suppose A is an abelian category with enough
projectives, then D−(A) ∼= K−(P) where P denotes projective objects of A. Sim-
ilarly, if A has enough injectives then D+(A) ∼= K+(I) where I denotes injective
objects of A.
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7.3 the derived definition of cosheaf homology and sheaf coho-
mology

We are now in a position to give the derived definition of cosheaf homology
and show that it agrees with the computational formula provided earlier. This
discussion can be dualized and readily found in the literature. The proof that the
formula for sheaves computes the cohomology as defined by taking an injective
resolution and applying Γ(X;−) = p∗ can be found in [She85] pp. 28-29. Let’s
more or less repeat the proof for cellular cosheaves since it is nowhere in the
literature.

Definition 7.3.1. Given a cosheaf F̂ on X we define the left derived pushforward
along f : X→ Y by taking a projective resolution and applying pushforward term
by term:

Lf∗F̂ := f∗P•.

We define the ith derived functor by

Lif∗F̂ := Hi(f∗P•).

In the special case where f = p : X→ ? we write

Hi(X; F̂) := Lip∗F̂

for the ith cosheaf homology group of F̂.

We now aim to prove the following theorem.

Theorem 7.3.2. Let p : X → ? be the constant map and F̂ a cellular cosheaf on
X. Then the left derived functors of p∗ agree with the computational formula for
homology, i.e. Lip∗F̂ = Hi(X; F̂).
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Proof. Begin with a projective resolution of P̂• → F̂ and then take cellular chains
of each cosheaf to obtain the following double complex:

...
...

...

· · · C1(X; P̂1) //

��

C1(X; P̂0) //

��

C1(X; F̂) //

��

0

· · · C0(X; P̂1) //

��

C0(X; P̂0) //

��

C0(X; F̂) //

��

0

· · · colimP̂1 //

��

colimP̂0 //

��

colimF̂ //

��

0

0 0 0

Now we make use of the following two observations, which dualize [She85,
Thm. 1.3.10, 1.4.1].

Lemma 7.3.3. For P̂ a projective cosheaf

Hp(C
BM
• (X; P̂)) ∼= Hp(C•(X; P̂)) ∼= 0

for p > 0.

Proof. Observe that we can assume that P̂ is an elementary projective co-sheaf
with value R, i.e. [σ̂], since CBM• (X;⊕Ai) = ⊕CBM• (X;Ai).

Everything follows from the following consequence of our definition of a cell
complex: In the one-point compactification of X, the closure of any cell σ ∈ X, call
it | ¯̄σ|, has the homeomorphism type of a closed k-simplex.
C•(X; [σ̂]) is the chain complex that computes the cellular homology of Y =

|{τ 6 σ|τ̄ is compact}|, which is a closed k-simplex minus the star of a vertex. On
the other hand, CBM• (X; [σ̂]) is equal to the chain complex calculating the cellular
homology of | ¯̄σ| except in degree zero if |σ̄| is not compact. Notice that H1 for both
of these complexes is the same, as |σ̄| and | ¯̄σ| are simply connected. This proves
the claim.

Lemma 7.3.4. For any cellular cosheaf F̂ on a cell complex X we have that

colimF̂ ∼= cok(C1(X; F̂)→ C0(X; F̂)).
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Proof. First let us prove that taking the coproduct of F̂ over all the cells obtains a
vector space that surjects onto the colimit. As part of the definition of colimF̂ is a
choice of maps ψσ : F̂(σ)→ colimF̂. Let Ψ = ⊕ψσ : ⊕F̂(σ)→ colimF̂, now consider
the factorization of this map through the image:

⊕F̂(σ) Ψ //

##

colimF̂

imΨ

j
::

Now we can use the imΨ to define a new co-cone over the diagram F̂ simply by
pre-composing the factorized map with the inclusions iσ : F̂(σ) → ⊕F̂(σ). Since
the colimit is the initial object in the category of co-cones, there must be a map
u : colimF̂→ imΨ and thus u ◦ j = id since there is only one map colimF̂→ colimF̂.

Now observe that C0(X; F̂) = ⊕F̂(vi) surjects onto the colimit of F̂ by virtue of
the fact that since every cell σ ∈ X has at least one vertex as a face, the map Ψ
factors through ⊕F̂(vi). Thus there is a surjection from Ψ ′ : C0(X; F̂) → colimF̂.
Notice that by universal properties of the cokernel of ∂0 : C1(X; F̂) → C0(X; F̂) it
suffices to check that Ψ ′ ◦ ∂0 = 0. However, this is clear since every e edge has
two vertices v1 and v2 (we’ve discarded all those edges without compact closures),
then we need only check the claim for each diagram of the form

F̂(e)
re,v1

||

re,v2

""

F̂(v1) F̂(v2)

where it is clear that the colimit can be written as F̂(v1)⊕ F̂(v2) modulo the equiv-
alence relation (re,v1(w), 0) ' (0, re,v2(w)), i.e. ∂0|e(w) = (−re,v1(w), re,v2(w)) '
(0, 0).

From these two theorems we can conclude that the columns away from the
chain complex of F̂ are exact and thus Tot•(Ci(X; P̂j)) induces quasi-isomorphisms
between colimP̂• and C•(X; F̂). We have thus established the theorem.
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7.3.1 Borel-Moore Cosheaf Homology

Definition 7.3.5. Suppose F̂ is a cellular cosheaf. Define ΓBM(X; F) to be the colimit
of the diagram extended over the one-point compactification of Xwhere we define
F̂(∞) = 0. Alternatively said we look at the inclusion j : X→ X∪ {∞} and define

ΓBM(X; F̂) := p∗j†F̂.

Another possible definition is to dualize a cellular cosheaf of finite-dimensional
vector spaces to a cellular sheaf by post-composing F̂ : X → Vect with
Homvect(−,k), apply p! and then dualize back.

Remark 7.3.6 (Functoriality). The definitions that involve the one-point compact-
ification are deficient in the following way. A map of cell complexes f : X → Y

does not necessarily extend to a map between the one-point compactifications. It
is for this reason that for functoriality, the definition using p! is preferred.

Now we can prove that the formula provided calculates the Borel-Moore ho-
mology of a cosheaf F̂ by establishing the following lemma:

Lemma 7.3.7. For any cellular cosheaf F̂ on a cell complex X we have that
ΓBM(X; F̂) ∼= cok(CBM1 (X; F̂)→ CBM0 (X; F̂)).

Proof. The proof above goes through until the last argument. Now we have edges
e with only one vertex. However, by extending and zeroing out at infinity to get
that the colimit of

F̂(e)
re,v

}}

0

$$

F̂(v) F̂(∞) = 0

is exactly equal to the co-equalizer of re,v : F̂(e) → F(v) and the zero morphism,
i.e. the cokernel.

7.3.2 Invariance under Subdivision

Now we take up the question of invariance under subdivision by applying the
derived perspective. For convenience, we work with sheaves, but the reasoning
can be dualized.

Definition 7.3.8. Suppose F is a sheaf on X and s : X ′ → X is a subdivision of X,
then we define the subdivided sheaf F ′ := s∗F.
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For an example, let X be the unit interval [0, 1] stratified in the obvious way
with x = 0, y = 1 and a = (0, 1). Now consider a sheaf F on X. We will want to
investigate what happens to this sheaf as we subdivide the space. In this example,
the barycentric subdivision of X produces a space X ′ with a third vertex ā and
two edges ax and ay. The obvious way of defining a subdivided sheaf is to define
F ′(ā) = F ′(ax) = F ′(ay) = F(a) where we use the identity map for the two new
restriction maps. Observe that if F is the elementary injective sheaf [a], then F ′ is
not an injective sheaf, yet nevertheless F ′ and F have isomorphic cohomology.

More generally we are concerned with the following diagram of spaces (posets)

X ′ s //

pX ′   

X

pX��
?

and the induced functors on sheaves. For example, if we analyze the ordinary
pushforward functor, then we would obtain the following result, which is a sim-
plified proof of one found in [She85, Thm. 1.5.2]:

Theorem 7.3.9. Suppose F is a sheaf on X and X ′ is a subdivision of X, then

H•(X; F) ∼= H•(X ′; F ′)

Proof. Observe that since pX ′ = pX ◦ s, then (pX ′)∗ = (pX)∗ ◦ s∗. Now recall

(pX ′)∗F
′ = (pX ′)∗s

∗F = (pX)∗ ◦ s∗s∗F.

The question then boils down to understanding the relationship between s∗s∗F
and F. Unraveling the definition reveals

s∗s
∗F(y) = lim←−{s

∗F(x)|s(x) > y}

= lim←−{F(s(x))|s(x) > y}
(surjectivity) = lim←−{F(x)|x > y}

(sheaf − axiom) = F(Uy)

= F(y)

So we have that for the subdivision map s∗s∗F ∼= F and as a consequence

(pX ′)F
′ ∼= pXF.

Now we can just take the associated right derived functors to obtain the result.
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7.4 sheaf homology and cosheaf cohomology

There is a surprising symmetry in the land of cellular sheaves and cosheaves,
which is unique to the land of Alexandrov spaces and deserves to be explored.
Contrary to the existence of enough injective sheaves, which for general sheaves
is gotten as a consequence of the target category, e.g. Ab, Vect, etc., the existence
of enough projective sheaves is driven by the underlying topology of the space.

Proposition 7.4.1. Suppose X is a topological space with the property that there
is a point x ∈ X such that for every open neighborhood U 3 x there is a strictly
smaller open neighborhood V ⊂ U. Then the category of sheaves on X does not
have enough projectives.2

Proof. Consider the map i : x ↪→ X and the sheaf i∗k. Suppose it has a projective
resolution, i.e. a projective sheaf P and a surjection P → i∗k. Now let’s examine
this map evaluated on an open set U 3 x. By assumption there is another open
set V ⊂ U and we can put the constant sheaf extended by zero on V , denote the
inclusion by j : V ↪→ X. Note that we have the following diagram of sheaves

j!k̃V // i∗k // 0

P

bb OO

whose value on the open set U is

j!k̃V(U) = 0 // i∗k(U) = k // 0

P(U)

gg OO

so in particular the surjection must factor through zero — a contradiction.

Contrary to sheaves on manifolds and other Hausdorff spaces, cellular sheaves
are can be viewed as sheaves on finite posets and as such do not suffer from the
above argument. In fact, computing a projective resolution is as easy as comput-
ing injective resolutions. To see how this goes recall we need to find a projective
sheaf that surjects onto our sheaf of interest.

P0 := ⊕σ∈X{σ}F(σ) → F→ 0

2 The author would like to acknowledge the contributions of Valery Alexeev, David Treumann,
and Jon Woolf on mathoverflow in regards to this question.
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serves nicely and by finding the kernel sheaf (which is easier to understand than
cokernels!) and then iterating this process will obtain a projective resolution

· · ·P−3 → P−2 → P−1 → P0 → F→ 0.

This motivates the following definitions:

Definition 7.4.2. Given a cellular sheaf, we can construct its projective resolution
P• → F, calculate colimits of P• and take the cohomology of the resulting complex
of vector spaces. Assuming F was in degree zero, this will be concentrated in
negative degree and we define the homology of a cellular sheaf F to beHi(X; F) :=
H−i(p†P•).

Similarly we define the cohomology of a cellular cosheaf F̂ by taking its injec-
tive resolution Î•, and taking limits, i.e. Hi(X; F̂) = Hi(p̂∗Î•).

The reasons for it’s apocryphal nature are many:

1. Only for (co)sheaves over finite spaces are there enough projectives and
enough injectives.

2. Spaces for which there is not a fixed n so that every cell σ contains in its star
a cell τ such that dim τ = n cannot hope to have the same computational
formula for (co)homology because we can’t treat the colimit (in the case of a
sheaf) as a quotient object of ⊕dim τ=nF(τ) and dually for limits of cosheaves.

3. This defect, which is measured by the difference of Hn(X; F) and colimF, is
only the first in a series of obstructions that appear to detect whether X is a
cell structure on a manifold.

The evidence for the last two observations is further solidified in view of the
following theorem.

Theorem 7.4.3. Suppose F is a cellular sheaf on a triangulated closed n-manifold
X, then F defines a cellular cosheaf on the dual triangulation and moreover all the
homologies and cohomologies of both agree.

Proof. This is a consequence of the following simple observation:

F(σi)
ρσ,τ //

��

F(τi+1)

��

F̂(σ̃n−i)
ρσ̃,τ̃ // F̂(τ̃n−i−1)
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So the same abstract diagram of vector spaces F : X→ Vect defines a diagram over
F̂ : X̃op → Vect, i.e. a cosheaf on the dual cell structure. Since they are the same
diagrams everything about them is the same.

7.4.1 Invariance under Subdivision

One can ask whether this new invariant is invariant under subdivision. In this
section we show that it is invariant for the domain of a map, but is not invariant
under subdivision of the target. One can see this latter claim by an earlier example
already considered with the pushforward with open supports to a circle.

Theorem 7.4.4. Suppose F is a sheaf on X and X ′ is a subdivision of X, then

(pX ′)†F
′ ∼= (pX)†F

and consequently
(LpX ′)†F

′ ∼= (LpX)†F

thus sheaf homology is invariant under subdivision. Similarly, the same result
should hold for cosheaf cohomology.

Proof. Getting right down to it we see

s†s
∗F(y) = colim{s∗F(x)|s(x) 6 y}

= colim{F(s(x))|s(x) 6 y}

(surjectivity) = colim{F(x)|x 6 y}

(check − directly) = F(y)

and thus
(pX ′)†s

∗F = (pX)†s†s
∗F ∼= (pX)†F.

Taking the left derived functors gives the higher result.



Part III

A P P L I C AT I O N S T O S C I E N C E A N D E N G I N E E R I N G

This part constitutes a first application of cellular sheaves and
cosheaves to problems in science and engineering.

Chapter 8 begins with a short introduction to persistent homology,
which we reformulate using sheaves and cosheaves. The advantage
of this reformulation is the ability to distribute homology computa-
tions and aggregate efficiently, as noted in Section 8.2.2, which is part
of joint work [CGN13] where discrete Morse theory is adapted to com-
pute cellular sheaf cohomology. A theorem that uses the apparatus of
spectral sequences to connect level set and sub-level set persistence is
proved in Section 8.2.3. A motivating example for multi-dimensional
persistence and an introduction of “generalized barcodes” concludes
the chapter.

Chapter 9 reviews an application of sheaves to network coding intro-
duced first in [GH11]. However, here the language of cellular sheaves
is employed and the barcode method is used to visualize the flow of
data. A duality theorem for network coding sheaves is proved in two
different ways.

Chapter 10 casts various sensor network problems in the language of
sheaves. Any attempt to use level set persistence to study the intruder
problem is proven to be a “no-go” using the machinery of cosheaves.
The main contribution of the chapter is the introduction of a linearized
model for multi-modal sensing in Section 10.4. It was this model that
first motivated the author to take up the theory of indecomposables as
a way of interpreting sheaf cohomology.
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8
T O P O L O G I C A L D ATA A N A LY S I S

“We are enabled to divide into forms, following the objective articulation; we
are not to hack off parts like a clumsy butcher.”

— Plato’s Phaedrus 265e, translated by R. Hackforth

Suppose two patients enter an office with a recent diagnosis of cancer. If they
are very lucky, they might have their respective tumors biopsied and sent off for
genetic analysis. The genetic analysis consists of measuring the gene expression
levels of over a thousand genes in each of the respective tumors. These two sets
of expression levels are then compared with a few hundred other tumor samples,
where varying therapies were used to varying degrees of success. How should the
doctor determine which course of action to take? If we are to carve the universe
at its joints, on which side do these patients lie?

A similar, but apparently less dramatic, situation occurs in topology. Given two
topological spaces X and Y, how do we discern whether X and Y are essentially the
same or different? The entire apparatus of algebraic topology was developed to
address this problem. It turns out that these two situations are not just formally
similar. Topological data analysis stems from the observation that data of the
above form can give rise to topological spaces, which can in turn be discriminated
using classical constructions such as homology [LSL+

13].

8.1 point clouds and persistent homology

To illustrate why the applicability of homological methods is not so far-fetched,
consider the following toy problem, which serves as the standard entrée into
persistent homology. Consider a finite set of points {xi} ⊂ Rn. How do we
describe the perceived shape of such a set of points, such as the set depicted in
Figure 26? The human brain is a pattern-making machine that connects the dots
and returns the knee-jerk response that the points in Figure 26 appears to form a
circle. However, what do we mean by this and how can we automate this process
so as to remove human subjectivity?
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figure 26: Point Cloud Data

Mathematics abounds with rigorous formulations of what does or does not look
like a circle. However, only topology provides a definition that is robust with
respect to perturbation and noise. One universal definition of a circle is given
by the Eilenberg-Mac Lane space K(Z, 1), which is homotopy equivalent to S1.
However, homology provides a shape descriptor based on linear algebra, which
can be efficiently computed. But there is still the problem that the homology of
the set of points in Figure 26 is not isomorphic to the homology of the circle.
To get around this, we consider the union of Euclidean balls of some radius r
∪B(xi, r) =: Xr, which mirrors the “connecting the dots” procedure that the brain
applies. Then one observes that there are natural inclusions

Xr0 ↪→ Xr1 ↪→ Xr2 ↪→ Xr3 · · ·
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whenever r0 6 r1 6 r2 6 · · · and so on. Applying the ith homology functor
Hi(−;k) turns this diagram of spaces into a diagram of vector spaces, which de-
fines a persistence module, cf. Definition 6.3.1.

Hi(Xr0 ;k)→ Hi(Xr1 ;k)→ Hi(Xr2 ;k)→ Hi(Xr3 ;k)→ · · ·

By applying the structure theorem 6.3.3, we can determine the barcodes of the
collection of points. Long bars are considered to be robust topological signals in
the data set. For Figure 26, there would be one long bar in the persistence module
corresponding to H0, indicating that after a certain radius the the space Xr is
connected, and another long bar in the module corresponding to H1, indicating
the apparent circle in the data set.

To summarize, we have the following prototypical pipeline of topological data
analysis.

Definition 8.1.1 (Point Cloud Persistence). The point cloud persistence pipeline
consists of the following ingredients and operations:

1. Let X denote a point cloud, i.e. the union of a finite set of points {xi} ⊂ Rn.

2. The union of balls Xr := ∪xi∈XB(x, r) (or the Vietoris-Rips complex [Ghr08])
defines a functor from the real line, viewed as poset, to the category of
topological spaces (simplicial complexes) and maps, i.e.

G : (R,6)→ Top r Xr r 6 r ′  Xr ↪→ Xr ′

3. Postcomposing this functor with homology H∗, defines a graded representa-
tion of the real line, which is equivalently a graded sheaf on the Alexandrov
topology or a graded persistence module:

H∗(Xr0 ;k)→ H∗(Xr1 ;k)→ H∗(Xr2 ;k)→ H∗(Xr3 ;k)→ · · ·

4. Applying Theorem 6.3.3 produces a Remak decomposition of this represen-
tation into a multiset of interval modules, which is visualized as a barcode
by the end user.

The first and second steps in this pipeline offer the chance for endless modifi-
cation and application. Instead of considering a collection of points, one can start
with a space X and a function f : X→ R and consider the family of sub-level sets
Xr := f−1(−∞, r]. As long as the function and space are sufficiently nice, we can
use Theorem 6.3.3 to produce a barcode.



8.1 point clouds and persistent homology 141

Exercise 8.1.2. Determine the barcodes associated to the function f(x) = x3 − x.

Exercise 8.1.3. Recast the basic theorems of Morse theory in terms of barcodes.
See Figure 22 for inspiration.

8.1.1 Level Set and Zigzag Persistence

Despite their successes, persistence modules are not the end-all, be-all of topo-
logical data analysis. In [CdS10] Gunnar Carlsson and Vin de Silva gave three
examples where diagrams of vector spaces and maps of the form

V1 ↔ V2 ↔ V3 ↔ · · · ↔ Vn−2 ↔ Vn−1 ↔ Vn

are of interest. One example comes from estimating the probability density func-
tion from which a point-cloud is drawn. One can try to smooth the data by
defining a function ρr(x) that counts the number of points within a radius r of
the point x. If one then tries to take the 25% densest points measured according
to a sequence of radii r1 < r2 < · · · < rn, the the only way of comparing features
comes from a zigzag diagram of the form

Xpr1 → Xpr1 ∪X
p
r2
← Xpr2 → · · · ← Xprn

where Xprk indicates the p% densest points measured according to the function
ρrk(x). Similarly, if one has a function f : X → R, but not the computational
power to investigate the entire sub-level set f−1(−∞, r], one could choose a mesh
t0 < t1 < t2 < · · · < tn and consider the zigzag of pre-images given by

f−1(t0)→ f−1[t0, t1]← f−1(t1)→ · · · ← f−1(tn).

Applying homology in some degree i gives the traditional definition of level set
persistent homology. This complicates the usual TDA pipeline because, a priori,
the structure theorem 6.3.3 fails to apply. Fortunately, Gabriel’s Theorem 6.3.23

tells us that the direction of the arrows doesn’t matter for the representations of
An type quivers, so the decomposition into interval modules still applies; we still
have barcodes [CdS10].

The fully general definition of level set persistence usually given adheres to this
perspective that the assignment of homology to closed intervals is fundamental.

Definition 8.1.4. The interval category of R, written Int(R), is the category
whose objects are closed intervals [x,y] ⊂ R and whose morphisms are inclusions
[x,y] ↪→ [x ′,y ′].
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figure 27: Height Function on the Circle

Definition 8.1.5 (Level Set Persistent Homology). Suppose f : X→ R is a function,
not necessarily continuous. The ith level set persistence of f Li is the representa-
tion of the interval category given by

Li : Int(R)→ Vect [x,y] Hi(f
−1([x,y]);k).

Critique of the Definition of Level Set Persistence

The definition of level set persistence suffers in one crucial respect. The definition
is non-local and consequently requires the storage of an infinite amount of data.
Consider the map f depicted in Figure 27. Level set persistence for H1 will assign
the zero vector space to every interval of diameter less than y − x. Only after
inspecting intervals large enough will the topological feature of the circle appear.

A sheaf-theoretic approach to level-set persistence offers the advantage of being
local. However, the analogous sheaf version of the level set H1 just examined is
the zero sheaf. The trade-off appears to be too great. However, the apparent
disadvantage is remedied via the use of sheaf-cohomology, which preserves all
the information of the domain space while simultaneously being local.
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8.2 approaching persistence with sheaves and cosheaves

8.2.1 Cellular Maps and Absolute Homology Cosheaves

The contravariant nature of sheaves should remind us that that they are most
naturally associated with cohomology of a space. Cosheaves, being covariant
with respect to the inclusion of opens, are naturally associated with homology of
a space. Since we are working over a field, we can pass back and forth between
these perspectives. However, to coincide with the traditional use of homology in
persistence, we first introduce our version of persistence using cosheaves.

Definition 8.2.1. Suppose X and Y are cell complexes and f : Y → X is a proper
cellular map, see Definition 5.1.12 for a reminder, then for each natural number
i > 0 we have the following ith absolute homology cosheaf F̂i, which assigns to
a cell σ in X the ith homology of the pre-image f−1(star(σ)), i.e.

F̂i(σ) := Hi(f
−1(star(σ));k).

This is clearly a cellular cosheaf since if σ 6 τ, then star(τ) ⊆ star(σ) and thus we
have a map

rσ,τ : Hi(f
−1(star(τ));k)→ Hi(f

−1(star(σ));k).

By Corollary 6.3.18 we know that every absolute homology cosheaf can be de-
composed into indecomposable sheaves. For cellular maps f : Y → X where X is a
compact subset of R, the absolute homology cosheaves have the following form:

Hi(f
−1(star(x0));k)← Hi(f

−1((x0, x1));k)→ Hi(f
−1(star(x1));k)← · · ·

Hence, by Gabriel’s Theorem 6.3.23 absolute homology cosheaves over X ⊂ R

can be assigned barcodes. However, by inspecting the support of these indecom-
posable cosheaves we observe that there are four types of bars that make up any
barcode:

[—] (—) [—) (—]

Example 8.2.2. Let h : S1 → R be the standard height function on the circle, drawn
in Figure 27. The only absolute homology cosheaf of interest is F̂0, since the fibers
have no higher homology. The associated pre-images, values of the homology
cosheaf and barcode are drawn in Figure 28.

Remark 8.2.3 (Barcode Notation). We will use intervals to represent barcodes and
these will be sensitive to whether the first or last vector space in an indecom-
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h-1(x,y)!h-1[x,y)! h-1(x,y]!

H0(-;k)! k2!k! k!

figure 28: Homology Cosheaf for a circle, with barcodes

posable representation falls on a vertex or an open interval in some stratifica-
tion of [0, 1] or R. For visual clarity, we will adopt the convention that a turned
around square bracket is equivalent to a round one, i.e. (xi, xi+1)  ]xi, xi+1[ and
[xi, xi+1) [xi, xi+1[ and so on.

By viewing these barcodes as cosheaves, which have a homology theory, we can
compute barcode homology.

Lemma 8.2.4. Suppose X is a compact subset of R, equipped with some cell struc-
ture. The cosheaf homology of the four types of indecomposable cosheaves coin-
cides with the Borel-Moore homology of the underlying barcode, i.e.

HBM0 ([—]) = k HBM1 (]—[) = k HBMi ([—[) = HBMi (]—]) = 0

with all other Borel-Moore homology groups being zero. Moreover, since cosheaf
homology commutes with finite direct sums, cellular cosheaf homology of F̂ on X
can be computed using the barcode B

F̂
associated to the Remak decomposition of

F̂.
Hi(X; F̂) ∼= ⊕HBMi (B

F̂
) i = 0, 1
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In short,

H0(X; F̂) counts closed bars and H1(X; F̂) counts open bars.

Proof. The proof of the claim uses simple computations, illustrated in the exam-
ples, and an invariance under subdivision argument, which is proved in Theorem
7.3.9. The true sticking point is why ordinary cosheaf homology becomes Borel-
Moore (cosheaf) homology, which is developed in section 7.3.1.

If we imagine that we are extending the constant cosheaf supported on a bar-
code to a cosheaf defined on all of [0, 1], then the natural way of extending by zero
is to use the pushforward with open supports functor j†, where

j : B ↪→ [0, 1] and k̂B 7→ j†k̂B.

The process of taking cosheaf homology is to then push forward this cosheaf to a
point. However, using Lemma 7.3.7 we see the following is true:

p!k̂B ∼= p∗j†k̂B HBMi (B; k̂B) ∼= Hi([0, 1]; j†k̂B)

When it is clear that we are working on [0, 1] we may write k̂B instead of j†k̂B.

One of the advantages of absolute homology cosheaves is that over the real line
they can be used to compute the homology of the domain.

Corollary 8.2.5 (“The Barcode Trick”). Assume Y is compact and f : Y → X is a
cellular map with f(Y) = X ⊂ R. For each i, let Bi denote the barcode associated
to the ith absolute homology cosheaf. The following is true:

Hi(Y;k) ∼= H0(X; F̂i)⊕H1(X; F̂i−1) ∼= HBM0 (Bi)⊕HBM1 (Bi−1)

Proof. This is an immediate corollary of Theorem 8.2.15 and Lemma 8.2.4.

Let h : S2 → R be the standard height function on the two sphere. In Figure 29

we have drawn the map and the associated barcodes. The barcode decomposition
for the cosheaf associated to taking H0 of the fiber is trivial because it is already
an indecomposable cosheaf.

F̂0 : k koo // k

Similarly, taking H1 of the fiber also yields an indecomposable cosheaf

F̂1 : 0 koo // 0
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Example 8.2.6 (Height function on the Two Sphere).

B0!
B1!

figure 29: Barcodes and the Two Sphere

Now let us compute cosheaf homology. Since the space X = [0, 1] is compact,
ordinary and compactly supported cosheaf homology agree. We label our cells as
x = 0, a = (0, 1) and y = 1. To get an ordered basis and matrix representatives
for our homology computation, we choose the local orientation pointing to the
right and use the lexicographic ordering on the cells. For F̂0 we get the following
boundary matrix and homology groups:

∂1 =

[
−1

1

]
: ka → kx ⊕ ky ⇒ H1(X; F̂0) = 0 H0(X; F̂0) = k.

For F̂1 the computation is even easier:

∂1 : ka → 0 ⇒ H1(X; F̂1) = k H0(X; F̂1) = 0
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One can then check 8.2.5 simply as follows:

H0(X; F̂1) = 0 H1(X; F̂1) = k

H0(X; F̂0) = k H1(X; F̂0) = 0

H0(S
2) = k H1(S

2) = 0 H2(S
2) = k

B0!

B1!

figure 30: Barcodes for the Cone

Example 8.2.7 (Height function on a Cone). The height function on a cone is not a
Morse function because differentiability breaks down at the cone point; see Figure
30. One could use stratified Morse theory as a substitute, but we’ll use cosheaf
homology. Here the cosheaf F̂0 is the same as the previous example; we will not
repeat the computation. The cosheaf F̂1

F̂1 : 0 koo // k



8.2 approaching persistence with sheaves and cosheaves 148

exhibits different behavior. The cosheaf homology computation for this cosheaf
reveals that the half-open barcode, embedded inside a compact interval, has no
non-zero homology groups.

∂1 = id : ka → ky ⇒ H1(X; F̂1) = 0 H0(X; F̂1) = 0

Checking 8.2.5 again gives

H0(X; F̂1) = 0 H1(X; F̂1) = 0

H0(X; F̂0) = k H1(X; F̂0) = 0

H0(C) = k H1(C) = 0 H2(C) = 0

Let’s illustrate the utility of the barcode trick by computing cosheaf homology
over X using two different methods:

• Using the computational formulae of section 6.2

• Determining the barcode decomposition and applying claim 8.2.4.

Example 8.2.8 (Height function on the Torus). The standard introductory example
of Morse theory, first popularized by Raoul Bott, is the height function on the
torus. In Figure 31 we have drawn the behavior of the fibers over the critical
values and the non-critical intervals. For the sake of brevity, let us write out only
the cosheaf F̂1:

0 kaoo // k2y k2b
oo // k2z kcoo // 0

Here the maps from ka to k2y and kc to k2z are the diagonal maps

rz,a =

[
1

1

]
= rz,c
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B1!

B0!

figure 31: Barcodes for Bott’s torus

and the other maps are the identity. Choosing the orientation that points to the
right, we get the follow matrix representation for the boundary map:

∂1 =


1 −1 0 0

1 0 1 0

0 1 0 −1

0 0 1 −1

 H1(X; F̂1) =<


1

1

1

1

 > H0(X; F̂1) ∼= k

However, if we change our bases as follows[
y ′1 = y1

y ′2 = y1 + y2

] [
b ′1 = b1

b ′2 = b1 + b2

] [
z ′1 = z1

z ′2 = z1 + z2

]
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then our cosheaf F̂1 can then be written as the direct sum of two indecomposable
cosheaves:

0 0oo // ky ′1
kb ′1

oo // kz ′1
0oo // 0

0 kaoo // ky ′2
kb ′2

oo // kz ′2
kcoo // 0

Hence it is apparent that

Hi(X; F̂1) ∼= HBMi ([—])⊕HBMi (]—[).

From which the homology of the torus can be directly observed.

H0(X; F̂1) = k H1(X; F̂1) = k

H0(X; F̂0) = k H1(X; F̂0) = k

H0(T) = k H1(T) = k
2 H2(T) = k

8.2.2 Local-to-Global Computations via Cellular Sheaves

Aside from the decoration of cosheaves, section 8.2.1 is completely classical and
can be stated much more generally using non-cellular sheaves and cosheaves.
However, one can still use cellular versions to compute homological information
of non-cellular spaces as already noted by the author in [CGN13].

The Čech Approach

Recall that any topological space X equipped with a cover U has an associated sim-
plicial approximationNU given by the nerve construction considered in Definition
2.1.2. The nerve theorem tells us when this approximation is “good enough” for
the purposes of cohomology.

Theorem 8.2.9 (Nerve Theorem [Ler45, Bor48]). Given a topological space X and
a cover U, if the support Uσ ⊂ X of each σ ∈ NU is acyclic (i.e., the reduced
cohomology H̃•(Uσ;R) = 0 vanishes), then H•(NU;R) ∼= H•(X;R).

Typically, the coarsest covers do not satisfy the acyclicity assumption. One
achieves this by refinement of the cover, with the additional cost of more simplices
in NU. However, one can dodge this refinement by recording the cohomology of
the intersection as a cellular sheaf on NU.
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Definition 8.2.10 (Čech Sheaves). The Čech cellular sheaves Čn associated to the
cover U of a space X are defined on the nerve NU by the following data. Each
σ ∈ NU is assigned the vector space Čn(σ) = Hn(Uσ;k) and each face relation
σ ⊂ τ is assigned the linear map Čnστ : Hn(Uσ;R) → Hn(Uτ;R) arising from the
inclusion of supports Uτ ↪→ Uσ.

If all simplex supports are acyclic, then Č0 reduces to the constant sheaf on
NU and all other Čns are trivial; in the absence of acyclicity assumptions, the
following result yields a simple correction.

Proposition 8.2.11. Let X be a topological space and U a cover whose nerve NU is
at most one-dimensional. Then, for each n ∈N,

Hn(X;k) ∼= H0(NU; Čn)⊕H1(NU; Čn−1).

We note that similar results have been obtained by Burghelea and Dey [BD13],
as well as Carlsson, de Silva, and Morozov [CdSM09] in the context of zig-zag per-
sistence. The difference between their results and ours is that their results depend
on the decomposition of zig-zag persistence modules into indecomposable mod-
ules (barcodes). Our result makes the recognition that these modules are rightly
conceived as sheaves over a linear nerve with a cohomology that can be quickly
computed using discrete Morse theory [CGN13].

Proposition 8.2.11 generalizes the familiar Mayer-Vietoris long exact sequence,
as the next example shows.

Example 8.2.12 (Mayer-Vietoris). The Mayer-Vietoris Theorem states that given an
open cover of X by two open sets U = {A,B} we have the following exact sequence
of R-modules and maps:

0 // H0(X) // H0(A)⊕H0(B) // H0(A∩B)
ψ0

// H1(X) // · · · // Hn−1(A∩B)
ψn−1

// Hn(X) // Hn(A)⊕Hn(B) // Hn(A∩B)
ψn

00 · · ·
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Ideally one can determine the unknown cohomology of X = A ∪ B by inspecting
the terms on either side. More formally, one uses universal constructions to force
Hn(X) into a more manageable short exact sequence:

Hn−1(A)⊕Hn−1(B)
δ0n−1 // Hn−1(A∩B)

��uu

0

��
0 // cok(δ0n−1)

��

// Hn(X) //

��

ker(δ0n) //

vv

0

0 Hn(A)⊕Hn(B)
δ0n // Hn(A∩B)

The dotted maps are defined by the universal property of the cokernel and ker-
nel, respectively. Over an arbitrary coefficient ring R we would have to solve an
extension problem in order to infer Hn(X). If we take R to be a field k, then every
short exact sequence splits and we can deduce that

Hn(X) ∼= ker(δ0n)⊕ cok(δ0n−1) ∼= H0(NA,B; Čn)⊕H1(NA,B; Čn−1)

where NA,B is the unit interval, viewed as the nerve of a two-element cover.

The Leray Approach

As Section 8.2.1 already indicated with examples, one can compute homological
information of a space Y with a suitably nice map f : Y → X. We view this
construction from a different perspective. By assuming that X comes with a cover
V, having nerve NV, one can pull-back the associated Čech sheaf on NV along f to
yield local information about Y.

Definition 8.2.13 (Leray Sheaves). The Leray cellular sheaves Ln associated to a
map f : Y → X and a cover V of f(Y) ⊂ X are defined over the nerve NV as follows.
Each simplex σ ∈ NV is assigned the cohomology of the preimage of its support,
i.e., Ln(σ) = Hn(f−1(Vσ);k); furthermore, each face relation σ ⊂ τ is assigned the
map induced on cohomology by the inclusion f−1(Vτ) ↪→ f−1(Vσ).

Remark 8.2.14. • We will sometimes use the notation Fn in place of Ln to
emphasize the association to f : Y → X.

• The absolute homology cosheaf F̂n of Definition 8.2.1 is clearly the cosheaf-
theoretic version of Ln when the cover is given by the open stars of the cells.
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• A More general version of the Leray sheaf is given by the right derived
pushforward of the constant sheaf along the map f.

In the special case where X = Y and f is the identity map, the Leray sheaves
clearly coincide with the Čech sheaves associated to the cover V of X. Thus, the
following result generalizes Proposition 8.2.11.

Theorem 8.2.15. Let f : Y → X be continuous. Assume a cover V of the image
f(Y) ⊂ X whose nerve NV is at most one-dimensional. Then, for each n ∈N,

Hn(Y;k) ∼= H0(NV;Ln)⊕H1(NV;Ln−1).

Proof. The theorem is a simple consequence of the Leray spectral sequence which
packages the cohomology of Y into a coefficient system over the space X from a
map f : Y → X [McC01]. The restriction to a one-dimensional nerve forces the
spectral sequence to collapse on the second page and hence yield the desired iso-
morphisms. More precisely, for each open V ⊂ f(Y), let Cn(V ;R) denote the vector
space freely generated by the set of all cochains defined on V . Clearly if V ⊂ U,
then there is a surjection Cn(U;R) → Cn(V ;R) defined by restriction of cochains.
The sheaf C̃n associated to this presheaf of singular cochains is consequently flabby
(see [Ram05, p. 97]).

Consider the following double complex of vector spaces:

...
...

...
...

C2(Y) //

OO

⊕
dimσ=0 C̃

2(f−1(Vσ)) //

OO

⊕
dim τ=1 C̃

2(f−1(Vτ) //

OO

0

C1(Y) //

OO

⊕
dimσ=0 C̃

1(f−1(Vσ)) //

OO

⊕
dim τ=1 C̃

1(f−1(Vτ) //

OO

0

C0(Y) //

OO

⊕
dimσ=0 C̃

0(f−1(Vσ)) //

OO

⊕
dim τ=1 C̃

0(f−1(Vτ)) //

OO

0

It follows from standard results [Bre97, Thm II.5.5, Thm III.4.13]) that the rows are
exact. By the acyclic assembly lemma [Wei94], the spectral sequence converges to
the cohomology of the leftmost column, i.e., H•(Y;k). If one takes cohomology
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in the vertical direction, one obtains the defined cochain groups associated to the
Leray cellular sheaves Ln:

...
...

...

⊕
dimσ=0H

2(f−1(Vσ)) //
⊕

dim τ=1H
2(f−1(Vτ)) // 0

⊕
dimσ=0H

1(f−1(Vσ)) //
⊕

dim τ=1H
1(f−1(Vτ)) // 0

⊕
dimσ=0H

0(f−1(Vσ)) //
⊕

dim τ=1H
0(f−1(Vτ)) // 0

Taking cohomology horizontally corresponds precisely to computing separately
(in parallel, if one wishes) the cohomology of the Leray sheaves Ln over NV, thus
producing the final stable page of the spectral sequence.

...
...

...

H0(NV;L2) H1(NV;L2) 0

H0(NV;L1)

44

H1(NV;L1) 0

H0(NV;L0)

44

H1(NV;L0) 0

Over a general ring R, these terms prescribe a filtration of the cohomology, giving
rise to extension problems; however, over a field k one can read off the cohomol-
ogy directly.

Note that the proof indicates precisely where we require the one-dimensional
nerve restriction. Without this assumption in place, the second page of the spec-
tral sequence may not be stable and the conclusion of the theorem need not hold.
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A Unifying Perspective

There is a more sophisticated version of the nerve described originally by Se-
gal [Seg68] which is homotopically faithful to the underlying space independent
of the particulars of the cover. This notion has been used in recent applica-
tions [ZC08] and parallelizations for homology computation [LZ].

Definition 8.2.16 (Mayer Vietoris Blowup). Let X be a topological space equipped
with a cover U with nerve NU. The Mayer Vietoris blowup MU associated to U

is a subset of the product X×NU defined as follows. The pair (x, s) lies in MU if
and only if there is some simplex σ ∈ NU for which x ∈ Uσ and s ∈ σ.

Remark 8.2.17. The original description given by Segal is that (up to barycen-
tric subdivision) MU is the classifying space of a topological category, whose
objects are pairs (x,Uσ) with x ∈ Uσ and whose morphisms are pointed inclu-
sions (x,Uσ) → (y,Uτ) where τ ⊂ σ ⊂ I and I is the indexing set of the cover
U = {Ui}i∈I.

Segal provides an updated version of the nerve theorem using this construc-
tion [Seg68, Prop. 4.1]

Lemma 8.2.18 (Generalized Nerve Theorem). If X is a paracompact Hausdorff
space and U = {Ui}i∈I is an open cover of X, then MU is homotopic to X.

Proof. An explicit proof is provided by Segal using linear homotopies. Here we
take a slightly higher-brow approach.

Being a subset of the product,MU is equipped with natural surjective projection
maps

MU
ρ1

~~

ρ2

""
X NU

The map ρ1 has contractible fibers: for any x ∈ X, we have ρ−11 (x) = {x} × σx
where σx is the unique simplex of maximal dimension whose support contains x.
Thus, by Quillen’s Theorem A [Qui73], the Mayer-Vietoris blowup is homotopy-
equivalent to X via ρ1 in full generality.

On the other hand, it is easy to see that the map ρ2 fails to have contractible
fibers precisely when the simplex supports are not contractible. In fact, given
s ∈ NU, the fiber ρ−12 (s) has the homotopy type of the support of σs, which is
the unique simplex of maximal dimension whose realization contains s. Since co-
homology is a homotopy invariant, this leads to the following observation which
unifies the Čech and Leray approaches.
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Proposition 8.2.19. The Leray cellular sheaves Ln associated to the map ρ2 :MU →
NU, where NU is covered by (small neighborhoods of the topological) simplices
{σ}σ∈NU

, are isomorphic to the Čech cellular sheaves Čn associated to the cover U.

Remark 8.2.20. • The commonality between the Čech and Leray approaches
comes as no surprise to anyone sufficiently familiar with spectral sequences
(and would have surprised neither Čech nor Leray).

• Both strategies are examples of distributed cohomology computation because
in order to determine the sheaf Čn or Ln, one only needs to compute coho-
mology locally: of a non-trivial intersection of covering sets in the former
case, or of a small neighborhood of the fiber f−1(x) in the latter case. In prin-
ciple, one can assign each local computation to a different processor, com-
pute the appropriate sheaf cohomology over a decidedly nicer space (either
NU or Y depending on the circumstances), and aggregate this information
to compute the desired cohomology of X.

• By taking the appropriate linear duals and working with cosheaves, all of
our results transform to computations of homology rather than cohomology.

8.2.3 Level Set Persistence Determines Sub-level set Persistence

We will use Theorem 8.2.15 to obtain a non-obvious theorem in persistence,
namely that level set persistence determines sub-level set persistence. By making
use of 8.2.4 we illustrate how one can take the absolute homology cosheaves
(or Leray sheaves) equipped with a barcode decomposition and sweep from left
to right, applying 8.2.5 to determine the barcodes of the associated sublevel set
persistence modules. An example is drawn in Figure 32. Stated formally, we have
the following theorem.

Theorem 8.2.21 (Level Set to Sublevel Set Persistence). Let Fk denote the Leray
sheaf associated to a proper map f : X → R, whose stalk at x is the cohomology
of the fiber Hk(f−1(x)). We can define a functor

Sk : (R,6)op → Vect Sk(t) := H0((−∞, t]; Fk)⊕H1((−∞, t]; Fk−1) ∼= Hk(f−1(−∞, t])

whose value records the cohomology of the entire sublevel set. The maps

Sk(t ′)→ Sk(t) t 6 t ′
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figure 32: Determining Sub-level Set from Level Set Persistence



8.2 approaching persistence with sheaves and cosheaves 158

are defined sheaf theoretically by observing that we have maps

H0((−∞, t ′]; Fk)→ H0((−∞, t]; Fk) H1((−∞, t ′]; Fk−1)→ H1((−∞, t]; Fk−1)

the sum of which define the desired map.

Observe that since f : X → R is a proper map, the restriction of f to X6t :=

f−1((−∞, t]) is also a proper map. Consequently, we can apply Theorem 8.2.15 to
the space X6t instead, but we have to restrict the sheaves to the subspace (−∞, t].
Fortunately, restriction of a sheaf to a subspace is a standard operation in the
Grothendieck six-functor formalism, presented in 2.5.2: If ι : (−∞, t] ↪→ R is the
inclusion, then the application of Theorem 8.2.15 to the restriction reads

Hk(X6t;k) ∼= H0((−∞, t]; ι∗Fk)⊕H1((−∞, t]; ι∗Fk−1)

The upshot of this formula is that we can define a family of vector spaces, one
for each t ∈ R that records the cohomology of the sublevel set X6t

S(t) := H0((−∞, t]; ι∗Fk)⊕H1((−∞, t]; ι∗Fk−1)

given by computing sheaf cohomology of the restriction of the Leray sheaves to
the subspace (−∞, t]. What remains to be shown is that there are maps

S(t ′)→ S(t) t 6 t ′

that can be defined purely sheaf-theoretically. To do this, we will make use of
some standard adjunctions in sheaf theory.

Theorem 8.2.22. Let f : Y → Z be a continuous map. The functors f∗ : Shv(Z) →
Shv(Y) and f∗ : Shv(Y)→ Shv(Z) form an adjoint pair (f∗, f∗) and thus

HomShv(Y)(f
∗G, F) ∼= HomShv(Z)(G, f∗F).

In the above adjunction for sheaves, let Y = (−∞, t], Z = (−∞, t ′] and f = j be
the inclusion of Y as a closed subspace of Z. Observe that if we set F = j∗G in the
above adjunction, then we get an isomorphism

HomShv(Y)(j
∗G, j∗G) ∼= HomShv(Z)(G, j∗j∗G).

that is natural in G. This defines the unit of the adjunction:

idShv(Y) → j∗j
∗.
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We recall a basic theorem about the pushforward sheaf along a closed immer-
sion [Ive86, II.5 p. 102].

Proposition 8.2.23. For j : Y ↪→ Z the inclusion of a closed subspace, the functor
j∗ : Shv(Y) → Shv(Z) is exact, i.e. it sends exact sequences of sheaves to exact
sequences of sheaves. Moreover, j∗ is always exact.

Lemma 8.2.24. Suppose j : Y ↪→ Z is the inclusion of a closed subspace and F is a
sheaf on Z, then there is an induced map from the cohomology of F on Z to the
cohomology of j∗F on Y.

Hi(Z; F)→ Hi(Y; j∗F)

Proof. We can read off the proof from the following diagram of spaces.

Y �
� j //

pY ��

Z

pZ��
∗

Sheaf cohomology is defined as the right derived functor of pushforward to a
point. If we want to compute sheaf cohomology of F, one takes an injective reso-
lution of F

0→ F→ I•

and applies pZ∗ to the injective resolution.

RpZ∗F := pZ∗I
•

This results in a chain complex of vector spaces, whose cohomology is the sheaf
cohomology of F. We usually save this step for last as it takes us out of the
category of chain complexes of vector spaces and into the category of graded
vector spaces. This is written as follows.

RipZ∗F := H
i(pZ∗I

•) =: Hi(Z; F)

Since j∗ is exact we will consider an injective resolution of F and pull that back to
an injective resolution of j∗F. Observe the following string of identities.

RpY∗j
∗F := pY∗j

∗I•

= (pZ ◦ j)∗j∗I•

= pZ∗j∗j
∗I•
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The unit of the adjunction defines a map of sheaves

F→ j∗j
∗F,

which also defines a map on complexes of sheaves and hence injective resolutions.

I• → j∗j
∗I•

Because j∗ and j∗ are exact and preserve injectives, j∗j∗I• is an injective resolution
of j∗j∗F, thus

RpZ∗j∗j
∗F = pZ∗j∗j

∗I• = RpY∗j
∗F

and hence the unit of the adjunction defines a map

RpZ∗F→ RpY∗j
∗F ⇒ Hi(Z; F)→ Hi(Y; j∗F.)

Remark 8.2.25 (Abuse of Notation). Common practice in the sheaf literature is to
suppress the notation j∗F and to just write

Hi(Y; F) := Hi(Y; j∗F).

The reasoning is that F is a sheaf on Z and hence the only way to parse the formula
on the left is to realize that the sheaf must be restricted to the subspace Y.

As a corollary we obtain our desired result, Theorem 8.2.21.

8.3 multidimensional persistence

One of the single greatest theoretical challenges to topological data analysis is
a foundation for multi-dimensional persistence [Les12]. To consider why data
analysts might want such a thing, consider the following example.

Suppose X is the shape depicted in Figure 33. A common feature of interest in
applications [LSL+

13] is the presence of flares or tendrils. Sublevel set persistence
provides a method for detecting such features. Consider the pth eccentricity
functional on X:

Ep(x) :=

(∫
y∈X

d(x,y)pdy
)p

.
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If we filter by superlevel sets, the four endpoints of the perceived flares in Figure
33 will come into view. Said using homology, there are a suitable large range of
values t for which Ep>t := {x ∈ X |Ep(x) > t} will have

H0(E
p
>t;k) ∼= k4.

This formally expresses the four flare-like features we see in the space X.
Now suppose that we are not just interested in the number of eccentric fea-

tures, but rather we are interested in holes with high eccentricity value, i.e. the
persistence module

H1(E
p
>t;k)

is of interest. However, what size of hole is of interest, and what can be regarded
as noise? In other words, what is the behavior of the two-parameter family of
vector spaces

MP1(t, r) := H1((E
p
>t)

r;k)

where Yr denotes the set of points within distance r of a subspace Y. This family
of vector spaces defines a functor

MP1 : (R
2,6)→ Vect where MP1(t, r) := H1((E

p
>t)

r;k)

where R2 is viewed as a poset under the relation (t, r) 6 (t ′, r ′) if and only if t ′− t
and r ′ − r are non-negative numbers.

This gives the general definition of a multidimensional persistence module as
introduced in [CZ09].

Definition 8.3.1 (Multi-dimensional Sub-Level Set Persistence). Suppose we are
given a map f : X → Rn, with coordinate functions f(x) = (f1(x), . . . , fn(x)). The
ith multidimensional persistence module is defined to be the functor

MPi : (R
n,6)→ Vect (t1, . . . , tn) Hi({x ∈ X | fj(x) 6 tj, 1 6 j 6 n};k)

Critique of the Definition of Multi-D Persistence

There are a few problems that such a definition suffers from:

• Such a definition is strongly dependent on the particular choice of basis
given to Rn. If one is given an abstract function f, valued in say a manifold
M, then the definition fails.

• The definition is not local.
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figure 33: A Shape Described with Multi-D Persistence

• There is no decomposition theorem akin to Theorem 6.3.3. There are no bar-
codes. This is fundamentally due to Gabriel’s Theorem 6.3.23, but an explicit
example is provided in [CZ09, Sec.5.2], which suggests other invariants as
well.

Sheaves and cosheaves overcome the first problem by putting level set persis-
tence as the primary object of interest. Locality is also provided by using sheaves.
Our definition of a multi-dimensional persistence module is simply the Leray
sheaf.

Definition 8.3.2 (Multi-D Persistence as the Derived Pushforward). Suppose f :

Y → X is a continuous map. The right derived pushforward of the constant sheaf
Rf∗kY is gotten by taking a resolution of kY by the complex of singular cochains C̃•
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and pushing forward along f. The Leray sheaves are the nth cohomology sheaves
of this complex, i.e.

Fn := Hn(f∗C̃
•) =: Rnf∗kY .

If f is proper, then the stalks of Fn record the cohomology of the level set, i.e.
Fnx

∼= Hn(f−1(x);k). We define nth multi-dimensional level set persistence of a
proper map f : Y → X to be the Leray sheaf Fn.

Remark 8.3.3. If f is not proper, then one can use the pushforward with compact
supports to encode the compactly supported cohomology of the fiber.

One can always obtain the traditional sub-level set definition from this defini-
tion by using a multi-dimensional version of Theorem 8.2.21, the Leray spectral
sequence.

Sheaves also suffer from the lack of a nice set of indecomposables, but the
Grothendieck operations provide one possible approach.

8.3.1 Generalized Barcodes

The need for a generalized notion of a barcode comes from the need to communi-
cate topological summaries to non-topologists. A scientist can easily understand
a histogram and the barcode is only subtly different from a histogram.

Definition 8.3.4 (Generalized Barcodes). Suppose Fn is the Leray sheaf associated
to a proper map f : Y → X. A generalized barcode for Fn is the expression of F as
follows.

Fn ∼=
⊕
b∈B

(jb)!kZb

where jb : Zb → X are maps indexed by the barcode B and where each (jb)!kZb is
assumed to be indecomposable.

Remark 8.3.5. It is not clear when or if such a generalized barcode exists for a
given f : Y → X and n.

An example barcode is provided in Figure 34 and discussed in the next exam-
ple.

Example 8.3.6 (Shadow of the Sphere). Consider the standard Euclidean sphere
S2 embedded in R3. Let f : S2 → R2 be the projection onto the first two factors of
R3. The image X = f(S2) is the closed unit disk.
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B0!

figure 34: Two Dimensional Barcodes for the Sphere

One can use a multi-D analog of Corollary 8.2.5 to determine the homology of
the two-sphere.

H0(S
2) ∼= H0(X; F̂0) ∼= k H1(S

2) ∼= H1(X; F̂0) ∼= 0 H2(S
2) ∼= H2(X; F̂0) ∼= k



9
N E T W O R K C O D I N G A N D R O U T I N G S H E AV E S

In the previous section, we introduced the language of barcodes and integrated
them with a cosheaf-theoretic perspective on Morse theory and persistent homol-
ogy. The fundamental idea was that by decomposing a cosheaf into indecompos-
ables, we were able to understand cosheaf homology via the Borel-Moore homol-
ogy of the barcode. In this section, we attempt to do the same thing for cellular
sheaves on graphs. We apply the barcode perspective, wherever possible, to a
class of sheaves introduced by Robert Ghrist and Yasuaki Hiraoka [GH11]. These
sheaves were specifically designed to model the flow of information over graphs
and the generalized barcode decomposition can aid in visualizing this flow.

First, we review some basic definitions for graphs.

Definition 9.0.7. Let X be a directed graph consists of a pair of sets E and V of
edges and vertices and a pair of functions h, t : E → V that return the head and
tail of an edge respectively. A directed edge goes from its tail to its head. The set
of incoming edges to a vertex v, written in(v), is the set of edges whose heads
are v, i.e. h−1(v). The set of outgoing edges at v is the set of edges whose tails are
at v, i.e. t−1(v) = v.

Definition 9.0.8. Let X be a directed graph with vertex set V and edge set E. A
capacity function is a function c from the edge set to either the non-negative reals
R>0 or the non-negative integers Z>0.

Definition 9.0.9 (Network Coding Cell Sheaf). Suppose X is a directed graph with
a capacity function c. A network coding sheaf on X is a cellular sheaf F : X→ Vect
constructed as follows:

• To an edge e ∈ X we let F(e) = kc(e), a vector space of dimension equal to
the capacity.

• To a vertex v we let F(v) = kc(v) ∼= ⊕ei∈in(v)k
c(e).

• The restriction maps are given by ordinary projections for the incoming
edges, i.e. ρei,v := projF(ei) for ei ∈ in(v), but for the outgoing edges some

165
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non-trivial coding may be performed, i.e. any linear map Φek,v : F(v) →
F(ek) for ek ∈ out(v) will do. We write Φv = ⊕ek∈out(v)Φv,ek for the total
coding through v.

Remark 9.0.10. It should be noted that in [GH11], they do not use cellular sheaves.
This was primarily due to the lack of a good reference.

s

t!

b ca

figure 35: Graph with Decoding Wire

In [GH11] they do not define network coding sheaves for arbitrary directed
graphs. Instead, they consider a graph with a distinguished set of sources and
targets (senders and receivers) and they augment the graph by adding decod-
ing wires directed to go from a target vertex back to a subset of source vertices.
Heuristically for Ghrist and Hiraoka, the purpose of these edges is to make global
sections of this sheaf correspond to closed loops through the graph. This topo-
logical reasoning is correct, but oversimplifies how network codings can produce
counterintuitive weavings and splittings of data.
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Example 9.0.11. Consider the graph in Figure 35 with constant capacity function
c = 1. Consequently, all edges and vertices get a one dimensional vector space
k = R with the exception of F(t) ∼= k2. Define the coding maps ρa,s = id = ρb,s
and

ρc,t =
[
1
2

1
2

]
.

We pick a local orientation implied by the source and target vertices. The one and
only coboundary matrix can be written as follows:

δ0 :=

−1 1 0

−1 0 1

1 −1/2 −1/2


Consequently, H0(X; F) ∼= H1(X; F) ∼= k. The one global section is supported over
the entire graph; it is not simply a loop through the graph.

The previous example of a network coding sheaf is an example of an indecom-
posable sheaf that is not a generalized barcode in the sense of Definition 8.3.4.
To better understand the flow of data over graphs, as well as the utility of the
barcode perspective, we consider a simpler class of network coding sheaves.

9.1 duality and routing sheaves

Definition 9.1.1 (Routing Sheaf). A particular type of network coding sheaf is a
routing sheaf. Here we assume that the capacity function is constant c = 1, and
the coding maps Φv can be written as a binary matrix with at most one 1 in each
column and row. Said another way, at a vertex v the total coding map maps to
zero as many incoming edges as desired, so long as there is a bijection of the
remaining incoming edges and a subset of the outgoing edges. The total coding
map through v is then a matrix representation of this bijection.

The advantage of routing sheaves is that they are simple to visualize: Start at
a source and use a color pen to track how an edge emanating from that source
gets bounced around under the routing directions at each subsequent vertex. If
at any point in your drawing you run into a vertex that sends your edge’s data to
zero, stop on that vertex with your pen. This argument essentially establishes the
following proposition.

Proposition 9.1.2 (Structure Theorem for Routing Sheaves). Suppose X =

(V ,E,h, t) is a directed graph, then every routing sheaf F : X → Vect can
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be realized as the pushforward with compact support of a disjoint union of
half-open intervals [—[ or circles, whose images can intersect only at vertices.

A consequence of this result combined with Poincaré duality is the following
corollary.

Corollary 9.1.3 (Duality). For any routing sheaf F one has

H0(X; F) ∼= H1(X; F).

Proof. By Proposition 9.1.2, every network coding sheaf can be written as a direct
sum of constant sheaves supported on half-open intervals or circles. Half-open
intervals embedded into compact spaces (extending by zero using j!) have trivial
cohomology in both degrees. Poincaré duality for S1 establishes the corollary.

One can also prove this duality in the more general setting of network coding
sheaves via a simple combinatorial argument.

Proposition 9.1.4. For an any network coding sheaf F, we have the following
isomorphisms: ⊕

v

F(v) ∼=
⊕
e

F(e) H0(X; F) ∼= H1(X; F)

Proof. By construction of a network coding sheaf there is a bijection between the
sum of the vector spaces over the edges e ∈ in(v) and the vector space over the
vertex v. ⊕

e∈in(v)
F(e) = F(v).

By definition of a graph, every edge is the incoming edge for a unique ver-
tex. Thus, by summing over all vertices, we sum over all edges without double-
counting. This proves the first isomorphism. The second isomorphism follows by
the rank-nullity theorem.

Ideally, one could interpret these cohomology groups as something meaning-
ful to obtain a useful duality result, but this is still missing. Ghrist and Hiraoka
interpret H0 as a vector space spanned by independent information flows, but
in the case of routing sheaves, H1 is the group that counts closed trajectories
of information flow. For routing sheaves, one could say that the Poincaré dual
of the fundamental class of an information loop would yield a point whose re-
moval would cease the flow of information. One might call this a “cut equals
flow” theorem. This is only a pale shade of the greater “Max-Cut Min-Flow” the-
orem [EFS56, FF56, Sey77], which compares the maximum possible flow with the
minimum capacity cut required to disconnect the graph.
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9.2 counting paths cohomologically, or failures thereof

Regardless of network coding sheaves connections with duality, one would like to
know what information cellular sheaf cohomology can capture over a graph. Is
it possible, for example, to build a sheaf that encodes source-to-target paths coho-
mologically? Suppose we allow the source to have its own independent capacity,
without regard for the number of incoming edges. As the next example shows
such a “pseudo network coding” (NC) sheaf cannot encode source-to-target paths
cohomologically.

figure 36: No Decoding Edge figure 37: Decoding Edge

Example 9.2.1 (Decoding Edge and Barcodes). In Figures 36 and 37, the barcode
decomposition of a network coding sheaf is drawn with and without a decoding
edge. With the particular choices made there is no flow from source to target. Yet
the sheaf in Figure 36 decomposes as the constant sheaf on two half open intervals
and two closed intervals:

Fno ∼= (jo)!k[0,1) ⊕ (jb)!k[0,1) ⊕ (ir)∗k[0,1] ⊕ (ig)∗k[0,1] ⇒ H0(X; Fno) ∼= k2.
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This is bad if we want our sheaf to encode cohomologically the presence of source-
to-target information paths.

However, with the use of a decoding edge (decoding edges) the network de-
composes into only two half open intervals:

Fde ∼= (jr)!k[0,1) ⊕ (jg)!Sk[0,1) ⇒ H0(X; Fde) ∼= 0

which was wanted.

9.3 network coding sheaf homology

One of the virtues of the network coding sheaves is that they are easy to construct,
have interesting sheaf cohomology, and provide lots of examples. As such, we will
use them as a testing ground for the new theory of sheaf homology developed in
Section 7.4.

Example 9.3.1. Consider the network coding sheaf implied by Figure 38. Viewed
as a diagram of vector spaces, it takes the following form:

ks

1~~ 0   ''
ka kb kc

k2t

π1
__

π2
??

π1

77

Since the category of complexes of sheaves is additive, we can consider each in-
decomposable sheaf separately and compute its sheaf homology. If one considers
just the red loop as a constant sheaf (barcode) R, it takes the following form:

ks

1~~ �� ''
ka 0 kc

kt

1
`` @@

1

77
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figure 38: Network Coding Sheaf

A projective sheaf that surjects onto R is supported on the star of s and t respec-
tively, i.e. P0 := {s}⊕ {t}:

ks

1{{ ## **
ks ⊕ kt ks ⊕ kt ks ⊕ kt

kt

1
cc ;;

1

44
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The kernel sheaf of the natural transformation P0 ⇒ R is also projective, which
we call P1 and finishes the projective replacement of the sheaf R.

0

|| "" ))
[1 − 1] ks ⊕ kt [1 − 1]

0

bb << 55

If we take the colimit of P1 and P0 separately, the sheaf map P1 → P0 induces a
map on colimits that defines the boundary in the chain complex computing sheaf
homology:

∂1 : k
4 → k2

[
1 1 0 1

−1 0 1 −1

]
⇒ H0(X;R) = 0 H1(X;R) ∼= k2

Repeating the same reasoning for the green barcode G yields homology groups
H0(X;G) = 0 and H1(X;G) ∼= k. Since our original network coding sheaf F is a
direct sum R⊕G we obtain that the sheaf homology of the sheaf in Figure 38 is

H0(X; F) = 0 H1(X; F) ∼= k3.

Exercise 9.3.2. As an exercise, and to indicate the sensitivity of sheaf homology
to its embedding, we ask the reader to verify that the sheaf homology groups of
the sheaf in Figure 39 are

H0(X; F) = 0 H1(X; F) ∼= k8.
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figure 39: Network Coding Sheaf with Two Decoding Wires
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S H E AV E S A N D C O S H E AV E S I N S E N S O R N E T W O R K S

“What strength, what art can then suffice, or what evasion bear him safe
through the strict sentries and stations thick of angels watching round?”

— John Milton, Paradise Lost, Book II, Line 410 [MP08]

In this section, we consider a candidate application of sheaves and cosheaves
to problems in sensor networks. Section 10.1 outlines some real-world sensors
as well as their mathematical abstraction. With this abstraction in hand, we con-
sider in Section 10.2 the classic problem of determining when a sensor network
has completely covered a region. The introduction of time-dependent sensor net-
works necessitates the sheaf-theoretic approach, despite the fact that it is unwieldy
in its most general form.

In Section 10.3 we attempt to “linearize” the sheaves and cosheaves used in
studying sensor networks in the hope that sheaf cohomology and cosheaf homol-
ogy will give us an obstruction-theoretic approach to sensing. An approach of
Henry Adams is considered in Section 10.3.1, as well as his counter-example to
that approach. By using cosheaf-theoretic reasoning, we give a principled explana-
tion for why this approach fails in Proposition 10.3.1. An approach of the author
and Robert Ghrist is then considered in Section 10.3.2. This approach succeeds
where the previous approach fails, but it too suffers from giving false positives, as
the example in Proposition 10.3.8 shows. The example constructed there, which
is joint with David Lipsky, uses one of the 12 indecomposable representations of
the Dynkin diagram D4.

Finally, a linear model for multi-modal sensing is presented in Section 10.4.
It was there that the author realized the necessity of using indecomposables to
interpret sheaf cohomology computations. A delightful examination of the act
of sensing in Section 10.4.1 shows how sheaves and cosheaves work in tandem.
Theorem 10.4.4 uses a long exact sequence in sheaf cohomology to obtain a forcing
result in multi-modal sensing. Finally, the role of higher-dimensional barcodes in
multi-modal sensing is considered in Section 10.4.2.

174
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10.1 a brief introduction to sensors

Sensors are devices with delimited purview. They can measure certain properties
and interact with occupants of a particular part of space-time. Examples abound
in our world and they operate via differing modalities. Here are a few examples:

Example 10.1.1 (Sight). Our eyes are highly tuned sensors that can detect photons
with certain frequencies (visible light and colors) and their spatial range can be
on the order of kilometers. Some man-made satellites orbiting the Earth have
cameras with a greater spatial resolution and frequency response — they help us
navigate by providing detailed pictures of roads, weather and climate. Eyes and
satellites have a large scale and are very expensive. Cheaper sensors which can
read only very coarse changes in light levels are found in our traffic lights, door
ways and bathrooms.

Example 10.1.2 (Weight and Pressure). Buried in roads or placed under door mats
are sensors designed to respond to pressure. These open doors or gates or initiate
changes in traffic signals. Some are more passive and merely collect data. A cable
as thick as a thumb can be laid across a road and will record when something
heavy (like a car) drives over it. Two spikes in pressure close in time indicate
when a car’s front and back wheels respectively drove over the cable. From this
city officials can measure how fast cars are going as well as density and total
volume of traffic.

Example 10.1.3 (Radio Frequency ID). Some readers probably have a university
card, or building card, that grants them access through locked doors merely by
tapping on a sensor. Commuters drive cars equipped with sensors that allow
them to pass through tolls without stopping. Some scientists tag animals to study
a species’ habits and movements. In all these cases, the sensor or the tag emits
an electromagnetic field with limited spatial range (a few centimeters, meters, or
kilometers) and only when inside this range is a tuned circuit thereby completed,
connecting the sensors (card reader, toll booth, etc.) with the things being sensed
(ID card, tag, etc.).

Although the physical mechanisms that allow each of these sensors to sense is
different, there are some broad commonalities: spatially localized sensors return
data in the presence of certain occupants, which we call intruders.
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figure 40: Sensors Distributed in a Plane

10.2 the coverage problem : static and mobile

The way we model sensors is to first identify the physical domain where the
sensing is taking place — a two-dimensional Euclidean plane could represent the
floor of a building — and we represent the sensors spatially via their support —
a door mat with pressure sensors would be a rectangle in the plane. Or we could
think of the field of view of a camera in a ceiling pointed directly down as a disk
in the plane.

For the moment we ignore the type of data a sensor reports (we’ll take that
up later when we work with sheaves and cosheaves) and instead we consider the
coverage problem: Given a collection of sensors distributed in a physical domain
D, can we monitor the entire region without gaps?

If we have good knowledge of the sensors which live on the boundary of our re-
gion, then we can, following the work of Vin de Silva and Robert Ghrist [dSG06b],
give a certificate of coverage using relative homology. However, we frame this
question using sheaves of sets instead, so as to better handle the time-dependent
scenario.1

Definition 10.2.1. Let D be a spatial region of interest and denote by D× [0, 1]
a region of space-time. This carries with it a map that keeps track of time via
projection onto the second factor, i.e. π2 : D× [0, 1] → [0, 1]. We assume that D
can be given a cell structure so that the sensors’ coverage region S ⊂ D× [0, 1]
and the evasion region E := Sc can be written as the union of cells. To study
the intruder problem is to analyze the associated sheaf of sections of the map
π := π2|E : E → [0, 1], which we assume can be made cellular. Saying that there is
an evasion path is to say there is a global section of this map, i.e. a s : [0, 1] → E

such that π ◦ s = id.

1 The author would like to thank Gunnar Carlsson and Rob Ghrist for their insights here.
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figure 41: The Space-Time Perspective

figure 42: Mobile Sensor Network

Example 10.2.2. For the situation depicted in Figure 41, the intruder problem has
a clear answer. An intruder can evade detection by residing in either one of the
two holes present. Picking a point and then resting there for all time determines
a global section of the time projection map.

It should be clear that our sheaf-theoretic question is equivalent to a much
simpler one: “Is the complement of the sensed region (the uncovered region) in
D non-empty?” Thinking in terms of sheaves, at this point, buys us nothing.

Where sheaves begin to offer a hint of leverage is in the time-dependent sce-
nario. Here we imagine the sensors can move around in our domain D. Now it is
possible that the sensed region S does not look like a product of space and time.

Example 10.2.3. In Figure 42 we imagine that there is a one-dimensional environ-
ment of interest that sits vertically over each point on the time axis. Between the
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black lines is a region that is currently being unmonitored. To begin there is only
one connected component of the unmonitored region. As time marches forward
to the right a second connected component of the unmonitored region opens up,
followed shortly by a third. Two of these three merge and then disappear leaving
only one component of unmonitored territory.

In this case the non-existence of an evasion path is clear: no intruder could have
gone undetected without time-traveling. This corresponds to the ready-seen fact
that this map has no section, i.e. there does not exist a map s : [0, 1]→ E such that
π ◦ s = id.

What is the purpose of considering sheaves at all? If we can stare at the drawing
and detect whether a section exists or not, why bother with high-flown machin-
ery? However, what is easily seen in toy examples, can quickly become unmanage-
able. The only mathematics that formalizes intuition about sections is sheaf theory
and moreover, once formalized using cellular sheaves, it can be programmed on
a computer.

However, there is a disadvantage with using sheaves of sets. We’d like to be
able to calculate an obstruction that would certify whether a global section exists
or not. One of the stated purposes of using sheaf cohomology is to provide such
a calculable obstruction. Unfortunately, cohomology requires the linear structure
of vector spaces, which we do not have here. In the next section we consider what
happens when we naïvely “linearize” the sheaf of sections of a map.

10.3 intruders and barcodes

In this section, we use cellular sheaves and cosheaves to analyze the intruder
problem in the time-dependent case. We assume that the time projection map π
is cellular in order to take advantage of the functors in Section 5. By putting a
sheaf or cosheaf on the evasion region and pushing forward along π, we reduce
the intruder problem to one dimension where we can use the barcode perspective
of Section 8. There are two main approaches, both of which have their drawbacks:

• One approach is to study the homology of the evasion region at each mo-
ment in time π−1(t). By Theorem 11.2.17, this determines a cellular cosheaf.

• The second approach is to linearize the space of sections of the map π. To
make the space of sections finite, we pass to the Reeb graph of the evasion re-
gion. This determines a cellular sheaf and stays true to the original intruder
problem.
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figure 43: Mobile Sensor Network

10.3.1 Tracking the Topology over Time

To simplify the topology, we focus on the Reeb graph version of Figure 42. This is
drawn and labeled in Figure 43. Since everything is occurring in two-dimensional
space-time, the only interesting homological invariant of the fiber is H0. Studying
this is equivalent to studying the pushforward cosheaf F̂ := π∗k̂E. In the parlance
of [CdS10], this is simply a zigzag module of the following form:

F̂(x) F̂(a)
rx,aoo

ry,a // F̂(y) F̂(b)
ry,boo

rz,b // F̂(z) F̂(c)
rz,coo

rw,c // F̂(w)

kx kaoo // k2y k3b
oo // k2z kcoo // kw

If we choose for each cell in [0, 1] the ordered basis given by the top down order-
ing on the page of the cells in the fiber we get the following matrix representations
of the extension maps:

ry,a =

[
1

0

]
ry,b =

[
1 0 0

0 1 1

]
rz,b =

[
1 1 0

0 0 1

]
rx,c =

[
0

1

]
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We can decompose this cosheaf into indecomposables simply by performing the
correct change of basis:

[
y ′1 = y1

y ′2 = y1 − y2

] b ′1 = b1 − b2 + b3b ′2 = b1 − b2

b ′3 = b2 − b3

 [
z ′1 = z2

z ′2 = z1 − z2

]

The reader should match the resulting indecomposables with the barcodes drawn
in Figure 43.

kx kaoo // ky ′1
kb ′1

oo // kz ′1
kcoo // kw

0 0oo // ky ′2
kb ′2

oo // 0 0oo // 0

0 0oo // 0 kb ′3
oo // kz ′2

0oo // 0

The presence of a long barcode may seem surprising. It indicates that there
is a connected component of the evasion region that persists for all time. The
following proposition explains why this long barcode must exist.

Proposition 10.3.1. Suppose E ⊂ D× [0, 1] is a compact connected evasion region
such that π = π2|E is surjective, i.e. there is at each point in time somewhere an
intruder can evade detection, then the Remak decomposition of π∗k̂E must have a
barcode that stretches the length of [0, 1].

Proof. The proof starts with the easy observation that if f : Y → X is a continuous
map and Ĝ is a cosheaf on Y, then we have that H0(Y; Ĝ) ∼= H0(X; f∗Ĝ). This
follows from the commutativity of the following diagrams and functoriality of
pushforward.

Y
f //

p

��

X
p

��
?

Ĝ
f∗ //

p∗

&&

f∗Ĝ
p∗

xx

p∗Ĝ ∼= (p ◦ f)∗Ĝ
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Setting Y = E, X = [0, 1], f = π and Ĝ = k̂E, we can use the fact that E is connected
to get that p∗k̂E ∼= H0(E; k̂E) ∼= k. We know that any (co)sheaf over [0, 1] can be
written as a direct sum of constant (co)sheaves supported on barcodes.

π∗k̂E ∼= k̂B1 ⊕ · · · ⊕ k̂Bn and

Now we combine this with the fact that homology commutes with direct sums.

k ∼= H0(E; k̂E) ∼= H0([0, 1];π∗k̂E) ∼=
⊕
i

H0([0, 1]; k̂Bi) ∼=
⊕
i

HBM0 (Bi).

Consequently, there can be only one closed barcode. We argue that this unique
closed barcode must have support on all of [0, 1]. Since we know that the constant
section 1E ∈ Γ(E; k̂X) has support on all of E, the pushforward section π∗1E that
generates the closed barcode must have support on all of [0, 1], since π is surjective.

Remark 10.3.2. We have implicitly used sheaf-theoretic reasoning with H0 taking
the place of H0. The argument about the support of the section is better expressed
using stalks.

As a consequence, we obtain a negative result, which is almost identical to a
result of Henry Adams.

Corollary 10.3.3. Having a barcode associated to π∗k̂E whose support is all of [0, 1]
does not indicate the existence of an evasion path.

Remark 10.3.4. The above proof gives a cosheaf-theoretic explanation of why we
shouldn’t expect barcodes to detect the existence of an evasion path. Homology
of the evasion region is not sensitive to its embedding, thus a long barcode will ap-
pear even if it is embedded in a way that would require an intruder to time travel.
In this sense, Corollary 8.2.5 can be interpreted as a stability result: although half-
open barcodes can pop in and out of existence, based on the embedding, there
must always be one and only one closed barcode.

10.3.2 Linearizing the Sheaf of Sections

In light of the inability of the pushforward cosheaf π∗k̂E to distinguish when an
evasion path exists or not, we return to the original sheaf-theoretic formulation of
the intruder problem. To make the sheaf of sections finite enough to work with,
we take the Reeb graph of the map π : E→ [0, 1]. From this setup, we can extract
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figure 44: Sheaf of All Possible Evasion Paths

a cellular map of 1-dimensional cell complexes, normally called π̃ : R(π) → [0, 1],
but we will abuse notation and assume that our input π : E → [0, 1] is already a
Reeb graph.

By picking a directionality of [0, 1] we can endow E with the structure of a
directed graph. On this directed graph we can define the following cellular sheaf,
which is meant to pushforward to a linear model of the sheaf of sections. It is
very closely related2 to the network coding sheaves defined in Section 9.

Definition 10.3.5. Let X be an acyclic directed graph. We define a cellular sheaf G
that assigns to an edge the one-dimensional vector space k and assigns to a vertex
the space freely generated by all possible directed routings through that vertex.

We allow special treatment to a subset of sources S and sinks T , where we allow
G(v) = kout(v) for v ∈ S and G(v) = kin(v) for v ∈ T . All other sources and sinks
get the zero vector space. The restriction mappings send a routing to the edges
that participate in that routing.

Example 10.3.6. For a concrete example, where we focus on a small part of a
graph, consider the graph in Figure 44. The definition of the sheaf G makes

G(v1) =< ei⊗ fj | i = 1, 2; j = 1, 2, 3 >∼= k6 ρei,v1(ej⊗ fk) = δij ρfj,v1(ei⊗ fk) = δjk

2 In a sense, the sheaf defined here gives all possible codings. It approximates a “stack” of
network coding sheaves.
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figure 45: Linearized Sheaf of Sections

and we choose to make G(v2) = 0. The reason we have decided to set G(v2) = 0

comes from the extra information of the projection map to [0, 1]. We call such
a vertex an internal source or sink. In the context of the intruder problem, an
internal source represents an impossible entry point for an intruder. If we push
the sheaf G along the projection map π we then get the following assignments of
data:

π∗G(e) ∼=< e1, e2, e3 > π∗G ∼= G(v1) π∗G(f) =< f1, f2, f3 >

Example 10.3.7. Let us consider the example drawn in Figure 45, but now with
the sheaf just defined. We set F = π∗G, whose values are below:

F(x)
ρa,x // F(a) F(y)

ρa,yoo
ρb,y // F(b) F(z)

ρb,zoo
ρc,z // F(c) F(w)

ρc,woo

kx // ka kyoo // k3b kzoo // kc kwoo

The two restriction maps of any interest include into the top section and the
bottom section, respectively.

ρb,y =

10
0

 ρb,z =

00
1


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figure 46: Counterexample for the Linearized Sheaf of Sections

Without a change of basis one can see that this sheaf splits as the direct sum of
indecomposables, whose barcodes are drawn in Figure 45.

The previous example offers a glimmer of hope. No intruder can evade detec-
tion and the absence of a long barcode reflects that. Moreover, the sheaf cohomol-
ogy computation shows H0([0, 1]; F) ∼= 0, which would be a promising shortcut
to computing barcodes. Alas, the linearized sheaf of sections fairs no better than
the cosheaf of components. Here we provide a counterexample, joint with Dave
Lipsky, to either of the hopes that non-zero H0([0, 1]; F) or a long barcode provides
an if and only if criterion for the existence of an evasion path.

Proposition 10.3.8. Although it is true that the existence of an evasion path im-
plies the existence of a long barcode (and thus H0([0, 1]; F) 6= 0) it is not true that
having a long barcode (or H0([0, 1]; F) 6= 0, which is a weaker condition) implies
the existence of an evasion path.

Proof. In Figure 46 we have drawn the counter-example, which we now explain.
The component coming into p appears immediately after time 0, so it is impossible
for an intruder to enter there. Similarly, there is a component leaving from q that
closes up right before time 1. The pushforward sheaf then takes the following
form

kx // k2a k3y
oo // k3b k3z

oo // k2c kwoo
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The maps from F(y) and F(z) to F(b) are the identity maps. The two maps that
require some inspection are built out of a projection and a trace map.

ρa,y =

[
1 0 0

0 1 1

]
ρc,z =

[
1 1 0

0 0 1

]
.

The change of basis required to obtain the desired Remak decomposition indi-
cated by the barcodes is not so easily seen. The interval decomposition algorithm
outlined in [CdS10] provides a sure-fire method of obtaining it. It is left to the
reader to verify the the barcodes in Figure 46.

Instead, we give a sheaf-theoretic justification for the existence of a long bar-
code. There is a unique non-zero global section of G and it is supported every-
where except on the prong incoming to p and outgoing from q. Explicitly, it
comes from choosing a compatible kernel for the restriction matrices ρa,y and
ρc,z. At q the routing through the top path is annihilated by the “negative” of
the routing through the bottom path; it is as if two intruders are traveling with
opposite charges. As a consequence, its support surjects onto all of [0, 1]. Since
H0([0, 1]; F) ∼= k we can infer the existence of one closed barcode, and because this
section has global support, the barcode must be long.

Remark 10.3.9 (Dynkin Diagrams and Stalks). Recall that F := π∗G. Consider
the sheaf G implied by Figure 46. When restricted to the open stars at p and
q separately G is equivalent to one of the 12 indecomposable representations of
the Dynkin diagram D4; see [EGH+

11], p. 83. Since the open stars intersect,
one can show that the entire sheaf G on E is indecomposable. This cannot be
used directly to show that a long barcode must exist. The pushforward of an
indecomposable representation is not necessarily indecomposable. However, the
argument using stalks indicates that some sections (subrepresentations), must
have global support.

10.4 multi-modal sensing

In this section we will explore the following cartoon for multi-modal sensing:

• We have a region W thought of as a topological space that is tame enough to
be triangulated. This space is populated by agents of interest and sensors.

• There is a vector space of properties kn, usually Rn or Cn, and every intruder
is tagged with an unchanging property vector v ∈ kn. These property vec-
tors might record colors (which we pretend has a linear structure), sounds,
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figure 47: Multi-Modal Sensors Distributed in a Plane

thermal signatures or, in the context of wireless network data, a unique wire-
less SSID (we imagine scaling corresponds to the strength of the signal). In
future applications, k may be a ring that stores data, just as Z is used to
record counts and Zn records counts of different types of targets.

• There are sensors who monitor subspaces of kn and subspaces of X. “Mon-
itors” means explicitly that a sensor i with support Vi ⊂ X has attached to
it a subspace of the vector space dual to property space, i.e. Si ⊂ kn∗. For
simplicity, we assume that Si = span{ξi} =:< ξi >. The act of sensing corre-
sponds to taking a property vector v ∈ kn and returning a number ξi(v) that
records the strength of the detection. Outside of the sensor’s support Vi,
the sensor must return zero on every vector. In the overlap of two sensors’
supports, the vector space that is sensed is the internal direct sum.

This cartoon specifically suggests the use of constructible sheaves and cosheaves
as a model. Because the roles of sensors and intruders are formally dual, we will
have to use both sheaves and cosheaves. Understanding the formal properties
of sensing and evasion will lead us naturally to some long-exact sequences in
cohomology, which will necessitate the introduction of barcodes to understand
these results.

We are going to work with a simplified version of the above cartoon. To detach
ourselves from an embedding of the sensors into W, we will use the Čech nerve
associated to the sensors supports. This will provide us with a simplicial complex
X and this where we will define sheaves and cosheaves. Since we can only analyze
the intruder problem inside sensor’s support, we call this a relative intruder prob-
lem. Working strictly inside the coverage region will introduce counter-intuitive
results, such as Claim 10.4.9. Nevertheless, this setup is a prototype for future
applications of sheaves and cosheaves to multi-modal sensing.
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10.4.1 A Deeper Look at Sensing

Let us investigate a little more deeply the picture of multi-modal sensing pre-
sented to us in the above cartoon. In Figure 48, we consider a situation where
we have a sensor capable of detecting “red” properties and a sensor capable of
detecting “green” properties.3

On the nerve of the sensor cover, the organizing diagram of vector spaces is
clear.

< r∗ >↪→< r∗,g∗ >←↩< g∗ > k ↪→ k2 ←↩ k

The direction of the arrows indicates that a cellular sheaf is best used to collate
sensing abilities. However, the diagram of abstract vector spaces on the right has
no way of telling whether an individual copy of k should correspond to < r∗ >
or < g∗ > or < b∗ >. Such a distinction requires that we embed our sensing sheaf
into a global system of coordinates (kn)∗X. This motivates the following definition.

Definition 10.4.1 (Sensing Sheaf). Suppose we have a multi-modal sensor network
distributed in a space W. Form the nerve given by the intersections of the sensors’
supports and call this simplicial complex X. We define a sensing sheaf F by
assigning to each vertex v in X the subspace Sv ⊂ (kn)∗. Over higher simplices σ
we assign the following vector spaces and use the natural inclusions for the maps
internal to the sheaf:

F(σ) = Sv0 + · · ·+ Svn F(σ) ↪→ F(τ) σ 6 τ.

Here we have used the internal sum of subspaces to reflect the fact there may be
dependencies. The internal sum is only defined in the presence of an ambient
space, thus part of the data of a sensing sheaf is an embedding into the constant
sheaf of all sensing abilities:

ιF : F ↪→ kn∗X .

Now suppose we have an intruder, which we imagine as a point in the union
of the red and green sensors in Figure 48. The intruder has a property vector
v ∈ kn that lists its various attributes, its colors in this example. What number
does the sensor return while the intruder is in the red sensor’s domain? By
design, it is r∗(v), the contraction of the red co-vector and the property vector v.
If kn = k3 =< vr, vg, vb > is a three dimensional property space spanned by the

3 We use scare quotes to indicate that the terms can be substituted for whatever application is of
interest.
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r*! g*!

figure 48: Two Multi-Modal Sensors

attributes “red,” “green,” and “blue,” equipping it with the standard Euclidean
inner product allows us represent this measurement by the matrix product

r∗(v) =
[
1 0 0

]vrvg
vb

 = vr

However, if the sensors can collaborate and share information, then we can
store together the observations when the intruder is in the intersection of the red
and green sensors’ support.

[
r∗(v)

g∗(v)

]
=

[
1 0 0

0 1 0

]vrvg
vb

 =

[
vr

vg

]

We can package these measurements into a cellular cosheaf, where two observa-
tions are the same modulo the properties unobserved by the sensors.

< r >←< r,g >→< g > k3

< g,b >
← k3

< b >
→ k3

< r,b >

One should note that the right side gives an equivalent formulation for the mea-
surement cosheaf of the Figure 48. We have over each cell passed to the quotient
space where the properties that are invisible to each of the sensors is treated as
zero. In other words, the vectors produced by the process of measurement must
naturally be considered modulo the unknown.
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Definition 10.4.2 (Evasion Co-Sheaf). Given a sheaf F whose restriction maps are
inclusions, along with a fixed embedding into a locally constant sheaf of vector
spaces G (we take G = kn∗X ), we define the annihilator cosheaf Ânn(F) as follows:

• Ânn(F)(σ) = {v∗ ∈ G(σ)∗|v∗(ι(w)) = 0 ∀w ∈ F(σ)}

• If σ ⊂ τ̄, then rσ,τ : Ânn(F)(τ)→ Ânn(F)(σ) is the inclusion.

When using the language of sensing sheaves, we will call Ânn(F) =: Ê the evasion
cosheaf.

Lemma 10.4.3. Let F be a sensing sheaf on X, then the evasion cosheaf is canoni-
cally identified as the linear dual of the cokernel of the embedding, that is to say
that Ê ∼= V̂(cok(ι)) in the diagram below.

0 // F
ι //

��

G
q //

��

cok(ι) //

��

0

0 V̂(F)oo V̂(G)oo V̂(cok)oo 0oo

Proof. Here we make use of the fact that for cellular sheaves, the cell-by-cell cok-
ernel of the maps ι(σ) : F(σ) → G(σ) defines a sheaf. This is not always true for
general sheaves. Reducing the argument to a cell-by-cell one, we have a short
exact sequence of vector spaces

0 // V
ι //W

q //W/V // 0

where we can identify

AnnW(V) = {ϕ :W → k |ϕ(v) = 0 ∀v ∈ V} ∼= (W/V)∗

and of course all the restriction maps get sent to restriction maps

V2

  

(W/V2)
∗

��

W

::

$$
V1

OO

>>

(W/V1)
∗.
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This identification of evasion cosheaves with the linear dual of a cokernel means
that we can leverage a classical technique in studying the relative intruder prob-
lem. After all, to every short exact sequence of sheaves we get an induced long
exact sequence of sheaf cohomology. In the context of multi-modal sensing this re-
lates in a precise way the topology of the total covered region and the cohomology
of the sensing and evasion sheaves.

Theorem 10.4.4 (Sensing-Evasion Decomposition). Given a sensing sheaf of vector
spaces ι : F → G = k̃n

∗
X we obtain a long exact sequence of sheaf cohomology

groups

0 // H0(X; F) // H0(X;k)⊕n // H0(X; cok(ι))
δ0

// H1(X; F) // · · · // Hk(X; cok(ι))
δk

// Hk+1(X; F) // Hk+1(X;k)⊕n // Hn+1(X; cok(ι))
δk+1

// · · ·

WhereHk(X; cok(ι)) gets identified with the evasion co-sheaf’s homologyHk(X; Ê)
via the linear duality functor, i.e. V : cok(ι)) E.

Proof. The proof is immediate from standard homological algebra techniques.

10.4.2 Indecomposables, Evasion Sets, Generalized Barcodes

One of the drawbacks of Theorem 10.4.4 is that we have no good interpretation
of what the sheaf cohomology groups mean. Let’s consider again Figure 48, but
this time let us focus only on the Čech complex and each of the three sheaves that
appear in the short exact sequence. This is depicted in Figure 49.

As can be clearly seen each sheaf appearing in the sequence is already written
as a direct sum of indecomposables, which because the nerve is a one-simplex,
look like barcodes. By using the observation Hi([0, 1]; F) ∼= ⊕Hic(Bi), which we
have already made heavy use of, we can determine all the sheaf cohomology of
interest for this example.
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figure 49: Examining the Short Exact Sequence

Example 10.4.5 (Red-Green Sensors). By inspection of the indecomposable pre-
sentations of the three sheaves F, k3X and cok(ι) in Figure 49 we see that

Hi(X; F) ∼= 0 i = 0, 1; H0(X;k3X) ∼= k3 H0(X; cok(ι)) ∼= H0(X; Ê) ∼= k3

The interpretation of each of the three generators in the evasion cosheaf homology
is that there is a connected component where red, green and blue can separately
evade.

Definition 10.4.6 (Evasion and Detection Sets). Let v ∈ kn be a property vector
and F a sensing sheaf on X. Define the evasion set Ev to be the set of points in X
where an intruder with property vector v can go without being detected. Dually,
call the set of points where v can be detected the detection set Dv.

Since we are working with cellular sheaves where individual sensors have sup-
port equal to the open star of their designated vertex in the simplicial complex X,
thus the detection set Dv is equal to the union of all the stars of the sensors that
can see v, hence Dv is an open union of cells. This proves the following lemma.

Lemma 10.4.7. For any property vector v, the evasion and detection sets form an
open-closed decomposition of X, that is

X = Ev ∪Dv Ev ∩Dv = ∅, Ev open.

When X is compact this means that Ev is compact as well.

We record another easy lemma, connected to our desire to get an indecompos-
able presentation for our evasion cosheaves.
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Lemma 10.4.8. Suppose that all sensors must pull their sensing capabilities from
a fixed orthonormal basis of kn∗, say v∗1, . . . , v

∗
n, then the evasion cosheaf splits as

a direct sum decomposition of constant cosheaves supported on the evasion sets
for v1, . . . , vn

Ê ∼= k̂Ev1 ⊕ · · · ⊕ k̂Evn
with the further observation that each k̂Evi has a Remak decomposition as a sum
of constant cosheaves supported on the components of Evi .

Proof. The fact that the sensor capabilities can only be chosen from a fixed or-
thonormal basis, implies that we can write the constant sheaf kn∗X as a direct sum
of kX ⊕ · · · ⊕ kX where we think of each copy of kX as being the constant sheaf
generated by < v∗i >. As a consequence we get the following diagram

kDv1
� � // kX

iv∗
1

��
F

πv∗
1

??

πv∗n ��

...
... kn∗X

kDvn
� � // kX

iv∗n

??

Now we can use for each factor the following standard short exact sequence of
sheaves

0 // kDvi
// kX // kEvi

// 0

and thus the cokernel splits as a direct sum ⊕ni=1kEvi .

The above lemma implies that in certain cases we can interpret the homology
of the evasion cosheaf in terms of the topology of the evasion sets.

We have one more observation we’d like to leverage.

Claim 10.4.9. If sensor’s abilities are pulled from a fixed orthonormal basis
v∗1, . . . , v

∗
n and moreover the detection sets are not pairwise disjoint, then the

sensing sheaf has no global sections.

Proof. This follows from the fact that if an edge is common to two different de-
tection sets, then there can be no global sections since the following sheaf has no
non-zero global sections

< v∗i >↪→< v∗i , v∗j >←↩< v∗j > .
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figure 50: Short Exact Sequence

For the example considered in Figure 50 assume that the space of properties is
two dimensional, spanned by red and green. Then the Theorem 10.4.4 provides
the following forcing result

0→ H0c(X; F) ∼= 0→ H0c(X;k2∗X ) ∼= k2 → H0c(X; cok)→ H1c(X; F) ∼= k→ 0

which upon careful inspection reveals that the red evasion set must be discon-
nected.



Part IV

N O V E L M AT H E M AT I C A L C O N T R I B U T I O N S

This part represents the mathematical heart of the thesis, although
many of its results were motivated by the applications considered in
Part iii.

Chapter 11 is by far the most technically demanding part of the thesis.
It takes up and proves an equivalence between constructible cosheaves
and representations of MacPherson’s entrance path category, which
hinges on a proof of the Van Kampen theorem for this category. The
full machinery of stratification theory is then used to construct rep-
resentations of the (definable) entrance path category from a strati-
fied (definable) map. This part also rests on proving a codimension-
criterion under which Thom’s condition af always holds.

Chapter 12 proves that Verdier duality is rightly conceived as an ex-
change of sheaves and cosheaves. An explicit formula for the derived
equivalence of cellular sheaves and cosheaves is presented.

Chapter 13 uses the formula of Chapter 12 to prove that compactly sup-
ported cellular sheaf cohomology can be viewed as taking a (derived)
coend with the image of the constant sheaf under this formula.

Chapter 14 proves that the derived category of cellular sheaves over a
one-dimensional base space is equivalent to a graded category. This
formalizes the intuition of why spectral sequences over graphs always
collapse on the E2 page.

Chapter 15 introduces the interleaving distance for sheaves defined
on a metric space. Although officially an extended pseudo-metric on
the category of pre-sheaves, we prove it is an extended metric on the
category of sheaves. One of the most fundamental properties of this
extended metric is that global sections places sheaves into distinct con-
nected components. To illustrate the theory more concretely, we take
up an explicit description of the space of constructible sheaves over the
real line.
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11
T H E D E F I N A B L E E N T R A N C E PAT H C AT E G O RY

“Facilis descensus Averno;
noctes atque dies patet atri ianua Ditis;
sed revocare gradum superasque evadere ad auras, hoc opus, hic labor est.”

— Virgil’s Aeneid, Book 6, Lines 124-9

Fundamentally, one-dimensional persistent homology tries to understand topo-
logical changes in a one-parameter family of spaces. Multi-dimensional persis-
tence tries to understand topological changes in a multi-parameter family of
spaces; the leap in complexity from one dimension to two can not be overstated.
The model problem of interest is to describe how the homology of the fiber of a
map f : Y → X changes as one queries points or subsets in X. For general maps,
this problem is entirely too unwieldy.

In this chapter we focus on a broad class of maps where this problem has
an interesting answer: definably stratified maps. Informally, stratified maps are
glued together fiber bundles. Definable maps are ones that can be defined with
finitely many logical operations. Every definable map is stratified so we study
simply definable maps.

The upshot of this chapter is that the homology of the fibers of a definable map
give rise to a representation of a particular quiver with relations — a category in
other words — called the definable entrance path category, whose general version
was introduced by MacPherson to study general stratified maps. If one considers
the opposite of the entrance path category, i.e. the exit path category, one obtains
a constructible sheaf, which we now define.

Definition 11.0.10 (Constructible Sheaves and Cosheaves). Let F be a sheaf valued
on a topological space X. One says that F is constructible if there exists a filtration
by closed subsets

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn = X

such that on the each connected component of the space Xk = Xk − Xk−1, the
restricted sheaf F|Xk (the pullback of F along the inclusion Xk ↪→ X) is locally

195
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constant. Alternatively, instead of asking for a filtration one can ask for a de-
composition of X into disjoint pieces Xσ over which the restricted sheaf is locally
constant.

Dually, we will call a cosheaf, with costalks valued in vect, constructible if its
linear dual is a constructible sheaf.

One of the purposes of this chapter is to impose further conditions on the
nature of the filtration so that we get nice properties. As stated, there is nothing to
prevent us from using a one step filtration of the Cantor set. Expressing precisely
these extra conditions will require the introduction of stratification theory.

11.1 stratification theory and tame topology

As wonderful as fiber bundles and local systems may be, they still fail to capture
the sort of structure we are interested in because the topology of the fiber can
never change. In order to bring cosheaves into contact into a larger realm of
mathematics, we will need to consider stratified maps. To whet the appetite,
stratified maps will allow us to describe in one language:

morse theory — Morse functions are just particular instances of stratified
maps f :M→ R.

picard-lefschetz theory — the complex analog of Morse theory studies al-
gebraic maps π : X→ C, which are necessarily stratified.

point cloud data and persistence — Semialgebraic families are de-
scribed by semialgebraic maps, which are stratified.

In other words, stratification theory gives a system of geometry for exploring a
wealth of examples, appearing in mathematics and nature. Stratification theory
does this by breaking up a space or map into regions, over which the usual anal-
ysis of manifolds and fiber bundles apply.

Definition 11.1.1 (Decomposition). A decomposition of a space X is a locally fi-
nite partition of X into locally closed subsets (sets of the form U ∩ Z for U open
and Z closed) {Xσ}σ∈PX called pieces, which satisfy the axiom of the frontier. Con-
sequently, PX is a poset. When the pieces have the additional structure of being
manifolds, we call them strata.

Remark 11.1.2. A stratum is sometimes used to mean either a union of strata of a
fixed dimension or a single connected component in a decomposition. We usually
prefer the latter meaning.
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We have already encountered an example of a decomposition of a space X,
namely a cell complex. Here each piece is homeomorphic to Rk for some k,
which can vary from stratum to stratum. A graph is naturally decomposed into its
vertices and open edges. For a decomposition that is not a cell complex, consider
the complex numbers C partitioned into the sets {0} and C − {0}.

Definition 11.1.3. Suppose (X,PX) and (Y,PY) are decomposed spaces, then a
decomposition-preserving map is a continuous map f : X → Y that sends pieces
to pieces, i.e. we have a commutative square

X
f //

��

Y

��
PX

Pf // PY

In the case where the pieces are strata we call such a map a stratum-preserving
map.

Much like how the notion of a category emerged through the study of functors,
in some sense the necessity for decompositions more general then simplicial or
cell complexes came about because not all maps preserved the pieces of those
decompositions. We give an example of such a map.

Example 11.1.4 (Blow-Ups). Consider the map

f : R2 → R2 f(x,y) = (x, xy).

This map is not triangulable, see [Shi] page 305. This map is related to the op-
eration in algebraic geometry known as “blowing up at a point.” The blow-up
map is an endless source of interesting geometry and counter-examples, so it is
worth describing. Recall that the space of lines in R2, written RP1 is defined to
be the quotient of R2 − {(0, 0)} by the relation that (x,y) ∼ (λx, λy) for any λ 6= 0.
Topologically, this quotient is the circle S1. Tracing the image of the top arc of a
circle from 0 to π through the quotient map one gets the complete circle in RP1.

The blow-up B of R2 at the origin is defined to be the closure of the image of
the map

R2 − {(0, 0)} ↪→ R2 ×RP1

where the map to the first coordinate is the inclusion and the map to the second
coordinate is the quotient map. The blow-up map π : B → R2 is the projection
back from the closure of the graph of this map to the closure of the domain, i.e. R2.
Thus the fiber over (0, 0) is a circle, but the fiber over any other point is a single
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figure 51: Blowing up at a Point

point. One can visualize this by restricting the map to a closed disk centered at
the origin. The image is contained in a solid torus and the closure of the image
will assign the core circle to the origin. The image of D2 − {(0, 0)} is commonly
visualized as a spiral staircase as in Figure 51 whose boundary traces out a torus
knot. See [AK10] for a treatment of different constructions of real blow-ups and
their functorial properties.

Decomposing spaces and maps gives some control over how these things are
built up out of pieces, but it is not quite strong enough to tame the geometry
of interest. In particular, the topologist’s sine curve drawn in Figure 52 can be
decomposed into the two pieces

Xτ := {(x, sin(1/x)) | x 6= 0}∪ {(0,y) |y ∈ [−1, 1]} =: Xσ
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figure 52: Topologist’s Sine Curve

that satisfy the axiom of the frontier Xσ ⊂ X̄τ, but it does not have the intuitively
desired property that [Lu76, p.131].

dimXσ < dimXτ

Further regularity conditions must be imposed to capture this property and
other desired features that hold for piecewise-linear, algebraic, semi-algebraic,
sub-analytic and other geometries. Systematic overviews of these different regu-
larity conditions are overwhelming and highly technical. For a taste, one should
consult Jörg Schürmann’s remarkable service in writing down 14 different regu-
larity conditions and their corresponding implications in [Sch03, Rmk. 4.1.9]. To
keep the exposition light we focus on a geometric condition and its topological
generalization as they have historically had a strong influence on stratification
theory.

11.1.1 Whitney Stratified Spaces

In this section we relay two ways of fusing manifold pieces into non-manifold
wholes. The champions of this section are Hassler Whitney and René Thom.1 In
1965, Whitney, whose approach relies on the geometry of tangent planes and se-
cant lines, defined two properties that a stratified space should possess [Whi65a,
Whi65b]. Thom, who proposed in a 1962 paper [Tho62] a definition of a stratified
space using tubular neighborhoods, later extracted the topological consequences
of Whitney’s definition and outlined a more general definition of a stratified
space [Tho69]. Thom’s definition was first articulated carefully by John Mather in

1 For more historical context of these approaches, written by experts, we recommend the recent
article [Gor12] and Part I, Section 1 of [GM88].
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figure 53: Diagram for Whitney Condition (b)

his famous 1970 Harvard “Notes on Topological Stability” [Mat12], which went
unpublished for 42 years and are to this day an excellent resource for learning the
theory.

Proving that any Whitney stratified space admits the structure of a Thom-
Mather stratified space requires substantial work. Thus, we present them below
as separate definitions, beginning with Whitney’s. We outline the properties that
make Whitney stratified spaces nice as motivation for Thom’s definition. After in-
troducing both of these definitions we will present a proof2 that says that closed
unions of strata in a Thom-Mather space have regular neighborhoods, i.e. an open
neighborhood and a weak deformation retraction. This result plays a key role in
Theorem 11.2.17.

Definition 11.1.5 (Whitney Stratified Spaces). A Whitney stratified space is a
tuple (X,M, {Xσ}σ∈PX) where X is a closed subset of a smooth manifold M along
with a decomposition into pieces {Xσ}σ∈PX such that

• each piece Xσ is a locally closed smooth submanifold of M, and

• whenever Xσ 6 Xτ the pair satisfies condition (b). This condition says if {yi}
is a sequence in Xτ and {xi} is a sequence in Xσ converging to p ∈ Xσ and the
tangent spaces TyiXτ converges to some plane T at p, and the secant lines `i
connecting xi and yi converge to some line ` at p, then ` ⊆ T .

Remark 11.1.6. We have omitted condition (a) because it is implied by condition
(b) [Mat12, Prop. 2.4]. Condition (a) states that if we only consider a sequence yi

2 A proof appears in Mark Goresky’s thesis [Gor76] that was never published and which he
graciously provided to the author. We have since modified that proof to suit our purposes.
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in Xτ converging to p such that the tangent planes TyiXτ converge to some plane
T , then the tangent plane to p in Xσ must be contained inside T .

The Whitney conditions are important because so many types of spaces admit
Whitney stratifications, the most important being semi-algebraic and sub-analytic
spaces. Remarkably, these conditions about limits of tangent spaces and secant
lines imply strong structural properties of the space. To give the reader a taste for
the properties enjoyed by Whitney stratified spaces, we provide a brief list:3

- Dimension is Well-Behaved: If Xσ ⊆ fr(Xτ) := X̄τ − Xτ, then dimXσ <

dimXτ. See Proposition 2.7 of [Mat12] for a proof. This rules out the topol-
ogist’s sine curve in Figure 52 from being Whitney stratified.

- Good Group of Self-Homeomorphisms: If x and y belong to the same
connected component of a stratum Xσ, then there is a homeomorphism h :

M → M preserving X and other strata such that h(x) = y ([Mat12] pp.
480-481).

- Local Bundle Structure: Every stratum Xσ has an open tubular neighbor-
hood Tσ and a projection map πσ : Tσ → Xσ making it into a fiber bun-
dle. This bundle is equipped with a “distance from the stratum” function
dσ : Tσ → R>0. If we define Sσ(ε) to be d−1σ (ε), then we can identify the map
πσ : Tσ → Xσ with the mapping cylinder of the restricted map π : Sσ(ε)→ Xσ
([Gor78] p. 194). Moreover, the fiber of the bundle has the stratification of a
cone on a link.

- Triangulability: Every Whitney stratified space can be triangulated [Gor78].

The third property is historically the most important. It guarantees that a Whit-
ney stratification “looks the same” along all points in a stratum. The tubular
neighborhoods exhibit this local triviality. This condition will be taken as primary
when considering Thom-Mather stratifications.

11.1.2 Stratified Maps and a Counterexample

Our main purpose for considering Whitney (and hence Thom-Mather) stratified
spaces is to understand stratified maps. Such maps include Morse functions as
a special case and are a good model for understanding moduli problems that
commonly arise in applications. Over a given stratum, a stratified map looks

3 Here we follow part of MacPherson’s summary in the appendix of his 1991 Colloquium
notes [Mac91].
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like a fiber bundle and all fibers are homeomorphic in a stratum-preserving way.
However, as we try to compare a fiber over one stratum with a fiber over that
stratum’s frontier, the blow-up map of Example 11.1.4 frustrates our intuition.
Thus, we introduce a more restrictive class of stratified maps called Thom maps.
Finally, we illustrate that such general stratified maps are not necessarily closed
under pullback. This motivates the move to tame topology in Section 11.1.3.

Definition 11.1.7 (Whitney Stratified Map). Suppose f :M→ N is a smooth map
between manifolds that contain stratified spaces (X, {Xσ}σ∈PX) and (Y, {Yσ}σ∈PY )
such that f(X) ⊂ Y with f|X proper. We say f is a Whitney stratified map if the
pre-image of each stratum Yσ is a union of connected components of strata of X
and f takes these components submersively onto Yσ.

Remark 11.1.8. To say that a map is (Whitney) stratifiable is to say there exists a
stratification of X and Y such that the map is stratified. Often we will neglect to
include the ambient manifolds and will say “Let f : X→ Y be a stratified map.”

Remark 11.1.9. When N = Y is stratified as a single stratum, we say that f is a
stratified submersion, i.e. f|X is proper and for each stratum Xσ f|Xσ is a submer-
sion.

Recall that Ehresmann’s theorem states that proper submersions are fiber bun-
dles. Thus, over each stratum a stratified map is a fiber bundle. However, Ehres-
mann’s theorem does not say that the local trivializations can be chosen to respect
the stratification. This stratified analog of Ehresmann’s theorem is expressed in
Thom’s first isotopy lemma [GM88, p. 41].

Lemma 11.1.10 (Thom’s First Isotopy Lemma). Let f : M → Rn be a (proper)
stratified submersion for X ⊆ M a Whitney stratified subset. Then there is a
stratum-preserving homeomorphism

h : X→ Rn × (f−1(0)∩X)

which is smooth on each stratum and commutes with the projection to Rn. In
particular, the fibers of f|X are homeomorphic by a stratum preserving homeo-
morphism.

Remark 11.1.11. Of course, this implies that for a general stratified map, for every
stratum of the codomain Yσ, the fibers of f|f−1(Yσ) : f

−1(Yσ) → Yσ are homeomor-
phic in a stratum-preserving way. This lemma will be used implicitly throughout
the section. It expresses the idea that stratified maps are “glued together fiber
bundles.”
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As one can imagine, there is a second isotopy lemma, which applies to a more
restrictive class of stratified maps. We will not state the second isotopy lemma,
rather we will use some of the theory leading up to it.

Counterexamples Creep In

One would like to say that given a general (not necessarily Thom) stratified map
f : X→ Y, one could take a path γ : [0, 1]→ Y so that the pullback γ∗f : f−1(γ)→ I

is stratified and hence, by the above corollary, a Thom mapping. However, as the
next example shows, the pullback need not be stratifiable, so the hypothesis for
the corollary fails.4

Example 11.1.12. The blow-up map π : B → R2 is a Whitney stratified map that
is not a Thom mapping. The closure S of the “quick spiral”

S := cl{(r, θ) ∈ R2 | r = e−θ
2
}

is also Whitney stratified despite wrapping around the origin infinitely many
times ([Pfl01] Example 1.4.8). However, the inverse image π−1(S) cannot be strat-
ified because the inverse image of (0, 0) is S1, which is of the same dimension as
the inverse image of the spiral, despite the fact that the former is in the frontier
of the latter; see Figure 54. Since being Whitney stratified implies a drop in di-
mension of the frontier, contraposition shows that the inverse image cannot be
Whitney stratified.

In Theorem 11.2.17 we will give a direct geometric construction of several
cosheaves associated to a stratified map. To do so we will need to consider a class
of subsets and maps that have all the geometric properties of stratified spaces as
well as being preserved under inverse images. This is provided in Section 11.1.3.

11.1.3 O-minimal Structures

Although stratification theory provides a first pass at taming geometry, it is un-
suitable from our perspective because pathologies can still creep in via the inverse
image, as Example 11.1.12 showed. General stratified spaces and maps are still
not tame enough. However, most sets and maps encountered in nature have extra
structure. For instance, computer scientists commonly work with piecewise-linear
(PL) spaces, which are describable in terms of affine spaces and matrix inequali-
ties. Some algebraic geometers work with semialgebraic spaces, which use zeros

4 We are indebted to Mark Goresky for suggesting the key ideas of this example.
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figure 54: Preimage of the Spiral is Not Stratifiable

and inequalities of polynomials to define their spaces. Analysts tend to use an-
alytic or subanalytic spaces, because the theory is well behaved. Traditionally,
one has had to make a choice, once and for all, to speak only of PL geometry, or
only of algebraic geometry, or only of analytic geometry. The curse of Babel has
confused and separated these domains for a hundred years.

In 1984, Grothendieck declared that an axiomatic “tame topology” or “topologie
modérée” should be developed by extracting out precisely those properties that
make these classes of spaces good ones [Gro97]. MacPherson put forth in his
lecture notes for the 1991 AMS colloquium lectures a definition of what should
constitute a “good” class of subsets of a manifold M [Mac91]. Namely, a subset
S is good if there is a Whitney stratification of M such that S is a union of strata.
These subsets should be closed under the finite set-theoretic operations of unions,



11.1 stratification theory and tame topology 205

intersections and differences. Additionally, the closure of any good subset should
be good.

In 1996, Lou van den Dries and his student Chris Miller set forth a most sat-
isfactory definition in their paper “Geometric Categories and O-minimal Struc-
tures” [vdDM96]. Taking requests from sheaf theorists [SV96] and other working
geometers, their paper is a valuable service to the community. It globalized a
local solution to Grothendieck’s program known as o-minimal topology. The
theory of o-minimal topology is grounded in model theory and logic, but it has
left almost no trace from those fields. All the logical operations of ∀,∃,∨,∧ are
converted into familiar operations in geometry. Each of the above languages (PL,
semialgebraic, subanalytic) are instances of an o-minimal structure. The common
fundamental theorems, each expressed in their own language, can be reduced to
universal logical operations, and hence geometric ones. We will start by exam-
ining o-minimal structures as they form the local models of Miller and van den
Dries definition. The reader is urged to consult the textbook “Tame Topology
and O-minimal Structures” [vdD98] as it is an excellent introduction that requires
virtually no pre-requisites.

Definition 11.1.13 ([vdD98], p. 2). An o-minimal structure on R is a sequence
O = {On}n>0 satisfying

1. On is a boolean algebra of subsets of Rn, i.e. it is a collection of subsets of
Rn closed under unions and complements, with ∅ ∈ On;

2. If A ∈ On then A×R and R×A are both in On+1;

3. The sets {(x1, . . . , xn) ∈ Rn|xi = xj} for varying i 6 j are in On;

4. If A ∈ On+1 then π(A) ∈ On where π : Rn+1 → Rn is projection onto the first
n factors;

5. For each x ∈ R we require {x} ∈ O1 and {(x,y) ∈ R2|x < y} ∈ O2;

6. The only sets in O1 are the finite unions of open intervals and points.

When working with a fixed o-minimal structure O on R we say a subset of Rn is
definable if it belongs to On. A map is definable if its graph is definable.

Remark 11.1.14. One should note that the third and sixth property together pro-
hibit any spiral that wraps infinitely many times around the origin from being
part of an o-minimal structure. Thus, the quick spiral in Example 11.1.12 is not
definable.
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Now we prove that definable sets and maps are closed under pullbacks.

Lemma 11.1.15. Suppose f : X → Z and g : Y → Z are definable maps, then
the pullback X×Z Y := {(x,y) ∈ X× Y | f(x) = g(y)} is a definable set and the
restrictions of the projection maps are definable as well.

Proof. First note that if X ∈ On and Y ∈ Om, then X×Y = (X×Rm)∩ (Rn×Y) is in
On+m. Since Γf and Γg are definable, we know that Γf × Y = {(x,y, f(x))} and Γg ×
X = {(x ′,y ′,g(y ′)} are both definable subsets of X× Y×Z. Since the intersection is
definable, and a point in the intersection has (x,y, f(x)) = (x ′,y ′,g(y ′)), the image
of the projection to X× Y is the pullback. One can then use B.3 of [vdDM96] to
conclude that the restriction to the pullback of the projection maps to X and Y is
definable as well.

There are surprising facts that follow from the axioms of an o-minimal struc-
ture. For example, if A ∈ O, then the closure Ā is in O ([vdD98] Ch. 1, 3.4).
Another surprising fact is that definable sets can be Whitney stratified [Loi98].
Thus, these sets meet the requirements of MacPherson to form a good class of
subsets. Perhaps even better than MacPherson’s sets, definable sets can be given
finite cell decompositions, where “cell” has its own special meaning ([vdD98] Ch.
3).

The prototypical o-minimal structure is the class of semialgebraic sets, which
has become increasingly relevant in applied mathematics.

Definition 11.1.16. A semialgebraic subset of Rn is a subset of the form

X =

p⋃
i=1

q⋂
j=1

Xij

where the sets Xij are of the form {fij(x) = 0} or {fij > 0} with fij a polynomial in
n variables.

The only semi-algebraic subsets of R are finite unions of points and open inter-
vals. From the definition, one sees that the class of semialgebraic sets is closed
under finite unions and complements. The Tarski-Seidenberg theorem states that
the projection onto the first m factors Rm+n → Rm sends semialgebraic subsets
to semialgebraic subsets [Cos02]. We can deduce from this theorem all of the
conditions of o-minimality.

Semialgebraic maps are defined to be those maps f : Rk → Rn whose graphs
are semialgebraic subsets of the product. It is a fact that semi-algebraic sets and
maps can be Whitney stratified [Shi97]. This allows us to consider the following
example of a semi-algebraic family of sets:
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figure 55: Point Cloud Data

Example 11.1.17 (Point-Cloud Data). Suppose Z is a finite set of points in Rn. For
each z ∈ Z, consider the square of the distance function

fz(x1, . . . , xn) =
n∑
i=1

(xi − zi)
2.

By the previously stated facts we know that the sets

Bz := {x ∈ Rn+1 | fz(x1, . . . , xn) 6 xn+1}

are semialgebraic along with their unions and intersections. Denote by X the
union of the Bz. The Tarski-Seidenberg theorem implies that the map

f : X→ R f−1(r) := ∪z∈ZB(z,
√
r) = {x ∈ Rn |∃z ∈ Z s.t. fz(x) 6 r}

is semialgebraic. In particular the topology of the fiber (of the union of the closed
balls) can only change finitely many times.

We conclude with the definition Miller and van den Dries proposed in section
1 of [vdDM96]. This definition allows us to verify definability locally, and allows
us to work inside manifolds other than Rn.
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Definition 11.1.18 (Analytic-Geometric Categories). A analytic-geometric cate-
gory G is given by assigning to each analytic manifold M a collection of subsets
G(M) such that following conditions are satisfied:

1. G(M) is a boolean algebra of subsets of M, with M ∈ G(M).

2. If A ∈ G(M), then A×R ∈ G(M).

3. If f :M→ N is a proper analytic map and A ∈ G(M), then f(A) ∈ G(N).

4. If A ⊆M and {Ui}i∈Λ is an open covering of M, then A ∈ G(M) if and only
if A∩Ui ∈ G(Ui) for all i ∈ Λ.

5. Every bounded set in G(R) has finite boundary.

Remark 11.1.19. This defines a category in the usual sense. An object of G is a
pair (A,M) with A ∈ G(M). A morphism f : (A,M)→ (B,N) is a continuous map
f : A→ B whose graph

Γ(f) := {(a, f(a)) ∈M×N |a ∈ A}

is an element of G(M×N).

The category of G-sets and G-maps, although we will prefer to use the term
“definable,” has all the properties one could desire, including being closed under
inverse images [vdDM96, D.7] (as long as the domain is closed) and Whitney
stratifiability [vdDM96, D.16].5

11.1.4 Thom-Mather Stratifications

Definition 11.1.20 (Control Data). Let (X,M, {Xσ}σ∈PX) be a Whitney stratified
space and {(Tσ,πσ,dσ)} a family of tubular neighborhoods. We call this family
a system of control data if the following commutation relations are satisfied: if
Xσ 6 Xτ, then

πσ ◦ πτ = πσ

dσ ◦ πτ = dσ

whenever both sides of the equations are defined.

5 The authors of [vdDM96] acknowledge that there is a gap in the proof of Whitney stratifiability
of G-maps, but Ta Lê Loi [Loi10] and others [NTT14] have since filled in this gap.
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figure 56: A System of Control Data

Remark 11.1.21. In Figure 56 we have drawn some fibers of the retraction maps
for two incident strata. Notice how the fibers must bend in order for the second
compatibility condition to hold.

Mather proves that every Whitney stratified space admits a system of control
data. The following definition axiomatizes the properties enjoyed by a Whitney
space with a system of control data.

Definition 11.1.22 (Thom-Mather Stratified Spaces). A Thom-Mather stratified
space consists of a Hausdorff, locally compact topological space X with countable
basis for its topology with some smooth structure; a decomposition into topologi-
cal manifolds {Xσ}σ∈PX ; and a family of control data {(Tσ,πσ,dσ)}σ∈PX , where Tσ is
an open tubular neighborhood of Xσ, πσ : Tσ → Xσ is a continuous retraction, and
dσ : Xσ → [0,∞) is a continuous distance function. We require that the following
conditions hold:

• Xσ = d−1σ (0) for all σ.

• For any pair of strata Xσ,Xτ, define Tσ,τ := Tσ ∩Xτ, πσ,τ := πσ|Tσ,τ and dσ,τ :=

dσ|Tσ,τ . We require that

(πσ,τ,dσ,τ) : Tσ,τ → Xσ × (0,∞)

is a smooth submersion. When Tσ,τ 6= ∅, i.e. when Xσ 6 Xτ, this implies
dimXσ < dimXτ.

• For any trio of strata Xσ,Xτ and Xλ we have

πσ,τ ◦ πτ,λ = πσ,λ

dσ,τ ◦ πτ,λ = dσ,λ

whenever both sides of the equation are defined.
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Remark 11.1.23. One should observe that the definition does not require an em-
bedding into an ambient space. Thus Thom-Mather stratified spaces allow us to
treat Whitney stratified spaces intrinsically. Any Whitney stratified space (X,M)

equipped with a system of control data {(Tσ,πσ,dσ)}σ∈PX defines a Thom-Mather
stratified space by intersecting each Tσ, which is open in M, with X.

Thom-Mather stratified spaces exhibit most of the good properties of Whitney
stratified spaces. The proof that Thom-Mather spaces can be triangulated was
carried out by Goresky [Gor78], among others. His proof views the lines of Figure
56 not as fibers of the retraction map πσ, but rather6 as fibers of a radial projection
map to the boundary of a tubular neighborhood.

Definition 11.1.24 (Family of Lines). A family of lines on a Thom-Mather strati-
fied space is a system of radial projections

rσ(ε) : Tσ −Xσ → Sσ(ε) := d
−1
σ (ε)

one for each stratum Xσ, and a positive number δ, such that whenever 0 < ε < δ
and Xσ 6 Xτ, the following commutation relations hold:

1. rσ(ε) ◦ rτ(ε ′) = rτ(ε ′) ◦ rσ(ε) ∈ Sσ(ε)∩ Sτ(ε ′)

2. dσ ◦ rτ(ε) = dσ

3. dτ ◦ rσ(ε) = dτ

4. πσ ◦ rτ(ε) = πσ

5. If 0 < ε < ε ′ < δ, then rσ(ε ′) ◦ rσ(ε) = rσ(ε ′)

6. πσ ◦ rσ(ε) = πσ

7. rσ(ε)|Tσ(ε)∩Xτ : Tσ(ε)∩Xτ → Sσ(ε)∩Xτ is smooth

Remark 11.1.25. Every Thom-Mather stratified space admits a family of lines.
This is the first proposition of [Gor78].

Any family of lines can be used to identify a tubular neighborhood Tσ as a
mapping cylinder for the restricted projection map πσ : Sσ(ε)→ Xσ. To do so, one
defines a stratum-preserving homeomorphism

hσ : Tσ −Xσ → Sσ(ε)× (0,∞) hσ(p) := (rσ(ε)(p),dσ(p))

6 This description does not hold in higher dimensions.



11.1 stratification theory and tame topology 211

and then extends the map in a suitable way, i.e. one takes Sσ(ε)× [0,∞) t Xσ
and identifies Sσ(ε)× {0} with its image under πσ : Sσ(ε) → Xσ. One can check
that this allows us to extend our map hσ to Tσ, which we do so without changing
notation. One should interpret this extended homeomorphism hσ as providing
a system of coordinates that is convenient for analyzing neighborhoods of strata.
We use this system of coordinates in the following theorem.

Proposition 11.1.26 (Regular Neighborhoods of Closed Unions of Strata). Let X
be a Thom-Mather stratified space and W = ∪σ∈PWXσ be a closed union of strata
of X. The inclusion

W ↪→ UW(ε/2) :=
⋃
σ∈PW

Tσ(ε/2) ⊆ X

is a homotopy equivalence.

Proof. Given a Thom-Mather stratified space, we can equip it with a family of
lines [Gor78]. We are going to use the family of lines to construct a weak de-
formation retraction of UW(ε/2) inside a larger open neighborhood UW(ε) :=

∪σ∈PWTσ(ε). The idea is to shrink each tubular neighborhood Tσ(ε/2) to Xσ in
such a way that a line connecting a point p ∈ Sσ(ε/2) and rσ(ε)(p) ∈ Sσ(ε) is
stretched to connect πσ(p) and rσ(ε)(p) after the homotopy. Figure 57 indicates
which neighborhoods are to be collapsed.

To accomplish this stretching, let f : R→ [0, 1] be any smooth function with the
following properties:

f(x) = 0 if x 6 1
2

f(x) = 1 if x > 3
4

f ′(x) > 0 if x ∈ (12 , 34)

The homotopy Hσ : U× [0, 1]→ U defined below shrinks Tσ(ε/2) to Xσ:

Hσ(p, t) :=

{
p if p /∈ Tσ(ε)
h−1σ (rσ(ε)(p),dσ(p)[(1− t)f(dσ(p)/ε) + t]) if p ∈ Tσ(ε)

The homotopy is just a straight-line homotopy between the usual distance func-
tion dσ and the shrunken one dσ(p)f(dσ(p)/ε). Moreover, since the homotopy
only affects the distance coordinate, properties two and three of Definition 11.1.24

imply that if Xσ 6 Xτ then

dτ(Hσ(p, t)) = dτ(p) and dσ(Hτ(p, t)) = dσ(p).
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As such, the shrinking homotopies can be applied in any order, i.e.

Hτ(Hσ(p, t), s) = Hσ(Hτ(p, s), t).

Observe that in a Thom-Mather stratified space, if Xσ 6= Xσ ′ are two strata of the
same dimension, then Tσ ∩ Tσ ′ = ∅. Consequently, the definition for Hσ extends
to a homotopy Hi that shrinks all the neighborhoods of strata of dimension i at
the same time; one just defines Hi(p, t) = Hσ(p, t) if p ∈ Tσ(ε). The commutation
relation now extends to the statement that for any i and j

Hi(Hj(p, t), s) = Hj(Hi(p, s), t).

Thus, our desired homotopy can be defined to be

H(p, t) := H0(H1(H2(· · · (Hm(p, t), t) · · · , t), t), t)

where the order of the composition doesn’t matter and m is the maximum di-
mension of a stratum appearing in W. If we let rt(p) = H|U(ε/2)×I, then rt
defines a weak deformation retract of UW(ε/2) to W, that is, rt(W) ⊆ W for
all t, r0(UW(ε/2)) ⊆ W and r1 = id. It is easy to show that this implies that
W ↪→ UW(ε/2) is a homotopy equivalence.

Remark 11.1.27. One could imagine performing these homotopies at separate
times by letting the homotopy parameter in dimension i be a function si(t) =

f(t− i) where the shrinking homotopy in dimension i is performed in the interval
(i+ 1/2, i+ 3/4). This is how it is done in Goresky’s thesis [Gor76]. This makes
his homotopy

HGi (p, t) :=

{
p if p /∈ Tσ(ε)
h−1σ (rσ(ε)(p),dσ(p)[(1− si(t))f(dσ(p)/ε) + si(t)]) if p ∈ Tσ(ε)

easier to visualize. However, the advantage of choosing si(t) = t is that the
homotopy is stratum preserving up until t = 0.

Remark 11.1.28. Of course, for a given stratum Xσ, away from its frontier the
retraction map r0 coincides with the tubular projection πσ.

As the above proposition shows, control data is essential for providing Whitney
stratified spaces with good neighborhoods. Not only do they endow Whitney
stratified spaces with the structure of a Thom-Mather stratified space, they allow
us to construct Goresky’s family of lines to carry out these retractions. These
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figure 57: Two Sets of Tubular Neighborhoods

retractions are instrumental to the cosheaves that we will construct in Lemma
11.1.37 and Theorem 11.2.17. There is another technical tool that we need that can
only be developed in the presence of control data.

Definition 11.1.29. A stratified vector field η on (X, {Xσ}σ∈PX) is a collection of
vector fields {ησ}σ∈PX with one smooth vector field on each stratum.

When it is meaningful to compare these vector fields, it is remarkable to note
that this collection need not be continuous. Nevertheless, in the presence of con-
trol data, the flow generated by such a discontinuous vector field is continuous.

Definition 11.1.30. A stratified vector field η on X is said to be controlled by
{Tσ,πσ,dσ} if the following compatibility conditions are satisfied for any pair of
strata Xσ 6 Xτ:

ητ(dσ,τ(p)) = 0

d(πσ,τ)(ητ(p)) = ησ(πσ,τ(p))

where ever both sides of the equation are defined.

11.1.5 Thom Mappings

Definition 11.1.31. A Thom mapping is a stratified map f : (X,M) → (Y,N) that
satisfies condition af for every pair of strata Xτ > Xσ: let xi be a sequence of points
in Xτ converging to a point p ∈ Xσ. Suppose kerd(f|Xτ)xi ⊆ TxiM converges to a
plane K ⊆ TpM, then kerd(f|Xσ)p ⊆ K.

In Figure 58, we have drawn an example of a mapping that is not a Thom
mapping.7 Other non-examples include the blow-up map discussed in Example
11.1.4. Any map that is triangulable satisfies Thom’s condition af for that triangu-
lation viewed as a stratification. It has been a long standing conjecture that every

7 This example is borrowed from [Lu76].
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figure 58: Not a Thom Mapping

smooth Thom mapping is triangulable. Masahiro Shiota appears to have proven
this conjecture in the C∞ case [Shi00], but we have chosen not to rely on this con-
jecture. Instead, we only need the following proposition of Mather’s (Proposition
11.3 of [Mat12]).

Proposition 11.1.32. Suppose f : X → Y is a Thom mapping and a system of
control data {T } for Y is given. There exists a family of tubular neighborhoods {T ′}
for X over {T }, which satisfies the following compatibility conditions:

(a) If Xσ 6 Xτ, then π ′σ ◦ π ′τ = π ′σ for points in T ′σ ∩ T ′τ in M. Furthermore, if
f(Xσ) and f(Xτ) lie in the same stratum of Y, then d ′σ ◦ π ′τ = d ′σ where both
sides are defined.

(b) If Yσ is a stratum that contains Xσ, then

f(π ′σ(p)) = πσ(f(p))

for all p ∈ T ′σ ∩ f−1(Tσ).
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Remark 11.1.33. The first condition is weaker than the usual definition of control
data when the strata are not mapped to the same stratum. Consequently, the
above notion of a system {T ′} of control data over {T } is not the same as two
systems of control data.

Just as the notion of control data generalizes to control data over control data,
controlled vector fields generalize to controlled vector fields over controlled vector
fields.

Definition 11.1.34. Suppose f : X → Y is a Thom mapping and {T ′} is a system
of control data over {T }. If η = {ησ} is a controlled vector field on {Yσ} controlled
by {T }, then there exists a stratified vector field η ′ = {η ′σ} on {Xσ} satisfying the
following compatibility conditions:

(a) For any Xσ and p ∈ Xσ, we have

(df|Xσ)(η
′
σ(p)) = ησ(f(p))

where Yσ is the stratum of Y that contains f(p).

(b) For any Xσ 6 Xτ, there is a neighborhood N ′σ in T ′σ such that for p ∈ T ′σ ∩Xτ
we have

d(π ′σ,τ)(η
′
τ(p)) = η

′
σ(π

′
σ,τ(p))

and if Xσ and Xτ are carried to the same stratum of Y, then we have further
the condition that

η ′τ(d
′
σ,τ(p)) = 0.

Thus, the notion of a controlled vector field η ′ over η is a weaker one than a pair
of controlled vector fields on X and Y that commute with the Thom mapping f.

The following result, proven with help from Mark Goresky, gives a useful cri-
terion for determining when a stratified map is a Thom mapping, so as to make
the above constructions possible there. It rests on the observation that all the
classical examples of stratified maps f : X → Y that aren’t Thom maps require
considering a pair of strata Yσ < Yτ in Y whose codimension is at least two.
Combinatorially, this allows us to have a pair of strata Xσ < Xτ in X such that
dimXσ ∩ f−1(p) > dimXτ ∩ f−1(xi) even though dimXσ < dimXτ. In the follow-
ing lemma we show that if the codomain only has strata of codimension 1, then
the map is a Thom mapping.

Lemma 11.1.35. Suppose f : (X,M) → (Y,N) is a Whitney stratified map that is
C1 on the ambient manifold M. Let Y ′ = Yσ ∪ Yτ be the union of two strata whose
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difference in dimension is one. The restricted map f ′ : (X ′,M) → (Y ′,N) where
X ′ := f−1(Y ′) is a Thom map.

Proof. The proof is local, so we consider the following setup instead: Suppose
f : (X,M)→ (Y, Rk+1) is a Whitney stratified map where Y is the upper half plane
in Rk+1, i.e. Y := {(y1, · · · ,yk+1) |yk+1 > 0}. We assume that the stratification of
the map stratifies Y as Yτ := {yk+1 > 0} ∼= Rk+1 and Yσ := {yk+1 = 0} ∼= Rk. Let Xσ
be a stratum of X that is mapped to Yσ and Xτ a stratum mapped to Yτ. Suppose
{xi} is a sequence in Xτ and kerdf|Xτ(xi) =: Ki converges to a subspace K∞ ⊆ TpM
where p ∈ Xσ. We want to show that Kp := kerdf|Xσ(p) ⊆ K∞. By passing to a
subsequence we can further assume that the tangent planes TxiXτ =: Ti converges
to T∞ ⊆ TpM. By Whitney’s condition (a), TpXσ ⊂ T∞.

Denote by ρY(y) := πk+1(y1, . . . ,yk+1) = yk+1 the “distance from the stratum”
function on Y. By pre-composing with f, this defines a function ρX(x) := ρY(f(x)).
Any vector v ∈ Ti with dρX(xi)(v) 6= 0 must also have df|Xτ(xi)(v) 6= 0 since the
chain rule implies that dρX(xi) = dρY(f(xi)) ◦ df|Xτ(xi) and thus v /∈ Ki.

Let πσ : Rk+1 → Yσ be the projection onto the first k coordinates. The restric-
tion of πσ to Yτ, written πσ,τ, is a submersion. By virtue of πσ,τ ◦ f|Xτ being a
submersion, any vector w ∈ Tπσ(f(xi))Yσ has a lift wf(xi) ∈ Tf(xi)Yτ so that wf(xi) ∈
kerdρY(f(xi)), which in turn has a lift w̃i ∈ Ti. Consequently, df|Xτ(xi)(w̃i) 6= 0

and thus w̃i /∈ Ki. Moreover, w̃i is orthogonal to ∇ρX(xi) since any lift of w is
chosen to factor through the kernel of dρY(f(xi)) = πk+1.

Thus, each Ti can be written as T̃πσ(f(xi))Yσ ⊕ Ki ⊕∇ρX(xi). Since TpXσ ⊂ T∞
the isomorphism T∞ ∼= TpXσ ⊕ (TpXσ)

⊥ can be further refined as T∞ ∼= T̃f(p)Yσ ⊕
Kp ⊕ (TpXσ)

⊥. We have assumed that f is C1 on the ambient manifold M so that
the lifts T̃πσ(f(xi))Yσ must converge (perhaps after passing again to a subsequence)
to T̃f(p)Yσ. Additionally, ∇ρX(xi) converges to a subspace of (TpXσ)

⊥. Finally,
since dimXσ < dimXτ, dimension constraints force Kp ⊆ K∞. This proves the
lemma.

This lemma is instrumental for our proof of Theorem 11.2.17. On it’s own, it
has a useful corollary.

Corollary 11.1.36. Any stratified map f : (X,M)→ (Y, R) that is C1 on the ambient
manifold is a Thom map.

11.1.6 Stratified Maps to the Real Line

Lemma 11.1.37. Any stratified map f : X → R defines, for each i, a cellular
cosheaf.
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Proof. The map f : X→ R defined above has as fibers the spaces Xr. Because it is
stratifiable with finitely many strata, we have the following decomposition of the
codomain:

(−∞, 0)← {0}→ (0, t1)← {t1}→ (t1, t2)← {t2}→ (t2, t3) · · ·

The points ti indicate the radii (the “times”) where the topology of the union
of the balls changes. Since the fiber Xti := f−1(ti) is a closed union of strata,
proposition 11.1.26 implies (after first choosing a system of control data and then
regarding X as Thom-Mather stratified) that we can fix an ε > 0 such that the
neighborhood Uti(ε) = ∪σ∈XtiTσ(ε/2) contains Xti as a weak deformation retract.
Since f is proper, we claim that there exists a point s−i ∈ (ti−1, ti) such that Xs−i
is contained in Uti(ε). Suppose for contradiction that for all n >> 0 there exists
a point xn ∈ f−1([ti −

1
n , ti − 1

n+1)) ∩ Uti(ε)
c. If this is possible, then {xn} de-

fines a sequence with no convergent subsequence, which contradicts the fact that
f−1([ti−1, ti]) is compact. Consequently, there exists an n such that if s−i := ti −

1
n ,

then f−1([s−i , ti]) ⊆ Uti(ε). The composition of the inclusion followed by the re-
traction

Uti(ε)

Xs−i

- 


;;

Xti

1 Q

∼=
bb

allows us to define maps between the homology of the typical fiber over (ti−1, ti)
to the homology of the fiber Xti .

Hi(Xs−i
;k)→ Hi(Xti ;k)

An analogous argument allows us to find an s+i ∈ (ti, ti+1) such that Xs+i ⊂ Uti(ε).
We can construct a vector field on (ti−1, ti) that flows from the point s+i−1 to s−i .
Lifting this vector field to a controlled one over this one, allows us to flow the
fiber over s+i−1 to the fiber over s−i , thus realizing the homeomorphisms Xs+i−1

∼=

Xs−i
explicitly. For convenience, we drop the decorations and choose any point

si ∈ (ti−1, ti) to get our modified version of the persistence module introduced in
Section 8.1.

· · · ← Hi(Xsi ;k)→ Hi(Xti ;k)← Hi(Xsi+1 ;k)→ Hi(Xti+1)← · · ·
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One should note that this diagram is contravariant with respect to the poset in-
dexing the stratification of R, thus we have constructed geometrically a cellular
cosheaf.

Corollary 11.1.38. The semialgebraic function f : X → R in example 11.1.17 de-
fines, for each i, a cellular cosheaf.

Although the above construction may appear convoluted, it is geometrically
natural. Instead of using the order on R to get a diagram of vector spaces and
maps, we have a diagram indexed by the pieces of a stratification of R. This new
diagram is specifically adapted to the topological changes in the family {Xr}.

In multi-dimensional persistence we imagine the need for more than one param-
eter to distinguish features in a point cloud. The traditional story of persistence
no longer applies since Rn for n > 2 has no natural (partial) order. In contrast,
every situation where multi-dimensional persistence can be treated as a stratified
map (which is effectively always), the partial order of the pieces in a stratification
presents itself as a most natural candidate.

However, the geometry of stratified spaces in more than one dimension is subtle
and a poset will not always suffice. In Section 11.2, we will introduce a small
category (usually equivalent to a finite one) that allows us to track persistent
features in a more careful way. The proof of Lemma 11.1.37 contains the essential
ideas of this more general picture. By considering certain definable paths in the
parameter space, and analyzing their inverse images, which will be definable, we
can try to reduce a multi-dimensional problem to a one-dimensional one. This is
the high-level outline of how Theorem 11.2.17 associates a constructible cosheaf
to a general definable map.

11.2 representations of the entrance path category

Given a Whitney (or Thom-Mather) stratified space, the entrance path category
looks very much like the fundamental groupoid. It has objects that are points
and morphisms that are paths. However, the paths and homotopies must respect
the stratification. A path may wind around in a given stratum and it may enter
deeper levels of the stratification, but upon doing so, it may never return to its
higher level.

Definition 11.2.1. Let (X, {Xσ}σ∈PX) be a Whitney (or Thom-Mather) stratified
space. We define the entrance path category Entr(X, {Xσ}) to be the category
whose objects are points of X and whose morphisms are homotopy classes of
entrance paths. An entrance path is a path γ(t) whose ambient dimension (the
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figure 59: Two Entrance Paths and a Homotopy Between Them

pure dimension of the containing stratum) is non-increasing with t. Moreover we
require the homotopies h(s, t) to be entrance paths for every fixed s. We write
Entr(X) when a given stratification is understood.

Opposite to the entrance path category is the exit path category, written Exit(X)
whose objects are the same, but whose paths ascend into higher dimensional
strata.

Remark 11.2.2 (“Tame” Homotopies). David Treumann’s thesis [Tre09], which
was written under MacPherson’s direction, contains one of the first published ac-
counts of the exit path category. However, he added an additional hypothesis that
the homotopies should be “tame,” which he defines by saying that h : [0, 1]2 → X

should admit a triangulation of [0, 1]2 such that the interior of each simplex in the
triangulation is contained in some stratum of X. Jon Woolf [Woo09] uses a version
of the exit and entrance path category based on Quinn’s theory of homotopically
stratified spaces and does not require Treumann’s tameness assumption. Homo-
topically stratified spaces are more general than Whitney or Thom-Mather strati-
fied spaces, so we may invoke some of Woolf’s results. Nevertheless, Treumann’s
modification foreshadows our own.

Definition 11.2.3 (Definable Entrance Path Category). For a fixed analytic-
geometric category G we can consider the definable entrance path category to
have the same objects as before, but whose morphisms are definable entrance
paths, where identify entrance paths related by definable homotopies h : I2 → X.
There should be a triangulation of I2, so that the image of every open cell is
contained in some stratum of X. This category will be written EntrG(X, {Xσ}).
Dually, we have a definable exit path category ExitG(X).
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Remark 11.2.4. We will not need to use the definable entrance path category until
Theorem 11.2.17, so one may temporarily ignore this restrictive definition.

From the perspective of a computer, the entrance path category definition is
entirely too unwieldy to be useful. Storing the points of any space we are ac-
customed to thinking about (circles, tori, Klein bottles, etc.) is simply too much
data to consider. Fortunately, these categories are equivalent to much simpler
subcategories by choosing a single point from each connected component in the
stratification and passing to a skeletal subcategory.

Example 11.2.5 (Entrance Path Category for S1). Now consider the circle S1 strat-
ified as a single pure stratum. The argument above shows that we can view the
entrance path category of S1 as equivalent to the fundamental group π1(S1, x0).
This is a category with a single object ? whose Hom-set corresponds to a loop for
each homotopy class of path, i.e. Hom(?, ?) ∼= Z.

Example 11.2.6 (Manifolds). More generally, if the space X is a manifold, stratified
as a single pure stratum, then the entrance path category is equivalent to the
fundamental group.

If we believe MacPherson’s characterization of constructible (co)sheaves, then
we can reach our much sought after explanation of why cellular sheaves and
cosheaves are actually sheaves and cosheaves. Part of the explanation rests on the
following characterization of the entrance path category for cell complexes.

Proposition 11.2.7 (Entrance Path Category for Cell Complexes). If (X, {Xσ}σ∈PX)
is stratified as a cell complex, then each stratum is contractible and there is only
one homotopy class of entrance paths between any two incident cells. As such

Entr(X) ∼= Cell(X)op = PopX and Exit(X) ∼= Cell(X) = PX.

To prove this proposition, we need a better understanding of the entrance path
category. To do so, we pick out a distinguished class of entrance paths.

11.2.1 Homotopy Links

Definition 11.2.8 (Homotopy Link). Suppose X is a decomposed space and Xσ 6
Xτ are two incident pieces. The homotopy link of Xσ in Xτ is defined to be the
space of paths γ : I→ Xσ ∪Xτ such that γ([0, 1)) ⊂ Xτ and γ(1) ∈ Xσ, i.e. it is the
space of paths that enter Xσ at the last possible moment.

We now adapt a proof of Jon Woolf’s ([Woo09], Lemma 3.2) to our situation.
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Lemma 11.2.9. Let (X, {Xσ}) be a Thom-Mather stratified space. Any entrance path
is homotopic through entrance paths to an element of the homotopy link.

Proof. Suppose γ : [0, 1] → X is an entrance path. By compactness, it can only
intersect finitely many pieces in the stratification of X. We write Xj to denote the
union of all dimension j pieces. For any i 6 j, we have that Xi 6 Xj.

We claim that one can show that every entrance path γ starting in a stratum Xk

and ending in a stratum Xi that intersects potentially every stratum in between

Xk > Xk−1 > · · · > Xi

is homotopic to a path γ ′(t) which sends every t ∈ [0, 1) to Xk and then enters Xi

at the last possible moment.
To define the homotopy, one focuses on pulling the path off the last stratum Xj

that γ enters before entering Xi, i.e. there is a partition 0 < t1 < · · · < tn < 1 of
[0, 1] such that γ(0) ∈ Xk, γ([tn, 1]) ⊆ Xi and γ([tn−1, tn)) ⊆ Xj. First, we show that
we can pull the path off Xi into Xj so that it enters only at t = 1. The schematic
uses the fundamental observation that stratified spaces can be treated locally as a
system of fiber bundles.

Pick a point xj := γ(tn − ε) ∈ Xj and consider its homeomorphic image (which
we call x ′j) in the fiber over γ(tn). There is a homotopy from the path γ relative
the end points xj = γ(tn − ε) and γ(tn) to the piece-wise path that is constant
in the fiber, connects xj to x ′j , and then heads straight to γ(tn) while staying in
the fiber over that point. By the path lifting property for fiber bundles, we can
consider a lift of γ([tn, 1]) starting with x ′j which ends at x ′′j in the fiber over γ(1).
Repeating the same argument, we can then consider a path that heads from x ′′j
to γ(1) while staying in the fiber. Now the path enters the stratum Xi at the last
possible moment.

Repeating this argument and using the conical structure of the fiber, allows us
to lift the path out of the Xj stratum and into higher ones.

This result allows us to take representative entrance paths that are easy to un-
derstand. Every element of the homotopy link is an entrance path, but not every
entrance path is an element of the homotopy link. Moreover, it is not clear that
two paths that are homotopic as entrance paths are homotopic as entrance paths
(after we have moved them into the link as in the above proof). Fortunately, David
Miller has recently shown this is the case [Mil06]. At a high level, this provides a
proof of Proposition 11.2.7, which can also be seen using easier methods.
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figure 60: Modifying a Homotopy to Stay Inside an Open Set

Proof of 11.2.7. Since the pieces in a cell structure on X are all contractible, each
cell Xσ has a single path component in its homotopy link in Xτ. Thus the skeleton
of the entrance path category for a cell complex is

Entr(X) ∼= Xop,

which was wanted.

11.2.2 Van Kampen Theorem for Entrance Paths

If we can show that the entrance path category can be built up locally, then we
can prove that representations of this category define cosheaves. The ability to
build up locally the entrance path category is the van Kampen theorem adapted
to stratified spaces. Ostensibly, David Treumann’s published version of his the-
sis [Tre09] proves the van Kampen theorem for the exit path 2-category, but the
elegant inductive argument in proposition 5.9 appears to have an error.8 Jacob
Lurie has a proof for the ∞-category case [Lur09b]. Jon Woolf has outlined an-
other argument [Woo14] based on his classification of Set-valued representations
of the entrance path category as branched covers. The following proof, joint with
Dave Lipsky, is more direct and algorithmic, but less elegant in many respects.

The main difficulty in proving the van Kampen theorem is that given a cover, a
homotopy of entrance paths restricts to a free homotopy between entrance paths
and not a homotopy relative endpoints; see Figure 60. In contrast to the fun-
damental groupoid, we cannot freely add paths to make this homotopy respect

8 The argument inducts on the number of triangles in a triangulation of I2. The statement that the
closure of the complement of a single triangle is homeomorphic to I2 is not true if, for example,
the triangle has two vertices on one side of the square and the third on another side.
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endpoints, the entrance path property must be preserved and this significantly
complicates the proof. We borrow Treumann’s idea of using a triangulation T
of I2 such that h : I2 → X sends open cells of T to strata of X. We then, after
sufficient refinement, define a homeomorphism of I2 that allows us to treat the
triangulation as a piecewise linear one. For a piecewise linear triangulation, we
outline an explicit algorithm for replacing the homotopy h with a composition of
homotopies preserving endpoints, each of which is supported on a triangle in I2.
Let us state our desired version of the van Kampen theorem and give the first step
of the proof.

Theorem 11.2.10 (Van Kampen Theorem for Entrance Paths). If X is a Whitney
stratified space and U = {Ui} is a cover, then

Entr(X) ∼= lim−→
I∈N(U)

Entr(UI).

Each open set is given the induced stratification from the whole space. We assume
that every homotopy h : I2 → X admits a triangulation of the domain so that for
each open cell in the triangulation there is a stratum of X that contains its image.
Moreover, the same result holds for the definable entrance path category.

Proof. The colimit is an ordinary colimit in the category of all categories. The dia-
gram that sends each I ∈ N(U) to Entr(UI) we will call V . We already know that
the inclusions of the open sets UI ↪→ X induce functors φI : Entr(UI) → Entr(X)
and that these define a cocone φ : V ⇒ Entr(X), i.e. a natural transformation
from V to the constant diagram on N(U) with value Entr(X). Now suppose
φ ′ : V ⇒ C is another cocone. We need to check that there exists a unique
map u : Entr(X)→ C that makes all the functors commute, i.e. u ◦φI = φ ′I.

On objects, u(x) := φ ′i(x) for whatever open set Ui contains x. The choice
doesn’t matter since if Uj also contains x, then the functor defined on the intersec-
tion causes φi ◦φij(x) = φj ◦φij(x). Now we must define u(γ) for γ an entrance
path in X. By compactness, we can pass to a finite subcover of {Ui} to cover the
path γ. We can break up γ into shorter paths γi1 , . . . ,γin , each of which lie in
some element of the cover. We define u(γ) := φ ′in(γin) ◦ · · · ◦φ

′
i1
(γi1). We must

show that this definition is invariant under homotopy to complete the proof. This
is accomplished by Lemma 11.2.13 together with Proposition 11.2.14.

Definition 11.2.11. Call a homotopy U-elementary if there is an interval [a,b] ⊂ I
such that h(s, t) is independent of s so long as t /∈ [a,b] and the image of I× [a,b]
under h is contained in U. See Figure 60 for an illustrative cartoon.
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Remark 11.2.12. We will use a slightly strange way of orienting the unit square
I2 = [0, 1]× [0, 1] 3 (s, t). The “top edge” is the edge where t = 0 and the “bottom
edge” is the edge t = 1. We will use this language because an entrance path enters
“deeper” levels of a stratification.

Lemma 11.2.13. Let X be a Whitney stratified space along with a cover U and
let α(t) and β(t) be entrance paths with the same start and end points. Let
h : I2 → X be a homotopy (relative endpoints) through entrance paths connecting
α(t) = h(0, t) to β(t) = h(1, t). If I2 admits a piecewise-linear triangulation T
such that every open cell in T is mapped to a stratum of X, then we may define
a sequence of new homotopies h1, . . . ,hn : I2 → X, each of which are elementary
for some element of the cover, so that the composite connects α ' β. Informally
speaking, each homotopy hi will be supported on a single triangle in the barycen-
tric subdivision of the triangulation T .

Proof. Since the image of I2 is compact, a finite subcover of U will do. After
sufficient refinement, we can assume that each triangle in T is contained in some
element of the subcover. By taking the barycentric subdivision T ′, we can refer to
the vertices of any triangle in T via barycentric labels v, e, f depending on whether
the vertex is at the barycenter of a vertex, edge or face in the original triangulation.
Since each open cell in T is mapped to a stratum of X, the triangles in T ′ satisfy the
following fundamental property: h(σf), where σf := [v, e, f] − [v, e], is contained in
some stratum Xf; h(σe), where [v, e] − v = σe, is contained in Xe; h(v) is contained
in Xv and Xf > Xe > Xv. We will refer to the dimension of these containing strata
as the “dimension” of f, v and e, respectively.

By the fundamental property of triangles in T ′ we know, for example, that the
path parameterized by going from f to e to v along the boundary of a triangle is a
valid entrance path and this is homotopic through entrance paths to one that goes
from f directly to v. This is the prototypical “move” that we will use to define a
given hi in our new homotopy between α to β. By reparameterizing the triangle,
this move defines an elementary homotopy of entrance paths.

As a preparatory step we replace the entrance path α(t) := h(0, t) with the path
that starts at (s, t) = (1, 0) and goes along the top edge of the square to (0, 0),
then to (0, 1) and finally to (1, 1). Because the homotopy is constant along the
top and bottom edges, this only affects the parameterization of the path, but now
our modified path and β(t) := h(1, t) share the same endpoints in I2. We will
now refer to our intermediate paths γ by a sequences of vertices in T ′, written
w1 · · ·wn, which taken two at a time define edges γi = wawb labeled by a pair
of letters fv or vf, fe or ef, ev or ve. Observe that if the image of vf under h is a



11.2 representations of the entrance path category 225

valid entrance path, then this implies that dim v = dim e = dim f for the triangle
containing that particular edge vifi.

If an entrance path γ ever has a vertex appear twice in its list, then this indicates
a loop that must be contained in the same stratum. By virtue of the fact that I2

is simply connected, the portion of the path between the repeated vertices can be
homotopically reduced to the constant path via the argument used to prove the
van Kampen theorem for the fundamental groupoid. We will avail ourselves of
this operation, which we call the fundamental groupoid sweep F. For example,
if γ contains · · · eiviei · · · in its list of visited vertices, then F(γ) will replace the
portion eiviei with just ei. Of course, F2 = F.

We retain the (s, t) coordinates to determine valid moves in our homotopy. We
do this because, by assumption, for all s, h(s, t) is an entrance path in t and thus
the dimension decreases in that direction. Now we can describe our algorithm:

If F(γ) = γ and s(wi) = s(wj) for all i 6= j, then we are done. Otherwise, apply
F and starting with γ1, ask of γi if there is a triangle to the left (with respect to
the induced orientation of following the path) and apply one of following rules:

(1a) If γi = vf or fv, then replace γi with γ ′i := vef or fev, where e belongs to the
triangle to the left.

(1b) If γi = ev and s(e) > s(v) or if γi = ve and s(v) > s(e), then γ ′i := efv or
γ ′i := vfe where f belongs to the triangle to the left.

(1c) If γi = fe and s(f) 6 s(v) 6 s(e) or if γi = ef and s(e) 6 s(v) 6 s(f) where v
belongs to the triangle to the left, then γ ′i := fve or γ ′i := evf.

If none of the above apply, consider adjacent paths γi ∗γi+1 two at a time and ask
if the following rule is applicable:

(2) If γi ∗ γi+1 = fev or vef where the interior of the triangle is kept to the left,
then (γi ∗ γi+1) ′ = fv or vf.

After each application of a rule, one must check whether F(γ) = γ and s(wi) =

s(wj) and repeat as many times as necessary. The algorithm must terminate by
virtue of the fact that each step reduces the number of triangles to the left.

Observe that the only way for a path γi not to have a triangle to its left is if it
lies on the boundary of I2 and it is following the boundary clockwise. If γi does
not belong to the s = 1 edge, then that contradicts the assumption that F(γ) = γ

as the total path must return to the point (s, t) = (1, 1). If the edge does lie on
s = 1, then part of the desired homotopy has been achieved and it need not be
moved. If there are no triangles to the left and F(γ) = γ, then the algorithm has
finished.
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figure 61: Forcing Move (1c) to Apply

The rationale for rule (1b) is that any point p on the edge ev determines an
entrance path h(s(p), t), which drops into the interior σf of the triangle to the
left, thus bounding the dimension of f by the dimension of e. The rule (1c) uses
similar reasoning. If s(f) 6 s(v) 6 s(e) where v is the triangle to the left, then the
entrance path determined by v h(s(v), t) flows into σf or σe thus bounding the
dimension of e by the dimension of v. Let us now prove the correctness of the
algorithm.

Suppose γ has a vf of fv in sequence. Since a f vertex cannot belong to the
boundary of I2, this implies that there is a triangle to the left and that rule (1a)
can be applied. Thus, to show that at least one move can be applied up until the
algorithm finishes, we assume that no vf’s or fv’s appear in γ. Suppose γ consists
of only e’s and v’s. Since the start of γ has s(v) = 1, having s non-decreasing
would imply that γ is contained in s = 1 and the algorithm would be finished.
Otherwise there is a pair such that (1b) can be applied. Now assume that our
path has e’s, v’s and f’s, with no fv/vf pairs and such that for all ev/ve pairs, s is
increasing.

Because the value of s must go from 1 back to 1, if s is not constant along γ,
then there must be at least one s decreasing to increasing turning point. Because
γ is piecewise linear, by turning point we mean the shortest adjacent collection
of edges γi ∗ · · · ∗ γk where the s value goes from strictly decreasing to strictly in-
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creasing, i.e. there is an edge along which s is strictly decreasing, then potentially
several edges where s is constant and finally an edge which increases in s. To
determine the “handedness” of these turning points we must further specify the
t behavior. If the turning point consists of only two edges, then we can ask if the
difference in t of the first and last vertex is positive or negative. If the turning
point has at least one constant s value edge, then we can use the difference in t
along the edge to determine if the turning point is t positive or t negative.

Suppose we have a t negative s decreasing-to-increasing turning point. If the
minimal s value is obtained on this turning point, then since t must go from 0 to
1, we can conclude that the path must intersect itself at some point, contradicting
the assumption that F(γ) = γ. To avoid self-intersection, there must be at least one
t positive turning point. Since there are no decreasing ev/ve pairs, the decreasing
edge must be either ef or fe. If the next term is a v, then either rule (1a) or (2)
would have to apply, respectively. Thus, we can conclude that the next term is
either an f or an e. Inducting on the length of the s constant portion of the turning
point and using the fact that f, e and v cannot be collinear, we can show so long
as rules (1a), (1b) or (2) cannot be applied, that the s increasing edge has to be an
fe/ef edge. Consequently the last two edges in such a turning point is either fef
or efe.

Now we visit the last t positive s decreasing-to-increasing turning point. Since
the reasoning is so similar, assume that the last two edges are efe. We aim to
show that if no other rules are applicable, then the rule (1c) must be applicable
for some ef/fe edge. Let us refer to the vertices in the original triangulation T
containing these barycenters as v1, v2 and v3, whose s coordinates are s1, s2 and
s3 respectively. Since all the vertices cannot be collinear, we let s2 have the largest
s value. The vertex f is the centroid of {v1, v2, v3} ⊂ I2, the first e = e12 is the
centroid of {v1, v2} and the next e = e23 is the centroid of {v2, v3}. By assumption
1/3(s1+ s2+ s3) = s(f) < s(e23) = 1/2(s2+ s3), thus if the next vertex visited is v3,
then we can apply rule (1b) to e23v3. If the next vertex visited is v2, then we can
apply rule (2). Thus, we must assume that the next vertex is f ′ = 1/3(v2+ v3+ v4).
Now we reason on e23f ′. The next vertex cannot be a v, otherwise (1a) could be
applied. If the next edge visited is e34, then there are two possibilities. Either
s(e34) < s(f ′), which would contradict the fact that we are at the last t positive
turning point, or s(f ′) 6 s(e34), which would imply that 2s2 6 s3 + s4, but this
would imply that s2 = s(v2) 6 s(f ′) and consequently rule (1c) would apply.
Thus, assuming s(e34) < s(f ′), we must remain in the link of v2 and proceed to
e24. Repeating inductively, and using the fact that there are only finitely many
triangles, there must be a point where rule (1c) is applicable; see Figure 61. This
completes the proof.
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Now we must select out a class of triangulations of the unit square I2 that can
be deformed in an entrance-path preserving way to a PL triangulation.

Proposition 11.2.14. Suppose that a (definable) triangulation ϕ : |K| → I2 by a
finite simplicial complex is C2 when restricted to the edges of |K|. There is a
(definable) homeomorphism g of I2 so that after suitable refinement, the triangu-
lation is piecewise-linear.

Proof. The strategy of the proof is to add additional vertices {wi} to the image ϕ(e)
of each edge in I2 so that the line segment connecting any two adjacent vertices
w0,w1 is to one side of the curve ϕ(e) between s(w0) and s(w1). We will then
locally scale the t value in such a way as to push that part of ϕ(e) to the line
segment.

To add in these vertices in a principled way, we first consider the critical set
of the s value of ϕ(e) for every edge e in |K|. We remove the entire critical set
from e. If the critical set contains an interval, then we know that portion of the
edge is already linear and need not consider it. Now we use the implicit function
theorem to write the remainder of the edge ϕ(e) − {ds|ϕ(e) = 0} as a function of s.
For each of these functions we find the critical set of its first derivative (“inflection
points”) and remove these as well. What is remaining of ϕ(e) is a collection of
open concave and convex arcs, each of which have boundary points wi,wi+1 in
the various critical sets we have removed. Write `i(s) for the equation of the t
coordinate of the line connecting wi to wi+1, i.e. the graph of the line is (s, `i(s)).
We also write the portion of ϕ(e) between wi and wi+1 as ϕi(s).

Possibly after further removal of points, we assume that each arc ϕi(s) has
a tubular neighborhood Ti that contains `i(s) and each of these neighborhoods
are pairwise disjoint. We are now going to define a homeomorphism that is the
identity outside of Ti. To do so we need one more pair of functions.

µ±(x) = x if |x| > 1

µ±(x) = 2x± 1 if −1 6 x 6 −1
2

µ±(x) =
2
3x±

1
3 if −1

2 6 1

Now we can define a homeomorphism gi on Ti using + if the function ϕi(s) is
concave and − if the function ϕi(s) is convex.

gi(s, t) := (s, 2 · |ϕi(s) − `i(s)| · µ±(
t− `i(s)

2|ϕi(s) − `i(s)|
) + `i(s))
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Since the domains of each Ti are disjoint we can define the homeomorphism g to
be gi when in Ti and the identity otherwise. This straightens each of theϕi(s). The
portions of ϕ(e) removed are already piecewise-linear. This makes each g ◦ϕ(σ̄)
into a piecewise-linear polyhedron, the interior of which is mapped via h to a
single stratum of X. By adding edges and vertices, we can refine the stratification
of g ◦ϕ(σ̄) to be a piece-wise linear triangulation.

11.2.3 The Equivalence

We will break our proof of MacPherson’s characterization into two parts. The
first shows that any representation defines a constructible cosheaf. The second
shows that any constructible cosheaf defines a representation of the entrance path
category.

Theorem 11.2.15 (Representations are Cosheaves). Let X be a Thom-Mather strat-
ified space. Any representation of the entrance path category

Entr(X, {Xα})→ Vect

defines a constructible cosheaf.

Proof. To produce a cosheaf from a representation F̂ : Entr(X) → Vect we take
colimits over the restriction of F̂ to the entrance path category of U (with its
induced stratification):

F̂(U) := lim−→
Entr(U)

F̂|U

This is clearly a pre-cosheaf since if U ↪→ V , the colimit over F̂|V defines by re-
striction a cocone over F̂|U and thus a unique map F̂(U)→ F̂(V). We can describe
more explicitly this colimit as follows:

Given a point x ∈ Xσ in a stratum of dimension i, there is a basis of conical
neighborhoods Ux ∼= Ri×C(L) where L is the stratified fiber of the retraction map
πσ and C(L) is its open cone. For such a neighborhood, x is the terminal object in
Entr(Ux), thus the colimit returns the value of F̂(x). Moreover, this shows that the
costalks of the pre-cosheaf defined stabilize for small contractible sets containing
x.

To show this is actually a cosheaf we use the version of the van Kampen theorem
adapted to the entrance path category just proved in Theorem 11.2.10:

lim−→
I∈N(U)

Entr(UI) ∼= Entr(X)
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As a consequence of colimits commuting with colimits we get that for a represen-
tation of the entrance path category F̂

lim−→
I∈N(U)

F̂(UI) := lim−→
I∈N(U)

lim−→
Entr(UI)

F̂|UI
∼= lim−→

Entr(UI)
lim−→
I∈N(U)

F̂|UI
∼= lim−→

Entr(U)
F̂|U.

This establishes the cosheaf axiom.

Theorem 11.2.16 (Representations of the Entrance Path Category). Every cosheaf
F̂ with finite-dimensional costalks that is constructible with respect to a Thom-
Mather stratification of X determines a representation of the entrance path cate-
gory.

Entr(X, {Xα})→ vect

Proof. If X is a Thom-Mather stratified space, then we know that every point
x ∈ Xσ in a stratum of dimension i has a neighborhood Ux ∼= Ri × C(L), where
L is the fiber of πσ, and C(L) is the open cone. Now suppose F̂ is a constructible
cosheaf, which we assume has finite-dimensional costalks. We claim that for Ux
suitably small we can show that

F̂x ∼= F̂(Ux).

This is not so easy to see and a proof would require substantial more development
of cosheaf theory. Heuristically, if the value of F̂ on a sequence of conical neigh-
borhoods never stabilized then this would contradict the constancy of the cosheaf
on sets of the form Ux ∩ Xτ. For a rigorous proof, one dualizes a constructible
cosheaf to a constructible sheaf by post-composing with Homvect(−,k), which is
an equivalence, and we can apply the proof for constructible sheaves found on p.
84 of [GM83].

Consequently, if y ∈ Ux ∩ Xτ is a point in a nearby stratum, then there is an
analogous neighborhood Uy contained in Ux. Repeating the same argument, we
can then use the maps present in a cosheaf to define a map from the costalk at y
to the costalk at x:

F̂x
∼= // F̂(Ux) F̂(Uy)oo F̂y

∼=oo

Recall that the restriction of a constructible cosheaf to any stratum defines a locally
constant cosheaf. For arbitrary points y ′ in the stratum Xτ we can consider a path
y ′  y and use Theorem 3.2.6 to define a map from F̂y ′ to F̂y. Postcomposing
with the above map defines the map F̂y ′ → F̂x. This explains why constructible
cosheaves map naturally define ways of specializing a costalk over one stratum to
a costalk in its frontier.
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To show homotopy invariance, we appeal to the van Kampen Theorem 11.2.10

to reduce the argument to elementary homotopies of a particular form. Assume
α(t) goes from z ∈ Xλ directly to x ∈ Xσ and that β(t) goes from z to y and
then x. Since restriction to any stratum defines a locally constant cosheaf, we
can appeal to the homotopy invariance of Theorem 3.2.6 to position these paths
and points to be inside Ux and so that Ux ⊃ Uy ⊃ Uz. By choosing a similar set
of isomorphisms, we get two commutative diagrams, which followed along the
top edge corresponds to the action of α(t) and followed along the bottom edges
corresponds to β(t).

F̂(Uz) //

##

F̂(Ux)

F̂(Uy)

;;
F̂z //

��

F̂y

F̂x

@@

11.2.4 Representations from Stratified Maps

We want to show that stratified maps induce representations of the entrance
path category, which, by the first part of our equivalence, defines a constructible
cosheaf.

Theorem 11.2.17 (Cosheaves from Stratified Maps). Fix an analytic-geometric cate-
gory G. If Y is a closed set in G(N) and f : (Y,N)→ (X,M) is a C1 proper definable
map, then for each i, the assignment

x ∈ X Hi(f
−1(x);k)

defines a representation of the definable entrance path category of X, where the
stratification is gotten by the stratification induced by f.

Proof. Let γ : I → X be a definable map that satisfies the entrance path condition,
i.e. as t increases the dimension of the ambient stratum is non-increasing. Thus
γ(0) is in a stratum of dimension greater than or equal to γ(1). By Lemma 11.1.15,
we know that the pullback Yγ := I×X Y is definable, as is the pullback of f along
γ, written γ∗f. Since definable sets can be Whitney stratified, Yγ admits a system
of control data, and may be regarded as a Thom-Mather stratified space.

The argument from Lemma 11.1.37 provides us with the prototype for getting
a diagram of spaces for every path. We will repeat it here for convenience and
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make any necessary modifications. By definable triviality (4.11 of [vdDM96]),
there exists a finite partition of [0, 1] such that over each interval the inverse image
is homeomorphic to the product:

f−1((ti, ti+1))
∼= //

f ''

F× (ti, ti+1)

ww
(ti, ti+1)

By properness we can, for any fixed ε > 0, find an s+i such that f−1([ti, s+i ]) is con-
tained in Ui(ε) := ∪Tσ(ε/2) for Yσ ⊆ f−1(ti) := Yi. The retraction we constructed
in Proposition 11.1.26 gives a retraction map r+i := H(p, 0) from Ui(ε) → Yi. This
allows us to define a map on fibers

f−1(s+i ) ↪→ Ui(ε)→ Yi.

Applying some homology functor Hn(−;k) defines the representation locally on
the path. Of course, we must show that this representation is independent of
the point si taken. If s+

′

i ∈ [ti, s+i ] is another point, then the composition of
the trivialization with the retraction witnesses the homotopy between these two
choices.

F× [s+
′

i , s+i ] ∼= f
−1([s+

′

i , s+i ]) ↪→ Ui(ε)→ Yi

Similarly, one can find a point s−i+1 so that it’s fiber is contained in Ui+1(ε) and
the retraction r−i+1 defines a map from that fiber to the fiber Yi+1 = f−1(ti+1).
By Thom’s first isotopy lemma there is a homeomorphism ϕi+1,i taking the fiber
over s+i to the fiber over s−i+1. This homeomorphism is gotten by constructing a
vector field that flows from s+i to s−i+1 and lifting it to a controlled vector field
on f−1((ti, ti+1)) via Proposition 9.1 of [Mat12]. Finally, one must observe that
the filtration of X by strata of a given dimension or less, the restriction of γ to
the half-open interval [ti, ti+1) is contained inside a single stratum of X and thus
the retraction r+i induces a homotopy equivalence between the fiber over s+i and
the fiber over ti. Applying our homology functor to the following composition
defines the total action associated to this path:

· · · (ri+1)−∗ ◦ (ϕi+1,i)∗ ◦ (r+i )
−1
∗ · · ·

It remains to be seen that this map is invariant under definable homotopies
of entrance paths. Suppose h : I× I → X is a definable homotopy. Again, the
pullback Yh := I2 ×X Y is definable, as is the map h∗f, and both can be stratified.
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figure 62: Argument for Homotopy Invariance

Thus, we have reduced everything to considering a stratified map to the square I2.
By the van Kampen Theorem 11.2.10, it suffices to check homotopy invariance on
an elementary homotopy, such as the one depicted in Figure 59. Let us assume
that h is a homotopy between an entrance path α(t) = h(0, t), which goes from
a stratum Xλ and enters a stratum Xσ at the last possible moment t = 1, and an
entrance path β(t) = h(1, t), which enters Xτ at t = 1/2 and then goes to Xσ at t =
1. Moreover, we assume that h takes the complement of {t = 1} ∪ {(1, t) | t > 1/2}
to the stratum Xλ. This guarantees that the fibers over x, x ′,y,y ′,a,a ′,b,b ′, c ′ and
d ′ in Figure 62 can all be identified.

Let T be a system of control data for Yh, obtained in a specific way. By restricting
to the strata over s = 0 and s = 1 respectively, we get control data for Ys=0 and
Ys=1, both of which are inside I2 ×X Y ⊂ R2 ×N. The spaces Ys=0 and Ys=1 can
be identified with the inclusions of Yα or Yβ, which are contained in R×N. The
manner in which Mather constructs control data in Proposition 7.1 of [Mat12] can
be used to extend the control data for Yα and Yβ to control data for Ys=0 and Ys=1



11.2 representations of the entrance path category 234

inside R2×N respectively. This is how we obtain those tubular neighborhoods in
{T } and the rest can be constructed to be compatible with those. This allows us to
use the control data T to meaningfully compare the construction above for α(t)
and β(t).

We can describe the maps associated to α(t) and β(t) as follows: By properness,
we assume the fiber over x is contained in a regular neighborhood, which retracts
via rx to the fiber over (0, 0). There is a homeomorphism ϕy,x from the fiber over
x to the fiber over y. Finally, we can assume that the fiber over y retracts via ry to
the fiber over (0, 1). Thus the action associated to α(t) is the map

(ry)∗ ◦ (ϕy,x)∗ ◦ (rx)−1∗ : Hn(Y(0,0))→ Hn(Y(0,1))

where we have implicitly pre-composed rx with the inclusion of the fiber.

For β(t), the action is similar:

(rd)∗ ◦ (ϕd,c)∗ ◦ (rc)−1∗ ◦ (rb)∗ ◦ (ϕb,a)∗ ◦ (ra)−1∗ : Hn(Y(1,0))→ Hn(Y(1,1/2))→ Hn(Y(1,1))

The strategy of the proof is to pick a path γ(t) that interpolates α(t) and β(t)
and show that the associated map on homology agrees with both α(t) and β(t).
This path is indicated by the dotted-and-dashed line passing through a ′,b ′, c ′ and
d ′ in Figure 62. The representation associated to γ(t) is

(r1)∗ ◦ (ϕd ′,c ′)∗ ◦ (ic ′)−1∗ ◦ (ib ′)∗ ◦ (ϕb ′,a ′)∗ ◦ (r0)−1∗ .

Here the maps ib ′ and ic ′ denote the inclusion of Yb ′ and Yc ′ into the inverse
image of the interval [b ′, c ′]. The action on homology of (ic ′)−1∗ ◦ (ib ′)∗ agrees with
an analogously constructed homeomorphism ϕc ′,b ′ , but we will find it easier to
equate the map associated to β(t) and γ(t) as written above.

Because the control data {T } extends the control data for Yα and Yβ, the retrac-
tion map ra can be taken to be the restriction of a retraction map r0 : UY(1,0)(ε)→
Y(1,0) constructed in Proposition 11.1.26. This in turn can be taken to be the restric-
tion of the tubular projections used to define a retraction map rs=1 : Us=1(ε) →
Ys=1. The commutation relations for control data allow us to imagine first taking
the fiber Ya ′ over a ′ and retracting to the strata over the edge e0 := {(1, t) | 0 < t <
1/2}, and then retracting to the fiber over (1, 0). This allows us to factor r0 as

r0 = ra ◦ re0 ,
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but the image of Ya ′ under re0 may not be contained in Ya or any single fiber.
This would be true if, for example, the control data defining the retraction to Ye0
satisfied

πe0(f(p)) = f(πσ(p))

for each stratum Yσ that f carried to e0, but in general it does not. This is what
necessitates the use of the Thom properties given by Lemma 11.1.35 and property
(b) of Proposition 11.1.32.

By Lemma 11.1.35, we know that restricting the codomain to the complement
of the vertices, the mapping h∗f is a Thom mapping. Consequently, if we pick a
tubular neighborhood Te0 for the edge e0 := {(1, t) | 0 < t < 1/2}, there exists a
system of control data {T ′} over Te0 and the interior of I2 by Proposition 11.1.32.
If we restrict to those tubular neighborhoods coming from strata in Ye0 , then
property (a) of Proposition 11.1.32 implies that this restricted collection of tubular
neighborhoods defines actual control data for Ye0 , which we call {T ′}Ye0 . A priori,
the analogous restriction of {T } to Ye0 defines a different system of control data.
However, by Mather’s uniqueness result,9 there is a homeomorphism ψe0 of Ye0
that takes {T ′}Ye0 to {T }Ye0

. This implies that if Yσ is a stratum that is mapped to
(1, 0) and Yτ is mapped to e0, then

πσ = πσ ◦ψe0 ◦ πτ ′ since πτ = ψe0 ◦ πσ ′

By repeating the construction of a retraction outlined in Proposition 11.1.26, but
using the control data {T ′}Ye0 instead to construct the family of lines, we get a map
r ′e0 that carries the fiber over a ′ to the fiber over a. Post-composing r ′e0 with ψe0

9 Mather mentions at the bottom of page 492 of [Mat12] that any Whitney stratified subset Z of a
manifold M has a unique, up to isomorphism, structure as a Thom-Mather stratified set. This
is not explicitly proved, but it follows from Mather’s Corollary 10.3 as explained by Goresky:
Suppose Z is given two different structures of control data {T } and {T ′}. If we consider Z×R

as a Whitney stratified subset of M×R, then {T } and {T ′} can be extended to control data on
Z× (−ε, ε) and Z× (1− ε, 1+ ε), respectively. Then, using the proof of prop. 7.1, one can find
control data on all of Z×R that agrees with the ε extensions of {T } and {T ′}. This space, now
viewed as a Thom-Mather stratified set, is then isomorphic via Corollary 10.3 to the set where
just Z×R is given the extension of just the control data {T }.
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gives the equality re0 = ψe0 ◦ r ′e0 . This construction gives the left most triangle in
the following commutative diagram:

Y(1,0) Ya
raψe0oo

ϕb,a // Yb
rbψe0// Y(1,1/2) Yc

rcψe1oo
ϕd,c // Yd

rdψe1// Y(1,1)

Ya ′

r0

aa
r ′e0

OO

ϕb ′,a ′
// Yb ′

r ′e0

OO

r1/2

<<

ib ′
// Y[b ′,c ′]

r1/2

OO

Yc ′ic ′
oo

r1/2
bb

r ′e1

OO

ϕd ′,c ′
// Yd ′

r ′e1

OO

r1

==

Now we explain the other maps in this diagram. The homeomorphisms ϕb,a
and ϕb ′,a ′ are constructed by taking a controlled vector field {ηf,ηe0 ,ηe1} in I2 mi-
nus the vertices using the control data {T ′} over {Tf, Te0 , Te1}. Since dπe0(ηf(s, t)) =
ηe0(πe0(s, t)) the controlled vector field over this one commutes with f and gives

ϕb,a ◦ re ′0 = re ′0 ◦ϕb ′,a ′ .

Again, the commutation relations in Proposition 11.1.26 allows us to, using the
control data {T } to factor r1/2 = rb ◦ re0 . However, the uniqueness theorem tells
us that re0 = ψeo ◦ r ′e0 where ψe0 . A simple diagram chase now completes the
argument. Comparing the maps associated to α(t) and γ(t) is much simpler and
uses the same ideas. We leave it to the reader.

Remark 11.2.18 (Alternative Idea for a Proof). An alternative approach makes
use of the properties of o-minimal structures. The generic triviality theorem 4.11

of [vdDM96] guarantees that we have a definable trivialization of the map over
(0, 1).

f−1(γ((0, 1)))
∼=

h
//

γ∗f &&

F× (0, 1)

yy
(0, 1)

For each point x in the fiber F, we get a lift {x} × (0, 1) of the open interval.
Applying the inverse homeomorphism, h−1({x}× (0, 1)) defines a definable path
αx : (0, 1)→ f−1(γ([0, 1])).

Mário Edmundo and Luca Prelli, in their recent note [EP12] reworking the six
basic Grothendieck operations for sheaves in the o-minimal setting, have given a
tantalizing reformulation of what characterizes a definable proper map. They use
an idea of Ya’acov Peterzil and Charles Steinhorn [PS99] that shows that being
definably compact (equivalently, closed and bounded) is equivalent to being able
to to complete curves. A map f : Y → X is definably proper if for every definable
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curve α : (0, 1) → Y and every definable map [0, 1] → X there is at least one way
to complete the diagram:

(0, 1) α //

��

Y

f
��

[0, 1] //
ᾱ

==

X

If one assumes all the maps are continuous as well as definable then the comple-
tion in the diagram above is unique.10

In our situation, the hypotheses guarantee that for each point x ∈ F, we can
complete the curve αx : (0, 1) → I ×X Y to a curve ᾱx : [0, 1]. By associating
endpoints over 0 to endpoints over 1we define a set-theoretic map g : f−1(γ(0))→
f−1(γ(1)). The hard work is showing that this map g is continuous and is invariant
under homotopy.

10 One of the unusual features of o-minimal topology is that definable maps need not always be
continuous, thus the added hypothesis. Even discontinuous maps can have triangulable graphs.
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D U A L I T Y: E X C H A N G E O F S H E AV E S A N D C O S H E AV E S

“Quod superius sicut quod inferius, et quod inferius sicut quod superius, ad
perpetranda miracula rei unius.”

— Hermes Trismegistus [VW88, p. xxix]

In this section, we are concerned with the derived equivalence of cellular
sheaves and cosheaves. In Section 12.1, we introduce the functor that establishes
this equivalence and try to motivate it topologically via taking the “closure” of
the data over an open cell. In the case when X is a manifold, Theorem 12.1.3 gives
us a duality result for data that relates sheaf cohomology with our new theory of
sheaf homology. Finally, the equivalence is proved in Section 12.2.

12.1 taking closures and classical dualities re-obtained

In this section we are going to explain the all-important Poincaré-Verdier duality
as an exchange of sheaves and cosheaves. To introduce this duality, we explain
an odd, but clean way of going from a cellular sheaf to a complex of cellular
cosheaves. This is meant to express the idea that duality is an exchange of open
and closed cells.

Suppose we start with a sheaf F on the unit interval X = [0, 1] stratified with
end points x = 0, y = 1, and a = (0, 1). Such a sheaf is just a diagram of vector
spaces of the form

F(a)

F(x)

ρa,x
<<

F(y).

ρa,y
cc

Now we are going to extend the value of the sheaf on a cell σ to its closure σ̄ by
defining F̂(τ) = F(σ) for every cell τ 6 σ and using the identity maps from σ to
its faces. This in effect smears the value of the sheaf on an open cell onto all of its
faces. However, what should we do to the values of the sheaf already stored on

238
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a face τ? This is where we use the different slots in a complex of vector space to
store independently the values:

F(a) F(a)
idoo id // F(a)

F(x)

ρa,x

OO

0oo

OO

// F(y).

ρa,y

OO

For dimension reasons, it should be clear that this smearing operation defines an
assignment of chain complexes to each open cell with chain maps extending to
the faces:

P̂(F)(a)
r•x,a

yy

r•y,a

%%

P̂(F)(x) P̂(F)(y).

This motivates the following general definition of a functor P̂: to a cellular sheaf
F ∈ Shv(X) we associate the following cosheaf of chain complexes P̂(F)

P̂(F) : σ  F(σ)→
⊕
σ61τ

F(τ)→
⊕
σ62γ

F(γ)→ · · · .

where F(σ) is placed in cohomological degree dim |σ| or homological degree
−dim |σ| However, in order for this to be a chain complex, following two arrows
in sequence should give zero. In order to guarantee this we need to use the fact
that X is a cell complex, and as such for any pair of cells σ 62 γ differing in
dimension by two, there are precisely two ways τ1, τ2 of going between σ and γ.
Using the signed incidence relations [σ : τi] and the restrictions maps internal to
F allows us to define the differentials in this complex by di+1 := ⊕[τ : γ]ρFγ,τ. Now
let’s consider a cell λ that is a codimension one face of σ, then the extension map
r•λ,σ is defined to be the chain map

0 //

ri−1λ,τ
��

F(σ)
di //

riλ,τ
��

⊕
σ61τ

F(τ)
di+1 //

ri+1λ,τ
��

⊕
σ62γ

F(γ)

ri+2λ,τ
��

F(λ)
di−1
//
⊕
λ61σ

F(σ)
di
//
⊕
λ62τ

F(τ)
di+1

//
⊕
λ63γ

F(γ)

.
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The reason it is a chain map is clear from the fact that if λ 6 σ then Uσ ⊂ Uλ
and so the chain complex P̂(F)(σ) simply includes term by term into the chain
complex P̂(F)(λ).

Although the idea of a cosheaf of chain complexes is perhaps easier to visual-
ize, for actual algebraic manipulation, one uses a chain complex of cosheaves to
express the same idea in a different way.

Definition 12.1.1 (Poincaré-Verdier Equivalence Functor). Let X be a cell com-
plex and let Shv(X) and CoShv(X) denote the categories of cellular sheaves and
cosheaves respectively. We define the Poincaré-Verdier Equivalence Functor
P̂ : Db(Shv(X))→ Db(CoShv(X)) by the following formula: to a sheaf F ∈ Shv(X)
we associate the following complex of projective co-sheaves, the cohomological
degree corresponding to the dimension of the cell:

· · · //
⊕
σi∈X[σ̂

i]F(σ
i) [σ:γ]ρ

F

//
⊕
γi+1∈X[γ̂

i+1]F(γ
i+1) [γ:τ]ρ

F

//
⊕
τi+2∈X[τ̂

i+2]F(τ
i+2) // · · ·

Here σi denotes the i-cells and [σi : γi+1] = {0,±1} records whether the cells are
incident and whether orientations agree or disagree. The maps in between are to
be understood as the matrix ⊕[σi : γi+1]ρFσ,γ.

For a complex of sheaves

Fi

��

 · · · //
⊕
γj+1∈X[γ̂

j+1]F
i(γj+1)

[γ:τ]ρF
i
//

��

⊕
τj+2∈X[τ̂

j+2]F
i(τj+2) //

��

· · ·

Fi+1

��

 · · · //
⊕
γj+1∈X[γ̂

j+1]F
i+1(γj+1)

[γ:τ]ρF
i+1
//

��

⊕
τj+2∈X[τ̂

j+2]F
i+1(τj+2) //

��

· · ·

Fi+2  · · · //
⊕
γj+1∈X[γ̂

j+1]F
i+2(γj+1)

[γ:τ]ρF
i+2
//
⊕
τj+2∈X[τ̂

j+2]F
i+2(τj+2) // · · ·

where we then pass to the totalization.

Before discussing why this functor is an equivalence, let us deduce a few com-
putational consequences of this functor.

Theorem 12.1.2. If F is a cell sheaf on a cell complex X, then

Hic(X; F) ∼= H−i(X; P̂(F)).
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Proof. First we apply the equivalence functor P̂ to F

0 //
⊕
v∈X[v̂]

F(v)
[v:e]ρe,v

//
⊕
e∈X[ê]

F(e)
[e:σ]ρσ,e

//
⊕
σ∈X[σ̂]

F(σ) // · · ·

Taking colimits (pushing forward to a point) term by term produces the complex
of vector spaces

0 //
⊕
v∈X F(v)[v:e]ρe,v

//
⊕
e∈X F(e)[e:σ]ρσ,e

//
⊕
σ∈X F(σ)

// · · ·

which the reader should recognize as being the computational formula for com-
puting compactly supported sheaf cohomology.

Now let us give a simple proof of the standard Poincaré duality statement on a
manifold X with coefficients in an arbitrary cell sheaf F, except this time the sheaf
homology groups are used.

Theorem 12.1.3. Suppose F is a cell sheaf on a cell complex X that happens to be
a compact manifold (so it has a dual cell structure X̂), then

Hi(X; F) ∼= Hn−i(X; F).

Where the group on the right is not just notational, but it indicates the left-derived
functors of p† on sheaves.

Proof. We repeat the first step of the proof of the previous theorem. By feeding
F through the equivalence P̂ we get a complex of cosheaves. Pushing forward
to a point yields a complex whose (co)homology is the compactly supported co-
homology of the sheaf F. Now we recognize that the formula yields a formula
for the Borel-Moore homology for the cosheaf naturally defined on the dual cell
structure.

0 //
⊕
v∈X F(v)

��

[v:e]ρe,v
//
⊕
e∈X F(e)

��

[e:σ]ρσ,e

//
⊕
σ∈X F(σ)

��

// · · ·

0 //
⊕
ṽ∈X̃ F̂(ṽ)[ṽ:ẽ]ρẽ,ṽ

//
⊕
ẽ∈X̃ F̂(ẽ)[ẽ:σ̃]ρσ̃,ẽ

//
⊕
σ̃∈X̃ F̂(σ̃)

// · · ·

Taking the homology of the bottom row is the usual formula for the Borel-Moore
homology of a cellular cosheaf except the top dimensional cells are place in degree
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0, the n− 1 cells in degree -1, and so on. Everything being shifted by n = dimX

we get the isomorphism

H−i(X; P̂(F)) ∼= HBMn−i(X̃; F̂).

However, we already observed in Theorem 7.4.3 that the diagrams F̂ on X̃ and
F on X are the same in every possible way, so in particular sheaf homology of F
must coincide with cosheaf homology of F̂. Thus using compactness to drop the
Borel-Moore label and chaining together the previous theorem we get

Hi(X; F) ∼= H−i(X; P̂(F)) ∼= Hn−i(X̃; F̂) ∼= Hn−i(X; F).

12.2 derived equivalence of sheaves and cosheaves

Historically, the derived equivalence of cellular sheaves and cosheaves appears
in a few places and is re-discovered again and again. In chronological order,
the first published proof appears to be in the 1998 paper of Peter Schneider in
“Verdier Duality on the Building” [Sch98], which is a follow-up of a longer paper
connecting sheaves, buildings and representation theory [Sch97]. Unfortunately,
Schneider uses the term “local coefficient systems” to mean what we mean by
cellular cosheaves. At around the same time Maxim Vybornov made explicit men-
tion of the relationship between sheaves and cosheaves, relating them through
Koszul duality [Vyb99], but it took up until 2005 for Kohji Yanagawa to explic-
itly state that Vybornov’s work implied the derived equivalence of sheaves and
cosheaves [Yan05].

However, the perspective presented here was arrived at independently of the
above work. In early March 2012, Bob MacPherson gave a lecture (which the au-
thor attended) where he conjectured that the derived category of cellular sheaves
and cosheaves should be equivalent. Within a few weeks the author produced a
proof. After some truly insightful comments from David Lipsky, the equivalence
was refined to its current form.

Although the ideas were foreshadowed by many sources, the use of stalk
(co)sheaves appears to be a novel way of arguing.

Theorem 12.2.1 (Equivalence). P̂ : Db(Shv(X)) → Db(CoShv(X)) is an equiva-
lence.
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Proof. First let us point out that the functor P̂ really is a functor. Indeed if α :

F → G is a map of sheaves then we have maps α(σ) : F(σ) → G(σ) that commute
with the respective restriction maps ρF and ρG. As a result, we get maps [σ̂]F(σ) →
[σ̂]G(σ). Moreover, these maps respect the differentials in P̂(F) and P̂(G), so we
get a chain map. It is clearly additive, i.e. for maps α,β : F → G P̂(α + β) =

P(α) + P(β). This implies that P̂ preserves homotopies.

It is also clear that P̂ preserves quasi-isomorphisms. Note that a sequence of
cellular sheaves A• is exact if and only if A•(σ) is an exact sequence of vector
spaces for every σ ∈ X. This implies that P̂(A•) is a double-complex with exact
rows. By standard results surrounding the theory of spectral sequences or by the
acyclic assembly lemma ([Wei94] Lem. 2.7.3) we get that the totalization is exact.

Let us understand what this functor does to an elementary injective sheaf [σ]V .
Applying the definition we can see that

P̂ : [σ]V  
⊕
τ0⊂σ[τ̂

0]V // · · · //
⊕
τi⊂σ[τ̂

i]V // · · · // [σ̂]V

which is nothing other than the projective cosheaf resolution of the skyscraper (or
stalk) cosheaf ŜVσ supported on σ, i.e.

ŜVσ (τ) =

{
V σ = τ

0 o.w.

Consequently, there is a quasi-isomorphism q : P̂([σ]V) → ŜVσ [−dimσ] where ŜVσ
is placed in degree equal to the dimension of σ assuming that [σ]V is initially in
degree 0. By abusing notation slightly and letting P send cosheaves to sheaves,
we see that

P(q) : PP̂([σ]V)→ P(SVσ ) = [σ]V

and thus we can define a natural transformation from PP̂ to idDb(Shv) when re-
stricted to elementary injectives. However, by Lemma 7.1.6 we know that every
injective looks like such a sum, so this works for injective sheaves concentrated in
a single degree. However, it is clear that P̂ sends a complex of injectives, before
taking the totalization of the double complex to the projective resolutions of a
complex of skyscraper cosheaves. Applying P̂ to the quasi-isomorphism relating
the double complex of projective cosheaves to the complex of skyscrapers, extends
the natural transformation to the whole derived category. However, since P̂ pre-
serves quasi-isomorphisms, this natural transformation is in fact an equivalence.
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This shows PP̂ ∼= idDb(Shv). Repeating the argument starting from co-sheaves
shows that

P̂ : Db(Shv(X))↔ Db(CoShv(X)) : P

is an adjoint equivalence of categories.

The above proof should be taken as the primary duality result from which other
dualities spring. This was not always appreciated and the author’s first attack on
the proof was to chain together two well-known dualities, which we review in the
next two sections.

12.2.1 Linear Duality

There is an endofunctor on the category of finite dimensional vector spaces vect
given by sending a vector space to its dual V  V∗. This functor has the effect
of taking a cellular sheaf (F, ρ) to a cellular co-sheaf (F∗, ρ∗), since the restriction
maps get dualized into extension maps. It is contravariant since a sheaf morphism
F→ G gets sent to a co-sheaf morphism in the opposite direction F∗ ← G∗ as one
can easily check. We can promote this functor to the derived category, using a
subscript f to remind the reader when we restrict to the finite dimensional full
subcategories.

Definition 12.2.2 (Linear Duals). Define V̂ : Db(Shv(X))op → Db(CoShv(X)) as
follows

- V̂(F•) = (F∗)−•, i.e. take a sheaf in slot i, dualize its internal restriction maps
ρF
i

σ,τ to extension maps rF
i∗
τ,σ to obtain a co-sheaf and then put it in slot −i.

- V̂ sends differentials between sheaves di to their adjoints in negative degree
∂−i−1 := (di)∗

?( · · · // Fi
di // Fi+1 // · · · ) = · · · // [(Fi+1)∗]−i−1

∂−i−1
// [(Fi)∗]−i // · · ·

We’ll adopt the convention that lowering the index increases the degree
∂−i−1 → ∂i.

We will reserve the right to abuse notation and let V map from co-sheaves to
sheaves in the obvious manner, i.e. V : Db(CoShv(X))op → Db(Shv(X)) or for-
mally equivalent V : Db(CoShv(X))→ Db(Shv(X))op.

Lemma 12.2.3. V̂f : Db(Shvf(X)) → Db(CoShvf(X))op is an equivalence of cate-
gories.
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Proof. It is clear that if α : I• → J• is a map in the category of complexes of
sheaves homotopic to zero α ' 0, i.e. there exists a map h : I• → J•−1, written
h : I → J[−1] such that αn − 0n = dn−1J hn + hn+1dnI . Writing out how V̂ acts
carefully we see that V̂(α) : V̂(J) → V̂(I) and V̂(h) : V(J[−1]) = V̂(J)[+1] → V̂(I)

defines a homotopy between V̂(α) and V̂(0) = 0 by setting (h∗)• = V̂(h)•−1.
V̂ thus sends Kb(Inj−Sf)op to Kb(Proj−Cf) and composed twice VV̂ : Kb(Inj−

Sf) → Kb(Inj − Sf) is naturally isomorphic to the identity functor, so it is an
equivalence. We can repeat the arguments for co-sheaves and use formality to
put the op where we want.

12.2.2 Verdier Dual Anti-Involution

Definition 12.2.4 (Verdier Dual). The Verdier dual functor D : D(Shvf(X)) →
D(Shvf(X))op is defined as D := Hom(−,ω•X). Recall that Hom(F,G) is a sheaf
whose value on a cell σ is given by Hom(F|st(σ),G|st(σ)), i.e. natural transforma-
tions between the restrictions to the star of σ.

The complex of injective sheaves ω•X is called the dualizing complex of X. It has
in negative degree ω−i

X the sum over the one-dimensional elementary injectives
concentrated on i-cells [γi]. The maps between use the orientations on cells to
guarantee it is a complex.

· · · // ⊕|τ|=i+1[τ]
⊕[γ:τ] // ⊕|γ|=i[γ]

⊕[σ:γ]// ⊕|σ|=i−1[σ] // · · ·

The Verdier dual of F is the complex of sheaves D•F := Hom(F,ω•X). Written out
explicitly it is

· · · // ⊕|τ|=i+1[τ]
F(τ)∗

⊕[γ:τ]ρ∗
// ⊕|γ|=i[γ]

F(γ)∗

⊕[σ:γ]ρ∗
// ⊕|σ|=i−1[σ]

F(σ)∗ // · · ·

Proposition 12.2.5. The functor P̂ : Db(Shvf(X)) → Db(CoShvf(X)) composed
with linear duality V : Db(CoShvf(X)) → Db(Shvf(X))op gives the Verdier dual
anti-equivalence, i.e. D ∼= VP̂.

Proof. Just check by hand.

Remark 12.2.6. We could have used well-known facts about Verdier duality to
prove a weaker version of our main theorem by restricting to finitely generated
stalks.
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C O S H E AV E S A S VA L U AT I O N S O N S H E AV E S

“Speech is the twin of my vision....it is unequal to measure itself.”

— Walt Whitman’s Song of Myself [25]

The development of cosheaves as a theory is largely fragmented. Researchers
at different points in time have found a use for it here and there, at the service
of different purposes and interests. The more strongly categorical and logical
community have done some considerable work understanding the relationship
between the topos of sheaves and cosheaves. One insight that seems very worth-
while is that cosheaves act on sheaves in a natural way. Although one can use a
little bit of category theory to draw this conclusion, we use this to give some sur-
prising reformulations of classical sheaf theory. Namely, the primary observation
of this section is that the action of taking compactly supported cohomology of a
sheaf can be interpreted as an action of a very particular cosheaf on the category
of all sheaves.

13.1 left and right modules and tensor products

Suppose R is a ring with unit 1R. One can think of R as a category with a single
object ? whose set of morphisms

HomR(?, ?) ∼= R

has the structure of an abelian group. The multiplication in the ring plays the role
of a composition so r · s = r ◦ s. The abelian group structure, which corresponds to
the ability to add morphisms r+ s, reflects the fact that rings have an underlying
abelian group structure. One says that R is a pre-additive category, or is a category
enriched in Ab — the category of abelian groups.

An additive functor B : R → Ab is a functor that preserves the abelian group
structure, so it picks out a single abelian group, which we also call B, and satisfies
the relation (r+ s) · B = r · B+ s · B and (rs) · B = r · (s · B) so such a functor is

246



13.1 left and right modules and tensor products 247

precisely the data of a left R-module. Dually, a contravariant functor A : Rop → Ab
prescribes the data of a right R-module. Taking the tensor product over Z of A
and B allows us to define a bi-module

A⊗B : Rop × R→ Ab (?, ?) 7→ A⊗Z B.

The latter is the group freely generated by pairs of elements from A and Bmodulo
the usual relations (a+ a ′)⊗ b = a⊗ b+ a ′⊗ b and a⊗ (b+ b ′) = a⊗ b+ a⊗ b ′.
However, in the presence of the action of a ring R, there is another tensor product
A⊗R B that further quotients A⊗Z B by the relation (a · r)⊗ b = a⊗ (r · b). Said
using diagrams, we require that for each r, the following diagram commutes.

A⊗B
1A⊗B(r)//

A(r)⊗1B
��

A⊗B

��
A⊗B // A⊗R B

In other words there is a coequalizer

A⊗Z R⊗Z B
(a,r,b) 7→(ar,b)

//
(a,r,b) 7→(a,rb) //

A⊗Z B // A⊗R B

that realizes the tensor product using purely categorical operations. This allows
us to work in a greater degree of generality by making use of a special type of
colimit called a coend, that generalizes the tensor product described above.

Definition 13.1.1 (Tensoring Sheaves with Cosheaves). Let X be a topological
space and let Ĝ and F be a pre-cosheaf and a pre-sheaf respectively, both val-
ued in Vect. Note that for every pair of objects U → V in Open(X) we have a
diagram

Ĝ(V)⊗ F(V)

Ĝ(U)⊗ F(V)

rGV ,U⊗id
66

id⊗ρFU,V ((

Ĝ(U)⊗ F(U)
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which is the building block in defining the coend or tensor product over X

⊕
U→V

Ĝ(U)⊗ F(V)⇒
⊕
W

Ĝ(W)⊗ F(W)→
∫Open(X)

Ĝ(W)⊗ F(W) =: Ĝ⊗X F.

We illustrate this definition with an immediate example.

Example 13.1.2 (Stalks and Skyscraper Cosheaf). Recall that we defined the
skyscraper cosheaf at x to be the cosheaf

Ŝx(U) =

{
k if x ∈ U
0 other wise

With some thought one can show that the tensor product of any pre-sheaf F with
the cosheaf Ŝx yields

Ŝx ⊗X F ∼= Fx

by treating F as a variable which can range over all pre-sheaves, one gets, in
particular, a functor

Ŝx ⊗X − : Shv(X)→ Vect F Fx.

The previous example demonstrates an important observation: The operation of
taking stalks is equivalent to the process of tensoring with the skyscraper cosheaf.

To see how far this observation can be generalized, note that if we fix Ĝ and let
F vary then we get a functor

Ĝ⊗X − : Shv(X)→ Vect

that is defined in terms of colimits and is thus co-continuous (it sends colimits to
colimits). Now we are free to take an arbitrary cosheaf and let it act on sheaves.
The “one obvious choice” of taking stalks at a point is run over by a veritable
slew of valuations, one for each cosheaf. Moreover, it is clear that this description
extends to a pairing between the symmetric monoidal categories CoShv(X) and
Shv(X), i.e.

−⊗X − : CoShv(X)×Shv(X)→ Vect (Ĝ, F) 7→ Ĝ⊗X F :=
∫Open(X)

Ĝ(U)⊗ F(U),

although we haven’t used the sheaf or cosheaf axiom anywhere, so the pairing is
actually valid for pre-sheaves and pre-cosheaves.
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13.2 compactly-supported cohomology

Although the idea of using coends to tensor together sheaves and cosheaves has
been independently re-discovered many times, cf. Jean-Pierre Schneider’s 1987

work [Sch87], it has not been used to do any serious work. This is a shame in
light of the following 1985 theorem of A.M. Pitts [Pit85].

Theorem 13.2.1. Let X be any topological space. Every colimit-preserving functor
on sheaves arises by tensoring with a cosheaf, i.e.

CoShv(X; Set) ∼= Funco−cts(Shv(X; Set), Set).

This theorem is also stated in Marta Bunge and Jonathan Funk’s 2006 book
“Singular Coverings of Toposes” [BF06] as theorem 1.4.3, which further surveys
some of Lawvere’s philosophy of distributions on topoi. The topos community
deserves commendation for keeping the study of cosheaves alive during the past
few decades, but so far work in the enriched and computable setting of vector
spaces is largely missing.

We attempt to partly remedy this gap by establishing a connection between the
tensor operation and the cohomology of sheaves. However, instead of establishing
an enriched version of Pitt’s theorem,1 we will use it as a guide. For example, in
classical sheaf theory, compactly supported cohomology is gotten by taking the
constant map p : X → ? and associating to it the pushforward with compact
supports functor p! : Shv(X)→ Shv(?) ∼= Vect. Of course, just applying p! defines
only compactly supported zeroth cohomology of a sheaf H0c(X; F). To get the
higher compactly supported cohomology groups one takes an injective resolution
and applies p! to the resolution. The result will be a complex of vector spaces,
whose cohomology in turn produces the desired groups:

F→ I•  Rp! := p!I
• Hi(p!I

•) := Hic(X; F).

Historically the first fundamental duality result in sheaf theory was the state-
ment that Rp! admits a right adjoint on the level of the derived category. This
adjunction is sometimes called global Verdier duality:

Hom(Rp!F,G) ∼= Hom(F,p!G).

1 We delay this for another paper.
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By applying the fact that left adjoints are co-continuous one is led to believe, in
light of Pitt’s theorem, that there should be a cosheaf that realizes the operation
of taking derived pushforward with compact supports.

In light of the derived equivalence between cellular sheaves and cosheaves
established in this paper, we provide an explicit description of the complex of
cosheaves that realizes the derived pushforward.

In preparation, one should note that there are several cosheaves that realize the
operation of taking stalks at a point x in the cellular world. One is

δ̂σ(τ) =

{
k if σ = τ

0 o.w.

The other is the correct formulation of Ŝσ when using the Alexandrov topology

[σ̂](τ) =

{
k if τ 6 σ
0 o.w.

Recall that this is also the elementary projective cosheaf concentrated on σ with
value k.

Observe that the first cosheaf returns the value F(σ) because every other cell is
tensored with zero. The second cosheaf works by restricting the non-zero values
of F to the closure of the cell σ, but this restricted diagram has a terminal object
given by F(σ), so the colimit returns F(σ) as well.

This allows us to state the main theorem of this section.

Theorem 13.2.2. Let X be a cell complex, then the operation Rp! : Shv(X) → Vect
on cellular sheaves is equivalent to tensoring with the image of the constant sheaf
through the derived equivalence, i.e.

P̂(kX) =
⊕
v∈X

[v̂]→
⊕
e∈X

[ê]→
⊕
σ∈X

[σ̂]→ · · · .

Proof. The proof is immediate given the previous description of taking stalks, i.e.
one can check directly the formula

P̂(kX)⊗X F ∼=
⊕
v∈X

F(v)→
⊕
e∈X

F(e)→
⊕
σ∈X

F(σ)→ · · ·

whose cohomology is by definition the compactly supported cohomology of a
cellular sheaf F.
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This perspective is especially satisfying for the following reason: it makes trans-
parent how the underlying topology of the space X is coupled with the cohomol-
ogy of a sheaf F. Compactly supported sheaf cohomology arises by tensoring
with the complex of cosheaves that computes the Borel-Moore homology of the
underlying space.

13.3 sheaf homology and future directions

The perspective of tensoring sheaves and cosheaves together offers numerous di-
rections for further research both in pure and applied sheaf theory. Just the heuris-
tic that

each cosheaf determines a (co-)continuous valuation on the category of
sheaves,

is suggestive of the idea that if we are going to use sheaves to model the world,
then cosheaves should allow us to weight different models of the world.

After having recovered some classical operations on sheaves, we are left with
many more to consider. For example the constant cosheaf k̂X should act on
sheaves by returning its colimit, i.e. zeroth sheaf homology

k̂X ⊗X − : Shv(X)→ Vect F H0(X; F) = p†F.

By taking a projective resolution of the constant cosheaf once and for all, one then
gets for free a way of computing higher sheaf homology. This yet-to-be-explored
theory has only recently found its use in applications, e.g. the work of Sanjeevi
Krishnan on max-flow min-cut.

Additionally, the decategorification of the pairing of the categories of con-
structible sheaves and cosheaves provides an alternative approach to the study of
Euler integration and leads in a natural way to the study of higher Euler calculus
through higher K-theory. More directly the operation of pairing sheaves and
cosheaves is reminiscent of a convolution operation. This area is under active
research in collaboration with Aaron Royer.
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G R A D E D D E S C R I P T I O N S O F T H E D E R I V E D C AT E G O RY

“Mathematics is the art of giving the same names to different things.”

— Henri Poincaré [Poi08]

In Chapter 7 we introduced the derived category of cellular sheaves. The funda-
mental objects there are chain complexes parametrized by a cell complex. How-
ever, the derived category takes a further step by identifying objects that are “es-
sentially the same” when viewed through the lens of cohomology sheaves.

In Section 14.1 we understand this principle better by demonstrating the well
known fact that the derived category of chain complexes of vector spaces (sheaves
over a point) is equivalent to the graded category of vector spaces. Our proof
follows the standard proof in [Wei94] except we use the barcode method for chain
complexes introduced in Example 6.3.7 to visualize explicitly what is happening.
Roughly speaking, the derived category of chain complexes allows us to remove
the green bars in Figure 63 as they “graph” the chain homotopy between the
identity and the map that projects onto and then includes the red dots.

This sets us up for Section 14.2, which culminates in a proof that the derived
category of cellular sheaves over a one-dimensional base space is equivalent to a
graded category of sheaves. This should seem plausible because over each cell, a
chain complex is equivalent to a graded vector space. Indeed, one could repeat
the proof of Lemma 14.1.1 verbatim if it weren’t for the pesky fact that projecting
onto the cohomology cell-by-cell fails to define a sheaf map. However, the proof
of the equivalence follows by constructing an explicit replacement of every object
in the derived category with an object where such a naïve map will exist.

252
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figure 63: A Chain Complex for the 2-Sphere as Barcodes

14.1 the derived category for complexes of vector spaces

Here we warm-up with an alternative approach to the derived category of com-
plexes of vector spaces. Recall that a chain complex simply consists of a collection
of vector spaces and maps satisfying d2 = 0.

· · · → V i−1 → V i → V i+1 → · · ·

Cohomology defines a functor from chain complexes to graded vector spaces
simply by placing the ith cohomology in degree i.

H∗ : Cb(Vect)→ grVect (V•,dv) {H∗(V•,dV)}

A map of chain complexes f• : V• → W• is a quasi-isomorphism if the maps
Hi(f) : Hi(V•)→ Hi(W•) is an isomorphism for every non-negative integer i.

The derived category of chain complexes is defined to be the category of chain
complexes localized at the collection of quasi-isomorphisms. This is often simpli-
fied by saying that

In the derived category quasi-isomorphisms are formally inverted.

To illustrate this slogan we will prove that every chain complex is quasi-
isomorphic to a graded vector space. This is the simplest instance of a more
general theorem that we prove in this chapter.

Lemma 14.1.1. A chain complex (V ,dV) is quasi-isomorphic to its cohomology
(H•(V ,dV), 0), viewed as complex with zero differentials.

Proof. It suffices to define a chain map

π• : (V ,dV)→ (H•(V ,dV), 0) or ι• : (H•(V ,dV), 0)→ (V ,dV)

that induces the obvious isomorphism Hi(π) : Hi(V) → Hi(V). We will use the
decomposition for persistence modules from Theorem 6.3.3 to define this map.
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In Example 6.3.7 we observed that any chain complex (V ,dV) is isomorphic to
a direct sum

V ∼=
⊕
i∈Z

S
ni
i ⊕ P

mi
i

where
Si : · · · → 0→ k→ 0→ · · ·

is a length zero interval module and

Pi : · · · → 0→ k→ k→ 0→ · · ·

is a length one interval module, with the first non-zero term in degree i. If we
group terms so that

Bi−1 := P
mi−1
i Hi(V) := Snii Bi := Pmii

then we get an obvious map, which precomposed with the above isomorphism is
our desired quasi-isomorphism.

· · · // Bi ⊕Hi(V)⊕Bi−1 //

π
��

Bi+1 ⊕Hi+1(V)⊕Bi //

π
��

· · ·

· · ·
0

// Hi(V)
0

// Hi+1(V) // · · ·

One can in fact show more. Let π : Bi ⊕Hi(V)⊕ Bi−1 → Hi(V) be the obvious
projection and ι : Hi(V) → Bi−1 ⊕Hi(V)⊕ Bi be the obvious inclusion, then one
can construct an explicit chain homotopy s joining ι ◦ π to the identity.

First it is useful to observe that, in this basis, the differentials have the form

di =

 0 0 0

0 0 0

id 0 0


A clear candidate for the map si is the projection onto Bi−1 that then identifies it
with its isomorphic copy as the third summand in the decomposition of V i−1, i.e.
the matrix

si =

 0 0 id
0 0 0

0 0 0


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One can then check directly the equation

id − ι ◦ π = di−1 ◦ si + si+1 ◦ di.

Remark 14.1.2. Using the barcode description, the map si simply follows length
one barcodes to the left. Thus the length one barcodes can be interpreted as the
“graph” of a chain homotopy.

Corollary 14.1.3. For any collection of integers mi and ni we have the following
isomorphisms in the derived category.⊕

i∈Z

S
ni
i '

⊕
i∈Z

S
ni
i ⊕ P

mi
i

The upshot of the above corollary is that

“Indecomposables do not survive the derived category!” [Mac14a]

14.2 derived complexes of cellular sheaves

Recall from Chapter 7 that a complex of cellular sheaves F• assigns to every cell σ a
chain complex and to every pair of incident cells σ 6 τ a chain map ρ•τ,σ : F•(σ)→
F•(τ). For each i we can define the ith cohomology sheaf as the assignment

Hi(F•) : σ Hi(F•(σ)).

The restriction maps being defined as the map induced on cohomology by ρ•τ,σ. A
quasi-isomorphism is a map of complexes f• : F• → G• that induces isomorphisms
on each cohomology sheaf. We can also view all of the cohomology sheaves as a
single graded cohomology sheaf H∗F•.

14.2.1 Counterexample to the Naïve Approach

To begin, let us consider the simplest possible space where a complex of sheaves
has interesting behavior. Let X = [0, 1) with cell structure v = {0} and e = (0, 1). A
complex of sheaves over X is completely described by two chain complexes and a
chain map between them:

ρ•e,v : F
•(v)→ F•(e)



14.2 derived complexes of cellular sheaves 256

figure 64: The Counterexample

At first glance there should be a simple adaptation of Lemma 14.1.1 to a pair of
chain complexes. Indeed, we can use Theorem 6.3.3 over each cell to obtain a
candidate inclusion map from the cohomology sheaf into the complex:

Fi(v)
ρe,v // Fi(e)

Biv ⊕Hiv ⊕Bi−1v
ρe,v //

∼=

OO

Bie ⊕Hie ⊕Bi−1e

∼=

OO

Hiv
Hi(ρ)

//

OO

Hie

OO

However such a map does not commute in general and as such fails to define a
sheaf map. For example, if F• was the following pair of complexes and chain map

k
1 // k

0 //

OO

k

1

OO

then the map ρ takes the one and only generator of Hiv to an element of the
boundaries Bi−1e , which is non-zero, but zero in cohomology, since Hi(ρ) = 0. We
have provided a barcode version of this counter example in Figure 64.
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14.2.2 Using the Calculus of Fractions Formulation

In order to address the counterexample to the naïve approach, we will employ a
zig-zag of morphisms. In this section we briefly review why such a zigzag is nat-
ural, when viewing the derived category as the left calculus of fractions [GZ67].
An alternative description of the derived category goes as follows [She85, p.52-3].

Definition 14.2.1 (Derived Category via Fractions). The bounded derived cat-
egory of cellular sheaves, Db(Shv(X)), has the same collection of objects as
Fun(X, Ch(Vect)), but with a modified class of morphisms. A morphism from
F• to G• is a diagram of the following form

J•

F•

>>

G•

'
``

where the arrow decorated with a ' is a quasi-isomorphism. We declare two such
morphisms (diagrams) to be the same if there is a larger, commutative diagram
that fits in between them:

J•1

'
��

F•

??

//

��

J•12 G•'oo

'
``

'
~~

J•2

'
OO

14.2.3 The Equivalence

We now proceed with a general method for addressing the earlier counterexample.
The basic method of argument is that we will define a quasi-isomorphic complex
of sheaves J• where the naïve approach does work. This is visualized in Figure 65.

J•

F•

'
??

H∗F•

'
bb

Let’s first illustrate our method over the simple base space X = [0, 1).
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figure 65: Replacing the Counterexample with a Quasi-Isomorphic Sheaf

Lemma 14.2.2. Over X = [0, 1) with cell structure v = {0} and e = (0, 1), every
bounded complex of cellular sheaves F• is quasi-isomorphic to its graded coho-
mology sheaf H∗F•, i.e. F• is isomorphic to H∗F• in the derived category.

Proof. As before, we decompose the chain complex over the vertex v and the edge
e so that F• has the following form

Bi+1v ⊕Hi+1v ⊕Biv
ρi+1F // Bi+1e ⊕Hi+1e ⊕Bie

Biv ⊕Hiv ⊕Bi−1v
ρiF //

div

OO

Bie ⊕Hie ⊕Bi−1e

die

OO

The map ρiF has an easily described form in this basis.

ρiF =

 αi 0 0

γi Hiρ 0

δi βi−1 αi−1


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The naïve inclusion map’s failure to commute is precisely described by non-zero
terms in the submatrix βi−1, as can be seen by inspecting the diagram below.

Biv ⊕Hiv ⊕Bi−1v
ρiF // Bie ⊕Hie ⊕Bi−1e

Hiv
Hi(ρ)

//

OO

Hie

OO

However, the complex of sheaves F• is quasi-isomorphic to the complex J• defined
as follows.

Bi+1v ⊕Bi+1e ⊕Hi+1v ⊕Biv ⊕Bie
ρi+1J // Bi+1e ⊕Hi+1e ⊕Bie

Biv ⊕Bie ⊕Hiv ⊕Bi−1v ⊕Bi−1e
ρiJ //

div

OO

Bie ⊕Hie ⊕Bi−1e

die

OO

The matrix representation for ρiJ has the desired form:

ρiJ =

 0 id 0 0 0

γi 0 Hiρ 0 0

δi 0 0 id


The quasi-isomorphism q• : F• → J• is defined over the vertex v in any given
degree i as

qiv =


id 0 0

αi 0 0

0 id 0

0 0 id
0 βi−1 αi−1


and over the edge e as qie = id. By construction, the complex J• has a well defined
sheaf map

Biv ⊕Bie ⊕Hiv ⊕Bi−1v ⊕Bi−1e
ρiJ // Bie ⊕Hie ⊕Bi−1e

Hiv
Hiρ

//

OO

Hie

OO
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which extends to a quasi-isomorphism ι : H∗F• ↪→ J• since each of the differentials
HiF• → Hi+1F• are zero. This completes the proof.

We can now prove the general theorem of interest.

Theorem 14.2.3. Let X be an arbitrary one dimensional cell complex and F• a
complex of sheaves over X. Then F• is quasi-isomorphic to its graded cohomology
sheaf. In particular, we have the equivalence of categories

Db(Shv(X)) ' Shv(X; grVect).

Proof. The bulk of the argument is contained in Lemma 14.2.2, which we show
extends to the desired generality. The definition of Ji(v) where v is a vertex with
more than one incident edge is easily modified as follows:

Ji(v) := Biv
⊕
e>v

Bie ⊕Hiv ⊕Bi−1v
⊕
e>v

Bi−1e

The restriction map to a single edge e ′ is defined exactly as in Lemma 14.2.2 with
the stipulation that factors Bie and Bi−1e where e 6= e ′ are mapped to zero.

This argument implies that we can define the desired morphism

J•

F•
q

'
??

H∗F•

'
ι

bb

in an open neighborhood of a vertex. However, since over each edge qie : Fi(e)→
Ji(e) is defined to be the identity map, these locally defined maps agree on the
edges and hence give a globally defined map of sheaves. This shows the equiva-
lence with the graded cohomology sheaf.

One can check that every map of sheaves f : F• → G• extends to a map of the
associated sheaves Jf : J•F → J•G so the construction is functorial and hence defines
an equivalence of categories.



15
A M E T R I C O N T H E C AT E G O RY O F S H E AV E S

AΓEΩMETPHTOΣ MH∆EIΣ EIΣITΩ1

— Purported Inscription at The Academy

Science depends on knowing that measurements and observations should only
be trusted up to an interval of uncertainty. Saying that one is traveling about 30

miles per hour depends on their being a continuum of speeds. It makes no sense
to say that one is traveling at a speed that happens to be an algebraic number. 2

Persistent homology has addressed this issue in a rather elegant way. Given two
functions f,g : Y → R such that

||f− g||∞ := sup
y

|f(y) − g(y)| < ε

one can say that the sublevel sets obey the inclusions

f−1(−∞, t] ⊂ g−1(−∞, t+ ε] and g−1(−∞, t] ⊂ t−1(−∞, t+ ε]

for every value of t. In the language of [CCSG+
09], one has an interleaving of

sublevel sets:

f−1(−∞, t]

((

// f−1(−∞, t+ ε]

))

// f−1(−∞, t+ 2ε]

g−1(−∞, t]

66

// g−1(−∞, t+ ε]

55

// g−1(−∞, t+ 2ε]

By functoriality of homology, one obtains a notion of interleaving of functors in
Fun(R, Vect), where R with its partial order is viewed as a category. Defining
the interleaving distance to be the infimum over all ε such that there is an ε-
interleaving gives an extended pseudo-metric on the category of such functors.

1 “Let no one who cannot think geometrically enter.” [OR]
2 This metaphor was used by Bob MacPherson in his opening remarks on “Continuity and the

philosophy of science.” [Mac14b]
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figure 66: Do Close Maps Give Rise to “Close” Sheaves?

In this chapter, we will consider a generalization of this approach, first for pre-
sheaves and then for sheaves. We will try to answer analogous questions such as,
“Suppose we have two maps f,g : Y → X to a metric space that are close in the
supremum norm, i.e.

d∞(f,g) = sup
y∈Y

dX(f(y),g(y)) < ε.

Is there any reasonable sense where the pushforward sheaves f∗kY and g∗kY are
close?” It turns out that the answer is “yes,” but studying higher invariants of the
fiber, such asHi for i > 1, is unstable to large perturbations. By studying interleav-
ings of complexes of sheaves, one obtains a derived stability result. To conclude
the chapter, we provide preliminary results towards equating the interleaving dis-
tance with a modified version of the bottleneck distance described in [CSEH07]
for definable sheaves with finite support over the real line. The most important
takeaway from this chapter is that interleavings for sheaves and pre-sheaves are
obstructed by global sections.

15.1 interleavings for pre-sheaves

Definition 15.1.1. Let (X,d) be a metric space. The ε-thickening of open sets is
the map of posets

ε : Open(X)→ Open(X)

given by
U Uε := ∪x∈UB(x, ε).
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Of course, any map of posets dualizes to a map of posets ε : Open(X)op →
Open(X)op

Remark 15.1.2. For metric spaces like Rn with the Euclidean metric, (Uε)ε =

U2ε. In general, the triangle inequality implies that (Uε)ε ⊆ U2ε. The reverse
containment is also true if (X,d) is convex, for example. Convexity guarantees that
intuitive results are true, but it is not strictly necessary for any of the following
arguments.

Definition 15.1.3 (Thickened Pre-Sheaf). Using the previous two definitions, we
can define the ε-thickening of a pre-sheaf F via the formula

Fε := F ◦ ε i.e. Fε(U) := F(Uε).

Moreover, the thickening operation is functorial. If ϕ : F → G is a natural trans-
formation, then we get for free a natural transformation between the thickened
pre-sheaves ϕε : Fε → Gε. Consequently, we can define the ε-thickening functor
to be

ε∗ : PreShv(X)→ PreShv(X) F Fε.

One of the most important observations for working with interleavings is that
since F is a pre-sheaf we have a canonical natural transformation

ηFε : F
ε → F

coming from ρU,Uε : Fε(U) = F(Uε) → F(U). This follows by showing that for
every pair V ⊆ U the square

Fε(U)
ρU,Uε //

ρVε,Uε

��

F(U)

ρV ,U
��

Fε(V) ρV ,Vε
// F(V)

commutes by virtue of F being a pre-sheaf:

ρV ,U ◦ ρU,Uε = ρV ,Uε = ρV ,Vε ◦ ρVε,Uε

Of course, the map
ηF2ε : F

2ε → F

always exists as well and for metric spaces where U2ε = (Uε)ε it is equal to the
composition ηFε ◦ ε∗ηFε.
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Remark 15.1.4 (Notation 2ε vs. εε). To avoid cumbersome notation, we may
sometimes substitute U2ε for (Uε)ε, ηF2ε for ε∗ηFε, F2ε for ε∗Fε, and so on. For
metric spaces such as Rn with the Euclidean metric these differences do not exist
and can be safely ignored.

A version of the following definition was communicated to the author by Amit
Patel [Pat14].

Definition 15.1.5 (Interleaving of Pre-Sheaves). Let F,G : Open(X)op → D be two
pre-sheaves on a metric space X. We define an ε-interleaving of F and G to be a
pair of natural transformations

ϕε : F
ε → G ψε : G

ε → F

that satisfy the compatibility relations

ηF2ε = ψε ◦ ε∗ϕε ηG2ε = ϕε ◦ ε∗ψε.

An interleaving is better summarized via the following commutative diagram:

F2ε

��

ε∗ϕε

''

G2ε

��

ε∗ψε

ww
Fε

��

ϕε

''

Gε

��

ψε

ww
F G

Observe that we have abused notation by writing F2ε for ε∗Fε. Also observe that
there is a logical dualization for two pre-cosheaves.

Lemma 15.1.6. If two presheaves F and G are ε-interleaved for some ε > 0, then
they are ε ′-interleaved for every ε ′ > ε.

Proof. Suppose that we have an ε interleaving, i.e. maps ϕε : Fε → G and ψε :

Gε that induce the correct commutative diagram. If ε ′ > ε then the natural
map Fε

′ → F factors through Fε → F, allowing us to define ϕε ′ = ϕεη
F
ε,ε ′ and

symmetrically for ψε ′ . The map (ε ′)∗ϕε ′ is defined by

F((Uε
′
)ε
′
) = Fε

′
(Uε

′
)→ Fε(Uε

′
)→ G(Uε

′
) = Gε

′
(U).

Observing that the map ϕε is natural for a pair of open sets Uε ⊂ Uε ′ proves that
we have the commutative diagram in Figure 67.
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F2ε

��

��

F2ε
′

��

��

oo

G2ε

��

}}

G2ε
′

��

oo

||
Fε

��

��

Fε
′

��

oo

��

Gε

��

||

Gε
′

��

oo

{{
F Foo

G Goo

figure 67: Diagram for the Proof of Lemma 15.1.6

Remark 15.1.7. One should note that if F and G are ε-interleaved and G and H
are ε ′-interleaved, then F and H are ε+ ε ′-interleaved.

One should also note that if F and G are 0-interleaved, then they are isomorphic.

Definition 15.1.8. We can define the interleaving distance on pre-sheaves by
declaring

d(F,G) := inf{ε > 0 |∃ε− interleaving}.

If no interleaving exists, we define d(F,G) = ∞. This is what we mean by an
extended metric.

For pre-sheaves the interleaving distance is an extended pseudo-metric. “Ex-
tended” means that the distance ∞ is allowed and “pseudo” means that if
d(F,G) = 0, then it does not follow that F = G. For sheaves, it is true that if a
map induces isomorphisms on stalks, then the map is an isomorphism of sheaves.
This suggests that if for every ε > 0 there is an ε-interleaving, then perhaps the
sheaves are isomorphic. We will present an argument in this direction later on.

15.1.1 Easy Stability

The following results were obtained independently of [BdS13].
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Lemma 15.1.9. Suppose f,g : Y → X are continuous maps to a metric space that
are less than ε distance apart in the supremum norm, then the functors

F̂ : U f−1(U) and Ĝ : U g−1(U)

are ε-interleaved, when viewed as cosheaves.

Proof. By hypothesis, for every open set we have the following inclusions:

f−1(U) ⊆ g−1(Uε) and f−1(Uε) ⊇ g−1(U)

This implies that we have an interleaving of pre-images:

f−1(U2ε) g−1(U2ε)

f−1(Uε)

88OO

g−1(Uε)

ff OO

f−1(U)

88OO

g−1(U)

ff OO

Which is equivalent to saying that the functors F̂ and Ĝ are ε-interleaved.

Corollary 15.1.10. If f,g : Y → X are continuous maps such that d∞(f,g) < ε, then
the cohomology presheaves

HiF : U Hi(f−1(U);k) and HiG : U Hi(g−1(U);k)

are ε-interleaved for every i > 0.

Proof. This follows from the lemma since cohomology is a functor.

Corollary 15.1.11. If f,g : Y → X are continuous maps such that d∞(f,g) < ε, then
the pushforwards of the constant sheaf on Y,

f∗kY and g∗kY ,

are ε-interleaved.

Proof. The result follows by recalling the definition of the pushforward and that
the constant sheaf records H0 of an open set.
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15.1.2 Global Sections Obstruct Interleavings

In this section, we introduce the first major difference between the interleaving
distance for functors S : (R,6)→ Vect and interleavings for pre-sheaves.

Lemma 15.1.12 (Obstruction to Interleavings). If F and G are pre-sheaves on a
metric space X and F(X) � G(X), then there is no ε-interleaving, for any value of
ε.

Proof. Clearly Xε = X. Recalling the compatibility condition for interleavings

F(X) = F2ε(X)

id

��

ϕ2ε(X)

((
Gε(X) = G(X)

ψεvv
F(X)

implies that G(X)→ F(X) is a surjection. Considering the analogous triangle

G2ε(X) = G(X)

id

��

ψ2ε

vv
F(X) = Fε(X)

ϕε
))
G(X)

implies that F(X)→ G(X) is a surjection, which together proves that F(X) ∼= G(X).
Contraposition proves the result.

Example 15.1.13 (Skyscraper Sheaf vs. Ephemeral Module). Suppose δx : R →
Vect is the functor that assigns k to the points x ∈ R and 0 everywhere else. Such
a persistence module is sometimes referred to as an ephemeral module. Without
too much trouble, one can see that this functor is interleaving distance 0 from the
zero functor.

In contrast, the skyscraper sheaf Sx, which assigns to every open set U 3 x the
vector space k and 0 to any open set not containing x, is infinite distance away
from the zero sheaf.
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15.2 interleavings for sheaves

Now we want to emulate the above constructions for functors F : Open(X)op → D

that satisfy the sheaf axiom. Of course, we can regard any sheaf F as a pre-sheaf
and apply the thickening construction to produce a pre-sheaf Fε. Is the resulting
pre-sheaf also a sheaf? No, because thickening can create intersections where
there shouldn’t be any, as in the following example.

Example 15.2.1. Let F = kX be the locally constant sheaf on X = R. If U1 = (0, 1)
and U2 = (1, 2), then for any ε > 0 we have that

Fε(U1 ∪U2)

xx &&
Fε(U1)

&&

Fε(U2)

xx
Fε(U1 ∩U2)

k

�� ��
k

��

k

��
0

is not a limit diagram. This is due to the obvious defect

(U1 ∩U2)ε 6= Uε1 ∩Uε2 .

In light of the above example, thickening the underlying pre-sheaf must be
followed by sheafification.

Definition 15.2.2 (Thickened Sheaf). Let X be a metric space and let F ∈ Shv(X).
We will define the ε-thickened sheaf F̃ε to be the sheaf associated to the pre-sheaf
Fε. When the context is clear, we will omit the overhead tilde and simply let Fε

denote the sheafification of the pre-sheaf.

Definition 15.2.3 (Interleavings for Sheaves). We say two sheaves F and G are ε-
interleaved if there are maps ϕε : F̃ε → G and ψε : G̃ε → F such that the following
diagram commutes

F̃2ε

��

ε∗ϕε

&&

G̃2ε

��

ε∗ψε

xx
F̃ε

��

ϕε

''

G̃ε

��

ψε

ww
F G
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H0!

H1! !!

H0!

H1!

figure 68: Two Maps and their associated Leray Sheaves

Derived Stability

Theorem 15.2.4. If f,g : Y → X are ε-close in the sup norm, then the derived
pushforwards of the constant sheaf kY are ε-interleaved, i.e.

d(Rf∗kY ,Rg∗kY) 6 d∞(f,g)
Proof.

f−1(U) ⊆ g−1(Uε) and f−1(Uε) ⊇ g−1(U)

The functors F̂, Ĝ : Open(X) → Top are ε-interleaved, as already noted. This
implies that the complexes of singular cochains are interleaved, which, after sub-
division, defines a flabby resolution of the constant sheaf.

15.2.1 The Effect of Sheafification

In this section we investigate the impact of sheafification on interleavings of pre-
sheaves. After all, every sheaf is a presheaf, so we can apply the notion of in-
terleaving to both structures. As we will show by example, two pre-sheaves can
be finite distance apart, but then be infinite distance apart (not ε-interleaved for
any ε) after sheafification. Conversely, we can produce two pre-sheaves that are
infinite distance apart, whose sheafifications are interleaved.
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Let the map drawn on the left of Figure 68 be called f and let the map on the
right be called g. As already observed in Corollary 15.1.10, the presheaves

H1F : U H1(f−1(U);k) and H1G : U H1(g−1(U);k)

are ε-interleaved for ε larger than the radius of the circle. However, the sheafifica-
tion of both of these presheaves produce radically different sheaves.

Recall from Definition 2.5.6 that the sheafification can be viewed as the sheaf of
sections of the product over all the stalks mapping down to the base space.∏

x∈R

Fx

π

��
R

For H1F, every stalk is the zero vector space. For H1G, the stalk at p is non-zero
and all other ones are zero. Consequently the sheafifications are

F̃1 ∼= 0 and G̃1 ∼= Sp

where Sp is the skyscraper sheaf at p. By lemma 15.1.12, these two sheaves are
not interleaved.

One might conjecture in light of the above example that sheafification is a dis-
tance increasing operation. This is not the case. Consider the presheaf H1F from
the example above. One can easily see that it is not interleaved with the zero
sheaf. However, the sheafification of H1F is the zero sheaf. So sheafification took
two presheaves that were infinite distance apart and returned isomorphic (dis-
tance zero) sheaves.

15.2.2 Thickening Global Sections

We will now prove that global sections remain unaffected by this thickening pro-
cedure. This provides us with a sheafified version of Lemma 15.1.12.

Lemma 15.2.5. If X is a metric space and F is a sheaf valued in Vect or Ab on X,
then thickening preserves global sections, i.e.

F̃ε(X) ∼= F(X).
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Proof. First we observe that the universal property for sheafification gives us the
following diagram associated to the map η : Fε → F, which is a pre-sheaf mapping
to a sheaf.

F̃ε

η̃

��
Fε

η //

ι

??

F

If we evaluate this diagram on the largest open set X, we get the following dia-
gram:

F̃ε(X)
η̃X

##
Fε(X)

ηX

id
//

ιX
;;

F(X)

By regarding a global section s ∈ F(X) as an element of Fε(X), applying ιX(s) gives
a global section of F̃ε(X), which maps via η̃X to s. This proves that F̃ε(X) → F(X)

is a surjection.

Now we turn to proving that F̃ε(X)→ F(X) is an injection. To do this, we make
use of the kernel sheaf K̃ε := ker(η̃), which is also the sheafification of the kernel
presheaf ker(η). An easy property of sheafification is that any global section
ϕ ∈ F̃ε(X) generates a collection of sections {(s,Ux) | s ∈ Fε(Ux)}, parametrized by
points x ∈ X, where ϕ|Ux = ι(s).

Suppose for contradiction that the kernel sheaf Kε has a global section ϕ. Since
Kε → F̃ε is an injection in the category of sheaves, any global section of Kε defines
a global section of F̃ε. Now consider any section and open set pair (s,Ux) pre-
scribed by the putative section ϕ. By definition of the kernel sheaf, if we consider
ϕ|Uεx ∈ F̃

ε(Uεx), then η̃Uεx(ϕ|Uεx) = 0 ∈ F(Uεx). However, with some work, one can
see that ιUx ◦ η̃Uεx is equal to the internal restriction map of the sheaf F̃ε.

Fε(Uεx)

��

ι // F̃ε(Uεx)

��

η̃

zz
Fε(Ux)

ι // F̃ε(Ux)

In particular
ϕ|Ux = ιUx ◦ η̃Uεx(ϕ|Uεx) = 0.
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Since F̃ε is a sheaf and {Ux}x∈X covers X, this implies that ϕ = 0. By left exactness
of the global section functor we get that

0→ Kε(X)→ F̃ε(X)→ F(X)

is exact. Combined with the above argument that Kε(X), we have that

0→ F̃ε(X)→ F(X)

is exact, i.e. F̃ε(X)→ F(X) is an injection. This completes the proof.

15.2.3 Metric on Sheaves

Proposition 15.2.6. If F,G ∈ Shv(X) are interleaving-distance zero apart, i.e. there
is a sequence of {εn} converging to zero where F and G are εn interleaved for each
n, then F ∼= G.

Proof. We are going to define maps between the étalé spaces

ϕ :
∏
x∈X

Fx →
∏
x∈X

Gx and ψ :
∏
x∈X

Gx →
∏
x∈X

Fx

with the property that they are inverses of one another.
Given any element sx ∈ Fx there exists a U 3 x and a section sU such that

(sU)x = sx. However, since U is open, there exists an r > 0 and εn > 0 such that
B(x, r+ 2εn) ⊂ U. This implies in turn that B(x, r)2εn ⊂ U. Consequently, there
is a lift s2εnx ∈ F̃2εnx of sx, gotten by taking the image of su under the following
composition:

F(U)→ F(B(x, r+ 2εn))→ F(B(x, r)2εn)→ F̃2εnx

We then define
ϕ(sx) := ϕ

εn
x ◦ η̃εn,2εn

F

x(s
2εn
x )

Of course, by the definition of interleaving, we have a natural choice of a lift of
ϕ(sx) to G̃εnx given by

η̃εn
G
xϕ

2εn
x (s2εnx ),

which by construction has the property that applying ψεx yields sx.
Of course it needs to be checked that such a lift is picked out by the symmetric

construction of the map ψ. It could have happened that a lift to G̃ε
′
n
x for ε ′n 6= εn.
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However, one only needs to observe that for any sheaf F we have the following
commutative diagram for any pair 0 < ε ′n < εn:

F̃2εn

��

// F̃εn

��

// F

F̃2ε
′
n // F̃ε

′
n

??

Arguing symmetrically and checking continuity of the resulting maps ϕ and ψ
completes the proof.

Theorem 15.2.7 (Skeletal Metric Space). Let X be an arbitrary metric space. The
interleaving distance induces an extended metric on the skeleton of the category
of sheaves Shv(X). Here extended means that the value d(F,G) = ∞ is allowed,
i.e. there is no interleaving between F and G whatsoever.

Proof. Recall that the skeleton of a category C is a full, isomorphism-dense subcat-
egory S in which no two distinct objects are isomorphic.

If we take C = Shv(X), on which the interleaving distance already defines an
extended pseudo-metric, then the above result implies that if d(F,G) = 0, then F ∼=
G and hence in a skeletal subcategory F = G. This implies that the interleaving
distance is an extended metric when restricted to any skeletal subcategory of
Shv(X).

As one can imagine, the space of sheaves viewed as a metric space can be enor-
mously complicated. Every map f : X → Rn has an associated sheaf on Rn,
simply by considering the pushforward of the constant sheaf. This includes every
possible subspace Y ⊂ Rn with the pushforward of the constant sheaf along this
inclusion serving as a sort of “indicator function” on it. The interleaving distance
would give us one notion of distance between all these possible subspaces. In
this case, there is a ready comparison to be made with the Gromov-Hausdorff dis-
tance between metric spaces, which is more refined than the interleaving distance.
However, the interleaving distance also gives a distance between information on
top of a metric space, where information is encoded via a sheaf.

15.3 the space of constructible sheaves over R

In this section we will give an explicit description of the space of constructible/-
cellular sheaves on R with the interleaving distance as a metric. It turns out that
one can use the indecomposable sheaves to give a set of “coordinates” on this
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space. It will turn out that the space resembles a disjoint union of configuration
spaces, where there the components are divvied up by global sections, i.e. H0.
A comparison to McDuff’s construction of the tangent space use a configuration
space of points, where points can disappear, is made.

First we recall the definition of constructible sheaf pertinent to this section. Be-
cause there are competing, more general notions of a constructible sheaf, we will
use slightly different terminology.

Definition 15.3.1. Let Shvd(R) denote the category of definable sheaves over the
real line R, equipped with the usual Euclidean topology. Specifically, a sheaf F
will be regarded as a contravariant functor from the open set category with the
necessary gluing properties. Such a sheaf F is definable if R can be written as the
finite union of open intervals and points

R = (−∞,a0)∪ {a0}∪ · · · (ai,ai+1) · · · ∪ {an}∪ (an,∞)

such that when restricted to each interval the sheaf is locally constant. We do not
assume that every sheaf is constructible with respect to the same set of intervals.

We will find it convenient to work with a subcategory of this category given by
the definable sheaves with finite support, Shvd,f(X), where the sheaf must restrict
to zero on the two half-open intervals including ±∞.

As already established in this thesis, such a sheaf is completely described via a
zig-zag of vector spaces and linear maps

F(a0)← F(x0)→ F(a1)← F(x1)→ · · · ← F(xn)→ F(an)

where we have abbreviated the intervals and points by using a’s and x’s along
with subscripts appropriately.

By Gabriel’s theorem, we know that such a diagram amounts to a representa-
tion of an An-type quiver and can be decomposed into finitely many indecompos-
able representations. These indecomposables, in view of the cell structure, can be
regarded as one of the following sheaves:

• k[xi,xj] — the constant sheaf on the closed interval [xi, xj]

• k(xi,xj) — the constant sheaf on the open interval (xi, xj)

• k[xi,xj) — the constant sheaf on the half-open interval [xi, xj)

• k(xi,xj] — the constant sheaf on the half-open interval (xi, xj]

• kR — the constant sheaf supported on the whole real line R
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• Sx — the skyscraper sheaf concentrated on the vertex x

The skyscraper sheaf, Sx, is just a special instance of the constant sheaf on a
closed interval [xi, xj] where xi = xj. As such, we will not always distinguish the
skyscraper sheaf from the constant sheaf on the closed interval. Similarly, one can
view the constant sheaf on R, kR, as a degenerate version of the open interval.

To keep the notation clean and free ourselves from a particular declaration of
cell structure on the real line, we will speak of the four indecomposable sheaves
on the real line:

k[b,d] k(b,d) k[b,d) k(b,d]

Remark 15.3.2. The constant sheaf, kR, and any of the others where b or d is ±∞
are excluded from the category of definable sheaves with finite support.

In the following sections it will be paramount to understand when there is and
isn’t a non-zero map of sheaves between these four types.

Proposition 15.3.3 (Dévissage for 1D Indecomposable Sheaves). We have the fol-
lowing explicit characterizations for the space of sheaf morphisms:

• For closed intervals I1 = [b1,d1] and I2 = [b2,d2] we have

HomShv(kI1 ,kI2) =

k if I2 ⊆ I1,

0 o.w.

• For open intervals I1 = (b1,d1) and I2 = (b2,d2) we have

HomShv(kI1 ,kI2) =

k if I1 ⊆ I2,

0 o.w.

• For half open intervals of the form In = [bn,dn) we have

HomShv(kI1 ,kI2) =

k if b1 6 b2 and b2 < d1 6 d2,

0 o.w.

• For half open intervals of the form In = (bn,dn] we have

HomShv(kI1 ,kI2) =

k if b2 6 b1 and b1 < d2 6 d1,

0 o.w.
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• For a closed interval I1 = [b1,d1] and any non-compact interval I2

HomShv(kI1 ,kI2) = 0

Proof. The calculations all follow from considering the behavior of a cellular sheaf
map near the endpoints of the above indecomposables. Specifically, in a small
enough neighborhood of any point in the real line, an indecomposable cellular
sheaf has one of the following three forms, possibly after reflection.

M = 0← k→ k

U = k← k→ k

H = k← 0→ 0

Clearly there are non-zero natural transformations H ⇒ U ⇒ M, but every natu-
ral transformation M⇒ U⇒ H must be zero.

Remark 15.3.4 (Dévissage for Constructible Sheaves). In David Nadler’s beautiful
application of constructible sheaves to the study of the Fukaya category [Nad11],
he refers to the diagram

Shv(V)

j!

##

j∗
;;

Shv(X)j!'j∗oo

i∗

""

i!
;;

Shv(Y)i!'i∗oo

as the “dévissage pattern for constructible sheaves” — an ode to Grothendieck’s
method for studying coherent sheaves. Here j : V → X is the inclusion of an open
set and i : Y := X− V → X is the inclusion of the closed complement. Here the
categories Shv(−) refer to the full differential graded category of constructible
complexes of sheaves, H0 of which is the usual derived category.

15.3.1 Interleavings and Dynamics on Indecomposable Sheaves

Since indecomposable sheaves are the underlying elements that build up a sheaf,
we investigate the behavior of each of these sheaves under epsilon-thickening. We
summarize the result of each of these calculations below:

• If F = k[b,d] and ε > 0, then F̃ε = k[b−ε,d+ε].
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• If F = k(b,d) and 0 6 ε < d− b, then F̃ε = k(b+ε,d−ε). If d− b 6 ε, then
F̃ε = 0.

• If F = k[b,d) and ε > 0, then F̃ε = k[b−ε,d−ε].

• If F = k(b,d] and ε > 0, then F̃ε = k[b+ε,d+ε].

With these calculations in hand, we can then discuss distance between these
sheaves.

• The sheaf k[b,d] is interleaving distance r = (d− b)/2 from the skyscraper
sheaf Sm where m = (d+b)/2 — the midpoint — and infinite distance from
any of the other three types of indecomposables, as well as the zero sheaf.

• The sheaf k(b,d) is interleaving distance r = (d− b)/2 from the zero sheaf 0.

• The sheaves k[b,d) and k(b.d] are interleaving distance r = (d− b)/2 from the
zero sheaf 0.

We now give the supporting arguments for these calculations.

Proposition 15.3.5. If F = k[b,d] and ε > 0, then F̃ε = k[b−ε,d+ε].

Proof. To construct F̃ε it suffices to consider the stalks of the thickened pre-sheaf.
It suffices to consider the extreme points. Consider the point x = b − ε, then
any ball B(x, r) has the property that [b,d] ∩ B(x, r)ε = [b,b+ r) 6= ∅. Since F is
defined as the pushforward of the constant sheaf along j : X = [b,d] ↪→ R, then
Fε(B(x, r)) = kX([b,b+ r)) = k. This proves that Fx ∼= k.

Proposition 15.3.6. If F = k(b,d) and 0 6 ε < d − b, then F̃ε = k(b+ε,d−ε). If
d− b 6 ε, then F̃ε = 0.

Proof. If j : W = (b,d) ↪→ R denotes the inclusion of the open interval, then we
can identify F = j!kW . Here j! denotes the pushforward with compact supports
functor. For the inclusion of a locally closed subspaceW into a general topological
space X [Ive86] provides a precise description. For a sheaf F on W the sheaf j!F
has sections on an open set U given by

Γ(U, j!F) := {s ∈ Γ(W ∩U, F) | supp(s) closed rel.U}

The support of a section is the set of points where a section has non-vanishing
stalks.
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For an open set U ⊂ R, we can describe the sheaf pertinent to us even more
explicitly: j!kW(U) is non-zero if and only if there is a closed set Y such that
U ⊂ Y ⊂W — we say that U is completely contained in W. Note that W = (b,d)
is not completely contained in itself, so in particular (b,d) is assigned the zero
vector space by j!kW .

Consequently, any point x within distance ε of the boundary of (b,d) will fail
to possess a ball B(x, r) such that B(x, r)ε is completely contained in (b,d). Thus
we say that (b,d) is “eroded” by distance ε.

Proposition 15.3.7. If F = k[b,d) and ε > 0, then F̃ε = k[b−ε,d−ε].

Proof. This follows by considering each of the above arguments separately about
each endpoint.

Because the other case is obviously symmetric, we omit a separate argument.
An extremely important observation that distinguishes interleavings of sheaves

from the usual context of an interleavings of persistence modules [BL13] is that
the sheaf k[b,d] is not interleaved with the zero sheaf. This follows from the fact
that the space of global sections is preserved by thickening.

15.3.2 Coordinates for the Category of Sheaves

We can now use the decomposition theorem for constructible sheaves over the real
line to give explicit coordinates for each isomorphism class of a definable sheaf
with finite support.

Let H = {(x,y) ∈ R2 |y > 0} denote the closed upper half plane. To each of the
four indecomposable sheaves with finite support — k[b,d], k(b,d), k[b,d), and k(b,d]
— we can associate a point in H as follows:

I (x,y) = (m(I), r(I)) := (
b+ d

2
,
d− b

2
)

Here I is a stand-in for any of the four types of indecomposable sheaves. The
variable names m and r are meant to connote the midpoint and the radius, re-
spectively, of the underlying bar in the “barcode”. One can then associate to any
definable sheaf F with finite support the following coordinates

F ∼=

n⊕
k=1

kIk  {(m(I1), r(I1)), · · · , (m(In), r(In))} ∈Hn1 tHn2 tHn3 tHn4
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where n1,n2,n3,n4 refers to the number of closed, open, half-open on the right
and half-open on the left indecomposables occurring in the decomposition for F,
respectively. Of course, n = n1 +n+ 2+n3 +n4.

As presented, the space has too many points for the simple reason that the line
r = 0 in H must be identified with the zero sheaf for the non-closed indecom-
posable types. To capture the full category of sheaves we must append a distin-
guished basepoint ? to represent the zero sheaf, quotient the upper half plane so
as to identify {r = 0} ∼ {?} and then form a few infinite symmetric products. The
first part is simple. We define

Z := (Ht {?})/ ∼ where (m, r) ∼ ? iff r = 0.

The next construction begins by observing that Z is naturally a pointed space,
where ? serves as the distinguished basepoint. To every pointed space we can
associate a new space called the infinite symmetric product.

Definition 15.3.8. Recall that the n-fold symmetric product of X, denoted SPn(X),
is given by forming the n-fold Cartesian product and quotienting out by the action
of the symmetric group, i.e. SPn(X) := Xn/Σn.

Let Z be a pointed topological space, whose distinguished point is ?. There is a
system of embeddings Zn ↪→ Zn+1 giuven by sending any point

(z1, . . . , zn) 7→ (z1, . . . , zn+1, ?).

This embedding descends to an embedding SPn(Z) ↪→ SPn+1(Z), which forms a
directed system of spaces. The infinite symmetric product SP(Z) is the direct
limit of this system, i.e.

SP(Z) = lim−→
n>0

SPn(Z).

We can now state a theorem.

Theorem 15.3.9. Isomorphism classes of Shvd,f(R) are in bijective correspondence
with points in the following space:

B :=
⊔
n>0

SPn(H)×

(
SP(Z)

∨
?

SP(Z)
∨
?

SP(Z)

)

Remark 15.3.10. If one could show that the topology induced by the interleaving
distance made H and Z into cell complexes, then the Dold-Thom theorem would
tell us the singular homology of the space of definable sheaves on the real line is
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isomorphic to a countably infinite number of copies of Z in degree zero and zero
in all higher degrees.

It remains to be seen what geometry is induced on B by pulling back the in-
terleaving distance. Conjecturally, this should be accomplished by the bottleneck
distance [CCSG+

09, BL13], with the stipulation that only points in SP(Z) can be
matched with zero.

15.3.3 Towards a Bottleneck Distance for Sheaves

We now investigate simpler descriptions of the interleaving distance for definable
sheaves with finite support on the real line. Our goal is to establish a connection
between the interleaving distance for sheaves and the bottleneck distance, which
we now define.

Definition 15.3.11 (The Bottleneck Distance). Let ∆+ := {(x,y) ∈ R2|x 6 y} be
equipped with the sup norm

d∞(p,p ′) = sup{|x1 − x2|, |y1 − y2|}

A multiset D in ∆+ is a subset |D| of ∆+ equipped with a multiplicity function
µ : |D|→N. Any multiset can be considered as a set via disjoint unions

D =
⋃
p∈|D|

µ(p)∐
i=1

{p}.

A multi-bijection m : D → D ′ is a bijection between the underlying sets, where
if µ(p) = k, then the underlying set has k elements corresponding to p. The
bottleneck distance is a distance between multisets defined by the formula

dB(D,D ′) := inf
m

sup
p∈D

d∞(p,p ′).

In usual sub-level set persistence, the multisets D consist of the diagonal ∆ =

{(x, x)}, equipped with infinite multiplicity, and the points (b,d) corresponding
to the interval modules k[b,d) making up the interval decomposition of theorem
6.3.3. The stipulation that the diagonal has infinite multiplicity reflects the fact
that for half-open intervals, the module can be interleaved with zero. For sheaves,
the obstruction by global sections result implies that the number of points cor-
responding to indecomposables k[b,d] is an invariant of the multi-set — infinite
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multiplicity of the diagonal cannot be used there. Nevertheless, we can describe
the geometry there in our choice of coordinates.

Lemma 15.3.12. Suppose F = k[m1−r1,m1+r1] and G = k[m2−r2,m2+r2] are two in-
decomposable sheaves supported over closed intervals, then the interleaving dis-
tance for F and G is their distance in a taxicab metric on H, i.e.

d(k[m1−r1,m1+r1],k[m2−r2,m2+r2]) = |m1 −m2|+ |r1 − r2|.

Remark 15.3.13. If we write [m1 − r1,m1 + r1] =: [b1,d1] and [m2 − r2,m2 + r2] =:

[b2,d2] then the taxicab metric specializes to a sup-norm on the space {(b,d) ∈
R2 |b 6 d}, that is to say

|m1 −m2|+ |r1 − r2| = sup{|b1 − b2|, |d1 − d2|},

which is a special instance of the bottleneck distance on persistence diagrams.

Proof. Without loss of generality we can assume that m1 6 m2. We know that
there can only be a non-zero map from Fε → G if [m2 − r2,m2 + r2] ⊂ [m1 − r1 −

ε,m1 + r1 + ε], i.e. if ε > (m2 −m1) + (r2 − r1). Similarly, there is a non-zero
map Gε → F only if ε > (m2 −m1) + (r1 − r2). Since in order for a non-zero
interleaving to exist both maps must be non-zero, we conclude that

ε = sup{(m2 −m1) + (r2 − r1), (m2 −m1) + (r1 − r2)} = m2 −m1 + |r1 − r2|.

This proves that there is a non-zero interleaving for this value of ε. However, the
interleaving distance is the infimum over all such ε. However, for any smaller ε
one of the maps ϕε or ψε must be zero. However, global sections obstructs such
a pair of maps from defining an interleaving, since for every ε the maps

ηF2ε : F
2ε(X)→ F(X) and ηG2ε : G

2ε(X)→ G(X)

are non-zero. They are, in fact, the identity map id : k→ k.

The situation for constant sheaves supported on half-open intervals or the open
interval is more complicated since they have no global sections and can be inter-
leaved with the zero sheaf.

Lemma 15.3.14. Suppose F and G are each interleaved with the zero sheaf, i.e.
d(F, 0),d(G, 0) < ∞. Then the interleaving distance between F and G is bounded
above by the greater of the two distances from zero,

d(F,G) 6 sup{d(F, 0),d(G, 0)}.
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Proof. Choose any ε > sup{d(F, 0),d(G, 0)}, then the zero maps define an ε inter-
leaving, factoring through zero, between F ang G. Since the interleaving distance
is the infimum, the inequality follows.

We can use the above lemma to establish what the interleaving distance between
pairs of sheaves of the other three types looks like.

Lemma 15.3.15. Let F = k[m1−r1,m1+r1) and G = k[m2−r2,m2+r2) be indecomposable
sheaves supported on half-open intervals, then

d(k[m1−r1,m1+r1),k[m2−r2,m2+r2)) = inf{max(r1, r2), |m1 −m2|+ |r1 − r2|}

Proof. Without loss of generality, we assume that F = k[−R,R) and G = k[m−r,m+r)

where m > 0. This can be done since the ε-thickening operation simply translates
sheaves of this form to the left by ε. In view of lemma 15.3.14 it suffices to
consider the possible values for m and r such that Gε admits a non-zero map to F.
By proposition 15.3.3 we can determine precisely what inequalities ε must satisfy.

First we assume that r 6 R. In this case, the inequalities are

−r− R 6 m− ε 6 r− R and R− r 6 m+ ε < R+ r.

The first set of inequalities bounds when Gε → F can be non-zero and the second
set of inequalities bounds when Fε → G can be non-zero. The smallest such ε
that satisfies the first set is ε = m+ R− r, which only satisfies the second set if
m < R. For these values of m and r, there is the smallest non-zero interleaving,
so the distance is

d(F,G) = m+ R− r.

Similarly for r > R, ε = m+ r− R is the smallest possible value for Gε → F to be
non-zero. Requiring Fε → G to be non-zero as well implies that m 6 R and for
these values of m and r the distance is

d(F,G) = m+ r− R.

Consequently, wherever a non-zero interleaving is possible, the smallest such
value is given in the desired taxicab form m+ |r− R|. Now we can apply lemma
15.3.14 to determine whether the non-zero interleavings are the smallest possible.
We split into two cases. Suppose r 6 R, then m+ R− r 6 R — the largest distance
from zero — when m 6 r, precisely where we determined a non-zero interleaving
exists. Similarly if R 6 r, then we have that m+ r− R 6 r precisely if m 6 R.
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With this evidence in hand, we believe a version of the isometry theorem [Les12,
BS, BL13] should hold for definable sheaves with finite support over the real line.
However, we must delay this for another time.
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generalization, 155

network coding sheaf, 165

duality, 168

o-minimal structure, 205

analytic-geometric category, 207

persistence module, 104

decomposition theorem, 104

persistent homology, 138

level set determines sublevel set,
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multi-dimensional
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via derived pushforward, 162

sublevel set, 140

perversity, 114

Pitt’s theorem, 249

point cloud, 138, 207
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determines a stratified map, 218

pointless topology, 64

poset, 4, 75

maps, 84

pre-cosheaf, 23

behavior under refinement, 35

preordered set, 4, 75

presheaf, 23

behavior under refinement, 35

exact sequence, 43

inconsistent example, 38

non-local example, 37

stalk, 38

product, 12, 39

projective
cosheaf on a poset, 121

mapping identities for
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properties, 121

resolutions, 122

sheaf on a poset, 121

pullback, 12

of a sheaf over a poset, 85
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pushforward to a point, 87

pushforward with compact supports
f!, 91

pushforward with open supports f†,
88

pushout, 15

quasi-isomorphism, 127

quiver, 111, 165

representation, 112

Reeb graph, 67

regular cell complex, 70

relation, 4

representation, 10

direct sum, 108

indecomposable, 109

of a quiver, 112

Entr(X), 229

Entr(X)
from a stratified map, 231

π1(X), 56, 60

subrepresentation, 108

routing sheaf, 167

duality, 168

semialgebraic subset, 206

sensing sheaf, 187

sensors, 175

multi-modal, 185

sheaf
axiom as an equalizer, 28

axiom as an exact sequence, 29

axiom for two opens, 25

behavior under refinement, 36

Čech, 151

cellular, 71

cohomology of, 100

compactly supported
cohomology of, 99, 250

derived equivalence with
cosheaves, 242

derived equivalence with
graded sheaves, 257, 260

subdivision, 86

cellular perverse, 114

constant sheaf, 55

pullback from a point, 85

constructible, 195

definable, 274

definition of, 23

elementary injective cellular
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elementary injective on a poset,
119

elementary projective on a poset,
121

Hom, 41

homology, cellular, 134, 251
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locally constant sheaf, 55, 59

representation of π1(X), 60

network coding, 165

of sections, 52

on a poset, 79

on closed sets, 20, 81, 89

pullback, 40

push-pull adjunctions, 94

pushforward, 40, 83, 86

pushforward f†, 88
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supports f!, 91

restricted sheaf, 195

routing, 167
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sensing, 187

sheafification, 39, 45
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stalk, 38, 41
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three perspectives on, 19
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exact sequence of, 43
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splitting lemma, 109

stability, 265

for derived interleavings, 269

stacks, 71

stalk, 38, 41, 43

star, 76
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Thom mapping, 213, 215

Whitney, 202

stratified space
general properties of, 201

Thom-Mather, 209

Whitney, 200

stratified submersion, 202

stratified vector field, 213

subdivision, 86

of a cellular sheaf, 86

tame topology, 203

tensoring sheaves with cosheaves,
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terminal object, 6

Thom’s first isotopy lemma, 202

van Kampen theorem, 62
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Verdier duality, 245
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