RESILIENT SUBMODULAR MAXIMIZATION FOR CONTROL AND SENSING

Vasileios Tzoumas

A DISSERTATION
in

Electrical and Systems Engineering
Presented to the Faculties of the University of Pennsylvania
in
Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

2018

Dissertation Supervisor

George J. Pappas, Professor of Electrical and Systems Engineering (UPenn)

Dissertation Co-Supervisor

Ali Jadbabaie, Professor of Engineering, Institute for Data, Systems and Society (MIT)

Graduate Group Chairperson

Alejandro Ribeiro, Associate Professor of Electrical and Systems Engineering (UPenn)

Dissertation Committee
Rakesh Vohra, Professor of Economics and of Electrical and Systems Engineering (UPenn)
Hamed Hassani, Assistant Professor of Electrical and Systems Engineering (UPenn)

Luca Carlone, Assistant Professor of Aeronautics and Astronautics (MIT)

RESILIENT SUBMODULAR MAXIMIZATION FOR CONTROL AND SENSING
© COPYRIGHT
2018

Vasileios Tzoumas

ABSTRACT

RESILIENT SUBMODULAR MAXIMIZATTION FOR CONTROL AND SENSING

Vasileios Tzoumas
George J. Pappas
Ali Jadbabaie

Fundamental applications in control, sensing, and robotics, motivate the design of systems
by selecting system elements, such as actuators or sensors, subject to constraints that require
the elements not only to be a few in number, but also, to satisfy heterogeneity or interde-
pendency constraints (called matroid constraints). For example, consider the scenarios:

e (Control) Actuator placement: In a power grid, how should we place a few generators
both to guarantee its stabilization with minimal control effort, and to satisfy interde-
pendency constraints where the power grid must be controllable from the generators?

e (Sensing) Sensor placement: In medical brain-wearable devices, how should we place
a few sensors to ensure smoothing estimation capabilities?

e (Robotics) Sensor scheduling: At a team of mobile robots, which few on-board sensors
should we activate at each robot —subject to heterogeneity constraints on the number
of sensors that each robot can activate at each time— so both to maximize the robots’
battery life, and to ensure the robots’ capability to complete a formation control task?

In the first part of this thesis we motivate the above design problems, and propose the
first algorithms to address them. In particular, although traditional approaches to matroid-
constrained maximization have met great success in machine learning and facility location,
they are unable to meet the aforementioned problem of actuator placement. In addition,
although traditional approaches to sensor selection enable Kalman filtering capabilities,
they do not enable smoothing or formation control capabilities, as required in the above
problems of sensor placement and scheduling. Therefore, in the first part of the thesis
we provide the first algorithms, and prove they achieve the following characteristics: prov-
able approximation performance: the algorithms guarantee a solution close to the optimal;
minimal running time: the algorithms terminate with the same running time as state-of-
the-art algorithms for matroid-constrained maximization; adaptiveness: where applicable,
at each time step the algorithms select system elements based on both the history of se-
lections. We achieve the above ends by taking advantage of a submodular structure of in
all aforementioned problems —submodularity is a diminishing property for set functions,
parallel to convexity for continuous functions.

But in failure-prone and adversarial environments, sensors and actuators can fail; sensors
and actuators can get attacked. Thence, the traditional design paradigms over matroid-
constraints become insufficient, and in contrast, resilient designs against attacks or failures
become important. However, no approximation algorithms are known for their solution;
relevantly, the problem of resilient maximization over matroid constraints is NP-hard.

1ii

In the second part of this thesis we motivate the general problem of resilient maximization
over matroid constraints, and propose the first algorithms to address it, to protect that way
any design over matroid constraints, not only within the boundaries of control, sensing,
and robotics, but also within machine learning, facility location, and matroid-constrained
optimization in general. In particular, in the second part of this thesis we provide the first
algorithms, and prove they achieve the following characteristics: resiliency: the algorithms
are valid for any number of attacks or failures; adaptiveness: where applicable, at each
time step the algorithms select system elements based on both the history of selections,
and on the history of attacks or failures; provable approzrimation guarantees: the algorithms
guarantee for any submodular or merely monotone function a solution close to the optimal;
minimal running time: the algorithms terminate with the same running time as state-of-
the-art algorithms for matroid-constrained maximization. We bound the performance of
our algorithms by using notions of curvature for monotone (not necessarily submodular) set
functions, which are established in the literature of submodular maximization.

In the third and final part of this thesis we apply our tools for resilient maximization in
robotics, and in particular, to the problem of active information gathering with mobile
robots. This problem calls for the motion-design of a team of mobile robots so to enable the
effective information gathering about a process of interest, to support, e.g., critical missions
such as hazardous environmental monitoring, and search and rescue. Therefore, in the third
part of this thesis we aim to protect such multi-robot information gathering tasks against
attacks or failures that can result to the withdrawal of robots from the task. We conduct
both numerical and hardware experiments in multi-robot multi-target tracking scenarios,
and exemplify the benefits, as well as, the performance of our approach.

iv

TABLE OF CONTENTS

ABSTRACT . . . e ii
LIST OF ILLUSTRATIONS e e ix
CHAPTER 1: INTRODUCTION 1
1.1 Motivation of submodular maximization in control, sensing, and robotics . . . 1
1.2 State-of-the-art approaches for submodular maximization 2
1.3 Need for novel approaches of submodular maximization in control 3
1.4 Need for novel approaches of submodular maximization in sensing and robotics 4
1.5 Need for resilient submodular maximization 4
1.6 Thesis goal and approach L Lo 6
1.7 Thesis contributions, and organization 8

I CONTRIBUTIONS TO SUBMODULAR MAXIMIZATION IN

ACTUATION DESIGN 12
CHAPTER 2 : Minimal Reachability is Hard to Approximate 13
2.1 Introduction 13
2.2 Minimal Reachability Problem 0. 15
2.3 Non-supermodularity of distance from point to subspace 16
2.4 Inapproximability of Minimal Reachability Problem 18
2.5 Proof of Inapproximability of Minimal Reachability 19
2.6 Concluding Remarks & Future Work 0. 24
CHAPTER 3 : Minimal Actuator Placement with Bounds on Control Effort 26
3.1 Introduction 26
3.2 Problem Formulation oo 28
3.3 Minimal Actuator Sets with Constrained Control Effort 33
3.4 Minimum Energy Control by a Cardinality-Constrained Actuator Set 39
3.5 Concluding Remarks & Future Work 42
3.6 Appendix: Computational Complexity 42

I CONTRIBUTIONS TO SUBMODULAR MAXIMIZATION IN

4.1
4.2

SENSING DESIGN 45
CHAPTER 4 : Sensor Placement for Optimal Kalman Filtering: Fundamental Lim-

its, Submodularity, and Algorithms 46

Introduction 46

Problem Formulationo 48

Fundamental Limits in Optimal Sensor Placement 52

4.3

4.4 Submodularity in Optimal Sensor Placement 23
4.5 Algorithms for Optimal Sensor Placement 54
4.6 Concluding Remarks & Future Work 56
4.7 Appendix: Proof of Results 56
CHAPTER 5 : Near-optimal sensor scheduling for batch state estimation: Complex-
ity, algorithms, and limits oo 60
5.1 Introduction 60
5.2 Problem Formulation 63
5.3 Main Results Lo 65
54 Concluding Remarks & Future Work 71
5.5 Appendix: Proof of Results 71
CHAPTER 6 : Selecting sensors in biological fractional-order systems 75
6.1 Introductiono 75
6.2 Problem Statement 78
6.3 Sensor Placement for DTFOS 83
6.4 EEG Sensor Placement 86
6.5 Concluding Remarks & Future Work 92
6.6 Appendix: Proof of the Results 93
CHAPTER 7 : Scheduling Nonlinear Sensors for Stochastic Process Estimation . . . 99
7.1 Introduction 99
7.2 Problem Formulation 102
7.3 Main Results 103
7.4 Conclusion Remarks & Future Work 107
7.5 Appendix: Proof of Results 107
CHAPTER 8 : LQG Control and Sensing Co-design 112
8.1 Introduction 112
8.2 LQG Control and Sensing Co-design: Problem Statement 115
8.3 Co-design Principles and Efficient Algorithms 119
8.4 Performance guarantees for LQG Co-Design 124
8.5 Numerical Experiments 132
8.6 Concluding Remarks & Future Work 136
8.7 Appendix: Proof of Results 137
IIT RESILIENT SUBMODULAR MAXIMIZATION 160
CHAPTER 9 : Resilient Non-Submodular Maximization over Matroid Constraints . 161
9.1 Introduction L 161
9.2 Resilient Non-Submodular Maximization over Matroid Constraints 164
9.3 Algorithm for Problem 4o Lo 167
9.4 Performance Guarantees for Algorithm 19 169
9.5 Numerical Experiments on Control-Aware Sensor Selection 174

vi

9.6 Concluding Remarks & Future Work 176
9.7 Appendix: Proof of Results 177
CHAPTER 10 : Resilient (Non-)Submodular Sequential Maximization 189
10.1 Introduction L 189
10.2 Resilient Monotone Sequential Maximization 192
10.3 Adaptive Algorithm for Problem 5 193
10.4 Performance Guarantees for Algorithm 20 195
10.5 Numerical Experiments Lo 199
10.6 Concluding Remarks & Future Work00 201
10.7 Appendix: Proof of Results 202

IV CONTRIBUTIONS TO RESILIENT SUBMODULAR MAXI-

MIZATION IN ROBOTICS 213
CHAPTER 11 : Resilient Active Information Gathering with Mobile Robots 214
11.1 Introduction oL 214
11.2 Problem Statement 216
11.3 Algorithm for Resilient Active Information gathering 218
11.4 Performance Guarantees 220
11.5 Application: Multi-target tracking with mobile robots 224
11.6 Concluding Remarks & Future Work 228
11.7 Appendix: Proof of Results 230
BIBLIOGRAPHY e 243

vii

FIGURE 1 :

FIGURE 2 :

FIGURE 3 :

FIGURE 4 :

FIGURE 5 :

FIGURE 6 :

LIST OF ILLUSTRATIONS

Graphical representation of the linear system @1(t) = 37, ;(t),
z;(t) = 0, i = 2,...,n; each node represents an entry of the sys-
tem’s state (x1(t),z2(t),...,zn(t)), where t represents time; the
edges denote that the evolution in time of 21 depends on (29, 3, . . .,

EEG data recorded and the simulated using DTFOS at the EEG channel
POs. . . . o e
(a) Minimal sensor placement to achieve a prescribed initial state-
uncertainty estimation errors. (b) initial state-uncertainty logdet
errors achieved given different sensor budgets. (c) The 64-channel
geodesic sensor distribution for measurement of EEG, where the
sensors in gray represent those of the Emotiv EPOC and the ones
in red are those returned by Algorithm 12 when solving (Ps) (that
relieved to be the same for all 4 tasks), given the identified DT-
FOS and a deployment budget of 14 sensors. (d) initial state-
uncertainty log det estimation errors associated with the highlighted
sensor placements in (c).
(a) Minimal sensor placement to achieve a prescribed batch-state
estimation errors. (b) batch-state log det errors achieved given dif-
ferent sensor budgets. (c) The 64-channel geodesic sensor distribu-
tion for measurement of EEG, where the sensors in gray represent
those of the Emotiv EPOC and the ones in red are those returned
by Algorithm 12 when solving (P4) (that relieved to be the same for
all 4 tasks), given the identified DTFOS and a deployment budget
of 14 sensors. (d) batch-state logdet estimation errors associated
with the highlighted sensor placements in (¢).
(a-b) The 64-channel geodesic sensor distribution over 10 subjects
under Task 1-4 and the most voted deployment given a 14-sensor
budget by minimizing (a) the initial state-uncertainty estimation
error and (b) batch-state estimation error. (c-d) The improvement
on (c) initial state-uncertainty estimation error and (d) batch-state
estimation error when (i) the sub-optimal 14-sensor deployment re-
turned by Algorithm 2 individually (blue bar) and (ii) the most

voted 14-sensor deployment by 10 subjects (red bar) are considered. 91

Plot of fi(vy) (i = 1,2,3,4) versus supermodularity ratio v, of a
monotone supermodular function g. By Definition 29 of supermod-
ularity ratio, v, takes values between 0 and 1. As v, increases from
0 to 1 then: fi(v,) increases from 0 to 1/2(1 — e~ 1) ~ 0.32; f3(v,)
increases from 0 to 1 — e 2/5 ~ (.32; f2(7g) increases from 0 to

1 —e 1 ~0.64; fo(vy) increases from 0 to 1 —e 2 ~0.87.

viil

FIGURE 7 :

FIGURE 8 :

FIGURE 9 :

FIGURE 10 :

FIGURE 11 :

FIGURE 12 :

FIGURE 13 :

FIGURE 14 :

FIGURE 15 :

FIGURE 16 :

Examples of applications of the proposed sensing-constrained LQG-
control framework: (a) sensing-constrained formation control and
(b) resource-constrained robot navigation.
LQGcost for increasing (a)-(b) control horizon T, (¢)-(d) number
of selected sensors k, and (e)-(f) number of agents n. Statistics are
reported for the homogeneous formation control setup (left column),
and the heterogeneous setup (right column). Results are averaged
over 100 Monte Carlo runs. Lo oL
LQGcost for increasing (a) control horizon T', and (b) number of
selected sensors k. Statistics are reported for the heterogeneous
setup. Results are averaged over 100 Monte Carlo runs.

Given a natural number «, plot of h(c, 8) versus 8. Given a finite «, then
h(a, B) is always non-zero, with minimum value 2/(a 4+ 2), and maximum
value 1. oL
Plot of g(xy) versus curvature x; of a monotone submodular func-
tion f. By definition, the curvature x; of a monotone submodular
function f takes values between 0 and 1. g(k) increases from 0 to
1 as Ky decreases from 1to 0.
LQG cost for increasing number of sensor selections « (from 2 up to 12
with step 1), and for 4 values of S (number of sensor failures among the
a selected sensors); in particular, the value of 8 varies across the sub-
figures as follows: § =1 in sub-figure (a); § = 4 in sub-figure (b); 5 =7
in sub-figure (c); and 8 = 10 in sub-figure (d).
Venn diagram, where the sets A;, As, Bf, B are as follows: per Algo-
rithm 19, A; and A, are such that A = A; U As. Due to their construc-
tion, it holds A;NA2 = 0. Next, Bt and Bj are such that BY = B*(A)NA;,
and B} = B*(A) N Ay; therefore, B N B; = 0 and B*(A) = (BT U B3).

LQG cost for increasing time, where across all sub-figures (a)-(d) it is
a = 11 (number of active sensors per time step). The value of 8 (number
of sensor failures at each time step among the « active sensors) varies
across the sub-figures.o
Venn diagram, where the sets S; 1, Sy 2, le, 3;2 are as follows: per
Algorithm 20, S;; and S;2 are such that 4, = S;1 U Sio. In
addition, due to their construction, it holds S; 1NS; 2 = 0. Next, Bt*’ 1
and Bf, are such that By = B*(Ay.1) NS, and By = B*(Ap.r) N
St2; therefore, it is By N By = 0 and B* (A1) = (Bj; U Bj,) U
UBF UBg) o

Simulation environment depicting five robots. The jammed robot is indi-
catedinred.o

ix

. 186

FIGURE 17 :

FIGURE 18 :

FIGURE 19 :

FIGURE 20 :

The figures depict the average entropy and position RMSE (root mean
square error) per target, averaged over the robots. Figs. (a-b) were
obtained from a simulation with 10 robots, 10 targets, with 2 jamming
attacks. Figs. (c-d) have the same configuration but up to 6 jamming
attacks. The blue colors correspond to the non-resilient algorithm, and
the red colors correspond to the resilient algorithm. The shaded regions
are the spread between the minimum and maximum values of the infor-
mation measure, and the solid lines are the mean value. The plots are
the aggregate of ten trials, each executed over 500 time-steps.
The experimental setup with two quad-rotors equipped with Qualcomm
Flight™, and two Scarabs as ground targets.
The plot in (a) depicts the experimental robot trajectories in the non-
resilient algorithm. The figure in (b) depicts the resilient algorithm. The
targets arein green. oL oL Lo oo
Venn diagram, where the set £ is the robot set defined in step 2 of Algo-
rithm 22, and the set A} and the set A3 are such that A} = A*N L, and
A5 = A*N(V\ L) (observe that these definitions imply A} N.A5 = 0 and
A*=ATUAS). .

CHAPTER 1 : INTRODUCTION

1.1. Motivation of submodular maximization in control, sensing, and robotics

Researchers in control, sensing, and robotics envision the design of critical infrastructures
and autonomous systems in applications such as:

e (Control) Power-grid stabilization: Deploy new-technology HVDC generators in power
grids to guarantee their stabilization. [1]

o (Sensing) Search and rescue: Deploy mobile robots to localize people trapped in burn-
ing buildings. [2]

e (Robotics) Multi-target coverage: Deploy aerial micro-robots to monitor targets that
move in a cluttered urban environment. [3]

In particular, all the aforementioned applications motivate fundamental set function opti-
mization problems such as:

e (Control) Actuator placement: In a power grid, how should we place a few generators
both to guarantee its stabilization, and to satisfy global-interdependency constraints
where the power grid must be controllable from the generators? [4]

e (Sensing) Sensor scheduling: At a team of mobile robots, which few on-board sensors
should we activate at each robot —subject to heterogeneity constraints on the number
of sensors each robot can activate— so both to maximize the robots’ battery life, and
to ensure the robots’ capability to complete a formation control task? [5]

e (Robotics) Motion planning: At a team of aerial robots, how should we select the
robots’ motions to maximize the team’s capability for tracking targets moving in ur-
ban environments, subject to heterogeneity constraints where each robot has different
motion capabilities? [6]

Specifically, all the above applications motivate the design of systems by selecting system
elements, such as actuators, sensors, or movements, subject to complex design constraints
that require the system elements not only to be a few in number, but also to possibly satisfy
heterogeneity or global-interdependency constraints. Other general fundamental problems
that involve such complex design constraints are:

e (Control) Sparse actuation design for state reachability or low-control effort [4], or
merely for controllability 7] or structural controllability [8]; and synchronization in
complex networks for tasks of motion coordination [9].

e (Sensing) Sparse sensing design for optimal Kalman filtering [5, 10].

o (Robotics) Task allocation in collaborative multi-robot systems for surveillance in ur-
ban environments [11].

In more detail, all the aforementioned problems and applications require the solution to an
optimization problem of the form:

acnax f(A), (1.1)

where the set V represent a set of available elements to choose from; the set Z represents the
collection of complex design constraints —called matroids [12]— that enforce heterogeneity
or global-interdependency across the elements in A; and the objective function f is non-
decreasing and (possibly) submodular; submodularity is a diminishing returns property. For
example, Z may constrain the cardinality of each feasible set in the problem in eq. (1.1),
e.g., when Z = {A: A CV, |A|l < «a}, given some positive integer «; an interpretation of
the number « is that it captures a resource constraint, such as a limited battery for sensor
activation, which limits the number of elements one can select in A (under the implicit
assumption that all the elements in V consume the same amount of the limited resource).
In some cases, however, different elements may consume different amounts of the limited
resource; for example, different sensors may have different battery consumption. In such
heterogeneity scenarios, Z may constrain the cost of each feasible set in the problem in
eq. (1.1), e.g., by being Z = {A: A C V,c(A) < b}, given some cost function ¢(.A) over all
the possible subsets A C V, and given some budget constraint b; that is, the cost function ¢
captures the heterogeneity in the cost of each element in V. More generally, Z may also
enforce heterogeneity to the elements in A by partitioning the elements in V, and permitting
the selection of only a few elements from each partition, e.g., when V =V, U--- UV, and
I={A: ACV,c;(ANV;) <b;, foralli=1,...,n}, given a positive integer n, a partition
Vi,...,Vy of V, cost functions cy,...,c,, and budget constraints by,...,b,. In particular,
we may give two interpretations of the heterogeneity introduced by the sets Vi, ..., Vy,: the
first interpretation considers that the sets Vy,...,)V, correspond to the available elements
across n different types (buckets) of elements, and correspondingly, the budgets by, ..., b,
constrain the total cost of the elements one can use from each type 1,...,n; and the second
interpretation considers that the sets V,...,V, correspond to the available elements across
n different ¢imes, and correspondingly, the budget constraints by, ..., b, constrain the total
cost of the elements one can use at each time 1,...,n. Finally, in other complex design
scenarios, that call for global-interdependency among the selected elements, Z may require
the elements in A to form, e.g., a spanning tree on a graph associated to V), such as in the
aforementioned scenario of leader selection for structural controllability [8].

1.2. State-of-the-art approaches for submodular maximization

Overall, the optimization problem in eq. (1.1) is combinatorial, and, in particular, it is NP-
hard [13]; notwithstanding, greedy-like algorithms have been proposed for its solution [12,
14], such as the greedy presented in Algorithm 1. Specifically, Algorithm 1 builds sequentially
an approximate solution for the problem in eq. (1.1), by starting with an empty set A (line 1
of Algorithm 1), and then by adding in A one element at a time (lines 2-8 of Algorithm 1);
in particular, any element that achieves the highest value of f(AU{y}) among the elements
y € V that not chosen so far (line 5 of Algorithm 1) and for which the feasibility constraint
AU {y} € T is satisfied (lines 4 of Algorithm 1). Similarly, the rest of the state-of-the-art
algorithms for the problem in eq. (1.1), i.e., the proposed algorithms in [14], follow similar

Algorithm 1 Greedy algorithm for problem in eq. (1.1) [12].

Input: Per problem in eq. (1.1), Algorithm 19 receives the inputs:
e a matroid (V,7);
e a non-decreasing set function f : 2V — R.

Output: Set A.

A0, R« 0

2: while R #V do

3: € argmaxyep\(aur) f(AU{y});
4: if AU{z} €T then
5 A+~ AU{x};

6: end if

7. R+ RU{x};

8: end while

steps to the ones in Algorithm 1, and differ only on how they choose which element to add
in A (i.e., they replace the criterion in line 3 of Algorithm 1 with some other).

Notably, the algorithms in [12, 14] are proved to be near-optimal for several instances of the
optimization problem in eq. (1.1) [13, 14, 15|, and are commonly used in, e.g., statistics,
such as, in machine learning [16], and optimization, such as, in facility location [17].

1.3. Need for novel approaches of submodular maximization in control

However, the algorithms in [12, 14|, cannot address with provable approximation perfor-
mance the fundamental control problems of actuator selection discussed above, such as the
ones in [4]. In particular, consider the fundamental problem of actuator placement for low
control effort in [4], where the objective is to place a few actuators in a dynamical system
to minimize the average control effort one needs to drive the system in the state space. In
this case, the algorithms in [12, 14] do not exhibit the near-optimal approximation proved
in [12, 15], even for average control-effort metrics (which are instances of the objective func-
tion f in eq. (1.1)) that are non-decreasing and submodular. To reveal the reason, we next
discuss in more detail when a system can be controlled with low effort from an actuator
set, and then discuss how the algorithms in [12, 14] may become insufficient in this context:
specifically, the control-effort one needs to drive a system in the state space is infinite if the
system is not controllable from the set of placed actuators, i.e., if there exists at least one
system state that is not reachable with a finite amount of control effort from the set of placed
actuators. In particular, for a system to be controllable typically more than one actuators
is needed [18|. Hence, given a system, and any set of placed actuators of low enough cardi-
nality, then any metric f that captures the average control effort needed to drive the system
in the state space [19] is infinity (has infinite value). The latter conclusion is sufficient to
reveal why the algorithms in [12, 14] may fail to provide a near-optimal actuator selection
for low-effort control: by focusing without loss of generality only on Algorithm 1, recall
that Algorithm 1 builds an approximate solution to the optimization problem in eq. (1.1)
greedily, by starting with an empty set A, and then by adding elements in A one-by-one,
using the criterion in line 5 of Algorithm 1 to differentiate among the candidate elements to

add; however, since the control effort metrics are infinity insofar only a few actuators have
been added in A, Algorithm 1 cannot differentiate among them, and as a result, it picks
randomly the element to add in A. The complication of this fact is that even though all the
elements finally picked in A affect the average control effort, a part of A has been picked
randomly, instead for minimizing the average control effort.

In sum, we have exemplified the necessity for novel tools of submodular maximization in
control, by presenting the above complications in applying the state-of-the-art algorithms
in [12, 14] to the fundamental problem of actuator placement for low control effort.

1.4. Need for novel approaches of submodular maximization in sensing and robotics

Traditional designs in sensing focus on selecting sensors in critical infrastructures, such as
in networks of satellites, or in power-grids, with the objective to enable state estimation
via Kalman filtering in the presence of resource constraints, such as of limited bandwidth
for simultaneous satellite sensor communication [20], or of limited monetary budget for
phasor-measurement-unit (PMU) placement in power grids [4].

However, recent advances in the miniaturization of sensors and robots trigger the vision of
using swarms of mobile robots to support missions of search and rescue, and of safety and
security |2], which all suggest a shift of focus in the sensor selection process beyond Kalman
filtering: in particular, a shift from sensor selection for merely state estimation (Kalman
filtering) to sensor selection for autonomous navigation. For example, for a swarm of robots
to participate in missions of search and rescue in burning buildings, where each robot in the
swarm can operate only a subset of its sensors due to limited battery, the primary goal of
the sensor selection process is to enable the swarm’s capability for autonomous navigation,
instead of its capability for only localization (state estimation); that is, such missions of
autonomous navigation exemplify the need for navigation-aware sensor selection emerges,
instead of merely localization-aware sensor selection.

At the same time, emergent medical applications require the design of multi-sensor devices,
such as of brain wearables, that enable smoothing estimation (trajectory estimation), instead
of Kalman filtering (state estimation); see [21] and the references therein. Similarly, research
in robotics weigh also on smoothing estimation to enable exploration missions in unknown
environments by the means of simultaneous localization and mapping (SLAM) [22].

In sum, novel sensor selection schemes of submodular maximization are necessitated, that
go beyond Kalman filtering to enable a variety of critical applications such as medical ap-
plications of brain wearables, and autonomous navigation applications of swarms of robots.

1.5. Need for resilient submodular maximization

At the same time, in all the above critical infrastructures and complex autonomous systems,
actuators can fail [23]; sensors and robots can get attacked [24]. Hence, in such failure-
prone and adversarial scenarios, resilient designs against denial-of-service attacks or failures
become important. That is, one needs to introduce resilient re-formulations of the problem
in eq. (1.1), that go beyond the traditional problem in eq. (1.1), and guard against denial-

of-service attacks and failures, either in an off-line fashion (before any attack or failure
happens) or in an on-line fashion (while any attacks or failures happen).

Evidently, which of the two options is appropriate —off-line or on-line resilient design—
depends on the context of the design in hand. For example, off-line protection of designs
becomes important in critical infrastructures, such as in power grids, where the design
happens once, does not change in time, and needs to withstand future attacks or failures [1,
25]. In contrast, on-line protection of designs becomes important in critical tasks where
the design requirements may evolve in time, such as in sensor scheduling for autonomous
navigation in search and rescue, where, specifically, different sensors are activated at each
time step, and as a result, different sensors may fail or get attacked at each time step.

We discuss in more detail the two options of off-line and on-line resilient design below.
1.5.1. Off-line resilient submodular mazimization
An option for an off-line resilient re-formulation of the problem in eq. (1.1) is the following:

AV AT BOA, Ber FANB). (12)
where the set Z’ represents the collection of possible set-removals B —attacks or failures—
from A, each of some specified cardinality. Hence, the problem in eq. (1.2) maximizes f
despite worst-case failures that compromise the maximization in eq. (1.1). Therefore, it is
suitable in scenarios where there is no prior on the removal mechanism, as well as, in scenarios
where protection against worst-case removals is essential, such as in sensor selections for
expensive experiment designs.

Particularly, the optimization problem in eq. (1.2) may be interpreted as a 2-stage perfect
information sequential game between two players [26, Chapter 4|, namely, a “maximization”
player (designer), and a “minimization” player (attacker), where the designer plays first, and
selects A to maximize the objective function f, and, in contrast, the attacker plays second,
and selects B to minimize the objective function f. In particular, the attacker first observes
the designer’s selection A, and then, selects B such that B is a worst-case set removal from A.

1.5.2. On-line resilient submodular mazimization

As mentioned above, the optimization problem in eq. (1.2) enables the off-line protection of
system designs against attacks or failures (since in eq. (1.2) the set A is selected once, and
before any attack or failure B happens); however, for design requirements that evolve in time
(such as in sensor scheduling), one may want to go even beyond the off-line resilient objective
of the problem in eq. (1.2), and guard adaptively against real-time attacks or failures. To
this end, an option is to introduce the following on-line re-formulation of the problem in

eq. (1.2) (which for simplicity is presented for the case of merely cardinality constraints):

max min --- max min f(A;\Bi,...,Ar \ Br),
ACH BiCA, | ArCVr BrCAr AN B 7\ Br)
such that: (1.3)

|At| = Oy and |Bt| < ﬁt, for all t =]., ,T,

where the number f; is the number of possible attacks or failures. Hence, the problem in
eq. (1.2) maximizes the function f despite real-time worst-case failures that compromise
the consecutive maximization steps in eq. (1.1). Therefore, similarly to the problem in
eq. (1.2), it is suitable in scenarios where there is no prior on the removal mechanism, and
in scenarios where protection against worst-case failures is essential, such as in missions of
adversarial-target tracking.

Particularly, and similarly to the problem in eq. (1.2), the problem in eq. (1.3) may be inter-
preted as a T-stage perfect information sequential game between two players [26, Chapter 4],
namely, a “maximization” player (designer), and a “minimization” player (attacker), who play
sequentially, both observing all past actions of all players, and with the designer starting the
game. That is, at each time ¢t = 1,..., T, both the designer and the attacker adapt their set
selections to the history of all the players’ selections so far, and, in particular, the attacker
adapts its selection also to the current (¢-th) selection of the designer (since at each step ¢,
the attacker plays after it observes the selection of the designer).

1.6. Thesis goal and approach
Goal. The goal of the thesis is threefold:

e (Novel theory on submodular maximization) To address fundamental design problems
in control, sensing, and robotics per the problem in eq. (1.1); in particular:

— (Control) We consider two fundamental problems of actuator placement: the
problem of actuator placement for state reachability, and the problem of actuator
placement for controllability with low control effort. These problems are impor-
tant, e.g., in the stabilizability of large-scale systems, such as power grids [27],
and the control of complex networks, such as biological networks [28].

In particular, the objective of actuator placement for state reachability is to de-
termine which few nodes we should actuate in a linear dynamical system so to
make feasible the state transfer from the system’s initial condition to a given final
state. And the objective of actuator placement for controllability with low control
effort is to determine which few nodes we should actuate in a linear dynamical
system so to maximize the volume of the system states that are reachable with
one unit of control effort from the system’s initial condition.

— (Sensing and robotics) We consider two fundamental problems of sensor selection:
the problem of sensor selection for batch-state estimation (smoothing), and the
problem of sensor selection for LQG control (autonomous navigation). These
problems are important in both sensing and robotics applications (see also Sec-

tion 1.4), such as in the design of brain wearables in medical applications [21],
and in the design of the control inputs in multi-robot navigation applications [29].

In particular, the objective of sensor selection for batch-state estimation is to
determine which few sensors we should activate in a linear dynamical system —
possibly different sensors at different time steps— so to maximize at each time
step the estimation accuracy of the system’s observed trajectory so far. And the
objective of sensor selection for LQG control is to determine which few sensors
we should activate in a linear system so to enable the generation of control inputs
that minimize the system’s deviation from a desired trajectory.

e (Nowel theory on resilient mazimization) To protect against attacks and failures not
only the aforementioned fundamental designs, but also to go beyond control, sensing,
and robotics, and protect any design per the problem in eq. (1.1) —e.g., in machine
learning, facility location, and optimization in general [16, 17, 30]— by introducing
the resilient re-formulation of eq. (1.1) per the eq. (1.2) or the eq. (1.3); in particular:

— (Off-line resilient mazimization) The problem in eq. (1.2) goes beyond tradi-
tional (non-resilient) optimization [12, 13, 31, 32, 33| by proposing resilient op-
timization; beyond merely cardinality-constrained resilient optimization [34, 35]
by proposing matroid-constrained resilient optimization; and beyond protection
against non-adversarial set-removals [36, 37| by proposing protection against
worst-case set-removals. Hence, the problem in eq. (1.2) aims to protect the com-
plex design of systems, per heterogeneity or global-interdependency constraints,
against attacks or failures, which is a vital objective for the safety of critical infras-
tructures, such as power grids [1, 25|, or internet service provider networks [38].

— (On-line resilient mazimization) The problem in eq. (1.3) goes beyond tradi-
tional (non-resilient) optimization [31, 32, 33, 39, 40] by proposing resilient op-
timization; beyond the single-step resilient optimization in [34] or in eq. (1.2)
by proposing multi-step (sequential) resilient optimization; beyond memoryless
resilient optimization [41] by proposing adaptive resilient optimization; and be-
yond protection against non-adversarial attacks [36, 37] by proposing protection
against worst-case attacks. Hence, the problem in eq. (1.3) aims to protect the
system performance over extended periods of time against real-time denial-of-
service attacks or failures, which is vital in critical applications, such as multi-
target surveillance with teams of mobile robots [6].

o (Applications of resilient maximization) To apply the resilient maximization tools we
develop herein to the problem of active information gathering with mobile robots [42].

In particular, active information gathering calls for the motion-design of a team of mo-
bile robots so to enable the effective information gathering about a process of interest.
For example, this problem aims to support critical missions such as:

— Hazardous environmental monitoring: Deploy a team of mobile robots to monitor
the radiation flow around a nuclear reactor after an explosion; [43]

— Adversarial-target tracking: Deploy a team of agile robots to track an adversarial
target that aims to escape by moving in a cluttered urban environment; [3]

— Search and rescue: Deploy a team of aerial micro-robots to localize people trapped
in a burning building. |2]

Approach. To achieve the above ends, in this thesis we develop novel algorithms for both
submodular and merely monotone maximization, as explained in more detail below.

1.7. Thesis contributions, and organization

The thesis contribution is to realize the aforementioned goals, by developing novel algorithms
for both submodular and monotone maximization, that achieve the following characteristics:

resiliency: where applicable, the algorithms are valid for any number of denial-of-
service attacks or failures;

adaptiveness: where applicable, at each time step the algorithms select system ele-
ments based on both the history of selections, and on the history of attacks or failures;

provable approximation guarantees: the algorithms guarantee for any submodular or
merely monotone function a solution close to the optimal,;

manimal running time: the algorithms terminate with the same running time as state-
of-the-art algorithms for submodular maximization.

In more detail, the thesis contributions per thesis chapter are as follows:

(Chapters 2-3) Contributions to submodular mazimization in control: In Chapter 2 and
Chapter 3 we address the problems of minimal actuator placement for state reachability
and of minimal actuator placement for controllability, respectively.

In more detail, in Chapters 2-3 we make the following contributions:

— In Chapter 2 we prove that the problem of actuator placement for state reacha-
bility cannot be approximated in polynomial or even quasi-polynomial time.

— In Chapter 3 we prove that the problem of minimal actuator placement for con-
trollability with low control effort is NP-hard, yet we provide novel and near-
optimal approximation algorithms for its solution, by overcoming the complica-
tions discussed in Section 1.3 regarding the application of state-of-the-art algo-
rithms for the solution of the submodular maximization problem in eq. (1.1).

(Chapters 4-8) Contributions to submodular mazimization in sensing and robotics: In
Chapters 4-7 we focus on the problem of sensor selection for batch-state estimation,
and in Chapter 8 we focus on the problem of sensor selection for LQG control.

In more detail, in Chapters 4-7 we make the following contributions:

— (Problem definition) We formalize problems of sensor selection for batch-state
estimation (smoothing) for systems that are either linear (Chapters 4-5), non-
linear (Chapter 6), or stochastic (Chapter 7). This is the first work to formalize,
address, and demonstrate the importance of these problems.

— (Solution) We prove that the problem of sensor selection for batch-state estima-
tion is NP-hard (Chapter 6), yet we provide for its solution near-optimal, on-line
approximation algorithms, with minimal running time (equal to those sensor se-
lection algorithms that are employed for Kalman filtering).

— (Application) We propose novel designs of multi-sensor brain wearables that rely
on electroencephalograms, by determining via our proposed algorithms the sensor
location that seems to be the most effective with respect to a pre-specified number
of sensors. In particular, we observe that for a variety of tasks the location of
sensors currently used in such wearable devices is sub-optimal with respect to the
objective smoothing estimation (Chapter 6).

Finally, in Chapter 8 we make the following contributions:

— (Problem definition) We formalize the problem of sensor selection for LQG con-
trol, in particular, subject to heterogeneous sensor-cost constraints. This is the
first work to formalize, address, and demonstrate the importance of this problem.

— (Solution) We provide the first algorithms the problem of sensor selection for
LQG control, by extending algorithms in the literature on submodular optimiza-
tion subject to heterogeneous cost constraints. In particular, (i) we provide the
first efficient algorithms for the optimization of approximately supermodular func-
tions subject to heterogeneous-cost constraints; and (ii) we improve known sub-
optimality bounds that also apply to the optimization of (exactly) supermodular
functions: specifically, the proposed algorithm for approximate supermodular
optimization with heterogeneous-cost constraints can achieve in the exactly su-
permodular case the approximation bound (1 — 1/e), which is superior to the
previously established bound 1/2(1 — 1/e) in the literature |44].

— (Simulations) We consider two application scenarios, namely, sensing-constrained
formation control and resource-constrained robot navigation. We present a Monte
Carlo analysis for both scenarios, which demonstrates that (i) the proposed al-
gorithm is near-optimal (matches the optimal selection in all tested instances for
which the optimal selection could be computed via a brute-force approach), and
(ii) a naive selection which attempts to minimize the state estimation covari-
ance [5] (Kalman filtering error rather than the LQG cost) has degraded LQG
tracking performance, often comparable to a random selection.

e (Chapters 9-10) Resilient submodular mazimization: In Chapters 9-10 we go beyond
the traditional objective of the optimization problem in eq. (1.1), and introduce its
resilient re-formulations in eq. (1.2) and eq. (1.3), so to enable the protection of any
system design per eq. (1.1) —e.g., in control, machine learning, and optimization in

general— against any number of attacks or failures.
In more detail, in Chapters 9-10 we make the following contributions:

— (Problem definition) We formalize the problems of off-line resilient mazimization
over matroid-constraints per eq. (1.2) (Chapter 9), and of on-line resilient mawi-
mization per eq. (1.3) (Chapter 10). This is the first work to formalize, address,
and demonstrate the importance of these problems.

— (Solution) We develop the first algorithms for the solution of the resilient max-
imization problems in eq. (1.2) and eq. (1.3), and prove that they exhibit the
properties described in the beginning of Section 1.7, i.e., the properties of re-
siliency, adaptiveness —applicable to the Algorithm in Chapter 10,— provable
approximation performance, and minimal running time.

— (Simulations) We demonstrate the necessity for the resilient re-formulation of the
problem in eq. (1.1) by conducting numerical experiments in various scenarios of
sensing-constrained autonomous robot navigation, varying the number of sensor
failures. In addition, via the experiments we demonstrate the benefits of our
approach per the resilient problem formulations in eq. (1.2) and eq. (1.3).

e (Chapter 11) Application of resilient submodular mazimization to robotics: In Chap-
ter 11 we introduce the problem of resilient active information gathering with mobile
robots, which goes beyond the traditional objective of (non-resilient) active informa-
tion gathering, and aims to guard the information gathering process from worst-case
failures or attacks that can cause not only the withdrawal of robots from the informa-
tion gathering task, but also the inability of the remaining robots to jointly optimize
their motions, due to disruptions to their communication network.

In more detail, in Chapter 11 we make the following contributions:

— (Problem definition) We formalize the problem of resilient active information
gathering with mobile robots against attacks or failures. This is the first work to
formalize, address, and demonstrate the importance of this problem.

— (Solution) We develop the first algorithm for resilient active information gathering
with the following properties:

x resiliency: it is valid for any number of denial-of-service attacks or failures;

x provable approximation performance: for all monotone and (possibly) sub-
modular information gathering objective functions in the active robot set
(non-failed robots), it ensures a solution close to the optimal;

* minimal communication: it terminates within the same order of communica-
tion rounds as current algorithms for (non-resilient) information gathering.

— (Simulations) We conduct simulations in a variety of multi-robot multi-target

10

tracking scenarios, varying the number of robots, targets, and failures. Our
simulations validate the benefits of our approach.

— (Experiments) We conduct hardware experiments of multiple quad-rotors tracking
static ground targets, to demonstrate visually the necessity for resilient robot
motion design against robotic failures or denial-of-service attacks.

11

Part 1

CONTRIBUTIONS TO
SUBMODULAR MAXIMIZATION
IN ACTUATION DESIGN

12

CHAPTER 2 : Minimal Reachability is Hard to Approximate

In this chapter, we consider the problem of choosing which nodes of a linear dynamical
system should be actuated so that the state transfer from the system’s initial condition to
a given final state is possible. Assuming a standard complexity hypothesis, we show that
this problem cannot be efficiently solved or approximated in polynomial, or even quasi-
polynomial, time.!

2.1. Introduction

During the last decade, researchers in systems, optimization, and control have focused on
questions such as:

o (Actuator Selection) How many nodes do we need to actuate in a gene regulatory
network to control its dynamics? [46, 47|

e (Input Selection) How many inputs are needed to drive the nodes of a power system
to fully control its dynamics? [48|

o (Leader Selection) Which UAVs do we need to choose in a multi-UAV system as leaders
for the system to complete a surveillance task despite communication noise? [49, 50|

The effort to answer such questions has resulted in numerous papers on topics such as
actuator placement for controllability [7, 51]; actuator selection and scheduling for bounded
control effort [18, 52, 53, 54]; resilient actuator placement against failures and attacks [55, 56];
and sensor selection for target tracking and optimal Kalman filtering [57, 58, 59, 60]. In all
these papers the underlying optimization problems have been proven (i) either polynomially-
time solvable [46, 47, 48] (ii) or NP-hard, in which case polynomial-time algorithms have been
proposed for their approximate solution [7, 18, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60].

But in several applications in systems, optimization, and control, such as in power sys-
tems [61, 62|, transportation networks [63], and neural circuits [64, 65|, the following problem
also arises:

Minimal Reachability Problem. Given times tg and t; such that t; > o,
vectors xg and x1, and a linear dynamical system with state vector x(t) such
that xz(tg) = xo, find the minimal number of system nodes we need to actuate
so that the state transfer from z(tg) = zo to x(t1) = z is feasible.

For example, the stability of power systems is ensured by placing a few generators such that
the state transfers from a set of possible initial conditions to the zero state are feasible [62].

The minimal reachability problem relaxes the objectives of the applications in [7, 18, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60|. For example, in comparison to the
actuator placement problem for controllability 7], the minimal reachability problem aims to
place a few actuators only to make a single transfer between two states feasible, whereas the

!This chapter is based on the paper by A. Jadbabaie, A. Olshevsky, G. J. Pappas, and V. Tzoumas [45].

13

Figure 1: Graphical representation of the linear system &1(t) = D27, x;(t), @:(t) = 0, i =
2,...,n; each node represents an entry of the system’s state (z1(t), z2(t),...,zn(t)), where
t represents time; the edges denote that the evolution in time of x; depends on (x9,x3, ...,
Tn).

minimal controllability problem aims to place a few actuators to make the transfer among
any two states feasible |7, 51].

The fact that the minimal reachability problem relaxes the objectives of the papers |7, 18,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60| is an important distinction whenever
we are interested in the feasibility of only a few state transfers by a small number of placed
actuators. The reason is that under the objective of minimal reachability the number of
placed actuators can be much smaller in comparison to the number of placed actuators
under the objective of controllability. For example, in the system of Fig. 1 the number of
placed actuators under the objective of minimal reachability from (0,...,0) to (1,...,0) is
one, whereas the number of placed actuators under the objective of controllability grows
linearly with the system’s size.

The minimal reachability problem was introduced in [66], where it was found to be NP-hard.
Similar versions of the reachability problem were studied in the context of power systems
in [62] and [67]. For the polynomial-time solution of the reachability problems in [62, 66, 67],
greedy approximation algorithms were proposed therein. The approximation performance
of these algorithms was claimed by relying on the modularity result [68, Lemma 8.1|, which
states that the distance from a point to a subspace created by the span of a set of vectors
is supermodular in the choice of the vectors.

In this chapter, we first show that the modularity result [68, Lemma 8.1] is incorrect. In
particular, we show this via a counterexample to [68, Lemma 8.1], and as a result, we prove
that the distance from a point to a subspace created by the span of a set of vectors is
non-supermodular in the choice of the vectors. Then, we also prove the following strong
intractability result for the minimal reachability problem, which is our main contribution in
this chapter:

Contribution 1. Assuming NP ¢ BPTIME(nP°Y 1981 we show that for each
d > 0, there is no polynomial-time algorithm that can distinguish between the
two cases where:

— the reachability problem has a solution with cardinality k;

14

— the reachability problem has no solution with cardinality k2Q(1°g1_6"),
where n is the dimension of the system.

We note that the complexity hypothesis NP ¢ BPTIME(nP°Y1°8") means there is no ran-
domized algorithm which, after running for O(n{1°8™)°) time for some constant ¢, outputs
correct solutions to problems in NP with probability 2/3; see [69] for more details.

Notably, Contribution 1 remains true even if we allow the algorithm to search for an ap-
proximate solution that is relaxed as follows: instead of choosing the actuators to make the
state transfer from the initial state xo to a given final state z1 possible, some other state Zy
that satisfies |71 — 713 < € should be reachable from x. This is a substantial relaxation
of the reachability problem’s objective, and yet, we show that the intractability result of
Contribution 1 still holds.

The rest of this chapter is organized as follows. In Section 2.2, we introduce formally the min-
imal reachability problem. In Section 2.3, we provide a counterexample to [68, Lemma 8.1].
In Section 2.4, we present Contribution 1; in Section 2.5, we prove it. Section 2.6 concludes
the chapter.

2.2. Minimal Reachability Problem

In this section we formalize the minimal reachability problem. We start by introducing the
systems considered in this chapter and the notions of system node and of actuated node set.
System 1. We consider continuous-time linear systems of the form

#(t) = Ax(t) + Bu(t), t>to, (2.1)

where to is a given starting time, x(t)€ R™ is the system’s state at time t, and u(t)e R™ is
the system’s input vector. <

In this chapter we want to actuate the minimal number of the system’s nodes in eq. (2.1) to
make a desired state-transfer feasible (and not to achieve necessarily the system’s control-
lability). We formalize this control objective using the following two definitions.
Definition 1 (System node). Given a system as in eq. (2.1), where z(t) € R", let x1(¢),
xa(t), ..., xn(t) € R such that x(t) = (x1(t),x2(t), ..., xn(t)). We refer to each x;(t) as a
system node. <
Definition 2 (Actuated node set). Given a system as in eq. (2.1), where z(t) € R", we say
that the set S € {1,2,...,n} is an actuated node set if for all times t the input u(t) affects
only the system nodes x;(t) where i € S. Formally, the set S € {1,2,...,n} is an actuated
node set if the system dynamics are given by

#(t) = Az(t) + I(S)Bu(t), t>to, (2.2)

where 1(S) is a n x n diagonal matriz such that if i € S, the i-th entry of I(S)’s diagonal is
1, otherunse it is 0. <

The definition of I(S) in eq. (2.2) implies that the input u(t) affects only those system nodes
x;(t) where i € S. In more detail,

15

e if i € S, the system node x;(t) is affected by u(t), since for i € S the i-th row of I(S)B
is the i-th row of B;

e if i ¢ S, the system node z;(t) cannot be affected by u(t), since for i ¢ S the i-th row
of I(S)B is zero.

Overall, the set S determines via the matrix I(S)B which rows of B will be set to zero and
which will remain the same.
Problem 1 (Minimal Reachability). Given

e f{imes ty and t1 such that t1 > tg,
e vectors xg, x1 € R™ and
o a system &(t) = Ax(t)+Bu(t), t > to, as in eq. (2.1), with initial condition x(ty) = xo,

find an actuated node set with minimal cardinality such that there exists an input u(t) defined
over the time interval (to,t1) that achieves x(t1) = x1. Formally, using the notation |S| to
denote the cardinality of a set S:
minimize |S]
Sg{17277n}
such that there exist u : (to,t1) — R™ x: (to,t1) — R™ with
z(t) = Ax(t) + I(S)Bu(t), t>to,

x(to) = X, x(tl) = 2x1.

A special case of particular interest is when B is the identity matrix. Then, minimal reach-
ability asks for the fewest system nodes that need to be directly actuated by an input u(t)
so that at time ¢; the state z; is reachable from the system’s initial condition z(tg) = 0.

2.3. Non-supermodularity of distance from point to subspace

In this section, we provide a counterexample to the supermodularity result [68, Lemma 8.1].
We begin with some notation. In particular, given a matrix M € R™*" a vector v € R" and
aset S C {1,...,n}, let M(S) denote the matrix by throwing away columns of M not in
S. In addition, for any set S C {1,...,n}, let the set function

f(8) = dist*(v, Range(M(S))),
where dist(y, X) is the distance from a point to a subspace; formally,

dist(y, X) = min [ly — 2.

We show that there exist v and M such that the function:

f:{1,2,...,n} — dist?(v, Range(M(S))),

16

is non-supermodular. We start with the definitions of monotone and supermodular set
functions.

Notation. For any set function f : 2¥ +— R on a ground set V, and any element = € V,

f(z) denotes f({x}). <
Definition 3 (Monotonicity). Consider any finite set V. The set function f : 2Y — R is
non-decreasing if and only if for any A C A" CV, we have f(A) < f(A'). <

In words, a set function f :2Y — R is non-decreasing if and only if adding elements in any
set A C V cannot decrease the value of f(A).

Definition 4 (Supermodularity [70, Proposition 2.1]). Consider any finite set V. The set
function f :2Y — R is supermodular if and only if for any AC A CV and x €V,

f(A) = f(AU{z}) = f(A) = F(A U {z}). <

In words, a function f : 2¥ +— R is supermodular if and only if it satisfies the following
diminishing returns property: for any = € V, the decrease f(A) — f(AU {z}) diminishes as
A grows; equivalently, for any A CV and z € V, f(A) — f(AU {z}) is non-increasing.
Example 1. We show that for

-1 1 01
v=1| 1|, M=|110],
1 0 01
f:{1,2,...,n} = dist?(v, Range(M(S))) is non-supermodular-

Since v is orthogonal to the first and third columns of M,

F{1}) = dist?(0, M({1})) = [[v[[3
f({173}) = diStQ(U,M({1,3})) = HUH%
Therefore,
f{1}) — {13} = 0.

At the same time, the span of the first two columns of M is the subspace {x € R3 : x3 = 0}.
Thus,

F({1,2}) = dist®(v, M({1,2})) = 1.
Moreover, since the three columns of A are linearly independent,
F({1,2,3}) = dist*(v, M({1,2,3})) = 0,

and as o result,
f({172}) - f({17273}) =L
In sum,
FH1,2)) = F({1,2,30) > F({1}) — fF({1,3});
hence, for v and M as defined in this ezample, f : {1,2,...,n} ~ dist?(v, Range(M(S))) is

17

non-supermodular. <

We remark that the same argument as in Example 1 shows that the set function g :
{1,2,...,n} — R such that g(S) = [dist(v, Range(M(S))]¢ is not supermodular for any
c>0.

2.4. Inapproximability of Minimal Reachability Problem

We show that, subject to a widely believed conjecture in complexity theory, there is no
efficient algorithm that solves, even approximately, the minimal reachability Problem 1.
Towards the statement of this result, we next introduce a definition of approximability and
the definition of quasi-polynomial running time.

Definition 5 (Approximability). Consider the minimal reachability Problem 1, and let the
set S* to denote one of its optimal solutions. We say that an algorithm renders Problem 1
(A1(n), Az(n))-approximable if it returns a set S such that:

o there is a state Ty such that x(t1) = 1 and ||x1 — z1|2 < A1(n);
e the cardinality of S is at most Aa(n)|S*|. <

In other words, the notion of (Aj(n), As(n)-approximability allows some slack both in the
quality of the reachability requirement, and in the number of actuators utilized to achieve
it.

Definition 6 (Quasi-polynomial running time). An algorithm is quasi-polynomial if it runs
in 200081)° time where ¢ is a constant. <

We note that any polynomial-time algorithm is a quasi-polynomial time algorithm since
nk = 2k1ogm On the other hand, a quasi-polynomial algorithm is asymptotically faster than
an exponential-time algorithm (i.e., one that runs in O(2""), for some € > 0).

We present next our main result in this chapter.

Theorem 1 (Inapproximability). There is a collection of instances of Problem 1 where
e the system’s initial condition is x(ty) = 0;
e the final state x1 is of the form [1,1,...,1,0,0,...,0]";
o the system’s input matriz is B = I, where I is the identity matriz,

such that for each § € (0,1), there exists some function A(n) = 2208 " 1) g4 that, unless
NP BPTIME(nPo¥ 1081 there exists no quasi-polynomial algorithm for which Problem 1
is (A(n), 22008 ™" M) _approzimable.

Theorem 1 says that if NP ¢ BPTIME(nP°¥1°81) there is no polynomial time algorithm (or
quasi-polynomial time algorithm) that can choose which entries of the system’s x state to ac-
tuate so that x(¢;) is even approximately close to a desired state 27 = [1,1,...,1,0,0,..., O]T
at time tq.

18

To make sense of Theorem 1, first observe that we can always actuate every entry of the
system’s state, i.e., we can choose & = {1,2,...,n}. This means every system is (0,n)-
approximable; let us rephrase this by saying that every system is (0,2!°8™) approximate.
Theorem 1 tells us that we cannot achieve (0,QQ(logl_é”))—approximability for any § > 0.
In other words, improving the guarantee of the strategy that actuates every state by just a
little bit, in the sense of replacing 6 = 0 with some § > 0, is not possible —subject to the
complexity-theoretic hypothesis NP ¢ BPTIME(nP°Y °81) " Furthermore, the theorem tells
us it remains impossible even if we allow ourselves some error A(n) in the target state, i.e.,
even (A(n), 2%008' 1)) _approximability is ruled out.

Remark 1. In [66, Theorem 3] it is claimed that for any € > 0 the minimal reachability
Problem 1 1is (6, (0] (log %))—approm'mable, which contradicts Theorem 1. However, the proof
of this claim was based on [68, Lemma 8.1], which we proved incorrect in Section 2.3. <
Remark 2. The minimal controllability problem [7] seeks to place the fewest number of
actuators to make the system controllable. Theorem 1 is arquably surprising, as it was
shown in [7] that the sparsest set of actuators for controllability can be approzimated to a
multiplicative factor of O(logn) in polynomial time. By contrast, we showed in this chapter
that an almost exponentially worse approzimation ratio cannot be achieved for minimum
reachability. <

2.5. Proof of Inapproximability of Minimal Reachability

In this section, we provide a proof of our main result, namely Theorem 1. We use some
standard notation throughout: 1j is the all-ones vector in R, 0y, is the zero vector in R¥,
and eg is the k'th standard basis vector. We next give some standard definitions related to
the reachability space of a linear system.

2.5.1. Reachability Space for continuous-time linear systems

Definition 7 (Reachability space). Consider a system (t) = Ax(t) + Bu(t) as in eq. (2.1)
whose size is n. The Range([B, AB, A%B,..., A" 'B]) is called the reachability space of
#(t) = Az(t) + Bu(t). <

The reason why Definition 7 is called the reachability space is explained in the following
proposition.

Proposition 1 (|71, Proof of Theorem 6.1]). Consider a system as in eq. (2.1), with initial
condition xo. There exists a real input u(t) defined over the time interval (to,t1) such that
the solution of & = Ax + Bu, x(ty) = zo satisfies x(t1) = x1 if and only if

zy — eAMhito)y, e Range([B, AB, A’B,..., A" 'B]).

The notion of reachability space allows us to redefine the minimal reachability Problem 1
as follows.

19

Corollary 1. The minimal reachability Problem 1 is equivalent to

minimize |S]|
Sg{17277n}

such that x1 — eA(tlftO)xo S
Range([I(S)B, AI(S)B,..., A" 'I(S)B)).

Overall, Problem 1 is equivalent to picking the fewest rows of the input matrix B such that
z1 — eAt—10) 0 is in the linear span of the columns of:

[I(S)B, AI(S)B, A’I(S)B,..., A" I(S)B].

2.5.2. Variable Selection Problem

We show the intractability of the minimum reachability by reducing it to the variable selec-
tion problem, defined next.
Problem 2 (Variable Selection). Let U € R™*! 2 € R™, and let A be a positive number.
The variable selection problem is to pick y € R that is an optimal solution to the following
optimization problem.
minimize ||y|lo
yeR!

such that ||Uy — z|2 < A,
where ||y||o refers to the number of non-zero entries of y.

The variable selection Problem 2 is found in [72] to be inapproximable:
Theorem 2 ([72, Proposition 6]). Unless NP€ BPTIME(nP°Y 198 e have that for each
5 € (0,1) there exist

o a function A(l) : N = N which is 220g').

o a function q1(1) : N = N which is in 220€" "D gnd O(1);
e a polynomial? py(1) which is O(1);

e a polynomial m(l),

such that, given an m(l) x 1 matriz U, no quasi-polynomial algorithm can distinguish between
the following two cases:

1. There exists y € {0,1} such that Uy = 1) and [lyllo < p1(1).

2. For any y € R! such that ||Uy — lm(l)||§ < A(1), we have that |y|lo > p1(1)q1(1).

In this context, a function with a fractional exponent is considered to be a polynomial, e.g., M5 is
considered to be a polynomial in [.

20

Informally, for the variable selection Problem 2 in Theorem 2, unless NPEBPTIME (nPo los 1),
there is no quasi-polynomial algorithm that can distinguish between the case where there
exists a solution to Problem 2 with a few non-zero entries, and the case where every approx-
imate solution has almost every entry nonzero.

2.5.3. Sketch of Proof of Theorem 1

We begin by sketching the intuition behind the proof of Theorem 1. Our general approach
is to find instances of Problem 1 that are as hard as inapproximable instances of the variable
selection Problem 2. We begin by discussing a construction that does not work, and then
explain how to fix it.

Given the matrix U coming from a variable selection Problem 2, we first attempt to construct
an instance of the minimal reachability Problem 1 where

e the system’s initial condition is z(tp) = 0;

e the destination state z; at time t; is of the form [1,0]" (the exact dimensions of 1
and 0 are to be determined);

e the system’s input matrix is B = I;

A:(g g) (2.3)

where the number of zeros is large so that A% = 0.

e the system’s matrix A is

Whereas the variable selection problem involves finding the smallest set of columns of U
so that a certain vector is in their span, for the minimum reachability problem, every time
we add the k-th state to the set of actuated variables S, the reachability span expands by
adding the span of the set of columns of the controllability matrix that correspond to the
vector ey being added in I(S). In particular, for the above construction, because A% = 0,
when the k-th state is added to the set of actuated variables, the span of the two columns
er and Uey, is added to the reachability space.

In other words, with the above construction we are basically constrained to make “moves”
which add columns in pairs, and we are looking for the smallest number of such “moves”
making a certain vector lie in the span of the columns. It should be clear that there is a
strong parallel between this and variable selection (where the columns are added one at a
time). However, because the columns are being added in pairs, this attempt to connect
minimum reachability with variable selection does not quite work. To fix this idea, we want
only the columns of U to contribute meaningfully to the addition of the span, with any
vectors e, we add along the way being redundant; this would reduce minimal reachability

21

to exactly variable selection. We accomplish this by further defining,
U’ v
U
where we stack U some large number of times (to be determined in the main proof of
Theorem 1 at Section 2.5.4). We then set

A:<8 %/> (2.4)

The idea is that because U is “stacked” many times, adding a column of U to a set of vectors
expands the span much more than adding any vector e, so there is never an “incentive” to
even consider the contributions of the vectors e; to the reachability space.

We next make this argument precise. First, given a matrix M € R, for n > kp we define
¢n,d(M) to be the n x n matrix which stacks U in the top-right hand corner d times. For

example,
00 0 1 2
00 0 3 4
M=<§ j) paM)=| 0001 2 |,
00 0 3 4
00 0 0O

ie., ¢52(M) stacks M twice, and then pads it with enough zeros to make the resulting
matrix 5 X 5. Observe that if n > 2dl, then ¢, 4(M)? = 0. We adopt the notation that the
last { columns of ¢, 4(M) are called the non-identity columns, while the first n — [columns
are called the identity columns.

2.5.4. Proof of Theorem 1

We turn to the proof of Theorem 1. We adopt the definitions in the previous sections.

Proof of Theorem 1: Let U be an [X [matrix and consider solving the minimum variable
selection problem with y = 1; by Theorem 2 this cannot be computed in quasi-polynomial
time unless NP ¢ BPTIME(nP°¥1°81) - Adopting the notation of Theorem 2, we set:

o d=m(l)[p1(D)q(1)];

e n = 2max(d,l);

e for simplicity, we use m and m(l) interchangeably.
We consider an instance of the minimal reachability where:

e the system’s initial condition is z(ty) = 0;

22

e the destination state x1 at time ¢; is [1;, Oz_d]—r;
e the system’s input matrix is B = I, where [is the identity matrix;
e the system’s matrix is A = ¢, 4(U).

Given the above instance for Problem 1, we next prove Theorem 1 in two steps.

First step of proof: Suppose that there exists a vector y € {0,1} with Uy = 1,, and
llyllo < pi(l). In that case, we claim there exists a set S C {1,2,...,n} with |S| < pi(I)
such that [IJ,OI_d]T reachable. Indeed, let S be a set of columns of U that have 1,, in
their span, and set S={k+n—1| k€ S}. Then |S| < pi(l), and

1WL::§E:L%7

keS

where Uy, denotes the k’th column of the matrix U; hence, we have

1,, Uy,
1,, Uy,
< 0111) = : =y : =3 Akini,
1, kes | o kes
0,—a 0,-a

where the final step follows by definition of ¢,, 4(-). Now each of the vectors in the last term
is a column of AI(S) with this choice of S, so [14,0,_4]7 indeed lies in the range of the
controllability matrix.

Second step of proof: Conversely, suppose that any z with |[Uz — 1|3 < A(l) has the
property that ||z||o > p1(1)q1(l). We refer to this as assumption Al. We claim that in this
case there is no S C {1,2,...,n} with cardinality strictly less than p;(l)q1(!) that makes
any y with ||y — [1],0 ,]T||3 < A(l) reachable. To prove this, assume the contrary, i.e.,
assume there exists S C {1,2,...,n} with cardinality strictly less than p;(1)g;(!) that makes
some y with ||y —[1,0] 7|2 < A(l) reachable. We call this assumption A2. We obtain
a contradiction as follows:

e Break up S into identity columns and non-identity columns such that & = S;qUSnon—id-

e By the pigeonhole principle, it follows that in the set {1,2,...,d} there is some interval
E ={em+1,km+2,...,km + m}, where k is a non-negative integer, such that
SNV =0, because |S| < p1(1)q1(1) and d > m[p1(1)q1(1)].

e In particular, there is no k € Siq such that k& € £, since in the previous bullet point
we showed SN E = 0, and therefore Sig N & = 0.

e As a consequence of the assumption that there is S C {1,2,...,n} with cardinal-
ity strictly less than pi(l)qi(I) that makes any y with |jy — [1],0, T[> < A(l)

23

reachable, we have that there is y € Range[l(S), AI(S),0,0,...,0] such that ||y —
[17,0" 1713 < A(l). Define ys € R™ by taking the rows of y corresponding to
indices in €. Then, ||ye — 1,n||3 < A(l). Moreover, yg is in the span of the vectors ob-
tained by taking the rows km+1,. .., km-+m of the columns of the reachability matrix
[1(S), AI(S),0,0,...,0]. Since in the previous bullet point we concluded Sig N E = 0,
all such columns are either zero or equal to a column of U.

e Thus, we have that a vector ye € R™ such that ||ye — 1,n||3 < A(l) and yg is in the
span of |S| columns of U. Moreover, assumption A2 tells us that |S| < p1(1)q1(l) while
assumption Al tells us the opposite.

To summarize, we showed the dichotomy of (1a) and (1b):
la) “There exists a vector y € {0, 1} with Uy = 1,, and ||y||o < p1(1).”
1b) “Any y with ||[Uy — 1|3 < A(1) has the property that ||y|lo > p1(D)q1(1).”
implies the dichotomy of (i-a) and (i-b):
i-a) “There exists a set S C {1,2,...,n} with |S| < p1(I) such that [1},0] ,]T reachable.”

i-b) “There isno S C {1,2,...,n} with cardinality strictly less than pi(l)qi({) that makes
any y with ||y —[17,0]_,]T||3 < A(l) reachable.”

in the sense that (la) implies (i-a) (first step of the proof) and (1b) implies (i-b) (second
step of the proof).

Theorem 2 showed that unless NPEBPTIME (nP°Y 1°8 ™) no quasi-polynomial time algorithm
can distinguish between (1a) and (1b). This implies that, under the same assumption, no
quasi-polynomial time algorithm can distinguish between (i-a) and (i-b). In particular,

since for any 0 € (0,1), we can take ¢;(l) = 92(1o5'~*1) iy, Theorem 2, this implies that the
smallest number of inputs rendering [1}, O;L 4] reachable cannot be approximated within a

multiplicative factor of ¢(I) which grows slower than 92(log' 1)

Finally, we note that because the dimension of A is polynomial in [(since A is n X n, where
n = 2max(d,) with d = m(l)[p1(1)q1(1)]), we have that ¢(I) = 90(log! ~* n) u

2.6. Concluding Remarks & Future Work

We focused on the minimal reachability Problem 1, which is a fundamental question in op-
timization and control with applications such as power systems and neural circuits. By ex-
ploiting the connection to the variable selection Problem 2, we proved that Problem 1 is
hard to approximate. Future work will focus on properties for the system matrix A so that
Problem 1 is approximable in polynomial time.

We conclude with an open problem. As we have discussed, the minimum reachability
problem is (0, 21°g”)—approximable by the algorithm which actuates every variable; but

(0, 29(1°g176")) is impossible for any positive §. We wonder, therefore, whether the min-

24

imum number of actuators can be approximated to within a multiplicative factor of say,
v/n in polynomial time, or, more generally, n¢ for some ¢ € (0,1). Indeed, observe that
since y/n = 2(1/2)legn the function v/n does not belong to 90(log! "’ n) g any 0 > 0. Thus,
the present chapter does not rule out the possibility of approximating the minimum reach-
ability problem up to a factor of \/n, or more broadly, n® for ¢ € (0,1). We remark that
such an approximation guarantee would have considerable repercussions in the context of
effective control, as at the moment the best polynomial-time protocol for actuation to meet

a reachability goal (in terms of worst-case approximation guarantee) is to actuate every
variable.

25

CHAPTER 3 : Minimal Actuator Placement with Bounds on Control Effort

We address the problem of minimal actuator placement in linear systems so that the volume
of the set of states reachable with one unit or less of input energy is lower bounded by a
desired value. First, following the recent work of Olshevsky, we prove that this is NP-hard.
Then, we provide an efficient algorithm which, for a given range of problem parameters,
approximates up to a multiplicative factor of O(logn), n being the network size, any optimal
actuator set that meets the same energy criteria; this is the best approximation factor one
can achieve in polynomial time, in the worst case. Moreover, the algorithm uses a perturbed
version of the involved control energy metric, which we prove to be supermodular. Next,
we focus on the related problem of cardinality-constrained actuator placement for minimum
control effort, where the optimal actuator set is selected to maximize the volume of the set
of states reachable with one unit or less of input energy. While this is also an NP-hard
problem, we use our proposed algorithm to efficiently approximate its solutions as well.!

3.1. Introduction

During the past decade, an increased interest in the analysis of large-scale systems has led to
a variety of studies that range from the mapping of the human’s brain functional connectivity
to the understanding of the collective behavior of animals, and the evolutionary mechanisms
of complex ecological systems [74, 75, 76, 77]. At the same time, control scientists develop
methods for the regulation of such complex systems, with the notable examples in [78], for
the control of biological systems; [79], for the regulation of brain and neural networks; [80],
for robust information spread over social networks, and [81], for load management in smart
grid.

On the other hand, the large size of these systems, as well as the need for low cost control,
has made the identification of a small fraction of their states, to steer them around the
entire space, an important problem [52, 82, 83, 84]. This is a task of formidable complexity;
indeed, it is shown in [82] that finding a small number of actuators, so that a linear system
is controllable, is NP-hard. However, mere controllability is of little value if the required
input energy for the desired transfers is exceedingly high, when, for example, the control-
lability matrix is close to singularity [85]. Therefore, by choosing input states to ensure
controllability alone, one may not achieve a cost-effective control for the system.

In this chapter, we address this important requirement by providing efficient approximation
algorithms to actuate a small fraction of a system’s states so that a specified control energy
performance over the entire state space is guaranteed. In particular, we first consider the
selection of a minimal number of actuated states so that a pre-specified lower bound on
the volume of the set of states reachable with one or less units of input energy is satisfied.
Finding such a subset of states is a challenging task, since it involves the search for a small
number of actuators that induce controllability, which constitutes a combinatorial problem
that can be computationally intensive. Indeed, identifying a small number of actuated states
for inducing controllability alone is NP-hard [82]. Therefore, we extend this computationally
hard problem by introducing an energy performance requirement on the choice of the optimal

'This chapter is based on the paper by Tzoumas et al. [73].

26

actuator set, and we solve it with an efficient approximation algorithm.

Specifically, we first generalize the involved energy objective to an e-close one, which remains
well-defined even for actuator sets that render the system uncontrollable. Then, we make
use of this metric and relax the implicit controllability constraint from the original actuator
placement problem. Notwithstanding, we prove that for small values of € all solutions of
this auxiliary program still render the system controllable. This fact, along with the super-
modularity of the generalized objective with respect to the choice of the actuator set, leads
to an efficient algorithm which, for a given range of problem parameters, approximates up
to a multiplicative factor of O(logn), where n is the size of the system, any optimal actua-
tor set that meets the specified energy criterion. Moreover, this is the best approximation
factor one can achieve in polynomial time, in the worst case. Hence, with this algorithm we
address the open problem of minimal actuator placement subject to bounds on the control
effort [52, 82, 84, 86, 87|.

Relevant results are also found in [84|, where the authors study the controllability of a
system with respect to the smallest eigenvalue of the controllability Gramian, and they
derive a lower bound on the number of actuators so that this eigenvalue is lower bounded
by a fixed value. Nonetheless, they do not provide an algorithm to identify the actuators
that achieve this value.

Next, we consider the problem of cardinality-constrained actuator placement for minimum
control effort, where the optimal actuator set is selected so that the volume of the set of states
that can be reached with one unit or less of input energy is maximized. The most related
works to this problem are the [52] and [88|, in which the authors assume a controllable
system and consider the problem of choosing a few extra actuators in order to optimize
some of the input energy metrics proposed in [19]. Their main contribution is in observing
that these energy metrics are supermodular with respect to the choice of the extra actuated
states. The assumption of a controllable system is necessary since these metrics depend on
the inverse of the controllability Gramian, as they capture the control energy for steering
the system around the entire state space. Nonetheless, it should be also clear that making a
system controllable by first placing some actuators to ensure controllability alone, and then
adding some extra ones to optimize a desired energy metric, introduces a sub-optimality
that is carried over to the end result. In this chapter, we follow a parallel line of work to the
minimal actuator placement problem, and provide an efficient algorithm that selects all the
actuated states to maximize the volume of the set of states that can be reached with one
unit or less of input energy without any assumptions on the controllability of the involved
systermn.

A similar actuator placement problem is studied in [84] for stable systems. Nevertheless,
its authors propose a heuristic actuator placement procedure that does not constrain the
number of available actuators and does not optimize their control energy objective. Our
proposed algorithm selects a cardinality-constrained actuator set that minimizes a control
energy metric, even for unstable systems.

The remainder of this chapter is organized as follows. The formulation and model for the
actuator placement problems are set forth in Section 3.2, where the corresponding integer

27

optimization programs are stated. In Sections 3.3 and 3.4 we discuss our main results,
including the intractability of these problems, as well as the supermodularity of the involved
control energy metrics with respect to the choice of the actuator sets. Then, we provide
efficient approximation algorithms for their solution that guarantee a specified control energy
performance over the entire state space. Section 3.5 concludes the chapter.

3.2. Problem Formulation

Notation. We denote the set of natural numbers {1,2,...} as N, the set of real numbers
as R, and we let [n] = {1,2,...,n} for all n € N. Also, given a set X', we denote as |X|
its cardinality. Matrices are represented by capital letters and vectors by lower-case letters.
For a matrix A, A7 is its transpose and A;j; is its element located at the i—th row and
j—th column. If A is positive semi-definite or positive definite, we write A > 0 and A > 0,
respectively. Moreover, for i € [n], we let [() be an n x n matrix with a single non-zero
element: I; = 1, while I;; = 0, for j, & # 7. Furthermore, we denote as I the identity
matrix, whose dimension is inferred from the context. Additionally, for § € R™, we let
diag(d) denote an n x n diagonal matrix such that diag(d);; = ¢; for all ¢ € [n]. Finally, we
set {0,1}" to be the set of vectors in R whose elements are either zero or one.

3.2.1. Actuator Placement Model
Consider a linear system of n states, x1,xs,...,x,, whose evolution is described by
@(t) = Ax(t) + Bu(t),t > to, (3.1)

where tg € R is fixed, z = {z1,22,...,2,}, ©(t) = dz/dt, while u is the corresponding
input vector. The matrices A and B are of appropriate dimension. We equivalently refer
to (3.1) as a network of n nodes, 1,2,...,n, which we associate with the states z1, z2, ..., Ty,
respectively. Moreover, we denote their collection as V = [n].

Henceforth, A is given while B is a diagonal zero-one matrix that we design so that (3.1)
satisfies a specified control energy criterion over the entire state space.
Assumption 1. B = diag(d), where 6 € {0,1}".

Specifically, if §; = 1, state x; may receive an input, while if §; = 0, it receives none.
Definition 8 (Actuator Set, Actuator). Given ad € {0,1}", let A={i:i €V and §; = 1};
then, A is called an actuator set and each i € A an actuator.

3.2.2. Controllability and Related Energy Metrics

We consider the notion of controllability and relate it to the problems of this chapter, i.e., the
minimal actuator placement for constrained control energy and the cardinality-constrained
actuator placement for minimum control effort.

System (3.1) is controllable — equivalently, (A, B) is controllable — if for any finite ¢; > ¢
and any initial state xy = z(to) it can be steered to any other state 1 = x(f1) by some
input u(t) defined over [to,t1]. Moreover, for general matrices A and B, the controllability

28

condition is equivalent to the matrix

t
W= [eAlt-to) ppTeAT(t-t0) gy (3.2)

to

being positive definite for any t; > to [85]. Therefore, we refer to W as the controllability
matriz of (3.1).

The controllability of a linear system is of interest because it is related to the solution of
the following minimum-energy transfer problem

t1
minimize / u(t)u(t) dt
u(*) to

subject to (3.3)
z(t) = Ax(t) + Bu(t),to <t < tq,
x(to) = 0,.1'(t1) =T,

where A and B are any matrices of appropriate dimension.

In particular, if for the given A and B (3.1) is controllable the resulting minimum control
energy is given by

eTw e, (3.4)

where 7 = t; — to [19]. Thereby, the states that belong to the eigenspace of the smallest
eigenvalues of (3.2) require higher energies of control input [85]. Extending this observation
along all the directions of transfers in the state space, we infer that the closer W is to singu-
larity the larger the expected input energy required for these transfers to be achieved [19].
For example, consider the case where W is singular, i.e., when there exists at least one di-
rection along which system (3.1) cannot be steered [85]. Then, the corresponding minimum
control energy along this direction is infinity.

This motivates the consideration of control energy metrics that quantify the steering energy
along all the directions in the state space, as the logdet(W 1) [19]. Indeed, this metric is
well-defined only for controllable systems — W must be invertible — and is directly related
to (3.4). In more detail, y/det(W—1) is inversely proportional to the volume of the set of
states reachable with one or less units of input energy, i.e., the volume of {x : 27 W1z < 1};
as a result, when log det(W 1) is minimized, the volume of {z : 27 W12 < 1} is maximized.
In this chapter, we aim to select a small number of actuators for system (3.1) so that
log det(W 1) either meets a specified upper bound or is minimized.

Per Assumption 1, further properties for the controllability matrix are due: For any actuator
set A, let WA = W, then,

Wa = Z@'Wi, (3.5)
i=1

29

where W; = jz;l e 1WeA" 4 for any i € [n]. This follows from (3.2) and the fact that
BBT = B = 3" 619 for B = diag(6). Finally, for any A; € Ay C V, (3.5) and
Wi, Wa, ..., W, = 0 imply WAl = WAQ.

3.2.8. Actuator Placement Problems

We consider the selection of a small number of actuators for system (3.1) so that log det(W 1)
either satisfies an upper bound or is minimized. The challenge is in doing so with as few
actuators as possible. This is an important improvement over the existing literature where
the goal of actuator placement problems has either been to ensure controllability alone [82]
or the weaker property of structural controllability [89, 90]. Other relevant results consider
the task of leader-selection [91, 92|, where the leaders are the actuated states and are chosen
so to minimize a mean-square convergence error of the remaining states.

Furthermore, the most relevant works to our study are the [52] and [88] since its authors
consider the minimization of log det(W —1); nevertheless, their results rely on a pre-existing
actuator set that renders (3.1) controllable although this set is not selected for the mini-
mization of this energy metric. One of our contributions is in achieving optimal actuator
placement for minimum control effort without assuming controllability beforehand. Also,
the authors of [84] adopt a similar framework for actuator placement but focus on deriving
an upper bound for the smallest eigenvalue of W with respect to the number of actuators
and a lower bound for the required number actuators so that this eigenvalue takes a speci-
fied value. In addition, they consider the maximization of tr(WW'); however, their techniques
cannot be applied when minimizing the log det(W 1), while the maximization of tr(W) may
not ensure controllability [84].

We next provide the exact statements of our actuator placement problems, while their
solution analysis follows in Sections 3.3 and 3.4. We first consider the problem

minimize |A|
ACVY
subject to (I

logdet(Wy!) < E,

for some constant E. Its domain is {A : A C V and (4, B(A)) is controllable} since the
controllability matrix W,y must be invertible. Moreover, it is NP-hard, as we prove in
Appendix 3.6.

Additionally, Problem (I) is feasible for certain values of E. In particular, for any A such
that (A, B(A)) is controllable, 0 < Wa, i.e., logdet(W;,!) < logdet(Wx"') since for any
A (3.5) implies Wa < Wy, [93]; thus, (I) is feasible for

E > log det(Wy,). (3.6)

Moreover, (I) is a generalized version of the minimal controllability problem of [82] so that
its solution not only ensures controllability but also satisfies a guarantee in terms of a control
energy metric; indeed, for E — oo we recover the problem of [82].

30

We next counsider the problem

inimize log det(W5"
minimize log et(WL")

subject to (11)
Al <,

where the goal is to find at most r actuated states so that the volume of the set of states
that can be reached with one unit or less of input energy is maximized. Its domain is
{A:ACV,|A| <rand (A,B(A)) is controllable}. Moreover, due to the NP-hardness of
Problem (I), Problem (II) is also NP-hard (cf. Appendix 3.6).

Because (I) and (IT) are NP-hard, we need to identify efficient approximation algorithms
for their general solution; this is the subject of Sections 3.3 and 3.4. In particular, in
Section 3.3 we consider Problem (I) and provide for it a best approximation algorithm, for
a given range of problem parameters. To this end, we first define an auxiliary program,
which ignores the controllability constraint of (I), and, nevertheless, admits an efficient
approximation algorithm whose solutions not only satisfy an energy bound that is e-close to
the original one but also render system (3.1) controllable. Then, in Section 3.4 we turn our
attention to (II), and following a parallel line of thought as for (I), we efficiently solve this
problem as well.

Since the approximation algorithm for the aforementioned auxiliary program for (I) is based
on results for supermodular functions, we present below a brief overview of the relevant
concepts. The reader may consult [16] for a survey on these results.

3.2.4. Supermodular Functions

We give the definition of a supermodular function, as well as, a relevant result that will be
used in Section 3.3 to construct an approximation algorithm for Problem (I). The material
of this section is drawn from [94].

Let V be a finite set and denote as 2V its power set.
Definition 9 (Submodularity and supermodularity). A function h : 2¥ — R is submodular
if for any sets A and A, with A C A CV, and any a ¢ A/,

h(AU{a}) — h(A) > h(A" U {a}) — h(A).
A function h : 2V + R is supermodular if (—h) is submodular.

An alternative definition of a submodular function is based on the notion of non-increasing
set functions.

Definition 10 (Monotone Set Function). A function h : 2V + R is a non-increasing set
function if for any A C A" CV, h(A) > h(A"). Moreover, h is a non-decreasing set function
if (—h) is a non-increasing set function.

Therefore, a function k : 2¥ — R is submodular if, for any a € V), the function h, : 2¥\M4} —
R, defined as hy(A) = h(AU{a}) — h(A), is a non-increasing set function. This property is

31

also called the diminishing returns property.

Next, we present a fact from the supermodular functions minimization literature, that we use
in Section 3.3 so as to construct an approximation algorithm for Problem (I). In particular,
consider the following optimization program, which is of similar structure to (I), where
h:2Y — R is a non-decreasing, supermodular set function:

minimize |A|
ACV

subject to (0)
h(A) < E.

The following greedy algorithm has been proposed for its approximate solution, for which,
the subsequent fact is true.

Algorithm 2 Approximation Algorithm for the Problem (O).
Input: A, E.
Output: Approximate solution to Problem (O).
A+
while h(A) > E do
a; < a' € argmaxoeya{h(A) — (AU {a})}
A+ AU {az}
end while
Fact 1. Denote as A* a solution to Problem (O) and as Ao, A1, ... the sequence of sets
picked by Algorithm 2. Moreover, let | be the smallest index such that h(A;) < E. Then,

h(V) = h(D)
h(V) = h(A1-1)

l
= <1+log
| A%

In Section 3.3, we provide an efficient approximation algorithm for (I), by applying Fact 1
to an appropriately perturbed version of this problem, so that it involves a non-decreasing
supermodular function, as in (Q). This also leads to our second main contribution, presented
in Section 3.4: An efficient approximation algorithm for Problem (IT), which selects all the
actuators to maximize the volume of the set of states that can be reached with one unit
or less of input energy, without assuming controllability beforehand. This is in contrast to
the related works [52] and [88]: there, the authors consider a similar problem for choosing
a few actuators to optimize log det(W(__)l); however, their results rely on the assumption of
a pre-existing actuator set that renders (3.1) controllable, although this set is not selected
towards the minimization of log det(W(f)l). Nevertheless, this assumption is necessary, since

they then prove that the log det(W(f)l) is a supermodular function in the choice of the extra
actuators. On the other hand, our algorithms select all the actuators towards the involved
energy objective, since they rely on a e-perturbed version of log det(W(f)l), that we prove to
be supermodular without assuming controllability beforehand.

Overall, our results supplement the existing literature by considering Problems (I) and

32

(IT) when the system is not initially controllable and by providing efficient approximation
algorithms for their solution, along with worst-case performance guarantees.

3.3. Minimal Actuator Sets with Constrained Control Effort

We present an efficient approximation algorithm for Problem (I). To this end, we first
generalize the involved energy metric to an e-close one that remains well-defined even when
the controllability matrix is not invertible. Next, we relax (I) by introducing a new program
that makes use of this metric and circumvents the restrictive controllability constraint of
(I). Moreover, we prove that for certain values of € all solutions of this auxiliary problem
render the system controllable. This fact, along with the supermodularity property of the
generalized metric that we establish, leads to our proposed approximation algorithm. The
discussion of its efficiency ends the analysis of (I).

3.8.1. An e-close Auziliary Problem
Consider the following approximation to (I)
minimize |A|
ACY
subject to (I')
log det(Wa +eI) ™' < E,

where Wa is equivalent to Wa /(2Amax (W), Amax(Wy) is the maximum eigenvalue of Wy,
E is equal to E + nlog(2Amax(Wy)), and € is positive.

In contrast to (I), the domain of this problem consists of all subsets of V since W(_) +el
is always invertible. The e-closeness is evident since for any A such that (A, B(A)) is
controllable log det(WA +el)7t < E becomes log~det(WA_1) < F as € — 0. Due to the
definition of W, for all A C V), all eigenvalues of W are at most 1/2 [93, Theorem 8.4.9];
this property will be useful in the proof of one of our main results, in particular, Proposition
1.

In the following paragraphs, we identify an approximation algorithm for solving Problem (I'),
and correspondingly, the e-close, NP-hard Problem (I).

3.3.2. Approzimation Algorithm for Problem (I')

We first prove that all solutions of (I') for 0 < ¢ < min{1/2,e ¥} render the system
controllable, notwithstanding that no controllability constraint is imposed by this program
on the choice of the actuator sets. Moreover, we show that the involved e-close energy
metric is supermodular with respect to the choice of actuator sets and then we present our
approximation algorithm, followed by a discussion of its efficiency which ends this subsection.
Proposition 1. Consider a constant w > 0, € such that 0 < ¢ < min{1/2,e7“}, and any
A CV: Iflogdet(Wa + eI)~' < w, then (A, B(A)) is controllable.

Proof: Assume that (A, B(A)) is not controllable and let k be the corresponding number of

33

non-zero eigenvalues of Wa which we denote as A1, A9, ..., Ag; therefore, K <n — 1. Then,

log det(Wa + €)™ Z log ————
2>\max(WV) + €

1 1
+ (n—k)log— > log — > w,
€ €

since W +¢€ < 1 (because ﬁl(wv) < 1/2 and € < 1/2), and € < e~“. Therefore, we
have a contradiction. [

Note that w is chosen independently of the parameters of system (3.1). Therefore, the
absence of the controllability constraint in Problem (I') for 0 < ¢ < min{1/2,e ¥} is
fictitious; nonetheless, it obviates the necessity of considering only actuator sets that render
the system controllable.

The next proposition is also essential and suggests an efficient approximation algorithm for
solving (I').

Proposition 2 (Supermodularity). The function logdet(Wa +eI)™ : A CV — R is
supermodular and non-increasing set with respect to the choice of A.

Proof: To prove that the log det(Wa +€I)~! is non-increasing, recall from (3. 5) that for any
Ay C Ay Cnl, WA1 < Wa,. Therefore, from [93, Theorem 8.4.9], log det(Wa, + eI)~!
log det(Wa, +eI)~!, and as a result, log det(Wa + eI)~! is non-increasing.

Next, to prove that log det(WA +eI)~! is a supermodular set function, recall from Section
3.2.4 that it suffices to prove that log det(WA + el) is a submodular one. In particular,
recall that a function h : 2I" +— R is submodular if and only if, for any a € [n], the function
he = 2M\Mel 5 R, where he(A) = h(A U {a}) — h(A), is a non-increasing set function.
Therefore, to prove that h(A) = logdet(Wa + €I) is submodular, we may prove that the
hq(A) is a non-increasing set function. To this end, we follow the proof of Theorem 6 in
[52]: first, observe that

ha(A) = log det(Wayqy + €I) — log det(Wa + €I)
= log det(Wa + W, + €I) — log det(Wa + €I).
Now, for any A; € Ay C [n] and z € [0,1], define Q(2) = eI + Wa, + 2(Wa, — Wa,)

and h(z) = logdet(Q(z) + W,) — logdet (Q(z)); it is 2(0) = ha(A1) and h(1) = ha(Ay).
Moreover, since dlogdet(Q(z)))/dz = tr (Q(z)'dQ(z)/dz) (cf. equation (43) in [95]),

= tr[((Q(2) + Wa) ™t = Q(2)"HOun],

where Oy = Wa, — Wa,. From [93, Proposition 8.5.5], (Q(z) + I/i/a)_1 =< Q(2)7!, because
Q(z) = 0 for all z € [0,1], since el = 0, Wa, = 0, and Wa, = Wa,. Thereby, from [93,
Corollary 8.3.6], all eigenvalues of ((Q(z) + W,)~! — Q(2)71)O2; are non-positive. As a

34

result, dh(z)/dz < 0, and

L dh z
ha(Q2) = h(1) :B(o)+/0 df;(z)

Therefore, hy(A) is a non-increasing set function, and the proof is complete. |

Therefore, the hardness of the e-close Problem (I) is in agreement with that of the class of
minimum set-covering problems subject to submodular constraints. Inspired by this litera-
ture [16, 94, 96], we have the following efficient approximation algorithm for Problem (I'),
and as we show by the end of this section, for Problem (I) as well.

Algorithm 3 Approximation Algorithm for the Problem (I').

Input: Bound E, parameter € < min{1/2,e"%}, matrices Wi, Wa, ..., W,,.
Output: Actuator set A.
A0
while log det(Wa +el)~! > E do
ai< a’' € argmax,cy\a{log det(Wa + eI)~! — log det(WAU{a} +el)71}
A+ AU {CLZ}
end while

Regarding the quality of Algorithm 3 the following is true.
Theorem 1 (A Submodular Set Coverage Optimization). Denote as A* a solution to Prob-
lem (I') and as A the selected set by Algorithm 3. Then,

(A, B(A)) is controllable, (3.7)
logdet(Wa +€eI) ™! < E, (3.8)
A log(e™1) —1 Vy +el)™?
4| §1+logn ogge) onget(Wy—i—e) =F, (3.9)
|A*| E —logdet(Wy + el)1
1
F = O(logn + loglog(e™!) + log —=). (3.10)

E —log det(ng)
Finally, the computational complexity of Algorithm 8 is O(n®).

Proof: We first prove (3.8), (3.9) and (3.10), and then, (3.7). We end the proof by clarifying
the computational complexity of Algorithm 3.

First, let Ag, Ay, ... be the sequence of sets selected by Algorithm 3 and [the smallest index
such that logdet(Wa, + eI)~* < E. Therefore, A; is the set that Algorithm 3 returns, and
this proves (3.8).

Moreover, from [94], since for any A C V, h(A) = —logdet(Wa + eI)~' + nlog(e™!) is a
non-negative, non-decreasing, and submodular function (cf. Proposition 2), it is guaranteed

35

for Algorithm 3 that (cf. Fact 1)

h(V) = h(D)
h(V) = h(Ai-1)

<1+log

l
| A%
— 1+
nlog(e~!) — log det(Wy + eI)~!
log det(Wa, , + eI)~1 —logdet(Wy 4 eI)~1

Now, [is the first time that log det(Wa,+el)~! < E, and a result log det(Wa, , +€eI)~" > E.
This implies (3.9).

Moreover, observe that 0 < log det(Vi/v +el)™! < logdet(W,,!) so that from (3.9) we get
F < 1+log[nlog(e™t)/(E — log det(W,,1))], which in turn implies (3.10).

On the other hand, since 0 < € < min{1/2, e*E} and log det(Wa, +€l)~! < E, Proposition 1
is in effect, i.e., (3.7) holds true.

Finally, with respect to the computational complexity of Algorithm 3, note that the while
loop is repeated for at most n times. Moreover, the complexity to compute the determinant
an n X n matrix, using Gauss-Jordan elimination decomposition, is O(n?). Additionally,
at most n matrices must be inverted so that the “argmax,cy\a{log det(Wa + eI)~! —
log det(WAU{a} + €eI)~'}” can be computed. Furthermore, O(n) time is required to find a
maximum element between n available. Therefore, the computational complexity of Algo-
rithm 3 is O(n®). [|

Therefore, Algorithm 3 returns a set of actuators that meets the corresponding control energy
bound of Problem (I') while it renders system (3.1) controllable. Moreover, the cardinality
of this set is up to a multiplicative factor of F' from the minimum cardinality actuator sets
that meet the same control energy bound.

The dependence of F' on n,e and F was expected from a design perspective: Increasing
the network size n or improving the accuracy by decreasing €, as well as demanding a
better energy guarantee by decreasing E should all push the cardinality of the selected
actuator set upwards. Also, loglog(e!) is the design cost for circumventing the difficult
to satisfy controllability constraint of (I) [82], i.e., for assuming no pre-existing actuators
that renders (3.1) controllable and choosing all the actuators towards the satisfaction of an
energy performance criterion.

From a computational perspective, the computation of the determinant is the only intensive
procedure of Algorithm 3, requiring O(n?) time, if we use the Gauss-Jordan elimination
decomposition. On the other hand, to apply this algorithm on large-scale systems, we can
speed up this procedure using the Coppersmith-Winograd algorithm [97], which requires
O(n2'376) time. Alternatively, we can use numerical methods, which efficiently compute
an approximate the determinant of a matrix even if its size is of several thousands [9§].
Moreover, we can speed up Algorithm 3 using a method proposed in [99], which avoids the
computation of log det(Wa + eI)~! — log det(WAU{a} + €I)~! for unnecessary choices of a,

36

towards the computation of the arg max,ecyn\ a {log det(Wa+el)~' —log det(WAU{a} +el)71},
by taking advantage of the supermodularity of log det(W(‘) +el)7 L.

Finally, for large values of n, the computation of Wi, Wy, ..., W, is demanding as well. On
the other hand, in the case of stable systems, as many physical, e.g., biological, networks are,
the corresponding controllability Gramians can be used instead, which for a stable system
can be calculated from the Lyapunov equations AG; + G AT = —I10 for i = 1,2,...,n,
respectively, and are given in closed-form by

Gr= [eAl—t0) () AT (1t0) g (3.11)

to

Using these Gramians for the evaluation of W in (3.4) corresponds to the minimum state
transfer energy with no time constraints. The advantage of this approach is that (3.11) can
be solved efficiently using numerical methods, even when the system’s size n has a value of
several thousands [100].

In Section 3.3.3 we finalize our treatment of Problem (I) by employing Algorithm 3 to
approximate its solutions.

3.3.8. Approzimation Algorithm for Problem (I)

We present an efficient approximation algorithm for Problem (I) that is based on Algo-
rithm 3. Let A be the actuator set returned by Algorithm 3, so that (A, B(A)) is control-
lable and log det(Wa + eI)~! < E. For any ¢ > 0, there exists sufficiently small ¢(c) such
that:

log det(Wa + e(c)I) ™ > logdet(Wx') — cE. (3.12)

Moreover, log det(Wa +e(e)I)~! < E, and therefore we get from (3.12) that log det(WA_l) <
(I+¢)E, or

logdet(Wx') < E + cE. (3.13)
Hence, we refer to ¢ as approzimation error.

On the other hand, €(c) is not known a priori. Hence, we need to search for a sufficiently small
€ so that (3.13) holds true. One way to achieve this since € is lower and upper bounded by 0
and min{1/2,e~F}, respectively, is to perform a search using bisection. We implement this
procedure in Algorithm 4, where we denote as [Algorithm 3](E, €) the set that Algorithm 3
returns for given E and e.

In the worst case, when we first enter the inner while loop, the if condition is not satisfied,
and as a result € is set to a lower value. This process continues until the if condition is
satisfied for the first time, given that ag is sufficiently small for the specified ¢, from which
point and on this while loop converges up to the accuracy level ag to the largest value € of
¢ such that log det(W1') —log det(Wa + eI)~! < ¢E; specifically, |e — € < ag/2, due to the
mechanics of the bisection method. On the other hand, if ag is not sufficiently small, the

37

Algorithm 4 Approximation Algorithm for the Problem (I).

Input: Bound F, approximation error ¢, bisection’s initial accuracy level ag, matrices
Wi, Wa, ..., W,.
Output: Actuator set A.)
a < ag, flag < 0,1 < 0, u < min{1/2,e FY e < (I +u)/2
while flag # 1 do
while v — [> a do
A « [Algorithm 3](E, €)
if logdet(W1') — logdet(Wa + eI)~! > c¢E then
U< €
else
[+ €
end if
e+ (I4+u)/2
end while
if logdet(Wx') — logdet(Wa + €I)~! > ¢E then
u+e€ e (I+u)/2
end if
A « [Algorithm 3](E, €)
if logdet(Wi') — logdet(Wa + eI)~! < ¢E then
flag + 1
else
a<a/2
end if
end while

value of a decreases within the last if statement of the algorithm, the variable flag remains
zero and the outer loop is executed again, until the convergence within the inner while is
feasible. Then, the if statement that follows the inner while loop ensures that € is set below
€, so that log det(WA_l) —logdet(Wa + eI)~! < ¢E. Finally, the last if statement sets the
flag to 1 and the algorithm terminates. The efficiency of this algorithm for Problem (I) is
summarized below.

Theorem 2. (Approximation Efficiency and Computational Complexity of Algo-
rithm 4 for Problem (I)) Denote as A* a solution to Problem (I) and as A the selected
set by Algorithm 4. Then,

(A, B(A)) is controllable,

log det(Wx') < E + cFE, (3.14)
A
<F A
‘A*’ — Y (3 5)
F = O(logn + max{loglog(n/(cE)),log E}+
1
log (3.16)

E — logdet(VNVgl))'

38

Finally, let a be the bisection’s accuracy level that Algorithm 4 terminates with. Then, if
a = ag, the computational complezity of Algorithm 4 is O(n®logy(1/ag), else it is:

O(n” log,(1/a)logy(ao/a)).

Proof: We only prove statements (3.14), (3.15) and (3.16), while the first follows from
Theorem 1. We end the proof by clarifying the computational complexity of Algorithm 4.

First, when Algorithm 4 exits the while loop, and after the following if statement,
log det(Wx') — log det(Wa + el) ™' < cE,
and since log det(Wa + eI)~! < E, this implies (3.14).

To show (3.15), consider any solution A* to Problem (I) and any solution A® to Problem (T').
Then, |A*| > |A®|; to see this, note that for any A*, log det(Wa+ +eI)~' < logdet(Wx}) <
E since € > 0, i.e., A* is a candidate solution to Problem (I') because it satisfies all of its
constraints. Therefore, |A*| > |A®|, and as a result |A|/|A*] < |A|/|A®] < F per (3.9).

Next, note that (3.14) holds true when, e.g., € is equal to cE/(2n). Therefore, since also
1

e <e P logloge™! = O(max{loglog(n/(cE)),log E}) and this proves (3.16).

Finally, with respect to the computational complexity of Algorithm 4, note that the in-
ner while loop is repeated for at most logy(1/(2a)) times (since € < 1/2); in the worst
case. Moreover, the time complexity of the procedures within this loop is of order O(n®),
due to Algorithm 3. Finally, if a = ag, the outer while loop runs for one time, and oth-
erwise, for logy(ag/a) times. Therefore, the computational complexity of Algorithm 4 is
O(n®logy(1/ap)), or O(n®logy(1/a)logy(ag/a)), respectively. [

From a computational perspective, we can speed up Algorithm 4 using the methods we
discussed in the end of Section 3.3.2. Moreover, for a wide class of systems, e.g., when
a = O(n”cl), where ¢1 is a positive constant, independent of n, this algorithm runs in
polynomial time, due to the logarithmic dependence on a.

From an approximation efficiency perspective we have that F' = O(log(n)), whenever E =
O(n), Amax(Wy) = O(n™?) and 1/(E — log det(ng)) = O(n®), where c1, ¢ and c3 are
positive constants and independent of n. In other words, the cardinality of the actuator
set that Algorithm 4 returns is up to a multiplicative factor of O(logn) from the minimum
cardinality actuator sets that meet the same energy bound. Indeed, this is the best achievable
bound in polynomial time for the set covering problem in the worst case [13], while (I) is a
generalization of it [82]. Thus, Algorithm 4 is a best-approximation of (I) for this class of
systems.

3.4. Minimum Energy Control by a Cardinality-Constrained Actuator Set

We present an approximation algorithm for Problem (II) following a parallel line of thought
as in Section 3.3: First, we circumvent the restrictive controllability constraint of (II) using

39

the e-close generalized energy metric defined in Section 3.3. Then, we propose an efficient
approximation algorithm for its solution that makes use of Algorithm 4; this algorithm
returns an actuator set that always renders (3.1) controllable while it guarantees a value
for (IT) that is provably close to its optimal one. We end the analysis of (II) by explicating
further the efficiency of this procedure.

3.4.1. An e-close Auziliary Problem
For € > 0 consider the following approximation to (IT)

inimize log det(Wa +€l)™!
minimize log et(Wa + €l)

subject to (IT)

IA] <.

In contrast to (II), the domain of this problem consists of all subsets of V since W(_) +el is
always invertible. Moreover, its objective is e-close to that of Problem (II).

In the following paragraphs, we identify an efficient approximation algorithm for solving
Problem (IT'), and correspondingly, the e-close, NP-hard Problem (IT). We note that the
hardness of the latter is in accordance with that of the general class of supermodular function
minimization problems, as per Proposition 2 the objective log det(WA +el)~1 is supermodu-
lar. The approximation algorithms used in that literature however [16, 94, 96], fail to provide
an efficient solution algorithm for (II') — for completeness, we discuss this direction in the
Appendix 3.6.1. In the next subsection we propose an efficient approximation algorithm for
(IT) that makes use of Algorithm 4.

3.4.2. Approximation Algorithm for Problem (1I)

We provide an efficient approximation algorithm for Problem (II) that is based on Algo-
rithm 4. In particular, since (II) finds an actuator set that minimizes log det(W(f)l), and

any solution to (I) satisfies log det(W(f)l) < E, one may repeatedly execute Algorithm 4 for
decreasing values of E as long as the returned actuators are at most r and E satisfies the
feasibility constraint £ > logdet(W;,!) (cf. Section 3.2.3). Therefore, for solving (II) we
propose a bisection-type execution of Algorithm 4 with respect to E.

To this end, we also need an upper bound for the value of (IT): Let A¢ be a small actuator
set that renders system (3.1) controllable; it is efficiently found using Algorithm 4 for large
E or the procedure proposed in [82]. Then, for any r > |A¢|, log det(WA_Cl) upper bounds

the value of (II) since log det(W(f)l) is monotone.

Thus, having a lower and upper bound for the value of (II), we implement Algorithm 5 for
approximating the solutions of (IT); we consider only the non-trivial case where r < n and
denote the set that Algorithm 4 returns as [Algorithm 4](FE, ¢, ag) for given E, ¢ and ag.

In the worst case, when we first enter the while loop, the if condition is not satisfied, and as
a result F is set to a greater value. This process continues until the if condition is satisfied

40

Algorithm 5 Approximation algorithm for Problem (II).

Input: Set A, maximum number of actuators r such that r» > |A¢|, approximation error
c for Algorithm 4, bisection’s accuracy level ag for Algorithm 4, bisection’s accuracy level
af, for current algorithm, matrices Wy, Wa, ..., W,.

Output: Actuator set A.)

A+ 0,1+ logdet(ng), U tr(WA_cl), E +— (I4+u)/2, € «— min{1/2,e ¥}
while v — 1 > q; do
A « [Algorithm 4](E, ¢, ag)
if |A| > r then
| E, E+ (I+u)/2
else
u—E, B+ (I4+u)/2
end if
e+ 1/E
end while
if |A| > r then
I+ E, E+ (I4+u)/2
end if
A « [Algorithm 4](E, ¢, ag)

for the first time from which point and on the algorithm converges up to the accuracy level
ag to the smallest value £ of E such that |A| < r; specifically, |E — E| < a}/2 due to
the mechanics of the bisection method, where E = mln{E |[Algorithm 4](E, ¢, ag)| < r}.
Hereby E is the least bound E for which Algorithm 4 returns an actuator set of cardinality at
most for the specified ¢ and a9 — E may be larger than the value of (IT) due to worst-case
approximability of the involved problems (cf. Theorem 2). Then, Algorithm 5 exits the while
loop and the last if statement ensures that E is set below E so that |A] < r. Moreover, per
Theorem 2 this set renders (3.1) controllable and guarantees that log det(WA_l) < E+cE.
Finally, with respect to the computational complexity of Algorithm 5, note that the while
loop is repeated for at most log, [(log det(WA_l) — log det(W‘l))/ag] times. Moreover, the
time complexity of the procedures within this loop are, in the worst case, of the same order
as that of Algorithm 4 when it is executed for E equal to E. Regarding Theorem 2, denote
this time complexity as C' (E ,¢,ap). Therefore, the computational complexity of Algorithm

41is O (C’(E, ¢, ap) logy [(log det(W&c) log det (V.))/aD

We summarize the above in the next corollary, which also ends the analysis of Problem (II).
Corollary 1. (Approximation Efficiency and Computational Complexity of Al-
gorithm 5 for Problem (II)) Denote as A the selected set by Algorithm 5. Then,

(A, B(A)) is controllable,

log det(Wx') < E + cFE,

|E—E| <d/2,

41

where E = min{E : |[Algorithm 4](E,c,a)| < r} is the least bound E that Algorithm 4
satisfies with an actuator set of cardinality at most r for the specified ¢ and a. Finally, the
computational complezity of Algorithm &5 is

log det(WA_cl) —log det(W;l) > >

CL/

0] (C(E, ¢, ap) logy <
where C(E, ¢, ap) denotes the computational complezity of Algorithm 4, with respect to The-
orem 2, when it is executed for E equal to E.

From a computational perspective, we can speed up Algorithm 5 using the methods we
discussed in the end of Section 3.3.2. Moreover, for a wide class of systems, e.g., when
a = O(n™"), where ¢; is a positive constant, independent of n, and similarly for o’ and
log det(W&cl), this algorithm runs in polynomial time, due to the logarithmic dependence

on a, a’ and log det(Wgcl), respectively.
3.5. Concluding Remarks & Future Work

We addressed two actuator placement problems in linear systems: First, the problem of
minimal actuator placement so that the volume of the set of states reachable with one or
less units of input energy is lower bounded by a desired value, and then the problem of
cardinality-constrained actuator placement for minimum control effort, where the optimal
actuator set is selected so that the volume of the set of states that can be reached with one
unit or less of input energy is maximized. Both problems were shown to be NP-hard, while
for the first one we provided a best approximation algorithm for a given range of the problem
parameters. Next, we proposed an efficient approximation algorithm for the solution of the
second problem as well. Our future work is focused on exploring the effect that the under-
lying network topology of the involved system has on these actuator placement problems,
as well as investigating distributed implementations of their corresponding algorithms.

3.6. Appendix: Computational Complexity

We prove that Problem I is NP-hard, providing an instance that reduces to the NP-hard
controllability problem introduced in [82]. In particular, it is shown in [82] that deciding if
(3.1) is controllable by a zero-one diagonal matrix B with r + 1 non-zero entries reduces to
the r-hitting set problem, as we define it below, which is NP-hard [101].

Definition 11 (r-hitting set problem). Given a finite set M and a collection C of non-empty
subsets of M, find an M’ C M of cardinality at most r that has a non-empty intersection
with each set in C.

Without loss of generality, we assume that every element of M appears in at least one set in
C and all sets in C are non-empty. Moreover in Definition 11, we let |C| = p and M = {1, 2,
...,m}, and define C' € RP*™ such that Cj; = 1 if the i-th set contains the element j and
zero otherwise.

We show that Problem (I) for A as described below and with E = n(2n)2"" T12n+2 _ p g
equivalent to the NP-hard controllability problem introduced in [82]. Therefore, since F

42

can be described in polynomial time, as log(E) = O(n?), we conclude that Problem (I) is
NP-hard.

In particular, as in [82], let n = m +p+ 1 and A = V-IDV, where D = diag(1,2,...,n)
and?

2ILmxm Om><;10 Emx1
O1><m 01><p 1

It is shown in [82] that deciding if A is controllable by a zero-one diagonal matrix B with
r + 1 non-zero entries is NP-hard.

Now, observe that all the entries of V' are integers either zero or at most m + 1. Moreover,
with respect to the entries of V=1, it is shown in [82] that:

e Fori=1,2,...,m: It has a 1/2 in the (4,4)-th place and a —1/2 in the (i, n)-th place,
and zeros elsewhere.

e Fori =m+1,m+2,...,m+p: Ilthasa1l/(m+1) in the (i,7)-th place, a —1/(2(m~+1))
in the (4, 7)-th place where j € C; (C; is the corresponding set of the collection C), and
|C;|/(2(m + 1)) in the (i, n)-th place; every other entry of the i-th row is zero.

e Finally, the last row of V1 is [0,0,...,0,1].

Therefore, 2(m + 1)V ! has all its entries as integers that are either zero or at most n?, in
absolute value.

Consider the controllability matrix associated with this system, given a zero-one diagonal
B that makes it controllable, and denote it as Wp. Then,

t
Wg = / " Alt—t0) g BT AT (t-t0) g4

to

t
=yt / 1eD(t_tO)VBVTeDT(t_tO)dtV‘T.
to

Let t1 — tgp = In(n). Then, (2n)!fglft° PV BVTeP"t 4t evaluates to a matrix that has
entries of the form ¢y +cin+can®+...+c,n", where cg, c1, . . ., ¢, are non-negative integers
and all less than (2n)! < (2n)?". Thereby,

t1—to
Wh = 4(m+ 1)2(2n)1V ! / PV BYTeP t qty T
0
has entries of the form ¢ + ¢jn + chn? + ... + ¢,n", where ¢, c}, ..., c), are integers and all

less than (2n)2("+3) in absolute value due to the pre and post multiplications by 2(m+1)V !
and 2(m + 1)V =T respectively.

2V is invertible since it is strictly diagonally dominant.

43

We are interested on upper bounding log det(ng): since for x > 0, log(z) < x — 1,
logdet(W3') < tr(Wz') — n. In addition,

tr(Wgt) = 4(m + 1)22n)ltr(Wp ') < (20)20 V(Wi ™.

Therefore, we upper bound tr(WfB_l): Using Crammer’s rule to compute W]’B_l, due to the
form of the entries of W}, all of its elements, including the diagonal ones, if they approach
infinity, they approach it with at most n!n™(2n)2"("*+3) < (2n)2*("*5) speed, and as a result
tT(Wé_l) < n(Qn)Qn(n+5)_ Hence, tT’(ng) < n(2n)2n(n+5)+2(n+1) _ 71(2”)2712+12n+27 for
any B that makes (3.1) controllable. Thus, if we set E = n(2n)2"*+12n+2 _n (which implies
log(E) = O(n?) so that E can be described polynomially), Problem (I) is equivalent to the
controllability problem of [82], which is NP-hard. |

An immediate consequence of the above is the following one.
Corollary 2 (Computational Complexity of Problem (II)). Problem (II) is NP-hard.

3.6.1. The Greedy Algorithm used in the Supermodular Minimization Literature is Inefficient
for solving Problem (IT')

Counsider Algorithm 6 which is in accordance with the supermodular minimization litera-
ture [16, 94, 96].

Algorithm 6 Greedy algorithm for Problem (IT').

Input: Maximum number of actuators r, approximation parameter ¢, number of steps that
the algorithm will run [, matrices Wy, Wa, ..., W,.
Output: Actuator set 4,
Ag«0,i+0
while ¢ < [do
a; < argmax,cy\ a{log det(Wa, + el)~t —logdet(Wa,uqay + €)1}
JAVERIR WAV U{ai},i —i1+1
end while

The following is true for its performance.
Fact 2. Let v* denote the value of Problem (II'). Then, Algorithm 6 guarantees that for
any positive integer [,

log det(Wa, + €)™t < (1 — e /")v* + nlog(e t)e /"

Proof: 1t follows from Theorem 9.3, Ch. II1.3.9. of [96], since —logdet(Wa, + eI)~! +
nlog(e~1) is a non-negative, non-decreasing, and submodular function with respect to the
choice of A (cf. Proposition 2). [

Algorithm 6 suffers from an error term that is proportional to nlog(e!). Moreover, it is
possible that Algorithm 6 returns an actuator set that does not render (3.1) controllable.
Therefore, Algorithm 6 is inefficient for solving Problem (IT').

44

Part 11

CONTRIBUTIONS TO
SUBMODULAR MAXIMIZATION
IN SENSING DESIGN

45

CHAPTER 4 : Sensor Placement for Optimal Kalman Filtering: Fundamental
Limits, Submodularity, and Algorithms

In this chapter, we focus on sensor placement in linear dynamic estimation, where the
objective is to place a small number of sensors in a system of interdependent states so to
design an estimator with a desired estimation performance. In particular, we consider a
linear time-variant system that is corrupted with process and measurement noise, and study
how the selection of its sensors affects the estimation error of the corresponding Kalman
filter over a finite observation interval. Our contributions are threefold: First, we prove
that the minimum mean square error of the Kalman filter decreases only linearly as the
number of sensors increases. That is, adding extra sensors so to reduce this estimation error
is ineffective, a fundamental design limit. Similarly, we prove that the number of sensors
grows linearly with the system’s size for fixed minimum mean square error and number
of output measurements over an observation interval; this is another fundamental limit,
especially for systems where the system’s size is large. Second, we prove that the log det of
the error covariance of the Kalman filter, which captures the volume of the corresponding
confidence ellipsoid, with respect to the system’s initial condition and process noise is a
supermodular and non-increasing set function in the choice of the sensor set. Therefore,
it exhibits the diminishing returns property. Third, we provide an efficient approximation
algorithm that selects a small number sensors so to optimize the Kalman filter with respect to
this estimation error —the worst-case performance guarantees of this algorithm are provided
as well.!

4.1. Introduction

In this chapter, we consider a linear time-variant system corrupted with process and measure-
ment noise. Our first goal is to study how the placement of their sensors affects the minimum
mean square error of their Kalman filter over a finite observation interval [103]. Moreover, we
aim to select a small number of sensors so to minimize the volume of the corresponding con-
fidence ellipsoid of this estimation error. Thereby, this study is an important distinction in
the minimal sensor placement literature |7, 8, 84, 104, 105, 106, 107, 108, 109, 110, 111, 112],
since the Kalman filter is the optimal linear estimator —in the minimum mean square sense—
given a sensor set [113].

Our contributions are threefold:

Fundamental limits. First, we identify fundamental limits in the design of the Kalman
filter with respect to its sensors. In particular, given any finite number of output measure-
ments over an observation interval, we prove that the minimum mean square error of the
Kalman filter decreases only linearly as the number of sensors increases. That is, adding
extra sensors so to reduce this estimation error of the Kalman filter is ineffective, a fun-
damental design limit. Similarly, we prove that the number of sensors grows linearly with
the system’s size for fixed minimum mean square error; this is another fundamental limit,
especially for systems where the system’s size is large. Overall, our novel results quantify
the trade-off between the number of sensors and that of output measurements so to achieve

'This chapter is based on the paper by Tzoumas et al. [102].

46

a specified value for the minimum mean square error.

These results are the first to characterize the effect of the sensor set on the minimum mean
square error of the Kalman filter. In particular, in [84], the authors quantify only the trade-
off between the total energy of the consecutive output measurements and the number of
its selected sensors. Similarly, in [111], the authors consider only the maximum-likelihood
estimator for the system’s initial condition and only for a special class of stable linear
time-invariant systems. Moreover, they consider systems that are corrupted merely with
measurement noise, which is white and Gaussian. Finally, they also assume an infinite
observation interval, that is, infinite number of consecutive output measurements. Nonethe-
less, we assume a finite observation interval and study the Kalman estimator both for the
system’s initial condition and for the system’s state at the time of the last output mea-
surement. In addition, we consider general linear time-variant systems that are corrupted
with both process and measurement noise, of any distribution (with zero mean and finite
variance). Overall, our results characterize the effect of the cardinality of the sensor set on
the minimum mean square error of the Kalman filter, that is, the optimal linear estimator.

Submodularity. Second, we identify properties for the logdet of the error covariance of
the Kalman filter, which captures the volume of the corresponding confidence ellipsoid, with
respect to the system’s initial condition and process noise over a finite observation interval
as a sensor set function —the design of an optimal Kalman filter with respect to the system’s
initial condition and process noise implies the design of an optimal Kalman filter with respect
to the system’s state. Specifically, we prove that it is a supermodular and non-increasing
set function in the choice of the sensor set.

In contrast, in [114], the authors study sensor placement for monitoring static phenomena
with only spatial correlations. To this end, they prove that the mutual information between
the chosen and non-chosen locations is submodular. Notwithstanding, we consider dynamic
phenomena with both spatial and temporal correlations, and as a result, we characterize as
submodular a richer class of estimation performance metrics. Furthermore, in the sensor
scheduling literature [20], the logdet of the error covariance of the Kalman filter has been
proven submodular but only for special cases of systems with zero process noise [115] and
[5]. Nevertheless, we consider the presence of process noise, and prove our supermodularity
result for the general case.?

Algorithms. Third, we consider the problem of sensor placement so to optimize the log det
of the error covariance of the Kalman filter with respect to the system’s initial condition and
process noise over a finite observation interval —henceforth, we refer to this error as log det
error, and to the latter problem as P;. Naturally, P; is combinatorial, and in particular,
it involves the minimization of a supermodular set function, that is, the minimum mean
square error. Because the minimization of a general supermodular function is NP-hard [13],

*In [5], the authors prove with a counterexample in the context of sensor scheduling that the minimum
mean square error of the Kalman filter with respect to the system’s state is not in general a supermodular
set function. We can extend this counterexample in the context of minimal sensor placement as well: the
minimum mean square error of the Kalman with respect to the system’s state is not in general a supermodular
set function with respect to the choice of the sensor set.

47

we provide efficient approximation algorithms for their general solution, along with their
worst-case performance guarantees. Specifically, we provide an efficient algorithm for P
that returns a sensor set that satisfies the estimation guarantee of P; and has cardinality
up to a multiplicative factor from the minimum cardinality sensor sets that meet the same
estimation bound. Moreover, this multiplicative factor depends only logarithmically on the
problem’s P; parameters.?

In contrast, the related literature has focused either on the optimization of average esti-
mation performance metrics, such as the logdet of the error’s covariance, or on heuristic
algorithms that provide no worst-case performance guarantees. In particular, in [119], the
authors minimize the log det of the error’s covariance matrix of the Kalman estimator for the
case where there is no process noise in the system’s dynamics —in contrast, in our frame-
work we assume both process and measurement noise. Moreover, to this end they use convex
relaxation techniques that provide no performance guarantees. Furthermore, in [120] and
[121], the authors design an Hs-optimal estimation gain with a small number of non-zero
columns. To this end, they also use convex relaxation techniques that provide no perfor-
mance guarantees. Finally, in [122], the author designs an output matrix with a desired
norm so to minimize the minimum mean square error of the corresponding Kalman estima-
tor; nonetheless, the author does not minimize the number of selected sensors. Overall, with
this chapter we are the first to optimize the minimum mean square error of the Kalman
filter using a small number of sensors and to provide worst-case performance guarantees.

The remainder of this chapter is organized as follows. In Section 4.2, we introduce our model,
and our estimation and sensor placement framework, along with our sensor placement prob-
lems. In Section 4.3, we provide a series of design and performance limits and characterize
the properties of the Kalman estimator with respect to its sensor set; in Section 4.4, we
prove that the logdet estimation error of the Kalman filter with respect to the system’s
initial condition and process noise is a supermodular and non-increasing set function in the
choice of the sensor set; and in Section 4.5, we provide efficient approximation algorithms
for selecting a small number of sensors so to design an optimal Kalman filter with respect to
its log det error —the worst-case performance guarantees of these algorithms are provided
as well. Finally, Section 4.6 concludes the chapter. Due to space limitations, the proofs of
all of our results, as well as, the corresponding simulations, are omitted; they can be found
in the full version of this chapter, located at our websites.

4.2. Problem Formulation

Notation. We denote the set of natural numbers {1,2,...} as N, the set of real numbers
as R, and the set {1,2,...,n} as [n|, where n € N. Given a set X, |X] is its cardinality.
Matrices are represented by capital letters and vectors by lower-case letters. For a matrix
A, AT is its transpose and A;; its element located at the i—th row and j—th column.

3Such algorithms, that involve the minimization of supermodular set functions, are also used in the
machine learning [116], leader selection [8, 91, 92], sensor scheduling [5, 115], actuator placement [7, 106,
107, 110, 112, 117] and sensor placement in static environments [114, 118] literature. Their popularity is
due to their simple implementation — they are greedy algorithms — and provable worst-case approximation
factors, that are the best one can achieve in polynomial time for several classes of supermodular functions
[13, 40].

48

|Alla = VAT A is its spectral norm, and Apin(A) and Apax(A) its minimum and maximum
eigenvalues, respectively. Moreover, if A is positive semi-definite or positive definite, we
write A = 0 and A > 0, respectively. Furthermore, I is the identity matrix —its dimension
is inferred from the context; similarly for the zero matrix 0. Finally, for a random variable
x € R", E(x) is its expected value, and C(z) = E ([x —E(x)] [z — E(x)]T> its covariance.
The rest of our notation is introduced when needed.

4.2.1. Model and Estimation Framework
For k > 0, we consider the linear time-variant system

Th1 = ApTr + Wy, (4.1)
yr = Cray + vg,

where z € R (n € N) is the state vector, y; € R® (¢ € [n]) the output vector, wy the
process noise and vy the measurement noise —without loss of generality, the input vector is
assumed zero. The initial condition is xg.

Assumption 2. (For all £ > 0, the initial condition, the process noise and the
measurement noise are uncorrelated random variables) xg is a random variable
with covariance C(xg) = 021, where o > 0. Moreover, for all k > 0, C(wy) = C(vg) = 021
as well. Finally, for all k, k' > 0 such that k # k', xg, wi and vg, as well as, wy, wi, v
and vy, are uncorrelated.*

Moreover, for k > 0, consider the vector of measurements g, the vector of process noises

wy and the vector of measurement noises vy, defined as follows: 7, = (ya—,le, .. ,y;—)—r,
wy, = (wg ,wy,...,w)T, and v = (v ,v],...,v])T, respectively; the vector gy is known,

while the wy and v are not.
Definition 12 (Observation interval and its length). The interval [0,k] = {0,1,...,k} is
called the observation interval of (4.1). Moreover, k + 1 is its length.

Evidently, the length of an observation interval [0, k| equals the number of measurements
Yo, Y1, - - -5 Yk-

In this chapter, given an observation interval [0, k], we consider the minimum mean square
linear estimators for xy/, for any &’ € [0, k] [103]. In particular, (4.1) implies

Uk = Ok2k—1 + Vg, (4.2)

where Oy, is the c(k + 1) x n(k+ 1) matrix [L] CJ ,L{ Cf ..., LIC]]", Lo the n x n(k +1)
matrix [/,0], L;, for i > 1, the n x n(k + 1) matrix [A;—1 -+ Ao, Ai—1 -+ A1, ..., 4;_1,1,0],

and zp_1 = (fbg ,w;—_l)T. As a result, the minimum mean square linear estimate of z5_1 is

*This assumption is common in the related literature [119], and it translates to a worst-case scenario for
the problem we consider in this chapter.

49

the 241 = E(2k-1) + O} (0O} + I)_1 (Uk — OkE(2z—1) — E(0g)); its error covariance is
Yy, =E ((Zk—l — Zp—1)(Zh—1 — 2k—1)T>
= o2 (1 — o] (Oko;[+ I)il ok> (4.3)
and its minimum mean square error

mmse(z,_1) = E ((%-1 — Zp-1) " (zho1 — 2k—1))

4.4
= tr (221%1) . *4)

As a result, the corresponding minimum mean square linear estimator of xy/, for any k' €
[0,K], is
Ty = Ly 21, (4.5)

(since xpr = Lyszk—1), with minimum mean square error
mmse(zy) = tr (Lk/EzkilL;cr,> . (4.6)

In particular, the recursive implementation of (4.5) results to the Kalman filtering algorithm
[123).

In this chapter, in addition to the minimum mean square error of Z;/, we also consider per
(4.5) the estimation error metric that is related to the n-confidence ellipsoid of zx_1 — 21
[119]. Specifically, this is the minimum volume ellipsoid that contains zx_1 — 2,1 with
probability 7, that is, the & = {z : 27%,, 2z < €}, where € = FX_21 (n) and F is

2
X;
n(k+1) n(k+1)
the cumulative distribution function of a x-squared random variable with n(k + 1) degrees

of freedom [124]. Therefore, the volume of &,

_ (67T)n<k+1)/2
vl(€) = mr a1 (E;ﬁl) : (4.7)

where I'(+) denotes the Gamma function [124], quantifies the estimation’s error of Z;_1, and
as a result, for any &’ € [0, k], of 24 as well, since per (4.5) the optimal estimator for zx_1
defines the optimal estimator for zj/.

Henceforth, we consider the logarithm of (4.7),
logvol(&) = B+ 1/2logdet (X, _,); (4.8)

B is a constant that depends only on n(k+ 1) and €, in accordance to (4.7), and as a result,
we refer to the logdet (3., ,) as the logdet estimation error of the Kalman filter of (4.1):

Definition 13 (log det estimation error of the Kalman filter). Given an observation interval
[0, k], the logdet (E) is called the logdet estimation error of the Kalman filter of (4.1).

Zk—1

In the following paragraphs, we present our sensor placement framework, that leads to our

50

sensor placement problems.
4.2.82. Sensor Placement Framework

In this chapter, we study among others the effect of the selected sensors in (4.1) on mmse(xg)
and mmse(xy). Therefore, this translates to the following conditions on Cy, for all k > 0,
in accordance with the minimal sensor placement literature [7].

Assumption 3 (C is a full row-rank constant zero-one matrix). For all k > 0, C), = C €
Re*™ where C is a zero-one constant matriz. Specifically, each row of C' has one element
equal to one, and each column at most one, such that C has rank c.

In particular, when for some i, Cj; is one, the j-th state of x is measured; otherwise, it is
not. Therefore, the number of non-zero elements of C' coincides with the number of placed
sensors in (4.1).

Definition 14 (Sensor set and sensor placement). Consider a C per Assumption 3 and
define S = {i :i € [n] and Cj; = 1, for some j € [r]}; S is called a sensor set or a sensor
placement and each of its elements a sensor.

4.2.3. Sensor Placement Problems

We introduce three objectives, that we use to define the sensor placement problems we
consider in this chapter.

Objective 1 (Fundamental limits in optimal sensor placement). Given an observation in-
terval [0,k], i € {0,k} and a desired mmse(x;), identify fundamental limits in the design of
the sensor set.

As an example of a fundamental limit, we prove that the number of sensors grows linearly
with the system’s size for fixed estimation error mmse(x;) —this is clearly a major limitation,
especially when the system’s size is large. This result, as well as, the rest of our contributions
with respect to Objective 1, is presented in Section 4.3.

Objective 2 (logdet estimation error as a sensor set function). Given an observation in-
terval [0, k|, identify properties of the log det (221@71) as a sensor set function.

We address this objective in Section 4.4, where we prove that log det (EZ;CA) is a supermod-
ular and non-increasing set function with respect to the choice of the sensor set —the basic
definitions of supermodular set functions are presented in that section as well.

Objective 3 (Algorithms for optimal sensor placement). Given an observation interval
[0, k], identify a sensor set S that solves the minimal sensor placement problem:

minimize |S)|
SCin] (P1)
subject to logdet (E) < R.

Zk—1

That is, with P; we design an estimator that guarantees a specified error and uses a minimal
number of sensors. The corresponding algorithm is provided in Section 4.5.

All of our contributions with respect to the Objectives 1, 2 and 3 are presented in the

51

following sections.
4.3. Fundamental Limits in Optimal Sensor Placement

In this section, we present our contributions with respect to Objective 1. In particular, given
any finite observation interval, we prove that the minimum mean square error decreases only
linearly as the number of sensors increases. That is, adding extra sensors so to reduce the
minimum mean square estimation error of the Kalman filter is ineffective, a fundamental
design limit. Similarly, we prove that the number of sensors grows linearly with the system’s
size for fixed minimum mean square error; this is another fundamental limit, especially for
systems where the system’s size is large. On the contrary, given a sensor set of fixed cardi-
nality, we prove that the length of the observational interval increases only logarithmically
with the system’s size for fixed minimum mean square error. Overall, our novel results
quantify the trade-off between the number of sensors and that of output measurements so
to achieve a specified value for the minimum mean square error.

To this end, given i € {0, k}, we first determine a lower and upper bound for mmse(z;).?

Theorem 3. (A lower and upper bound for the estimation error with respect
to the number of sensors and the length of the observation interval) Consider
a sensor set S, any finite observation interval [0,k] and a non-zero o. Moreover, let p =
maX,,eok |Amll2 and assume p # 1. Given i € {0,k},

no?l;

SI(1—) /(1 2) +1

< mmse(z;) < no’u;, (4.9)

where lo =1, ug =1, lp = Amin (L;—Lk) and up = (]{7 + 1)Amax (L;Lk)

The upper bound corresponds to the case where no sensors have been placed (C' = 0). On
the other hand, the lower bound corresponds to the case where |S| sensors have been placed.

As expected, the lower bound in (4.9) decreases as the number of sensors or the length of
the observational interval increases; the increase of either should push the estimation error
downwards. Owverall, this lower bound quantifies fundamental limits in the design of the
Kalman estimator: first, this bound decreases only inversely proportional to the number
of sensors. Therefore, the estimation error of the optimal linear estimator decreases only
linearly as the number of sensors increases. That is, adding extra sensors so to reduce the
minimum mean square estimation error of the Kalman filter is ineffective, a fundamental
design limit. Second, this bound increases linearly with the system’s size. This is another
fundamental limit, especially for systems where the system'’s size is large. Finally, for fixed
and non-zero Amin (L;—Lk), these scaling extend to the mmse(xy) as well, for any finite k.

Corollary 3. (Trade-off among the number of sensors, estimation error and the
length of the observation interval) Consider any finite observation interval [0,k], a
non-zero o, and for i € {0,k}, that the desired value for mmse(x;) is o (o > 0). Moreover,
let p = maxpcp i | Amll2 and assume p # 1. Any sensor set S that achieves mmse(z;) =

"The extension of Theorem 3 to the case u = 1 is straightforward, yet notationally involved; as a result,
we omit it.

52

satisfies:

1—p?

2

(4.10)

where lo =1 and I, = A\nin (LkTLk).

The above corollary shows that the number of sensors increages as the minimum mean square
error or the number of output measurements decreases. More importantly, it shows that the
number of sensors increases linearly with the system’s size for fixed minimum mean square
error. This is again a fundamental design limit, especially when the system’s size is large.5

4.4. Submodularity in Optimal Sensor Placement

In this section, we present our contributions with respect to Objective 2. In particular, we
first derive a closed formula for log det (Ezk,_l) and then prove that it is a supermodular and
non-increasing set function in the choice of the sensor set.

We now give the definition of a supermodular set function, as well as, that of an non-
decreasing set function —we follow |94] for this material.

Denote as 2" the power set of [n].
Definition 15 (Submodularity and supermodularity). A function h : 2" — R is submod-
ular if for any sets S and S', with S C S’ C [n], and any a ¢ S,

h(SU{a}) — h(S) > h(S'U{a}) — h(S).
A function h : 2"l — R is supermodular if (—h) is submodular.

An alternative definition of a submodular function is based on the notion of non-increasing
set functions.

Definition 16 (Monotone set function). A function h : 2" +— R is a non-increasing set
function if for any S C 8" C [n], h(S) > h(S’). Moreover, h is a non-decreasing set function
if (—=h) is a non-increasing set function.

Therefore, a function h : 2"+ R is submodular if, for any a € [n], the function h, :
oM} 3 R, defined as hq(S) = (S U {a}) — h(S), is a non-increasing set function. This
property is also called the diminishing returns property.

The first major result of this section follows, where we let
O = O] O,

given an observation interval [0, k].
Proposition 3 (Closed formula for the logdet error as a sensor set function). Given any

SFor fixed and non-zero Amin (LkTLk), the comments of this paragraph extend to the mmse(zy) as well,
for any finite K —on the other hand, if Amin (Lj Li) varies with the system’s size, since Amin (L} Li) < 1,
the number of sensors can increase sub-linearly with the system’s size for fixed mmse(zy).

53

finite observation interval [0, k] and non-zero o, irrespective of Assumption 3,

log det (Ezkfl) =
2n(k + 1)log (o) — logdet (O + I). (4.11)

Therefore, the log det (szfl) depends on the sensor set through Or. Now, the main result
of this section follows, where we make explicit the dependence of Oy on the sensor set S.
Theorem 4. The logdet error is a supermodular and non-increasing set function
with respect to the choice of the sensor set Given any finite observation interval [0, k],
the

logdet (2., ,,S) =
2n(k 4 1)log (o) — logdet (Ops + 1) : S € 2" - R

1s a supermodular and non-increasing set function with respect to the choice of the sensor
set S.

The above theorem states that for any finite observation interval, the logdet error of the
Kalman filter is a supermodular and non-increasing set function with respect to the choice
of the sensor set for any finite k. Hence, it exhibits the diminishing returns property: its rate
of reduction with respect to newly placed sensors decreases as the cardinality of the already
placed sensors increases. On the one hand, this property implies another fundamental design
limit, in accordance to that of Theorem 3: adding new sensors, after a first few, becomes
ineffective for the reduction of the estimation error. On the other hand, it also implies that
greedy approach for solving P; is effective [13, 40]. Thereby, we next use the results from
the literature on submodular function maximization [96] and provide an efficient algorithm
for Pq.

4.5. Algorithms for Optimal Sensor Placement

In this section, we present our contributions with respect to Objective 3: P; is combinatorial,
and in Section 4.4 we proved that it involves the minimization of the supermodular set
function logdet error. In particular, because the minimization of a general supermodular
function is NP-hard [13], in this section we provide efficient approximation algorithms for
the general solution of Py, along with their worst-case performance guarantees.

Specifically, we provide an efficient algorithm for P; that returns a sensor set that satisfies
the estimation bound of P; and has cardinality up to a multiplicative factor from the mini-
mum cardinality sensor sets that meet the same estimation bound. More importantly, this
multiplicative factor depends only logarithmically on the problem’s P; parameters.

To this end, we first present a fact from the supermodular functions minimization literature
that we use so to construct an approximation algorithm for P; —we follow [94] for this
material. In particular, consider the following problem, which is of similar structure to Py,
where h : 2" i R is a supermodular and non-increasing set function:

o4

minimize |S]|
SCin] (P)
subject to h(S) < R.

The following greedy algorithm has been proposed for its approximate solution, for which,
the subsequent fact is true.

Algorithm 7 Approximation Algorithm for P.
Input: h, R.
Output: Approximate solution for P.
S« 10
while A(S) > R do
ai < a' € argmax,ep)\s (A(S) — h(SU {a}))
S+Su {al}
end while

Fact 3. Denote as S* a solution to P and as Sp,S1, ... the sequence of sets picked by
Algorithm 7. Moreover, let | be the smallest index such that h(S;) < R. Then,

h([n]) — (D)
([n]) = h(Si-1)’

l
<1+1
|S*_ +ogh

For several classes of submodular functions, this is the best approximation factor one can
achieve in polynomial time [13]. Therefore, we use this result to provide the approximation
Algorithm 8 for Py, where we make explicit the dependence of log det (E Zk—l) on the selected
sensor set S. Moreover, its performance is quantified with Theorem 5.

Algorithm 8 Approximation Algorithm for P;.
For h(S) = logdet (X, ,,S), where S C [n], Algorithm 8 is the same as Algorithm 7.

Theorem 5 (A Submodular Set Coverage Optimization for P1). Denote a solution to Pi
as 8* and the selected set by Algorithm 8 as S. Then,

logdet (2., ,,S) <R, (4.12)
S| <1+1log log det (Ezk,l,@) — log det (szil, [n])
|S*| — R —logdet (sz_l, [n])

=R, (4.13)

where log det (Ezk_l,Q) < n(k+1)log(c?). Finally, the computational complezity of Algo-
rithm 8 is O(n?(nk)3).

Therefore, Algorithm 8 returns a sensor set that meets the estimation bound of P;. More-
over, the cardinality of this set is up to a multiplicative factor of F; from the minimum
cardinality sensor sets that meet the same estimation bound —that is, Fj is a worst-case
approximation guarantee for Algorithm 8. Additionally, F; depends only logarithmically on

55

the problem’s P parameters. Finally, the dependence of F; on n, R and o2 is expected from
a design perspective: increasing the network size n, requesting a better estimation guarantee
by decreasing R, or incurring a noise of greater variance, should all push the cardinality of
the selected sensor set upwards.

4.6. Concluding Remarks & Future Work

We considered a linear time-variant system and studied the properties of its Kalman es-
timator given an observation interval and a sensor set. Our contributions were threefold.
First, in Section 4.3 we presented several design limits. For example, we proved that the
number of sensors grows linearly with the system’s size for fixed minimum mean square
error; this is a fundamental limit, especially for systems where the system’s size is large.
Second, in Section 4.4 we proved that the log det error is a supermodular and non-increasing
set function with respect to the choice of the sensor set. Third, in Section 4.5, we used this
result to provide an efficient approximation algorithm for the solution of P;, along with its
worst-case performance guarantees. Our future work is focused on extending the results of
this chapter to the problem of sensor scheduling.

4.7. Appendix: Proof of Results

e Theorem 3

Proof: We first prove the lower bound in (4.9): observe first that mmse(z) > mmse(xq)% =",

where mmse(:vo)w'zo is the minimum mean square error of xg when the process noise wy

in (4.1) is zero for all £ > 0. To express mmse(7o)% =" in a closed form similar to (4.11),

note that in this case (4.2) becomes g = Orxo + Ui, where O, = [C’J, <I>1TClT, e @;—C,;r] T
and ®,, = A,,_1---Ag, for m > 0, and ®,, = I, for m = 0. Thereby, from Corollary
E.3.5 of [123], the minimum mean square linear estimate of x, denoted as ﬁkw(;zo, has error
covariance

s 1 .

= o2 (1 _ oy (Oko,j + I) 0k> , (4.14)
and minimum mean square error
mmse(zo)? =0 = tr (22)6:0)

. ~1

— o%r [(ogok n 1)] (4.15)
) - ~1

=o°tr [(Ok—l—l) }) (4.16)
where we deduce (4.15) from (4.14) using the Woodbury matrix identity (Corollary 2.8.8

of [93]), and (4.16) from (4.15) using the notation Oy = O/ Oy. In particular, Oy, is the
observability matrix Oy = Y"1 & €T Cy®,, of (4.1) ([83)).

56

. -1
Hence, mmse(zg) > otr {(Ok + I) }, and since the arithmetic mean of a finite set of
positive numbers is at least as large as their harmonic mean, using (4.16),

n?o? no?

mmse(xg) > — > -
tr (Ok—‘y-I) tr (Ok) +n
Now, for i € [n], let I®) be the n x n matrix where I is one, while I; ik is zero, for all
(j.k) # (i,9). Then, tr(Oy) = tr (zm L CTCD,,) = S st (zm Ocp,y()cpm);

now,

k k k k
tr (Z @;I(i@m) < NAmax (Z <1>;1<i><1>m> =nl| > IV,)ls <n > (|83,
m=0 m=0 m=0

m=0

because |1 | = 1, and from the definition of ®,,, and Proposition 9.6.1 of [93],

(+1)
Z @13 <
Therefore, tr(Og) < SO0, sin # n|S|= “MH) , and as a result, the lower bound in

(4.9) for mmse(zg) follows.

Next, we prove the upper bound in (4.9), using (4.19), which is proved in the proof of
Proposition 3, and (4.6) for &' = 0: O +1 = 01, and as a result, from Proposition 8.5.5 of
[93], (Og +I)™! < 0721. Hence, mmse(xg) < tr [Loo?IL{] < no?.

Finally, to derive the lower and upper bounds for mmse(x), observe that mmse(xg) <
mmse(z;_1) and mmse(zx_1) < n(k + 1)o? —the proof follows using similar steps as above.
Then, from Theorem 1 of [125],

Amin (L;Lk) mmse(zi_1) <mmse(zg) <
Amax (LEL;C) mmse(2k_1).
The combination of these inequalities completes the proof. [

e Proposition 3
Proof: From .f:’i = Li—lékz—l,

mmse(z;) = tr(Li 1%, L).

Zk—1"1—1

o7

Also,
-1
S, = o (I —oy (Oko,j + I) ok>

-1
= o (O,Iok +[)
= 2O+ 1),

where we deduce (4.18) from (4.17) using the Woodbury matrix identity (Corollary 2.8.8 of

[93]), and (4.19) from (4.18) using the fact that O = O O

e Theorem 4

Proof: To prove that the mmse(x;) is non-increasing, observe that

n

k n
Ok73 = Z SmZM]TI(m)Mj = Z Smok,{m}a
j=0

m=1 m=1

where M; is the n x nk matrix
Mj = [Lj_l,O] .

Then, for any S; € Sz C [n], (4.20) and that fact that O {1y, O g2}, - -

(4.20)

-y O qny = 0 imply

Ors, = Ops,, and as aresult, Op s, + 1 X Oy s, + I. Therefore, from Proposition 8.5.5 of

[93],
(Oks, + 1) 2 (Ops, +)7,

This implies
Lici (Opsy + 1) LLy < Lioy (Ogs, + VL,

and as a result, mmse(z;) is non-increasing.

Next, observe that

tr |:Li_1 (Ok,S + I)_l L;r_1:| = tr |:(Ok7$ + I>_1 L;r_lLi_l ,

and consider the eigenvector decomposition of LllLi,l, P)\mqmq;, where A, and g,
is the m-th eigenvalue and eigenvector of LiT_lLi_l, respectively. Thereby,

tr [Li,1 (Ok73 + I)il L;r_l}

— Z Amtr [(01@3 + I)f1 qmq;b

m=1

= Z Am%—vrz (Ok,S + I)_1 qm-

m=1

58

Since L] {Li—1 = 0, Ay, > 0, for all m € [n]. Therefore, since the non-negative sum of
supermodular set functions is a supermodular set function, it remains to prove that for any
q € R q" (Op,s + I)"" qis such. This follows from the proof of Proposition 2 of [110], and
the proof is complete. |

e Theorem 5

Proof: First, let Sy, S1, . .. be the sequence of sets selected by Algorithm 8 and [the smallest
index such that mmse(x;,S;) < R. Therefore, S; is the set that Algorithm 8 returns, and
this proves (4.12).

Moreover, from Fact 3,

0 b))~ h®)
S =) — S
C 1 log mmse(x;,) — mmse(z;, [n])

mmse(x;, S;_1) — mmse(z;, [n])

Now, [is the first time that mmse(x;,S;) < R, and a result mmse(z;,S;—1) > R. This
implies (4.13).

Furthermore, for i = 0, mmse(zg,) = no?. On the other hand, for i = k, first set for

m >] > O, (I)m,j = AmAm—l tee Aj and (I)m,m+1 = I; then,

mmse(zy,) = o’tr (Lk_le_J

k
= o’tr (Z <I>21,m<1>k1,m>
m=0

k
< nUQ)\max (Z (I)l—cr—l,mq)k—lam>
m=0
k
= no? Z D) i ®h1mll2
m=0
k
1 — 20k4D)
< nOQmZ_:(]H%—Lmllgénﬁl_lﬁ-

Finally, with respect to the computational complexity of Algorithm 8, note that the while
loop is repeated for at most n times. Moreover, the complexity to invert an nk x nk matrix,
using Gauss-Jordan elimination decomposition, is O((nk)3) (this is also the complexity
to multiply two such matrices). Additionally, at most n matrices must be inverted so
that the arg max,¢n)\s (mmse(z;, S) — mmse(z;,S U {a})) can be computed. Furthermore,
O(n) time is required to find a maximum element between n available. Therefore, the
computational complexity of Algorithm 8 is O(n?(nk)3). [

59

CHAPTER 5 : Near-optimal sensor scheduling for batch state estimation:
Complexity, algorithms, and limits

In this chapter, we focus on batch state estimation for linear systems. This problem is
important in applications such as environmental field estimation, robotic navigation, and
target tracking. Its difficulty lies on that limited operational resources among the sensors,
e.g., shared communication bandwidth or battery power, constrain the number of sensors
that can be active at each measurement step. As a result, sensor scheduling algorithms
must be employed. Notwithstanding, current sensor scheduling algorithms for batch state
estimation scale poorly with the system size and the time horizon. In addition, current
sensor scheduling algorithms for Kalman filtering, although they scale better, provide no
performance guarantees or approximation bounds for the minimization of the batch state
estimation error. In this chapter, one of our main contributions is to provide an algorithm
that enjoys both the estimation accuracy of the batch state scheduling algorithms and the
low time complexity of the Kalman filtering scheduling algorithms. In particular: 1) our
algorithm is near-optimal: it achieves a solution up to a multiplicative factor 1/2 from the
optimal solution, and this factor is close to the best approximation factor 1/e one can achieve
in polynomial time for this problem; 2) our algorithm has (polynomial) time complexity that
is not only lower than that of the current algorithms for batch state estimation; it is also
lower than, or similar to, that of the current algorithms for Kalman filtering. We achieve
these results by proving two properties for our batch state estimation error metric, which
quantifies the square error of the minimum variance linear estimator of the batch state vector:
a) it is supermodular in the choice of the sensors; b) it has a sparsity pattern (it involves
matrices that are block tri-diagonal) that facilitates its evaluation at each sensor set.!

5.1. Introduction

Search and rescue [126], environmental field estimation [127], robotic navigation [128], and
target tracking [129] are only a few of the challenging information gathering problems that
employ the monitor capabilities of sensor networks [130]. In particular, all these problems
face the following three main challenges:

e they involve systems whose evolution is largely unknown, corrupted with noisy inputs
[129], and sensors with limited sensor capabilities, corrupted with measurement noise
[103].

e they involve systems that change over time [127], and as a result, necessitate both
spacial and temporal deployment of sensors in the environment. At the same time:

e they involve operational constraints, such as limited bandwidth and battery life, which
limit the number of sensors that can be simultaneously used (i.e., be switched-on) in
the information gathering process [131].

As a result of these challenges, researchers focused on the following question: “How do we
select at each measurement step only a few sensors so to minimize the estimation error
despite the above challenges?” The effort to answer this question resulted to the problem

'This chapter is based on the paper by Tzoumas et al. [58].

60

of sensor scheduling [131]: in particular, sensor scheduling offers a formal methodology to
use at each measurement time only a few sensors and obtain an optimal trade-off between
the estimation accuracy and the usage of the limited operational resource (e.g., the shared
bandwidth). Clearly, sensor scheduling is a combinatorial problem of exponential complexity
[130].

In this chapter, we focus on the following instance of this problem:

Problem 1 (Sensor Scheduling for Minimum Variance Batch State Estimation)
Consider a time-invariant linear system, whose state at time ty is denoted as x(ty), a set of
m sensors, and a fired set of K measurement times ti,to, ..., tx. In addition, consider that
at each t at most ry, sensors can be used, where r, < m. At each ty select a set of v, sensors
so to minimize the square estimation error of the minimum variance linear estimator of the
batch state vector (z(t1),z(t2),...,z(tk)).

There are two classes of sensor scheduling algorithms, that trade-off between the estimation
accuracy of the batch state vector and their time complexity: these for Kalman filtering,
and those for batch state estimation. In more detail:

Kalman filtering algorithms: These algorithms sacrifice estimation accuracy over reduced
time complexity. The reason is that they are sequential algorithms: at each ¢, they select the
sensors so to minimize the square estimation error of the minimum variance linear estimator
of z(t;) (given the measurements up to t;). Therefore, their objective is to minimize the
sum of the square estimation errors of x(tj) across the measurement times t; [132]. However,
this sum is only an upper bound to the square estimation error of the batch state vector
(z(t1),x(t2),...,x(tx)). Thus, the Kalman filtering algorithms lack on estimation accuracy
with respect to the batch state estimation algorithms.

Batch state estimation algorithms: These algorithms sacrifice time complexity over esti-
mation accuracy. The reason is that they perform global optimization, in accordance to
Problem 1. Therefore, however, they lack on time complexity with respect to the Kalman
filtering algorithms.

Notwithstanding, in several recent robotic applications, batch estimation algorithms have
been proven competitive in their time complexity to their filtering counterparts [22, 133].
The reason is that sparsity patterns emerge in these applications, that reduce the time
complexity of their batch estimation algorithms to an order similar to that of the filtering
algorithms [134]. Thereby, the following question on Problem 1 arises:

Question 1. “Is there an algorithm for Problem 1 that enjoys both the estimation accuracy
of the batch state algorithms and the low time complexity of the Kalman filtering algorithms?”

Literature review on sensor scheduling algorithms for batch state estimation.
The most relevant paper on Problem 1 is [135]|, where an algorithm based on convex re-
laxation is provided. This algorithm scales poorly with the system’s size and number of
measurement times. In addition, it provides no approximation performance guarantees.

61

Literature review on sensor scheduling algorithms for Kalman filtering. Several
papers in this category have focused on myopic algorithms [115]; such algorithms, however,
often perform poorly [136]. Other papers have focused on algorithms that use: tree prun-
ing [137], convex optimization [119], quadratic programming [138|, or submodular function
maximization [5, 139]. Nevertheless, these algorithms provide no performance guarantees
on the batch state estimation error, or have time complexity that scales poorly with the
system’s size and number of measurement times [137] [138]. To reduce the time complexity
of these algorithms, papers have also proposed periodic sensor schedules [132].

Contributions. We now present our contributions:
1) We prove that Problem 1 is NP-hard.

2) We provide an algorithm for Problem 1 (Algorithm 1) that answers Question 1 positively.
The reasons are two:

i) Algorithm 1 is near-optimal: it achieves a solution that is up to a multiplicative
factor 1/2 from the optimal solution. In addition, this multiplicative factor is close
to the factor 1/e which we prove to be the best approximation factor one can achieve
in polynomial time for Problem 1 in the worst-case.

ii) Algorithm 1 has (polynomial) time complexity that is not only lower than that of
the state of the art scheduling algorithms for batch state estimation; it is also lower
than, or similar to, that of the state of the art scheduling algorithms for Kalman
filtering. For example, it has similar complexity to the state of the art periodic
scheduling algorithm in [132] (in particular: lower for K large enough), and lower
than the complexity of the algorithm in [119].

Overall, in response to Question 1, Algorithm 1 enjoys both the higher estimation accu-
racy of the batch state estimation approach (compared to the Kalman filtering approach,
that only approximates the batch state estimation error with an upper bound) and the
low time complexity of Kalman filtering approach.

3) We prove limits on the minimization of the square error of the minimum variance esti-
mator of (z(t1), x(t2),...,x(tx)) with respect to the scheduled sensors. For example,
we prove that the number r; of used sensors at each measurement time must increase
linearly with the system size for fixed estimation error and number of measurement times
K; this is a fundamental limit, especially for large-scale systems.

Our technical contributions. We achieve our aforementioned contributions by proving
the following two:

Supermodularity in Problem 1: We prove that our estimation metric, that quantifies the
square error of the minimum variance estimator of (x(t1), x(t2),...,z(tx)), is a supermod-
ular function in the choice of the used sensors. This result becomes important when we
compare it to results on the multi-step Kalman filtering that show that the corresponding

62

estimation metric in this case is neither supermodular nor submodular [5, 139].2

In addition, this submodularity result cannot be reduced to the batch estimation problem in
[114]. The main reasons are two: i) we consider sensors that can measure any linear combi-
nation of the element of z(t), in contrast to [114], where each sensor measures directly only
one element of x(t;). Nonetheless, the latter assumption is usually infeasible in dynamical
systems [85]; ii) our error metric is relevant to estimation problems for dynamical systems
and different to the submodular information gain considered in [114].

Sparsity in Problem 1: We identify a sparsity pattern in our error metric, that facilitates
the latter’s evaluation at each sensor set. In particular, we prove that the error covariance
of the minimum variance linear estimator of the batch state vector is block tri-diagonal.

We organize the rest of the chapter as follows: In Section 5.2 we present formally Problem 1.
In Section 5.3, we present in three subsections our main results: in Section 5.3.1, we prove
that our sensor scheduling problem is NP-hard. In Section 5.3.2, we derive our near-optimal
approximation algorithm. In Section 5.3.3, we prove limits on the minimization of the batch
state estimation error with respect to the used sensors. Section 5.4 concludes the chapter
with our future work.?

5.2. Problem Formulation

In the following paragraphs, we present our sensor scheduling problem for batch state es-
timation. To this end, we first build our system and measurement framework. Then, we
define our sensor scheduling framework and, finally, present our sensor scheduling problem.

We start in more detail with the system model:

System Model. We consider the linear time-invariant system:
z(t) = Ax(t) + Bu(t) + Fw(t),t > to, (5.1)

where to is the initial time, x(t) € R™ (n € N) the state vector, (t) the time derivative
of x(t), u(t) the exogenous input, and w(t) the process noise. The system matrices A, B
and F are of appropriate dimensions. We consider that u(t), A, B and F are known. Our
main assumption on w(t) is found in Assumption 4, that is presented after our measurement
model.

Remark 1. Our results extend to continuous and discrete time-variant systems, as explained

>The observation of [5] is also important as it disproves previous results in the literature [140].

3 Standard notation is presented in this footnote: We denote the set of natural numbers {1,2,...} as N,
the set of real numbers as R, and the set {1,2,...,n} as [n] (n € N). The empty set is denoted as (. Given
a set X, |X| is its cardinality. Matrices are represented by capital letters and vectors by lower-case letters.
We write A € X" *"2 (ny1,n2 € N) to denote a matrix of n1 rows and n2 columns whose elements take
values in X. Moreover, for a matrix A, A" is its transpose, and [A];; is its element at the i-th row and j-th
column. In addition, ||Alj2 = VAT A is its spectral norm, and det(A) its determinant. Furthermore, if A is
positive semi-definite or positive definite, we write A > 0 and A > 0, respectively. I is the identity matrix;
its dimension is inferred from the context. Similarly for the zero matrix 0. Finally, for a random variable
z € R", E(x) is its expected value, and C(z) its covariance.

63

in detail in Section 5.8 (Corollaries 4 and 5).

We introduce the measurement model:

Measurement Model. We consider m sensors:
zi(t) = Cix(t) + vi(t),i € [m], (5.2)

where z;(t) is the measurement taken by sensor i at time t, C; € R%*"™ (d; € N) is sensor’s
i measurement matriz, and v;(t) is its measurement noise.

We make the following assumption on z(tp), w(t) and v;(t):
Assumption 4. For allt, t' > tg, t #t', and all i € [m]: z(ty), w(t), w(t’), vi(t) and v;(t')
are uncorrelated; in addition, x(ty), w(t) and v;(t) have positive definite covariance.

We now introduce the sensor scheduling model:

Sensor Scheduling Model. The m sensors in (5.2) are used at K scheduled measurement
times {t1,ta,...,tx}. Specifically, at each ty only ry of these m sensors are used (r, < m),
resulting in the batch measurement vector y(ty):

y(te) = S(tr)z(t), k € [K], (5.3)

where 2(t) = (2] (tr), 29 (tr)s- -+, 20 (tk)) T, and S(tg) is the sensor selection matriz: it is
a block matriz, composed of matrices [S(ti)]ij (i € [ri], j € [m]) such that [S(t)]i; = I if
sensor j is used at ty, and [S(ty)]i; = 0 otherwise. We consider that each sensor can be used
at most once at each ty, and as a result, for each i there is one j such that [S(ty)]i; = I
while for each j there is at most one i such that [S(ty)];; = I.

We now present the sensor scheduling problem we study in this chapter. To this end, we
use two notations:

Notation. First, we set S = {j : there exists i € [ry], [S(t)]i; = 1}; that is, Sy, is the set
of indices that correspond to used sensors at tj. Second, we set S1.x = (51,82, ...,Sk).

Problem 1 (Sensor Scheduling for Minimum Variance Batch State Estimation)
Given a set of measurement times t1,la,...,tx, select at each ti to use a subset of ry
sensors, out of the m sensors in (5.2), so to minimize the logdet of the error covariance of
the minimum variance linear estimator of x1.x = (x(t1),x(t2),...,x(tx)). In mathematical

notation:
mimize logdet(2(Z1.x|Sq.
znl[l[nz],kl[] g ((1.K’ 1K))

subject to |Si| < ri, k € [K],

where T1.5 s the minimum variance linear estimator of x1.x, and X(&1.x|S1.x) ils error
covariance given S1.x.

Two remarks follow on the definition of Problem 1. In the first remark we explain why we

64

focus on #1.x, and in the second why we focus on log det(X(Z1.x)).

Notation. For notational simplicity, we use X(%1.x) and X(#1.x|S1.x) interchangeably.
Remark 2. We focus on the minimum variance linear estimator T1.x because of its optimal-
ity: it minimizes among all linear estimators of x1.x the estimation error E(||x1.x —21.x|3),
where the expectation is taken with respect to y(t1),y(t2),...,y(tx) [103]. Because Z1.x
is also unbiased (that is, E(Z1.x) = x1.x, where the expectation is taken with respect to
y(t1),y(te),...,y(tx)), we equivalently say that 2. is the minimum variance estimator of
T1:K-

We compute the error covariance of &1.x in Appendiz 5.5.1.

Remark 3. We focus on the estimation error metric logdet(X(21.x)) because when it is
minimized the probability that the estimation error ||x1.;c — 1. ||3 is small is mazimized. To
quantify this statement, we note that this error metric is related to the n-confidence ellipsoid
of x1.x — Z1.x [119]: Specifically, the n-confidence ellipsoid is the minimum volume ellipsoid
that contains 1.0 — #1.5c with probability n, that is, it is the & = {z : ' X(21.x)7 < €},

where € is the quantity F ' (n), and F 2 the cumulative distribution function of a
Xn(k+1) Xn(k+1)

X-squared random variable with n(k + 1) degrees of freedom [124]. Thus, its volume

(ew)n(k—&-l)/z
T (n(k+1)/2+1)

vol(E,) det (z(@lzK)l/Z) , (5.4)
where I'(+) denotes the Gamma function [124], quantifies the estimation error of the optimal
estimator T1.i. Therefore, by taking the logarithm of (5.4), we validate that when the
log det(X(#1.5)) is minimized the probability that the estimation error ||x1.x — Z1.x|3 is
small is mazimized.

5.3. Main Results
Our main results are presented in three sections:
e In Section 5.3.1, we prove that Problem 1 is NP-hard.

e In Section 5.3.2, we derive a provably near-optimal approximation algorithm for Prob-
lem 1. In addition, we emphasize on its time complexity and compare it to that of
existing sensor scheduling algorithms for two categories: batch state estimation, and
Kalman filtering.

e In Section 5.3.3, we prove limits on the optimization of the estimation error E(||z1.x —
#1.x|3) with respect to the scheduled sensors.

5.8.1. Computational Complexity of Sensor Scheduling for Batch State Estimation

In this section, we characterize the computational complexity of Problem 1. In particular,
we prove:
Theorem 6. The problem of sensor scheduling for minimum variance batch state estimation

(Problem 1) is NP-hard.

65

Algorithm 9 Approximation algorithm for Problem 1.

Input: Number of measurement times K, scheduling constraints r1,rs,..., 7k, estimation
error function log det(X(21.x|S1.x)) : Sk C [m],k € [K] —» R

Output: Sensor sets (S1,Ss,...,Sk) that approximate the solution to Problem 1, as quan-
tified in Theorem 7
k «— 1, 81;() — @
while £ < K do
1. Apply Algorithm 10 to

Sncl%n}{logdet(E(:ﬁlzK|Slzk_1,S)) SIS < i} (5.5)

2. Denote as Si the solution Algorithm 10 returns
3. Sl:k < (Slzk—lask)

4. k+k+1
end while

Proof: The proof is omitted due to space constraints. Notwithstanding, we note that the
proof is complete by finding an instance of Problem 1 that is equivalent to the NP-hard
minimal observability problem introduced in |7] [109]. [

Due to Theorem 6, for the polynomial time solution of Problem 1 we need to appeal to
approximation algorithms. To this end, in Section 5.3.2, we provide an efficient provably
near-optimal approximation algorithm:

5.3.2. Algorithm for Sensor Scheduling for Minimum Variance Batch State Estimation

We propose Algorithm 9 for Problem 1 (Algorithm 9 uses Algorithm 10 as a subroutine);
with the following theorem, we quantify its approximation performance and time complexity.
Theorem 7. The theorem has two parts:

1) Approximation performance of Algorithm 9: Algorithm 9 returns sensors sets S1,Sa, . . .,
Sk that:

e satisfy all the feasibility constraints of Problem 1: |Si| < ri, k € [K]

e achieve an error value logdet(X(21.x|S1.x)), where S1.x = (S1,82,...,S8K), such
that:
log det(X(21:x|S1:x)) — OPT < 1’ (5.6)
MAX — OPT 2

where OPT s the (optimal) value to Problem 1, and M AX is the mazimum (worst)
value to Problem 1 (MAX =maxg logdet(X(21:x[S].x)))-

2) Time complexity of Algorithm 9: Algorithm 9 has time complexity of order:
K
O(n**K Z r2).
k=1

66

Theorem 7 extends to continuous and discrete time-variant systems as follows:
Corollary 4. Consider the time-variant version of (5.1):

z(t) = A(t)x(t) + B(t)u(t) + F(t)w(t), t > to. (5.7)
1) Part 1 of Theorem 7 holds.

2) Part 2 of Theorem 7 holds if the time complexity for computing each transition matriz
D(tpr1,te) [85], where k € [K — 1], is O(n?).4
Corollary 5. Consider the discrete time version of (5.7):

zlk + 1] = Agx[k] + Brulk] + Frw(k], k > ko. (5.8)

Similarly, consider the discrete time counterparts of the sensor model (5.2), Assumption 4,
and the sensor scheduling model (5.3).

1) Part 1 of Theorem 7 holds.
2) Part 2 of Theorem 7 holds if Ay in (5.8) is full rank for all k € [K].

We follow-up with several remarks on Theorem 7:

Remark 4. (Approximation quality of Algorithm 9) Theorem 7 quantifies the worst-case
performance of Algorithm 9 across all values of Problem 1’s parameters. The reason is that
the right-hand side of (5.6) is constant. In particular, (5.6) guarantees that for any instance
of Problem 1, the distance of the approzimate value logdet(X(Z1.x|S1.x)) from OPT is at
most 1/2 the distance of the worst (maximum) value MAX from OPT. In addition, this
approzimation factor is near to the optimal approzimation factor 1/e = .38 one can achieve
in the worst-case for Problem 1 in polynomial time [141]; the reason is twofold: first, as
we comment in the next paragraph, we prove that Problem 1 involves the minimization of a
non-increasing and supermodular function [96], and second, as we proved in Section 5.3.1,
Problem 1 1s in the worst-case equivalent to the minimal controllability problem introduced
in [7], which cannot be approzimated in polynomial time with a better factor than the 1/e
[13].

Remark 5. (Supermodularity of logdet(X(Z1.x))) In the proof of Theorem 7 (Appendiz
5.5.2), we show that logdet(X(%1.x)) 18 a non-increasing and supermodular function with
respect to the sequence of selected sensors. Specifically, the proof of (5.6) follows by combin-
ing these two results and results on the maximization of submodular functions over matroid
constraints [12] —we present these three derivations in Appendices 5.5.2, 5.5.2, and 5.5.2,
respectively.

We continue with our third remark on Theorem 7:

Remark 6. (Time complexity of Algorithm 9) Algorithm 9’s time complezity is broken down
into two parts: the first part is the number of evaluations of log det(X(21.x)) required by the
algorithm, and the second part is the time complexity of each such evaluation. In particular,
Algorithm 9 requires at most 7 evaluations of log det(X(21.x)) at each ty. Therefore, Algo-

“The matrices ®(tr+1,tr), where k € [K — 1], are used in the computation of ¥(&1.x) (cf. proof of
Theorem 7 in Appendix 5.5.2).

67

Algorithm 10 Single step greedy algorithm (subroutine in Algorithm 9).

Input: Current iteration k (corresponds to tj), selected sensor sets (S1,S2,...,Sk—1)
up to the current iteration, scheduling constraint g, estimation error function
10gdet(2(i'1;K’81;K)) 2Sk - [m],k € [K] — R

Output: Sensor set S that approximates the solution to Problem 1 at ¢
SO« 0, X%« [m],and t + 1
Iteration t:

1. If X1 =0, return St!
2. Select i(t) € X! for which p;)(S'™1) = max;cye-1 pi(S'™1), with ties settled arbi-
trarily, where:

pi(STY = logdet(X(21.k|S1h1,S1)) —
log det(S(21:x |11, 8" U {i}))

and Sl:k—l = (81,82, e ,Sk_l)
Ja. IF|SYU i)} > rg, XL+ X1\ {i(t)}, and go to Step 1
3b. I |SLULit)} < g, St STLU{i(t)} and X« XN\ {i(#)}
4. t < t+1 and continue

rithm 9 achieves a time complexity that is only linear in K with respect to the total number of
evaluations of log det(X(21.x)). The reason is that Z{le ri < maxye g (rg) K. In addition,
for w(t) zero mean and white Gaussian —as commonly assumed in the literature of sensor
scheduling— the time complexity of each such evaluation is ot most linear in K : the reason
is that this w(t) agrees with Assumption 4, in which case we prove that the time complexity
of each evaluation of log det(X(#1.k)) is O(n**K) (linear in K).>

Remark 7. (Sparsity of X(21.x)) We state the three properties of log det(X(Z1.x)) we prove
to obtain the time complexity for Algorithm 9. The first two properties were mentioned in
Remark 5: the monotonicity and supermodularity of logdet(X(21.x)). These two properties
are responsible for that Algorithm 9 requires at most r,% evaluations at each ty. The third
property, which follows, is responsible for the low time complerity for each evaluation of
log det(X(#1.x)):

o X(Z1.x) is the sum of two nK X nK sparse matrices: the first matriz is block diagonal,
and the second one is block tri-diagonal. As a result, given that both of these matrices
are known, each evaluation of logdet(X(%1.x)) has time complezity O(n*>*K), linear
in K (using the results in [142] —cf. Theorem 2 therein).

We show in Appendiz 5.5.2 that after we include at each evaluation step of log det(X(21.x))
the complexity to compute the two sparse matrices in X(Z1.x), the total time complexity of
Algorithm 9 is as given in Theorem 7.

Our final remark on Theorem 7 follows:
Remark 8. (Comparison of Algorithm 9’s time complexity to that of existing scheduling

®We can also speed up Algorithm 9 by implementing in Algorithm 10 the method of lazy evaluations [99]:
this method avoids in Step 2 of Algorithm 10 the computation of p;(S*™!) for unnecessary choices of i.

68

algorithms) We do the comparison for two cases: batch state estimation, and Kalman filter-
mng. In particular, we show that the time complexity of our algorithm is lower than that of
existing sensor scheduling algorithms for batch state estimation, and of the similar order, or
lower, of existing algorithms for Kalman filtering.

Comparison with algorithms for batch state estimation. In [135], Problem 1 is con-
sidered, and a semi-definite programming (SDP) algorithm is proposed; its time complezity is
of the order O(maxye(f (1) K (nK)>° + (maxye g (1) K2 (nK)*°) [148]. Clearly, this time
complexity is higher than that of Algorithm 9, whose complexity is O(maxke[K](rk)zKQnQA),
In addition, the algorithm presented in [135] provides no worst-case approzimation guaran-
tees (5.6), in contrast to Algorithm 9 that provides (5.6).

Comparison with algorithms for Kalman filtering. We do the comparison in two
steps: first, we consider algorithms based on the mazximization of submodular functions, and
second, algorithms based on convex relaxation techniques or the alternating direction method
of multipliers (ADMM):

o Algorithms based on the maximization of submodular functions: In [5], an algorithm
is provided that is valid for o restricted class of linear systems: its time complez-
ity is O(maxye () (re)mn?K + n?**K). This time complezity is of similar order to
that of Algorithm 9, whose complexity is of the order O(max;¢|x] (ri)?Kn?**K), since
maxye(g)(rr) < m. Specifically, we observe in Algorithm 9’s time complezity the ad-
ditional multiplicative factor K (linear in K); this difference emanates from that Al-
gorithm 9 offers a near-optimal guarantee over the whole time horizon (t1,to, ..., tx)
whereas the algorithm in [5] offers a near-optimal guarantee only for the last time step
tr. In addition, Algorithm 9 holds for any linear continuous time-invariant system
(no restrictions are necessary), in contrast to the algorithm in [5], and it holds for any
discrete time-variant systems where Ay in (5.8) is full rank; the latter assumption is
one of the four restrictive conditions in [5] (Theorem 13).

o Algorithms based on convex relaxation techniques or ADMM: In [119], the authors
assume a single sensor (rp = 1 across ty), and their objective is to achieve a min-
imal estimation error by minimizing the number of times this sensor will be used
over the horizon ti,ta,...,tx. The time complexity of the proposed algorithm is
O(n?*SK? +n35K). This time complezity is higher than that of Algorithm 9, whose
complexity for r, = 1 is of the order O(n®>*K?). In [132], the authors employ
ADMM techniques to solve a periodic sensor scheduling problem. They consider a
zero mean and white Gaussian w(t). The time complexity of the proposed algorithm is
O((nK)3+ (maxye| (rr) K)n* K2 +max(ry,)>nK?). This time complexity is of similar
order to that of Algorithm 9, whose complezity in this case is O(maxye(g] (ri)n*1K?),
since maxye(r)(rr) < K; in particular, for K > n0-4 maxye((rx), Algorithm 9 has
lower time complexity.5

5More algorithms exist in the literature, that also use convex relaxation [144] or randomization techniques
[20], and have similar time complexity to Algorithm 9. They achieve this complexity using additional
approximation methods: e.g., they optimize instead an upper bound to the involved estimation error metric.

69

With the above remarks we conclude: Algorithm 9 enjoys both the estimation accuracy of
the batch state scheduling algorithms and the low time complexity of the Kalman filtering
scheduling algorithms, since:

e Algorithm 9 offers a near-optimal worst-case approximation guarantee for the batch
state estimation error. This estimation error is only approximated by the Kalman
filtering sensor scheduling algorithms: the reason is that they aim instead to minimize
the sum of each of the estimation errors for z(t;) (across tx). However, this sum only
upper bounds the batch state estimation error.

e Algorithm 9 has time complexity lower than the state of the art batch estimation
algorithms, and at the same time, lower than, or similar to, the time complexity of
the corresponding Kalman filtering algorithms.

In addition: Algorithm 9’s approximation guarantee holds for any linear system (contin-
uous or discrete time). Moreover, Algorithm 9’s time complexity guarantee holds for any
continuous time system, and for discrete time systems where Ay in (5.8) is full rank across k.

The proof of Theorem 7 can be found in Appendix 5.5.2.
5.3.8. Limits on Sensor Scheduling for Minimum Variance Batch State Estimation

In this section, we derive two trade-offs between three important parameters of our sensor
scheduling problem:”

e the number of measurements times (¢1,ta,...,tx)
e the number r; of sensors that can be used at each t,
e the value of the estimation error E(||z1.x — gﬁlKH%)

The first of the two trade-offs is captured in the next theorem:

Theorem 8. Let o\ D) = MaX;e K] [C(x1.x) " Yi; and 01(,_1) = ||C(vr.x) " |2. Also, let Cr.x
be the block diagonal matriz where each of its K diagonal elements is equal to C, where C
is the matriz [C],Cy ,...,C1T. For the variance of the error of the minimum variance
estimator T1.kx:

E(|z1:x — 2ukll3) >

n | (5.9)
o5 maxge) (o) |Crr |3+ ot Y /K

The lower bound in (5.9) decreases as the number of used sensors for scheduling rj increases
or the number measurement times K increases, and increases as the system’s size increases.
Since these qualitative relationships were expected, the importance of this theorem lies on
the quantification of these relationships (that also includes the dependence on the noise

"We recall from Section 5.2 that the objective of Problem 1 is related to E(||z1.x — #1.x||3) in that when
log det(X(#1:x)) is minimized the probability that the estimation error ||z1.x — 1.k HS is small is maximized.

70

parameters oY and 0(71)): for example, (5.9) decreases only inversely proportional with
the number of sensors for scheduling; that is, increasing the number r; so to reduce the
variance of the error of the minimum variance estimator is ineffective, a fundamental limit.
In addition, this bound increases linearly with the system’s size; this is another limit for

large-scale systems.

Similar results are proved in [145] for the steady state error covariance of scalar systems in
the case that the number of sensors goes to infinity. In more detail, the authors in [145]
account for different types of multi-access schemes, as well as, for fading channels between
the sensors and the fusion centre that combines the sensor measurements.

The next corollary presents our last trade-off:
Corollary 6. Consider that the desired value for E(||x1.x —%1.k|3) is . Any set of scheduled
sensors at tq,ta,...,tx that achieves this error satisfies:

(-1)
n/o— oy K
max (rg) > /(_1) / :
ke[K] oy ||01:K||%

(5.10)

Eq. (5.10) implies that the number of sensors used for scheduling at each ¢ increases as the
error of the minimum variance estimator or the number of measurements times K decreases.
More importantly, it quantifies that this number increases linearly with the system’s size for
fixed error variance. This is again a fundamental limit, meaningful for large-scale systems.

5.4. Concluding Remarks & Future Work

We work on extending the results of this chapter to largely unknown systems, under the
presence of non-linear measurements. The first of these extensions allows systems whose
evolution is captured by, e.g., Gaussian processes or random networks (the former example
is a widely used assumption for motion models; cf. [133] and references therein). The
second of these extensions allows complex measurement environments, such as camera-sensor
environments, that can enable the application of our results in domains such as robotics and
the automotive sector.

5.5. Appendix: Proof of Results
5.5.1. Closed formula for the error covariance of T1.x

We compute the error covariance of Z1.x: Denote as Si.x the block diagonal matrix with

diagonal elements the sensor selection matrices S(1), S(t2),...,S(tx). Moreover, denote
as C the matrix [C],C; ,...,Cl]T. Finally, denote y1.x = (y(t1) ", y(t2) ", ..., yte))T,
w1k = (w(tl)T7w(t2)T7 oo)w(tk)T)TJ and V1:K = (v(tl)Ta v(tQ)Ta s 7U<tk)T)T7 where

v(tr) = (vi(te) ", va(te) T, ..., um(tk)T) 7. Then, from (5.1), (5.2) and (5.3):

Y1:Kk = Ol:lezK + SI:KUI:Ka (511)

71

where Oq.x is the Zle ri X nK block diagonal matrix with diagonal elements the matrices
S(t1)C, S(t2)C, ..., S(tx)C. Z1.x has the error covariance X(Z1.x) = E((z1.x —Z1.5) (1.5 —
. T .
Z1.x) ") [103]:

E(i?l:K') = (C(xl:K) - C(l’l;K)OIKEOl;K(C(l'LK), (512)

where = = (OlzKC(wlzK)OIK + Sl;KC(Ul;K)SIK)fl

We simplify (5.12) in the following lemma:
Lemma 1. The error covariance of T1.x has the equivalent form:

K m -1
E(ilzK):(ZZsi(tk)U(M)+C(x1;K)_1> : (5.13)

k=1 1i=1

where s;(ty) s a zero-one function, equal to 1 if and only if sensor i is used at ty, and U ki)
is the block diagonal maitriz C’IKI(M)(C(M:K)_IIW)CLK; C1.x is the block diagonal matrix
where each of its K diagonal elements is equal to C, and I*) is the block diagonal matriz
with mK diagonal elements such that: the ((k — 1)m 4+ i)-th element is the d; x d; identity
matriz I, and the rest of the elements are equal to zero.

5.5.2. Proof of Theorem 7

We prove Theorem 7 in three steps: we first show that log det(X(#1.x)) is a non-increasing
function in the choice of the sensors; we then show that logdet(X(Z1.x)) is a supermod-
ular function in the choice of the sensors; finally, we prove Theorem 7 by combining the
aforementioned two results and results on the maximization of submodular functions over
matroid constraints [12].

Notation. We recall that any collection (x1,x9,...,z) is denoted as z1.; (k € N).

Monotonicity in Sensor Scheduling for Minimum Variance Batch State Estima-
tion

We first provide two notations, and then the definition of non-increasing and non-decreasing
set functions. Afterwards, we present the main result of this subsection.

Notation. Given K disjoint finite sets X1, Xs, ..., Xx and A;, B; € X;, we write A.x <
Bi.x to denote that for all i € [K], A; C B; (A; is a subset of B;). Moreover, we denote
that A; € &; for all i € [K] as A1.x € X1k

Definition 17. Consider K disjoint finite sets X1, Xs, ..., Xx. A function h : X1.x — R
is non-decreasing if and only if for all A,B € Xi.x such that A < B, h(A) < h(B);
h : X1.x — R is non-increasing if —h is non-decreasing.

The main result of this subsection follows:

Proposition 4. For any finite K € N, consider K distinct copies of [m|, denoted as
My, Ma, ..., Mg. The estimation error metric logdet(X(21.x|S1.x)) : M1.x — R is a
non-increasing function in the choice of the sensors Si.x.

72

We next show that logdet(X(21.x|S1:x)) is a supermodular function with respect to the
selected sensors Si.x.

Submodularity in Sensor Scheduling for Minimum Variance Batch State Esti-
mation

We first provide a notation, and then the definition of submodular and supermodular set
functions. Afterwards, we present the main result of this subsection.

Notation. Given K disjoint finite sets X1, Xs, ..., Xk and Ai.x, B1.x € X1.x, we write
A1.x W Bk to denote that for all i € [K], A; U B; (A4; union B;).

Definition 18. Consider K disjoint finite sets X1, X, ..., Xi. A function h : X1.x — R
is submodular if and only if for all A, B,C € Xy.x such that A < B, h(AwWC) — h(A) >
h(BWC) — h(B); h: X1.x — R is supermodular if —h is submodular.

According to Definition 18, set submodularity is a diminishing returns property: a function
h: X1.x — R is set submodular if and only if for all C € Xj.g, the function he : X1.x — R
defined for all A € Xy.x as ho(A) = h(AW C) — h(A) is non-increasing.

The main result of this subsection follows:

Proposition 5. For any finite K € N, consider K distinct copies of [m|, denoted as
My, Ma, ..., My, the estimation error metric logdet(X(21.x|S1.x)) : Mgk — R is a
set supermodular function in the choice of the sensors S1.k.

Proposition 5 implies that as we increase at each ¢; the number of sensors used, the marginal
improvement we get on the estimation error of x1.x diminishes.

We are now ready for the proof of Theorem 7.
Proof of Theorem 7

We first provide the definition of a matroid, and then continue with the main proof:
Definition 19. Consider a finite set X and a collection C of subsets of X. (X,C) is:

e an independent system if and only if:
— 0 € C, where) denotes the empty set
—forall X’ CXCX,ifXeC, X' eC.
e ¢ matroid if and only if in addition to the previous two properties:

— for all X', X € C where |X'| < |X]|, there exists x ¢ X' and x € X such that
X'U{z} ecC.

Proof:|of Part 1 of Theorem 7] We use the next result from the literature of maximization
of submodular functions over matroid constraints:

73

Lemma 2 (Ref. [12]). Consider K independence systems {(X,Ck) }re[k), each the intersec-
tion of at most P matroids, and a submodular and non-decreasing function h : X1.x — R.
There exist a polynomial time greedy algorithm that returns an (approximate) solution Sy.x

to:
mazimize h(Sy.
S1:k3X1K (LK) (5_14)

subject to S N Xy € Ci, k € [K],
that satisfies:

hO) — h(Su.gx) P
—h) (5.15)

) — < ’
RO)—h(@) —1+P
where O is an (optimal) solution to (5.14).

In particular, we prove:
Lemma 3. Problem 1 is an instance of (5.14) with P = 1.

This observation, along with Lemmas 2 and 3 complete the proof of (5.6), since the adap-
tation to Problem 1 of the greedy algorithm in [12] (Theorem 4.1) results to Algorithm 9.

Proof of Part 2 of Theorem 7: In Lemma 1 in Appendix 5.5.1 we prove that ¥(Z.x) is
the sum of two matrices: the first matrix is a block diagonal matrix, and the second one
is the inverse of the covariance of z1.x, C(x1.x). The block diagonal matrix is computed
in O(n?>*K) time. Moreover, by extending the result in [133] (Theorem 1), we get that
C(x1.5)~ ! is a block tri-diagonal matrix, that is described by the (K —1) transition matrices
O (tyr1,tx) [85], where k € [K — 1], and K identity matrices. For continuous time systems,
the time complexity to compute all the block elements in C(z1.x)~! is O(n3K) [146]; for
discrete time systems, it is O(n?>*K) [85]. This computation of C(z1.x)~! is made only once.
Finally, from Theorem 2 in [142], we can now compute the det(X(Z1.x)) in O(n*1K) time,
since Y(&1.x) is block tri-diagonal. Therefore, the overall time complexity of Algorithm
9 is: O(NPK) + O2n*>*K Y1 2) = O(n**K Y1 r2) for K large, since C(z1.x) " is
computed only once, and Algorithm 9 requests at most 25:1 r? evaluations of X(21.x)-

The proof is complete. |

74

CHAPTER 6 : Selecting sensors in biological fractional-order systems

In this chapter, we focus on sensor selection, i.e., determine the minimum number of state
variables that need to be measured, to monitor the evolution of the entire biological system,
i.e., all the state variables, when modeled by discrete-time fractional-order systems (DT-
FOS) that are subject to modeling errors, process and measurement noise. These systems
are particularly relevant when modeling of spatiotemporal dynamics of processes in which the
impact of long-range memory cannot be properly modeled by multivariate auto-regressive in-
tegrative moving-average models. Therefore, DTFOS enable a unified state-space framework
to model the evolution of several biological (e.g., stem cell growth and bacteria evolution)
and physiological signals (e.g., electroencephalogram and electromyogram).

Therefore, in this chapter, we focus on the solution to four different (yet related) problems of
sensor selection for DTFOS, that are motivated by constraints on the data acquisition that
are enforced by the detrimental impact of the sensing mechanisms to the biological system,
the cost of performing the measurements with the current sensing technology, or spatial
constraints that limit the number of sensors that can be deployed. Towards determining the
solution to these problems that we show to be NP-hard, we leverage the representation of
the DTFOS to derive new objectives and conditions that, ultimately, enable us to efficiently
approximate a solution to the different problems by exploiting the submodularity structure,
which enables us to establish sub-optimality guarantees.?

6.1. Introduction

A multitude of complex systems exhibits long-range (non-local) properties, interactions
and/or dependencies (e.g., power-law decays in the weights of linear combination of past
data) used to describe the biological system evolution. Example of such systems includes
Hamiltonian systems, where the memory (i.e., dependence on the past data) is the result
of stickiness of trajectories in time to the islands of regular motion [147]. Alternatively, it
has been rigorously confirmed that viscoelastic properties are typical for a wide variety of
biological entities like stem cells, liver, pancreas, heart valve, brain, muscles [147, 148, 149,
149, 150, 151, 152, 153, 154, 155|, suggesting that the long-range memory of these systems
obey the power law distributions. These dynamical systems can be characterized by the well-
established mathematical theory of fractional calculus [156], and the corresponding systems
could be described by fractional differential equations [157, 158, 159, 160, 161|. However,
it is until recently that fractional order system (FOS) starts to find its strong position in
a wide spectrum of applications in different domains due to the availability of computing
and data acquisition methods to evaluate its efficacy in terms of capturing the underlying
system states evolution.

Specifically, in [157], by the adoption of non-Gaussian statistical approaches, the authors
identify the co-existence of fast and slow dividing subpopulations, and quiescent cells, in stem
cells from three species. The mathematical analysis also shows that, instead of developing
independently, stem cells exhibit a time-dependent fractal behavior as they interact with
each other through molecular and tactile signals. In [158], the existence of a statistical

!This chapter is based on the paper by Tzoumas et al. [21].

75

fractal behavior and inadequacy of modeling blood glucose dynamics via linear state space
models, is proved by the multi-fractal spectrum computed from the blood glucose time
series of four individuals. A fractional order system model is alternatively proposed and
evaluated to have superior regarding predictive power and controller synthesis. In [159], a
multi-dimensional FOS is considered to capture the muscular dynamics in the process of fore-
arm movement. The motivation comes from the power-law correlation decay as opposed to
the exponential law, which is fundamentally assumed by the popular autoregressive moving
average model. After the retrieval of the FOS model from the observations, it is shown that
the model output is superior to ARMA to capture the observed spatial and temporal long-
range dependence. In [160], a more comprehensive set of physiological processes (i.e., neural,
muscular and vascular processes) are considered to study the minimal sensor placement
problem in the context of the multi-dimensional FOS. The experimental results suggest that
the adoption of FOS and the control theory developed based on it can help improve the
design of efficient and reliable cyber-physical systems in the biomedical domain. In [161],
the authors propose a statistical non-extensive causal inference framework and construct the
generalized master equation (GME) to characterize the dynamics of complex systems that
exhibit power-law spatiotemporal dependencies. The solution of the GME suggests a FOS be
considered to capture the dynamical behaviors of the systems. In addition to the application
of fractional order calculus to differentiable dynamical systems, very recent efforts have
also been very successful to extend local fractional calculus to non-differentiable, irregular
sets like fractals or fractal networks [162, 163, 164, 165]. The fractality /multifractality of
network, their characterization, computation, their influence on the dynamics of complex
networked systems is attracting greater attention from a multi-disciplinary perspective. The
possibility to extend the fractional to self-similar non-smooth objects is opening new frontiers
in science. Non-linear analysis of data offers still unsolved analytical problems related not
only to complex physics and abstract mathematical theories including fractals and fractional
calculus [166].

Subsequently, because the current sensing technology is mainly digital, we focus on discrete-
time fractional-order systems (DTFOS) [167], whose parameterization consists of a relatively
small number of parameters, and the dynamics subject to modeling errors and external
disturbances. Furthermore, in addition to modeling errors and external disturbances in the
DTFOS dynamics, we also account for external disturbances in the sensing technology since
our motivating technology, i.e., the EEG, uses sensing technology where noise commonly
corrupts the collected data. Subsequently, in this chapter, we propose to explore and exploit
the trade-offs between the selected sensors and the capability to assess the process state
over time, which we refer to as estimation performance since the state is obtained up to a
confidence level subject to disturbance and noise. In other words, the combined effect of
the modeling errors and external disturbances in the spatiotemporal dynamical processes
requires the proper deployment of sensing technology that guarantees the best estimation
performance (that is, the least estimation error) given the modeling errors’ and external
disturbances’ characteristics.

In the last years, we have witnessed a growing interest on the trade-off between the number
of used sensors and the degree of observability of linear time-invariant (LTI) systems |7,
52, 53, 84, 105, 110, 111, 168], which are a particular case of DTFOS. In particular, this

76

trade-off has been explored under the assumption that either the exact LTI system model is
available, in which case one needs to ensure observability [7, 52, 53, 84, 105, 110, 111, 168|,
or only the structure of the LTI system model is available, in which case one needs to ensure
structural observability [109] or strong structural observability [169]. More recently, this
interest as extended to deal with DTFOS, either when the models are exact [170], or in the
context of structural observability [171]. Although ensuring observability is key towards the
implementation of stable estimators, it does not explicitly explore the trade-offs between the
chosen sensors and the quality of the state estimate and the model uncertainty, which is of
utmost importance in biological settings, e.g., in EEG applications. These trade-off has been
studied so far only for LTI systems, as we briefly review next. In [139, 172, 173], the authors
explore the trade-offs for LTI systems in the context of Kalman estimation. Specifically,
in [172], the authors quantify the trade-off between the number of sensors and the output
measurements to achieve a specified value for the minimum mean square error (MMSE)
of the Kalman estimator, whereas in [139] the authors consider to place small numbers of
sensors to optimize the resultant MMSE, and in [173] the author designs an output matrix
with a desired norm that minimizes the MMSE.

In this chapter, we extend the current literature to address the trade-off between the chosen
sensors and the quality of the state estimate for the case of DTFOS with known parametric
model and under possible uncertainties in the dynamics, as well as, noise in the measure-
ments collected by the sensing technology. Specifically, we address the following problems:
(i) determine the minimum number of sensors to ensure bounded process disturbance error
within a prescribed threshold; (i) determine the placement of a specified number of sensors
to minimize the process disturbance error; (#i1) determine the minimum number of sensors
to ensure bounded state estimation error within a prescribed threshold; and (iv) determine
the placement of a specified number of sensors to minimize the state estimation error. It
is worth noticing that among these four problems, the first couple of problems enforces the
validity of the model by quantifying the uncertainty of the system’s evolution, whereas the
remaining two aim to determine the most likely state of the process across a time-window.

The main contributions of this chapter can be cast in the following three domains:

Translational — it equips scientists (e.g., biologists and neuroscientists) and engineers alike
with a unified framework to decide upon the sensor measurements to be considered to per-
form state estimation, i.e., to perform sensor selection to quantify uncertainty in the state
and unknown disturbances and noises, in the context of fractional-order state-space repre-
sentations capable of modeling spatiotemporal dynamics of processes in which the impact of
long-range memory cannot be properly modeled by multivariate auto-regressive integrative
moving-average models.

Theoretical — we propose to derive observability conditions that enable the quantification of
the uncertainty of biological processes modeled by the proposed state-space representation,
as well as identify the state variables that play a key role in monitoring the evolution of
the dynamics while making the trade-off with the accuracy of the estimation. Specifically,
we propose computationally efficient algorithms to provide sub-optimal solutions to the
minimum number of variables that need to be measured (that is NP-hard), while establishing

77

guarantees on the optimality gap.

Application — recently there is a renewed interest in neuro-wearable devices largely boosted
by initiatives sponsored by either the Facebook that aims to use wearable devices to write
100 words per minute, and the NeuraLink by Elon Musk that aims to develop implantable
brain-computer interfaces. Subsequently, we propose to revisit the neuro-wearables that
rely on electroencephalogram, and determine the sensor location that seems to be the most
effective with respect to a pre-specified number of sensors. In particular, we argue that for
a variety of tasks the location of sensors currently used in such wearable devices is sub-
optimal with respect to the proposed objectives that aim to ensure the quality of estimated
state, process and measurement noise. Consequently, we conclude that at the light of this
framework, some of the neuro-wearables should be re-designed to enhance dynamic systems
properties such as observability.

In summary, our main contributions are as follows: (i) we formalize the sensor placement
problems in context of four different (yet related) problems pertaining to sensor placement
to minimize the process disturbance error and state estimation error; (i) we show that these
problems are NP-hard; (74) we present approximation schemes for their solution that have
provably optimal approximation performance; and (iv) we illustrate the proposed approaches
using EEG signal data associated with a variety of tasks.

The remainder of this chapter is organized as follows. In Section 6.2, we provide our setup
and problem formulation. In Section 6.3, we present our main results. In Section 6.4,
we illustrate how the main results can be applied in the context of real EEG signal data.
Section 6.5 concludes the chapter.

6.2. Problem Statement

In this section, we introduce the problems addressed in the present chapter. First, we
introduce the DTFOS model used in Section 6.2.1, while revisiting some of its properties,
and the best linear estimator for it in Section 6.2.2. Then, in Section 6.2.3, we introduce
the optimal sensor placement problem for DTFOS, which seeks to determine the minimum
collection of sensors that ensure a pre-specified estimation performance, or the configuration
of a given number of sensors that attain the best process disturbance and estimate quality.

6.2.1. DTFOS Model
We consider the linear DTFOS described by

Azpi = Azxy, + wy,

(6.1)
yp =Cxp+ve, k=0,1,...

where 7, = [z}, 22, ..., 2%]T € R" (n € N) is the state vector, y € R the measured

output vector, w; the process disturbance and v, the measurement noise, and z(the initial

condition. Additionally, A = diag (Ag}H, A Agjrl) is the diagonal matrix operator,

78

where Ag-iu is the discrete fractional-order difference operator such that

k+1
Ag’ﬂﬂﬁhl = Z(_l)j< ‘Z> Thjy1s

— J

J
and (O‘j) = %, where «; > 0 is the fractional-order exponent, and I'(z) =
fooo t*~le~tdt is the Gamma function. In summary, the matrix A captures the spatial
coupling (i.e., dependency) of the process, whereas «; capture the temporal dependency
of the process associated with x;.

Also, we notice that it is possible to provide a closed-form solution to (6.1), following [174],
and which can be described as follows.

Lemma 4. For all k > 1, the solution to (6.1) is given by xx = Grxo + Z?;& Gr—1-jwj,
where

G = { I, k=0
P X AjGriy, k> 1
where Ay = A, and Aj; is a diagonal matriz whose i-th entry is (—1)7 (]0_;_”‘1) o

In particular, Lemma 4 states that a linear DTFOS can be interpreted as a linear time-
variant switching system, where transitions are known. Subsequently, we can develop a
Kalman-like estimator for this process, which estimates’ characterization is leveraged to
study the trade-offs between performance of the estimator and a specified sensor placement.

6.2.2. Minimum Variance Linear Estimator

For any estimation horizon K (that is, k in (6.1) varies from 0 to K), we first present the
minimum mean square linear estimator of zx = (:):g,on, wlT, cee w[T(il)T. This estimator
is particularly useful in biological systems to assess the validity of the model, since a quan-
tification of uncertainty is obtained. To this end, we use the following common assumption.
Assumption 5. Let the initial condition be unknown and modeled by a random variable
whose expected value is To and its covariance is C(xg) > 0. In addition, let the process
disturbance wy, and the measurement noise vy to be described by zero-mean random variables,
whose covariance is described respectively by C(wy) > 0 and C(vg) > 0, for all k > 0, where
C(vg) is a diagonal matriz; that is, the measurement noises between any two sensors that
correspond to two rows of C are uncorrelated. Furthermore, for all k, k' > 0 with k # k', let
the xo, wi and vy, as well as, the wi, wi, vi and vy to be uncorrelated.

O
Moreover, we consider the following notations: let the vector of measurements yo.x =
(yg—,le,...7y;)T, the vector of process noises wg.x_1 = (wS—,wI,...,wIT(_l)T and the

vector of measurement noises vo.x = (1)0T ,vlT, e ,v})T. Notice that whereas the vector

Yo:k 18 known, the vectors wo.x_1 and vg.x are not. Additionally, we refer to the interval
[0, K] ={0,1,...,K} as the estimation horizon of (6.1), and its length is K + 1.

Next, given an estimation horizon [0, K], to derive the minimum mean square linear estima-

79

tor of zk, from (6.1) and Lemma 4, we have
Yo:x = Orzk + vo:k, (6.2)

where O = [LJCT,L{CT,...,LLCT]" with the nxn(K+1) matrix L; = [G;,Gi_1, . . ., Go,
0], and O is the zero matrix with appropriate dimensions.

Thus, following similar steps to those performed for linear time-invariant systems [172], the
minimum mean square linear estimate of zx is given by

2k = E(2x) + C(2x) O (O C(2k) O + C(vp:c)) ™
(Yo.x — OkE(2k) — E(vo.i)),

where E(z) is the expected value of z, and C(z) = E([z — E(z)][z — E(x)]") its covariance.
Furthermore, the error covariance of Zx is given by

Y:o =E((2x — 2K) (2K — 2k)7)
= Clzx) — C(zx) Ok (OKC(2x)OF + Clvnx)) ™!
Ok C(zk). (6.3)

In this chapter, we capture the estimation performance of Zx with the metric logdet(X;z,),
which is proportional to the conditional entropy of zx given the measurements yo.x, and as
a result, captures how well zg is explained by yo.x [175, Proposition 2|. In particular, the
metric logdet(Xz,.) captures the probability that the estimation error ||2x — 2k||3 is small.
To explain this, consider the n-confidence ellipsoid of zx — Zx [119]: The n-confidence ellip-
soid is the minimum volume ellipsoid that contains zx — Zx with probability n. Specifically,

it is encapsulated by & (2x) = {2: 2" %;,2 < ¢}, where e = F,' (1) and F» is the
Xn(K+1) Xn(K+1)
cumulative distribution function of a x-squared random variable with n(K + 1) degrees of

freedom [124]|. Therefore, the volume of & (Zx) that quantifies the estimation’s error of Zx
is given as follows:

A (em)n(+1)/2 "
1(E. = det (X, 7). 6.4

Henceforth, if we consider the logarithm of (6.4), we obtain
log vol(€c(2k)) = B+ 1/2logdet (X3,), (6.5)

where /3 is a constant that depends only on n(K + 1) and ¢, and, as a result, we refer to
the logdet(X;,) as the logdet initial state-uncertainty estimation error of the minimum
variance linear estimator of (6.1).

Alternatively, we might be interested in determine the minimum variance linear estimator
of xo.x = (x0,21,...,2K), denoted by Zo.x. To this end, the collection of measurements
is given by yo.x = Oxxo.x + vo.xx, where O is the block diagonal matrix with diagonal
elements K + 1 copies of the matrix C. Subsequently, following similar steps to those in

80

[103], the state estimation Zg.x error covariance is given by

Yo = C(zo:x) — (C(xO:K)O;((OK(C(ﬂZo;K)O;{—}-
C(vo:x)) Ok C(z0:K).- (6.6)

Besides, by proceeding similarly to the reasoning above, we can define the log det batch-state
estimation error of the minimum variance linear estimator of (6.1) as follows:

log vol(Ec(Z0:x)) = B+ 1/2logdet (35,) - (6.7)

6.2.3. Optimal Sensor Placement

Now, we introduce four different (yet, related) problems to assess the optimal sensor place-
ment with respect to the log det of the initial state-uncertainty and batch-state estimation
error of the minimum variance linear estimator of (6.1). Specifically, we propose for each
to determine the placement of r sensors such that the overall estimation error is minimized,
and determine a placement of sensors such that the estimation error satisfies a specified
threshold.

Therefore, we propose to use the following sensor placement model: across the estimation
horizon [0, K], a unique subset of r sensors in (6.1) is placed and used, that corresponds to
r of the ¢ rows of C (r < ¢). In particular, for all k¥ € [0, K] in (6.1),

yr = SCx + vy, k € [0, K], (6.8)

where S is the sensor placement matrix (constant across the estimation horizon [0, K]); that
is, it is a zero-one matrix such that S;; = 1 if sensor j is placed (which corresponds to the
Jj-th row of C), and S;; = 0 otherwise. We assume that a sensor can be placed at most once,
and as a result, for each ¢ there is one j such that S;; = 1 while for each j there is at most
one 7 such that S;; = 1. Hence, given a sensor selection matrix S, the indices of the rows of
C that correspond to used sensors is denoted by S, i.e., S = {j : exists ¢ such that S;; = 1}.

Consequently, given the DTFOS in (6.1) and a finite estimation horizon [0, K], we consider
the following four problems:

Initial State-Uncertainty Estimation Error

(1) Provided a specified error threshold R € R™, determine the initial state-uncertainty
minimal sensor placement problem that is a solution to the following problem:

minimize |S|

SC{1,2,...,c} (7)1)
subject to logdet (X:,(S)) <R,

where det (23, (S)) is the determinant of 33, in (6.3) when Ok is replaced by Ok (S), with
explicit dependence on S, and described by Ok (S) = [LJ C(S)T,L{ C(S)T, ..., LLC(S)"]T,

81

and C(S) denotes the rows of C' with indices in S;

(i) Provided a maximum number r of sensors to be placed, determine the initial state-
uncertainty cardinality-constrained sensor placement problem for minimum estimation error
that consists of a solution to the following problem:

minimize logdet (3, (S
SC{1.,2,....c} (22 () (P2)
subject to [S]| <.

Baitch-State Estimation Error

(#1) Provided a specified error threshold R € R™, determine the minimal sensor placement
problem that is a solution to the following problem:

minimize |S|

SC{1,2,...,c} (733)
subject to logdet (Xz,,,(S)) < R,

where det (33, (S)) is the determinant of ¥z, in (6.6) when O is replaced by Ok (S),
which is the block diagonal matrix with diagonal elements K copies of the matrix C(S),
and C(S) denotes the rows of C' with indices in S; and

(iv) Provided a maximum number r of sensors to be placed, determine the cardinality-
constrained sensor placement problem for minimum estimation error that consists of a so-
lution to the following problem:

inimi log det (X5, .. (S
sy et e P

subject to [S| <.

@)

Problems (P;) — (Ps) address different problems that focus on different practical consid-
erations. Specifically, (P;) aims to determine the minimum number of sensors to ensure
bounded process disturbance error within a prescribed threshold, which enables the mini-
mization of the estimation of the uncertainty that drives the system; thus, equipping us with
an uncertainty quantification of the process evolution. In contrast, (P2) addresses the prob-
lem of determining the placement of a specified number of sensors to minimize the process
disturbance error, which captures the situations where one has a budget on the available
sensing technology, and wants to deploy the sensors to maximize the performance of the
process captured by minimizing the system’s uncertainty.

Problem (Ps3) focus on determining the minimum number of sensors to ensure bounded state
estimation error within a prescribed threshold, which might be related with the satisfaction
of some standard or accuracy required to have a sound estimate of the system’s state. Finally,
(P4) targets the placement of a specified number of sensors to minimize the state estimation

82

error when the number of sensing mechanisms is limited and one aims to minimize the
system’s state estimate uncertainty.

Notwithstanding, as it will become clear in the upcoming sections, the underlying optimiza-
tion structure is similar, which enables us to study them in a unified fashion. Specifically,
to address these problems, we will show that both logdet (¥;,) and logdet(X;,,) are
supermodular and non-increasing (formally defined in Section 6.3). As a consequence, ap-
proximation algorithms for these type of functions can be leveraged to provide approximate
solutions to these problems with worst-case performance guarantees.

6.3. Sensor Placement for DTFOS

We present the main results of the present chapter. First, we show that (Pp)-(Py) are
NP-hard (Theorem 9), which implies that optimal polynomial solutions to these problems
are unlikely to exist. Next, we propose polynomial algorithms (Algorithm 11 and 12) to
obtain an approximate solution to these problems, while ensuring worst-case performance
guarantees (Theorem 11 and 12). In more detail, in Theorem 10, we show that the constraint
and objective function in (P1)/(Ps) and (P2)/(P4), respectively, are supermodular. Thereby,
greedy algorithms can be provided to approximate the solution to these problems while
ensuring a worst case scenario bounded optimality gap. Finally, in Theorem 13, we provide
a discussion on the fundamental limits on the state-uncertainty estimation error and batch-
state estimation, while exploring the trade-off with problems’ parameters.

We start by showing the computational complexity of our problems in the next result.
Theorem 9. The problems (P1)-(Ps) are NP-hard. o

Subsequently, we need to devise a strategy that approximates the solutions to the proposed
problems. Towards this goal, consider the following definitions.

Definition 20. A function h : 2[4 — R is submodular, where [¢] = {1,...,¢}, if for any
sets S and ', with S CS' Cc|, and any a ¢ S,

h(S U {a}) — h(S) > h(S' U {a}) — h(S)).

A function h : 29 — R is supermodular if (—h) is submodular-.

Definition 21. A function h : 219 — R is a non-increasing set function if for any S C S’
[c] it follows that h(S) > h(S'"). Moreover, h is a non-decreasing set function if (—h) is
non-increasing set function.

o o lN o

Furthermore, a function h : 219 — R is submodular if, for any a € [¢], the function hy, :
ole\a} s R defined as hq(S) = h(S U {a}) — h(S) is a non-increasing set function. This
property is commonly referred to as the diminishing returns property [116].

Now, we show that the constraint and objective function of (P1)/(Ps) and (Pz2)/(P4), re-
spectively, are supermodular and non-increasing.

Theorem 10. Let ¢ be the number of rows of C, and s; € {0,1} be 1 if and only if i-th
sensor (i-th row of C) is placed, and Lo = [L),L{,...,L}|". In addition, let M) =
C(IKI(i)(C(UO;K)_ll(i)CO;K, where Co.xc ts the block diagonal matrix where each of its K + 1
diagonal elements is equal to C, and ID is the diagonal matriz with c¢(K + 1) diagonal

83

elements such that, for all k € [0, K], the (kc + i)-th element is 1, and the rest of the
elements are equal to zero. Then, given any finite estimation horizon [0, K|, the following
two equalities hold:

log det (X3, (S)) =

_ logdet (Z S,LLJKM(Z)LOK + (C(ZK)_1>)
=1

and

log det (X3, (S)) = —logdet <Z siM® 4+ (C(xo;[()_1> :
i=1

Furthermore, both logdet (33, (S)) and logdet (33, (S)) are supermodular and non-increa-
sing set functions with respect to the choice of the sensor set S C [c] ={1,...,c}. o

As consequence of Theorem 10, it follows that the functions exhibit the diminishing returns
property, i.e., its rate of reduction with respect to newly placed sensors decreases as the
cardinality of the already placed sensors increases. Therefore, some well known approxi-
mation schemes [13, 40| can be leveraged to obtain sub-optimal solutions to (P1)-(Ps) with
optimality guarantees.

In Algorithm 11 and Algorithm 12, we present strategies to approximate the solutions to
(P1)/(P3) and (P3)/(Py4), respectively. Specifically, in Algorithm 11, we provide an efficient
algorithm for (P1)/(P3) that returns a sensor set that satisfies the prescribed threshold and
has cardinality up to a multiplicative factor from the minimum cardinality sensor sets that
meet the same estimation bound. More importantly, this multiplicative factor depends only
logarithmically on the problems’ parameters. These properties and the time complexity are
described in the following result.

Algorithm 11 Approximation Algorithm for (Py)/(Ps)

Input: ho(S) = logdet (34(S)), where o € {Zo.x, 2K } for k € [0, K], and a threshold R on
the total estimation error incurred by hq(S).
Output: Approximate solution S, for (P1)/(Ps).
So 0
while h,(S,) > R do
ai < a' € argmax,ei\s, (hal(Sa) — ha(SaU{a}))
S, — S, U {az}
end while
Theorem 11. Let a solution to (P1)/(Ps3) be denoted by Sk, and the set obtained by Algo-
rithm 11 be denoted by S,. Moreover, denote the mazimum diagonal element of C(xo) and
C(wy), among all k € [0, K], as 03 and o2, respectively. Then,

w?

log det (X4(Sa)) < R, (6.9)

84

and the optimality gap bounded as follows:

|Sal log det (X4(0)) — log det (X4([c]))
<1+1 = 6.10
Sl =TT R logdet (S () " (610
where log det (X3, (0)) < n(K + 1) logmax(c3,02).
Furthermore, the time complexity of Algorithm 11 is O(c*(nK)>?>#). o

Therefore, Algorithm 11 returns a sensor set that meets the estimation threshold of (P1)/(Ps).
Moreover, the cardinality of this set is up to a multiplicative factor of n from the minimum
cardinality sensor sets that meet the same estimation bound. In other words, 7 is a worst-
case approximation guarantee for Algorithm 11. Besides, n depends only logarithmically
on the problems’ parameters. Additionally, the dependence of 7 on n, R and max(c3,02)
is expected from a design perspective. Specifically, by increasing the state space size n,
requesting a better estimation guarantee by decreasing R, or incurring a noise of greater
variance, should all push the cardinality of the selected sensor set upwards.

Next, in Algorithm 12, we provide an efficient algorithm for (P2)/(P4) that returns a sensor
set of cardinality r, where 7 is chosen by the designer. In the next result, we provide opti-
mality guarantees of the solution obtained with Algorithm 12, as well as the computational
complexity incurred by the algorithm.
Theorem 12. Let a solution to (Pa)/(Ps) be denoted by Sk, and the set obtained by Algo-
rithm 12 be denoted by S,. Then,

log det(X4(Sa)) — log det(X4(0)) 1

log det(2(S7)) —logdet(Za(0)) — € (6.11)

where the approzimation factor 1 — 1/e in (6.11) is the best one can achieve in polynomial
time for this problem.

Furthermore, the time complexity of Algorithm 12 is O(cr(nk)*%). o

Algorithm 12 Approximation Algorithm for (Ps)/(Py)

Input: hy(S) = logdet (£4(S)), where a € {Zo.x, 2k} for k € [0, K], and a bound on the
number 7 of sensors used to minimize hqo(S).
Output: Approximate solution S, for (P2)/(Py).
Sa 0,10
while i < r do
a; < a' € argmaxgei\s, (ha(Sa) — ha(Sa U{a}))
So — SaU{ai}, i i+1
end while

Notice that from Theorem 12 it follows the approximation quality depends on n, r and
max(03,02) as expected from a design perspective. Specifically, by increasing the state
space size n, requesting a smaller sensor set by decreasing r, or incurring a noise of greater

variance should all push the quality of the approximation level downwards.

85

Limits on Selecting Sensors in DTFOS

Next, we provide explicit bounds on the variance of the state-uncertainty estimation error,
while exploring the trade-off with the following quantities: (¢) the length of the estimation
horizon [0, K; (4i) the number of placed sensors 7; and (74) the characteristics of the noises
wg and vg. In particular, the next result imposes limitations on the assessment of the results
that cannot be overcome. -
-1

Theorem 13. Let o\ V) = max;e(, [C(xo) i, o = maxjef(r+1)] [Clwo:x) i, and

01(;_1) = ||C(v1.5) " |2. Also, denote by L the matriz Lo:KL(IK. Then, the following inequal-

ity holds for the variance of the error of the minimum variance estimator Zi :
n(K +1)

roi VICIBILI + max{og ol)

(Se) > (6.12)

o

In other words, for constant ||C]]3 and ||L||2, (6.12) implies that the state-uncertainty esti-
mation error used to assess the validity of the model (6.1) is bounded by a quantity that
decreases as the number of placed sensors r increases, and increases as the system’s state
size or the horizon K increases. Subsequently, it implies that tr(X;,) can decrease only
inversely proportional with the number r of placed sensors, and, as a result, increasing the
number r to reduce the variance of the error of the minimum variance linear estimator is
ineffective. Additionally, the bound in (6.12) increases linearly with the system’s state size,
which imposes additional fundamental limitations for large-scale DTFOS.

Lastly, we notice that similar arguments and fundamental bounds can be readily derived for
the variance of the batch-state estimator error, i.e., tr(X;z,), by following the same steps
as in [58].

6.4. EEG Sensor Placement

In this section, we propose to study (P;)-(P4) in a real-world application setting collected
by the BCI2000 system with a sampling rate of 160Hz [176]|. Specifically, we consider 64-
channel EEG data set which records the brain activity of 10 subjects (S001-S010) when they
are performing motor and imagery tasks [177]. Each subject sits in front of a screen where
targets might appear at the right/left/top/bottom side of the screen. Upon noticing the
target, each subject is asked to open and close the corresponding fists or feet as a function
of where the target appears. Each individual performed 14 experimental runs consisting of
one minute with eyes open, one minute with eyes closed, and three two-minute runs of 4
interacting tasks with the target: (Task 1) open and close left or right fist as the target
appears on either left or right side of the screen; (Task 2) imagine opening and closing left
or right fist as the target appears on either left or right side of the screen; (Task 3) open
and close both fists or both feet as the target appears on either the top or the bottom of
the screen; and (Task 4) imagine opening and closing both fists or both feet as the target
appears on either the top or the bottom of the screen.

86

Electroencephalogram@PO8 channel

200 ‘ ‘
—Recorded
N {1 Simulated
‘Bn 100 B o ll ‘ J A I -
> N '
-) I |
) y
© 'y I ik J
E 0 [| [i i | WA I
S I ! AR W 1 l | §
[} | 'l ’ VY \ "\ ‘
pd Pt i e ' ll'
_1 OO = J \' . : : I If . . _
_200 L 1 1 I | L 1 I
9200 9250 9300 9350 9400 9450 9500 9550 9600

Sample ID

Figure 2: EEG data recorded and the simulated using DTFOS at the EEG channel POsg.

First, we estimated the parameters of the DTFOS for the different tasks?, which can be
modeled by DTFOS as argued in [170]. To illustrate the modeling capabilities of the pro-
posed DTFOS model, in Figure 2 we contrast the recorded data at location POg against
the one simulated using the DTFOS identified. It is worth mention that similar perfor-
mances are achieved across different channels, subjects and tasks. Besides, the fractional
order exponents range from 0.34 to 1.04 across different tasks, which provides evidence that
these could not be properly modeled by linear time-invariant systems — see [170] for further
details. Lastly, we considered that the initial state, disturbance, and measurement noise
follow a normal distribution with zero mean and covariance described by the identity matrix
(both with appropriate dimensions).

Initial State-Uncertainty Estimation Error

First, we considered a single subject (S002), and determined the different DTFOS systems
associated with the four different tasks. We applied Algorithm 11, with o = 2 and K =7,
to solve (Pp), and in Figure 3-(a) we plot the minimal number of sensors required as a
function of required initial state-uncertainty log det estimation error for the different tasks.
The following observations are due: (i) given the same level of initial state-uncertainty
estimation error required, the minimal number of sensors varies slightly when the subject is
performing different tasks; and (47) given a task, the initial state-uncertainty logdet error
exhibits supermodular properties (see Theorem 10).

To address (P2), i.e., to evaluate the achievable levels of the initial state-uncertainty esti-
mation error given different sensor deployment budgets, we resorted to Algorithm 12 with

®The identification techniques used were introduced in [178], and the software implementation can be
found at https://github.com/urashima9616/ DFOS_Sensor _Selection.

87

S 1001
el o
o} —Task 1 s —=—Task 1
£ 200
qg). —Task 2 s
" Task 3 | -300©
2 —Task 4 g 400 -
= 3
) > 500
Y c
5 £
5 T 600r
Q 8
€ c -700¢
2 3
= L 800
©
IS »
£ — 900}
= [}
0 c -1000 : : ‘ :
-600 -500 -400 -300 -200 -100 0o = 0 2 10 12 14

4 6 8
Number of sensors deployed

a) Initial state-uncertainty estimation error b) /
5 B Emotiv B Proposed
5-560 .
: l
Rel
©
£-575
@
(0]
2
[
"5 -590
<
(0]
[S]
c
T -605
(]
I
[]
8620
c) d) € Task1 Task2 Task3 Task4

Figure 3: (a) Minimal sensor placement to achieve a prescribed initial state-uncertainty
estimation errors. (b) initial state-uncertainty logdet errors achieved given different sensor
budgets. (c¢) The 64-channel geodesic sensor distribution for measurement of EEG, where the
sensors in gray represent those of the Emotiv EPOC and the ones in red are those returned
by Algorithm 12 when solving (P;) (that relieved to be the same for all 4 tasks), given
the identified DTFOS and a deployment budget of 14 sensors. (d) initial state-uncertainty
log det estimation errors associated with the highlighted sensor placements in (c).

a = 2 and K = 7. In Figure 3-(b), we present the summary of the results, namely, the
log det errors given different cardinality-constrains under the 4 tasks. It can be observed
that the information gain, i.e., the improvement on estimation errors, is diminishing as the
number of sensors used increases — as predicted by Theorem 12.

Additionally, we considered the deployment of 14 sensors, which is the same number of sen-
sors available in some of the current EEG wearable technology, e.g., the Emotiv EPOC [179].
In Figure 3-(c), we report the sensor deployment returned by Algorithm 12 when solv-
ing (P2), which revealed to be the same across all 4 tasks (for the same individual). Specif-
ically, we circled in blue the 14 sensors determined by our framework, whereas the Emotiv
EPOC [179] sensors are colored in gray. From Figure 3-(c), we first notice that the sensor
distribution pattern of Emotiv EPOC is symmetrical, whereas the Algorithm 12 places the
sensors asymmetrically. Moreover, even though some of the locations are fairly close to
each other (e.g., 41/43, 16/48, 40/38, 42/44, and 14/7), it turns out that only 5 out of 14
locations (i.e., 25, 29, 44, 48, 63) are identical, and Emotiv EPOC does not consider sensors

88

23, 4, and 18.

Subsequently, we assessed how the different sensor distributions, i.e., the proposed by our
framework and the proposed by Emotiv EPOC, affect the estimation errors. In Figure 3-(d),
we report the initial state-uncertainty estimation error across the different tasks. It is worth
noticing that the sensors considered by our framework perform considerably better than the
sensor distribution used by the Emotiv EPOC. Specifically, the logdet estimation errors
attained by the proposed sensor placement are smaller compared to those of Emotiv EPOC.
In fact, it presents considerable gains across the different tasks, and, in particular, in Tasks 2
and 4 that require the use of imagination instead of the motor skills. Lastly, it is important to
notice that the same sensor placement performs almost equally well across different tasks.
Therefore, these results support the fact that from the point-of-view of an initial state-
uncertainty estimation error using a model-based approach, the sensors’ locations of the
commercial EEG devices should be re-designed so to ensure better estimation performance.

Batch-State Estimation Error

Now, we address the batch-state estimation problems proposed in (Ps3)-(Py). Towards this
goal, we consider the DTFOS corresponding to the four different tasks for the same subject
(S002). 1In particular, we obtain the solution to (P3) by relying on Algorithm 11 with
a = Zo.x and K = 7, whose solutions are found in Figure 4-(a) for several levels of batch-
state estimation errors. From Figure 4-(a), we observe that for a specific level of batch-state
estimation error the variation (across the different tasks) in the minimum number of sensors
is minor. Moreover, we observe that the batch-state logdet estimation error exhibits a
diminishing returns property — as per Theorem 10.

Next, we use Algorithm 12 with o = Zo.x and K = 7 to tackle problem (Py), i.e., to compute
the achievable levels of the batch-state estimation error across several sensor placement
budgets. The results are presented in Figure 4-(b), where we report the batch-state log det
estimation errors given different cardinality-constrains across the 4 tasks. Similarly to the
previous figure, we notice that the gain, i.e., the improvement on the estimation error, is
diminishing as the number of sensors used increases (see Theorem 12).

Furthermore, using Algorithm 12 to solve (P4) with a budget of 14 sensors, we obtained the
sensor placement illustrated in Figure 4-(c). In Figure 4-(c), we circle in red the 14 sensors’
placement found by our framework, whereas we depict the Emotiv EPOC [179] sensors in
gray. Notice that the sensor placement obtained turned out to be the same across all 4
tasks for the same individual and it is asymmetrical, in contrast with the one of the Emotiv
EPOC. Notably, only 5 out of 14 locations (i.e., 25, 29, 44, 48, 63) in both cases are the
same, even though some of the sensor locations are close to each other (e.g., 41/43, 16/48,
40/38, 42/44, and 14/7). Moreover, the Emotiv EPOC does not consider the sensors 23, 4,
and 18. In Figure 4-(d), we compared the batch-state estimation errors (across the different
tasks) of the sensor deployment returned by our framework against the sensors placement
of the Emotiv EPOC. We make the following observations: first, the sensors considered by
our framework perform considerably better than the sensor distribution used by the Emotiv
EPOC, especially with respect to Tasks 2 and 4. Furthermore, it is worth mention that the
same sensor placement returned by our framework performs almost equally well across the

89

14 -200
el
g
'?')_12 L g -300
(O]
@ -400 |
»10r <
2 3 500 -
5 P -600
“ 61 i)
3 © -700
E 4 P
2 5 -800
© @©
£ 2 @ 900
=
=0 : : : : L | -100 L L L |
-700 -600 -500 -400 -300 -200 -100 0 4 6 8 10 12 14
a) Batch-state estimation error b) Number of sensors deployed
H Emotiv M Proposed
| b -
© 5
® e 670
Coleer e §
Clelelole) E
5 -690
OO0 Q® 3
Q
T
P -710
e
©
o
-730
C) [Emotiv —— Proposed d) Task 1 Task 2 Task 3 Task 4

Figure 4: (a) Minimal sensor placement to achieve a prescribed batch-state estimation errors.
(b) batch-state logdet errors achieved given different sensor budgets. (c) The 64-channel
geodesic sensor distribution for measurement of EEG, where the sensors in gray represent
those of the Emotiv EPOC and the ones in red are those returned by Algorithm 12 when
solving (Py) (that relieved to be the same for all 4 tasks), given the identified DTFOS and
a deployment budget of 14 sensors. (d) batch-state log det estimation errors associated with
the highlighted sensor placements in (c).

different tasks.
Assessment of Inter-subject variability

To assess how the inter-subject variability of brain dynamics affects the sensor selection
under a fixed budget, we next consider a set of experiments where we solve Py and Py for
10 subjects across the four different tasks (Task 1-4). In particular, based on the identified
DTFOS associated with the four tasks for a subject, we apply Algorithm 2 to obtain the
placement of sensors given a deployment budget of 14 sensors by minimizing (i) initial
state-uncertainty estimation error, and (ii) batch-state estimation error, respectively. In
addition, we also identify the most voted 14 sensor locations based on the poll of sub-optimal
solutions returned when solving P2 and P, individually for all 10 subjects. The results
are summarized in Figure 5-(a-d). We use heat maps to show the distribution of sensor
locations returned by solving Ps and Py individually in Figure 5-(a) and 5-(c), respectively.

90

T1T2T3 T41 T1T27T3 T4

P
a s b) e
0 e)5 10 s Sub-optimal MMM Most voted 0
100 T T ;

T1

(=2
o

N
=

N
o

-
(=
o

100

[=2]
88

N
(=]

100

100

(=2
883

N
o

100

=
-
s 8

Improvement on batch-state estimation error

o

Improvement on initial state uncertainty estimation

)
S
~

« 5 s 20 2 3 a4 s 6 7
Subject ID Subject ID
Figure 5: (a-b) The 64-channel geodesic sensor distribution over 10 subjects under Task 1-4
and the most voted deployment given a 14-sensor budget by minimizing (a) the initial state-
uncertainty estimation error and (b) batch-state estimation error. (c-d) The improvement
on (c) initial state-uncertainty estimation error and (d) batch-state estimation error when
(i) the sub-optimal 14-sensor deployment returned by Algorithm 2 individually (blue bar)

and (ii) the most voted 14-sensor deployment by 10 subjects (red bar) are considered.

We can make the following remarks: (i) there exists a noticeable degree of inter-subject
variabilities in the sensor deployment. This can be evidenced by the fact that the chosen
sensors span over 40, 41, 46, 46 and 37, 43, 43, 46 different locations across the 4 different tasks
when solving Ps and P4, respectively. This suggests that the underlying brain dynamics are
subject to remarkable individual heterogeneities even in response to the same set of tasks.
Subsequently, the best-possible sensor schemes have to be designed to be individual-specific.

At the same time, there is good percentage of agreement and lower loss of performance
when planning homogeneous commercial solutions. Specifically, sensors 1,25,29,41,42 are
almost unanimously chosen by all 10 subjects, as result of solving both Py and P4. This
strongly hinges that (for the proposed tasks) there seems to be some fundamental underlying
dynamics that enables the state estimation and this subset of sensors are responsible for

91

accessing them. To see this more clearly, we report the top voted 14 sensor locations as
an average case and color them in descending order of consensus as a function of darkness
in Figure 5-(b) and (d) — as comparison, we also report the sensor deployment proposed
by Emotive EPOC with red circles in both geodesic maps. The following observations
are due. First of all, notice that all 14 sensors are voted by at least 5 subjects while
sensor 1,25,29,41,42 are chosen by at least 8 subjects. Secondly, when considering the
minimization of batch-state estimation errors instead of initial state-uncertainty estimation
errors, the sensor deployment can be very different. For instance, sensor 63 and 64 are
critically important when solving P4 (as 8 out of 10 subjects choose them) whereas their
influence to the initial state-uncertainty estimation are out-weighted by other sensors. Third,
similar with our previous case study, only 7/14 and 6/14 most voted sensor deployment by
10 subjects are identical to those proposed by Emotiv EPOC when solving P2 and Py,
respectively. This potentially suggests the need of the redesign of Emotiv provided the
estimation performance we setup in our study, since under our proposed approach the most
voted deployment and sub-optimal individual deployment (as returned by the algorithms
proposed in this chapter) achieve better performance. Specifically, we show the improvement
on the log det estimation error of both initial state-uncertainty and batch state over the one
by Emotiv EPOC when the most voted deployment (red bar) and the sub-optimal individual
deployment (blue bar) are employed — see Figure 5-(e) and (f), respectively. The positive
improvement suggests that our proposed deployment is better than that of Emotiv EPOC.
We notice that the sub-optimal deployment returned by solving Ps and P, individually
improves the estimation error significantly in all cases, which is aligned with the results of our
previous case study on a single subject. Overall, based on the aforementioned observations
one could conclude that the sensors’ locations of the commercial EEG devices could be re-
designed to enhance both their initial state and batch-state estimation error performance.

Discussion of the results

We first notice that the proposed sensor locations seem to cope better with scenarios where
the neuro-activation is not as well understood as the motor-related tasks (Tasks 1 and 3),
e.g., imagining actions associated with Tasks 2 and 4. Additionally, we emphasize that the
time-window considered was small (K = 7), since aimed to attain real-time estimation. As
a result, it is expected to obtain even better performance results if we increase the size
window. Besides, the cumulative error increases faster in the Emotiv EPOC.

Although in our case study we relied on EEG data, it is expected that the proposed prob-
lems have distinct value in different biological settings — as explained in the introduction.
Specifically, in problems where signals are well modeled by the proposed DTFOS, as it is
the case of other physiological signals such as electromyograms (EMG) and electrocardio-
grams (ECG) [170].

6.5. Concluding Remarks & Future Work

We considered biologically motivated discrete-time linear fractional-order systems and stud-
ied the trade-off between the sensor placement and the properties that pertain to Kalman-like
filter performance. Specifically, we formalized the sensor placement problems in context of
four different (but related) problems pertaining to the sensor placement to minimize the

92

state-uncertainty and batch-state estimation error. We showed that these problems are NP-
hard, and we presented polynomial approximation strategies for their solution that have
sub-optimality guarantees.

Additionally, we explored the different problems in the context of real EEG data during a
period of time where the individuals performed four different tasks. The results obtained
support the capability of the proposed framework to deal with critical sensing deployment
problems, and unveiled that the number and location of the sensors vary across tasks and
subjects for the same experimental setup. Furthermore, we argue that these locations are
not compatible with those used by state-of-the-art EEG wearables (e.g., Emotiv EPOC),
which supports the need for further research and re-design of future EEG wearables that
aim to attain a specified estimation performance for a given task.

Future research will consider the multi-scenario case, where the sensor placement has to
consistently and reliably consider possible dynamics, e.g., multi-tasks simultaneously when
EEG is considered. Additionally, we propose to validate the presented methodology when a
large cohort of individuals and tasks is considered.

6.6. Appendix: Proof of the Results

Proof of Theorem 9: We prove that (P1)-(Ps) are NP-hard by focusing on the case where
(i) the measurement matrix C' is the identity matrix (C' = I), (ii) the measurement noise vy
is Gaussian with zero mean and covariance the identity matrix (C(vx) = I), and (iii) K = 0,
in which case zx = xo.x = o, and thus, (P1)-(P4) are equivalent to the following problem:

minimize logdet(3(Zg
SC{1,2,....c} (()) (613)
subject to |S] <.

In more detail, we prove that the problem in (6.13) is NP-hard by proving that the following
problem is equivalent to (6.13), and that it is NP-hard:

minimize H(xg|yo(S
SC{1,2,....c} (ol (S)) (6.14)
subject to [S| <,

where H(zo|S) is the entropy of z given the measurements yo(S) collected by the selected
sensors in S at time k = 0. Specifically, we prove that the problem in (6.14) is NP-hard by
proving it is equivalent to the entropy maximization problem

maximize H(yo(S
SC{1,2,...c} (40(5)) (6.15)
subject to S| < r,

which we prove to have an equivalent instance to the NP-hard instance of the entropy
maximization problem in [180].

To prove that the problems in (6.13) and (6.14) are equivalent, we use [175, Proposition 2],

93

which implies for K = 0 that

_ logdet(X(z0)) n nlog(2me)

H(zo|yo(S)) 5 5 :

(6.16)

where Zg is the minimum mean square estimator of zg given yo [123, Appendix E]. There-
fore, (6.16) implies that minimizing the objective in (6.13) is equivalent to minimizing the
objective in (6.14).

We next prove that the problems in (6.14) and (6.15) are equivalent. To this end, first
observe that

H(zolyo(S)) = H(zo) + H(yo(S)|zo0) — H(yo(S)), (6.17)

(we derive (6.17) using the conditional entropy chain rule [181]), as well as that:
e H(xp) is constant with respect to S.

e H(yo(S)|zo) is constant for C = I, C(vg) = I, and for fixed |S|, (which is the
case throughout this proof, since due to the monotonicity of the logdet and the
entropy, in all problems in (6.13), (6.14), and (6.15), it is |S| = r for any S that
solves (6.13), (6.14), and (6.15)), since if y(()i) (S) (xéi), respectively) denotes the i-th
element of yo(S) (zo, respectively), then

H(yo(S)]xo)
|S|

LN H (S)wo, 55 (S), -y~ (S))
=1

25 Hy (S)]ay))

1€S

¢ 1
=3 log(2me)|S]

In particular, equalities (a), (b) and (c¢) hold for the following reasons, respectively: (a)

holds due to the conditional entropy chain rule [181]; (b) holds since for all j # 1, y(()i)
given :c(()z) is independent of a:(()j) and yé]); and (c) holds since y(()z) given a:(()z) is Gaussian

with variance 1, since we consider the case where C(vg) = I.
Due to (6.17) and the latter two observations, we conclude that (6.14) is equivalent to (6.15).

Given the equivalence of (6.14) and (6.15), we conclude the proof by finding an instance for
the problem in (6.13) that is equivalent to an instance for the problem in (6.15) that is NP-
hard. In particular, consider 3 to be any n x n matrix that makes the entropy maximization
problem in [180, Theorem 1| NP-hard: ¥ is a positive definite symmetric with all the diagonal
entries equal to 3n, and all the off-diagonal entries equal to 0 or 1. The problem (6.15) is
NP-hard if we can find an instance for the problem in (6.13) where yo({1,2,...,c}) is a
Gaussian random variable with covariance 3. Indeed, let C(xg) be any positive definite
symmetric matrix with all diagonal entries equal to 3n — 1, and all off-diagonal entries equal
to 0 or 1 (Xg is positive define by construction, since it is both diagonally dominant, and

94

as a result invertible, and symmetric). For this selection of parameters, yo has covariance
Y; the reason is threefold: (i) yo = zo + vo, (ii) 2o and vy are Gaussian with covariances
Yo and I, respectively, and (iii) z¢ and vy are uncorrelated; as a result, yo is Gaussian with
covariance g + 1 = 2. [

Proof of Theorem 10: In the following paragraphs, we only present the proof for

IOg det (ZéK (S)))

since the proof for logdet (X, , (S)) follows similar steps. In particular, we complete the
proof for logdet (X3, (S)) in three steps: (i) we prove its closed formula; (i) we show that
it is non-increasing; and (7) we prove that it is supermodular.

Given any finite estimation horizon [0, K|, we first prove that

log det (X, (S)) =

— log det (Z siLg. MW Lo. g + C(zK)‘1> . (6.18)
=1

In particular, as in the proof of Lemma 1 in [58], we let Sp.x denote the block diagonal
matrix with diagonal elements K + 1 copies of the sensor placement matrix S in (6.8).
Then, using the Woodbury matrix identity [93, Corollary 2.8.8| at (6.3), we obtain ¥, (S) =
(OLEOK+C(2k)™1) 7L, where Z = (So.x C(vo:k)Sq. ;) "L, and due to the definitions of Sp.f,
Co.x and Og = So.xCo.x Lo. . Moreover, due to the definition of Sy.x, i.e., it contains block
of matrices that are only zero or identity matrices, and because C(vg.x) is block diagonal,
it follows that = = SO:KC(UO:K)_IS(IK, which can be verified by direct calculation. Overall,
we obtain

Y5, (S) = (Lg.x Co.c AC(v0.) " ACo. k¢ Loic + Clzi) ™) 7,

where A = S&KSO;K. Now, since A and C(vg.x¢)~! are block diagonal, and the blocks of A
are either identity or zero matrices, C(vp.x) "'A = AC(vg.xr)~!. Furthermore, the definition
of So.i implies that A2 = A. Thus, it follows that

Y5, (S) = (Lo, Co. e AC(vo:x) "' Coic Losie + Clzi) ™) 7L (6.19)

For the last step, observe first that A =37 | s, 10 so

Lg.xCo. . AC(vo.1¢) " Co.r¢ Lo.ic

= Z 5L Corre IV C(v0.1) " Co.ic Lok (6.20)
i—1

= ZSiLaKM(i)LO:Ka (6.21)
=1

95

where we derive (6.21) from (6.20) by using for 1) the reverse steps to the ones we used for
A to derive (6.19).

Next, to prove that logdet (X3, (S)) is a non-increasing set function in the choice of the
sensors S, we follow similar steps to those in Theorem 2 in [58]. Specifically, consider
S C &', and observe that (6.18) and from [93, Theorem 8.4.9], ¥;, (S') < X3, (S), since
LMD Lok = 0 and C(zx) = 0. As a result, logdet(Zz,. (S)) < logdet(Zz, (S)).

Finally, to prove that logdet(X;, (S)) is supermodular, we prove that —logdet(Xz, (S))
is submodular. In particular, recall that a function h : 2[¢ — R is submodular if and
only if, for any a € [¢], the function h, : 2l 5 R, where ho(S) = (S U {a}) — h(S),
is a non-increasing set function. Therefore, to prove that h(S) = —logdet(X;, (S)) is
submodular, we may prove that the hq(S) is a non-increasing set function. To this end,
we denote Y25, s;Ld.,x M@ Lok in (6.18) by M(S), and follow similar steps to those in the
proof of Theorem 6 in [52]. Specifically, we note that

ha(S) = logdet(M(S U {a}) + C(zx) ™ 1)—
log det(M(S) + C(zx)™1)
= logdet(M(S) + M({a}) + C(zx) 1)~
log det(M(S) + C(zx) ™).

For S C & and t € [0,1], define ®(¢) = C(zx) " + M(S) +t(M(S') — M(S)) and
g(t) =logdet (®(t) + M({a})) — logdet (P(t)).
Then, g(0) = he(S) and g(1) = he(S’). Moreover, since

dlog det(®(t)) _1dD(t)
— - tr <‘1>(t) 1dt>

(as in eq. (43) in [95]), it follows that
g(t) = tr [((@(t) + M({a})) ™" = @() ") F],
where F = M(S') — M(S). Furthermore, from [93, Proposition 8.5.5], we have that
(@(t) + M({a}))™! = @(t) " =0,

where ®(t) is invertible since C(zx)~! = 0, M(S) = 0, and M(S’) = M(S)). Since also
F = 0, from [93, Corollary 8.3.6], it readily follows that

Amax[((2(t) + M({a})) ™" — @(t)")F] < 0.
Thus, ¢(t) < 0, and he(S") = g(1) = g(O)—l—fol g(t)dt < g(0) = he(S), i-e., hq is non-increasing.

96

Proof of Theorem 11: The proof of the theorem in attained in three main steps: (i)
we prove (6.9); (i) we prove (6.10); and (74) we prove the computational complexity of
Algorithm 11.

To prove (6.9), let Sp, Si,... be the sequence of sets selected by Algorithm 11 and [the
smallest index such that logdet (X;,,S;) < R. Therefore, S; is the set that Algorithm 11
returns. To prove (6.9), we first observe that Theorem 10 implies logdet (Xz,.,S)) is a
supermodular and non-increasing. Then, from [94], we have that

I PP — 1 Y5
1t 0Bt (S5 0) — logdet (S c)
|S*| logdet (X3, ,S;-1) — logdet (X3, [c])

Now, [is the first time that logdet (Xz,,8) < R, and as a result logdet (¥z,,S5-1) >
R, and, as a consequence, we have that (6.10) holds. Furthermore, logdet (X;,,0) =
logdet (C(zk)) , and from the geometric-arithmetic mean inequality, we obtain that
logdet (C(zk)) < n(K + 1) log m
n(K + 1) max(oZ,02)
n(K +1)
= n(K + 1) log max(a3,02).

<n(K +1)log

Finally, to prove the computational complexity of Algorithm 11, note that the while loop
is repeated for at most ¢ times. Moreover, the complexity to compute the determinant
of an n(K + 1) x n(K + 1) matrix, using the Coppersmith-Winograd algorithm [97], is
O((nK)?*), which is also the complexity incurred by the multiplication between such two
matrices. Additionally, the determinant of at most ¢+ 1 matrices must be computed so that
the

arg max (logdet (2X3,,S) —logdet (Xz,,SU{a}))

a€lc\S

can be computed. Also, O(c) time is required to find a maximum element between ¢
available. Therefore, the overall computational complexity of Algorithm 11 is dominated
by O(c?(nK)%*%). [

Proof of Theorem 12: In the following paragraphs, we complete the proof of the theorem
in three steps: () we prove (6.11); (47) we prove that the approximation factor 1 — 1/e in
(6.11) is the best one can achieve in polynomial time for (P2)/(P4); and (iii) we discuss the
computational complexity of the algorithm.

To prove (6.11), we first observe that Theorem 10 implies log det (Xz,.,S) — log det (23, ,)
is a supermodular, non-increasing and non-positive set function. Consequently, the results
from [94] can be invoked to obtain (6.11).

97

To prove that the approximation factor 1 — 1/e in (6.11) is the best one can achieve in
polynomial time for (P2)/(Py), we recall that in the worst-case (P2)/(P4) are equivalent to
the minimal observability problem (see proof of Theorem 9). Then, the result follows by
noticing that the minimal observability problem has the same computational complexity as
the set cover problem [7], which cannot be approximated in polynomial time with a factor
better than 1 —1/e [13].

Finally, the computational complexity of Algorithm 12 can be derived by following the same
steps and reasoning as the one proposed in the proof of Theorem 11 to show the time
complexity of Algorithm 11. |

Proof of Theorem 13: Since the arithmetic mean of a finite set of positive numbers is at
least as large as their harmonic mean, the following inequality holds:

(%) > (n(K +1))°

- , 6.22
% (S, Ly MO Lok + Clar)) (0:22)

where we used the closed form for ¥;, proved in Theorem 10.

Furthermore, in the denominator of (6.22), for the first term it is tr(>_;_, siL(IKM(i)LOZK) =
¢ sitr(MW Lo L]), where

(Lo, MY Lo.xc) < n(K + 1) CIFIC(o1x) " N2l Lo L 124

since ||[I®| = 1, and for the second term it is tr(C(zx) ') < n(K + 1) max{aéfl),az(,fl)}.
Therefore,

tr <Z siLa—:KM(i)Lo:K + C(zK)_1> <
i=1

rn(K + DoV CI5II L2 + n(K + 1) max{o, ,ob Y1}
(K + 1)l VCIEI L2 + n(K + 1) max{a§ ", 0(D}

Hence, tr(Xs,) > n(K + 1)/(roS V||CIBII L2 + max{ol ", a4 M), n

98

CHAPTER 7 : Scheduling Nonlinear Sensors for Stochastic Process Estimation

In this chapter, we focus on activating only a few sensors, among many available, to estimate
the state of a stochastic process of interest. This problem is important in applications such as
target tracking and simultaneous localization and mapping (SLAM). It is challenging since
it involves stochastic systems whose evolution is largely unknown, sensors with nonlinear
measurements, and limited operational resources that constrain the number of active sensors
at each measurement step. We provide an algorithm applicable to general stochastic pro-
cesses and nonlinear measurements whose time complexity is linear in the planning horizon
and whose performance is a multiplicative factor 1/2 away from the optimal performance.
This is notable because the algorithm offers a significant computational advantage over the
polynomial-time algorithm that achieves the best approximation factor 1/e. In addition,
for important classes of Gaussian processes and nonlinear measurements corrupted with
Gaussian noise, our algorithm enjoys the same time complexity as even the state-of-the-art
algorithms for linear systems and measurements. We achieve our results by proving two
properties for the entropy of the batch state vector conditioned on the measurements: a)
it is supermodular in the choice of the sensors; b) it has a sparsity pattern (involves block
tri-diagonal matrices) that facilitates its evaluation at each sensor set.'

7.1. Introduction

Adversarial target tracking and capturing [129, 183], robotic navigation and autonomous
construction [128], active perception and simultaneous localization and mapping (SLAM)
[22] are only a few of the challenging information gathering problems that benefit from the
monitoring capabilities of sensor networks [130]. These problems are challenging because:

e they involve systems whose evolution is largely unknown, modeled either as a stochastic
process, such as a Gaussian process [184], or as linear or nonlinear system corrupted
with process noise [129],

e they involve nonlinear sensors (e.g., cameras, radios) corrupted with noise [103],

e they involve systems that change over time [127], and as a result, necessitate both
spatial and temporal deployment of sensors in the environment, increasing the total
number of needed sensors, and at the same time,

e they involve operational constraints, such as limited communication bandwidth and
battery life, which limit the number of sensors that can simultaneously be active in
the information gathering process [131].

Due to these challenges, we focus on the following question: “How do we select, at each time,
only a few of the available sensors so as to monitor effectively a system despite the above
challenges?” In particular, we focus on the following sensor scheduling problem:

Problem 1. Consider a stochastic process, whose realization at time t is denoted by x(t)
and a set of m sensors, whose measurements are nonlinear functions of x(t), evaluated at
a fized set of K measurement times ti,to,...,tx. In addition, suppose that al each t a

!This chapter is based on the paper by Tzoumas et al. [182].

99

set of at most s < m sensors can be used. Select the sensor sets so that the error of the
corresponding minimum mean square error estimator of (x(t1),x(t2),...,x(tx)) is minimal
among all possible sensor sets.

The reason we focus on estimating the batch state vector (z(t1),z(t2),...,2(txk)) is that in
many control problems we need to have a good estimate of the trajectory taken so far, e.g.,
for linearisation purposes.

Literature review: There are two classes of sensor scheduling algorithms, that trade-off
between the estimation accuracy of the batch state vector and their time complexity [185]:
those used for Kalman filtering, and those for batch state estimation. The most relevant
papers on batch state estimation are [185] and [135|. However, both of these papers focus on
linear systems and measurements. The most relevant papers for Kalman filtering consider
algorithms that use: myopic heuristics [115], tree pruning [137], convex optimization [119,
132, 186, 187|, quadratic programming [138], Monte Carlo methods [188], or submodular
function maximization [5, 139]. However, these papers focus similarly on linear or nonlinear
systems and measurements, and do not consider unknown dynamics.

At the same time, [114] focuses on sensor selection algorithms for estimating stochastic
processes that are, in contrast to the processes in the present chapter, spatially correlated
and not temporally correlated. In more detail, in [114], x(¢;) represents the value of a
parameter of interest at a spatial position ¢;, and is constant in time. This is notable
since in [114] the proposed algorithms for sensor selection become fast when the covariance
matrix of (z(t1),x(t2),...,x(tx)) is sparse (or can be approximated by a sparse matrix).
Notwithstanding, this is not necessarily the case for dynamic stochastic processes, since x(t;)
may be strongly correlated to the trajectory (x(t1),z(t2),...,2z(t;—1)) taken so far in the
state space.

Main contributions.:
1. We prove that Problem 1 is NP-hard.

2. We prove that the best approximation factor one can achieve in polynomial time for
Problem 1, in the worst case, is 1/e.

3. We provide Algorithm 13 for Problem 1 that:

e for all stochastic processes and nonlinear measurements, achieves a solution that
is up to a multiplicative factor 1/2 from the optimal solution with time complexity
that is only linear in the planning horizon K. This is important, since it implies
that Algorithm 13 offers a significant computational advantage with negligible
loss in performance over the polynomial-time algorithm that achieves the best
approximation factor of 1/e,

e for important classes of Gaussian processes, and nonlinear measurements cor-
rupted with Gaussian noise, has the same time complexity as state-of-the-art
algorithms for linear systems and measurements. For example, for Gaussian pro-

100

cess such as those in target tracking, or those generated by linear or nonlinear
systems corrupted with Gaussian noise, Algorithm 13 has the same time complex-
ity as the batch state estimation algorithm in [185], and lower than the relevant
Kalman filter scheduling algorithms in [119, 132].

Therefore, Algorithm 13 can enjoy both the estimation accuracy of the batch state
scheduling algorithms (compared to the Kalman filtering approach, that only approx-
imates the batch state estimation error with an upper bound [185]) and, surprisingly,
even the low time complexity of the Kalman filtering scheduling algorithms for linear
systems.

Technical contributions.:

1. Supermodularity in Problem 1: We achieve the approximation performance of Algo-
rithm 13, and the linear dependence of its time complexity on the planning horizon,
by proving that our estimation metric is a supermodular function in the choice of
the utilized sensors. This is important, since this is in contrast to the case of multi-
step Kalman filtering for linear systems and measurements, where the corresponding
estimation metric is neither supermodular nor submodular [139] [5].

2. Sparsity in Problem 1: We achieve the reduced time complexity of Algorithm 13
for Gaussian processes by identifying a sparsity pattern in our estimation metric.
Specifically, for Gaussian processes the time complexity of each evaluation of our metric
is decided by the sparsity pattern of either the covariance of (x(t1), z(t2),...,z(tx)),
or the inverse of this covariance. This is important since the two matrices are not
usually sparse at the same time, even if one of them is [133].

In more detail, we identify that for Gaussian processes such as those in target tracking,
the first matrix is block tri-diagonal, whereas for those in SLAM, or those generated
by linear or nonlinear systems corrupted with Gaussian noise, the second matrix is
block tri-diagonal.

Notation: We denote the set of natural numbers {1,2,...} by N, the set of real numbers
by R, and the set {1,2,...,n} by [n] (n € N). The set of real numbers between 0 and 1 is
denoted by [0, 1], and the empty set by 0. Given a set X, |X] is its cardinality. In addition,
for n € N, X™ is the n-times Cartesian product X x X x --- x X'. Matrices are represented
by capital letters and vectors by lower-case letters. We write A € X™*"2 (ny,ny € N)
to denote a matrix of ny rows and no columns whose elements take values in X; AT is its
transpose, and [A];; is its element at the i-th row and j-th column; det(A) is its determinant.
Furthermore, if A is positive definite, we write A = 0. In the latter case, A~! is its inverse.
I is the identity matrix; its dimension is inferred from the context. Similarly for the zero
matrix 0. The = denotes equivalence. Moreover, for a probability space (2, F,P), Q is
the sample space, F the o-field, and P : F ~ [0, 1] the function that assigns probabilities
to events in F [189]. We write x ~ F to denote a random variable z with probability
distribution F; E(x) is its expected value, and ¥(z) its covariance. z ~ N(u,X) denotes a
Gaussian random variable x with mean p and covariance 3; with a slight abuse of notation,
we equivalently write z ~ N(E(z),X(z)). Finally, we write x|y ~ G to denote that z’s

101

probability distribution given y is G.
7.2. Problem Formulation

This section introduces the system, measurement, and scheduling models and presents the
sensor scheduling problem formally.
System 2. We consider two cases:

e Continuous time model: Consider the stochastic process (along with a probability space
(Q,F,P)):
T(t) tw e Qt >tg— R (7.1)

where n € N, to is the initial time, and x,(t) the state vector given the sample w.
e Discrete time model: Consider the nonlinear discrete-time system:
Tyl = lk(xlzk), I, ~ ,Ck, keN (72)

where x, € R™ 1is the state vector, x1y the batch vector (x1,z2,...,x), and Ly a
probability distribution over functions l, : R™ — R™.

Because the system models (7.1) and (7.2) assume no characteristic structure, they are
appropriate for modeling largely unknown dynamics. For example, an instance of (7.1) is
the time-indexed Gaussian process system model:

x(t) ~ GP(u(t), B(t, 1)), t,t' >to, (7.3)

where p(t) is the mean function and (¢,t') is the covariance function. Similarly, an instance
of (7.2) is the state-indexed Gaussian process system model:

LTh+1 = l(xk)v [~ g,P(M(l'), E(IE,$,)),ZC,$/ € R™ (74)

Measurement Model 1. Consider m nonlinear sensors that operate in discrete time:

Zik = gi(xp) +vig, i€[mlkeN (7.5)
where for the continuous-time system in (7.1) we let xy := x(tg) at a pre-specified set of
measurement times t1,ta,... and v; . s the measurement noise of sensor i at time k.

Assumption 6. v; ;. are independent across i and k. In addition, g; is one-time differen-
tiable.

Sensor Scheduling Model 1. The m sensors in (7.5) are used at K scheduled measure-
ment times {t1,to,...,tx}. At each k € [K]|, only sy of the m sensors are used (s < m),
resulting in the batch measurement vector y:

yr = Skzk, k€ [K], (7.6)

where S, is a sensor selection matriz, composed of sub-matrices [Si)i; (i € [si], j € [m])
such that [Sglij = I if sensor j is used at time k, and [Sk];j = 0 otherwise. We assume that
a sensor can be used at most once at each k, and as a result, for each i there is one j such

102

that [Sk)ij = I while for each j there is at most one i such that [Skli; = 1.

We now present the sensor scheduling problem formally:

Notation. For i,j € N, ¢;.; = (¢, it1,...,¢;). In addition, S = {j : there exists i €
[sk], [Sklij = I}: Sk is the set of indices that correspond to utilized sensors at tj.
Problem 1 (Sensor Scheduling in Stochastic Processes with Nonlinear Observations). Select
at each time k a subset of si sensors, out of the m sensors in (7.5), to use in order to
minimize the conditional entropy of x1.x given the measurements yi.x:

minimize H(x1.x|S1.x)

Skg[m]vkE[K]
subject to |Sk| < si, k € [K],

where H(x1.x|S1.x) denotes the conditional entropy H(x1.x|y1.x) of 1.5 given the measure-
ments Yi.x -

The conditional entropy H(z1.x|y1.x) captures the estimation accuracy of x1.x given yi.x,
as we explain in the following two propositions:

Proposition 6. H(z1.x|y1.x) is a constant factor away from the mutual information of
r1.5 ond y1.x. In particular:

H(xlzK“/l:K) = _]I(~I1:K; yl:K) + H(xlzK)’

where 1(x1.5;y1.) 18 the mutual information of r1.x and y1.x, and H(z1.x) is constant.
Proposition 7. Consider the Gaussian process (7.3) and suppose that the measurement
noise in (7.5) is Gaussian, v;j ~ N(0,X(v;x)). H(zi.x|y1.x) s a constant factor away
from logdet(X(z7.), where X(x}.,) is the error covariance of the minimum mean square
estimator x3.; of x1.x given the measurements yi.x. In particular:?

logdet(3(x].;)) = nKlog(2me)

H(z1.x|y1:x) = 5 + 5 .

7.3. Main Results

We first prove that Problem 1 is NP-hard, and then derive for it a provably near-optimal
approximation algorithm:

Theorem 14. The problem of sensor scheduling in stochastic processes with nonlinear ob-
servations (Problem 1) is NP hard.

Due to Theorem 14, we need to appeal to approximation algorithms to obtain a solution to
Problem 1 in polynomial-time. To this end, we propose an efficient near-optimal algorithm
(Algorithm 13 with a subroutine in Algorithm 14) and quantify its performance and time

*We explain z},x and logdet(3(x1.x)): }.x is the optimal estimator for 1.k, since it minimizes among
all estimators of x1.x the mean square error E(||lz1.x — 21.x|13) (|| - ||z is the euclidean norm), where the
expectation is taken with respect to y1.x [123, Appendix EJ. log det(3(z].x)) is an estimation error metric
related to ||1.x — 7. ||3, since when it is minimized, the probability that the estimation error ||z1.x — 7. ||3
is small is maximized [185].

103

Algorithm 13 Approximation algorithm for Problem 1.

Input: Horizon K, scheduling constraints s, s, ..., Sk, error metric H(x1.x|S1.x) : Sk C
m],k € [K] — R
Output: Sensor sets (S1,So, .. .,Sk) that approximate the solution to Problem 1, as quan-
tified in Theorem 15
k <+ 1, 81;0 — 0
while £ < K do
1. Apply Algorithm 14 to

SIQ%TIEL}{H(QJLMSl;k_l,S) IS < sk} (7.7)

2. Denote by Sy the solution Algorithm 14 returns
3. Stk + (S1ik—1,Sk)

4. k+—k+1
end while

complexity in the following theorem.
Theorem 15. The theorem has two parts:

1. Approximation performance of Algorithm 13: Algorithm 13 returns sensors sets S1, So,
cee ,SK that:

(a) satisfy all the feasibility constraints of Problem 1: |S| < sk, k € [K]

(b) achieve an error H(x1.x|S1.x) such that:

H(wl:K]SLK) — OPT
MAX — OPT

1
< — .
<3 (7.9

where OPT is the optimal cost of Problem 1, and MAX = maxg H(21.x[S]) is
the mazimum (worst) cost in Problem 1. '

2. Time complexity of Algorithm 13: Algorithm 13 has time complezity O(Zf:1 s2T),
where T is the time complexity of evaluating H(x1.x|S. ;) : S, € [m], k € [K] — R at
an S .

In the following paragraphs, we discuss Algorithm 13’s approximation quality and time
complexity and fully characterize the latter in Theorem 16 and Corollary 7 for Gaussian
processes and Gaussian measurement noise.

Supermodularity and monotonicity of H(z1.x|y1.x). We state H(z1.x|y1.x)’s prop-
erties that are used to prove Theorem 15. In particular, we show that H(zy.x|y1.x) is
a non-increasing and supermodular function with respect to the sequence of selected sen-
sors. Then, Theorem 15 follows by combining these two results with results on submodular
functions maximization over matroid constraints [12].

104

Approximation quality of Algorithm 13. Theorem 15 quantifies the worst-case per-
formance of Algorithm 13 across all values of Problem 1’s parameters. The reason is that
the right-hand side of (7.8) is constant. In particular, (7.8) guarantees that for any instance
of Problem 1, the distance of the approximate cost H(z1.x|S1.x) from OPT is at most 1/2
the distance of the worst (maximum) cost M AX from OPT. This approximation factor is
close to the optimal approximation factor 1/e = .38 one can achieve in the worst-case for
Problem 1 in polynomial time [141]; the reason is twofold: first, Problem 1 involves the min-
imization of a non-increasing and supermodular function [96], and second, as we proved in
Theorem 14, Problem 1 is in the worst-case equivalent to the minimal observability problem
introduced in [7], which cannot be approximated in polynomial time with a better factor
than the 1/e [13].

Remark 9. We can improve the 1/2 approzimation factor of Algorithm 13 to 1/e by utilizing
the algorithm introduced in [190]. However, this algorithm has time complexity O((nK)!1T),
where T' is the time complexity of evaluating H(z1.x|S].x) = S € [m], k € [K] = R at an

/
1:K-

Time complexity of Algorithm 13. Algorithm 13’s time complexity is broken down
into two parts: a) the number of evaluations of H(z1.x|y1.x) required by the algorithm;
b) the time complexity of each such evaluation. In more detail:

Number of evaluations of H(x1.x|y1.x) required by Algorithm 13. Algorithm 13
requires at most si evaluations of H(x1.x|y1.5x) at each k € [K]. Therefore, Algorithm 13
achieves a time complexity that is only linear in K with respect to the number of evaluations
of H(x1.x|y1.x); the reason is that Zle si < maxke[K](s,%)K. This is in contrast to the al-
gorithm in Remark 9, that obtains the best approximation factor 1/e, whose time complexity
is of the order O((nK)!'!) with respect to the number of evaluations of H(z1.x|y1.x)->

Time complexity of each evaluation of H(z1.x|y1.x). This time complexity depends
on the properties of both the stochastic process (7.1) (similarly, (7.2)) and the measurement
noise v; i in (7.5). For the case of Gaussian stochastic processes and measurement noises:

Theorem 16. Consider the Gaussian process model (7.3) and suppose that the measurement
noise is Gaussian: vy ~ N(0,X(v;)) such that (v,) = 0. The time complexity of
evaluating H(z1.x|y1.x0) depends on the sparsity pattern of X(z1.x) and X(x1.x) "' as follows.

e Each evaluation of H(z1.x|y1.5c) has time complezity O(n**K), when either ¥(x1.x)
or X(w1.5c) 7! is ewactly sparse (that is, block tri-diagonal).

e Each evaluation of H(x1.x |y1.xc) has time complezity O(n*>*K?%), when both ¥(x1.x)
and X(z1.x) " are dense.

Theorem 16 implies that when X(x1.x) or X(z1.5) ! is exactly sparse, the time complexity
of each evaluation of H(z1.x|y1.x) is only linear in K. This is important because X (z1.x) or
Y(x1.5¢) ! is exactly sparse for several applications and system models [191]. For example,
in adversarial target tracking applications, where the target wants to avoid capture and

3We can also speed up Algorithm 13 by implementing in Algorithm 14 the method of lazy evaluations [99]:
this method avoids in Step 2 of Algorithm 14 the computation of p;(S*™!) for unnecessary choices of i.

105

Algorithm 14 Single step greedy algorithm (subroutine in Algorithm 13).

Input: Current iteration k, selected sensor sets (S1,Sa,..., Sk—1) up to the current itera-
tion, constraint s, error metric H(x1.x|S1.x) : Sk C [m], k € [K] — R
Output: Sensor set Sy that approximates the solution to Problem 1 at time k
SV« 0, X0 < [m], and t + 1
Iteration t:
1. If 7! =0, return S*1
2. Select i(t) € X' for which p;;)(S"™!) = maxcye—1 ps(S™1), with ties settled
arbitrarily, where:

pi(S™Y = H(z1k|S1h_1,871) —
H(21.x|S16-1, ST U {i})
Ja. IF|SU{i(t)} > sk, X1« X1\ {i(t)}, and go to Step 1

3.b. If |St’1 U{i(t)} < sg, St St-1y {i(t)} and Xt xt-l \ {i(t)}
4. t < t+ 1 and continue

randomizes its motion in the environment (by un-correlating its movements), (1.5) can be
considered tri-diagonal (since this implies x(t)) and z(ty) are uncorrelated for |k —k'| > 2).
Similarly, in SLAM, or in system models where the Gaussian process in (7.3) is generated by
a linear or nonlinear system corrupted with Gaussian noise, X (z;. K)_1 is block tri-diagonal
[133]. In particular, for linear systems, ¥(x1.x)~! is block tri-diagonal [133, Section 3.1],
and for nonlinear systems, Y(x1.xc)~! is efficiently approximated by a block tri-diagonal
matrix as follows: for each k, before the k-th iteration of Step 1 in Algorithm 13, we first
compute fi1:x given yi.—1) up to k. This step has complexity O(n**K) when (z1.5)""
is sparse (133, Eq. (5)] [192, Section 3.8], and it does not increase the total time complexity
of Algorithm 13. Then, we continue as in [133, Section 3.2].

Sparsity in H(z1.x|y1.x). We state the two properties of H(x1.x|y1.x) that result to
Theorem 16. In particular, we prove that H(x1.x|y1.x) is expressed in closed form with two
different formulas such that the time complexity for the evaluation of H(x1.x|y1.x) using
the first formula is decided by the sparsity pattern of ¥(x1.x), whereas using the second
formula is decided by the sparsity pattern of ¥(x1.x)~!. The reason for this dependence is
that the rest of the matrices in these formulas are sparser than ¥ (z1.x) or Y(z1.x)”}; in
particular, they are block diagonal.

The full characterization of Algorithm 13’s time complexity for Gaussian processes and
Gaussian measurement noises follows.

Corollary 7. Consider the Gaussian process model (7.3) and suppose that the measurement
noise is Gaussian: vy ~ N(0,X(v; 1)) such that X(vi) = 0. The time complexity of
Algorithm 18 depends on the sparsity pattern of X(r1.xc) and X(z1.5) "1 as follows.

o Algorithm 18 has time complexity O(n**K Eszl s%), when either ¥(x1.5) or X(w1.5) 7
is exactly sparse (that is, block tri-diagonal).

106

e Algorithm 13 has time complexity O(n?>4K?4 Zi{:l s2), when both X(z1.x), X(21.5) !
are dense.

Comparison of Algorithm 13’s time complexity for Gaussian processes and Gaus-
sian measurement noises, per Corollary 7, to that of existing scheduling algo-
rithms. The most relevant algorithm to Algorithm 13 is the one provided in |185|, where
linear systems with additive process noise and measurement noises with any distribution are
assumed. Algorithm 13 generalizes [185] from linear systems and measurements to Gaus-
sian processes and nonlinear measurements. At the same time, it achieves the same time
complexity as the algorithm in [185] when X (z1.x) or (1.5)" ! is exactly sparse. This is
important since the algorithm in [185] has time complexity lower than the-state-of-the-art
batch estimation sensor scheduling algorithms, such as the algorithm proposed in [135], and
similar to that of the state of the art Kalman filter scheduling algorithms, such as those
proposed in |5, 119, 132] (in particular, lower for large K).

7.4. Conclusion Remarks & Future Work

In this chapter, we proposed Algorithm 13 for the NP-hard problem of sensor scheduling
for stochastic process estimation. FExploiting the supermodularity and monotonicity of con-
ditional entropy, we proved that the algorithm has an approximation factor 1/2 and linear
complexity in the scheduling horizon. It achieves both the accuracy of batch estimation
scheduling algorithms and, surprisingly, when the information structure of the problem is
sparse, the low time complexity of Kalman filter scheduling algorithms for linear systems.
This is the case, for example, in applications such as SLAM and target tracking, and for pro-
cesses generated by linear or nonlinear systems corrupted with Gaussian noise. Future work
will focus on an event-triggered version of the scheduling problem, in which the measure-
ment times are decided online based on the available measurements, and on a decentralized
version, in which information is exchanged only among neighboring sensors.

7.5. Appendix: Proof of Results
7.5.1. Proof of Proposition 7

Proof: We first show that the conditional probability distribution of xi.x given yi.x is
Gaussian with covariance ¥(x7.j), and then apply the following lemma:
Lemma 5 (Ref. [181]). Let z ~ N (u,X) and z € R™:

H(z) = %log[(%re)m det(X)].

Specifically, due to Assumption 7.6, (z1.x, y1.x) are jointly Gaussian. This has a twofold im-
plication: first, the minimum mean square estimator of z1.x given y;.x is linear in y.x [123,
Proposition E.2]; second, the conditional probability distribution of x1.x given y;.x is Gaus-
sian [124], with covariance ¥(z7,). Therefore, due to [123, Proposition E.3], this is also the
covariance of the minimum mean square estimator of x1.x given y1.x. As a result, due to

107

Lemma 5:
H(z1xly1x) = By oy - (H(z1xly1x = ¥1.1))

~ By 310827 det (a1

_ nKlog(2me) + logdet(X(x7].)
= 5 .

(7.9)

We derive a formula for (27, ;) in the proof of Lemma 8. [

Proof of Theorem 15

Proof: We first prove that H(x1.x|S1.x) is a non-increasing and supermodular function in
the choice of the sensors. Then, we prove Theorem 15 by combining these two results and
results on the maximization of submodular functions over matroid constraints [12].

Notation. Given K disjoint finite sets &£1,&s,...,Ek and A;, B; € &;, we write A1.x =
Bi.x to denote that for all i € [K], A; C B; (A; is a subset of B;). Moreover, we denote
that A; € & for all i € [K] by A1.x € &1.x. In addition, given Aj.x, B1.x € &1.x, We write
A1.x W By.g to denote that for all i € [K], A; U B; (A4; union B;).

Definition 22. Consider K disjoint finite sets £1,E,...,Ex. A function h : E1.x — R
is non-decreasing if and only if for all A,B € &E1.x such that A <= B, h(A) < h(B);
h: &1.x — R is non-increasing if —h is non-decreasing.

Proposition 8. For any finite K € N, consider K distinct copies of [m|, denoted by
R1,Ra,...,Ri. The estimation error metric H(z1.x|S1.x) : R1.x — R is a non-increasing
function in the choice of the sensors S1..

Proof Consider A, B € Ry.x such that A < B, and denote by B\ A = {i|i € B,i ¢ A}:
H(x1.x|B) = H(x1.x|A, B\ A) < H(x1.x|A) since conditioning can either keep constant or
decrease the entropy [181]. []
Definition 23. Consider K disjoint finite sets £1,&s, ..., Ex. A function h : E1.x — R
is submodular if and only if for all A,B,C € &.x such that A < B, h(AwWC) — h(A) >
h(BWC) — h(B); h: &k — R is supermodular if —h is submodular.

Proposition 9. For any finite K € N, consider K distinct copies of [m], denoted by
R1,Ra,...,Ri; the estimation error metric H(z1.x|S1.x) : Ri:x — R is a set supermodular
function in the choice of the sensors Si.k .

108

Proof: Let A,B,C € &1.i such that A < B:

H(z1.x|A)—H(z1.5|AW CO) (7.10)
= H(z1.x]A) — H(z1.x]A4,C)
= [(z1.x; C|A) (7.11)
= H(C|A) — H(Clz1:k, A) (7.12)
> H(C|B) — H(C|z1.k, B) (7.13)
— (x5 C|B) (7.14)
= H(21:x|B) — H(21.1|B, C) (7.15)
— H(z1.5|B) — H(z1.x|B & C). (7.16)

Eq. (7.10) and (7.16) follow from our definition of W. (7.11) and (7.12), (7.13) and (7.14),
and (7.14) and (7.15) hold due to the definition of mutual information [181]. (7.13) follows
from (7.12) due to two reasons: first, H(C|A) > H(C|B), since A < B and conditioning can
either keep constant or decrease the entropy [181]; second, H(C|z1.x, A) = H(C|z1.x, B)
due to the independence of the measurements given x1.x, per Assumption 7.6. |

Proof of Part 1 of Theorem 15: We use the next result from the literature of maximization
of submodular functions over matroid constraints:
Definition 24. Consider a finite set £ and a collection C of subsets of €. (€,C) is:

e an independent system if and only if:
— 0 € C, where () denotes the empty set
—forall X’ CXCE,ifXelC, X' eC.
e ¢ matroid if and only if in addition to the previous two properties:

— for all X', X € C where |X'| < |X|, there exists x ¢ X' and x € X such that
X'u{x} ecC.

Lemma 6 (Ref. [12]). Consider K independence systems {(E,Ck) }re|x], each the intersec-

tion of at most P matroids, and a submodular and non-decreasing function h : 1. x — R.

There ezist a polynomial time greedy algorithm that returns an (approximate) solution Sy.x

to:
G @
subject to Sp N & € Cy, k € [K],

that satisfies:

h(o (SlzK) < P (7 18)
) .

)—h
h(O)—h(®) ~1+P’
where O is an (optimal) solution to (7.17).
Lemma 7. Problem 1 is an instance of (7.17) with P = 1.

Proof: We identify the instance of {€, Ck }re[x) and h, respectively, that translate (7.17) to

109

Problem 1:

Given K distinct copies of [m], denoted by Ry, Ra, ..., Rk, first consider £ = Ry and Cj, =
{S|S € Rk, |S| < si}: (&, Ck) satisfies the first two points in part 1 of Definition 24, and
as a result is an independent system. Moreover, by its definition, S, N & € Ci if and only
if |Sg| < sg.

Second, for all S1.x = &1.x, consider:
h(Si:k) = —H(z1.x|S1:K)-

From Propositions 8 and 9, h(S1.x) is set submodular and non-decreasing. In addition to
Lemma 7, the independence system (&, Cx), where & = Ry, and C, = {S|S C Ry, |S| < sk},
satisfies also the point in part 2 of Definition 24; thereby, it is also a matroid and as a result

P, as in Lemma 6, is 1. B This observation, along
with Lemmas 6 and 7 complete the proof of (5.6), since the adaptation to Problem 1 of the
greedy algorithm in [12, Theorem 4.1] results to Algorithm 13. [

Proof of Part 2 of Theorem 15: Algorithm 13 requires for each k € [K] the application of
Algorithm 14 to (7.8). In addition, each such application requires at most sz evaluations of
H(z1.x|y1.x). Therefore, Algorithm 13 has time complexity O(Zszl siT). B The proof of
Theorem 15 is complete. |

Proof of Theorem 16

Notations. We introduce four notations: first, Si.x is the block diagonal matrix with
diagonal elements the sensor selection matrices S1, S, ..., Sk; second, C(x1.x) is the block
diagonal matrix with diagonal elements the matrices S1C1, 52Ch, ..., SkCk, where Cy =
G(xr) and G(z(t)) = 0g(x(t))/0x(t); third, vg is the batch measurement noise vector
(ka,v;k, ... ,v;k)T; and fourth, pui.x = (u(tl)T,,u(tg)T, e u(tK)T)T.

Proof: We first derive the two formulas for H(z1.x|y1.x): the first formula is expressed in
terms of ¥(x1.5) !, and the second formula is expressed in terms of ¥(z1.x).

Lemma 8 (Formula of H(x1.x|y1.x) in terms of X(x1.x)~1). Consider the start of the k-th
iteration in Algorithm 13. Given the measurements yy.(,—1) up to k, H(x1.x(y1.k) is given
by =T + nK log(2me)/2, where:

<

T logdet(Z + S(z1.0) ")

Cfir:rc) " S X (v1.10) 1S C (fin:xc)

H
Il
N |

—_
—
—

and [i1.x s the mazimum a posteriori (MAP) estimate of x1.x given the measurements
Y1:(k—1) up to k.

Lemma 9 (Formula of H(z1.x|y1.x) in terms of X(x1.x)). Consider the start of the k-th
iteration in Algorithm 13. Given the measurements Yl:(k—1) up to k, H(z1.x|y1:x) is given

110

by H(z1.rx|y1:x) = T1 — To + H(x1:x), where:

K

T = %Zlog[(%re)sk det(SpX(vg) S]] (7.19)
k=1

T = %mg[(zm)ﬂ% det(Z(y1.x0)] (7.20)

S(y1x) = St E01k)S1 x + Ol) S (x1.5)C (i) |

and [i1.x 48 the mazimum a posteriori (MAP) estimate of x1.x given the measurements
Y1:(k—1) up to k.

We complete the proof for each case of Theorem 16:

e Time complerity of each evaluation of H(x1.x|y1.x) when either X(z1.5) or L(z1.x) "
is exactly sparse (that is, block tri-diagonal): We present the proof only for the case
where ¥(z1.5c) ! is exactly sparse since the proof for the case where ¥ (z1.x) is exactly
sparse is similar. In particular, consider the formula of H(z1.x|y1.x) in Lemma 8: T}
involves the log determinant of a matrix that is the sum of two nK x nK sparse ma-
trices: the first matrix is block diagonal, and the second one is block tri-diagonal. The
block diagonal matrix is evaluated in O(n*4K) time, since the determinant of an n xn
matrix is computed in O(n?*%) time using the Coppersmith-Winograd algorithm [97].
Then, T} is evaluated in O(n?4K) [142, Theorem 2].

e Time complezity of each evaluation of H(x1.x|y1.5) when both X(z1.x) and L(x1.x) "

are dense: In this case, T} (and similarly 75 in Lemma 9) is the log determinant of
a dense nK x nK matrix. Therefore, it is evaluated in O((nK)*%) time, since the
determinant of an n x n matrix is computed in O(n?%) time using the Coppersmith-
Winograd algorithm [97].

111

CHAPTER 8 : LQG Control and Sensing Co-design

Linear-Quadratic-Gaussian (LQG) control is concerned with the design of an optimal con-
troller and estimator for linear Gaussian systems with imperfect state information. Standard
LQG control assumes the set of sensor measurements to be fed to the estimator to be given.
However, in many problems arising in networked systems and robotics, one may be interested
in designing a suitable set of sensors for LQG control. In this chapter, we introduce the LQG
control and sensing co-destgn problem, where one has to jointly design a suitable sensing, es-
timation, and control policy. In particular, we consider two dual instances of the co-design
problem: the sensing-constrained LQG control problem, where the design maximizes the
control performance subject to sensing constraints, and the minimum-sensing LQG con-
trol, where the design minimizes the amount of sensing subject to performance constraints.
We focus on the realistic case in which the sensing design has to be selected among a finite
set of possible sensing modalities, where each modality is associated with a (possibly) differ-
ent cost. While we observe that the computation of the optimal sensing design is intractable
in general, we present the first scalable LQG co-design algorithms to compute near-optimal
policies with provable sub-optimality guarantees. To this end, (i) we show that a separation
principle holds, which partially decouples the design of sensing, estimation, and control;
(i) we frame LQG co-design as the optimization of (approximately) supermodular set func-
tions; (iii) we develop novel algorithms to solve the resulting optimization problems; (iv) we
prove original results on the performance of these algorithms and establish connections be-
tween their suboptimality gap and control-theoretic quantities. We conclude the chapter by
discussing two practical applications of the co-design problem, namely, sensing-constrained
formation control and resource-constrained robot navigation.

8.1. Introduction

Traditional approaches to the control of dynamical systems with partially observable state
assume the choice of sensors used to observe the system to be given [123]. The choice of
sensors usually results from a preliminary design phase in which an expert designer selects
a suitable sensor suite that accommodates estimation requirements (e.g., observability, de-
sired estimation error) and system constraints (e.g., size, cost). However, modern control
applications, from large networked systems to miniaturized robotics systems, pose serious
limitations to the applicability of this traditional paradigm: in particular, in large-scale net-
worked systems (e.g., smart grids, or robot swarms), in which new nodes are continuously
added and removed from the network, a manual re-design of the sensors becomes cumber-
some and expensive, and it is not scalable; in miniaturized robot systems, while the set of
onboard sensors is fixed, it may be desirable to selectively activate only a subset of the sen-
sors during different phases of operation, to minimize power consumption. Overall, in both
applications, although a designer has access to a (possibly large) list of potential sensors,
due to resource constraints (size, weight, power, cost) the designer can utilize only a subset
of them. Thus, the need for online and large-scale sensor selection demands for automated
approaches that efficiently select a subset of sensors to maximize system performance.

Motivated by the aforementioned need, in this chapter we consider the problem of jointly

'This chapter is based on the paper by Tzoumas et al. [193].

112

designing control, estimation, and sensing for systems with partially observable state.

Related work in control theory. Related work in control theory focuses on either the
co-design of estimation and control in presence of communication constraints [123, 194, 195,
196, 197, 198, 199|, or on the design of the system’s sensing and actuation |5, 20, 52, 54, 60,
102, 119, 200, 201, 202, 203, 204| (sensor and actuator selection). In more detail:

LQG control design: The line of work [123, 194, 195, 196, 197, 198, 199] assumes the set
of sensors and actuators to be given, and either focuses on the co-design of estimation and
control over band-limited communication channels, or investigates the trade-offs between
communication constraints (e.g., data rate, quantization, delays) and control performance
(e.g., stability) in networked control systems. These works provide results on the impact
of quantization [194], finite data rates [195, 196], as well as, separation principles for LQG
design with communication constraints [197]. More recent work focuses on privacy con-
straints [198]. In addition, [199] studies rationally inattentive control laws for LQG control
and discusses their effectiveness in stabilizing the system. We refer the reader to the sur-
veys [123, 205, 206, 207] for a comprehensive review on LQG control.

Sensor and actuator selection: The line of work |5, 20, 52, 54, 60, 102, 119, 200, 201, 202,
203, 204] focuses on selecting the system’s active sensors and actuators, independently of the
control task at hand. In particular, [119] proposes a sensor placement algorithm to maximize
the accuracy of maximum likelihood estimation over static parameters, whereas [5, 20, 54,
102, 200] focus on maximizing the estimation accuracy for non-static parameters; |5, 20, 54,
200] present sensor scheduling algorithms for optimal Kalman filtering, while [102] presents
sensor scheduling algorithms for optimal batch state estimation (smoothing); [60] considers
fixed-lag smoothing and investigates sensor scheduling and feature selection for vision-based
agile navigation of autonomous robots. Finally, [52, 201, 202, 203, 204] present sensor and
actuator selection algorithms to optimize the average observability and controllability of
systems.

Extending the focus of the aforementioned works, more recent work focuses on the co-design
of control and estimation, as well as, of sensing [208, 209|, by augmenting the standard
LQG cost with an information-theoretic regularizer, and by optimizing the sensing capabil-
ities of each of the system’s sensors using semi-definite programming. The main difference
between [208, 209], and our proposal in this chapter is that in [208, 209] the choice of sensors
is arbitrary, rather than being restricted to a finite set of available sensors.

Related work on set function optimization. The algorithms for sensor and actuator
selection discussed above employ either convex relaxation techniques [20, 54, 119, 200, 202]
or combinatorial optimization techniques [5, 52, 60, 102, 201, 203|. The advantage of the
combinatorial optimization techniques is that they lead to algorithms with provable subop-
timality guarantees and low running time. The literature on combinatorial optimization,
which is more relevant for the discussion in this chapter, includes investigation into (i) sub-
modular optimization subject to cardinality constraints |[210]; (ii) submodular optimization
subject to heterogeneous-cost constraints [44, 211, 212]; and (iii) approximately submodular
optimization subject to cardinality constraints [32]. We note that the related literature does
not cover the case of approximately submodular optimization subject to heterogeneous-cost

113

constraints, which is indeed the setup of interest for our LQG control and sensing co-design
problems, hence requiring us to develop novel algorithms and results for this case.

Contributions to control theory. We introduce the LQG control and sensing co-design
problem, that involves the joint design of sensing, control, and estimation, by extending
Linear-Quadratic-Gaussian (LQG) control to the case where, besides designing an optimal
controller and estimator, one has to choose a set of sensors to observe the system state.
We consider the realistic case in which the choice of sensors, rather than being arbitrary
(see, e.g., [208]), is restricted to a finite selection from a set of available sensors. In partic-
ular, in our formulation each available sensor is associated with a cost that quantifies the
penalty incurred when using that sensor (trivially, if there is no cost associated to using a
sensor, one would always prefer to select and use all available sensors). In more detail, we
consider the general case in which each sensor has a potentially different cost, hence cap-
turing the practical scenarios where each sensor may have a different monetary cost, power
consumption, or bandwidth utilization.

We formulate two dual instances of the LQG co-design problem. The first instance, named
sensing-constrained LGQG control, involves the joint design of the controller, estimator, and
sensing policies that minimize the LQG objective (quantifying tracking performance and
control effort) while satisfying a given constraint on the maximum cost of the selected
sensors. The second instance, named minimum-sensing LQG control, involves the joint
design of the controller, estimator, and sensing that minimizes the cost of the selected
sensors while satisfying a given bound on the LQG performance.

We then leverage a separation principle? to partially decouple the design of control, esti-
mation, and sensing, and we frame the sensor design subproblem as the optimization of
(approximately) supermodular set functions. While the computation of the optimal sens-
ing strategies is combinatorial in nature, we provide the first scalable co-design algorithms,
which retrieve a near-optimal choice of sensors, as well as the corresponding control and
estimation policies. We show that the suboptimality gaps of these algorithms depend on
the supermodularity ratio v, of the set function f appearing in our problem, and we es-
tablish connections between the supermodularity ratio v¢ and control-theoretic quantities,
providing also a computable lower bound for 7.

Contributions to set function optimization. In proving the aforementioned results, we
extend the literature on supermodular optimization. In particular, (i) we provide the first
efficient algorithms for the optimization of approximately supermodular functions subject to
heterogeneous-cost constraints; and (ii) we improve known suboptimality bounds that also
apply to the optimization of (exactly) supermodular functions: specifically, the proposed
algorithm for approximate supermodular optimization with heterogeneous-cost constraints
can achieve in the exactly supermodular case the approximation bound (1 — 1/e), which is
superior to the previously established bound 1/2(1 — 1/e) in the literature [44].

Application examples. We motivate the importance of the LQG control and sensing co-

2The separation principle leverages standard results in LQG control and follows the line of [208], hence
we do not claim it to be an original contribution.

114

design problem, and demonstrate the effectiveness of the proposed algorithms in numerical
experiments, by considering two application scenarios, namely, a sensing-constrained forma-
tion control scenario and a resource-constrained robot navigation scenario. In particular, we
present a Monte Carlo analysis for both scenarios, which demonstrates that (i) the proposed
sensor selection strategy is near-optimal, and in particular, the resulting LQG-cost (track-
ing performance) matches the optimal selection in all tested instances for which the optimal
selection could be computed via a brute-force approach; (ii) a more naive selection which
attempts to minimize the state estimation covariance [5| (rather than the LQG cost) has
degraded LQG tracking performance, often comparable to a random selection; and (iii) the
selection of a small subset of sensors using the proposed algorithms ensures an LQG cost
that is close to the one obtained by using all available sensors, hence providing an effective
alternative for control under sensing constraints [60].

Comparison with the preliminary results in [213]. This chapter extends our prelim-
inary results [213], and provides a more comprehensive presentation of the LQG co-design
problem, including both sensing-constrained LQG control (introduced in [213|) and the
minimum-sensing LQG control problem (not previously published). Moreover, we general-
ize the original setup in [213] to account for heterogeneous sensor costs (in [213] each sensor
has unit cost) and extend the numerical analysis accordingly. Most of the technical results,
including Theorems 17-19, Proposition 10, as well as Algorithms 16—18 are novel, and have
not been previously published.

Organization of the rest of the chapter. Section 8.2 formulates the LQG control and
sensing co-design problems considered in this chapter. Section 8.3 presents a separation
principle and provides scalable, near-optimal algorithms for the co-design problems. Sec-
tion 8.4 characterizes the running time and approximation performance of the proposed
algorithms, and establishes connections between their suboptimality bounds and control-
theoretic quantities. Section 8.5 presents two practical examples of co-design problems and
provides a numerical analysis of the proposed algorithms. Section 8.6 concludes the chapter.
All proofs are given in the Appendix.

Notation. Lowercase letters denote vectors and scalars (e.g., v), and uppercase letters
denote matrices (e.g., M). We use calligraphic fonts to denote sets (e.g., S). The identity
matrix of size n is denoted with I,, (the dimension index is omitted when it is clear from the
context). For amatrix M and a vector v of appropriate dimension, we define ||v]|3; £ v M.
For matrices My, My, ..., My, we let diag (My, Mo, ..., M) be the block diagonal matrix
with diagonal blocks My, Mo, ..., M.

8.2. LQG Control and Sensing Co-design: Problem Statement

In this section we formalize the LQGcontrol and sensing co-design problem considered in
this chapter. In particular, we present two “dual” statements of the co-design problem:
the sensing-constrained LQ)Gcontrol, where the design maximizes the control performance
subject to sensing constraints, and the minimum-sensing LQGcontrol, where the design
minimizes sensing subject to performance constraints.

115

8.2.1. System, sensors, and control policies

We start by introducing the notions of system, sensors, and control policies. These notions
are standard, except that only a subset of sensors is actually used to observe the system’s
state (these are referred to as “active” sensors in Definition 25), and that we associate a cost
to each sensor (Definition 26).

System We consider a standard discrete-time (possibly time-varying) linear system with
additive Gaussian noise:

Ti41 :At;vt—FBtut—l—wt, t=1,2,...,T, (81)

where x; € R” represents the state of the system at time ¢, uy € R™ represents the control
action, w;y represents the process noise, A; and B; are matrices of suitable dimensions, and T’
is a finite horizon. In addition, we consider the system’s initial condition x; to be a Gaussian
random variable with covariance X9, and w; to be a Gaussian random variable with mean
zero and covariance Wy, such that w; is independent of z1 and wy for all ¢ = 1,2,...,T,

£t

Sensors We consider the case in which we have a (potentially large) set of available sensors,
which can take noisy linear observations of the system’s state. In particular, let V be a set
of indices such that each index 7 € V uniquely identifies a sensor that can be used to observe
the state of the system. We consider sensors of the form

Yit = Cipxe +vig, 1€V, (8.2)

where y;; € RPit represents the measurement of sensor 4 at time ¢, C;; is a sensing matrix
of suitable dimension, and v; ; represents the measurement noise of sensor 7. We assume v; ;
to be a Gaussian random variable with mean zero and positive definite covariance V;;, such
that v;; is independent of x1, and of wy for any ¢’ # ¢, and independent of v,/ for all ¢/ # ¢,
and any i/ € V, i’ # 1.

In this chapter we are interested in the case in which we cannot use all the available sensors
and, as a result, we need to select a convenient subset of sensors in the set V to meet given
specifications on the control performance (formalized in Problem 2 and Problem 3 below).
Definition 25 (Active sensor set and measurement model). Given a set of available sensors
V, we say that S CV is an active sensor set if we can observe the measurements from each

sensor i € S for all t = 1,2,...,T. Given an active sensor set S = {iy, iy ...,i|5‘}, we
define the following quantities
u(S) = [y;it,y;;t,...,y;‘rsw]—rj (8.3)
CiS) = [Cf 4 Cipre - Cig s (8.4)
Vi(S) 2 diag (Viva Vists - Viisyt) (8.5)

116

which lead to the definition of the measurement model:
ye(S) = Ce(S)zt + ve(S), (8.6)

where v¢(S) is a zero-mean Gaussian noise with covariance Vi(S). Despite the availability
of a possibly large set of sensors V, our observer will only have access to the measurements
produced by the active sensors.

In this chapter we focus on the case where each sensor in the set of available sensors V
is associated with a (possibly different) cost, which captures, for instance, the sensor’s
monetary cost, its power consumption, or its bandwidth utilization.

Definition 26 (Cost of sensor and cost of active sensor set). Given a set of available sensors
V, we denote the cost of sensor i € V by c¢(i)> 0. Moreover, we denote the cost of an active
sensor set S C V by ¢(S) and set it equal to the sum of the sensor costs c(i) for all active

sensorsi € S:
o(S)ED (i), (8.7)

i€S

The following paragraph formalizes how the choice of the active sensors affects the control
policies.

Control policies We consider control policies u; for all ¢ = 1,2,...,7 that are only
informed by the measurements collected by the active sensors:

Ut = ut(S) = ut(y1(8)7y2(8)7 s 7yt(8))7 = 17 27 ce 7T-
Such policies are called admissible.
8.2.2. LQG co-design problems

The LQGco-design problem considered in this chapter consists in the joint design of sensing,
estimation, and control strategies to meet given design specifications. We consider two dif-
ferent types of specifications that lead to two co-design problems, named sensing-constrained
LQGcontrol (Problem 2) and minimum-sensing LQGcontrol (Problem 3).

Problem 2 (Sensing-constrained LQGcontrol). Given a system, a set of available sensors
V, and a sensor budget b > 0, find a sensor set S C V to be active across all times t =
1,2,...,T, with cost c¢(S) at most b, and an admissible control policy ui.7(S) = {u1(S),
u2(S),...,ur(S)} to minimize the LQGcost function, that is:

T
. 2 2
win SB[(S, + ()R] st o) <b (8.38)
wnr(s)
where the state-cost matrices Q1,Q2, ..., QT are positive semi-definite, the control-cost ma-
trices Ry, Ra, ..., R are positive definite, and the expectation is taken with respect to the ini-
tial condition x1, the process noises wi, wa, ..., wr, and the measurement noises v1(S), va(S),

,’UT(S).

117

The sensing-constrained LQGcontrol Problem 2 models the practical case in which one
cannot use all the available sensors due to power, cost, or bandwidth constraints, and needs
to compute a suitable set of active sensors and controls that maximize LQG performance.
Note that if the budget constraint is relaxed, all sensors are active (no penalty is incurred
in using all sensors) and Problem 2 reduces to standard LQG control.

While Problem 2 imposes constraints on the maximum amount of sensing, the following
“dual” problem formulation imposes a constraint on the desired LQGperformance.
Problem 3 (Minimum-sensing LQG control). Given a system, a set of available sensors
V, and an upper bound k > 0 for the LQGcost, find a minimum-cost sensor set S C V to
be active across all timest = 1,2,...,T and an admissible control policy u1.7(S) = {u1(S),
ua(S),...,ur(S)} such that the LQG cost is at most k:

T
min ¢(S), st > E[[lz1(S)G, + [[u(S)R] < &, (8.9)
SCV, t=1
ul:T(S)
where the state-cost matrices Q1,Qa, ..., Q1 are positive semi-definite, the control-cost ma-
trices R1, Ra, . .., Rr are positive definite, and the expectation is taken with respect to the ini-
tial condition x1, the process noises wi, wa, ..., wr, and the measurement noises v1(S), v2(S),

,’UT(S).

The minimum-sensing LQGcontrol Problem 3 models the practical case in which one wants
to design a system that guarantees a desired level of performance, while incurring in the
smallest sensing cost (again the cost can be monetary or connected to the use of limited
resources).
Remark 10 (Case of uniform-cost sensors). When all sensors i € V have the same cost ,
say c(i) = ¢ > 0, the sensor budget constraint can be rewritten as a cardinality constraint,
since:

o(8S)<b & > ci)<b & [Sle<h & |S|<

i€S

(8.10)

ol o

which bounds the cardinality of the set of active sensors. Similarly, under the uniform-cost
assumption, the objective of Problem 3 becomes the minimal cardinality objective |S)|.

Problem 2 and Problem 3 generalize the imperfect state-information LQGcontrol problem
from the case where all sensors in the set of available sensors V are active, and only optimal
control policies are to be found [123, Chapter 5], to the case where only a few sensors in V
can be active, and both optimal sensors and control policies are to be found, jointly.

While we noticed that admissible control policies depend on the active sensor set S, it is
worth noticing that this in turn implies that the state evolution will also depend on S, per
the system’s dynamics eq. (8.1); for this reason we write x¢41(S) in egs. (8.8) and (8.9).
Thereby, the intertwining between control and sensing calls for a joint design strategy and,
as a result, in the following section we focus on the design of a jointly optimal control and
sensing solution to Problem 2 and Problem 3.

118

8.3. Co-design Principles and Efficient Algorithms

In this section we first present a separation principle that decouples sensing, estimation,
and control, and allows designing them in cascade (Section 8.3.1). We then present scal-
able algorithms for the sensing and control design in both Problem 2 (Section 8.3.2) and
Problem 3 (Section 8.3.3). Theoretical guarantees bounding the suboptimality gap of the
proposed algorithms are given in Section 8.4.

8.3.1. Separability of optimal sensing and control design

We characterize the jointly optimal control and sensing solutions for Problem 2 and Prob-
lem 3, and prove they can be found in two separate steps, where first the sensing design is
computed, and second the control design is found (Theorem 17).
Theorem 17 (Separability of optimal sensing and control design). For any active sensor
set S CV, let 1¢(S) be the Kalman estimator of the state xy, i.e.,

24(S) = Elze|y1(S), 42(S), -, we(S)],

and Sy(S) be £4(S)’s error covariance, i.e., Sy (S) £ B[(#4(S) —) (24(S) — x) '] [123,
Appendiz E]. In addition, let the matrices Oy and K be the solution of the following backward
Riccaty recursion

St = Q¢ + Niga,

Ny = A/ (S, + BiR71B) Ay,

M; = B/ S;B; + Ry, (8.11)
K;=—-M;'B/ S; A,

O = K MK,

with boundary condition Npyq = 0 (notably, all matrices in eq. (8.11) are independent of
the active sensor set S).

1. (Separability in Problem 2) Let the sensor set S* and the controllers uy,u3, ..., u} be
a solution to the sensing-constrained LQ)G Problem 2. Then, S* and uj, u3,...,uwp
can be computed in cascade as follows:

T
S* e argminz tr[©:2y(S)], s.t. ¢(S) < b, (8.12)
SEV 14
uy = Ky2y(S*), t=1,...,T. (8.13)
2. (Separability in Problem 3) Let the sensor set S* and the controllers uy,uj,. .., u},

be a solution to the minimum-sensing LQG Problem 3. Moreover, define the constant
REKk—tr (E1|0N1) - EtT:l tr (WiSy). Then, 8* and uj, uj,...,u} can be computed

119

Algorithm 15 Joint Sensing and Control design for Problem 2.

Input: Time horizon T', available sensor set), sensor selection budget b, covariance Xy
of initial condition x1; for all ¢t = 1,2,...,7T, system matrix A, input matrix By, pro-
cess noise covariance Wy, and LQG cost matrices (J; and Ry; for all sensors i € V,
measurement matrix C; ¢, measurement noise covariance V; ¢, and sensor cost ¢(7).

Output: Active sensors §, and controls 1, U9, ..., Up.

1: Compute the matrices ©1, 09, ..., O using the backward Riccati recursion in eq. (8.11).

2. Return the sensor set S as the sensor set returned by Algorithm 16, which finds a
(possibly approximate) solution to the optimization problem in eq. (9.10);

3: Compute the matrices K1, Ko, ..., K7 using the backward Riccati recursion in eq. (8.11).

4: At timet =1,2,...,T, compute the Kalman estimate of the state z;, i.e., the estimate:

~ ~ ~

& £ By (S), 12(S), - - -, we(S)]:

5: At time t = 1,2,...,T, return the control u; = K;Z4.

in cascade as follows:

T
S§* € argmin ¢(S), s.t. Ztr[@tEt‘t(S)] <RF, (8.14)
SCy =1
up = Ky24(S*), t=1,...,T. (8.15)
Remark 11 (Certainty equivalence principle). The control gain matrices Ky, Ko, ..., Kp
are the same as the ones that make the controllers (Kyx1, Kixa,..., Kpxy) optimal for

the perfect state-information version of Problem 2, where the state x; is known to the con-
trollers [123, Chapter 4].

Theorem 17 decouples the design of the sensing from the controller design. In particular, it
suggests that once an optimal sensor set S* is found, then the optimal controllers are equal
to K;2+(S*), which correspond to the standard LQG control policy. This should not come
as a surprise, since for a given sensing strategy, Problem 2 reduces to standard LQG control.
Moreover, for a given sensor set, Problem 3 becomes a feasibility problem and, as a result,
admits multiple controls that satisfy the LQG cost bound; one such set of controls are the
control actions computed in eq. (8.15), since they minimize the LQG cost and, hence, they
also belong to Problem 3’s feasible set whenever Problem 3 admits a solution.

We conclude the section with a remark providing an intuitive interpretation of the sensor
design steps in eqs. (8.12) and (8.14) for Problem 2 and Problem 3, respectively.
Remark 12 (Control-aware sensor design). In order to provide insight on the function

120

Algorithm 16 Sensing design for Problem 2.

Input: Time horizon T, available sensor set)V, sensor selection budget b, covariance Xy of

initial condition x1, and for all t = 1,2, ...

,T and any sensor ¢ € V, matrix O, process

noise covariance W;, measurement matrix C;;, measurement noise covariance V;;, and

sensor cost ¢().
Output: Sensor set S.

1: Sl < arg mlanV c(i)<b Zt 1 tr[@tzt\t({l})]

2: 82 — @, Vi« V;

3: while V' # () and ¢(S) < b do

4: for alla €)' do R

5: Soq — S2U {a}; El|0(827a) — EHO;

6: forallt=1,...,7T do

7: Et‘t(sla) —

8: [Et|t—1(A§2,a)_1 + Ct(gg\,a)—r‘/t(gla)_lct(3\2,a)]_1;
9: Sii11t(S2,0) < Aye(S2a) Al + Wi
10: end for R R

11 gain, ZtT:1 tr{O¢[341(S2) — Ly (S2,0) 1}
12: end for

13: s« argmaxgeyr[gain,/c(a)];

14: SQ — SQ U {S}

5. V<« V\ {sh

16: end while

17: if ¢(S;) > b then

18 S« &\ {sh

19: end if
20: S ¢ argming. s s, S [0 (S)).

Z;le tr[©:34(S)] appearing in in eqs. (8.12) and (8.14), we rewrite it as:

T T
Z 1[0y (

T

=3"E (| Krae — K (S)3,,)

t=1

where in the first line we used the fact that ¥,(S)
the second line we substituted the definition of Oy

=Y E (tr{lz: — 2:(S)) Oslar — #:(S)]})
t=1

(8.16)

=E [(z; — 2(S)) (e — 2(8)) "], and in
= K" MyK; from eq. (8.11).

From eq. (8.16), it is clear that each term tr[©;3,,(S)] captures the expected mismatch

between the imperfect state-information controller u(S)

= Ki24(S) (which is only aware of

the measurements from the active sensors) and the perfect state-information controller Kyx,.
This is an important distinction from the existing sensor selection literature. In particular,
while standard sensor selection attempts to minimize the estimation covariance, for instance

121

by minimizing
T T
> trZge($)] 2 D E (lz — (S)]3) (8.17)
t=1 t=1

the proposed LQG cost formulation selectively minimizes the estimation error focusing on
the states that are most informative for control purposes. For instance, the contribution to
the total control mismatch in eq. (8.16) of all vy — &(S) in the null space of Ky is zero;
accordingly, the proposed sensor design approach has no incentive in activating sensors to
observe states which are irrelevant for control purposes. Querall, the importance of a state
for control purposes is indeed captured by the weighting matriz ©;. Hence, in contrast to
minimizing the cost function in eq. (8.17), minimizing the cost function in eq. (8.16) results
i a control-aware sensing design.

8.8.2. Scalable near-optimal co-design algorithms for sensing-constrained LQG control (Prob-
lem 2)

This section proposes a practical algorithm for the sensing-constrained LQG control Prob-
lem 2. The pseudo-code of the algorithm is presented in Algorithm 15. Algorithm 15 follows
the result of Theorem 17 and jointly designs sensing and control by first computing an active
sensor set (Algorithm 15’s lines 1-2) and then computing a control policy (Algorithm 15’s
lines 3-5). We discuss each step of the design below.

Near-optimal sensing design for Problem 2. Theorem 17 implies that an optimal sen-
sor design for Problem 2 can be computed by solving the optimization problem in eq. (8.12).
To this end, Algorithm 15 (line 1) first computes the matrices 01, 0a, ..., Op, which appear
in the objective function of the optimization problem in eq. (8.12) and, as result, they are
necessary for its evaluation. Next, since the optimization problem in eq. (8.12) is combinato-
rial in nature, because it requires to select a subset of sensors out of all the available sensors
in V that has sensor cost at most b and induces the smallest LQG cost, Algorithm 15’s line 2
proposes a greedy algorithm, whose pseudo-code is given in Algorithm 16, to compute a
(possibly approximate) solution to the problem in eq. (8.12). Our interest towards Algo-
rithm 16 is motivated by that it is scalable and provably close to the solution of the problem
in eq. (8.12) (in Section 8.4 we quantify its running time and provide sub-optimality bounds
for its performance).

The steps that Algorithm 16 follows to compute a (possibly approximate) solution to the
problem in eq. (8.12) are as follows: first, Algorithm 16 creates two candidate active sensor
sets S; and Sy (lines 1-2), of which only one will be selected as the (possibly approximate)
solution to the problem in eq. (8.12) (line 20). In more detail, Algorithm 16’s line 1 lets the
set §1 be composed of a single sensor, namely the sensor ¢ € V that achieves the smallest
value of the objective function in eq. (8.12) and having cost not exceeding the sensor selection
budget (c(i) < b). Then, Algorithm 16’s line 2 initializes the candidate active sensor set Sy
with the empty set, and after the construction of the set gg in Algorithm 16’s lines 3-19
(which are explained below), Algorithm 16’s line 20 computes which of the two sets Sy and
S, achieves the smallest value for the objective function in eq. (8.12), and returns this set
as the (possibly approximate) solution to the optimization problem in eq. (8.12).

122

Algorithm 17 Joint Sensing and Control design for Problem 3.

Input: Time horizon T, available sensor set V, LQG-cost bound &, covariance ¥ of
initial condition x1; for all t = 1,2, ..., T, system matrix A;, input matrix B;, LQG cost
matrices (Q; and Ry, process noise covariance W;; and for all sensors ¢ € V, measurement
matrix C; ¢, measurement noise covariance V; ¢, and sensor cost ¢(7).

Output: Active sensors §, and controls 1, 9, ..., Ur.

1: Compute the matrices Oy, O, ..., Or using the backward Riccati recursion in eq. (8.11).

2: Return the sensor set S as the sensor set returned by Algorithm 18, which finds a
(possibly approximate) solution to the optimization problem in eq. (8.9) ;

3: Compute the matrices K1, Ko, ..., K7 using the backward Riccati recursion in eq. (8.11).

4: At time ¢t =1,2,...,T, compute the Kalman estimate of the state x4, i.e., the estimate:

-~ ~

2 2 Bl (S), v2(S), - - -, 4 (S));

5: At time t = 1,2,...,T, return the control @; = K;Zy.

Lines 3-19 in Algorithm 16 populate the set 32 as follows: at each iteration of the “while
loop” (lines 3-16) a sensor is greedily added to the set §2, as long as §2’s sensor cost does
not exceed the sensor selection budget b. In particular, for each available sensor (the set
V' contains the available sensors, excluding the ones already included in 32), the “for loop”
(lines 4-12) computes first the estimation covariance resulting by adding the sensor to S,
and second the corresponding marginal gain in the objective function in eq. (8.12) (line 11).
Then, the sensor that induces the largest sensor-cost-normalized marginal gain is selected
(line 13), and it is added to the current set Sy (line 14). Finally, the “if” statement (lines 17-
19) ensures that the constructed set S, has sensor cost at most b, by possibly removing the
sensor that was added in S during the last iteration of the “while” loop in lines 3-16.

Control design for Problem 2. Theorem 17 implies that given an active sensor set,
the controls for Problem 2 can be computed according to the eq. (8.13). To this end,
Algorithm 15 first computes the matrices K, Ko, ..., K7 (line 3), and then, at each time
t=1,2,...,T, the Kalman estimate of the current state z; (line 4), and the corresponding
control (line 5).

8.3.8. Scalable near-optimal co-design algorithms for minimum-sensing LQG control (Prob-
lem 3)

This section proposes a practical algorithm for the minimum-sensing LQG control Problem 3.
The pseudo-code of the algorithm is presented in Algorithm 17. Algorithm 17 follows the
result of Theorem 17 and jointly designs sensing and control by first computing an active
sensor set (Algorithm 17’s lines 1-2) and then computing a control policy (Algorithm 17’s
lines 2-5). We discuss the first step (sensor design) in the rest of this section, while the
second step (control design) is as in Algorithm 15’s line 2, and is explained in Section 8.3.2.

Near-optimal sensing design for Problem 3. Theorem 17 implies that an optimal sen-
sor design for Problem 3 can be computed by solving the optimization problem in eq. (8.14).
To this end, similarly to Algorithm 15’s line 1, Algorithm 17’s line 1 computes the matrices

123

01,02, ...,07, which are necessary for the evaluation of the cost function appearing in
eq. (8.14). Next, Algorithm 17’s line 2 calls Algorithm 18 to find a (possibly approximate)
solution to the optimization problem in eq. (8.14). Analogously to the previous section,
Algorithm 18 is a greedy algorithm that returns a near-optimal solution for the problem in
eq. (8.14). The running time and the sub-optimality bounds of the algorithm are analyzed
in Section 8.4.

Algorithm 18 computes a (possibly approximate) solution to the optimization problem in
eq. (8.14) as follows: first, Algorithm 18 defines the constant % (line 1), appearing in the
definition of the optimization problem in eq. (8.14), and then initializes the sensor set S
with the empty set (line 2). Afterwards, Algorithm 18 populates S in lines 3-16 using the
following steps: at each iteration of the “while loop” (lines 3-16) a sensor is greedily added
to the set §, as long as Problem 3’s LQG-cost bound x has not been met, which eq. (8.14)
guarantees to be equivalent to checking whether the second condition in Algorithm 18’s line 3
holds. In particular, for each sensor in V' (set of available sensors, excluding the ones already
included in &) the “for loop” (lines 4-12) computes first the estimation covariance resulting by
adding the sensor to S , and then the corresponding marginal gain in the objective function
in eq. (8.12) (line 11). Then, the sensor that induces the largest sensor-cost-normalized
marginal gain is selected (line 13), and added to the current candidate active set S (line 14).
Finally, the added sensor s is removed from V' (line 15).

In the following section we characterize the approximation and running-time performance
of Algorithm 15 and Algorithm 17 for Problem 2 and Problem 3, respectively.

8.4. Performance guarantees for LQG Co-Design

We prove that Algorithm 15 and Algorithm 17 are the first scalable algorithms for the joint
sensing and control design Problem 2 and Problem 3, respectively, and that they achieve
an objective value that is close to the optimal. We start by introducing the notion of su-
permodularity ratio (Section 8.4.1), which will enable to bound the sub-optimality gap of
Algorithm 15 (Section 8.4.2) and Algorithm 17 (Section 8.3.3). We then establish connec-
tions between the supermodularity ratio and control-theoretic quantities (Section 8.4.4).

8.4.1. Supermodularity ratio of monotone functions

This section introduces the notion of supermodularity ratio of a monotone set function
(Definition 29). We start by defining the notions of monotonicity (Definition 27) and of
supermodularity (Definition 28).

Definition 27 (Monotonicity). Consider any finite set V. The set function f : 2V — R is
non-increasing if and only if for any sets A C B CV, it holds f(A) > f(B).

Definition 28 (Supermodularity [70, Proposition 2.1]). Consider any finite set V. The set
function f : 2¥ +— R is supermodular if and only if for any sets A C B C V, and any
element v €V, it holds f(A)—f(AU{v}) > f(B)—f(BU{v}).

In words, a set function f is supermodular if and only if it satisfies the following diminishing
returns property: for any element v € V, the marginal drop f(A) — f(AU {v}) diminishes
as the set A grows; equivalently, for any A C V and v € V, the drop f(A) — f(AU {v})

124

Algorithm 18 Sensing design for Problem 3.

Input: Time horizon T', available sensor set V, LQGperformance bound , covariance Xy
of initial condition x1, and for all ¢t = 1,2, ...,7T and any sensor ¢ € V, matrix ©;, process
noise covariance Wy, measurement matrix C;;, measurement noise covariance V;;, and
sensor cost ¢(i).

Output: Sensor set S.

1: K< K —tr (2”0]\71) — Z?:l tr (WtSt)
28+ 0; V<V,
3: while V' # 0 and 37 tr[6,5,,(S)] > & do

4: for alla €V’ do R

5: So +— SU{a}; 21‘0(804) — 21‘0;

6: forallzzl,...,Tdo

7 Eﬂt(Sa) t R R R

8: [Et|t71(’506)_1 + Ct(fa)TW(Soc)_lct(Sa)]_l;
9: Ser)e(Sa) = ArSu(Sa) Al + Wy

10: end for R R

11: gain, ¢ 301 tr{0:[Zy(S) — Ty (Sa)l}s
12: end for

13: s« argmaxgeyr[gain,/c(a)];

14: S+ Su{sh

15 V'« V'\{s}

16: end while

is non-increasing.
Definition 29 (Supermodularity ratio). Consider any finite set V, and a non-increasing
set function f :2Y — R. We define the supermodularity ratio of f as

s in f(A) = f(AU{v})
AcBCVwenB f(B) — f(BU {v})

Vf

In words, the supermodularity ratio of a monotone set function f measures how far f is
from being supermodular. In particular, as per Definition 29 of the supermodularity ratio,
the supermodularity ratio v; takes values in [0, 1], and

e 7y = 1if and only if f is supermodular, since if 7y = 1, then Definition 29 implies
fA) = f(AU{v}) > f(B)—f(BU{v}), i.e., the drop f(A)—f(AU{v}) is non-increasing

as new elements are added in the set A.

e 0 <vys < 1if and only if f is approzimately supermodular, in the sense that if vy <
1, then Definition 29 implies f(A) — f(AU {v}) > v¢ [f(B) — f(BU{v})], i.e., the
drop f(A) — f(AU{v}) is approximately non-increasing as new elements are added
in A; specifically, the ratio s captures how much ones needs to discount the drop
f(B) — f(BU{v}), such that f(A) — f(AU {v}) remains greater then, or equal to,

f(B) = f(BUA{v}).

125

We next use the above supermodularity ratio notion to quantify the sub-optimality gap of
Algorithm 15 and Algorithm 17.

8.4.2. Performance analysis for Algorithm 15

In this section we quantify Algorithm 15’s running time and approximation performance
(Theorem 18 below), using the notion of supermodularity ratio introduced in Section 8.4.1.
Theorem 18 (Performance of Algorithm 15). For any active sensor set S C V, and any
admissible control policies u1.7(S) = {u1(S),u2(S),...,ur(S)}, let h[S,u1.r(S)] be Prob-

lem 2’s cost function, i.e.,

R[S, uir(S)] £ X/ E(lwe1 (S)|3, + lu(S)I1F,).
Further define the following set-valued function and scalar:
g(S) é minul:T(S) h[S, uLT(S)], (8.18)

g & mingcy, u,..(s) MS, u1r(S)], st. c(S) < b;
that is, given a sensor set S C V, ¢(S) is the optimal value of h|S,u1.7(S)| across all
admissible control policies u1.7(S), and g* is the optimal objective value of Problem 2.

The following results hold true:

1. (Appmxzmatwn quality) Algorithm 15 returns an active sensor set ScC _V having cost
c(S) at most b, and the corresponding admissible control policies uy. T(S). The active
sensors S and controls uLT(S) are such that:

hW)’ Ul;T(@)] B h[gv ul:T(S\)} >
hmv ul:T(@)} - g* - A (819)
max [r;g (1 — 6779) 11— e V9¢(S)/b 7

where 7y, is the supermodularity ratio of g(S) in eq. (8.18).

2. (Running time) Algorithm 15 runs in O(|V|*Tn?%) time, where n is the system size
in eq. (8.1).

Note that the term h[0, uy.7(0)] — h[g, ulzT(g)] quantifies the marginal gain of selecting the
set §, and ineq. (8.19) guarantees that the marginal gain is sufficiently large compared to
the optimal marginal gain [0, u1.7(0)] — g% in the sense that their ratio is lower bounded by
the maximum between % (1 —¢™7) and 1 — e~ 19¢(S)/b We further comment on the bound
in ineq. (8.19) in the following proposition and remarks.

Proposition 10 (Extension of the bound in ineq. (8.19) to sensor sets of any cost). Consider
the modified version of Algorithm 15 where Algorithm 16’s “if” statement (lines 17-19) is
removed. Then, Algorithm 15’s approzimation performance bound remains as in ineq. (8.19),
even when Algorithm 15 returns a set S of cost c(S) that exceeds Problem 2’s budget b.
Remark 13 (Comparison of bounds in ineq. (8.19)). In Fig. 11 we plot Algorithm 15’s

126

=1,2,3,4

fi(fyg)ai

Figure 6: Plot of fi(y) (i = 1,2,3,4) versus supermodularity ratio 7, of a monotone
supermodular function g. By Definition 29 of supermodularity ratio, -, takes values between
0 and 1. As v, increases from 0 to 1 then: fi(7y,) increases from 0 to 1/2(1 — e 1) ~ 0.32;
f3(7g) increases from 0 to 1 — e 2/% ~ (.32; f2(4) increases from 0 to 1 —e™! ~ 0.64; f4(v,)
increases from 0 to 1 — e™2 ~ 0.87.

approzimation performance bounds in ineq. (8.19), namely the bound v4/2 (1 —e™79) (func-
tion fi(7,) in Fig. 11) and the bound 1 — e~ 19S)/Y (functions fa(vy), f3(7g), and fi(yy)

~

in Fig. 11, which correspond to ¢(S)/b equal to 2/5, 1, and 2, respectively; we note that
for the latter case where ¢(S)/b is equal to 2, we consider that Algorithm 15 has been mod-
ified per Proposition 10 to allow for active sensor sets with costs that exceed the selection

budget b). We make two observations from Fig. 11: first, we observe that for ratio values

N -~

c(S)/b > 2/5, the bound 1 — e~ 15S)/b in ineq. (8.19) dominates (i.e., is always larger —for
all values of vg— than) the bound ~4/2 (1 —e™9) (compare plot of fa(vy) against that of

fi(g)). Also, we observe from Fig. 11 that as the cost ratio ¢(S)/b and the supermodularity

ratio v, increase, the bound 1 — e 9S)/Y tends to 1 (see plot of fa(v,))-

Remark 14 (Novelty of Algorithm 16 and of bound in ineq. (8.19)). Algorithm 16 (used
as a subroutine in Algorithm 15) is the first scalable algorithm with provable suboptimality
guarantees for the minimization of a (possibly) approximately supermodular set function
g, that is, a function g with supermodularity ratio ~y, (possibly) less than 1, subject to a
heterogeneous-cost constraint. This generalizes existing algorithms for optimization with
heterogeneous-cost constraints, which only focus on the special case of (exactly) supermodular
functions (see, e.g., [44]), that is, functions g with supermodularity ratio v, (ezactly) equal
to 1.

In addition, Algorithm 16 offers a tighter approrimation performance bound for the opti-
mization of (exactly) supermodular functions. Specifically, although the previous algorithms
for the optimization of supermodular functions (see, e.g., [44]) have the same running time
as Algorithm 16 and achieve the approzimation performance bound 1/2 (1 — 6_1), which is

127

the same as Algorithm 16’s performance bound ~,/2 (1 —e™9) for vy = 1 (that is, for su-

permodular functions), Algorithm 16 also achieves the cost-dependent bound 1 — e_Vgc(g)/b,
which for vy = 1 is superior to 1/2 (1 —e™') when the cost ratio ¢(S)/b is more than 2/5
(Remark 13).

Theorem 18 guarantees that Algorithm 15 achieves an objective value for Problem 2 that is
finitely close to optimal, whenever the supermodularity ratio v, is non-zero. In more detail,
the extreme values of the bound in ineq. (8.19), as well as their interpretation with respect
to Algorithm 15’s approximation performance are as follows: the maximum value of the
bounds in ineq. (8.19) is 1, which is achieved for supermodularity ratio 7, = 1 and ratio
c(gSA')/b — 400; as discussed in Proposition 10, the latter is possible when Algorithm 15 is
modified to return an active sensor set with cost larger than b. On the other hand, when
Algorithm 15 is not modified to return an active sensor set with cost larger than the budget
b, and it always returns a sensor set with cost at most b, then the maximum value the
bound in ineq. (8.19) can take is 1 —1/e (for 74, = 1 and ¢(8) = b); notably, this is the best
bound one can achieve in the worst-case in polynomial time even for supermodular objective

functions [214]. The minimum value the bound in ineq. (8.19) is 0, which occurs for 74 = 0.

The interpretation of the extreme values 0 and 1 of the bound in ineq. (8.19) is as follows:
when the bound in ineq. (8.19) takes the value 1, then ineq. (8.19) implies that the ap-
proximate value A[S, u1.7(S)] to Problem 2 is equal to the (optimal) value g* of Problem 2,
that is, Algorithm 15 is exact. Finally, when the bound in ineq. (8.19) is 0, ineq. (8.19)
implies that h[S,u1.p(S)] < A[D, ur.p(0)], which is trivially satisfied® and, as a result, it
is uninformative on the approximation performance of Algorithm 15. In Section 8.4.4 we
present conditions under which the supermodularity ratio in ineq. (8.19) is guaranteed to
be non-zero, in which case Algorithm 15 achieves near-optimal approximation performance.

Theorem 18 also ensures that Algorithm 15 is the first scalable algorithm for Problem 2.
In particular, Algorithm 15’s running time O(|V|*Tn?*%) is in the worst-case quadratic in
the number of the available sensors |V| (in the case where all the sensors in V are chosen
as active) and linear in the Kalman filter’s running time across the time horizon {1,2,...,
TY; specifically, the contribution n>47T in Algorithm 15’s running time comes from the
computational complexity of using the Kalman filter to compute the state estimation error
covariances Y, for each t = 1,2,...,T [123, Appendix EJ.

8.4.8. Performance analysis for Algorithm 17

We quantify Algorithm 17’s running time and approximation performance (Theorem 19
below), using the notion of supermodularity ratio introduced in Section 8.4.1.

Theorem 19 (Performance of Algorithm 17). Consider the notation introduced in the state-
ment of Theorem 18 (Section 8.4.2): for any active sensor set S C V, and any admissible
control policies u1.7(S) = {u1(S),ua(S), ..., ur(S)}, let h[S,u1.7(S)] be the LQG cost func-

3The inequality h[S,u1.7(S)] < [0, u1.7(0)] simply states that a control policy that is informed by the
active sensor set S has better performance than a policy that does not use any sensor; for a more formal
proof we refer the reader to Appendix B.

128

tion in Problem 3’s constraint, i.e.,

1S, ur(S)] £ S E(lwea ($)13, + lu(S)IIE,);
Further define the following set-valued function:
9(8) £ min,, ,(s) A[S, u1.7(S)]; (8.20)

that is, given a sensor set S C V, g(S) is the optimal value of h|S,u1.7(S)] across all
admissible control policies ui.p(S).

Finally, let b* be the optimal value of Problem 3, namely:

= i t. : < K.
b SQVI,I}LTT(S) c(S), s.t. h[S,u1.r(S)]) <k

The following results hold true:

1. (Approzimation quality) Algomthm 17 returns an active sensor set S C V and admis-
stble control polzczesAul.T(S) Let s denote the last sensor added to S by Algorithm 17:
the active sensors S and controls ul,T(S) are such that:

~

h[S, urr(8)] < (8.21)

3 14 [0, urr(0)] — & x
o(S) <c(s1) + 7gl g(h[sl @)b, (8.22)

where 3’1_1 is the subset g\fgSA’ that results by removing from S the last sensor added to
it by Algorithm 17, i.e., Si_1 = S\ {s1}; vy is the supermodularity ratio of g(S).

2. (Running time) Algorithm 17 runs in O(|V|*Tn?*) time, where n is the mazimum
system size in eq. (8.1).

Remark 15 (Novelty of Algorithm 18 and of bound in ineq. (8.22)). Algorithm 18 (used
as a subroutine in Algorithm 17) is the first scalable algorithm with provable suboptimality
guarantees for the minimum heterogeneous-cost set selection subject to a constraint on a
(possibly) approzimately supermodular function g, that is, a function g with supermodularity
ratio 7y, less than 1. In particular, it generalizes previous algorithms that only focus on the
special case of (exactly) supermodular functions (see, e.g., [210]), thal is, functions g with
supermodularity ratio vg equal to 1. Notably, for the case where the supermodularity ratio
Vg is equal to 1 (that is, the set function g is supermodular), and the sensor cost of the
last sensor added to the returned set S by Algorithm 17 is equal to 1 (c(s;) = 1), then the
bound in ineq. (8.22) becomes the same as the known bound in the supermodular function
optimization literature for minimum cost set-selection [210, Theorem 1].

Theorem 19, with ineq. (8.21), implies that Algorithm 17 returns a (possibly approximate)
solution to Problem 3 that guarantees that the LQG-cost constraint in Problem 3 is satisfied.

Ineq. (8.22) also guarantees that for non-zero supermodularity ratio v, Algorithm 17 achieves

129

an objective value for Problem 3 that is finitely close to the optimal, since for non-zero v, the
sensor cost of the set returned by Algorithm 17 is up to a finite multiplicative factor away
from the optimal sensor set cost b* In addition, ineq. (8.22) suggests that the approximation
bound increases as the LQG-cost performance bound parameter s decreases, that is, as
we require from Algorithm 17 to find a sensor set that achieves a better (lower) LQG-cost
performance.

Theorem 19 also ensures that Algorithm 17 is the first scalable algorithm for Problem 3.
Notably, Algorithm 17’s running time is equal in the worst-case to the running time of
Algorithm 15 (which we discussed in Section 8.4.2).

In the following section we present control-theoretic conditions under which the supermod-
ularity ratio -, in both Algorithm 15’s and Algorithm 17’s approximation bound in in-
egs. (8.19) and (8.21) is non-zero, in which case Algorithm 15 and Algorithm 17 achieve
near-optimal approximation performance.

8.4.4. Conditions for non-zero supermodularity ratio

In this section we provide conditions such that the supermodularity ratio v, in inegs. (8.19)
and (8.21) is non-zero, in which case both Algorithm 15 and Algorithm 17 guarantee a close
to optimal approximate performance (per Theorem 18 and Theorem 19, respectively). In
particular, we first prove that if the strict inequality Zthl ©; = 0 holds, where each ©; is
defined as in eq. (8.11), then the supermodularity ratio -, is non-zero (Theorem 20). Then,
we prove that the condition Zthl O > 0 holds true in all LQG control problem instances
where a zero controller would result in a suboptimal behavior for the system; that is, we
prove that Zle O; > 0 holds true in all system instances where LQG control design is
necessary to achieve a desired system performance (Theorem 21).

The next theorem provides a non-zero computable bound for the supermodularity ratio v,
in Theorem 18 and in Theorem 19.

Theorem 20 (Non-zero computable bound for the supermodularity ratio v4). Let the ma-
trices O for all t = 1,2,...,T be defined as in eq. (8.11), the set function g(S) be defined
as in eq. (8.18), and for any sensor i € V, the matriz Ci,t £ %;1/2(%,1«/ be the whitened
measurement matrix.

If the strict inequality Zthl ©; = 0 holds, then the supermodularity ratio vy, is non-zero. In
addition, if we assume (for simplicity in presentation) that the Frobenius norm of each Ci,

is 1, d.e., tr (C;,CL) =1, and that tr[%,, < ae (D], then ~v4’s lower bound is
1 076’; 1 d th Z|@ A2 E‘Q) h g8l bound

> Amin(D2_1 ©¢) Mitye(1 2. 1) Amin[Ze: (V)]

7= Amax(zle O;) MaXyef1.2,... 7} AMax[Se¢ (0)] (8.23)
1+ minjey te{1,2....7} Amin [@Eﬂt(V)C'ZT] '
2+ max;ey 11,27})\max[éizﬂt(@)CT} '

2

Ineq. (8.23) suggests two cases under which ~, can increase, and, correspondingly, the ap-

130

proximation performance bounds of Algorithm 15 and of Algorithm 17 in inegs. (8.19)
and (8.21), respectively, can improve; in more detail:

Case 1 where the bound of 4 in ineq. (8.23) increases: When the fraction:

T T
)\min(z ®t)//\max(z @t)
t=1 t=1

increases to 1, then the right-hand-side in ineq. (8.23) increases. Therefore, since the matrices
©, weight the states depending on their relevance for control purposes (Remark 12), the
right-hand-side in ineq. (8.23) increases when on average all the directions in the state
space become equally important for control purposes. Indeed, in the extreme case where
Amax(©Ot) = Amin(0¢) = A, the cost function in eq. (8.12) that Algorithm 15 minimizes to
select the active sensor set becomes

T

T
> t[OZy(S)] =AY ulZy(S)],
t=1

t=1

which matches the cost function in the classical sensor selection where all states are equally
important (per eq. (8.17)).

Case 2 where the bound of 4 in ineq. (8.23) increases: When either the numerators of the
last two fractions in the right-hand-side of ineq. (8.23) increase or the denominators of the
last two fractions in the right-hand-side of ineq. (8.23) decrease, then the right-hand-side in
ineq. (8.23) increases. In particular, the numerators of the last two fractions in the right-
hand-side of ineq. (8.23) capture the (best) estimation quality when all available sensors in V
are used, via the terms of the form Ayin[34:(V)] and Amin [C_'i,tZﬂt(V)C;]. Interestingly, this
suggests that the right-hand-side of ineq. (8.23) increases when the available sensors in V are
inefficient in achieving low estimation error, that is, when the terms of the form Apin[2¢ (V)]
and)\min[C_'¢7tZt‘t(V)C_';] increase. Similarly, the denominators of the last two fractions in
the right-hand-side of ineq. (8.23) capture the (worst) estimation quality when no sensor is
active, via the terms of the form Apax[Y(0)] and)\max[C_'@tEt‘t(@)C_';J. This suggests that

the right-hand-side of ineq. (8.23) increases when the measurement noise increases.

Theorem 20 states that the supermodularity ratio 7, is non-zero whenever Ethl O, > 0. To
provide insight on the type of control problems for which this result holds, in the follow-
ing theorem we translate the technical condition Ethl O > 0 into an equivalent control-
theoretic condition.

Theorem 21 (Control-theoretic condition for near-optimal co-design). Consider the (noise-
less, perfect state-information) LQG problem where at any time t = 1,2,...,T, the state x;
is known to each controller uy and the process moise wy is zero, i.e., the optimal conitrol
problem

. T
Miny, ;Y g [Hl’t—HHét + Hut(xt)H%ﬁ] Sy Wim0 (8.24)
t|t— -

Let Ay be invertible for oll t = 1,2,...,T; the strict inequality Zthl O: = 0 holds if and

131

only if for all non-zero initial conditions x1, the all-zeroes control policy ug.p £ (0,0,...,0)
is not an optimal solution to the optimal control problem in eq. (8.24):

: T
bt avgming, S (el +)],
tit—YVi—

Theorem 21 suggests that the condition Zthl ©; > 0 (which ensures a non-zero supermod-
ularity ratio vy, per Theorem 20) holds if and only if for any non-zero initial condition
the all-zeroes control policy uj., = (0,0, ...,0) is suboptimal for the noiseless, perfect state-
information LQG problem in eq. (8.24); intuitively, this encompasses most practical control
design problems where a zero controller would result in a suboptimal behavior of the system
(LQG control design itself would be unnecessary in the case where a zero controller, i.e., no
control action, can already attain the desired system performance).

Overall, Algorithm 15 and Algorithm 17 are the first scalable algorithms for Problem 2 and
for Problem 3, respectively, and (for the LQG control problem instances where a zero con-
troller would result in a suboptimal behavior for the system and, as a result, for the system
instances where LQG control design is necessary to achieve a desired system performance)
they achieve close to optimal approximate performance.

8.5. Numerical Experiments

We consider two application scenarios for the proposed sensing-constrained LQG control
framework: sensing-constrained formation control and resource-constrained robot navigation.
We present a Monte Carlo analysis for both scenarios, which demonstrates that (i) the
proposed sensor selection strategy is near-optimal, and in particular, the resulting LQG-cost
(tracking performance) matches the optimal selection in all tested instances for which the
optimal selection could be computed via a brute-force approach, (ii) a more naive selection
which attempts to minimize the state estimation covariance [5] (rather than the LQG cost)
has degraded LQG tracking performance, often comparable to a random selection, (iii) in
the considered instances, a clever selection of a small subset of sensors can ensure an LQG
cost that is close to the one obtained by using all available sensors, hence providing an
effective alternative for control under sensing constraints [60].

8.5.1. Sensing-constrained formation control

Simulation setup. The first application scenario is illustrated in Fig. 7(a). A team of
n agents (blue triangles) moves in a 2D scenario. At time ¢ = 1, the agents are randomly
deployed in a 10m x 10m square and their objective is to reach a target formation shape (red
stars); in the example of Fig. 7(a) the desired formation has an hexagonal shape, while in
general for a formation of n, the desired formation is an equilateral polygon with n vertices.
Each robot is modeled as a double-integrator, with state z; = [p; vi]T € R4 (p; is the 2D
position of agent i, while v; is its velocity), and can control its own acceleration u; € R2;
the process noise is chosen as a diagonal matrix W = diag ([16*2, le72, le™4, 16*4]). Fach
robot ¢ is equipped with a GPS receiver, which can measure the agent position p; with a
covariance Vy,s; = 2-Is. Moreover, the agents are equipped with lidar sensors allowing each

132

y [meters]
!
!

» ‘/" h

/ i \

987 65 432101 2340506788
X [meters]

(a) formation control (b) unmanned aerial robot

Figure 7: Examples of applications of the proposed sensing-constrained LQGcontrol frame-
work: (a) sensing-constrained formation control and (b) resource-constrained robot naviga-
tion.

agent 7 to measure the relative position of another agent j with covariance Vj;qqr;; = 0.1-Io.
The agents have very limited on-board resources, hence they can only activate a subset of
k sensors. Hence, the goal is to select the subset of k sensors, as well as to compute the
control policy that ensure best tracking performance, as measured by the LQG objective.

For our tests, we consider two problem setups. In the first setup, named homogeneous
formation control, the LQG weigh matrix @) is a block diagonal matrix with 4 x 4 blocks,
with each block ¢ chosen as @; = 0.1-1y; since each 4 x4 block of @) weights the tracking error
of a robot, in the homogeneous case the tracking error of all agents is equally important.
In the second setup, named heterogeneous formation control, the matrix @ is chose as above,
except for one of the agents, say robot 1, for which we choose Q1 = 10-1y; this setup models
the case in which each agent has a different role or importance, hence one weights differently
the tracking error of the agents. In both cases the matrix R is chosen to be the identity
matrix. The simulation is carried on over T time steps, and T is also chosen as LQG
horizon. Results are averaged over 100 Monte Carlo runs: at each run we randomize the
initial estimation covariance 3.

Compared techniques. We compare five techniques. All techniques use an LQG-based
estimator and controller, and they only differ by the selections of the sensors used. The first
approach is the optimal sensor selection, denoted as optimal, which attains the minimum
of the cost function in eq. (8.12), and that we compute by enumerating all possible subsets;
this brute-force approach is only viable when the number of available sensors is small. The
second approach is a pseudo-random sensor selection, denoted as random®, which selects all
the GPS measurements and a random subset of the lidar measurements; note that we do not
consider a fully random selection since in practice this often leads to an unobservable system,
hence causing divergence of the LQG cost. The third approach, denoted as logdet, selects
sensors so to minimize the average logdet of the estimation covariance over the horizon;
this approach resembles [5] and is agnostic to the control task. The fourth approach is
the proposed sensor selection strategy, described in Algorithm 16, and is denoted as s-LQG.
Finally, we also report the LQG performance when all sensors are selected; this is clearly
infeasible in practice, due to the sensing constraints, and it is only reported for comparison
purposes. This approach is denoted as allSensors.

133

Results. The results of our numerical analysis are reported in Fig. 12. When not specified
otherwise, we consider a formation of n = 4 agents, which can only use a total of £k = 6
sensors, and a control horizon 7' = 20. Fig. 12(a) shows the LQG cost attained by the
compared techniques for increasing control horizon and for the homogeneous case. We
note that, in all tested instance, the proposed approach s-LQGmatches the optimal selection
optimal, and both approaches are relatively close to allSensors, which selects all the
available sensors (#) On the other hand logdetleads to worse tracking performance,
and it is often close to the pseudo-random selection random*. These considerations are
confirmed by the heterogeneous setup, shown in Fig. 12(b). In this case the separation
between the proposed approach and logdetbecomes even larger; the intuition here is that
the heterogeneous case rewards differently the tracking errors at different agents, hence while
logdetattempts to equally reduce the estimation error across the formation, the proposed
approach s-LQGselects sensors in a task-oriented fashion, since the matrices ©; for all ¢t =
1,2,...,T in the cost function in eq. (8.12) incorporate the LQG weight matrices.

Fig. 12(c) shows the LQG cost attained by the compared techniques for increasing number
of selected sensors k and for the homogeneous case. We note that for increasing number of
sensors all techniques converge to allSensors(the entire ground set is selected). As in the
previous case, the proposed approach s-LQGmatches the optimal selection optimal. Inter-
estingly, while the performance of logdetis in general inferior with respect to s-LQG, when
the number of selected sensors k decreases (for k¥ < n the problem becomes unobservable)
the approach logdetperforms similarly to s-LQG. Fig. 12(d) shows the same statistics for the
heterogeneous case. We note that in this case logdetis inferior to s-LQGeven in the case with
small k. Moreover, an interesting fact is that s-LQGmatches allSensorsalready for k = 7,
meaning that the LQG performance of the sensing-constraint setup is indistinguishable from
the one using all sensors; intuitively, in the heterogeneous case, adding more sensors may
have marginal impact on the LQG cost (e.g., if the cost rewards a small tracking error for
robot 1, it may be of little value to take a lidar measurement between robot 3 and 4). This
further stresses the importance of the proposed framework as a parsimonious way to control
a system with minimal resources.

Fig. 12(e) and Fig. 12(f) show the LQG cost attained by the compared techniques for
increasing number of agents, in the homogeneous and heterogeneous case, respectively. To
ensure observability, we consider k£ = round (1.5n), i.e., we select a number of sensors 50%
larger than the smallest set of sensors that can make the system observable. We note that
optimalquickly becomes intractable to compute, hence we omit values beyond n = 4. In
both figures, the main observation is that the separation among the techniques increases with
the number of agents, since the set of available sensors quickly increases with n. Interestingly,
in the heterogeneous case s-LQGremains relatively close to allSensors, implying that for
the purpose of LQG control, using a cleverly selected small subset of sensors still ensures
excellent tracking performance.

8.5.2. Resource-constrained robot navigation

Simulation setup. The second application scenario is illustrated in Fig. 7(b). An un-
manned aerial robot (UAV) moves in a 3D scenario, starting from a randomly selected initial

134

250
—=—random* —=—random*
10 optimal optimal
—A—logdet 200 ||—4=logdet
-o-5-LQG -5 LQG
% 8 allSensors 5 allSensors
8 = 8
5 e (5 150
S s - [¢])
- -— - T
- 100
4t " T
-« -
2 50
10 15 20 25 30 10 15 20 25 30
horizon horizon
(a) homogeneous (b) heterogeneous
16 300
——random* —=—random*
14 optimal 250 optimal
—4—logdet —a—logdet
12 -0-5LQG -0~ 5-LQG
3 allSensors % 200 allSensors
o Q
o o
g g
g G 150
100
50
4 5 6 7 8 9 10
maxNrUsedSensors maxNrUsedSensors
(¢) homogeneous (d) heterogeneous
25 180
—=—random* —=—random* __/
20 optimal 160 optimal
—a—logdet » —a—logdet \\
-5 LQG 0 - sLQG
g 15 allSensors| ‘g 120 allSensors
o o - ~
] - 0] S
3 10 --° G100 o3
=" =" - Ye
80 R
oo
5 R
60 Fmm-— o
0 40
3 5 7 9 11 3 5 7 9 n
nrRobots nrRobots

(e) homogeneous (f) heterogeneous

Figure 8: LQGcost for increasing (a)-(b) control horizon T, (¢)-(d) number of selected
sensors k, and (e)-(f) number of agents n. Statistics are reported for the homogeneous
formation control setup (left column), and the heterogeneous setup (right column). Results
are averaged over 100 Monte Carlo runs.

location. The objective of the UAV is to land, and more specifically, it has to reach the
position [0, 0, 0] with zero velocity. The UAV is modeled as a double-integrator, with state
x; = [p; v;] T € R6 (p; is the 3D position of agent i, while v; is its velocity), and can control
its own acceleration u; € R3; the process noise is chosen as W = Is. The UAV is equipped
with multiple sensors. It has an on-board GPS receiver, measuring the UAV position p;
with a covariance 2-I3, and an altimeter, measuring only the last component of p; (altitude)
with standard deviation 0.5m. Moreover, the UAV can use a stereo camera to measure the
relative position of £ landmarks on the ground; for the sake of the numerical example, we
assume the location of each landmark to be known only approximately, and we associate
to each landmark an uncertainty covariance (red ellipsoids in Fig. 7(b)), which is randomly
generated at the beginning of each run. The UAV has limited on-board resources, hence it
can only activate a subset of k sensors. For instance, the resource-constraints may be due
to the power consumption of the GPS and the altimeter, or may be due to computational

135

2500
—a—random*
2450 optimal
——logdet
- -o- 5 LQG
= % 2400 allSensors
173 Q
Q . o
S 110 Lo —=—random* 0]
8 optimal g
pu} ——logdet
100 -5 LQG
allSensors
90
10 20 30 40 50
horizon maxNrUsedSensors
(a) heterogeneous (b) heterogeneous

Figure 9: LQGcost for increasing (a) control horizon 7', and (b) number of selected sensors
k. Statistics are reported for the heterogeneous setup. Results are averaged over 100 Monte
Carlo runs.

constraints that prevent to run multiple object-detection algorithms to detect all landmarks
on the ground. Similarly to the previous case, we phrase the problem as a sensing-constraint
LQG problem, and we use Q = diag ([16*3, le73, 10, le73, le73, 10]) and R = I3. Note
that the structure of @) reflects the fact that during landing we are particularly interested
in controlling the vertical direction and the vertical velocity (entries with larger weight in
@), while we are less interested in controlling accurately the horizontal position and velocity
(assuming a sufficiently large landing site). In the following, we present results averaged over
100 Monte Carlo runs: in each run, we randomize the covariances describing the landmark
position uncertainty.

Compared techniques. We consider the five techniques discussed in the previous section.
As in the formation control case, the pseudo-random selection random*always includes the
GPS measurement (which alone ensures observability) and a random selection of the other
available sensors.

Results. The results of our numerical analysis are reported in Fig. 9. When not specified
otherwise, we consider a total of k& = 3 sensors to be selected, and a control horizon T' = 20.
Fig. 9(a) shows the LQG cost attained by the compared techniques for increasing control
horizon. For visualization purposes we plot the cost normalized by the horizon, which makes
more visible the differences among the techniques. Similarly to the formation control exam-
ple, s-LQGmatches the optimal selection optimal, while logdetand random*have suboptimal
performance.

Fig. 9(b) shows the LQG cost attained by the compared techniques for increasing number
of selected sensors k. Clearly, all techniques converge to allSensorsfor increasing k, but in
the regime in which few sensors are used s-LQGstill outperforms alternative sensor selection
schemes, and matches in all cases the optimal selection optimal.

8.6. Concluding Remarks & Future Work

In this chapter, we introduced the LQG control and sensing co-design problem, where one
has to jointly design a suitable sensing, estimation, and control policy to steer the behavior
of a linear Gaussian systems under resource constraints. We discussed two variants of
the problem, named sensing-constrained LQG control and minimum-sensing LQG control,

136

which are central in modern control applications ranging from large-scale networked systems
to miniaturized robotics networks. While the resulting co-design problems are intractable in
general, we provide the first scalable algorithms that can compute a design that is provably
close to the optimal one. While developing these algorithms, we also extend the literature on
supermodular optimization, by providing the first efficient algorithms for the optimization
of (approximately) supermodular functions subject to heterogeneous-cost constraints, and
by improving existing performance bounds. Notably, our performance bounds have a clear
connection to control-theoretic quantities and are proven to be non-vanishing under very
general conditions (we prove that the suboptimality gap is non-vanishing whenever the
open loop behavior of the system deviates from the desired closed-loop behavior, hence
encompassing most real-world control problems). Finally, we provided illustrative examples
and a numerical analysis considering problems in robotics and networked control.

This chapter opens a number of avenues for future research. First, while this chapter pro-
vides an introduction to LQG sensing and control co-design, other interesting co-design
problems exist; for instance, one may consider actuation-and-control co-design problems,
or even sensing-actuation-control co-design. Second, one may extend the LQG co-design
problem to account for potential sensor failures, where some of the selected sensors do not
work as expected; to this end, one could leverage recent results on resilient submodular op-
timization [56]. Finally, while we currently provide bounds between our sensor design and
the optimal sensor design, we find interesting to provide bounds that compare the LQG
performance attained when an optimal subset of sensors is used with the LQG performance
attained when all available sensors is used.

8.7. Appendix: Proof of Results

8.7.1. Preliminary facts

This appendix contains a set of lemmata that will be used to support the proofs in this
chapter (Appendices B-F).

Lemma 10 (|215, Proposition 8.5.5]). Consider two positive definite matrices Ay and As.
If Ay < Ag then A7 < ALY

Lemma 11 (Trace inequality [215, Proposition 8.4.13|). Consider a symmetric matriz A,
and a positive semi-definite matriz B of appropriate dimension. Then,

Amin(A)tr (B) < tr (AB) < Apax(A)tr (B).

Lemma 12 (Woodbury identity [215, Corollary 2.8.8]). Consider matrices A, C, U and V
of appropriate dimensions, such that A, C, and A+ UCV are invertible. Then,

A+vcv)t=a"'—aAlyct +valu)~tva-!

Lemma 13 ([215, Proposition 8.5.12|). Consider two symmetric matrices Ay and Az, and
a positive semi-definite matriz B. If Ay < Ag, then tr (A1 B) < tr (A2B).

Lemma 14 ([123, Appendix E|). For any sensor set S CV, and for allt =1,2,...,T, let
#4(8S) be the Kalman estimator of the state xy, i.e., #:(S) = Elxe|y1(S), y2(S), ..., v:(S)],
and 3y4(S) be #,(S)’s error covariance, i.e., Sy (S) = E[(£(S) — x)(24(S) — x¢)"]. Then,

137

31(S) is the solution of the Kalman filtering recursion

Sie(S) = [Bep—1(S) 1+ Ci(S) TVA(S)LC(S)]
Sr1p(S) = Ay (S)A] + We,

with boundary condition 1)0(S) = Xy)o-
Lemma 15. For any sensor set S C V, let $1)1(S) be defined as in eq. (14), and consider
two sensor sets 51,82 C V. If S1 € Sy, then %q1(S1) = 1)1(S2)-

Proof of Lemma 15 Let D = S\ Sy, and observe that for all t = 1,2,..., T, the notation
in Definition 25 implies

Ci(S2) TVi(S2)TICi(S2) = Y G Vi

1€Sy
= Z 07,‘—;‘/1',150@',15 + Z C;VMCi’t
1€S] €D
Z tv; tCzt
i€ST
= Cy(S1) TVi(S1) T Cu(S). (8.25)

Therefore, Lemma 10 and ineq. (8.25) imply

Z11(82) =[50 + C1(S2) Vi(S2) 1 Ci(S2)) ! =

[E70 + C1(S1) TVA(S1) T C(S1)] T = Sy (S). |
Lemma 16. Let ¥y, be defined as in eq. (14) with boundary condition)05 stmilarly, let Ztlt
be defined as in eq. (14) with boundary condition 21\0 If 3y =2 Et\t; then Yy q); = Et—&-llt

Proof of Lemma 16 We complete the proof in two steps: first, from X;; < iﬂt, it follows
{1tzt‘tA;r = Atit‘tA;r. Then, from €q. (14), it its Et+1|t = AtZt‘tA;r"_Wt = AtitltA;r'i_Wt =
Dip1ft- L
Lemma 17. Let ¥y, be defined as in eq. (14) with boundary condition ¥y)o; and, let Et|t 1
be defined as in eq. (14) with boundary condition 21‘0 If Y01 2 Et‘t 1, then Xy =< Xy
Proof of Lemma 17 From eq. (14), it is Xy, = (X, t|t L+ GV oyt (Zt‘tl 1
C’;VflCt)_l = Z_]t‘t, since Lemma 10 and the condition 3;_; = Et|t—1 imply Et|t .+
clvio = Zt‘tl 1 + CJV;71C, which in turn implies (Zﬁtl—l + vt < (Et‘tl 1
clvi o)t n
Corollary 8. Let Xy, be defined as in eq. (14) with boundary condition)05 similarly, let
Yy be defined as in eg. (14) with boundary condition 21|O If X = Eﬂt, then X yijeqi =
Yitiligi for any posilive integer i.

Proof of Corollary 8 If ¥;; < iﬂt, from Lemma 16 we get X ¢ = X_]H”t, which, from

Lemma 17, implies 3 1,41 = 341141 By repeating the previous argument another (i —1)
times, the proof is complete. |

138

Corollary 9. Let Xy, be defined as in eq. (14) with boundary condition Xq)o; similarly, let
Xy¢ be defined as in eq. (14) with boundary condition Xqjo. If Zyp =< Byjg, then Sypjipi1 =
Yitilt4i—1 Jor any positive integer i.

Proof of Corollary 9 TIf X;; < it‘t, from Cgrollary 8, we get Xy qjppio1 = it+i_1|t+i_1,

which, from Lemma 16, implies ;1451 = g g)i446-1- |
Lemma 18. Consider positive real numbers a, b, v, ai,as, ..., a, such that Y ;| a; = a.
The function

n

a
f(al,ag,...,an) =1 —H (1 —’7?)

=1

achieves its minimum at a; = ag = ... = a, = a/n. In particular,

fla/n,a/n,...;a/n)=1— (1 - %)n >1_e /b

Proof of Lemma 18 To find f’s minimum we use the method of Lagrange multipliers. In
particular, the partial derivative of ¢(a1,az,...,a,) = f(a1,az2,...,a,) + A (X, a; —a),
where A is the Lagrangian multiplier, with respect to a; is as follows:

99 v ai
22T (1-95) + 8.26
da; b 1;[()T (8.26)
At an f’s minimum, the partial derivative in eq. (8.26) is zero for all j, which implies that
for all j:

i a;

= HI10-%) -
y 11 1—7 b) (8.27)
7]

Since \ is constant, eq. (8.27) implies for any j; and jy that

SIL0-%) -3 I0-5)

1#]1 1772
which in turn implies that

a; a;
1 — 2L — 1 A2
7 b fy b Y

from where we conclude a;, = a;, (for any j; and j2).

The lower bound for the minimum value of f follows from the fact that 1 —x < e™* for all
real z. |
Proposition 11 (Monotonicity of cost function in eq. (8.12)). Consider the cost function in
eq. (8.12), namely, for any sensor set S C V the set function Zthl tr (@tEt‘t(S)). Then, for

any sensor sets such that S; C Sy C V, it holds Z;le tr (@t2t|t(81)) > Zthl tr (@tEﬂt(Sg)).

Proof Lemma 15 implies ¥1(S1) = X4)1(S2), and then, Corollary 8 implies Y;,(S1) =

¥4¢(S2). Finally, for any ¢ = 1,2,...,T, Lemma 13 implies tr (0;%;(S1)) > tr (0;Zy:(S2)),
since each O, is symmetric. |

139

8.7.2. Proof of Theorem 17

We first prove part (1) of Theorem 17 (Appendix B.1), and then we prove part (2) of
Theorem 17 (Appendix B.2).

B.1. Proof of part (1) of Theorem 17

We use the following lemma to prove Theorem 17’s part (1).
Lemma 19. For any active sensor set S C V, and any admissible control policy u1.7(S) 2
{u1(8S),u2(S),...,ur(S)}, let h[S,u1.r(S)] be Problem 2’s cost function, i.e.,

WS, urr(S)] £ S5 E(|lwa ()13, + ue(S)IIE,).
Further define the following set-valued function:

g(8) = min,, . (s)[S, ur.T(S)].
Consider any sensor set S C V, and let u{:T(Sg be the vector of control policies (K1%1(S),
Koi5(S),. .., Kr2r(S)). Then uy.p(S) is an optimal control policy:
ul.p(S) € argmin h[S, u1.7(S)], (8.28)
u7(S)
i.e., g(S) = h[S,ul.;(S)], and in particulalr,Tu’f:T(S) attains a (sensor-dependent) LQG cost

equal to:

T
9(8) = E(le1llny) + Y {0y (S)] + tr (WiSy) } - (8.29)

t=1

Proof of Lemma 19 Let h[S, up7(S)] be the LQG cost in Problem 2 from time ¢ up to
time T, i.e.,

T
Ml S, uer(8)) 2 D E([lwri1 (S)G, + lus(S)I1F,)-
k=t

and define g(S) £ min,, ,.(s)M[S, uer(S)]. Clearly, g1(S) matches the LQG cost in eq. (8.29).

We complete the proof inductively. In particular, we first prove Lemma 19 for ¢t = T, and
then for any other ¢ € {1,2,...,7 —1}. To this end, we use the following observation: given
any sensor set S, and any time ¢t € {1,2,...,T},

= min, (? E(|lzes1(S)]E, + I1ue(S)IIF,) + ge1(S)] (8.30)
with boundary condltlon gr+1(S) = 0. In particular, eq. (8.30) holds since

9¢(8) = miny, (5)E {ze41(S) G, + lue(S)IIF,)+

miny, , (s) e[S, tr1:0(S)]},
where one can easily recognize the second summand to match the definition of g;41(S).

140

We prove Lemma 19 for ¢ = T. From eq. (8.30), for t =T,

S#mmuT(s [E(lzr41(S)G, + lur(S)I,)]

= min,,(s) [E(|Arzr + Brur(S) + wTH2QT+ (8.31)
. Jur(S)||R)] 5 ,
since z741(S) = Apxp + Brup(S TS—F wry, as per eq. (8.1); we note that for notational

simplicity we drop henceforth the dependency of z7 on S since z7 is independent of ur(S),
which is the variable under optimization in the optimization problem (8.31). Developing
eq. (8.31) we get:

9r(S)

= min,,(s) [E(UT(S)TBJT“ QrBrur(S) + wr Qruwr+
2 ArQrArzr + 220 AL Qr Brur(S)+

20F AT Qruwr + 2ur(S)" Bf Qruwr + |ur(S)|%,)]

= miny(s) [E(ur(S) B QrBrur(S) + [wrll, +

(8.32)

27 ApQrArar + 207 ArQrBrur(S) + HUTH%{T)} ,
where the latter equality holds since wp has zero mean and wp, xp, and up(S) are inde-
pendent. From eq. (8.32), rearranging the terms, and using the notation in eq. (8.11),

g7 (S) (8.33)

—miny, (s) [E(ur(S)" (B QrBr + Rr)ur(S)+ (8.34)
|lwrl3y, + 23 AFQrArar + 204 AL Qr Brup(S) (8.35)

—miny, (s) [E(lur(S) I3, + llworlly, + oF A Qr Arar+ (8.36)
201 AFQrBrur(S)] (8.37)

=min, (s [E(HUT(S)H?WT + lwrlly, + 27 ArQrArar— (8.38)
20} (—AFQrBr My ") Mrur(S)| (8.39)

—ming(s) [E(ur(S) 3, + llwrlly, + 2 A7 QrArar— (8.40)
22T K7 MTuT(S)] (8.41)

(8.42)

141

@ .

=min,,(s) [E(|ur(S) — Krar|i, + lwrld,+ (8.43)
:L';(A;QTAT - KQ—EMTKT)JJT} (844)

=miny,.(s) (E(Jur(S) — Krar|is, + [wrlg,+ (8.45)
vy (A7 QrAr — @T)xT) (8.46)

= miing) [E(lur(S) = Krarly, + lwrl, +larl,] (5.47)

i, (5)Bllur(S) — Krerl,) +tr (WrQr) + (8.48)
E(|lzr %), (8.49)

where equality (i) follows from completion of squares, and equality (ii) holds since E(HwTH2QT) =

E [tr (w)Qrwr)] = tr (E(wpwr)Qr) = tr (WrQr). Now we note that

min,, . s)E(||lur(S) — Krar|is,)
= E(||Krér(S) — Krar|3,)

= tr (GTET\T(S)) 5 (850)
since &7 (S) is the Kalman estimator of the state zp, i.e., the minimum mean square es-
timator of xp, which implies that KpZp(S) is the minimum mean square estimator of
Krzp(S) [123, Appendix E|. Substituting (8.50) back into eq. (8.49), we get:

g7(S) = E([laz|}y,) + tr (O1E72(S)) + tr (WrQr),
which proves that Lemma 19 holds for t =T

We now prove that if Lemma 19 holds for t = [+ 1, it also holds for ¢ = [. To this end,
assume eq. (8.30) holds for t =1 + 1. Using the notation in eq. (8.11),

ai(S)=miny,(s) [E(|z11(S)IG, + [[u(S)]F,) + g11(S)]

= min,,(s) {E([2141(S)[G, + lu(S)|I%,)+
T

E(Hlerl(S)H?vm) + Z [tr (OxXkk(S)) +
k=l +1

tr (WeSk)]}
- miny, (s) {E(lze41(S)|F, + lw(S)Iz,)+ (8.51)

M=

[tr (©xXk(S)) + tr (WkSk)]}
o
- D [t (OxZy(8)) + tr (WiSk)l+
k=l+1

o mingE(laa (S)IE + [u(S)R,)- _
In eq. (8.51), the minimization in the last summand can be solved lloy following the same

1

+

142

steps as for the proof of Lemma 19 for t =T, leading to:

min, () E(|21(S)IIE, + u(S)IIE,) =

2 (8.52)
E(||zil},) + tr (©1Z:(S)) + tr (Wi Q1) ,
and u;(S) = K;#;(S). Therefore, by substituting eq. (8.52) back into eq. (8.51), we get:

T
a(S)=E(=l%,) + Z[tf (O Zkji(S)) + tr (WiSk)]. (8.53)

=l
which proves that if Lemma 19 holds ?or t =141, it also holds for ¢ = [. By induction, this
also proves that Lemma 19 holds for | = 1, and we already observed that ¢;(S) matches the
original LQG cost in eq. (8.29), hence concluding the proof. [

Proof of Theorem 17’s part (1) The proof follows from Lemma 19. In particular,
eq. (8.12) is a direct consequence of eq. (8.29), since the value of Problem 2 is equal to
mingcy «(s)<p9(S), and both E(||z1|n,) = tr (XqN1) and S tr (W3Sy) in eq. (8.29)
are independent of the choice of the sensor set S. Finally, eq. (8.13) directly follows from
eq. (8.28). [

B.1. Proof of part (2) of Theorem 17

We use the following lemma to prove Theorem 17’s part (2).
Lemma 20. The sensor set S* and the controllers ui., are a solution to Problem 3 if and
only if they are a solution to the optimization problem

mingcy u,..(s)c(S), s.t. g(S) <k, (8.54)
where

g(S) = min,, ..(s)h [S, u1.7(S)] .

Proof of Lemma 20 We prove the lemma by contradiction. In particular, first we prove
that if the sensor set S* and the controllers uj.;- are a solution to Problem 3, then they are
also a solution to the problem in eq. (8.54); and second, we prove that if S* and uj., are a
solution to the problem in eq. (8.54), then they are also a solution to Problem 3.

We prove that if the sensor set §* and the controllers uj.;. are a solution to Problem 3,
then they are also a solution to the problem in eq. (8.54). To this end, let the sensor set
S* and the controllers u}., be a solution to Problem 3, and assume by contradiction that
they are not a solution to the problem in eq. (8.54), which instead has solution S and 1.7
By optimality of § and uy.p (and suboptimality of §* and ui.p) in eq. (8.54), it follows
¢(S) < ¢(8*). In addition, it also holds g(S) < k, since (S, u1.7) must be feasible for the
problem in eq. (8.54). However, the latter implies that h <§, ﬂlzT) < k. Therefore, (§, u1.7)
is feasible for Problem 3 and has a better objective value with respect to the optimal solution

(8%, ul.p) (we already observed ¢(8) < ¢(8*)), leading to contradiction. Hence, if the sensor
set S* and the controllers u}., are a solution to Problem 3, then they are also a solution

to (8.54).

143

We now prove that if the sensor set §* and the controllers u.,» are a solution to the problem
in eq. (8.54), then they are also a solution to Problem 3. To this end, let the sensor set S*
and the controllers u}.,» be a solution to the problem in eq. (8.54), and assume that they are
not a solution to Problem 3, which instead has solution (g, u1.7). By optimality of (g, ur.r)
(and suboptimality of S* and u].;) in Problem 3 , it follows o(8) < ¢(S*). In addition,

it is h (S\, ﬂlzT) < k, since (3, u1.p) must be feasible for Problem 3, and, as a result, it

also holds ¢(S) < k. Therefore, (S, @1.7) is feasible for the problem in eq. (8.54) and has a
better objective value with respect to the optimal solution (S*,u}.,) (we already observed

c(S) < ¢(8)), leading to contradiction. Hence, if the sensor set S* and the controllers uj.;,
are a solution to the problem in eq. (8.54), then they are also a solution to Problem 3. W

Proof of Theorem 17’s part (2) The proof follows from Lemma 19 and Lemma 20. In
particular, similarly to the proof of Theorem 17’s part (1), Lemma 19, along with eq. (8.29)
and the fact that E(||z1]|n,) = tr (£19/V1), implies that if the sensor set S* and the con-
trollers uj., are a solution to the optimization problem in eq. (8.54), then &* and the
controllers uj., can be computed in cascade as follows:

S§* € argminc(S), s.t. tr[0;3,;(S)] <

SCy
T
k= tr (SqoN1) — Y tr (WS), (8.55)
t=1
U; = Kti“t(S*), t=]., ce ,T. (856)
In addition, Lemma 20 implies that (S*,u}.;) is a solution to Problem 3. As a result,
egs. (8.14)-(8.15) hold true. [

8.7.8. Proof of Theorem 18 and Proposition 10

We first prove Theorem 18 (Appendix C.1), and then prove Proposition 10 (Appendix C.2).

C.1. Proof of Theorem 18

We consider the following notation: for any sensor set S C V, welet f(S) = Zle tr[042(S)]
be the cost function in eq. (8.12), S* be a solution in eq. (8.12), and b* £ ¢(S*), that is,

b* is the cost of the sensor set §* In addition, consider the computation of the set 32 in

Algorithm 16 (lines 3-19), where S, refers to the set that Algorithm 16 has constructed

by the end of the line 19; we let G £ 3\2. We also let s; be the ¢-th element added in

G during the i-th iteration of Algorithm 16’s “while loop” (lines 3-16). Moreover, we let

Gi = {s1,52,...,8;}, that is, G; is the subset of G constructed during the first i iterations

of Algorithm 16’s “while loop” (lines 3-16). Finally, we consider that Algorithm 16’s “while

loop” (lines 3-16) terminates after { + 1 iterations.

There are two scenarios under which Algorithm 16’s “while loop” (lines 3-16) terminates:
(i) the trivial scenario where V' = (), that is, where all available sensors in V can been
chosen by Algorithm 16 as active while satisfying the budget constraint b; and (ii) the

144

non-trivial scenario where Algorithm 16’s “while” loop (lines 3-16) terminates because
¢(Gi+1) > b, that is, where the addition of the sensor s;11 in G; makes the sensor cost
of Gi11 violate the budget constraint b. Henceforth, we focus on the second, non-trivial sce-
nario, which implies that s;4; will be removed by the “if” statement in Algorithm 16’s
lines 17-19 and, as a result, G; = 3’2

We prove Theorem 18 using the following two lemmas.
Lemma 21 (Generalization of [44, Lemma 2|). Fori=1,2,...,1+1, it holds

£(Gi) — £16) = L (G) — s,

Proof of Lemma 21 Due to the monotonicity of the cost function f in eq. (8.12) (Propo-
sition 11), it holds

f(Gic1) = f(S") < f(Gim1) = f(STUGi1)
= f(Gi—1) — fFI(S*\ Gi—1) UGi_1].
Let {21, 29,...,2m} = S*\ Gi_1, and also let
dj £ f(Gima U{z1,22,. .., zj-1}) = f(Gica U {21, 22, ..., 7)),
for j =1,2,...,m. Then, f(Gi—1) — f(S*) < 3_7L, d;.

Notice that

dj _ [(Gi1) — (gz 1U{Zg}) f(Gi—1) — f(gi)

where the first 1nequa]h>ty holds due tfo the Definition 29 of tfhe supermodularity ratio vy,
and the second inequality holds due to the greedy rule (Algorithm 16’s line 13) and the
definitions of G;, and s;. Since 3 7", ¢(z;) < b*, it holds that

<

" e J(Gic1) — f(Gi)
i < <b .
f(Gim1) — f(8M) < §: ;< o .

Lemma 22 (Adapation of [44, Lemma 3|). Fori=1,2,...,1+1, it holds

s -G = [1-I1 (1-222) | o) - s

b*
j=1

Proof of Lemma 22 We complete the proof inductively. In particular, for ¢ = 1, we need
to prove f(0) — f(G1) > ~yre(s1)/b*[f(0) — f(S*)], which follows from Lemma 21 for ¢ = 1.

145

Then, we have for ¢ > 1:

F0) = F(G) = F®) — FGis) + [F(Gir) — F(G)]
> f(0) = f(Gi—1)+
)) — fish)

i)

J=1

FO) - 157 + L0 150) - g5

i
g/ C(S')
j=1
where we used Lemma 21 for the first inequality and the induction hypothesis for the second
inequality. |

Proof of Theorem 18’s part (1) (Algorithm 15’s approximation quality) We
first prove the approximation bound %" (1 —€77) in ineq. (8.19) and, then, the bound
1 — e—9c(S)/b

To prove Algorithm 15’s approximation bound % (1 —e™) in ineq. (8.19), we let b’ =

Zéill c(sj). It holds

T (1 uelsy)
F©0) = f(Gi1) = {1 -1 (1 - T)] [f(0) — £(5M)]
j=1
> (1) [£(0) - £(SM),
> (1= ™) [£(0) = £(5")) (8.57)

where the first inequality follows from Lemma 22, the second inequality from Lemma 18,
and ineq. (8.57) from the fact that b'/b* > 1 and, as a result, e~ ¥/?" < e that is,
1— e b/ >1—e 7

In addition, it is f(0) — f(S1) > el f(Gi) — f(gl“)] due to the Definition 29 of the super-
modularity ratio and, as a result, f(0) — f(S1) > v¢[f(G) — f(0) + f(D) — f(Gi+1)], which

146

after rearranging its terms gives

Vel £ (@) = f(Gis)]
< F(0) — f(S1) +v4[f(0) — £(G)]

< 2max { F(8) — £(S1), 7 [£(0) - F(G)]} - (8.58)
By substituting ineq. (8.57) in ineq. (8.58) and rearranging the terms we have

max{f(@) — f(§1)77f[f(®) - f(gl)]}

Vf — *
which implies the inequality= 9 (L—e) [f(0) = f(SM)],

max [f(@) - f(§1); f(0) - f(gl)}

7 - *
> (1 -) [£(0) - £(S7), (8.59)
since vy takes values in [0, 1] by tﬁe Definition 29 of the supermodularity ratio.

Algorithm 15’s approximation bound % (1 —e™9) in ineq. (8.19) follows from ineq. (8.59)
as the combination of the following three observations:

o it is G = S, due to the definition of G;, and, as a result, f(0) — £(G;) = f(0) — f(S).

e Algorithm 16 returns the set S such at S € arg maxg. (3 5,) [f(0) — f(S)] (per Algo-
rithm 16’s line 20) and, as a result, the previous observation, along with ineq. (8.59),
gives:

F0) = £8) = L (1= 1) [£(0) - £(S"). (8.60)

e Finally, Lemma 19 implies that for any sets S,8' C Vit is ¢(S) = f(S) +E(||z1||n,) +
STt (W3Sy), where E(||z1 || ny) + Si, tr (WiS;) is independent of S. As a result,
for any sets S,8" C Vit is f(S) — f(S') = g(S) — g(§’), which implies v¢ = v, due
to the Definition 29 of the supermodularity ratio. In addition, Lemma 19 implies that
for any S C Vit is g(S) = h[S,u1.7(S)] and g* = g(S*). Thereby, for any S C V
it is f(0) — £(S) = 9(0) — 9(S) = h[0,ur.r(0)] — A[S,ur.r(S)] and f(0) — f(S*) =
g(0) — g(8*) = h[0, u1.7(D)] — g* Overall, ineq. (8.60) is written as

B0, w17 (0)] = R[S, ur(S)] >

U (=) (b, wan 0)] - '),
which implies the bound % (1 — e~ 7) in ineq. (8.19).

147

It remains to prove the bound 1 — e=19¢(S)/b i ineq. (8.19). To this end, we first have:

: vre(s;)
£0) - 1) > 1_};[1(1_1)*) £O) - £(@)

> (1= e @) [£(0) = £(S),
> (1= e) [£(0) - £(57), (8.61)

where the first inequality follows from Lemma 22, the second inequality from Lemma 18, and
ineq. (8.61) from the fact that ¢(G;)/b* > ¢(G;)/b, since b* < b, which implies e~ 7re(9)/b" <
e 1@/ e 1 — e WY/ > 1 — e/ The rest of the proof is completed using
the combination of the three observations in the previous paragraph, that we used to prove
Algorithm 15’s approximation bound % (1 — e™7) in ineq. (8.19). [

Proof of Theorem 18’s part (2) (Algorithm 15’s running time) We compute Al-
gorithm 15’s running time by adding the running times of Algorithm 15’s lines 1-5:

Running time of Algorithm 15’s line 1 Algorithm 15’s line 1 needs O(Tn?%) time,
using the Coppersmith algorithm for both matrix inversion and multiplication [216].

Running time of Algorithm 15’s line 2 Algorithm 15’s line 2 running time is the
running time of Algorithm 16, whose running time we show next to be O(|V|?Tn?%). To
this end, we first compute the running time of Algorithm 16’s line 1, and finally the running
time of Algorithm 16’s lines 3-16. Algorithm 16’s lines 3-16 are repeated at most |[V|?
times, since before the end of each iteration of the “while loop” in line 3 the added element
in S (line 14) is removed from V' (line 15). We now need to find the running time of
Algorithm 16’s lines 4-16; to this end, we first find the running time of Algorithm 16’s
lines 4-12, and then the running time of Algorithm 16’s line 13. In more detail, the running
time of Algorithm 16’s lines 4-12 is O(|V|T'n?%), since Algorithm 16’s lines 4-12 are repeated
at most |V| times and Algorithm 16’s lines 5-10, as well as, line 11 need O(Tn?%) time, using
the Coppersmith-Winograd algorithm for both matrix inversion and multiplication [216].
Moreover, Algorithm 16’s line 13 needs O[|V|log(|V|)] time, since it asks for the maximum
among at most [V values of the gain .y, which takes O[|V[log(|V|)] time to be found, using,
e.g., the merge sort algorithm. In sum, Algorithm 16’s running time is upper bounded by
O[|V]2PTn?* + |V|?log(|V])], which is equal to O(|V[>*Tn?*4).

Running time of Algorithm 15’s lines 3-5 Algorithm 15’s lines 3-5 need O(Tn*%)
time, using the Coppersmith algorithm for both matrix inversion and multiplication [216].

In sum, Algorithm 15’s running time is upper bounded by O(|V|*Tn?4 4 2T'n?*) which is
equal to O(|V|*Tn%%). []

C.2. Proof of Proposition 10
The proof of Proposition 10 follows the same steps as the proof of Theorem 18 and for this

148

reason we omit it.

8.7.4. Proof of Theorem 19

We consider the following notation: for any sensor set S C V, we let f(S) = Zle tr[042(S)]
be the cost function in eq. (8.14), the sensor set S* be a solution to Problem 3, and b* be
equal to ¢(S8*), that is, b* is the optimal value of Problem 3. In addition, consider the
computation of the set S in Algorithm 18 (lines 3-16): we let G £ S. We also let s; be the
i-th element added in G during the i-th iteration of Algorithm 18’s “while loop” (lines 3-16).
Finally, we let G; £ {s1, s2,...,5;}, that is, G; is the subset of S constructed during the first
i iterations of Algorithm 18’s “while loop” (lines 3-16).

We prove Theorem 19 using the following two lemmas.
Lemma 23 (Adaptation of Lemma 21). Fori=1,2,...,|G|, it holds

)

F(Gi) — F(G) > 1L

b (f(Gi1) = f(S)).

Proof of Lemma 23 Due to the monotonicity of the cost function f in eq. (8.12) (Propo-
sition 11), it holds

f(Gic1) — f(S%) < f(Gim1) — f(STUGi—1)
= f(Gi—1) — fI(S*\ Gi—1) UGi_1].
Let {21, 29,...,2m} = S*\ Gi_1, and also let

d;j = f(Gie1 U{21, 20, ..., 2j-1}) — f(Gic1 U {z1,22,. .., 2 }),
for j=1,2,...,m. Then, f(Gi—1) — f(S*) < Z;n:1 dy.

Notice that

d; < f(Gi—1) = f(Gim1U{2}) < f(Giz1) — [(G:)

c(zp) ~ vre(z5) ~ o ogpelsi)

where the first inequa]lgty holds due tfo the Definition 29 of tfhe éupermodularity ratio vy,
and the second inequality holds due to the greedy rule (Algorithm 18’s line 13) and the
definitions of G; and s;. Since >, ¢(z;) < b*, it holds that

f(Giz1) — f(8F) < - d; < b*f(gi—l) - f(gi)‘
vre(si) =

j=1
Lemma 24 (Adaptation of Lemma 22). Fori=1,2,...,|G|, it holds

s -G = [1-T] (1- 2580 | 170 - s
j=1

Proof of Lemma 24 We complete the proof inductively. In particular, for ¢ = 1, we need
to prove f(0) — f(G1) > ype(s1)/b*[f(0) — f(S*)], which follows from Lemma 23 for ¢ = 1.

149

Then, we have for ¢ > 1:

i)

J=1

FO) - 157 + L0 150) - g5

i
vsels;)
=TI (1~ fb) £0) - £(57)]
j=1
using Lemma 23 for the first inequality and the induction hypothesis for the second inequal-
ity. |

Proof of Theorem 19’s part (1) (Algorithm 17’s approximation quality) We first
observe that ineq. (8.21) holds since Algorithm 17 returns the set S once the condition
R[S, u1.7(S)] < k is satisfied (Algorithm 18’s line 3).

It remains to prove ineq. (8.22). Let [£ |G|; then, G; = G, by the definition of G;, and from
Lemma 22 for ¢ =1 — 1 it holds

-1
FO) ~ 5(G) > {1 II(1- ’Vfb”)] F0) ~ £(5")
j=1

1 e el [1(0) — (8], (8.62)
where ineq. (8.62) follows from Lemma 18. Moreover, Lemma 19 implies that for any
sensor sets S,8" C Vit is g(S) = f(S) + E(||z1]ln,) + S, tr (W;S;), where the term
E(||lz1||n,) + 23:1 tr (W..S;) is independent of S, and, as a result, it is f(S) — f(S') =
g(S) — g(S’), which implies 75 = 74. Moreover, Lemma 19 implies for any S C V that
9(S) = h[S,u1.7(S)] and, as aresult, it is f(0) — f(Gi—1) = h[D, u1.7(0)] — R[G1—1, u1.7(Gi1—1)]
and f(0) — f(8*) = h[d, u1.7 ()] — h[SFu1.7(S*)]. In sum, ineq. (8.62) is the same as the
inequality

h(0, ur.r(0)] — R[Gi—1, u1.7(Gi—1)] >

(1 _ 6*“/9(:(9#1)/“) {R]0, ur.r(0)] — R[S*ur.p(S*)]},
which, by letting 3 £ 1 — e 19c(G1-1)/b" and rearranging its terms, is simplified to the

150

inequality

h(Gi—1,ur.7(Gi—1)] < (1 = B)h[D, ur.7(0)] + BA[S’ ur.7(S™)]
S (1 - /B)hw)a Ul;T(@)] + BKJ, (863)

where the second inequality holds because S* is a solution to Problem 3 and, as result,
h[S%u1.7(8*)] < k. To complete the proof, we recall that Algorithm 18 returns the set G = G,
when for ¢ = [it is the first time that h[G;, u1.7(G;)] < k. Therefore, h[G;_1,u1.7(G—1)] > K
and, as a result, there exists a real number € > 0 such that h[G;_1,u1.7(G—1)] = (1 + €)r,
and ineq. (8.63) gives

(1+e)k < (1= B)h[D,ur.7(0)] + Br =
er < (1= B)h[0, ur.r(0)] — (1 - B)x =
ek < (1= B){h[0,ur.p(0)] — k} =

er < e 99— /b*{h[@ urr(0)] — k} =

o (hW), u.7(0)] — m) < —79c(G1-1) /" =
c(G_1) < 1 log <h[@,u1;T(®)] - /$> s

Vg €R

hD, urr(0)] — K

1
c(G) < c(si) + — log b,
€K
where the latter holds since G = Q’l,lu{s?}, due to the definitions of G, G;_1, and s;, and since
c(G) = c(Gi-1) + c(s1)- Finally, since the definition of € implies ex = h[G;—1, ur.7(Gi-1)] — K,
and the definition of G is G = S, the proof of ineq. (8.21) is complete. [|

Proof of Theorem 19’s part (2) (Algorithm 17’s running time) The proof is similar
to the proof of Theorem 18’s part (2) (Algorithm 15’s running time) and for this reason we
omit it. |

8.7.5. Proof of Theorem 20

Proof of Theorem 20 We complete the proof by first deriving a lower bound for the
numerator of the supermodularity ratio -4, and then, by deriving an upper bound for the
denominator of the supermodularity ratio .

We use the following notation: ¢ £ E(z] Nyz1) + Ethl tr (W.Sy), and for any sensor set
S CV,and time t = 1,2,...,T, fi(S) = tr (@t2t|t(8))~ Then, the cost function ¢(S) in
eq. (8.18) is written as g(S) = ¢+ Y1, fi(S), due to eq. (8.29) in Lemma 19.

Lower bound for the numerator of the supermodularity ratio v, Per the super-
modularity ratio Definition 29, the numerator of the submodularity ratio v, is of the form

T
D Lfi(S) = fS u{u})], (8.64)

t=1

151

for some sensor set S C V, and sensor v € V; to lower bound the sum in (8.64), we lower
bound each fi(S) — fi(S U {v}). To this end, from eq. (14) in Lemma 14, observe

Zt‘\t(‘s. U {U}) [t|t 1 S U {U} Z Cz tCZt
168U{v}
Define Q; = X 1()+ ZZGS o tClt, and Q; = NP 1(5 U{v}) + 2163 CltC'”, using the
Woodbury identity in Lemma 12,

Fi(SU{v}) = tr (0:0;) —
tr (08 1O (T + Co i1 CL t)—lév,t();l) .
Therefore, for any time t € {1,2...,T},

fi(8) = f(SU{v}) =

tr (0.") —tr (0,9, 1) +

tr (007 Ol + Cou ' CT) 1 Cu) 2

tr (@@;1@; I+ Co7 O)0 (8.65)
where ineq. (8.65) holds because tr (@tﬁgl) > tr (@tfl;l). In particular, the inequality
tr (0:0;") > tr (0:,Q;") is implied as follows: Lemma 15 implies £1(S) = Sy1(S U {v}).
Then, Corollary 9 implies Yy, (S) = Xy;—1(S U {v}), and as a result, Lemma 10 implies
Et‘t,l(S)*l = By (SU {v})~! Now, Zt|t,1(8)*1 =y (SU {v})~! and the definition of
) and of € imply Q; < Q;. Next, Lemma 10 implies Qt_l > Qt_l. As a result, since also Oy
is a symmetric matrix, Lem- ma 13 gives the desired inequality tr (@tﬁ;l) > tr (@tQ;l).

Continuing from the ineq. (8.65),

fi(8) = fi(SU{v}) =

fr (C*MQ;l@tQ;lC‘I (I + o710 t)—1> >

Awin (I + o Q7 €)™ tr (o0 0:071C,) (8.66)
where ineq. (8.66) holds due to Lemma 11. From ineq. (8.66),

fi(8) = fi(SU{v}) =

= NI+ Coa 7 O (o0 0,071)

> Nk 1+ Cot Tt (Coa ' 0:07CL)

= L+ CoZyy (0T)t (0,071 CL,CLi07). (8.67)
where we used Q; ' < 4¢(0), which holds because of the following: the definition of €
implies Q; > Eﬂt ((SU{v}), and as a result, from Lemma 10 we get Q! < -1 (SU{v}).
In addition, Corollary 9 and the fact that ¥,;(S U {v}) =< X;1(0), which holds due to

Lemma 15, imply ¥,;_1(S U {v}) = Ey;_1(0). Finally, from eq. (14) in Lemma 14 it is
Yiji—1(0) = X44(0). Overall, the desired inequality Q' < ¥41¢(0) holds.

152

Consider a time t' € {1,2...,T} such that for any time ¢ E {1,2,...,T}itisQ,'Cl v Co /!

0, 1CJCo iy and let @ be the matrix €,'C, C v, sumlarly, let I be the

¢
minte{m...,T},vev)\;éx(I + Ov,tEt\t(@)éth>-
Summing ineq. (8.67) across all times t € {1,2...,T}, and using Lemmata 13 and 11,
T
9(S) ~ g(SU{vh) 2 1Y tr (0,071CL,Ci0)
t=1
T
>1) tr(6:9)
t=1
T
= ltr <(I) Z @t>
t=1

T
> I Amin (Z @t> tr (®)
t=1

which is non-zero because Z;le O: >0 Z @ is a non-zero positive semi-definite matrix.
Finally, we lower bound tr (®), using Lemma 11:
tr (@) = tr (Q;lé;/éw,ﬁ;l)
~ tr (Q;,?éj . t)
> Amin (%) tr (
e (

(Q; Htr

cl.C, t/)

_)\2

min

>)\mm(Zt/|t/(V))tr <C +Co, t,> (8.68

where ineq. (8.68) holds because Q = Yy (V). In particular, the inequality Q

Et/‘t/ (S U {v}) is derived by applylng Lemma 10 to the inequality Qy < Qp + C] tC’

t,‘t, L (SU{v}), where the equality holds by the definition of Q. In addition, due to Lemma 1

it is ¥11 (S U {v}) = ¥11(V), and as a result, from Corollary 8 it also is Xy (S U {v})
Sy (V). Overall, the desired inequality Q" = Sy, (V) holds.

ClvCur)

~—

|| Y

1Y o

Upper bound for the denominator of the supermodularity ratio 7, The denomi-
nator of the submodularity ratio v, is of the form

T

Z[ft(sl) — fi(S"U{v})],

for some sensor set S’ C V, and sengor v € V; to upper bound it, from eq. (14) in Lemma 14
of Appendix A, observe

Zt\t(s/u{v}) [t\t 1(8/U{U} Z Cthzt 7
1€S"U{v}

153

and let Hy = X, " LS+ ZZGS’ C’MC'Z ¢, and H; = X ' (SU{o}) + ZZES’ CltCzt, using
the Woodbury identity in Lemma 12,

fi(8'U{v}) = tr (0,H;") -
Therefore, tr <@thiléth(I + Cv,tgflélt)_lév,tgfl> .

T

D U8 = fu(S"u{vh)] =

t

Il
—

M=

[tr (©:H,) —tr (0.H, ') +

H
Il
—

tr (O CL(I + Co H ' CL) ™ Coa)] <

T
Z tI“ @t
t=1

tr (@t 'O + Gy H 'O t)‘lév,tﬁgl)}, (8.69)
where ineq. (8.69) holds since tr (@t H; ') is non-negative. In eq. (8.69), the second term in
the sum is upper bounded as follows, using Lemma 11:

tr (04 (1 + Gl ' CL) G ;)
)g

tr (Co o O Ol (1 + Cog 7 CL) ™!
tr (GO0) A1+ Co I CL)) =
(O H 0, H71CT)Amn(HCv,tﬂ{lC’L) <

tr (Co ;10,1 ICT) Aok (I + Co 2 (V)CL), (8.70)

min
since Amin (I + Cp ¢t H,~ Cth) >)\mm(l + C’MEW(V)(ZL), because FIt_l = Yye(V). In partic-
ular, the inequality H 1w Et‘t(V) is derived as follows: first, it is Hy < H; + C' 1Cut =
Et‘t(S’U {v})~! where the equality holds by the definition of H;, and now Lemma 10 implies
H7 ' - Et|t(S’U {v}). In addition, ¥, (S"U{v}) = 3y, (V) is implied from Corollary 8, since
Lemma 15 implies ¥}, (S" U {v}) = ¥y1(V). Overall, the desired inequality H7' - Yee(V)
holds.

Let I' = max;e 12 7} wevAmin (1 + Coi Sy (V)C,,). From inegs. (8.69) and (8.70),

min

T

D IS = filS'u{vh)] <

=1 (8.71)

T
Ztr (OcH) + Utr (€, Co g H)],

Consider times ¢’ € {1, 2. ., T}andt” € {1 2...,T} such that for any time ¢t € {1,2,...,T},

it is H,' » H;! and H,'CT,,C o z ’t—lé,jtév,tﬁgl, and let = = H,' and

7 vt v

154

' =H,'C| t/Cv t/H From ineq. (8.71), and Lemma 13,

N

[f(S") = fi(S"U{v})] <

#
Il
—

B

[tr (©:2) + U'tr (6,9)] <

T
tr (EZ@t> + U'tr (@’Z @t> <

t=1

I
N

(tr (Z) + U'tr (@) Amax(Z@t (8.72)

Finally, we upper bound tr (£) + I"tr (®) in ineq. (8.72), using Lemma 11:

tr (2) + U'tr (9) <
tr () + (8.73)
!)‘I2nax(715//)tr (OJt”év7t”) <

tr (S0 (0)) + N (S (01 (ClC. t//) (8.74)
where ineq. (8.74) holds because H,, ! < Yy (D), and similarly, H,, 1< Yy (0). In partic-
ular, the inequality Hgl = e () is implied as follows: first, by the definition of Hy, it is
HtTl = Yy (S8'); and finally, Corollary 8 and the fact that Xy;(S') =< 21‘1(@), which holds
due to Lemma 15, imply ¥y4(S) < Xy (0). In addition, the inequality H,, < S (D)
is implied as follows: first, by the definition of Hyr, it is Hyr > Et,,‘t” 1(8’ U {v}), and as
a result, Lemma 10 implies H,,' < Sprn—1(S" U {v}). Moreover, Corollary 9 and the fact
that 21“(8 U {v}) = Em(@), Wthh holds due to Lemma 15, imply X1 (S" U {v}) =<
S —1(0). Finally, from ed. (14) in Lemma 14 it is X1 (0) = g (D). Overall, the
desired inequality H,,' < Sy (D) holds. [|

8.7.6. Proof of Theorem 21

For the proof of Theorem 21, we use Lemmata 25-28 below.
Lemma 25 (System-level condition for near-optimal co-design). Let Ny be defined as in
eq. (8.11). The control policy uj.; = (0,0,...,0) is suboptimal for the LQG problem in
eq. (8.24) for all non-zero initial conditions 1 if and only if

S Al AT QA - Ay - N (8.75)

Proof of Lemma 25 For any initial condition x1, eq. (8.29) in Lemma 19 implies for the
noiseless perfect state information LQG problem in eq. (8.24):

T
; T
MmNy, Z [th—HHz}t + [lue(z) ||%%t ‘2 He=Wi= =z Niz1, (8.76)

t=
since E(|lz1]|%,) =) I Nizy, because x1 is known (Z1p = 0) and X, and W; are zero.

155

In addition, for u;.p = (0,0,...,0), the objective function in the noiseless perfect state
information LQG problem in eq. (8.24) is

~

S Meeral, + @)), —iwio
t=1

T
=Y 2l Qe (8.77)
t=1

T
=2 Y AJA] - Al QA Ay - Ay,
=1
since x4 = Ay = AtAt_lxt_tl =...=AA;_1--- Ayx1 when all uy,us,...,upr are zero.
From eqs. (8.76) and (8.77), the inequality
T
] Nyzy <x{ Y AlA] - Al QiAA; 1 -+ Ay
holds for any non-zero x; if and onfgqf
T
Ni =Y Al Al QiAA - Ay
t=1
Lemma 26. For anyt=1,2,...,T,

O = AtTStAt +Qi—1 — Si—1.

Proof of Lemma 26 Using the Woobury identity in Lemma 12, and the notation in
eq. (8.11),
Ny = Al (S, + B.R;'B)4,
— A;F(St - StBtMtilBtTSt)At

= A S;A; — 0.
The latter, gives ©; = A Sy A; — N;. In addition, from eq. (8.11), —N; = Q;_1 — S;_1, since
St = Q¢ + Niy1. n
Lemma 27. S AT AJ - A] Qi A A1 -~ Ay = Ny if and only if

T
S ALA - AL OAL 1A g AL 0.
t=1

156

Proof of Lemma 27 Fori=t—1,t—2,...,1, we pre- and post-multiply the identity in

Lemma 26 with A and A;, respectively:

Or = Al StAr + Qi1 — Si_1 =

Ath@tAt—l = Al1AtTStAtAt—1 + A;71Qt—1x4t—1—
Al 1S 1A =

Al 01A = AL AT S AA + AL Q1 A -
O 1+ Q12— S2=

Qi1+ A 0A 1 =A A S AA_+
A 1Qi A1+ Qo — Si o=

L=

Oy + AgOsAg+ ...+ Ay - Al 1O A - Ay =

A;-'AtTStAthz+A2T'-‘A;,1Qt—1At—1"‘A2+
o AJ QoA+ Qr — S =

O+ A OA +...+ A A 16A A=

AlT"'AtTStAt“-Al "‘AI"‘A;_th—lAt—l"‘Al"‘
A QA - Ny =

T
ZAI“'AL@tAt—l'“Al =
t=1

T
Al Al QA AL - Ny

1
The last equality in eq. 68.93) implies Lemma 27.
Lemma 28. Consider for any t = 1,2,...,T that A; is invertible. It holds:

T
S ATA] AL OA 1A g AL 0

if and only if =t

T
Z ©; = 0.
t=1

Proof of Lemma 28 Let Uy = Ay_1A;_o--- A;.

8.78
8.79
8.80
8.81
8.82
8.83
8.84
8.85
8.86
8.87
8.88
8.89
8.90

(
(
(
(
(
(
(
(
(
(
(
(
(
(8.91

)
)
)
)
)
)
)
)
)
)
)
)
)
)

(8.92)

(8.93)
n

We first prove that for any non-zero vector z, if it is Zle AlTA;r e All@tAt_lAt_g s Ay =
0, then Zthl 2"0,z > 0. In particular, since U; is invertible, —because for any ¢t €

157

{1,2,...,T}, Ay is,—

T
TOz = Z U7 TUeU U

114
N

(8.94)
= Ztr (¢n0i U 0.01) |

where we let ¢y = U;'z. Consider a tlme t' such that for any time t € {1,2...,T},
qﬁt/(;ﬁtT/ =< ¢1p) . From eq. (8.94), using Lemmata 13 and 11,

T T
R (qﬁm; UJ@tUt)
=1 =1
T
> tr <</>t'¢tTf ZUtT@tUt>
=1 i
> tr (ébt'ﬁb;))\min(z UtT@tUt)
=1

T
= [lpe 3Amin > U ©,U1)

t=1
> 0.
We finally prove that for any non-zero vector z, if ZtT:1 O > 0, then"

T

Z ZAI e AtT—1@tAt—1 <Az - 0.
In particular, =
-
Z U 0,z = Ztr (& 9t§t> (8.95)

where we let & = Uyz. Con51der time ¢’ such that for any time t € {1,2...,T}, & &) < &/
From eq. (8.94), using Lemmata 13 and 11,

T T
> us(es) > (6l Yo
t=1 t=1
T

> tr (&@7) Amin()_ ©1)

t=1

T
= H&t’ ||%)‘min(z @t)
t=1

> 0. |

158

Proof of Theorem 21 Theorem 21 follows from the sequential application of Lem-
mata 25, 27, and 28. |

159

Part 111

RESILIENT SUBMODULAR
MAXIMIZATION

160

CHAPTER 9 : Resilient Non-Submodular Maximization over Matroid Constraints

Applications in control, robotics, and optimization motivate the design of systems by se-
lecting system elements, such as actuators, sensors, or data, subject to complex design con-
straints that require the system elements not only to be a few in number, but also, to satisfy
heterogeneity or global-interdependency constraints; in particular, matroid constraints. How-
ever, in failure-prone and adversarial environments, sensors get attacked; actuators fail; data
get deleted. Thence, traditional matroid-constrained design paradigms become insufficient
and, in contrast, resilient matroid-constrained designs against attacks, failures, or deletions
become important. In general, resilient matroid-constrained design problems are computa-
tionally hard. Also, even though they often involve objective functions that are monotone
and (possibly) submodular, no scalable approximation algorithms are known for their solu-
tion. In this chapter, we provide the first algorithm, that achieves the following character-
istics: system-wide resiliency, i.e., the algorithm is valid for any number of denial-of-service
attacks, deletions, or failures; minimal running time, i.e., the algorithm terminates with
the same running time as state-of-the-art algorithms for (non-resilient) matroid-constrained
optimization; and provable approrimation performance, i.e., the algorithm guarantees for
monotone objective functions a solution close to the optimal. We quantify the algorithm’s
approximation performance using a notion of curvature for monotone (not necessarily sub-
modular) set functions. Finally, we support our theoretical analyses with numerical experi-
ments, by considering a control-aware sensor selection scenario, namely, sensing-constrained
robot navigation.!

9.1. Introduction

Applications in control, robotics, and optimization require the design of systems in problems
such as:

e (Control) Leader selection: In multi-robot systems, how should we choose a few lead-
ers both to maximize the systems’ capability to monitor phenomena despite commu-
nication noise, and to satisfy interdependency constraints where each robot must be
controllable by the leaders? [218]

e (Robotics) Target tracking: At a team of flying robots, how should we select the
robots’ motions to maximize the team’s capability for tracking adversarial targets
in urban environments, subject to heterogeneity constraints where each robot has
different motion capabilities? [6]

e (Optimization) Data selection: Given a flood of heterogeneous driving data, collected
from the smart-phones of several types of drivers (e.g., truck or commercial vehicle
drivers), which few data should we process from each driver-type to enable the pre-
diction of car traffic? [219]

In particular, all the above applications motivate the design of systems by selecting system
elements, such as actuators, sensors, or data, subject to complex design constraints that
require the system elements not only to be a few in number, but also, to satisfy heterogene-

!This chapter is based on the paper by Tzoumas et al. [217].

161

ity or global-interdependency constraints. Additional applications in control, robotics, and
optimization that involve such complex design constraints are:

e (Control) Sparse actuation and sensing design [4, 5, 10, 53, 58]; stabilization and
voltage control in power grids |1, 25]; and synchronization in complex networks [9];

e (Robotics) Task allocation in collaborative multi-robot systems |11]; and agile au-
tonomous robot navigation and sparse visual-cue selection [220];

e (Optimization) Sparse signal recovery and subset column selection [221, 222, 223]; and
sparse approximation, dictionary and feature selection [224, 225, 226].

In more detail, all the aforementioned applications [1, 4, 5, 6, 9, 10, 11, 25, 53, 58, 218, 219,
220, 221, 222, 223, 224, 225, 226| require the solution to an optimization problem of the
form:

acha f(A). (9.1)
where the set Z represents a collection of complex design constraints —called matroids [12]—
that enforce heterogeneity or global-interdependency across the elements in A; and the objec-
tive function f is monotone and (possibly) non-submodular; submodularity is a diminishing
returns property. The problem in eq. (9.1) is combinatorial, and, specifically, it is NP-
hard [13]; notwithstanding, approximation algorithms have been proposed for its solution,
such as the greedy [12, 13, 31, 32, 33|.

But in all the above critical applications, actuators can fail [23]; sensors can get cyber-
attacked [24]; and data can get deleted [36]. Hence, in such failure-prone and adversarial
scenarios, resilient matroid-constrained designs against denial-of-service attacks, deletions,
or failures become important.

In this chapter, we formalize for the first time a problem of resilient non-submodular mazi-
mization, that goes beyond the traditional problem in eq. (9.1), and guards against attacks,
failures, and deletions. In particular, we introduce the following resilient re-formulation of
the problem in eq. (9.1):

ACV AeT B, Ber J(ANB). (9:2)
where the set Z' represents the collection of possible set-removals B —attacks, failures, or
deletions— from A, each of some specified cardinality. Overall, the problem in eq. (9.2)
maximizes f despite worst-case failures that compromise the maximization in eq. (9.1).
Therefore, the problem formulation in eq. (9.2) is suitable in scenarios where there is no
prior on the removal mechanism, as well as, in scenarios where protection against worst-case
removals is essential, such as in expensive experiment designs, or missions of adversarial-
target tracking.

Particularly, the optimization problem in eq. (9.2) may be interpreted as a 2-stage perfect
information sequential game between two players [26, Chapter 4], namely, a “maximization”
player (designer), and a “minimization” player (attacker), where the designer plays first, and
selects A to maximize the objective function f, and, in contrast, the attacker plays second,

162

and selects B to minimize the objective function f. In particular, the attacker first observes
the designer’s selection A, and then, selects B such that B is a worst-case set removal from A.

In sum, the optimization problem in eq. (9.2) goes beyond traditional (non-resilient) opti-
mization |12, 13, 31, 32, 33| by proposing resilient optimization; beyond merely cardinality-
constrained resilient optimization [34, 35, 56] by proposing matroid-constrained resilient opti-
mization; and beyond protection against non-adversarial set-removals [36, 37| by proposing
protection against worst-case set-removals. Hence, the problem in eq. (9.2) aims to pro-
tect the complex design of systems, per heterogeneity or global-interdependency constraints,
against attacks, failures, or deletion, which is a vital objective both for the safety of critical
infrastructures, such as power grids [1, 25|, and for the safety of critical missions, such as
multi-target surveillance with teams of mobile robots [6].

Contributions. In this chapter, we make the contributions:

e (Problem) We formalize the problem of resilient mazimization over matroid constraints
against denial-of-service removals, per eq. (9.2). This is the first work to formalize,
address, and motivate this problem.

e (Solution) We develop the first algorithm for the problem of resilient maximization
over matroid constraints in eq. (9.2), and prove it enjoys the following properties:

— system-wide resiliency: the algorithm is valid for any number of removals;

— manimal running time: the algorithm terminates with the same running time as
state-of-the-art algorithms for (non-resilient) matroid-constrained optimization;

— provable approzimation performance: the algorithm ensures for functions f that
are monotone and (possibly) submodular —as it holds true in all above applica-
tions [1, 4, 5, 6, 9, 10, 11, 25, 53, 58, 218, 219, 220, 221, 222, 223, 224, 225, 226]—
a solution close-to-optimal.

To quantify the algorithm’s approximation performance, we use a notion of cur-
vature for monotone (not necessarily submodular) set functions.

o (Simulations) We demonstrate the necessity for the resilient re-formulation of the prob-
lem in eq. (9.1) by conducting numerical experiments in various scenarios of sensing-
constrained autonomous robot navigation, varying the number of sensor failures. In
addition, via the experiments we demonstrate the benefits of our approach.

Overall, the proposed algorithm herein enables the resilient re-formulation and solution of
all aforementioned matroid-constrained applications [1, 4, 5, 6, 9, 10, 11, 25, 53, 58, 218,
219, 220, 221, 222, 223, 224, 225, 226|; we describe in detail the matroid-constraints involved
in all aforementioned application in Section 9.2. Moreover, the proposed algorithm enjoys
minimal running time, and provable approximation guarantees.

Organization of the rest of the chapter. Section 9.2 formulates the problem of re-
silient maximization over matroid constraints (Problem 4), and describes types of matroid

163

constraints in control, robotics, and optimization. Section 9.3 presents the first scalable,
near-optimal algorithm for Problem 4. Section 9.4 presents the main result in this chapter,
which characterizes the scalability and performance guarantees of the proposed algorithm.
Section 9.5 presents numerical experiments over a control-aware sensor selection scenario.
Section 9.6 concludes the chapter. All proofs are found in the chapter’s Appendix.

Notation. Calligraphic fonts denote sets (e.g., A). Given a set A, then 24 denotes the
power set of A; |A| denotes A’s cardinality; given also a set B, then A\ B denotes the set
of elements in A that are not in B; and the (A, B) is equivalent to A U B. Given a ground
set V, a set function f:2Y + R, and an element € V, the f(x) denotes f({z}).

9.2. Resilient Non-Submodular Maximization over Matroid Constraints

We formally define resilient non-submodular maximization over matroid constraints. We
start with some basic definitions.

Definition 30 (Monotonicity). Consider a finite ground set V. Then, a set function f :
2V i R is non-decreasing if and only if for any sets A C A’ CV, it holds f(A) < f(A").
Definition 31 (Matroid [30, Section 39.1]). Consider a finite ground set V, and a non-
empty collection of subsets of V, denoted by . Then, the pair (V,TI) is called a matroid if
and only if the following conditions hold:

o for any set X CV such that X € Z, and for any set such that Z C X, it holds Z € Z;

o for any sets X, Z CV such that X, Z € T and |X| < |Z]|, it holds that there exists an
element z € Z\ X such that X U{z} € T.

We next motivate Definition 31 by presenting three matroid examples —uniform, partition,
and transversal matroid— that appear in applications in control, robotics, and optimization.

Uniform matroid, and applications. A matroid (V,Z) is a uniform matroid if for a
positive integer « it holds Z = {A: A C V,|A| < a}. Thus, the uniform matroid treats all
elements in V uniformly (that is, as being the same), by only limiting their number in each
set that is feasible in Z.

Applications of the uniform matroid in control, robotics, and optimization, arise when one
cannot use an arbitrary number of system elements, e.g., actuators, sensors, or data, to
achieve a desired system performance; for example, such sparse element-selection scenarios
are necessitated in resource constrained environments of, e.g., limited battery, communi-
cation bandwidth, or data processing time [220]. In more detail, applications of sparse,
uniform selection in control, robotics, and optimization include the following;:

e (Control) Actuator and sensor placement, e.g., for system controllability with minimal
control effort [4, 53], and for optimal smoothing or Kalman filtering [10, 58];

o (Robotics) Sparse visual-cue selection, e.g., for agile autonomous robot navigation [220];
e (Optimization) Sparse recovery and column subset selection, e.g., for experiment de-

sign [221, 222, 223].

164

Partition matroid, and applications. A matroid (V,Z) is a partition matroid if for a
positive integer n, disjoint sets Vi,...,V,, and positive integers aq,...,qy,, it holds V =
ViU---UV,and T = {A: ACV [ANV] < o, foralli = 1,...,n}. Hence, the
partition matroid goes beyond the uniform matroid by allowing for heterogeneity in the
elements included in each set that is feasible in Z. We give two interpretations of the
disjoint sets Vi, ..., V,: the first interpretation considers that V;,...,)V, correspond to the
available elements across n different types (buckets) of elements, and correspondingly, the
positive integers aq, ..., a, constrain uniformly the number of elements one can use from
each type 1,...,n towards a system design goal; the second interpretation considers that
V1,..., V, correspond to the available elements across n different times, and correspondingly,
the positive integers aq, ..., a, constrain uniformly the number of elements that one can
use at each time 1,...,n.

Applications of the partition matroid in control, robotics, and optimization include all the
aforementioned applications in scenarios where heterogeneity in the element-selection en-
hances the systemn performance; for example, to guarantee voltage control in power grids,
one needs to (possibly) actuate different types of actuators [25], and to guarantee active
target tracking, one needs to activate different sensors at each time step [5]. Additional
applications of the partition matroid in control and robotics include the following:

e (Control) Synchronization in complex dynamical networks, e.g., for missions of motion
coordination [9];

e (Robotics) Robot motion planning, e.g., for multi-target tracking with mobile robots [6];

e (Optimization) Sparse approximation and feature selection, e.g., for sparse dictionary
selection [224, 225, 226].

Transversal matroid, and applications. A matroid (V,Z) is a transversal matroid if for
a positive integer n, and a collection of subsets Sy, ...,S, of V, it holds I is the collection of
all partial transversals of (S, ...,Sy,) —a partial transversal is defined as follows: for a finite
set V, a positive integer n, and a collection of subsets S1,...,8, of V, a partial transversal
of (81,...,8,) is a subset P of V such that there exist a one-to-one map ¢ : P — {1,...,n}
so that for all p € P it holds p € Sy;); i.e., each element in P intersects with one —and
only one— set among the sets Sy, ...,S,.

An application of the transversal matroid in control is that of actuation selection for optimal
control performance subject to structural controllability constraints [218].

Additional examples. Other matroid constraints in control, robotics, and optimization
are found in the following papers:

e (Conltrol) [1], for the stabilization of power grids;
e (Robotics) |11], for task allocation in multi-robot systems;

e (Optimization) [219], for general task assignments.

165

Given the aforementioned matroid-constrained application-examples, we now define the
main problem in this chapter.

Problem 4. (Resilient Non-Submodular Maximization over Matroid Constraints)
Consider the problem parameters:

e a matroid (V,T);
e an either uniform or partition matroid (V,T');

e a non-decreasing set function f : 2¥ — R such that (without loss of generality) it holds
f(@) =0, and for any set A CV, it also holds f(A) > 0.

The problem of resilient non-submodular maximization over matroid constraints is to maz-
imize the function f by selecting a set A C V such that A € I, and accounting for any
worst-case set removal B C A from A such that B € I! Formally:?

ma min A\ B).
ACY, 34561 BCA, BeT’ f< \)

As we mentioned in this chapter’s Introduction, Problem 4 may be interpreted as a 2-
stage perfect information sequential game between two players [26, Chapter 4], namely, a
“maximization” player, and a “minimization” player, where the “maximization” player plays
first by selecting the set A, and, then, the “minimization” player observes A, and plays
second by selecting a worst-case set removal B from A.

In sum, Problem 4 aims to guard all the aforementioned applications [1, 4, 5, 6, 9, 10, 11,
25, 53, 58, 218, 219, 220, 221, 222, 223, 224, 225, 226] in control, robotics, and optimization
against attacks, failures, or deletions, by proposing their resilient re-formulation, since all
involve the maximization of non-decreasing functions subject to matroid constrains.

Lastly, we discuss the resilient re-formulation of two among the aforementioned applica-
tions |1, 4, 5, 6, 9, 10, 11, 25, 53, 58, 218, 219, 220, 221, 222, 223, 224, 225, 226]:

Actuator placement for minimal control effort [4, 53]: Given a dynamical system, the design
objective is to select a few actuators to place in the system to achieve controllability with
minimal control effort [53]. In particular, the actuator-selection framework is as follows:
given a set V of available actuators to choose from, then, up to a actuators can be placed in
the system. In more detail, the aforementioned actuator-selection problem can be captured
by a uniform matroid (V,Z) where T £ {A : A € V,|A| < a}. However, in the case of a
failure-prone environment where up to 8 actuators may fail, then a resilient re-formulation
of the aforementioned problem formulation is necessary: Problem 4 suggests that such a
resilient re-formulation can be achieved by modelling any set of 8 actuator-failures in A by
a set B in the uniform matroid on A where B C A and |B| < 5.

Multi-target coverage with mobile robots [6]: A number of adversarial targets are deployed in
the environment, and a team of mobile robots R is tasked to cover them. To this end, at each

2Given a matroid (V,Z'), and any subset .A C V, then, the (A, {B: B C A,B € T'}) is also a matroid [30,
Section 39.3].

166

time step the robots in R need to jointly choose their motion. In particular, the movement-
selection framework is as follows: given a finite set of possible moves M; for each robot
1 € R, then, at each time step each robot selects a move to make so that the team R covers
collectively as many targets as possible. In more detail, since each robot in R can make only
one move per time, if we denote by A the set of moves to be made by each robot in R, then the
aforementioned movement-selection problem can be captured by a partition matroid (V,7)
such that V = UjerM; and Z = {A: A CV,IM; N A| <1, forall i € R} [6]. However,
in the case of an adversarial scenario where the targets can attack up to [robots, then a
resilient re-formulation of the aforementioned problem formulation is necessary: Problem 4
suggests that such a resilient re-formulation can be achieved by modelling any set of
attacks to the robots in R by a set B in the uniform matroid on § where B C S and |B| < .

9.3. Algorithm for Problem 4

We present the first scalable algorithm for Problem 4. The pseudo-code of the algorithm is
described in Algorithm 19.

9.3.1. Intuition behind Algorithm 19

The goal of Problem 4 is to ensure a maximal value for an objective function f through
a single maximization step, despite compromises to the solution of the maximization step.
In particular, Problem 4 aims to select a set A towards a maximal value of f, despite that
A is later compromised by a worst-case set removal B, resulting to f being finally evaluated
at the set A\ B instead of the set A. In this context, Algorithm 19 aims to fulfil the goal
of Problem 4 by constructing the set A as the union of two sets, namely, the A; and Aj
(line 16 of Algorithm 19), whose role we describe in more detail below:

Set A1 approzimates worst-case set removal from A: Algorithm 19 aims with the set A; to
capture a worst-case set-removal of elements —per the matroid (V,Z')— from the elements
Algorithm 19 is going to select in the set A; equivalently, the set A1 is aimed to act as a “bait”
to an attacker that selects to remove the best set of elements from A per the matroid (V,Z')
(best with respect to the elements’ contribution towards the goal of Problem 4). However,
the problem of selecting the best elements in V' per a matroid constraint is a combinatorial
and, in general, intractable problem [13]. For this reason, Algorithm 19 aims to approzimate
the best set of elements in Z] by letting A; be the set of elements with the largest marginal
contributions to the value of the objective function f (lines 2-8 of Algorithm 19). In addition,
since per Problem 4 the set A needs to be in the matroid (V,Z), Algorithm 19 constructs Ay
so that not only it is A; € Z/ as we described before, but so that it also is A; € Z (lines 4-6
of Algorithm 19).

Set Ay is such that the set Ay U Ay approzimates optimal solution to Problem 4: Assum-
ing that A; is the set that is going to be removed from Algorithm 19’s set selection A,
Algorithm 19 needs to select a set of elements Ay to complete the construction of A so
that A = A; U A is in the matroid (V,Z), per Problem 4. In particular, for 4 = A; U A,
to be an optimal solution to Problem 4 (assuming the removal of A; from 4), Algorithm 19
needs to select As as a best set of elements from V \ A; subject to the constraint that
AU Az is in (V,Z) (lines 11-13 of Algorithm 19). Nevertheless, the problem of selecting

167

Algorithm 19 Scalable algorithm for Problem 4.

Input: Per Problem 4, Algorithm 19 receives the inputs:
e a matroid (V,7);
e an either uniform or partition matroid (V,Z’);
e a non-decreasing set function f : 2Y + R such that it is f(()) = 0, and for any set
ACV, it alsois f(A) > 0.
Output: Set A.

A1 0; Ri+0; As«+0; Ro <« 0
while R; #V do
T € argmax,ey\r, f(Y);
if AjU{z}€eZ and A U{z} € 7' then
A — A U {x}
end if
Ri+— R U {x},
end while
while Ry # V \ A; do

© 00 ~ O Ut = W N

10: € argmaxyey\(4,URy) f (A2 U {y});
11 if 44U AU {x} €T then

12: Ay — Ay U {.7}},

13: end if

14: Rao +— Ro U {l‘},

15: end while

16: A+ A1 U As;

a best set of elements subject to such a constraint is a combinatorial and, in general, in-
tractable problem [13]. Hence, Algorithm 19 aims to approzimate such a best set, using the
greedy procedure in the lines 9-15 of Algorithm 19.

Overall, Algorithm 19 constructs the sets A; and As to approximate with their union A an
optimal solution to Problem 4.

We next describe the steps in Algorithm 19 in more detail.
9.3.2. Description of steps in Algorithm 19
Algorithm 19 executes four steps:

Initialization (line 1 of Algorithm 19): Algorithm 19 defines four auxiliary sets, namely, the
A1, R1, A2, and Ro, and initializes each of them with the empty set (line 1 of Algorithm 19).
The purpose of A1 and As is to construct the set A, which is the set Algorithm 19 selects
as a solution to Problem 4; in particular, the union of A; and of Ay constructs A by the
end of Algorithm 19 (line 16 of Algorithm 19). The purpose of Ry and of R is to support
the construction of A; and As, respectively; in particular, during the construction of Aj,
Algorithm 19 stores in R; the elements of V that have either been included already or cannot
be included in A; (line 7 of Algorithm 19), and that way, Algorithm 19 keeps track of which

168

elements remain to be checked whether they could be added in A; (line 5 of Algorithm 19).
Similarly, during the construction of Ay, Algorithm 19 stores in Ry the elements of V' \ A;
that have either been included already or cannot be included in Az (line 14 of Algorithm 19),

and that way, Algorithm 19 keeps track of which elements remain to be checked whether
they could be added in As (line 12 of Algorithm 19).

Construction of set Ay (lines 2-8 of Algorithm 19): Algorithm 19 constructs the set A;
sequentially —by adding one element at a time from V to Aj, over a sequence of multiple
time-steps— such that 4, is contained in both the matroid (V,Z) and the matroid (V,Z')
(line 4 of Algorithm 19), and such that each element v € V that is chosen to be added in A;

achieves the highest marginal value of f(v) among all the elements in V that have not been
yet added in A; and can be added in A; (line 5 of Algorithm 19).

Construction of set Ay (lines 9-15 of Algorithm 19): Algorithm 19 constructs the set Ag
sequentially, by picking greedily elements from the set V;\ Ay such that A; U.As is contained
in the matroid (V,Z). Specifically, the greedy procedure in Algorithm 19’s “while loop”
(lines 9-15 of Algorithm 19) selects an element y € V \ (A; U R2) to add in As only if y
maximizes the value of f(A2 U {y}), where the set Ry stores the elements that either have
already been added to As or have been considered to be added to Ay but they were not
because the resultant set .4; U.Ay would not be in the matroid (V,Z).

Construction of set A (line 16 of Algorithm 19): Algorithm 19 constructs the set A as the
union of the previously constructed sets A; and Ay (lines 16 of Algorithm 19).

In sum, Algorithm 19 proposes a set A as solution to Problem 4, and in particular, Algo-
rithm 19 constructs the set A so it can withstand any compromising set removal from it.

9.4. Performance Guarantees for Algorithm 19

We quantify Algorithm 19’s performance, by bounding its running time, and its approx-
imation performance. To this end, we use the following two notions of curvature for set
functions, as well as, a notion of rank for a matroid.

9.4.1. Curvature and total curvature of non-decreasing functions

We present the notions of curvature and of total curvature for non-decreasing set functions.
We start by describing the notions of modularity and submodularity for set functions.
Definition 32 (Modularity). Consider any finite set V. The set function g : 2V — R is
modular if and only if for any set A CV, it holds g(A) = > c 41 9(v).

In words, a set function ¢g : 2¥ +— R is modular if through ¢ all elements in V cannot
substitute each other; in particular, Definition 32 of modularity implies that for any set
A CV, and for any element v € V' \ A, it holds g({v} U A) — g(A) = g(v).

Definition 33 (Submodularity [70, Proposition 2.1]). Consider any finite set V. Then, the
set function g : 2¥ — R is submodular if and only if for any sets A C B C V, and any
element v € V, it holds g(AU {v})—g(A) > g(BU{v})—g(B).

Definition 33 implies that a set function ¢ : 2V — R is submodular if and only if it satisfies

169

a diminishing returns property where for any set A C V, and for any element v € V, the
marginal gain g(AU{v})—g(.A) is non-increasing. In contrast to modularity, submodularity
implies that the elements in V can substitute each other, since Definition 33 of submodularity
implies the inequality g({v} U A) — g(A) < g(v); that is, in the presence of the set A, the
element v may lose part of its contribution to the value of g({z} U A).

Definition 34. (Curvature of monotone submodular functions [33]) Consider a
finite set V, and a non-decreasing submodular set function g : 2¥ — R such that (without
loss of generality) for any element v € V, it is g(v) # 0. Then, the curvature of g is defined

as follows:
s 90) =g\ (o]
g veY g(fu))

(9.3)

Definition 34 of curvature implies that for any non-decreasing submodular set function g :
2Y — R, it holds 0 < kg < 1. In particular, the value of k, measures how far g is
from modularity, as we explain next: if kK, = 0, then for all elements v € V, it holds
g(V) — gV \ {v}) = g(v), that is, g is modular. In contrast, if K, = 1, then there exist an
element v € V such that g(V) = g(V \ {v}), that is, in the presence of V\ {v}, v loses all its
contribution to the value of g(V).

Definition 35. (Total curvature of non-decreasing functions [15, Section 8]) Con-
sider a finite set V, and a monotone set function g : 2¥ + R. Them, the total curvature of
g 15 defined as follows:

Cq £1—min min g} U A) — g(A)

vV 4BEN) 9({0} UB) — g(B) (54)

Definition 35 of total curvature implies that for any non-decreasing set function g : 2V — R,
it holds 0 < ¢4 < 1. To connect the notion of total curvature with that of curvature, we note
that when the function g is non-decreasing and submodular, then the two notions coincide,
i.e., it holds ¢4 = kg4; the reason is that if g is non-decreasing and submodular, then the
inner minimum in eq. (9.4) is attained for A = B\ {v} and B = (). In addition, to connect
the above notion of total curvature with the notion of modularity, we note that if ¢, = 0,
then ¢ is modular, since eq. (9.4) implies that for any elements v € V, and for any sets
A, B CV\ {v}, it holds:

(1 —¢g) [9({v} UB) = g(B)] < g({v} UA) — g(A), (9.5)

which for ¢, = 0 implies the modularity of g. Finally, to connect the above notion of
total curvature with the notion of monotonicity, we mention that if ¢, = 1, then eq. (9.5)
implies that g is merely non-decreasing (as it is already assumed by the Definition 35 of
total curvature).

9.4.2. Rank of a matroid

We present a notion of rank for a matroid.

Definition 36 (Rank of a matroid [30, Section 39.1]). Consider a matroid (V,T). Then,
the rank of (V,T) is the number equal to the cardinality of the set X € T with the mazimum
cardinality among all sets in ZL.

170

For example, per the discussions in Section 9.2, for a uniform matroid (V,Z) of the form
Z={A:ACV,|A| <a}, the rank is equal to «; and for a partition matroid (V,Z) of the
forom V=V U---UV,andZ={A: ACV,|ANV;| <, foralli=1,...,n}, the rank is
equal to a1 + ...+ a,.

9.4.8. Performance analysis for Algorithm 19

We quantify Algorithm 19’s approximation performance, as well as, its running time per
maximization step in Problem 4.

Theorem 22 (Performance of Algorithm 19). Consider an instance of Problem /, the no-
tation therein, the notation in Algorithm 19, and the definitions:

o et the number f* be the (optimal) value to Problem /;
e given a set A as solution to Problem 4, let B*(A) be an optimal (worst-case) set removal
A, per Problem 4, that is: B*(A) € i A\ B);
from A, per Problem 4, that is: B*(A) € arg BgA{%?I’(A) f(A\ B)

o let the numbers a and [be such that « is the rank of the matroid (V,I); and [3 is the
rank of the matroid (V,T');

e define h(a, B) = max[1/(1+a),1/(a — B)].3
The performance of Algorithm 19 is bounded as follows:

leftmirgin="* (Approximation performance) Algorithm 19 returns a set A such that A C
V, A€, and:

e if f is non-decreasing and submodular, and:

—if (V,I) is a uniform matroid, then:

f(A\B*(A)) > max [1_’€f7h(aaﬁ)}
I* B K
— if (V,I) is any matroid, then:

JANBHA) | max (1= sy, ha, §)

(L—e) (96)

f* = 1+ s) (9.7)
e if f is non-decreasing, then:
W > (1—cy)3 (9.8)

leftmiirgiin="* (Running time) Algorithm 19 constructs the set A as a solutions to Prob-

lem 4 with O(|V|?) evaluations of f.

Provable approximation performance. Theorem 22 implies on the approximation per-

3 A plot of h(a, B) is found in Fig. 10.

171

h(a, B) £ max (1_%3, aiﬂ)

2/(o+2)

0 1 a2 a—1
3

Figure 10: Given a natural number «, plot of h(«, 3) versus S. Given a finite «, then h(a,) is
always non-zero, with minimum value 2/(a + 2), and maximum value 1.

formance of Algorithm 19:

Near-optimality: Both for any monotone submodular objective functions f, and for any
merely monotone objective functions f with total curvature ¢y < 1, Algorithm 19 guar-
antees a value for Problem 4 finitely close to the optimal. In particular, per ineq. (9.6)
and ineq. (9.7) (case of submodular functions), the approximation factor of Algorithm 19 is

bounded by %‘;5)(1 — e ") and %ﬁ;’f), respectively, which for any finite number « are

both non-zero (see also Fig. 10); in addition, per ineq. (9.6) and ineq. (9.7), the approxi-

mation factor of Algorithm 19 is also bounded by %(1 — e "f) and L:ZJ; , respectively,
which are also non-zero for any monotone submodular function f with k¢ < 1 (see also
Fig. 11). Similarly, per ineq. (9.8) (case of monotone functions), the approximation factor
of Algorithm 19 is bounded by (1 — ¢f)? which is non-zero for any monotone function f
with ¢y < 1 —notably, although it is known for the problem of (non-resilient) set function
maximization that the approximation bound (1—cy) is tight [15, Theorem 8.6], the tightness

of the bound (1 — ¢f)? in ineq. (9.8) for Problem 4 is an open problem.

We discuss classes of functions f with curvatures xy < 1 or ¢y < 1, along with relevant
applications, in the remark below.

Remark 16. (Classes of functions f with xy < 1 or ¢y < 1, and applications) Classes
of functions f with ky < 1 are the concave over modular functions [31, Section 2.1], and
the log det of positive-definite matrices [227, 228]. Classes of functions f with ¢y < 1 are
support selection functions [223], and estimation error metrics such as the average minimum
square error of the Kalman filter [193, Theorem 4J.

The aforementioned classes of functions f with ky <1 or ¢y < 1 appear in applications of
control, robotics, and optimization, such as actuator and sensor placement [4, 10, 53, 58],
sparse approzimation and feature selection [225, 226/, and sparse recovery and column subset
selection [221, 222]; as a result, Problem 4 enables critical applications such as resilient
actuator placement for minimal control effort, resilient multi-robot navigation with minimal
sensing and communication, and resilient experiment design; see, for example, [229].

172

14
—g(ky) = (1—e™)
11k .
0.8 +9(“f) = K?f (1—e™"7)
A
— g(ky) = ﬁ
VW'O
06
\%‘j
= 04
0.2
0 >k
0.2 0.4 0.6 0.8 1
Ky

Figure 11: Plot of g(xy) versus curvature sy of a monotone submodular function f. By
definition, the curvature x; of a monotone submodular function f takes values between 0
and 1. g(ky) increases from 0 to 1 as ks decreases from 1 to 0.

Approzimation performance for low curvature: For both monotone submodular and merely
monotone functions f, when the curvature x; and the total curvature cy, respectively, tend to

zero, Algorithm 19 becomes exact, since for Ky — 0 and ¢y — 0 the terms %(1 — e hr),

;:;, and (1 — cf)® in inegs. (9.6)-(9.8) respectively, tend to 1. Overall, Algorithm 19’s
curvature-dependent approximation bounds make a first step towards separating the classes
of monotone submodular and merely monotone functions into functions for which Problem 4
can be approximated well (low curvature functions), and functions for which it cannot

(high curvature functions).

A machine learning problem where Algorithm 19 guarantees an approximation performance
close to 100% the optimal is that of Gaussian process regression for processes with RBF ker-
nels [114, 230]; this problem emerges in applications of sensor deployment and scheduling for
temperature monitoring. The reason that in this class of regression problems Algorithm 19
performs almost optimally is that the involved objective function is the entropy of the se-
lected sensor measurements, which for Gaussian processes with RBF kernels has curvature
value close to zero 228, Theorem 5|.

Approzimation performance for no failures, deletions, or attacks: Both for monotone sub-
modular functions f, and for merely monotone functions f, when the number of set removals
is zero, —i.e., when Z’ = () in Problem 4, which implies 8 = 0 in Theorem 22— Algo-
rithm 19’s approximation performance is the same as that of the state-of-the-art algorithms
for (non-resilient) set function maximization. In particular, for monotone submodular func-
tions, scalable algorithms for (non-resilient) set function maximization have approximation
performance at least #(1 — e~ ") the optimal for any uniform matroid constraint |33, The-

orem 5.4], and ﬁ the optimal for any matroid constraint [33, Theorem 2.3]; at the same

time, per Theorem 22, when = 0, then Algorithm 19 also has approximation performance

at least %(1 — e~ "f) the optimal for any uniform matroid constraint, and % the optimal
f +Ky

for any matroid constraint, since for § = 0 it is h(a, 5) = 1 in ineq. (9.6) and ineq. (9.7).

173

Finally, for monotone functions f, and for Z' = (), Algorithm 19 is the same as the algorithm
proposed in [12, Section 2| for (non-resilient) set function maximization, whose performance
is optimal |15, Theorem 8.6].

Minimal running time. Theorem 22 implies that Algorithm 19, even though it goes
beyond the objective of (non-resilient) set function optimization, by accounting for attacks,
deletions, and failures, it has the same order of running time as state-of-the-art algorithms
for (non-resilient) set function optimization. In particular, such algorithms for (non-resilient)
set function optimization [12, 15, 70] terminate with O(|V|?) evaluations of the function f,
and Algorithm 19 also terminates with O(|V|?) evaluations of the function f.

Summary of theoretical results. In sum, Algorithm 19 is the first algorithm for the
problem of resilient maximization over matroid constraints (Problem 4), and it enjoys:

o system-wide resiliency: Algorithm 19 is valid for any number of denial-of-service at-
tacks, deletions, and failures;

o minimal running time: Algorithm 19 terminates with the same running time as state-
of-the-art algorithms for (non-resilient) matroid-constrained optimization;

e provable approzimation performance: Algorithm 19 ensures for all monotone objective
functions f that are either submodular, or merely non-decreasing with total curvature
cy < 1, a solution finitely close to the optimal.

Overall, Algorithm 19 makes the first step to ensure the success of critical applications in
control, robotics, and optimization [1, 4, 5, 6, 9, 10, 11, 25, 53, 58, 218, 219, 220, 221, 222,
223, 224, 225, 226|, despite compromising worst-case attacks, failures, or deletions, and with
minimal running time.

9.5. Numerical Experiments on Control-Aware Sensor Selection

In this section, we demonstrate a near-optimal performance of Algorithm 19 in numerical
experiments. In particular, we consider a control-aware sensor selection scenario, namely,
sensing-constrained robot navigation, where the robot’s localization for navigation is sup-
ported by both sensors on-board to the robot, and sensors deployed in the environment.?
Specifically, we consider an unmanned aerial vehicle (UAV) which has the objective to land
but it has limited battery and measurement-processing power to utilize to this end; as a
result, it needs to activate only a subset of the available sensors to localize itself and to
enable that way the generation of a control input for landing; specifically, we consider that
the UAV generates its control input via an LQG controller, given the measurements from
the activated sensor set [123].

In more detail, herein we present a Monte Carlo analysis of the above sensing-constrained
robot navigation scenario for instances where sensor failures are present, and observe that
Algorithm 19 results to a near-optimal sensor selection; that is, the resulting navigation

*The scenario of sensing-constrained robot navigation with on-board sensors is introduced and motivated
in [193, Section V]; see also [128] for the case of autonomous robot navigation with deployed sensors in the
environment.

174

performance of the UAV matches the optimal in all tested instances where the optimal
sensor selection could be computed via a brute-force algorithm.

Simulation setup. We consider an UAV that moves in a 3D space, starting from a ran-
domly selected initial location. The objective of the UAV is to land at position [0, 0, 0] with
zero velocity. The UAV is modelled as a double-integrator with state z; = [p; v;]" € RS
at each time t = 1,2,... (p; is the 3D position of the UAV, and v; is its velocity), and can
control its own acceleration u; € R3; the process noise is chosen as W; = Is. The UAV
may support its localization by utilizing 2 on-board sensors and 12 deployed sensors on the
ground. The on-board sensors are one GPS receiver, measuring the UAV position p, with
a covariance 2 - I3, and one altimeter, measuring only the last component of p; (altitude)
with standard deviation 0.5m. The ground sensors vary with each Monte Carlo run, and are
generated randomly; we consider them to provide linear measurements of the UAV’s state.
Among the aforementioned 14 available sensors to the UAV, we assume that the UAV can
use only « of them.

In particular, the UAV chooses the « sensors to activate so to minimize an LQG cost of the

form:
T

> (2] Que + ul Ruy], (9.9)

t=1
per the problem formulation in [193, Section II], where the cost matrix @) penalizes the devi-
ation of the state vector from the zero state (since the UAV’s objective is to land at position
[0, 0, 0] with zero velocity), and the cost matrix R penalizes the control input vector; specifi-
cally, in the simulation setup herein we consider @) = diag ([16_3, le73, 10, 1le73, 1le73, 10])
and R = I3. Note that the structure of @Q reflects the fact that during landing we are partic-
ularly interested in controlling the vertical direction and the vertical velocity (entries with
larger weight in @), while we are less interested in controlling accurately the horizontal
position and velocity (assuming a sufficiently large landing site). In [193, Section III| it
is proven that the UAV selects an optimal sensor set S, and enables the generation of an
optimal LQG control input with cost matrices @ and R, if it selects S by minimizing an

objective function of the form:
T

> trace[M; Sy (S)), (9.10)
t=1
where M, is a positive semi-definite matrix that depends on the LQG cost matrices @ and
R, as well as, on the UAV’s system dynamics; and 2t|t(8) is the error covariance of the
Kalman filter given the sensor set selection S.

Compared algorithms. We compare four algorithms; all algorithms only differ in how
they select the sensors used. The first algorithm is the optimal sensor selection algorithm,
denoted as optimal, which attains the minimum of the cost function in eq. (9.10); this
brute-force approach is viable since the number of available sensors is small. The second
approach is a random sensor selection, denoted as random® The third approach, denoted
as logdet, selects sensors to greedily minimize the cost function in eq. (9.10), ignoring the
possibility of sensor failures, per the problem formulation in eq. (9.1). The fourth approach

175

uses Algorithm 19 to solve the resilient re-formulation of eq. (9.10) per Problem 4, and is
denoted as s-LQG. From each of the selected sensor sets, by each of the above four algorithms
respectively, we consider an optimal sensor removal, which we compute via brute-force.

Results. We next present our simulation results averaged over 20 Monte Carlo runs of
the above simulation setup, where we vary the number of sensor selections a from 2 up to
12 with step 1, and the number [of sensors failures from 1 to 10 with step 3, and where
we randomize the sensor matrices of the 12 ground sensors. In particular, the results of
our numerical analysis are reported in Fig. 12. In more detail, Fig. 12 shows the attained
LQG cost for all the combinations of o and f values where 5 < «a (for § > a the LQG
cost is considered +oo, since § > a implies that all « selected sensors fail). The following
observations from Fig. 12 are due:

o Near-optimality of the s-LQGAlgorithm 19 Algorithm 19 —blue colour in Fig. 12—
performs close to the optimal algorithm optimal—green colour in Fig. 12. In partic-
ular, across all but two scenarios in Fig. 12, Algorithm 19 achieves an approximation
performance at least 97% the optimal, and 90% the optimal in the two scenarios in
Fig. 12-(a) where v is 3 or 4, and S is 1.

e Performance of the logdetalgorithm: The logdetalgorithm —red colour in Fig. 12—
performs poorly as the number 8 of sensor failures increases, which is expected, given
that the logdetalgorithm minimizes the cost function in eq. (9.10) ignoring the possi-
bility of sensor failures. Notably, for some of the cases, the logdetperforms worse or
equally poor as the random*: for example, see Fig. 12-(c) for @ > 9, and Fig. 12-(d).

o Performance of the random™ algorithm: Expectedly, the performance of also the random*
algorithm —black colour in Fig. 12— is poor across all scenarios in Fig. 12.

Overall, in the above numerical experiments, Algorithm 19 demonstrates a close-to-optimal
approximation performance, and the necessity for a resilient re-formulation of the optimiza-
tion problem in eq. (9.1), e.g., per Problem 4, is exemplified.

9.6. Concluding Remarks & Future Work

We made the first step to ensure the success of critical missions in control, robotics, and
optimization that involve the design of systems subject to complex optimization constraints
of heterogeneity and global-interdependency —called matroid constraints— against worst-
case denial-of-service attacks, failures, or deletions. In particular, we provided the first
algorithm for Problem 4, which, with minimal running time, guarantees a close-to-optimal
performance against system-wide attacks, failures and deletions. To quantify the algorithm’s
approximation performance, we exploited a notion of curvature for monotone (not necessarily
submodular) set functions, and contributed a first step towards characterizing the curvature’s
effect on the approximability of resilient matroid-constrained maximization. Our curvature-
dependent characterizations complement the current knowledge on the curvature’s effect
on the approximability of simpler problems, such as of non-matroid-constrained resilient
maximization [35, 56, 231|, and of non-resilient maximization [31, 32, 33|. Finally, we
supported our theoretical analyses with numerical experiments.

176

-104 -10°

—+— random* 3 —+— random*
4 -~ logdet - logdet
= —=- s-LQG S 25 —& s-LQG
= ——optimal =) —optimal
ol =
< <]
- -
<% <%
2 =1
- +~
72) w0
S Q
< o
])
e c
— —
2 3 4 5 6 7 8 9 10 11 12
o
(a) B=1
-10° 107
—+— random*® 5 —+— random*®
- logdet - logdet
S 3 - s-LQG S 6 - s-LQG
= ——optimal =) —optimal
o =
< <]
g g 4
~ 2,
- +~
72) w0
c Q
< o
) &) 2
«3 c
— —
8 9 10 11 12 11 12
o «
() B=1 (d) B=10

Figure 12: LQG cost for increasing number of sensor selections « (from 2 up to 12 with step 1),
and for 4 values of 8 (number of sensor failures among the « selected sensors); in particular, the
value of 8 varies across the sub-figures as follows: 8 = 1 in sub-figure (a); 8 = 4 in sub-figure (b);
B =7 in sub-figure (c¢); and § = 10 in sub-figure (d).

This chapter opens several avenues for future research, both in theory and in applications.
Future work in theory includes the extension of our results to sequential (multi-step) max-
imization, per the recent developments in [231], to enable applications of sensor scheduling
and of path planning in online optimization that edapts against persistent attacks and
failures [6, 182]. Future work in applications includes the experimental testing of the pro-
posed algorithm in applications of motion-planning for multi-target covering with mobile
vehicles [6], to enable resiliency in critical scenarios of surveillance.

9.7. Appendix: Proof of Results

9.7.1. Notation

In the appendices below we use the following notation: given a finite ground set V, and a
set function f :2Y — R, then, for any sets X C V and &’ C V:

F(X|X) & f(XUXT) — f(X).

177

Moreover, let the set A* denote an (optimal) solution to Problem 4; formally:

A" € arg ACYAer BCA BeI’(A) J(ANB).

9.7.2. Preliminary lemmas

We list lemmas that support the proof of Theorem 22.5
Lemma 29. Consider any finite ground set V, a non-decreasing submodular function f :
2V i R, and non-empty sets Y, P C V such that for all elements y € Y, and all elements
p€P,itis fly) > f(p). Then:

F(PIY) < IPIFY).

Proof of Lemma 29 Consider any element y €); then:

fPIY)=f(PUY) - f() (9.11)
< fP)+ () = f(V) 9.12)
= f(P)
<> fp) (9.13)

peEP

< IPlr&%f(p)
<I|Plf(y) (9.14)
< [PIf(Y), (9.15)

where egs. (9.11)-(9.15) hold for the following reasons: eq. (9.11) holds since for any sets
X CVand Y CV,itis f(X|Y) = f(XUY)— f(Y); ineq. (9.12) holds since f is submodular
and, as a result, the submodularity Definition 33 implies that for any set A €V and A’ C V,
itis f(AUA) < f(A) + f(A) [70, Proposition 2.1]; ineq. (9.13) holds for the same reason
as ineq. (9.12); ineq. (9.14) holds since for all elements y € Y, and for all elements p € P, it
is f(y) > f(p); finally, ineq. (9.15) holds since f is monotone, and since y €). [
Lemma 30. Consider a finite ground set V, and a non-decreasing submodular set function
f:2Y = R such that f is non-negative and f(0) = 0. Then, for any A C V, it holds:

FA) > (1 =rp) D fla)

acA

Proof of Lemma 30 Let A = {a1,a2,...,a4}. We prove Lemma 30 by proving the
following two inequalities:

A
A) > flailV\{a}), (9.16)
i=1
Al |A]
Zf aiV\ {a:}) > (1 — k) Zf a;). (9.17)

®The proof of Lemmas 29-33 and of Corollary 10 is also found in [56] and [231].

178

We begin with the proof of ineq. (9.16):

F(A) = F(AD) (9.18)
> f(AIV\ A) (9.19)
Al
= flailV\{ai,ai1, ..., a4}) (9.20)
=1
|Al
> Zf(ai|v\{ai})a (9.21)

where inegs. (9.19)-(9.21) hold for Zﬂlle following reasons: ineq. (9.19) is implied by eq. (9.18)
because f is submodular and) € V \ A; eq. (9.20) holds since for any sets X C V and
YCVitis f(X|V) = f(XUY) — f(I), and since {a1,az,...,a 4} denotes the set A; and
ineq. (9.21) holds since f is submodular, and since V' \ {ai, a@it1,...,a,} €V \ {a;}. These
observations complete the proof of ineq. (9.16).

We now prove ineq. (9.17) using the Definition 34 of xy, as follows: since ky = 1 —
ming,ey W, it is implied that for all elements v € Vit is f(v|V\ {v}) > (1 — kf) f(v).
Therefore, by adding the latter inequality across all elements a € A, we complete the proof

of ineq. (9.17). [
Lemma 31. Consider a finite ground set V, and a monotone set function f : 2¥ — R
such that f is non-negative and f(0) = 0. Then, for any sets A CV and B CV such that
ANB =0, it holds:

JLAUB) = (1 —cp) (f(A) + f(B)).
Proof of Lemma 31 Let B = {b1,b2,...,b3}. Then,

15|
FIAUB) = F(A) + > F(bilAU{b1 by, ... bi1}). (9.22)

i=1
The definition of total curvature in Definition 35 implies:

f(bl‘.A U {bl, ba, ... ,bz;l}) >

(1 —cf) f(bil{b1,ba, . .., bi1}). (9.23)
The proof is completed by substituting ineq. (9.23) in eq. (9.22) and then by taking into
account that it holds f(A) > (1 —¢f)f(A), since 0 < ¢y < 1. |

Lemma 32. Consider a finite ground set Vm and a non-decreasing set function f : 2¥ — R
such that f is non-negative and f(0) = 0. Then, for any set A CV and any set B CV such
that AN B =0, it holds:

FIAUB) > (1 —¢j) (f(A) +Zf(b)> .

beB

179

Proof of Lemma 32 Let B = {b1,b,...,bz}. Then,

|B]

FIAUB) = F(A) + > F(bilAU{b1 by, ... bi1}). (9.24)
In addition, Definition 35 of total curvatjime implies:

fOi| AU{b1,ba, .. bic1}) > (1 —cp) f(bi|0)
where the latter equation holds since f(()) = 0. Theproofieepfitpibted by substituting (6.25)
in (9.24) and then taking into account that f(A) > (1 —cy)f(A) since 0 < ¢y < 1. [|
Lemma 33. Consider a finite ground set V and a non-decreasing set function f :2Y — R

such that f is non-negative and f(0) = 0. Then, for any set A CV and any set B CV such
that A\ B # 0, it holds:

fA) +Q —cp)f(B) > (1 —cp) f(AUB) + f(ANB).

Proof of Lemma 33 Let A\ B = {i1,i2,...,4,}, where r = | A — B|. From Definition 35
of total curvature cy, for any ¢ = 1,2,...,n, it is f(¢;|ANBU {i1,d2,...,4j-1}) > (1 —
cp) f(ij|BU {i1,12,...,ij-1}). Summing these 7 inequalities:

which implies the lemif{ed) — fF(ANB) > (1 —¢f) (fF(AUB) — f(B)), u
Corollary 10. Consider a finite ground set Vm and a non-decreasing set function f : 2V
R such that f is non-negative and f(0) = 0. Then, for any set A CV and any set B CV
such that ANB =0, it holds:

FAA)+D f0) = (1 —cp) f(AUB).

beB

Proof of Corollary 10 Let B = {b1,b2,...,b5}.

|B] 1B
FOA) D Fbi) = (1= cp) f(A) + > £(bi)) (9.26)
i=1 =1
1B
> (1=) f(AU{b}) + > F(b)
1=2

|B|

> (1= cp) f(AU {by, b)) + D f(by)
=3

> (L—cp)f(AUB),
where (9.26) holds since 0 < ¢y < 1, and the rest due to Lemma 33, since AN B = () implies
ANA{D1} # 0, AU{bi}\{b2} #0, ..., AU{b1, b2, ..., b1} \ {b5} # 0. |
Lemma 34. Recall the notation in Algorithm 19, and consider the sets Ay and Ao con-
structed by Algorithm 19’s lines 2-8 and lines 9-15, respectively. Then, for all elements
v € Ay and all elements v' € Aq, it holds f(v) > f(v').

180

Proof of Lemma 34 Let vy,..., v 4, be the elements in Ay, —i.e., A1 = {v1,...,v4,},—

and be such that for each i« = 1,...,|A;| the element v; is the i-th element added in
A; per Algorithm 19’s lines 2-8; similarly, let v],... 7”|,A2| be the elements in As, —i.e.,
Ay = {vf,... ,U(AQ‘},— and be such that for each i = 1,...,|As| the element v} is the i-th

element added in Ay per Algorithm 19’s lines 9-15.

We prove Lemma 34 by the method of contradiction. In particular, assume that there
exists an index i € {1,...,|A|} and an j € {1,...,[As[} such that f(v;) > f(v;), and,
in particular, assume that 4,j are the smallest indexes such that f(vj) > f(v;). Since
Algorithm 19 constructs A; and As such that A; U Ay € Z, and since it also is that (V,7)
is a matroid and {vl,...,vi,l,v;} C Ay U Ay, we have that {vl,...,vi,l,vé-} €Z In
addition, we have that {v1,...,v;—1,v;} € Z] since I’ is either a uniform or a partition
matroid and, as a result, if {v1,...,v;—1,v;} € Z’ then it also is {v1,...,v;—1,v} € Z' for any
v € V\{v,...,vi—1}. Overall, {v1,...,v;-1,v;} € Z,I! Now, consider the “while loop” in
Algorithm 19’s lines 2-8 at the beginning of its i-th iteration, that is, when Algorithm 19 has
chosen only the elements {v1,...,v;_1} among the elements in A;. Then, per Algorithm 19’s
lines 3-5, the next element v that is added in {vi,...,v;—1} is the one that achieves the
highest value of f(v') among all elements in v € V \ {v1,...,v;,1}, and which satisfies
{v1,...,v;—1,v} € Z,Z! Therefore, the next element v that is added in {v1,...,v;—1} cannot
be v;, since f(v;) > f(v;) and {vr,...,vi—1, 0} € ,T". []
Lemma 35. Consider a matroid (V,Z), and a set Y CV such that Y € Z. Moreover, define
the following collection of subsets of V\Y: T' = {X : X C V\)Y,XUY € I}. Then,
(V\Y,T') is a matroid.

Proof of Lemma 35 We validate that (V\), Z’) satisfies the conditions in Definition 31
of a matroid. In particular:

e to validate the first condition in Definition 31, assume a set X C V\) such that X’ € Z';
moreover, assume a set Z C X; we need to show that Z € 7! To this end, observe
that the definition of Z’ implies X UY € Z, since we assumed X € Z! In addition,
the assumption Z C X implies ZUY C X U Y, and, as a result, ZU)Y € Z, since
(V,Z) is a matroid. Overall, Z C V\ Y (since Z C X, by assumption, and X C V\)
and ZU)Y € Z; hence, Z € 7| by the definition of Z] and now the first condition in
Definition 31 is validated;

e to validate the second condition in Definition 31, assume sets X, Z € V' \) such that
X,Z €T and |X| < |Z[; we need to show that there exists an element z € Z\ X such
that X U{z} € Z! To this end, observe that since X', Z € 7, the definition of Z' implies
that YUY, ZUY € Z. Moreover, since |X| < |Z], it also is |[YUY| < |ZUY|. Therefore,
since (V,7) is a matroid, there exists an element z € (ZUY)\ (X UY) = Z\ X such
that (X UY) U {z} € Z; as a result, X U {z} € Z] by the definition of Z! In sum,
z € Z\ X and X U{z} € Z/ and the second condition in Definition 31 is validated too.

|
Lemma 36. Recall the notation in Algorithm 19, and consider the sets Ay and As con-
structed by Algorithm 19’s lines 2-8 and lines 9-15, respectively. Then, for the set As, it

181

holds:
o if the function f is non-decreasing submodular and:

— if (V,Z) is a uniform matroid, then:

1
> —(1—e " X). 2

fA) 2 S=e™) () (9.27)

—if (V,I) is a matroid, then:

1
> X). 9.28
f(AQ) - 1+/<ef XgV\Elli\)}uAleZ f() ()
o if the function f is non-decreasing, then:

f(A2) > (1 —¢p) f(X). (9.29)

max
XCV\AL,XUA €T

Proof of Lemma 36 We first prove ineq. (9.29), then ineq. (9.28), and, finally, ineq. (9.27).
In particular, Algorithm 19 constructs the set As greedily, by replicating the steps of the
greedy algorithm introduced [12, Section 2|, to solve the following optimization problem:

X); 9.30
XV RUALET F(X) (9.30)

let in the latter problem Z/ £ {X¥ C V\ A;,X UA; € T}. Lemma 35 implies that
(A1,7) is a matroid, and, as a result, the previous optimization problem is a matroid-
constrained set function maximization problem. Now, to prove ineq. (9.29), ineq. (9.28),
and ineq. (9.27), we make the following observations, respectively: when the function f
is merely non-decreasing, then [15, Theorem 8.1] implies that the greedy algorithm in-
troduced in [12, Section 2| returns for the optimization problem in eq. (9.30) a solution

S such that f(S) > (1 — X); thi ineq. (9.29). Similarly,
suc at f(S) > (Cf)XQV\;l?%’?UA1€Z f(X); this proves ineq. (9.29). Similarly.

when the function f is non-decreasing and submodular, then [33, Theorem 2.3] implies
that the greedy algorithm introduced in [12, Section 2| returns for the optimization prob-

lem i . (9.30 lution S such that f(S) > 1/(1 X); thi
em in eq. (9.30) a solution S such that f(S) > 1/(+Kf)X§V\£1li\§uAleIf(); this proves

ineq. (9.28). Finally, when the objective function f is non-decreasing submodular, and when
7 is a uniform matroid, then |33, Theorem 5.4| implies that the greedy algorithm introduced
in [12, Section 2| returns for the optimization problem in eq. (9.30) a solution S such that

S) > 1/ks(1 — =" X); thi ineq. (9.27), and concludes th
f(S) > 1/rp(1 —e)XQV\Elli\)f{uAleZ f(&X); this proves ineq. (9.27), and concludes the

proof of the lemma. [|
Lemma 37. Recall the notation in Theorem 22 and Appendiz 9.7.1. Also, consider a
uniform or partition matroid (V,Z'). Then, for any set Y CV such that Y € T and Y € T;
it holds:

ey () 2 A\ B). (9:31)

182

Proof of Lemma 37 We start from the left-hand-side of ineq. (9.31), and make the
following observations:

max (X¥) > _ min max _ f(&X)
XCV\V,XUYEL YCV,YEL,I! XCV\Y,XUYET

= min max f(A\))
YV, YeL, T ACV,AeT
=
We next complete the proof of Lemma 37 by proving that h > f(A*\ B*(A*)). To this end,
observe that for any set A C V such that A € Z, and for any set) C V such that Y € 7
and) € 7! it holds:

max - f(A\Y) > f(A\Y),
ACV,AcT
which implies the following observations:

h > min FAN\DY)

YOV YeLr

> min f(A\D)
YV, yer’
YCAYe1!

and, as a result, it holds:
h> max min f(A\D)
ACV, AL YCAYeT'
= f(A"\ B*(A")). |
9.7.8. Proof of Theorem 22

We first prove Theorem 22’s part 1 (approximation performance), and then, Theorem 22’s
part 2 (running time).

Proof of Theorem 22’s part 1 (approximation performance)

We first prove ineq. (9.8), and, then, ineq. (9.7) and ineq. (9.6).

To the above ends, we use the following notation (along with the notation in Algorithm 19,
Theorem 22, and Appendix 9.7.1):

e let A7 = Ay \ B*(A), i.e., A] is the set of remaining elements in the set A; after the
removal from A; of the elements in the optimal (worst-case) removal B*(A);

o let A £ Ay \ B*(A), i.e., Aj is the set of remaining elements in the set Ay after the
removal from Ay of the elements in the optimal (worst-case) removal B*(A).

Proof of ineq. (9.8) Consider that the objective function f is non-decreasing and such
that (without loss of generality) f is non-negative and f()) = 0. Then, the proof of ineq. (9.8)

183

follows by making the following observations:

f(AN\ B*(A))

= f(AT UAD) (9.32)

>(l—cp) >, [fv) (9.33)
veATUAT

>(1—¢p) Y f(v) (9.34)
vEAg

> (1—cp)?f(Ag) (9.35)

= (1- cf)gXQV\il?)?uAlez (X) (9.36)

> (1= ¢f)’ f(A™\ B*(AY)), (9.37)

where eqs. (9.32)-(9.37) hold for the following reasons: eq. (9.32) follows from the definitions
of the sets A{ and AJ; ineq. (9.33) follows from ineq. (9.32) due to Lemma 32; ineq. (9.34)
follows from ineq. (9.33) due to Lemma 34, which implies that for any element v € A] and
any element v’ € AJ it is f(v) > f(v') —note that due to the definitions of A and AJ it is
|A]| = | A2\ AS |, that is, the number of non-removed elements in A; is equal to the number
of removed elements in Ap,— and the fact Ay = (A2 \ AJ) U AJ; ineq. (9.35) follows from
ineq. (9.34) due to Corollary 10; ineq. (9.36) follows from ineq. (9.35) due to Lemma 36’s
ineq. (9.29); finally, ineq. (9.37) follows from ineq. (9.36) due to Lemma 37. [

1—ky
1+Iif
hy(a,B)
].+I$f

In what follows, we first prove ineq. (9.7), and then ineq. (9.6): we first prove the part

1—ky
Kf

and (1 —e ") of ineq. (9.7) and of ineq. (9.6), respectively, and then, the part

and %O;B)(l — e ") of ineq. (9.7) and of ineq. (9.6), respectively.

Proof of part (1 —+x¢)/(1+ry) of ineq. (9.7) Consider that the objective function f is
non-decreasing submodular and such that (without loss of generality) f is non-negative and
f(0) = 0. To prove the part (1 —ry)/(1+ k) of ineq. (9.7) we follow similar observations

184

to the ones we followed in the proof of ineq. (9.8); in particular:

fAN\B*(A))
= J(AT U A]) (938)
>(1—rp) >, [(9.39)
veATUAT
> (1—ry) Y f(v) (9.40)
vEA2
= (1= ryp)f(A2) (9.41)
1—ky
= 1+ Ky XQV\E}%?UAlez fx) 042
1- Rf * * [Ak
> Ty AN B A, (9.43)

where egs. (9.38)-(9.43) hold for the following reasons: eq. (9.38) follows from the definitions
of the sets A and AjJ; ineq. (9.39) follows from ineq. (9.38) due to Lemma 30; ineq. (9.40)
follows from ineq. (9.39) due to Lemma 34, which implies that for any element v € A] and
any element v’ € AJ it is f(v) > f(v') —note that due to the definitions of the sets A}
and AJ it is |A]| = | A2 \ AJ|, that is, the number of non-removed elements in A; is
equal to the number of removed elements in Az,— and because Az = (A2 \ AF) U AJ;
ineq. (9.41) follows from ineq. (9.40) because the set function f is submodular, and as a
result, the submodularity Definition 33 implies that for any sets S C V and &’ C V), it is
F(S)+ f(S) > f(SUS’) [70, Proposition 2.1]; ineq. (9.42) follows from ineq. (9.41) due to
Lemma 36’s ineq. (9.28); finally, ineq. (9.43) follows from ineq. (9.42) due to Lemma 37. W

Proof of part (1—-ry)/ks(1—e7 %) of ineq. (9.6) Consider that the objective function f
is non-decreasing submodular and such that (without loss of generality) f is non-negative
and f(0) = 0. Moreover, consider that the pair (V,Z) is a uniform matroid. To prove the
part (1 — ry)/kf(1 —e™"7) of ineq. (9.6) we follow similar steps to the ones we followed
in the proof of ineq. (9.7) via the ineqs. (9.38)-(9.43). We explain next where these steps
differ: if instead of using Lemma 36’s ineq. (9.28) to get ineq. (9.42) from ineq. (9.41), we
use Lemma 36’s ineq. (9.27), and afterwards apply Lemma 37, then, we derive ineq. (9.6).
]

Proof of parts hs(a, 5)/(14+k¢) and hy(a, 5)/k¢(1—e "f) of ineq. (9.7) and ineq. (9.6),
respectively We complete the proof by first proving that:

. 1
FANB () 2 15/ (), (9.44)

and, then, proving that: .
A\ B*(A)) = a_ﬁf(fb)- (9.45)

185

A) (4 ®)

Figure 13: Venn diagram, where the sets A, As, BT, B are as follows: per Algorithm 19, 4; and
Ay are such that A = A; UAs. Due to their construction, it holds A; N Ay = (). Next, B} and B are
such that Bf = B*(A) N Az, and By = B*(A) N Ag; therefore, Bf N B5 = () and B*(A) = (Bf U B}).

of ineq. (9.7) and of ineq. (9.6), respectively, after also applying Lemma 36’s ineq. (9.28)
and ineq. (9.27), respectively, and then Lemma 37.

The combination of ineq. (9.44) and ineq. (9.45) proves the part h

To prove ineq. (9.44), we follow the steps of the proof of [56, Theorem 1|, and use the
notation introduced in Fig. 13, along with the following notation:
_ f(B5|A\ B*(A))

n= ()) (9.46)

In particular, to prove ineq. (9.44) we focus on the worst-case where B3 # 0; the reason is
that if we assume otherwise, i.e., if we assume B3 = (), then f(A\ B*(A)) = f(Asz), which
is a tighter inequality to ineq. (9.44). Hence, considering B3 #), we prove ineq. (9.44) by
first observing that:

FANB*(A)) = max{f(A\ B*(A)), f(A])}, (9.47)
and then proving the following three inequalities:
FANB*(A)) = (1 —n)f(A2), (9.48)
FAD) 2 03 £ (o), (9.49)
max{(1 =), w5} = 77 (9.50)

Specifically, if we substitute inegs. (9.48)-(9.50) to ineq. (9.47), and take into account that

f(A2) > 0, then:
1

FANB) 2 5

f(A2)>
which implies ineq. (9.44).

We complete the proof of ineq. (9.47) by proving 0 < n < 1, and ineqgs. (9.48)-(9.50),
respectively.

186

Proof of ineq. 0 <7 <1 We first prove that n > 0, and then, that n < 1: it holds n >
0, since by definition n = f(B%|A\ B*(A))/f(A2), and since f is non-negative; and it
holds n < 1, since f(A2) > f(B3), due to monotonicity of f and that B5 C A, and since
f(B5) > f(B5| A\ B*(A)), due to submodularity of f and that) C A\ B*(A).

Proof of ineq. (9.48) We complete the proof of ineq. (9.48) in two steps. First, it can be
verified that:

FA\B*(A)) = f(A2)—
F(B5| AN\ B*(A)) + f(AiA2) — f (BT A\ BY), (9.51)

since for any X C V and Y C V, it holds f(X|Y) = f(X UY) — f()). Second, eq. (9.51)
implies ineq. (9.48), since f(B5|A\ B*(A)) = nf(A2), and f(A1]|A2) — f(BF|A\ Bf) > 0.
The latter is true due to the following two observations: f(Ai|A2) > f(Bjf|As2), since f

is monotone and Bf C Aj; and f(Bi|A2) > f(Bi|A\ BY), since f is submodular and
Ay C A\ By (see also Fig. 13).

Proof of ineq. (9.49) Since it is B # 0 (and as a result, it also is A]" #), and since for
all elements a € A" and all elements b € B} it is f(a) > f(b), from Lemma 29 we have:

F(B3JAY) < IB3|f(AT)

< BF(AD), (9.52)
since |B3| < 8. Overall,

FAT) = S(B31AD) (9.53)

> SIB3IAT U A) (9.54)

~ SIBA\B () (9.55)

— g h(A), (9.56)

where inegs. (9.53)-(9.56) hold for the following reasons: ineq. (9.53) follows from ineq. (9.52);
ineq. (9.54) holds since f is submodular and A7 C A7 U AJ; eq. (9.55) holds due to the
definitions of the sets A, A3 and B*(A); finally, eq. (9.56) holds due to the definition of 7.

Proof of ineq. (9.50) Let b = 1/5. We complete the proof first for the case where
(1—n) > nb, and then for the case (1—n) < nb: when (1 —n) > nb, max{(1—n),nb} =1—n
and 7 < 1/(1 4+ b); due to the latter, 1 —n > b/(14+b) = 1/(8+ 1) and, as a result, (9.50)
holds. Finally, when (1 —n) < nb, max{(1 — n),nb} = nb and n > 1/(1 + b); due to the
latter, nb > b/(1 + b) and, as a result, (9.50) holds.

We completed the proof of 0 < n <1, and of ineqgs. (9.48)-(9.50). Thus, we also completed
the proof of ineq. (9.44).

187

To prove ineq. (9.45), we consider the following mutually exclusive and collectively exhaus-
tive cases:

e consider Bf = 0, i.e., all elements in A; are removed, and as result, none of the
elements in Ajp is removed. Then, f(A\ B*(A)) = f(A2), and ineq. (9.45) holds.

e Consider Bs # 0, i.e., at least one of the elements in 4; is not removed; call any of
these elements s. Then:

FLANB*(A)) = f(s), (9.57)
since f is non-decreasing. In addition:
FA2) < 3) < (a— B)f(s), (9.58)
veEAs

where the first inequality holds since f is submodular |70, Proposition 2.1], and the
second holds due to Lemma 34 and the fact that As is constructed by Algorithm 19
such that A; U A2 €V and A; U Ay € Z, where |A;] = 8 (since A; is constructed
by Algorithm 19 such that A4; C V and A; € 7', where (V,Z') is a matroid with
rank) and (V,Z) is a matroid that has rank «; the combination of ineq. (9.57) and
ineq. (9.58) implies ineq. (9.45).

Overall, the proof of ineq. (9.45) is complete. |
Proof of Theorem 22’s part 2 (running time)

We complete the proof in two steps, where we denote the time for each evaluation of the
objective function f as 77. In particular, we first compute the running time of lines 2-8 and,
then, of lines 9-15: lines 2-8 need at most |V|[|V|7; + |V|log(|V]) + |V| + O(log(|V]))] time,
since they are repeated at most |V| times, and at each repetition line 3 asks for at most
|V| evaluations of f, and for their sorting, which takes |V|log(|V|) + [V| + O(log(|V])) time,
using, e.g., the merge sort algorithm. Similarly, lines 9-15 need |V|[|V|7;+|V|log(|V|)+|V|+
O(log(|V]))]. Overall, Algorithm 19 runs in 2|V|[|V|7s + [V|log(|V]) + [V| + O(log(|V]))] =
O([V|?1y) time. [

188

CHAPTER 10 : Resilient (Non-)Submodular Sequential Maximization

Applications in machine learning, optimization, and control require the sequential selection
of a few system elements, such as sensors, data, or actuators, to optimize the system perfor-
mance across multiple time steps. However, in failure-prone and adversarial environments,
sensors get attacked, data get deleted, and actuators fail. Thence, traditional sequential de-
sign paradigms become insufficient and, in contrast, resilient sequential designs that adapt
against system-wide attacks, deletions, or failures become important. In general, resilient
sequential design problems are computationally hard. Also, even though they often involve
objective functions that are monotone and (possibly) submodular, no scalable approxima-
tion algorithms are known for their solution. In this chapter, we provide the first scalable
algorithm, that achieves the following characteristics: system-wide resiliency, i.e., the algo-
rithm is valid for any number of denial-of-service attacks, deletions, or failures; adaptiveness,
i.e., at each time step, the algorithm selects system elements based on the history of inflicted
attacks, deletions, or failures; and provable approzimation performance, i.e., the algorithm
guarantees for monotone objective functions a solution close to the optimal. We quantify
the algorithm’s approximation performance using a notion of curvature for monotone (not
necessarily submodular) set functions. Finally, we support our theoretical analyses with
simulated experiments, by considering a control-aware sensor scheduling scenario, namely,
sensing-constrained robot navigation."

10.1. Introduction

Problems in machine learning, optimization, and control |6, 50, 54, 193, 221, 222, 225, 226,
232| require the design of systems in applications such as:

e (Car-congestion prediction: Given a flood of driving data, collected from the drivers’
smart-phones, which few drivers’ data should we process at each time of the day to
enable the accurate prediction of car traffic? [232]

o Adversarial-target tracking: At a flying robot, that uses on-board sensors to navigate
itself, which few sensors should we activate at each time step both to maximize the
robot’s battery life, and to ensure its ability to track targets moving in a cluttered
environment? [193]

e Hazardous environmental-monitoring: In a team of mobile robots, which few robots
should we choose at each time step as actuators (leaders) to guarantee the team’s
capability to monitor the radiation around a nuclear reactor despite intro-robot com-
munication noise? [50]

In particular, all the aforementioned applications [6, 50, 54, 193, 221, 222, 225, 226, 232|
motivate the sequential selection of a few system elements, such as sensors, data, or actua-
tors, to optimize the system performance across multiple time steps, subject to a resource
constraint, such as limited battery for sensor activation. More formally, each of the above

!This chapter is based on the paper by Tzoumas et al. [231].

189

applications motivate the solution to a sequential optimization problem of the form:

max --- max A, A
AW ArCVr f(1) T)a

such that: (10.1)
|At| = ay, for all t =1,...,T,

where T represents the number of design steps in time; the objective function f is monotone
and (possibly) submodular —submodularity is a diminishing returns property;— and the
cardinality bound oy captures a resource constraint at time ¢. The problem in eq. (10.1) is
combinatorial, and, specifically, it is NP-hard [13|; notwithstanding, several approximation
algorithms have been proposed for its solution, such as the greedy [12].

But in all the above critical applications, sensors can get cyber-attacked [24]; data can
get deleted [36]; and actuators can fail [23]. Hence, in such failure-prone and adversarial
scenarios, resilient sequential designs that adapt against denial-of-service attacks, deletions,
or failures become important.

In this chapter, we formalize for the first time a problem of resilient monotone sequential
mazimization, that goes beyond the traditional objective of the problem in eq. (10.1), and
guards adaptively against real-time attacks, deletions, or failures. In particular, we introduce
the following resilient re-formulation of the problem in eq. (10.1):

3 e i A B goe e ,A B)
B B, A, g, T B AT B
such that: (10.2)

|At| = Oy and |Bt| < ﬁt, for all t =]., ,J:

where the number j; represents the number of possible attacks, deletions, or failures —in gen-
eral, it is B; < ay. Overall, the problem in eq. (10.2) maximizes the function f despite real-
time worst-case failures that compromise the consecutive maximization steps in eq. (10.1).
Therefore, the problem formulation in eq. (10.2) is suitable in scenarios where there is no
prior on the removal mechanism, as well as, in scenarios where protection against worst-case
failures is essential, such as in expensive experiment designs, or missions of adversarial-target
tracking.

In more detail, the problem in eq. (10.2) may be interpreted as a T-stage perfect informa-
tion sequential game between two players [26, Chapter 4], namely, a “maximization” player
(designer), and a “minimization” player (attacker), who play sequentially, both observing all
past actions of all players, and with the designer starting the game. That is, at each time
t =1,...,T, both the designer and the attacker adapt their set selections to the history of
all the players’ selections so far, and, in particular, the attacker adapts its selection also to
the current (¢-th) selection of the designer (since at each step t, the attacker plays after it
observes the selection of the ‘designer).

In sum, the problem in eq. (10.2) goes beyond traditional (non-resilient) optimization [31,
32, 33, 39, 40] by proposing resilient optimization; beyond single-step resilient optimiza-
tion [34, 35, 56] by proposing multi-step (sequential) resilient optimization; beyond memo-

190

ryless resilient optimization [41] by proposing adaptive resilient optimization; and beyond
protection against non-adversarial attacks [36, 37] by proposing protection against worst-
case attacks. Hence, the problem in eq. (10.2) aims to protect the system performance over
extended periods of time against real-time denial-of-service attacks or failures, which is vital
in critical applications, such as multi-target surveillance with teams of mobile robots [6].

Contributions. In this chapter, we make the contributions:

e (Problem definition) We formalize the problem of resilient monotone sequential maz-
imization against denial-of-service removals, per eq. (10.2). This is the first work to
formalize, address, and motivate this problem.

e (Solution) We develop the first algorithm for the problem of resilient monotone se-
quential maximization in eq. (10.2), and prove it has the following properties:

— system-wide resiliency: the algorithm is valid for any number of removals;

— adaptiveness: the algorithm adapts the solution to each of the maximization steps
in eq. (10.2) to the history of realized (inflicted) removals;

— manimal running time: the algorithm terminates with the same running time
as state-of-the-art algorithms for (non-resilient) set function optimization, per
eq. (10.1);

— provable approximation performance: the algorithm ensures for all 7' > 1, and for
objective functions f that are monotone and (possibly) submodular —as it holds
true in all aforementioned applications |6, 50, 54, 193, 221, 222, 225, 226, 232|,—
a solution finitely close to the optimal.

To quantify the algorithm’s approximation performance, we used a notion of
curvature for monotone (not necessarily submodular) set functions.

o (Simulations) We conduct simulations in a variety of sensor scheduling scenarios for
autonomous robot navigation, varying the number of sensor failures. Our simulations
validate the benefits of our approach.

Overall, the proposed algorithm in this chapter enables the resilient reformulation and so-
lution of all the aforementioned applications [6, 50, 54, 193, 221, 222, 225, 226, 232] against
worst-case attacks, deletions, or failures, over multiple design steps, and with provable ap-
proximation guarantees.

Notation. Calligraphic fonts denote sets (e.g., A). Given a set A, then 24 denotes the
power set of A; in addition, |A| denotes A’s cardinality; given also a set B, then A\ B
denotes the set of elements in A that are not in B. Given a ground set V, a set function
f:2Y = R, and an element x € V, the f(x) denotes f({x}), and the f(A,B) denotes
f(AUB).

191

10.2. Resilient Monotone Sequential Maximization

We formally define resilient monotone sequential maximization. We start with the basic
definition of monotonicity.

Definition 37 (Monotonicity). Consider any finite ground set V. The set function f : 2
R is non-decreasing if and only if for any sets A C A" CV, it holds f(A) < f(A).

We define next the main problem in this chapter.

Problem 5. (Resilient Monotone Sequential Maximization) Consider the parame-
ters: an integer T; finite ground sets Vi,...,Vr; a non-decreasing set function f : 2V1 x
o x 2V 3 R such that, without loss of generality, it holds f(0)) = 0 and f is non-negative;
finally, integers ay and By such that 0 < By < oy < |V, forallt =1,2,...,T.

The problem of resilient monotone sequential maximization is fo mazimize the objective
function f through o sequence of T mazimization steps, despite compromises to the solutions
of each of the maximization steps; in particular, at each mazimization step t = 1,....T a
set Ay € Vy of cardinality oy is selected, and is compromised by a worst-case set removal By
of cardinality B¢. Formally:

max min --- max min A1\ By,..., A7\ B
A1CV B1CAy ArCVr BrCAr f(1\ b ’ T\ T)7

such that: (10.3)
|Ai| = o and |By| < By, for allt =1,...,T.

As we mentioned in this chapter’s Introduction, Problem 20 may be interpreted as a T-stage
perfect information sequential game between two players [26, Chapter 4], a “maximization”
player, and a “minimization” player, who play sequentially, both observing all past actions
of all players, and with the “maximization” player starting the game. In the following
paragraphs, we describe this game in more detail:

e Ist round of the game in Problem 5: the “maximization” player selects the set Aj;
then, the “minimization” player observes A, and selects the set By against Aj;

o 2nd round of the game in Problem &§: the “maximization” player, who already knows
A1, observes Bi, and selects the set Ao, given A; and Bi; then, the “minimization”
player, who already knows A; and By, observes As, and selects the set By against Ao,
given A; and B;.

o T'-th round of the game in Problem 5. the “maximization” player, who already knows
the history of selections Ay, ..., Ar_1, as well as, removals By, ..., Br_1, selects the set
Ar, given Ay, ..., Ar_1 and By, ..., Br_1; then, the “minimization” player, who also
already knows the history of selections A, ..., Ar_1, as well as, removals By, ..., Br_1,
observes Ar, and selects the set By against Ar, given Ay, ..., Ar_1 and By, ..., Br_1.

192

10.3. Adaptive Algorithm for Problem 5

We present the first algorithm for Problem 5, show it is adaptive, and, finally, describe the
intuition behind it. The pseudo-code of the algorithm is described in Algorithm 20.

10.8.1. Intuition behind Algorithm 20

The goal of Problem 5 is to ensure a maximal value for an objective function f through
a sequence of T' maximization steps, despite compromises to the solutions of each of the
maximization steps. In particular, at each maximization step t = 1,...,7, Problem 5 aims
to select a set A; towards a maximal value of f, despite that each A; is compromised by
a worst-case set removal By from Ay, resulting to f being finally evaluated at the sequence
of sets A; \ Bi,..., Ar \ Br instead of the sequence of sets Ajy,..., Ar. In this context,
Algorithm 20 aims to fulfil the goal of Problem 5 by constructing each set A; as the union of
the sets St 1, and St 2 (line 9 of Algorithm 20), whose role we describe in more detail below:

Set S¢1 approximates worst-case set removal from A;: Algorithm 20 aims with the set S 1
to capture the worst-case removal of §; elements among the oy elements that Algorithm 20
is going to select in A;; equivalently, the set S; 1 is aimed to act as a “bait” to an attacker
that selects to remove the best f; elements from A; (best with respect to the elements’
contribution towards the goal of Problem 5). However, the problem of selecting the best (;
elements in V; is a combinatorial and, in general, intractable problem [13]. For this reason,
Algorithm 20 aims to approzimate the best §; elements in V;, by letting S; 1 be the set of 5,
elements with the largest marginal contributions in the value of the objective function f
(lines 3-4 of Algorithm 20).

Set S; 9 is such that S;1US 2 approzimates optimal set solution to t-th mazimization step of
Problem 5: Assuming that &1 is the set of 3; elements that are going to be removed from
Algorithm 20’s set selection A, Algorithm 20 needs next to select a set S; 2 of a;—f; elements
to complete the construction of Ay, since it is | Ay = ay per Problem 5. In particular, for
Ay = 8,1 US; 2 to be an optimal solution to ¢-th maximization step of Problem 5 (assuming
the removal of S; 1 from A), Algorithm 20 needs to select S 2 as a best set of a;— ¢ elements
from V;\S;,1. Nevertheless, the problem of selecting a best set of oy — ¢ elements from V;\S; 1
is a combinatorial and, in general, intractable problem [13]. As a result, Algorithm 20 aims
to approzimate such a best set, using the greedy procedure in the lines 5-8 of Algorithm 20.

Overall, Algorithm 20 constructs the sets S;1 and S; 2 to approximate an optimal solution
A; to the t-th maximization step of Problem 5 with their union (line 9 of Algorithm 20).

We describe next the steps in Algorithm 20 in more detail.
10.3.2. Description of steps in Algorithm 20

Algorithm 20 executes four steps for each t = 1,...,T, where T is the number of maximiza-
tion steps in Problem 5:

Initialization (line 2 of Algorithm 20): Algorithm 20 defines two auxiliary sets, namely,
the ;1 and S 2, and initializes each of them with the empty set (line 2 of Algorithm 20).

193

Algorithm 20 Adaptive algorithm for Problem 5.

Input: Per Problem 5, Algorithm 20 receives two input types:
o (Off-line) Integer T; finite ground sets Vi, ..., Vr; set function f: 2Y1 x -+ - x 27 1
R such that f is non-decreasing, non-negative, and f(0)) = 0; integers a; and S
such that 0 < By <oy < |Vy|, forallt =1,...,T.
e (On-line) At each step t = 2,3,...,T: realized set removal B;_1 from Algo-
rithm 20’s set selection A;_1.
Output: At each stept=1,2,...,T, set A;.

1: forallt=1,...,7T do
: St,l — @; St’g < @;

2

3: Sort elements in V; such that Vi = {v1,..., vy, } and f(ve1) > .0 > flogy,);
40 Spp o {vga, - vs)s

5: while ‘8@2’ < oy — 5,5 do

6 T € argmaxycy,\ (S;.,US;) f(.Al \ Bi,..., A1 \ Bi_1, St72 U {y}),

7 St + {2} USt2;

8

end while
9: A +— S@l U St,g;
10: end for

The purpose of S;1 and of S is to construct the set A;, which is the set Algorithm 20
selects as a solution to Problem 5’s ¢-th maximization step; in particular, the union of S; 1
and of S;o constructs A; at the end of the ¢-th execution of the algorithm’s “for loop”
(lines 1-10 of Algorithm 20).

Construction of set S;1 (lines 3-4 of Algorithm 20): Algorithm 20 constructs the set S; 1
such that S; 1 contains fB; elements from the ground set V; and, for any element s € S; 1 and
any element s’ ¢ S; 1, the marginal value of f(s) is at least that of f(s'); that is, among
all elements in V4, the set S;1 contains a collection of 38; elements that correspond to the
highest marginal values of f. In detail, Algorithm 20 constructs Sy by first sorting and
indexing all elements in V; such that Vi = {vg1,..., v,) and f(ve1) > ... > flvgn,)
(line 3 of Algorithm 20), and, then, by including in S;; the fist 3; elements among the
{ve1, -5 vy,) (line 4 of Algorithm 20).

Construction of set Sy o (lines 5-8 of Algorithm 20): Algorithm 20 constructs the set S; 2 by
picking greedily oy — ¢ elements from the set V; \ St 1, and by accounting for the effect that
the history of set selections and removals (A; \ Bi,...,Ai—1 \ Bi—1) has on the objective
function f of Problem 5. Specifically, the greedy procedure in Algorithm 20’s “while loop”
(lines 5-8 of Algorithm 20) selects an element y € V; \ (S¢1 U St 2) to add in S; o only if y
maximizes the value of f(A1\ B1,..., A1\ Bi—1,St2 U{y}).

Construction of set Ay (line 9 of Algorithm 20): Algorithm 20 proposes the set A; as a
solution to Problem 5’s ¢-th maximization step. To this end, Algorithm 20 constructs A; as
the union of the previously constructed sets Sy 1 and S; .

In sum, Algorithm 20 enables an adaptive solution of Problem 5: for each t = 1,2,...,

194

Algorithm 20 constructs a solution set A; to the ¢-th maximization step of Problem 5 based
on both the history of selected solutions up to step ¢t — 1, namely, the sets A1, ..., A 1, and
the corresponding history of set removals from A1, ..., 4;_1, namely, the By, ..., Bi_1.

10.4. Performance Guarantees for Algorithm 20

We quantify Algorithm 20’s performance, by bounding its running time, and its approx-
imation performance. To this end, we use the following two notions of curvature for set
functions.

10.4.1. Curvature and total curvature of non-decreasing functions

We present the notions of curvature and of total curvature for non-decreasing set functions.
We start by describing the notions of modularity and submodularity for set functions.
Definition 38 (Modularity). Consider any finite set V. The set function g : 2¥ + R is
modular if and only if for any set A CV, it holds g(A) =3 c 41 9(v).

In words, a set function ¢ : 2¥ — R is modular if through g all elements in V cannot
substitute each other; in particular, Definition 38 of modularity implies that for any set
A CV, and for any element v € V \ A, it holds g({v} U.A) — g(A) = g(v).

Definition 39 (Submodularity |70, Proposition 2.1]). Consider any finite set V. The set
function g : 2¥ +— R is submodular if and only if for any sets A C B C V, and any element
v eV, it holds g(AU{v})—g(A) > g(BU{v})—g(B).

Definition 39 implies that a set function g : 2" + R is submodular if and only if it satisfies
a diminishing returns property where for any set A C V, and for any element v € V), the
marginal gain g(AU{v})—g(A) is non-increasing. In contrast to modularity, submodularity
implies that the elements in V can substitute each other, since Definition 39 of submodularity
implies the inequality g({v} U.A) — g(A) < g(v); that is, in the presence of the set A, the
element v may lose part of its contribution to the value of g({z} U A).

Definition 40. (Curvature of monotone submodular functions [33]) Consider a
finite set V, and a non-decreasing submodular set function g : 2¥ +— R such that (without
loss of generality) for any element v € V, it is g(v) # 0. The curvature of g is defined as
follows:

g(V) — g(V\ {v}) 0.0

kg = 1 — min
g vEV g(v)

Definition 40 of curvature implies that for any non-decreasing submodular set function g :
2Y — R, it holds 0 < kg < 1. In particular, the value of x, measures how far g is
from modularity, as we explain next: if k;, = 0, then for all elements v € V), it holds
g(V) —g(V\ {v}) = g(v), that is, g is modular. In contrast, if K, = 1, then there exist an
element v € V such that g(V) = g(V \ {v}), that is, in the presence of V\ {v}, v loses all its
contribution to the value of g(V).

Definition 41. (Total curvature of non-decreasing functions [15, Section 8]) Con-
sider a finite set V, and a monotone set function g : 2¥ — R. The total curvature of g is

195

defined as follows:

cg=1—min min gvpUA) = g(A). (10.5)
veV ABV\{v} g({v} U B) — g(B)
Definition 41 of total curvature implies that for any non-decreasing set function g : 2V — R,
it holds 0 < ¢4 < 1. To connect the notion of total curvature with that of curvature, we note
that when the function g is non-decreasing and submodular, then the two notions coincide,
i.e., it holds ¢y = kg4; the reason is that if g is non-decreasing and submodular, then the
inner minimum in eq. (10.5) is attained for A = B\ {v} and B = (). In addition, to connect
the above notion of total curvature with the notion of modularity, we note that if ¢, = 0,

then ¢ is modular, since eq. (10.5) implies that for any elements v € V, and for any sets
A, B CV\{v}, it holds:

(1 =) [g{v} UB) = g(B)] < g({v} UA) — g(A), (10.6)

which for ¢, = 0 implies the modularity of g. Finally, to connect the above notion of
total curvature with the notion of monotonicity, we mention that if ¢, = 1, then eq. (10.6)
implies that g is merely non-decreasing (as it is already assumed by the Definition 41 of
total curvature).

Definition 42 (Approximate submodularity). Consider a finite set V, and a non-decreasing
set function g : 2V — R, whose total curvature cg s such that ¢, < 1. Then, we say that g
15 approximately submodular.

10.4.2. Performance analysis for Algorithm 20

We quantify Algorithm 20’s approximation performance, as well as, its running time per
maximization step in Problem 5.

Theorem 23 (Performance of Algorithm 20). Consider an instance of Problem 5, the no-
tation therein, the notation in Algorithm 20, and the definitions:

e let the number f* be the (optimal) value to Problem 5;

e given sets Ai.r = (A1, ..., Ar) as solutions to the mazimization steps in Problem 5,
let B*(A1.1) be the collection of optimal (worst-case) set removals from each of the Ay,
where t = 1,...,T, per Problem 5, i.e.:

B*(Ai.r) € arg min min
BiCA1,|B1|<p1 BrCAr,|Br|<pr
f(AL\ By, ..., A\ Br);
The performance of Algorithm 20 is bounded as follows:

leftmirgin="* (Approximation performance) Algorithm 20 returns the sequence of sets
Avr & (A1, ..., Ar) such that, for all t = 1,...,T, it holds Ay C Vy,
|A¢| < oy, and:

196

o if the objective function f is non-decreasing and submodular, then:
(At \ B*(A1.1))

I
where Ky is the curvature of f (Definition 40).

> (1—rp)? (10.7)

e if the objective function f is non-decreasing, then:
f(Arr \ B*(A11))

I
where cy is the total curvature of f (Definition 41).

> (1—cy)?, (10.8)

leftmiirgiin="* (Running time) Algorithm 20 constructs each set Ay, for eacht =1,...,T,
to solve the t-th mazimization step of Problem 5, with O(|Vi|(cw — Bt))
evaluations of f.

Provable approximation performance. Theorem 23 implies on the approximation per-
formance of Algorithm 20:

Near-optimality: Both for monotone submodular objective functions f with curvature xy <
1, and for merely monotone objective functions f with total curvature c¢; < 1, Algo-
rithm 20 guarantees a value for Problem 5 finitely close to the optimal. In particular,
per ineq. (10.7) (case of submodular objective functions), the approximation factor of Algo-
rithm 20 is bounded by (1—r¢)% which is non-zero for any monotone submodular function f
with k¢ < 1; similarly, per ineq. (10.8) (case of approximately-submodular functions), the
approximation factor of Algorithm 20 is bounded by (1 — ¢)% which is non-zero for any
monotone function f with ¢y < 1 —notably, although it is known for the problem of (non-
resilient) set function maximization that the approximation bound (1 — ¢y) is tight [15,
Theorem 8.6], the tightness of the bound (1 — ¢f)® in ineq. (10.8) for Problem 5 is an open
problem.

We discuss classes of functions f with curvatures Ky < 1 or ¢y < 1, along with relevant
applications, in the remark below.

Remark 17. (Classes of functions f with x; < 1 or ¢; < 1, and applications) Classes
of functions f with kf < 1 are the concave over modular functions [31, Section 2.1], and
the log det of positive-definite matrices [227, 228]. Classes of functions f with ¢y < 1 are
support selection functions [223], and estimation error metrics such as the average minimum
square error of the Kalman filter [193, Theorem /]

The aforementioned classes of functions f with ky < 1 or ¢y < 1 appear in applications
of facility location, machine learning, and control, such as sparse approrimation and fea-
ture selection [225, 226], sparse recovery and column subset selection [221, 222], and ac-
tuator and sensor scheduling [54, 193]; as a result, Problem 5 enables applications such
as resilient experiment design, resilient actuator scheduling for minimal control effort, and
resilient multi-robot navigation with minimal sensing and communication.

Approzimation performance for low curvature: For both monotone submodular and merely

197

monotone objective functions f, when the curvature sy and the total curvature cy, respec-
tively, tend to zero, Algorithm 20 becomes exact since for Ky — 0 and ¢; — 0 the terms
(1 —rg)* and (1 — ¢f)° in ineq. (10.7) and ineq. (10.8) tend to 1. Overall, Algorithm 20’s
curvature-dependent approximation bounds make a first step towards separating the classes
of monotone submodular and merely monotone functions into functions for which Prob-
lem 5 can be approximated well (low curvature functions), and functions for which it cannot
(high curvature functions).

A machine learning problem where Algorithm 20 guarantees an approximation performance
close to 100% the optimal is that of Gaussian process regression for processes with RBF ker-
nels [114, 230]; this problem emerges in applications of sensor deployment and scheduling for
temperature monitoring. The reason that in this class of regression problems Algorithm 20
performs almost optimally is that the involved objective function is the entropy of the se-
lected sensor measurements, which for Gaussian processes with RBF kernels has curvature
value close to zero [228, Theorem 5.

Approzimation performance for no failures or attacks: Both for monotone submodular objec-
tive functions f, and for merely monotone objective functions f, when the number of attacks,
deletions, and failures is zero (8; = 0, for all t = 1,...,T), Algorithm 20’s approximation
performance is the same as that of the state-of-the-art algorithms for (non-resilient) set func-
tion maximization. In particular, when for all ¢t = 1,...,T it is §; = 0, then Algorithm 20
is the same as the local greedy algorithm, proposed in [12, Section 4] for (non-resilient) set
function maximization, whose approximation performance is optimal [15, Theorem 8.6].

Minimal running time. Theorem 23 implies that Algorithm 20, even though it goes
beyond the objective of (non-resilient) multi-step set function optimization, by accounting
for attacks, deletions, and failures, it has the same order of running time as state-of-the-art
algorithms for (non-resilient) multi-step set function optimization. In particular, such algo-
rithms for (non-resilient) multi-step set function optimization |12, Section 4| |15, Section §|
terminate with O(|Vy|(ow — Bt)) evaluations of the objective function f per maximization
stept =1,...,T, and Algorithm 20 also terminates with O(|V¢|(ay — B;)) evaluations of the
objective function f per maximization stept=1,...,T.

Summary of theoretical results. In sum, Algorithm 20 is the first algorithm for Prob-
lem 5, and it enjoys:

o system-wide resiliency: Algorithm 20 is valid for any number of denial-of-service at-
tacks, deletions, and failures;

e adaptiveness: Algorithm 20 adapts the solution to each of the maximization steps in
Problem 5 to the history of inflicted denial-of-service attacks and failures;

o minimal running time: Algorithm 20 terminates with the same running time as state-
of-the-art algorithms for (non-resilient) multi-step submodular function optimization;

e provable approximation performance: Algorithm 20 ensures for all monotone objective
functions f that are either submodular or approximately submodular (¢ < 1), and

198

for all T' > 1, a solution finitely close to the optimal.

Notably, Algorithm 20 is also the first to guarantee for any number of failures, and for
monotone approximately-submodular functions f, a provable approximation performance
for the one-step version of Problem 5 where T' = 1.

10.5. Numerical Experiments

In this section, we demonstrate a near-optimal performance of Algorithm 20 via numerical
experiments. In particular, we consider a control-aware sensor scheduling scenario, namely,
sensing-constrained robot navigation.> According to this scenario, an unmanned aerial vehi-
cle (UAV), which has limited remaining battery and measurement-processing power, has the
objective to land, and to this end, it schedules to activate at each time step only a subset
of its on-board sensors, so to localize itself and enable the generation of a control input for
landing; specifically, at each time step, the UAV generates its control input by implementing
an LQG-optimal controller, given the measurements collected by the activated sensors up
to the current time step [123, 193].

In more detail, in the following paragraphs we present a Monte Carlo analysis for an in-
stance of the aforementioned sensing-constrained robot navigation scenario, in the presence
of worst-case sensor failures, and observe that Algorithm 20 results to a near-optimal sensor
selection schedule: in particular, the resulting navigation performance of the UAV matches
the optimal in all tested instances for which the optimal selection could be computed via a
brute-force approach.

Simulation setup. We adopt the same instance of the sensing-constrained robot navigation
scenario adopted in [193, Section V.B|. Specifically, a UAV moves in a 3D space, starting from
a randomly selected initial location. The objective of the UAV is to land at position [0, 0, 0]
with zero velocity. The UAV is modelled as a double-integrator with state z; = [p; v;]' € RS
at each time ¢t = 1,2,... (p; is the 3D position of the UAV, and v, is its velocity), and can
control its own acceleration u; € R3; the process noise is chosen as W; = Is. The UAV is
equipped with multiple sensors, as follows: it has two on-board GPS receivers, measuring
the UAV position p; with a covariance 2 - Is, and an altimeter, measuring only the last
component of p; (altitude) with standard deviation 0.5m. Moreover, the UAV can use a
stereo camera to measure the relative position of 10 landmarks on the ground; we assume
the location of each landmark to be known only approximately, and we associate to each
landmark an uncertainty covariance, which is randomly generated at the beginning of each
run. The UAV has limited on-board resource-constraints, hence it can only activate a subset
of sensors (possibly different at each time step). For instance, the resource-constraints may
be due to the power consumption of the GPS and the altimeter, or due to computational
constraints that prevent to run object-detection algorithms to detect all landmarks on the
ground.

Among the aforementioned 13 possible sensor measurements available to the UAV at each
time step, we assume that the UAV can use only a = 11 of them. In particular, the

2The scenario of sensing-constrained robot navigation is introduced in [193, Section V.B], yet in the
absence of sensor failures.

199

UAV chooses the sensors to activate at each time step so to minimize an LQG cost with
cost matrices @ (which penalizes the state vector) and R (which penalizes the control input
vector), per the problem formulation in [193, Section I1}; specifically, in this simulation setup
we set @ = diag ([18_3, le3, 10, 1le73, le73, 10]) and R = I3. Note that the structure of
@ (which penalizes the magnitude of the state vector) reflects the fact that during landing
we are particularly interested in controlling the vertical direction and the vertical velocity
(entries with larger weight in @), while we are less interested in controlling accurately the
horizontal position and velocity (assuming a sufficiently large landing site). Given a time
horizon T for landing, in [193] it is proven that the UAV selects an optimal sensor schedule
and generates an optimal LQG control input with cost matrices () and R if it selects the

sensors set Sy to activate at each time ¢ = 1,...,T by minimizing an objective function of
the form:
T
D trace[MSy(St, ..., 1)), (10.9)
t=1

where M, is a positive semi-definite matrix that depends on the LQG cost matrices) and
R, as well as, on the UAV’s model dynamics; and X;(S1, ..., St) is the error covariance of
the Kalman filter given the sensor selections up to time ¢.

In the remaining paragraphs, we present results averaged over 10 Monte Carlo runs of the
above simulation setup, where in each run we randomize the covariances describing the
landmark position uncertainty, and where we vary the number 3 of sensors failures at each
time step t: in particular, we consider 8 to vary among the values 1,4, 7,10.

Compared algorithms. We compare four algorithms. All algorithms only differ in how
they select the sensors used. The first algorithm is the optimal sensor selection algorithm,
denoted as optimal, which attains the minimum of the cost function in eq. (10.9); this
brute-force approach is viable since the number of available sensors is small. The second
approach is a pseudo-random sensor selection, denoted as random® which selects one of
the GPS measurements and a random subset of the lidar measurements; note that we do
not consider a fully random selection since in practice this often leads to an unobservable
system. The third approach, denoted as logdet, selects sensors to greedily minimize the cost
function in eq. (10.9), ignoring the possibility of sensor failures, per the problem formulation
in eq. (9.1). The fourth approach uses Algorithm 20 to solve the resilient reformulation of
eq. (10.9), per Problem 5, and is denoted as s-LQG.

At each time step, from each of the selected sensor sets, selected by any of the above four
algorithms, we consider an optimal sensor removal, which we compute via a brute-force.

Results. The results of our numerical analysis are reported in Fig. 14. In particular, Fig. 14
shows the LQG cost for increasing time, for the case where the number of selected sensors
at each time step is o = 11, while the number of sensor failures 3 at each time step varies
across the values 10,7,4, 1. The following observations are due:

o (Near-optimality of Algorithm 20) Algorithm 20 (blue colour in Fig. 14) performs close
to the optimal brute-force algorithm (green colour in Fig. 14); in particular, across all
scenarios in Fig. 14, Algorithm 20 achieves an approximation performance at least

200

4.5
o7 .’.—!""'—' _ 4 i ittt
Q —s—random*|, @ /“-- —s—random
S 6 A optimal 8 35 optimal
Q ——greedy Q= ——greedy
9 —o -resilient 9 —o =resilient
5 3 o 80000000 SCETE 000
¢0-9-0-0-9 0-0-8-0-0-0-0-0-6-00-0-0-0-0 o0
4 25
0 5 10 15 20 0 5 10 15 20
time time
(a) p=10,a=11 (by =7 a=11
4
1610 5500
14 5000 [o™
- —s—random* 'g —a—random*
3 optimal o optimal
o 12 —h—greedy o 4500 ——greedy
9 —o -resilient 9 —o -resilient
1 W 4000
J‘"‘M.M.o-‘"‘“° S6P60864666456680460
0.8 3500
0 5 10 15 20 0 5 10 15 20
time time
(€ B=4a=11 d B=1l,a=11

Figure 14: LQG cost for increasing time, where across all sub-figures (a)-(d) it is « = 11 (number
of active sensors per time step). The value of 8 (number of sensor failures at each time step among
the « active sensors) varies across the sub-figures.

97% the optimal.

o (Performance of greedy algorithm) The greedy algorithm (red colour in Fig. 14) per-
forms poorly as the number g of sensor failures increases, which was expected, given
that this algorithm greedily minimizes the cost function in eq. (10.9) ignoring the
possibility of sensor failures.

e (Performance of random algorithm) Expectedly, also the performance of the random
algorithm (black colour in Fig. 14) is poor across all scenarios in Fig. 14.

Overall, in the above numerical experiments, Algorithm 20 demonstrates a near-optimal
approximation performance, and the necessity for the resilient reformulation of the problem
in eq. (9.1) per Problem 5 is exemplified.

10.6. Concluding Remarks & Future Work

We made the first step to ensure the success of critical missions in machine learning and
control, that involve the optimization of systems across multiple time-steps, against persis-
tent failures or denial-of-service attacks. In particular, we provided the first algorithm for
Problem 5, which, with minimal running time, adapts to the history of the inflicted failures
and attacks, and guarantees a close-to-optimal performance against system-wide failures
and attacks. To quantify the algorithm’s approximation performance, we exploited a notion
of curvature for monotone (not necessarily submodular) set functions, and contributed a
first step towards characterizing the curvature’s effect on the approximability of resilient se-
guential maximization. Our curvature-dependent characterizations complement the current
knowledge on the curvature’s effect on the approximability of simpler problems, such as of

201

non-sequential resilient maximization [35, 56|, and of non-resilient maximization [31, 32, 33].
Finally, we supported our theoretical analyses with simulated experiments.

This chapter opens several avenues for future research, both in theory and in applications.
Future work in theory includes the extension of our results to matroid constraints, to enable
applications of set coverage and of network design [17, 233]. Future work in applications in-
cludes the experimental testing of the proposed algorithm in applications of motion-planning
for multi-target covering with mobile vehicles [6], and in applications of control-aware sen-
sor scheduling for multi-agent autonomous navigation [193], to enable resiliency in critical
scenarios of surveillance, and of search and rescue.

10.7. Appendix: Proof of Results
10.7.1. Notation

In the appendix we use the following notation to support the proofs in this chapter: given
a finite ground set V, and a set function f : 2¥ +— R, then, for any sets X C V and X’ C V-

f(X|X) £ f(XUX) - F(X). (10.10)
Moreover, let the sets Aj., = (Af,...,A}) denote an (optimal) solution to Problem 5, i.e.:
Lr €
8 R B AN, g, A\ B A\ Br) (0.1
such that:

|At| = ap and |By| < By, forallt =1,...,T.

10.7.2. Preliminary lemmas

We list lemmas that support the proof of Theorem 23.
Lemma 38. Consider a finite ground set V and a non-decreasing submodular set function
f:2V = R such that f is non-negative and f(0)) = 0. Then, for any A CV, it holds:

FA) =1 —rp) Y fla)

acA

Proof of Lemma 38 Let A = {a1,a2,...,a)4}. We prove Lemma 38 by proving the
following two inequalities:
|A|

A) 2 f@v fad), (10.12)
i=1

Al |A|

Zf aiV\ {a:}) > (1 — kg Zf a;). (10.13)

202

We begin with the proof of ineq. (10.12):

f(A) = f(A[D) (10.14)
> f(AV\ A) (10.15)
A
= flailV\{ai,ai1, ..., a4}) (10.16)
=1
Al
> flaiV\ {ai}), (10.17)
=1

where inegs. (10.15) to (10.17) hold for the following reasons: ineq. (10.15) is implied by
eq. (10.14) because f is submodular and) C V \ A; eq. (10.16) holds since for any sets
X CVandY CVitis f(X]Y) = f(XUY)— f()), and it also {a1,az,...,a4} denotes the
set A; and ineq. (10.17) holds since f is submodular and V' \ {a;, aiy1,...,a,} €V \ {a;}.
These observations complete the proof of ineq. (10.12).

We now prove ineq. (10.13) using the Definition 40 of ks, as follows: since ky = 1
minyey LMY it s implied that for all elements v € V it is f(v[V\ {v}) > (1 — k) f(v).

f)
Therefore, adding the latter inequality across all elements a € A completes the proof of
ineq. (10.13). [

Lemma 39. Consider a finite ground set V and a monotone set function f : 2¥ +— R such
that f is non-negative and f(0) = 0. Then, for any sets A C V and B C V such that
ANB =1, it holds:

FLAUB) = (1 =¢p) (f(A) + f(B)).-

Proof of Lemma 39 TLet B = {b1,ba,...,b}. Then,

]
FIAUB) = f(A) + > F(bilAU{b1, b, ... bi1}). (10.18)

=1

The definition of total curvature in Definition 41 implies:

f(bl‘A U {bl, bg, o ,bz;l}) >

(1 —cp) f(bil{b1,ba, ..., bi1}). (10.19)
The proof is completed by substituting ineq. (10.19) in eq. (10.18) and then by taking into
account that it holds f(A) > (1 —c¢f)f(A), since 0 < ¢ < 1. [|

Lemma 40. Consider a finite ground set V and a non-decreasing set function f : 2V — R
such that f is non-negative and f(0)) = 0. Then, for any set A CV and any set B CV such
that ANB =0, it holds:

FAUB) > (1 —¢)) <f(A) + Zf(b)) .

beB

203

Proof of Lemma 40 Let B = {b1,b,...,bz}. Then,

15|
FIAUB) = F(A) + > F(bilAU{b1 by, ... bi1}). (10.20)
i=1

In addition, Definition 41 of total curvature implies:

f(bZ|A U {bl, bo,..., bi—l}) > (1 — Cf)f(bzw))
= (L—cp)f(bi), (10.21)

where the latter equation holds since f()) = 0. The proof is completed by substitut-
ing (10.21) in (10.20) and then taking into account that f(A) > (1—cf)f(A) since 0 < ¢y <
1. [
Lemma 41. Consider a finite ground set V and a non-decreasing set function f : 2V — R
such that f is non-negative and f(0) = 0. Then for any set A CV and any set B CV such
that A\ B # 0, it holds:

FA) + (1 =¢)f(B) = (1 = ¢p) f(AUB) + f(ANB).

Proof of Lemma 41 Let A\ B = {iy,i2,...,i}, where r = | A — B|. From Definition 41
of total curvature cg, for any ¢ = 1,2,...,n, it is f(i;]JANBU {i1,i2,...,05-1}) > (1 —
cg) f(i;|BU {i1,12,...,ij-1}). Summing these r inequalities,

fA) = FIANB) 2 (1 = ¢;) (f(AUB) = f(B)),

which implies the lemma. [
Corollary 11. Consider a finite ground set V and a non-decreasing set function f : 2V — R

such that f is non-negative and f(0) = 0. Then, for any set A CV and any set B CV such
that AN B =0, it holds:

FA) + 3 F(b) = (1 — e F(AUB).

beB

204

Proof of Corollary 11 Let B = {b1,b2,..., b5}

|IB| |B|
FAA Y Fbi) > (L=cp) f(A) + > f(ba) (10.22)
i=1 i=1
B
> (L=ep) f(AU{bI}) +) f(bi)
i—2
Bl
> (1= cp) f(AU{b, bo}) + > f(bi)
i=3

> (1 =cp)f(AUB),

where ineq. (10.22) holds since 0 < ¢y < 1, and the rest due to Lemma 41 since AN B = ()
implies .A\ {bl} # @, AU {bl} \ {bg} % @, oy AU {bl, bay ..y b\B\—l} \ {b|3|} % (. |
Lemma 42. Recall the notation in Algorithm 20. Given the sets S11,...,87,1 selected by
Algorithm 20 (lines 3-4 of Algorithm 20), then, for each t = 1,...,T, let the set Oy be a
subset —any subset— of V; \ St1 of cardinality oy — By. Then, for the sets S12,...,512
selected by Algorithm 20 (lines 5-8 of Algorithm 20), it holds:

f(S12,.-.,Sr2) > (1 —¢p)?f(O1,...,07). (10.23)

Proof of Lemma 42 For all t = 1,2,...,T, let the set Ry £ A; \ By; namely, R; is
the set that remains after the optimal (worst-case) removal B; from A;. Furthermore, let
the element s§’2 € &2 denote the i-th element added in S;2 per the greedy subroutine in
lines 5-8 of Algorithm 20; i.e., Sp2 = {s5,...,s{% ™}. In addition, for all i = 1,...,a; — B,
denote 8572 = {5%72, o ,322}, and also set 522 £ (). Next, order the elements in each O; so
that O = {ol,...,0% 7} and so that if o is also in St,2, then it holds of = s} ,; i.e., order
the elements in each O; so that the common elements in O; and S;2 appear at the same

index. Moreover, for all i = 1,...,a; — B, denote O = {o},...,0i}, and also set O) = .
Finally, let: O1x 2 O1U...UO;; O19 2 0; Si:t,2 = S12U...US;2; and St02 £ (). Then, it

205

Algorithm 21 Local greedy algorithm [12, Section 4].

Input: Integer T finite ground sets Ki,...,/Kp; set function f : 28t x ... x 287 . R
such that f is non-decreasing, non-negative, and f(()) = 0; integers d1, ..., d7 such that
0<é& <I|Ky,forallt=1,...,T.

Output: At each stept=1,2,...,T, set M.

1: forallt=1,...,7 do

2 M, @;

3 while ‘Mt‘ < d; do

4: r € argmaxyex\m, f(S1,- -, Si—1, My U {y});
5 M+ {z} UMy

6 end while

7: end for

holds:
f(ola"'aoT)
T op— Bt
= D)01 u 07 (10.24)
t=1 i=1
T ot— 5t
§1_C ;;fotmltwst D) (10.25)
T ot — ﬂt
i—1
Sl—c ;;fswwelt 1U8t2) (10.26)
T ot— 515
= 1_cf2;;f5t2|51t 12US5Y) (10.27)
1
= Wf(sl,%-uysT,Q)- (10.28)

where the egs. (10.24)-(10.28) hold for the following reasons: eq. (10.24) holds due the
notation introduced in eq. (10.10); ineq. (10.25) holds since Definition 41 of total curvature
implies ineq. (10.6), and since the definition of each o} implies that because o ¢ O/} then it
also is o} ¢ 8251, and as a result, because o} ¢ O1.;_1 UO! ! then it also is 0} ¢ Ri4_1 US;El
(which fact allows the application of ineq. (10.6)); ineq. (10.26) holds since the element 5%,2 is
chosen greedily, given R1.;_1 USEI; ineq. (10.27) holds for the same reasons as ineq. (10.25);
similarly, eq. (10.28) holds for the same reasons as eq. (10.24). [
Lemma 43. Recall the notation in Algorithm 20; in particular, consider the sets S11,...,S71
selected by Algorithm 20 (lines 3-4 of Algorithm 20). Moreover, consider the notation
in Algorithm 21,3 and for all t = 1,2,...,T, let in Algorithm 21 be Ky = Vi \ St1 and
O = ay — By. Finally, for all t = 1,2,...,T, let the set Py be such that Py C Ky, [Py < ¢,

3The local greedy Algorithm 21 is connected to Algorithm 20 as follows: Algorithm 20 reduces to Al-
gorithm 21 if in Problem 5 we assume no removals; equivalently, if in Algorithm 20 we assume that for all
t=1,...,T it is B, = () (no attacks), and correspondingly, that 8; = 0, which implies S; 1 = 0.

206

and f(Pi,...,Pr) is mazimal, that is:

(P17~--77DT) <
arg max -+ max f(Py,...,Pr). (10.29)
Pngl,lPﬂS&l /PTQK:TJPT‘S(ST
Then, it holds:
f(Ml’M2’ te 7MT) > (1 - Cf)f(PhPQa s 7PT)' (1030)

Proof of Lemma 43 We use similar notation to the one introduced in the proof of
Lemma 42. In addition, —again similarly to the proof of Lemma 42,— we order the elements
in each P; so that Py = {p},... ,pgf} and so that they appear in the same place as in M.
Moreover, we let the element m! € M, denote the i-th element added in M; per the greedy
subroutine in lines 3-6 of Algorithm 21. Then, it holds:

f(P1,Pa,...,Pr)

T O
=> D filPret U (10.31)

t=1 i=1
< 1_C ZZ]‘ (ph[Mi—1 UM (10.32)
t 1 =1
= 1_szzfmt\/\/‘1t UM (10.33)
t=1 i=1
1
=1 S M Mo, Mr). (10.34)
mpy

where the egs. (10.31)-(10.34) hold for the following reasons: eq. (10.31) holds due to the
notation introduced in eq. (10.10); ineq. (10.32) holds since Definition 41 of total curvature
implies ineq. (10 6), and since the definition of each p! implies that because p} ¢ P/~ then it
also is pi ¢ M~ and as a result, because p} ¢ Py, 1UP; ! then it also is pi ¢ My UM
(which fact allows the application of ineq. (10.6)); ineq. (10 33) holds since the element m is
chosen greedily, given My.; 1 UM ™! eq. (10.34) holds for the same reasons as eq. (10.31).
[|

Corollary 12. Recall the notation in Algorithm 20. In particular, consider the sets S11,...,S71
selected by Algorithm 20 (lines 3-4 of Algorithm 20), as well as, the sets Si2,...,Sr2 se-
lected by Algorithm 20 (lines 5-8 of Algorithm 20). Finally, per the notation of Lemma 43,
forallt =1,2,...,T, consider Kt = Vi \ St1 and 0 = a¢ — B¢, and let the set Py be such
that Py C Ky, |Py| < 6, and f(Py,...,Pr) is mazimal, per eq. (10.29). Then, for the sets
Si2,...,S72 selected by Algorithm 20 (lines 5-8 of Algorithm 20), it holds:

f(S12,-,Sr2) > (1 —cf)> f(P1, P, ..., Pr). (10.35)

207

Proof of Corollary 12 The proof follows from Lemma 42 and Lemma 43. In particular,
let Oy = My in ineq. (10.23) to get:

f(S12,--,812) > (1 —cp)?f(My, ..., Mr). (10.36)

Using in ineq. (10.36) the ineq. (10.30), the proof is complete. |
Lemma 44. Recall the notation in Theorem 23. In addition, per the notation of Corol-
lary 12, for allt =1,2,...,T, consider Ky =V, \ S¢.1 and 6y = oy — By, and let the set Py be
such that Py C Ky, |Pi| < 0, and f(Pi,...,Pr) is mazimal, per eq. (10.29). Then, it holds:

f(Pi,.... Pr) = f(Alr \ B (Alr))- (10.37)

Proof of Lemma 44 Cousider the following notation: since for each ¢t = 1,...,7T, it is
K =W, \St71, let:

h(Si1,...,Sr1) £

. max . max _ f(P1,....,Pr). (10.38)
P1CV1\S1,1,|P1]|<61 PrCVr\St,1,|Pr|<oT

Given the above notation, for any 751, .. ,75T such that forallt=1,...,T it is 757& C VY \Si1
and |Py| < dy, it holds:

h(S11,-..,S711)
h(S11,...,S711)

f(Pr,....,Pr) = (10.39)

~ max f('Pl,...,'PTfl,'PT) =
PrCVr\St,1,|Pr|<or

_ min h(Si1,...,Sr—11,Br) >
BrCVr,|Br|<B8r

_min _ max _ f(P1,...,Pr_1,Pr). (10.40)
BrCVr,|Br|<Br PrVr\Br,|Pr|<ér

Denote the right-hand-side of ineq. (10.40) by 2(751, e ,75T_1). Since 7 = ar — Br, and
for Pr in ineq. (10.40) it is Pr C V7 \ Br and |Pr| < 7, then it equivalently holds:

2(751, . ,ﬁT—l) ==

_min ~ max f(Pr,...,Pr_1, A7 \ Br). (10.41)
BrCVr,|Br|<Br ArCVr,|Ar|<ar

Let in ineq. (10.41) be w(Ar\Br) £ f(P1,...,Pr_1, Ap\Br). We prove next that it holds:
Z(ﬁl, . 775T—1) Z
max min w(Ar \ Br). (10.42)

ArCVr | Ar|<ar BrCVr,|Br|<pBr

The proof of ineq. (10.42) is as follows: for any Ar C Vr, \AT’ < ar, and any ST,l C

208

Vr,|Sr1| < Br, it holds:
~_ mnax w(Ar \ Sr1) > w(Ar \ Sr1) =
‘ATQVT)l-AT‘SaT

__min _ max w(Ar \ Br) >
BrCVr,|Br|<pr ArCVr,|Ar|<ar

min w(Az \ Br), 10.43
BrCvr,|Br|<Br (T\ T) ()

and now ineq. (10.43) implies ineq. (10.41). Overall, ineq. (10.40) becomes:
_min WS, Sr-1,1,Br) >
BrCVr,|Br|<pfr

. max _ min f(751, oy Pro1, Ar \ Br). (10.44)
ArCVr,|Ar|<ar BrCVr,|Br|<pr

The left-hand-side of ineq. (10.44) is a function of Sy 1, ..., Sr—1,1; denoteit as A (Si 1,...,Sr—-11).

Similarly, the right-hand-side of ineq. (10.44) is a function of P, ..., Pr_1; denote it as
f'(P1,...,Pr—_1). Given these notations, ineq. (10.44) is equivalently written as:

W(Si1,. -, Sr_11) > f'(Pi,..., Pr_), (10.45)

which has the same form as ineq. (10.39). Therefore, following the same steps as those we
used starting from ineq. (10.39) to prove ineq. (10.44), it holds:

. ! %3
_ min ' (Si1,...,Sr—21,Br-1) >
Br 1SV _1,|Br_1|<Br-1
~ max ~ min
Ar 1 CVr 1, |Ar 1 |<ar 1 Br 1SV _1,|Br_1|<fr—1
) R _ _
f'(Piy...,Pp_o, Ap_1 \ Br-1), (10.46)

which has the same form as ineq. (10.44). Repeating the same steps as those we used starting
from ineq. (10.39) to prove ineq. (10.44) for another T' — 2 times, it holds:

~ min -+ min h(By,...Br) >
B1,CV1,|B1]<p1 BrCVr,|Br|<Br

_ max _ min <.+ max ~ min
A1CV AL Sar B1CWy,IB1 <81 ArCVr | Ar|<ar B1CVr,|Br|<B8r
F(A B, ..., Ar\ Br), (10.47)

which is implies ineq. (10.37), since the right-hand-side of ineq. (10.47) is equal to the right-
hand-side of ineq. (10.37), and —with respect now to the left-hand-side of ineq. (10.47)— it
is:

f(Pi,...,Pr) >

~ min -++ min h(Bi,...Br).
B1,CV1,|Bi|<B1 BrCVr,|Br|<Br [}

209

Figure 15: Venn diagram, where the sets St 1, St2, By 1, By 5 are as follows: per Algorithm 20,
Si1 and S;o are such that A; = &1 U Spo. In addition, due to their construction, it
holds ;1 NS 2 = 0. Next, B, and Bj, are such that By = B*(Ay.r) N Se1, and By =
B*(A1.1) NSt 2; therefore, it is Bf y NB; o = 0 and B*(Ar.r) = (B ;UBT o) U- - -U (B UBT).
10.7.3. Proof of Theorem 28

We first prove Theorem 23’s part 1 (approximation performance), and then, Theorem 23’s
part 2 (running time).

Proof of Theorem 23’s part 1 (approximation performance)

We first prove ineq. (10.8); then, we prove ineq. (10.7).

To the above ends, we use the following notation (along with the notation introduced in
Algorithm 20, Theorem 23, and in Appendix 10.7.1): for each t =1,...,T":

o let Stfl £ 81\ B*(Avr), ie., S;fl is the set of remaining elements in the set S;; after
the removal from S;; of the elements in the optimal (worst-case) removal B*(Aj.7);

o let St'; e St \ B (A1), e, 8:2 is the set of remaining elements in the set S; 2 after
the removal from S; 2 of the elements in the optimal (worst-case) removal B*(Aj.7);

e let the sets Pi,...,Pr be a solution to the maximization problem in eq. (10.29) per
the conditions in Corollary 12, i.e., for IC; =V \ S1 and 0 = oy — fe.

Proof of ineq. (10.8) Consider that the objective function f is non-decreasing and such
that (without loss of generality) f is non-negative and f(f)) = 0. Then, the proof of

210

ineq. (10.8) follows by making the following observations:

f(Al:T \ B*(AlzT))

= f(SF1 U8y, S5 UST,) (10.48)
T

>(1—cp)d. D, [l (10.49)
t=1 ves USt,
T

>(1—cp)> > fv) (10.50)
t=1 vES; 2

> (1—c¢f)*f(S12,.-.,Sn2) (10.51)

> (1—¢s)°f(P1,-..,Pr) (10.52)

>(1—c)f (A’IT\B*(7)) (10.53)

where eqs. (10.48) to (10.53) hold for the following reasons: eq. (10.48) follows from the
definitions of the sets S;Ll and S{E; ineq. (10.49) follows from ineq. (10.48) due to Lemma 40;
ineq. (10.50) follows from ineq. (10.49) because for all elements v € ;" 7 and all elements
vV e S \S+ it is f(v) > f(v') (note that due to the definitions of the sets S+1 and S;. o it
is |S, 1| = |82\ S 2| that is, the number of non-removed elements in S is equal to the
number of removed elements in S;2), and because S;2 = (Si2 \ St,2) U 5;2, ineq. (10.51)
follows from ineq. (10.50) due to Corollary 11; ineq. (10.52) follows from ineq. (10.51) due to
Corollary 12; finally, ineq. (10.53) follows from ineq. (10.52) due to Lemma 44. The above
conclude the proof of ineq. (10.8). [

Proof of ineq. (10.7) Consider that the objective function f is non-decreasing submod-
ular and such that (without loss of generality) f is non-negative and f(0)) = 0. To prove
ineq. (10.7) we follow similar observations to the ones we followed in the proof of ineq. (10.8);
in particular:

f(Avr \ B*(A1.1))

= [(ST1USTy, - S5 USTS) (10.54)
T

>(1=np)d Y. fW) (10.55)
t=1 vestusf,
T

> (1=rp) D D f() (10.56)
t=1v€ES; 2

> (1—ry)f(S12,--.,5712) (10.57)

> (1—rp)*f(Pr,...,Pr) (10.58)

> (1= rp) f(A5\ B (Alr), (10.59)

where eqs. (10.54) to (10.59) hold for the following reasons: eq. (10.54) follows from the
definitions of the sets 5;1 and S;,FQ; ineq. (10.55) follows from ineq. (10.54) due to Lemma 38;

211

ineq. (10.56) follows from ineq. (10.55) because for all elements v € S;rl and all elements
v € 82\ Sy it is f(v) > f(v') (note that due to the definitions of the sets 8;1 and S it is
IS = |St,2\8tf2\, that is, the number of non-removed elements in S; ; is equal to the number
of removed elements in S;), and because Sy 2 = (St2 \8;2) US;FQ; ineq. (10.57) follows from
ineq. (10.56) because the set function f is submodular and, as a result, the submodularity
Definition 39 implies that for any sets S CV and &' C V, it is f(S) + f(S') > f(SUS’) [70,
Proposition 2.1]; ineq. (10.58) follows from ineq. (10.57) due to Corollary 12, along with the
fact that since f is monotone submodular it is ¢y = k¢, per Definition 41 of total curvature;
finally, ineq. (10.59) follows from ineq. (10.58) due to Lemma 44. The above conclude the
proof of the (1 — rs)? part in ineq. (10.7). [

Proof of Theorem 23’s part 2 (running time)

We follow the proof of [56, Part 2 of Theorem 23|. In particular, we complete the proof
in two steps, where we denote the time for each evaluation of the objective function f as
7 for each ¢t = 1,...,T, we first compute the time line 3 of Algorithm 20 needs to be
executed, and then the time lines 5-8 of Algorithm 20 need to be executed: line 3 needs
Vil mr + Vel log(IVi]) + [Vi| + O(log(|Ve])) time, since it asks for [V;| evaluations of f, and
their sorting, which takes |Vi|log(|Vi]) + |Vi| + O(log(|V4|)) time, using, e.g., the merge sort
algorithm. Lines 5-8 need (o — B;)[|Vi| 75 +| V4] time, since the while loop is repeated o — 3;
times, and during each loop at most |V;| evaluations of f are needed by line 5, as well as,
at most |V4| time-steps for a maximal element in line 6 to be found. Overall, Algorithm 20
runs in (g — B)[[Vilry + Vil] + Vil og(Vil) + [Vl + O(log(IVil)) = O(Vil(a — B)ry) time.

212

Part IV

CONTRIBUTIONS TO RESILIENT
SUBMODULAR MAXIMIZATION
IN ROBOTICS

213

CHAPTER 11 : Resilient Active Information Gathering with Mobile Robots

Applications in robotics, such as multi-robot target tracking, involve the execution of infor-
mation acquisition tasks by teams of mobile robots. However, in failure-prone or adversarial
environments, robots get attacked, their communication channels get jammed, and their sen-
sors fail, resulting in the withdrawal of robots from the collective task, and, subsequently, the
inability of the remaining active robots to coordinate with each other. As a result, traditional
design paradigms become insufficient and, in contrast, resilient designs against system-wide
failures and attacks become important. In general, resilient design problems are hard, and
even though they often involve objective functions that are monotone and (possibly) sub-
modular, scalable approximation algorithms for their solution have been hitherto unknown.
In this chapter, we provide the first algorithm, enabling the following capabilities: minimal
commaunication, i.e., the algorithm is executed by the robots based only on minimal commu-
nication between them; system-wide resiliency, i.e., the algorithm is valid for any number of
denial-of-service attacks and failures; and provable approzimation performance, i.e., the al-
gorithm ensures for all monotone and (possibly) submodular objective functions a solution
that is finitely close to the optimal. We support our theoretical analyses with simulated
and real-world experiments, by considering an active information acquisition application
scenario, namely, multi-robot target tracking.!

11.1. Introduction

Advances in robotic miniaturization, perception, and communication |2, 3, 43, 235, 236, 237,
238] envision the deployment of robots to support critical missions such as:

o Hazardous environmental monitoring: Deploy a team of mobile robots to monitor the
radiation flow around a nuclear reactor after an explosion; [43]

o Adversarial-target tracking: Deploy a team of agile robots to track an adversarial
target that moves in a cluttered urban environment, aiming to escape; [3]

e Search and rescue: Deploy a team of aerial micro-robots to localize people trapped in
a burning building; [2]

Fach of the above scenarios requires the deployment of a mobile team of robots, where each
robot needs to be agile; coordinate its motion with its team in a decentralized way; and
navigate itself in unknown, complex, and GPS-denied environments, with the objective of
gathering the most information about a process of interest. In particular, the problem of
designing the motion of a team of mobile robots to infer the state of a process is known as
active information gathering.

But in all above mission scenarios the robots operate in failure-prone and adversarial en-
vironments, where the robots’ can get attacked; their communications channels can get
jammed; or their sensors can fail. Therefore, in such failure-prone or adversarial scenarios,
resilient designs against worst-case and system-wide failures and attacks become important.

'This chapter is based on the paper by B. Schlotfeldt, V. Tzoumas, D. Thakur, and G. J. Pappas [234].

214

In this chapter we formalize for the first time a problem of resilient active information
gathering with mobile robots, that goes beyond the traditional objective of (non-resilient)
active information gathering, and guards against worst-case failures or attacks that can
cause not only the withdrawal of robots from the information gathering task, but also the
inability of the remaining robots to jointly optimize their control inputs, due to disruptions
to their communication network.

Evidently, resilient active information gathering with mobile robots is a computationally
challenging task, since it needs to account for all possible removals of robots from the joint
motion-design task, which is a problem of combinatorial complexity. In particular, this
computational challenge motivates one of the primary goals in this chapter, namely, to
provide a scalable and provably near-optimal approzimation algorithm for resilient active
information gathering with mobile robots.

Related work. Related work on problems of information gathering focuses on the deploy-
ment of either static sensors [58, 239, 240] or mobile sensors (mounted on robots) [42, 241,
242, 243, 244, 245, 246, 247, 248, 249| to monitor a target process. Among these works, the
line of work |42, 241, 242, 243, 244, 245, 246, 247, 248, 249| is the most relevant to ours, as it
considers mobile sensors. In particular, [241, 242, 243, 244, 245] focus on information gath-
ering tasks over non-Gaussian processes, whereas the remaining [42, 246, 247, 248, 249] focus
on information gathering tasks over Gaussian processes. The advantage in the latter case is
that open-loop robot-motion designs are optimal [42], an observation that led [42, 248, 249|
to provide the first scalable, non-myopic robot-motion algorithms for active information
gathering, along with sub-optimality guarantees. However, in all of these works, there is no
resilience to failures or attacks.

In contrast to robotic control, resilient optimization problems have recently received atten-
tion in the literature of set function optimization [56, 231, 250|. However, [56, 231, 250| focus
on the resilient selection of a small subset of elements in the event of attacks or failures,
whereas the information acquisition problem requires the selection of controls for all robots
over a time horizon. In this chapter, we capitalize on the recent results in [56, 231] and seek
to bridge the gap between developments in set function optimization and robotic control
design to enable critical missions necessitating resilient active information gathering with
mobile robots.

Contributions. We make the following contributions:

e (Problem definition) We formalize the problem of resilient active information gathering
with mobile robots against multi-robot denial-of-service attacks or failures. This is the
first work to formalize, address, and demonstrate the importance of this problem.

o (Solution) We develop the first algorithm for resilient active information gathering
with the following properties:

— minimal communication: it terminates within the same order of communication
rounds as state-of-the-art algorithms for (non-resilient) information gathering;

215

— system-wide resiliency: it is valid for any number of denial-of-service attacks or
failures;

— provable approzimation performance: for all monotone and (possibly) submodu-
lar information gathering objective functions in the active robot set (non-failed
robots), it ensures a solution close to the optimal.

o (Simulations) We conduct simulations in a variety of multi-robot multi-target tracking
scenarios, varying the number of robots, targets, and failures. Our simulations validate
the benefits of our approach to achieve resilient robotic control against failures or
attacks.

o (Ezperiments) We conduct hardware experiments of multiple quad-rotors tracking
static ground targets, to demonstrate visually the necessity for resilient robot motion
design against robotic failures or denial-of-service attacks.

Notation. Calligraphic fonts denote sets (e.g., A). Given a set A, then |A| denotes A’s
cardinality; given also a set B, then A\ B denotes the set of elements in A that are not in 5.
Given a random variable v, with mean p and covariance ¥, then v ~ N(u, ¥) denotes that v
is a Gaussian random variable.

11.2. Problem Statement

We formalize the problem of resilient active information gathering. To this end, we start
with some basic definitions.

11.2.1. Basic definitions

We introduce standard models for the notions robots, target, sensors, and information ob-
jective function [42].

Robots. Active information gathering utilizes a team of mobile robots to track the evolu-
tion of a target process. We denote the set of available robots as V', and model each robot’s
dynamics as a discrete-time non-linear system:

wig = fi(wig—1,uip—1), 1€V, t=12..., (11.1)

where the vector x;; € R" it represents the state of robot ¢ at time ¢, and the vector
u; ¢ € U represents the control input, where U; ¢ is a finite set of admissible control inputs.

Target. The objective of active information gathering is to track the evolution of a target

process. We model the target’s evolution as a standard discrete-time (possibly time-varying)
linear system with additive process noise:

Yt :At—lyt—l + w1, t= 1,2,..., (112)
where the vector y; € R™¢ represents the state of the target at time ¢, the vector w;—1; € R"%

216

represents process noise, and the matrix A;_1 has suitable dimension. In addition, we let yg
be a random variable with covariance |, and w;—; be a random variable with zero mean
and covariance W;_1 such that w;_; is independent of yo and of wy_1, for all ¢’ # ¢.

Sensor measurements. We consider the sensor measurements to be linearly dependent
on the state of the target,? and non-linearly dependent on the robots’ state, as follows:

Zit = Hi,t(xi,t)yt + Ui,t(xi,t)a 1€V, t=1,2,..., (113)

where the vector z;; € R"#.t is the measurement obtained at time ¢ by the on-board sensor at
robot i, the vector v; ((z;+) € R"=i.t represents measurement noise, and the matrix H;¢(xiy)
has suitable dimension. In addition, we let v;(x;;) be a random variable with zero mean
and covariance v;¢(z;4) such that v;¢(x;;) is independent of yo, of wy_1, and of vy ¢ for all
t' #t, and i’ # 1.

Information objective function. The problem of active information gathering requires
the team of robots in V to select their control inputs to maximize the team’s tracking
capability of a target. To the latter end, we assume the robots to use a Kalman filtering
algorithm to track the evolution of the target over an observation time-horizon 7. Moreover,
we consider the robots’ collective tracking capability to be quantified by an information
objective function, denoted henceforth by J, that depends solely on the Kalman filter’s error
covariances across all times ¢ = 1,2,...,T. Naturally, the Kalman filter’s error covariances
depend on the robots’ control inputs, as well as on both the target process’s initial condition
yo and the robots’ initial conditions {x; ¢ : ¢ € V}. Overall, given an observation time-horizon
T, it is:

J =J(up.p(V)) &

(11.4)
J[E1(u1(V)), Be(u1:2(V)); - .+, Br(urr (V)]

where X¢(u1.+(V)) denotes that Kalman filter’s error covariance at time ¢ given the robots’
control inputs up to time ¢, namely, given u1;(V) = {wip + wipy € Uiy, i € V, t =
1,2,...,t}. Examples of information objective functions of the same form as in eq. (11.4) are
the average minimum mean square error 1/7° 23:1 tr (3;), the average confidence-ellipsoid
volume 1/T Zthl log det(X;) [123, Appendix E|, as well as information theoretic objectives
such as the mutual information I(y;|21.¢) and conditional entropy h(y:|21.¢) [42], where z1.; =
{zip: 1€V, ! =1,2,...,t}, i.e, 21, is the set of measurements collected by all robots’
across all times.

11.2.2. Resilient Active Information Gathering

We define next the main problem in this chapter.
Problem 6 (Resilient Active Information Gathering). Given a time horizon T, consider
a set of robots V, with dynamics per eq. (11.1), with sensing capabilities per eq. (11.3),

®This standard modeling consideration is without loss of generality whenever linearization over the current
estimate of the target’s state is possible.

217

and with a connected communication network; in addition, consider a target process per
eq. (11.2); moreover, consider an information gathering objective function J per eq. (11.4);
finally, consider a number a < |V|. For all robots i € V, and for all times t = 1,2,...,T,
find control inputs u;; to mazimize the objective function J against a worst-case failure or
attack to the robots in V that causes the removal o robots from V at the beginning of time
(t =0), as well as the disruption of all communications among the remaining robots in V
across all times (t =1,2,...,T). Formally:
max mil\} J(urr(V\ A)) :

Us ¢ Euiﬁt,’i eV, AC
t=1,2...,T

such that, for alli €V, t=1,2,...,T:
Yt = Ar—1yt-1 + w1,
Tig = fi(Tig—1,uit-1),
Zip = Hi (@) i + vig(@ig),
Wi = Uit(2i1, 202, 2it),
Al < a,

(11.5)

where for any robot set R C V and any time horizon T, we let ui.p(R) £ {uir : ujt €
Uy, 1€R, t= 1,2,...,T}.

We henceforth denote the problem in eq. (11.5) by:

P(V,a), (11.6)

where we stress the dependence of the problem only on the set of robots V, and the maximum
number of failures or attacks a. Given an instance of Problem 6, and the notation in
eq. (11.6), then the (non-resilient) active information gathering problem is the instance of
the problem in eq. (11.5) where a = 0, namely, P(V,0). Hence, Problem 6 goes beyond the
objective of the active information gathering problem P(V,0), by accounting in the planning
process for worst-case failures or attacks that (i) not only may cause the removal of robots
from the information gathering task, but also, (ii) they may prevent the remaining robots
from jointly re-planning their motion, e.g., due to the caused disruptions to the robots’
communication network after the removal of the attacked or failed robots.

11.3. Algorithm for Resilient Active Information gathering

We present the first scalable algorithm for Problem 6, whose pseudo-code is described in
Algorithm 22; afterwards, we describe the intuition behind it.

11.8.1. Scalable algorithm for Problem 6
Algorithm 22 is composed of four steps:

Computation of robots’ marginal contributions in the absence of attacks (step 1 of Algo-
rithm 22): Each robot i € V solves the problem of active information gathering in eq. (11.7),

218

Algorithm 22 Scalable algorithm for Problem 6.

Input: Time horizon T set of robots V; dynamics of robots in V, per eq. (11.1); dynamics
of target process, per eq. (11.2); sensing capabilities of robots in V, per eq. (11.3);
information objective function J, per eq. (11.4); number a < |V|, per Problem 6, that
represents the maximum number of possible robot removals from V.

Output: Control inputs u; ¢ for all robots 7 € V, and for all times ¢t =1,2,...,T.

1: Fach robot ¢ € V computes the value of the (non-resilient) active information gathering
problem:

P({i},0), (11.7)

per the notation in eq. (11.6), and denotes it by ¢;.

2: All robots in V find a subset £ of a robots among them (that is, £ C V and |£| = «),
such that for all robots i € £ and all robots j € V\ L, it is ¢; > ¢;;

3: Each robot in £ adopts the control inputs it computed in Algorithm 22’s line 1 by solving
the problem in eq. (11.7).

4: The robots in V \ £ compute their control inputs by solving the following active infor-
mation gathering problem:

P(V\ L,0), (11.8)

per the notation we introduced in eq. (11.6).

which is an instance of Problem 6 where no other robot participates in the information
gathering task, and where no attacks or failures are possible; algorithms to solve such infor-
mation gathering problems have been proposed in [42, 248, 249|. Overall, each robot i € V,
by solving the problem in eq. (11.7), computes its marginal contribution to the information
gathering task in Problem 6 in the absence of any other robot in V\ {i}, and in the absence
of any attacks and failures.

Computation of robot set L with the a largest marginal contributions in the absence of
attacks (step 2 of Algorithm 22): The robots in V share their marginal contribution to
the information gathering task, which they computed in Algorithm 22’s step 1, and decide
which subset £ of them composes a set of « robots with the « largest marginal contributions;
this procedure can be executed with minimal communication (at most 2|V| communication
rounds), e.g., by accumulating (through the communication network) to one robot all the
marginal contributions {g; : i € V}, and, then, by letting this robot to select the set £, and
to communicate it back to the rest of the robots.

Computation of control inputs of robots in L (step 3 of Algorithm 22): The robots in the
set L, per Algorithm 22’s step 2, adopt the control inputs they computed in Algorithm 22’s
step 1 (e.g., using the algorithm in [42]).

Computation of control inputs of robots in V \ L (step 4 of Algorithm 22): Given the set of
robots L, per Algorithm 22’s line 2, the remaining robots in V' \ L jointly solve the problem
of active information gathering in eq. (11.8), which is an instance of Problem 6 where the
robots in £ do not participate in the information gathering task, and where any attacks
or failures are impossible. In particular, the robots in V '\ £ can jointly solve the problem

219

in eq. (11.8) with minimal communication (at most 2|V| communication rounds) using the
algorithm coordinate descent [249, Section IV].

11.8.2. Intuition behind Algorithm 22

The goal of Problem 6 is to ensure the success of an information gathering task despite
failures or attacks that cause the removal of « robots from the task, and, consequently,
disruptions to the robot’s communication network (due to the robots’ previous removal),
which prevent the remaining robots from jointly re-planning their motion. In this context,
Algorithm 22 aims to fulfill Problem 6’s goal first by separating the set of robots V into
two subsets —the set of robots £, and the (remaining) set of robots V \ £ (Algorithm 22’s
line 1 and line 2),— and second by designing the robots’ control inputs in each of the two
sets (Algorithm 22’s line 3 and line 4). In particular, Algorithm 22 aims with set £ to
capture the worst-case attack or failure to a robots among the robots in V; equivalently,
the set £ is aimed to act as a “bait” to an attacker that selects the best a robots in V
(best with respect to the robots’ contribution towards attaining the goal of Problem 6).
However, the problem of selecting the best « robots in V is a combinatorial problem, and,
in general, intractable [13]. Therefore, Algorithm 22 aims to approximate the best « robots
in V by letting the set £ be the set of a robots with the o largest marginal contributions,
and, then, it assigns to them the corresponding control inputs (Algorithm 22’s line 2 and
line 3). Afterwards, given the set £, Algorithm 22 assumes the removal of the robots in £
from V, and coordinates the remaining robots in V \ £ to jointly plan their motion using
a decentralized active information gathering algorithm, such as the coordinated descent
algorithm proposed in [249, Section IV]| (Algorithm 22’s line 4).

11.4. Performance Guarantees

We quantify Algorithm 22’s performance, by bounding the number of robot communication
rounds it requires, as well as, by bounding its approximation performance. To this end, we
use the following two notions of curvature for set functions.?

11.4.1. Curvature and total curvature of monotone functions

We present the notions of curvature and of total curvature for non-decreasing set functions.
We start with the notions of monotonicity, and of submodularity for set functions.
Definition 43 (Monotonicity). Consider any finite set V. The set function g : 2YV +— R is
non-decreasing if and only if for any sets A C B CV, it holds g(B) > g(A).

Definition 44 (Submodularity [70, Proposition 2.1]). Consider any finite set V. The set
function g : 2¥ — R is submodular if and only if for any sets A C B CV, and any element
v eV, it holds g(AU{v})—g(A) > g(BU{v})—g(B).

In words, a set function g is submodular if and only if it satisfies a diminishing returns
property where for any A C V and v € V, the drop g(AU {v}) — g(A) is non-increasing.
Definition 45. (Curvature of monotone submodular functions [33]) Consider a

3We focus on properties of set functions to quantify Algorithm 22’s approximation performance by ana-
lyzing the properties of Problem 6’s objective function J as a function of the remaining robot set after the
removal of a subset of robots from V (due to failures or attacks).

220

finite set V and a non-decreasing submodular set function g : 2¥ — R such that (without
loss of generality) for any elements v € V, it is g(v) # 0. The curvature of g is defined as

follows:
gV) — gV \ (o)) o)

kg = 1 —min
g vEV g(v)

Notably, the above notion of curvature implies that for any non-decreasing submodular set
function g, it is 0 < kg < 1.

Definition 46. (Total curvature of non-decreasing functions [15, Section 8]) Con-
sider a finite set V and a monotone set function g : 2¥ — R. The total curvature of g is

defined as follows:
A o g({viUA) —g(A)
1T B g((0) UB) — g(B) (11-10)

The above notion of total curvature implies that for any non-decreasing set function g, it
is 0 < ¢4 < 1. Moreover, to connect the notion of total curvature with that of curvature,
we note that when a function ¢ is non-decreasing and submodular, then the two notions
coincide, i.e., ¢y = Ky.

11.4.2. Performance analysis for Algorithm 22

We quantify Algorithm 22’s approximation performance, as well as, the number of commu-
nication rounds it requires.

Theorem 24. (Performance of Algorithm 22) Consider an instance of Problem 6, and
the definitions:

e let the number J* be the (optimal) value to Problem 6, i.e., it is J* = P(V,a);

e given any control inputs uy.7 (V) for the robots in V, let the set A*[u1.7(V)] be a (worst-
case) removal of o robots from V, i.e., A*[u.r(V)] £ argminacy J(ur.r(V \ A));

e given any removal of a subset of robots A from the robot set V (due to attacks or
failures), call the remaining robot set V \ A active robot set.

Finally, consider the robots in V to solve optimally the problems in Algorithm 22°s step 1
and step 4, using an algorithm that terminates in p communication rounds.

1. (Approzimation performance) Algorithm 22 returns control inputs uy.7(V) such that:

o [f the objective function J is non-decreasing and submodular in the active robot
set, and (without loss of generality) J is non-negative and J[uy.7(0)] = 0, then,

it is: S{ur [V A (umr (W)}
J*

1
> 1-— —_— 11.11
_max< Ej,l+a>7 ()

where Kk is the curvature of J (Definition 45).

o If the objective function J is non-decreasing in the active robot set, and (without

221

loss of generality) J is non-negative and J[ui.p(0)] =0, then, it is:

J{urr[V\ A (ur.r(V)]}

i > (1—cy)? (11.12)

where ¢y is the total curvature of J (Definition 46).

2. (Communication rounds) Algorithm 22 terminates in at most 2|V|+ p communication
rounds.

Theorem 24 implies on Algorithm 22’s performance:

Near-optimality: For both monotone submodular and merely monotone information objec-
tive functions, Algorithm 22 guarantees a value for Problem 6 which is finitely close to
the optimal. For example, per ineq. (11.11), the approximation factor of Algorithm 22 is
bounded by 1/(1 + «), which, for any finite number of robots |V|, is non-zero.

Approzimation difficulty: For both monotone submodular and merely monotone information
objective functions, when the curvature x; or the total curvature cy, respectively, tend to
zero, Algorithm 22 becomes exact since for k; — 0 and ¢y — 0 the terms 1 — k7 and 1 — ¢y
in ineq. (11.11) and ineq. (11.12) tend to 1. Overall, Algorithm 22’s curvature-dependent
approximation bounds make a first step towards separating the classes of monotone submod-
ular and merely monotone information objective functions into functions for which Prob-
lem 6 can be approximated well (low curvature functions), and functions for which it cannot
(high curvature functions).

Overall, Theorem 24 quantifies Algorithm 22’s approximation performance when the robots
in V solve optimally the problems in Algorithm 22’s step 1 and step 4. However, the
problems in Algorithm 22’s step 1 and step 4 are computationally challenging, and only
approximation algorithms are known for their solution, among which the recently proposed
coordinate descent [249, Section IV]; in particular, coordinate descent has the advantages
of being scalable and of having provable approximation performance. We next quantify
Algorithm 22’s performance when the robots in V solve the problem in Algorithm 22’s step 4
using coordinate descent (we refer the reader to AppendixA for a description of coordinate
descent).

Proposition 12. Consider an instance of Problem 6, and the notation introduced in The-
orem 24. Finally, consider the robots in V to solve the problem in Algorithm 22’°s step 1
optimally, and the problem in Algorithm 22’s step 4 using coordinate descent [249, Sec-
tion IV].

1. (Approzimation performance) Algorithm 22 returns control inputs uy.7(V) such that:

o If the objective function J is non-decreasing and submodular in the active robot
set, and (without loss of generality) J is non-negative and J[uy.7(0)] = 0, then,
1t 1s:

J(ur.7(V)) - max (1 — ks, 1/(1+ a)).

11.1
J* - 2 (3)

222

o [f the objective function J is non-decreasing in the active robot set, and (without
loss of generality) J is non-negative and J{uy.7(0)] = 0, then, it is:

: 1—cy)?

Jr(V) A=)’ (11.14)

J* 2

2. (Communication rounds) Algorithm 22 terminates in at most 3|V| communication
rounds.

Proposition 12 implies on Algorithm 22’s performance:

Approzimation performance for low curvature: For both monotone submodular and merely
monotone information objective functions, when the curvature s or the total curvature cjy,
respectively, tend to zero, Algorithm 22 recovers the same approximation performance as
that of the state-of-the-art algorithms for (non-resilient) active information gathering Algo-
rithm 22 calls as subroutines. For example, for submodular information objective functions,
the algorithm for active information gathering coordinate descent [249, Section 1V] has ap-
proximation performance at least 1/2 the optimal [249, Theorem 2|, and, per Proposition 12,
when Algorithm 22 calls as subroutine this algorithm, it has approximation performance at
least (1 — ks)/2 the optimal, which tends to 1/2 for k; — 0.

Approzimation performance for no failures or attacks: For submodular information objective
functions, and for zero number of failures or attacks (o = 0), Algorithm 22’s approximation
performance becomes the same as that of the state-of-the-art algorithms for (non-resilient)
active information gathering Algorithm 22 calls as subroutines. In particular, for submodular
information objective functions, the algorithm for active information gathering coordinate
descent [249, Section IV] has approximation performance at least 1/2 the optimal, and, per
Proposition 12, when Algorithm 22 calls as subroutine this algorithm, it has approximation
performance at least 1/2 the optimal for o = 0, since it is 1/(1 +0) =1 in ineq. (11.13).

Minimal communication: Algorithm 22, even though it goes beyond the objective of (non-
resilient) active information gathering, by accounting for attacks or failures, it terminates
within the same order of communication rounds as state-of-the-art algorithms for (non-
resilient) active information gathering. In particular, the algorithm for active information
gathering coordinate descent [249, Section IV] terminates in at most |V| rounds, and, per
Proposition 12, when Algorithm 22 calls as a subroutine this algorithm, then it terminates
in at most 3|V| rounds; evidently, |V| and 3|V| have the same order.

Summary of theoretical results. Overall, Algorithm 22 is the first algorithm for Prob-
lem 6, and it enjoys the following:

o minimal communication: Algorithm 22 terminates within the same order of communi-
cation rounds as state-of-the-art algorithms for (non-resilient) information gathering;

o system-wide resiliency: Algorithm 22 is valid for any number of denial-of-service at-
tacks and failures;

e provable approzimation performance: Algorithm 22 ensures for all monotone and (pos-

223

sibly) submodular objective functions a solution finitely close to the optimal.

11.5. Application: Multi-target tracking with mobile robots

Time Step: 3

Y (m)

-30 -20 -10 10 20 30

0
X (m)
Figure 16: Simulation environment depicting five robots. The jammed robot is indicated in red.

We motivate the importance of Problem 6, as well as, demonstrate the performance of
Algorithm 22, by considering an application of active information gathering, namely, multi-
target tracking with mobile robots. In particular, the application’s setting is as follows:
a team V of mobile robots is tasked with tracking the position of M moving targets. In
more detail, each robot moves according to unicycle dynamics on SE(2), discretized with a
sampling period 7:

Ti x) vsinc(4F) cos(0y + %)
zi g | = a?] + | vsine(4F)sin(6, + <) | . (11.15)
Or11 0y TW

The set of admissible controls is given by U := {(v,w) : v € {1,3} m/s, w € {0,£1,£3}
rad/s}.

The targets move according to double integrator dynamics, corrupted with additive Gaussian
. . . . T .
noise. For M targets, their state at time ¢t is y; = [yglyZQ, ... ,ng] where y; ,, contains the

planar coordinates and velocities of the m-th target, denoted by (y!, 32, gjl, y2). The model
is:

2 T /3l 12/2I
Yt+1,m = A |:0 I :| Yt.m T Wy, Wi ~ N (07(1 |:T2/2I2 1o :

The sensor observation model consists of a range and bearing for each target m € {0,..., M —

224

1}:

7V Tt, Yt m)))

T R
((y* —2*)(y" —ah)) - 9]

Ztom = h(Te, Yem) +ve, v~ N

(0
e~ (2] L%

a(x, Ym) tan

We note that since the sensor observation model is non-linear, we linearize it around the
predicted target trajectory y # x:

S S B (/A) (y* =) Ouz
V@, ym) = s {— sin(0 + (@, ym)) cos(0 + A, yim)) 0}

The observation model for the joint target state can then be expressed as a block diagonal
matrix containing the linearized observation models for each target along the diagonal, i.e.,

H £ diag (Vg h(z,y1)s - Vg h(z,ym)) -

The sensor noise covariance grows linearly in range and in bearing, up to o2, and Ug, where
or and oy are the standard deviation of the range and the bearing noise, respectively. The
model here also includes a limited range and field of view, denoted by the parameters rgense
and 1, respectively.

Finally, as information objective function, in the simulations we use the average log deter-
minant of the covariance matrix|248, 249|. Overall, we solve an instance of Problem 6 with
the aforementioned constraints, and the monotone objective function [5]:

H \

T
J £ Z log det(X),

where Xy41 = pf, 1 (pf (3¢), 2441) is the Kalman filtering Riccati map [42].* We use the sub-
routines described in [248| and [249] for the step 1 and step 4 of Algorithm 22, respectively.

11.5.1. Simulations on multi-target tracking with mobile robots

We use simulations to evaluate the performance of our Algorithm 22 across different sce-
narios. In particular, we vary the number of robots, n, the number of targets M, and the
number of attacks a. In each of these scenarios we compare the performance of the resilient
Algorithm 22 with that of the non-resilient algorithm coordinate descent [249, Section IV].
To this end, we consider two information performance measures: the average entropy and
average root mean square error (RMSE) per target, averaged over the robots in the team.

We describe the parameters of the simulation: the robots and targets in the environment
are restricted to move inside a 64x64 meter environment, as in Fig. 16. For the evaluation,

4We remark that the problem scenario is dependent on a prior distribution of the target’s initial conditions
yo and Xg|o. Notwithstanding, if a prior distribution is unknown, an exploration strategy can be incorporated
to find the targets by placing exploration landmarks at the map frontiers [249].

225

Entropy per Target Position RMSE per target
T T T T T T T T

15

T T T T
I Non-Resilient I Non-Resilient
3 | [Resilient 4 I Resilient

81]
< tr 1
B ot -
= £
B o
[(%]
g 2
B
= 0.5
53
4t
5L
6 0 1 | | . | .
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Timestep Timestep
(a) (b)

Entropy per Target Position RMSE per target

70

T r T T T T T r
I Non-Resilient I Non-Resilient
3 I Resilient I Resilient

60

v 50 i
@©
£
QEJ’ E40F]
= =
£ 4
[=
Qo L = |
Py o 30
Q .
2
& 20} i
3k 10 -
SO — -
4 \ \ 0 " n q
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Timestep Timestep
(c) (d)

Figure 17: The figures depict the average entropy and position RMSE (root mean square error)
per target, averaged over the robots. Figs. (a-b) were obtained from a simulation with 10 robots,
10 targets, with 2 jamming attacks. Figs. (c-d) have the same configuration but up to 6 jamming
attacks. The blue colors correspond to the non-resilient algorithm, and the red colors correspond
to the resilient algorithm. The shaded regions are the spread between the minimum and maximum
values of the information measure, and the solid lines are the mean value. The plots are the aggregate
of ten trials, each executed over 500 time-steps.

we fix the initial positions of both the robots and targets, and the robots are given a prior
distribution of the targets before starting the simulation. The targets start with a zero
velocity, and in the event that a target leaves the environment its velocity is reflected to re-
main in bounds. Across all simulations we fix the remaining parameters as follows: T = 25,
7 = 0.5, Tsense = 10, ¥ = 94°, 0, = .15m, o, = 5°, ¢ = .001. Finally, we run Algorithm 6
in a receding horizon fashion every 7' time-steps, for a total of 500 steps, and average each
configuration over 10 trials. The robots are forced to execute the entire T-step trajectory
without re-planning, due to the jamming attack that occurs at the onset of every planning

226

Mean RMSE (m) Peak RMSE (m)

NR Resilient NR Resilient
nn— 5, A)
a=1 0.28 0.19 9.62 2.09
=2 1.47 0.68 26.07 15.71
a=4 10.67 | 4.9 22547 Bl03:82
n— SN — 5
a=2 0.35 0.14 57.65 1.87
a=4 0.39 0.28 6.66 3.17
a==6 2.07 0.65 93.27 15.63
= k0L Yk =)
a=2 0.13 0.08 1.4 1.32
a=4 0.24 0.23 4.19 2.66
a=06 4.39 1.2 69.77 26.4

TABLE I: The table depicts the estimation performance, measured
by average and peak RMSE per tracked target, for a variety of
configurations. The number n denotes the number of mobile sensors,
(i.,e., n = |V|), M denotes the number of moving targets, and
« denotes the number of failures. NR denotes the non-resilient
algorithm, while Resilient is Algorithm 1. All results are across 500
timesteps, averaged over ten trials per configuration.

phase. Our results are depicted in Fig. 17 and Table 1.

We observe in Fig. 17 that the performance of the resilient Algorithm 22 is superior both
with respect to the average entropy and the RMSE per target. Importantly, as the number
of jamming attacks grows, the Algorithm 22’s superiority becomes more pronounced, and
for the non-resilient algorithm the peaks in RMSE error grow much larger.

Table I suggests that the resilient Algorithm 22 achieves a lower average error than the
non-resilient algorithm, and, crucially, is highly effective in reducing the peak estimation
error; in particular, Algorithm 22 achieves a performance that is 2 to 30 times better in
comparison to the performance achieved by the non-resilient algorithm. We also observe
that the impact of Algorithm 22 is most prominent when the number of attacks is large
relative to the size of the robot team.

11.5.2. Ezperiments on multi-target tracking with mobile robots

We implement Algorithm 22 in a multi-UAV scenario with two quadrotors tracking the po-
sitions of two static ground targets, shown in Fig. 18. The UAV trajectories are computed
off-board but in real-time on a laptop with an Intel Core i7 CPU. The UAVs are local-
ized using the Vicon Motion Capture system. The UAVs are quad-rotors equipped with
Qualcomm Flight"™. The UAVs use Vicon pose estimates to generate noisy measurements
corresponding to a downward facing camera which has a 360° field-of-view, and a 1 meter
sensing radius. The UAVs move in a 4x8 meter testing laboratory environment with no
obstacles. One robot is jammed at all times.

227

Figure 18: The experimental setup with two quad-rotors equipped with Qualcomm Flight ™, and
two Scarabs as ground targets.

The goal of the hardware experiments is to acquire a visual interpretation of the properties of
the trajectories designed using the resilient Algorithm 22. To isolate the effect of resilience,
we simplify the problem to static targets (i.e. stationary) and to the smallest possible team,
i.e., 2 robots.

We observe from the experiments that the trajectories planned by the UAVs under the
non-resilient algorithm stick to the target they are closest to, whereas under the resilient
Algorithm 22, the UAVs switch amongst the two targets (Fig. 19). Intuitively, the reason
is that the resilient algorithm always assumes that one of the robots will fail, in which case
the optimal strategy for one UAV is to track two targets is to switch amongst the targets,
whereas the non-resilient algorithm assumes that none of the robots will fail, in which case
the optimal strategy for two UAVs is to allocate themselves to the closest target. When
there is the possibility of one UAV failing, switching amongst the targets is preferable, since
both robots have information about both targets.

11.6. Concluding Remarks & Future Work

We made the first steps to ensure the success of critical active information gathering tasks
against failures and denial-of-service attacks, per Problem 6. In particular, we provided the
first algorithm for Problem 6, and proved it guarantees near-optimal performance against
system-wide failures, even with minimal robot communication. We motivated the need for
resilient active information gathering, and showcased the success of our algorithm, with
simulated and real-world experiments in a series of multi-robot target tracking scenarios.

228

T . ‘ |

15| ’}mt ‘%
T 5

Y
K7 “‘? 21

0.5 +

Figure 19: The plot in (a) depicts the experimental robot trajectories in the non-resilient algorithm.
The figure in (b) depicts the resilient algorithm. The targets are in green.

229

This chapter opens a number of avenues for future research, both in theory and in appli-
cations. Future work in theory includes the resilient design of the robot’s communication
network against network-wide failures, to balance the trade-off between minimal communica-
tion and connectedness, which is necessitated in scenarios that are both resource constrained
(e.g., where bandwidth or battery is limited), and failure-prone (e.g., where attacks can dis-
rupt communication links). Future work in applications includes the experimental testing
of resilient active information gathering with mobile robots in environmental monitoring,
search and rescue scenarios, and simultaneous localization and mapping.

11.7. Appendix: Proof of Results

11.7.1. Preliminary lemmas and definitions

Notation. In the appendix we use the following notation to support the proofs in this
chapter: in particular, consider a finite ground set V and a set function f : 2¥ + R. Then,
for any set X C V and any set X’ C V), the symbol f(X|X’) denotes the marginal value
F(XUX) = f(X'). Moreover, the symbol x is the total curvature of f (Definition 45), and
the symbol ¢y is the total curvature of f (Definition 46).

This appendix contains lemmas that will support the proof of Theorem 24 in this chapter;
moreover, it contains a generalized description of the algorithm coordinate descent [249,
Section IV] (to any non-decreasing information objective function in the active robot set),
and a lemma, which will support the proof of Proposition 12 in this chapter.

Lemmas that support the proof of Theorem 24

The proof of the lemmas is also found in [56, 231].
Lemma 45. Consider a finite ground set V and a non-decreasing and submodular set func-
tion f: 2V > R such that f is non-negative and f(0) = 0. For any A CV, it is:

FA) = (1 —kp) D fla).

acA

Proof of Lemma 45 Let A = {a1,a2,...,a4}. We prove Lemma 47 by proving the
following two inequalities:
Al

FOA) =Y flaiV\ {ai}), (11.16)
i=1

| A| [A|

@iV \{ai}) = (1—rp) > flan). (11.17)
i=1 =1

230

We begin with the proof of ineq. (11.16):

f(A) = f(A[D) (11.18)
> fAV\ A) (11.19)
A
= flailV\{ai,ai1, ..., a4}) (11.20)
=1
A
> failV)\ {ai}), (11.21)
=1

where inegs. (11.19) to (11.21) hold for the following reasons: ineq. (11.19) is implied by
eq. (11.18) because f is submodular and 0 C V \ A; eq. (11.20) holds since for any sets
X CVandY CVitis f(X[Y) = f(XUY)— f(V), and it also {a1, az, ..., a4} denotes the
set A; and ineq. (11.21) holds since f is submodular and V \ {a;, ait1,...,a,} €V \ {a;}.
These observations complete the proof of ineq. (11.16).

We now prove ineq. (11.17) using the Definition 45 of f, as follows: since xy = 1
mingey LMD it is implied that for all elements v € V it is FV\{v}) > (1 —k¢)f(v).

fv)
Therefore, adding the latter inequality across all elements a € A completes the proof of
ineq. (11.17). [

Lemma 46. Consider any finite ground set V, a non-decreasing and submodular function
f:2Y = R and non-empty sets Y, P CV such that for all elements y € Y and all elements
p € Pitis f(y) > f(p). Then, it is:

fPIY) < IPIF(D).

Proof of Lemma 46 Consider any element y €) (such an element exists since Lemma 46
considers that) is non-empty); then,

f(PIY)=fPUY)— () (11.22)
<fP)+ ()= f(Y) (11.23)
= f(P)
<> flp) (11.24)

peEP

< IPlrzglea7;<f(p)
<IP|f(y) (11.25)
< [PIf(Y), (11.26)

where eq. (11.22) to ineq. (11.26) hold for the following reasons: eq. (11.22) holds since for
any sets X C Vand Y CV, it is f(X|Y) = f(X UY) — f(Y); ineq. (11.23) holds since
f is submodular and, as a result, the submodularity Definition 44 implies that for any set
ACVand A CV,itis f(AUA) < f(A) + f(A'); ineq. (11.24) holds for the same reason

231

as ineq. (11.23); ineq. (11.25) holds since or all elements y €) and all elements p € P it is
fly) > f(p); finally, ineq. (11.26) holds because f is monotone and y €). |
Lemma 47. Consider a finite ground set V and a non-decreasing set function f : 2V — R
such that f is non-negative and f(0) = 0. For any set A CV and any set B CV such that
ANB =10, it is:

FAUB) > (1 —¢)) (f(A) +) f(b)> .

beB

Proof of Lemma 47 Let B = {b1,b2,...,b3}. Then,

15|
FIAUB) = F(A) + > F(bilAU{b1 b, ... bi1}). (11.27)

=1

In addition, Definition 46 of total curvature implies:

f(bz|./4 U {bl, bo,..., bz’—l}) > (1 — Cf)

(bi|0)
=1 —cp)f(0

S (bl

f(bi), (11.28)
where the latter equation holds since f()) = 0. The proof is completed by substitut-
ing (11.28) in (11.27) and then taking into account that f(A) > (1 —cf)f(A) since 0 < ¢f <
1. |
Lemma 48. Consider a finite ground set V and a non-decreasing set function f : 2V — R
such that f is non-negative and f(0) = 0. For any set A CV and any set B CV such that
AN\ B #£0, it is:

fLAA + A =cp)f(B) > (1 —cp)f(AUB) + f(ANDB).

Proof of Lemma 48 Let A\ B = {i1,i2,...,%,}, where r = | A — B|. From Definition 46
of total curvature cy, for any ¢ = 1,2,...,r, it is f(i;|[ANBU {i1,i2,...,55-1}) > (1 —
cp) f(i1B U {i1,42,...,9—1}). Summing these r inequalities,

f(A) = fFANB) = (1 —¢f) (f(AUB) = f(B)),

which implies the lemma. |
Corollary 13. Consider a finite ground set V and a non-decreasing set function f : 2¥ — R
such that f is non-negative and f(0) = 0. For any set A CV and any set B CV such that
ANB =10, it is:

FA) + S £(0) > (1— ef) FAUB).

beB

232

Proof of Corollary 13 Let B = {b1,b2,..., b5}

15| 15|
+Zf > (L—cp)f(A)+) fbi) (11.29)
=1
5]
> (L= cp) f(AU{b}) +) f(by)
=2
15
> (1 —=cp) f(AU{br1,b2}) + Z f(bi)
=3

> (1 —c¢p)f(AUB),

where (11.29) holds since 0 < ¢y < 1, and the rest due to Lemma 48 since ANB = () implies
.A\ {bl} 75 @, AU {b1} \ {bQ} 75 (Z), o, AU {bl,bg, e ,b|3|_1} \ {b|3‘} #* 0.

Generalized Coordinate Descent and a lemma
that supports the proof of Proposition 12

In this section we generalize the proof in [249] that the algorithm coordinate descent pro-
posed therein guarantees for the information objective function of mutual information an
approximation performance up to a multiplicative factor 1/2 the optimal. In particular, we
extend the proof to any non-decreasing and submodular information objective function, as
well as to any non-decreasing information objective function.

The algorithm coordinate descent works as follows: consider an arbitrary ordering of the
robots in V, such that V = {1,2,...,n}, and suppose that robot 1 chooses first its controls,
without considering the other robots; in other words, robot 1 solves the single robot version
of Problem 6, i.e. P({1},0), to obtain control inputs u¢%.({1}) such that:

U 1 arg min J(ty.1).
(1)) € pelEmin (G1:7) (11.30)

Afterwards, robot 1 communicates its chosen control sequence to robot 2, and robot 2, given
the control sequence of robot 1, computes its control input as follows:

U 2 arg min U 1}), 14
{2} e peTEmn J(uifr({1}), dur). (11.31)

This continues such that robot ¢ + 1 solves a single robot problem, given the control inputs

233

from the robots 1,2,...,4

u) arg min U 1,2,. i}, t1.7).
i) € e J(uffr({1,2,. .., i}), dur) (11.32)

Notably, if we let u}.;-({i}) be the control inputs for the i-th robot resulting from the optimal
solution to the n robot problem, then from the coordinate descent algorithm it is:

J(uifp ({12, i), i ({i})) < J(u§fp({1,2,...,4}). (11.33)

Lemma 49. (Approximation performance of coordinate descent) Consider a set
of robots V, and an instance of problem P(V,0), per eq. (11.6). Denote the optimal conirol
inputs for problem P(V,0), across all robots and all times, by ui. (V). The coordinate descent
algorithm returns control inputs uf‘?T(V), across all robots and all times, such that:

o if the objective function J is non-decreasing submodular in the active robot set, and
(without loss of generality) J is non-negative and J[uy.7(0)] =0, then, it is:

LT) (11.34)

o [f the objective function J is non-decreasing in the active robot set, and (without loss
of generality) J is non-negative and Juy.7(0)] = 0, then, it is:

) 1 e
T) = 2 (11.35)

Proof of Lemma 49 For notational simplicity, assume an ordering among the robots in
V,and let V = {1,2,...,n}, and ua = uy.7(A) for some set A of active robots. Moreover,
let J(u%,u%) be the value of the objective function when the robots in set A design controls
with a scheme a, and robots in set B design controls with scheme b. Then:

e if the objective function J is non-decreasing and submodular in the active robot set,

234

and (without loss of generality) J is non-negative and J[u.7(0)] = 0, then:

T(Wh,) < J(ui,) + Y [T (ufh, uli,) (11.36)
i=1
- J(ugllei—lvu:—f—l:n)}
= J(uit) + >l (v, i) (11.37)
=1
- J(uiifl’uarl:n)}
I () + Z I [{ush_yufy) (11.38)
J(uit) + ZJ ufuff_y) (11.39)
I (uffn) + ZJ uflus) (11.40)
= J(uftn) +J(“1n) (11.41)
< 2J(uf}), (11.42)

where ineq. (11.36) holds due to monotonicity of J; eq. 11.37) is a shift in indexes of
the first term in the sum; eq. (11.38) is an expression of the sum as a sum of marginal
gains; ineq. (11.39) holds due to submodularity; ineq. (11.40) holds by the coordinate-
descent policy (per eq. (11.33)); eq. (11.41) holds due to the definition of the marginal
gain symbol J(uf|ufl_;) (for any i = 1,2,...,n) as J(uz,u‘{dz D) — J(use_)); finally,
a re-arrangement of the terms in eq. (11.42) gives J(u$¢)/J(u}.,,) > 1/2.

If the objective function J is non-decreasing in the active robot set, and (without loss
of generality) J is non-negative and J[ui.p(0)] = 0, then multiplying both sides of

235

eq. (11.38) (which holds for any non-decreasing J) with (1 — c¢y), we have:

(1=cy)J (ur.n)
= (1—ey)J(uff,)+

(1 —es) Y J(ui {uif 1 ufian})
i=1

n

< J(ufh) + (1 —cy) ZJ Tt i) (11.43)
J(usd) +ZJ u$e) (11.44)
J(usd) +ZJ (us?|us) (11.45)

= J(u$t) + J(ul ') (11.46)
< 2J(ust), (11.47)

where, ineq. (11.43) holds since 0 < ¢; < 1; ineq. (11.44) holds since J is non-
decreasing in the set of active robots, and Definition 46 of total curvature implies that
for any non-decreasing set function g : 2¥ +— R, for any element v € V, and for any

set A, BCV\ {v}, it is:

(1 = ¢g)g(v|B) < g({v}|A); (11.48)
ineq. (11.45) holds by the coordinate-descent algorithm; eq. (11.46) holds due to
the definition of the marginal gain symbol J(u![u$% ;) (for any i = 1,2,...,n) as
J(uf,uft) — J(u§_)); finally, a re-arrangement of terms gives J(u n)/J(ul n) >
(1—cy)/2. m

11.7.2. Proof of Theorem 24

We first prove Theorem 24’s part 1 (approximation performance), and then, Theorem 24’s
part 2 (communication rounds).

Proof of Theorem 24’s part 1 (approximation performance)

The proof follows the steps of the proof of |56, Theorem 1| and of the proof of [231, Theo-
rem 1].

We first prove ineq. (11.11); then, we prove ineq. (11.12).

To the above ends, we use the following notation (along with the notation introduced in
Theorem 24 and in Appendix A): given that using Algorithm 22 the robots in V' select
control inputs uy.7(V), then, for notational simplicity:

e for any active robot set R C V, let J(R) = J[ur.7(R)].

236

o let A* £ A ur.r(V)];

e let LT £ L\ A*, i.e., S are the remaining robots in £ after the removal of the robots

in A*;

o let (W\L)" 2 (V\ L)\ A* ie., Sy are the remaining robots in V'\ £ after the removal
of the robots in A*.

Proof of ineq. (11.11) Consider that the objective function J is non-decreasing and
submodular in the active robot set, such that (without loss of generality) J is non-negative
and J[uy.7(0)] = 0. We first prove the part 1 — k; of the bound in the right-hand-side of
ineq. (11.11), and then, the part h(|V|, @) of the bound in the right-hand-side of ineq. (11.11).

To prove the part 1 — k; of the bound in the right-hand-side of ineq. (11.11), we follow the
steps of the proof of [56, Theorem 1|, and make the following observations:

J(V\ A"
=J(LTuWw\L)) (11.49)
>(1-ry) Y. J) (11.50)
veLTUV\L)T
> (1— ky) > J)+ > J(v) (11.51)
ve(V\L)\(V\L)+ ve(V\L)+
> (L= w)J{V\NO\NV\OTUWN\ L)} (11.52)
=1 —-r5)J(V\L), (11.53)

where eq. (11.49) to (11.53) hold for the following reasons: eq. (11.49) follows from the
definitions of the sets £ and (V \ £)*; ineq. (11.50) follows from ineq. (11.49) due to
Lemma 45; ineq. (11.51) follows from ineq. (11.50) because for all elements v € £ and
all elements v € W\ L)\ (V\ £)T it is J(v) > J(v') (note that due to the definitions
of the sets LT and (V\ £)" it is |[£T] = |(V\ £)\ (V\ £)T|, that is, the number of
non-removed elements in £ is equal to the number of removed elements in V '\ £); finally,
ineq. (11.52) follows from ineq. (11.51) because the set function J is submodular and, as a
result, the submodularity Definition 44 implies that for any sets S C V and &’ C V, it is
J(S)+ J(S) > J(SUS') [70, Proposition 2.1]. We now complete the proof of the part
1 — ks of the bound in the right-hand-side of ineq. (11.11) by proving that in ineq. (11.53)
it is:

JV\ L) > J* (11.54)
when the robots in V solve optimally the problems in Algorithm 22’s step 4, per the state-
ment of Theorem 24. In particular, if for any active robot set R C V, we let uy.7(R) =
{¢ : wr € Uiy, 1 €R, t=1,2,...,T} denote a collection of control inputs to the

237

robots in R, then it is:

JWV\L)= = max J[arr(V\ L)] (11.55)
Ui ¢ €U, i €V,
t=1,2...,T
> min max Jurr(V\ L)) (11.56)
LCV, €U, i€V,
L] <a t=1,2...,T
> max min J[u.r(V\ £)] (11.57)

Uy €U, i€V, LCV,
t=12....,T |f]<a

J* (11.58)

where the inegs. (11.55)-(11.58) hold for the following reasons: the equivalence in eq. (11.55)
holds since the robots in V solve optimally the problems in Algorithm 22’s step 4, per the
statement of Theorem 24; (11.56) holds since we minimize over the set £; (11.57) holds
because for any set £ CVand any control inputs t1.7(R) = {i¢: Uiy €Uy, 1€R, t=
1,2,...,T}:

~ max J[arr(V\ £)] > Jla.r(V\ £)] =
Uit € Ui, t €V,
t=1,2...,T

min max Jlurr(V\ L)] >
LCV, a1 €Uy, i€V,
L] < a t=1,2...,T

min max Jlur.r(V\ L)] >
LCV, u; €U, i€V,
Ll <o t=1,2...,T

max min
Ui €U, i€V, LCV,
t=1,2...,T I£] < a

where the last one is eq. (11.57); finally, the equivalence in eq. (11.58) holds since J* (per
the statement of Theorem 24) denotes the optimal value to Problem 6. Overall, we proved
that ineq. (11.58) proves ineq. (11.54); and, now, the combination of ineq. (11.53) and
ineq. (11.54) proves the part 1 — k; of the bound in the right-hand-side of ineq. (11.11).

We finally prove the part 1/(1+ «) of the bound in the right-hand-side of ineq. (11.11), and
complete this way the proof of Theorem 24. To this end, we follow the steps of the proof
of [56, Theorem 1], and use the notation introduced in Fig. 20, along with the following
notation:

o ARV A

n AYS) (11.59)

238

£ (%)

Figure 20: Venn diagram, where the set £ is the robot set defined in step 2 of Algorithm 22, and
the set AT and the set A3 are such that A = A*N L, and A5 = A* N (V\ £) (observe that these
definitions imply A} N A5 = 0 and A* = A} U A3).

Later in this proof, we prove 0 < n < 1. We first observe that:

JWV\ A*) > max{J(V\ A"),J(LD)}; (11.60)

in the following paragraphs, we prove the three inequalities:

JWV\NAY) > (1 =n)J(V\ L), (11.61)
J(LT) > niJ(V\E), (11.62)
max{(1 —n),né} > ai - (11.63)

Then, if we substitute ineq. (11.61), ineq. (11.62) and ineq. (11.63) to ineq. (11.60), and take
into account that J(V '\ £) > 0, then:

X 1
J(V\A)sz(V\[,),

which implies the part 1/(1 + «) of the bound in the right-hand-side of ineq. (11.11), after
taking into account ineq. (11.54).

We next complete the proof of the part 1/(1 + «) of the bound in the right-hand-side of
ineq. (11.11) by proving 0 < n < 1, ineq. (11.61), ineq. (11.62), and ineq. (11.63).

Proof of ineq. 0 < n <1 We first prove n > 0, and then n < 1: n > 0, since n =
J(A5V\ A*)/J(V\ L), and J is non-negative; and n < 1, since J(V \ £) > J(A%), due to
monotonicity of J and that A5 C V\ £, and J(A%) > J(A5|V \ A*), due to submodularity
of J and that) CV\ A*.

Proof of ineq. (11.61) We complete the proof of ineq. (11.61) in two steps. First, it can
be verified that:

FONAY) = fVANL)—
J(ASV\ A + J(LIV\ L) — J(AF[V\ A}, (11.64)

239

since for any sets X CVand Y C V, it is J(X|Y) = J(X UY) — J()). Second, eq. (11.64)
implies ineq. (11.61), since J(A5|V\ A*) =nJ(V \ L), and J(L|V\ L) — J(A}|V \ A}) > 0;
the latter is true due to the following two observations: J(L|V \ £) > J(A7|V \ £), since
J is monotone and A C £; and J(A}|V\ £) > J(A7|V \ A}), since J is submodular and
V\LCV\ Aj (see also Fig. 20).

Proof of ineq. (11.62) To prove ineq. (11.62), since it is A5 # (0 (and, as a result, also
LT # 0), and for all elements a € L1 and all elements b € A3, it is J(a) > J(b), from
Lemma 46 we have:

J(AS|LT) < |A3]J(LT)

<aJ(Lh), (11.65)
since |43 < a. Overall,
J(LH) > éJ(A’Q‘\EJF) (11.66)
> éJ(Ag\ﬁu V\L)T) (11.67)
_ é,](5V A% (11.68)
_ néJ(V \ L), (11.69)

where ineq. (11.66) to eq. (11.69) hold for the following reasons: ineq. (11.66) follows from
ineq. (11.65); ineq. (11.67) holds since J is submodular and £T C LY U(V\ £)T; eq. (11.68)
holds due to the definitions of the sets L1, (V' \ £)* and A*; finally, eq. (11.69) holds due
to the definition of n. Overall, the latter derivation concludes the proof of ineq. (11.62).

Proof of ineq. (11.63) Let b = 1/a. We complete the proof first for the case where
(1—n) > nb, and then for the case (1—n) < nb: i) When (1—n) > nb, max{(1—n),nb} =1-n
and n < 1/(14b). Due to the latter, 1 —n > b/(14+b) = 1/(a+ 1) and, as a result, (11.63)
holds. ii) When (1 —n) < nb, max{(1 —n),nb} = nb and n > 1/(1 +b). Due to the latter,
nb > b/(1 + b) and, as a result, (11.63) holds.

We completed the proof of 0 < n < 1, and of inegs. (11.61), (11.62) and (11.63). Thus,
we also completed the proof of the part 1/(1 + «) of the bound in the right-hand-side of
ineq. (11.11), and, in sum, the proof of ineq. (11.11).

Proof of ineq. (11.12) Consider that the objective function J is non-decreasing in the
active robot set, such that (without loss of generality) J is non-negative and J[uy.7(0)] = 0.

The proof follows the steps of the proof of [231, Theorem 1], by making the following

240

observations:

J(V\AY)
=J(Ltu(v\ L)) (11.70)
>(1-cy)) > J (11.71)

veLFU(V\L)+

> (1-cy) > Jw)+ > J() (11.72)

ve(W\L\(V\L)T ve(V\L)+
> (1—cp)?TH{{V\ L\ (VN LU\ L)} (11.73)
= (1—cy)?J(V\ L), (11.74)

where eq. (11.70) to (11.74) hold for the following reasons: eq. (11.70) follows from the
definitions of the sets £T and (V \ £)*; ineq. (11.71) follows from ineq. (11.70) due to
Lemma 47; ineq. (11.72) follows from ineq. (11.71) because for all elements v € L1 and
all elements v € (VW \ L)\ (V\ £)" it is J(v) > J(v') (note that due to the definitions
of the sets £ and (VW \ £)T it is [LT] = [V \ £) \ (V \ £)T|, that is, the number of
non-removed elements in £ is equal to the number of removed elements in V \ £); finally,
ineq. (11.73) follows from ineq. (11.72) because the set function J is non-decreasing and
Corollary 13 applies. Overall, the combination of ineq. (11.74) and ineq. (11.54) (observe
that ineq. (11.54) still holds if the objective function J is merely non-decreasing) proves
ineq. (11.12). [

Proof of Theorem 24’s part 2 (communication rounds)

We described the steps of Algorithm 22 in Section 11.3.1. In particular, Algorithm 22 is
composed of four steps:

Computation of robots’ marginal contributions in the absence of attacks (step 1
of Algorithm 22) This step requires zero rounds of communication among the robots,
since each robot i € V, by solving the problem in eq. (11.7), merely computes its own
marginal contribution to the information gathering task in Problem 6 in the absence of any
other robot in V \ {i}, and in the absence of any attacks and failures.

Computation of robot set £ with the a largest marginal contributions in the
absence of attacks (step 2 of Algorithm 22) This step requires at most 2|V| com-
munication rounds, since in this step the robots in V share their marginal contribution to
the information gathering task, which they computed in Algorithm 22’s step 1, and decide
which subset £ of them composes a set of « robots with the « largest marginal contributions;
this procedure can be executed with minimal communication (at most 2|)| communication
rounds), e.g., by accumulating (through the communication network) to one robot all the
marginal contributions {g; : i € V}, and, then, by letting this robot to select the set £, and
to communicate it back to the rest of the robots.

241

Computation of control inputs of robots in £ (step 3 of Algorithm 22) This steps
requires zero rounds of communication among the robots, since each robot in the set L, per
Algorithm 22’s step 2, merely adopts the controls it computed in Algorithm 22’s step 1 (e.g.,
using the algorithm in [42]).

Computation of control inputs of robots in V' \ £ (step 4 of Algorithm 22) This
step is executed in p rounds per the statement of Theorem 24.

In sum, Algorithm 22 requires 2|V| + p rounds of communication among the robots in V to
terminate. [

11.7.3. Proof of Proposition 12

We first prove Proposition 12’s part 1 (approx. bounds), and then, Proposition 12’s part 2
(communication rounds).

Proof of Proposition 12’s part 1 (approximation bounds)

The proof follows the steps of the proof of Theorem 24; hence, we describe here only the
steps where the proof differs.

We first prove ineq. (11.13); then, we prove ineq. (11.14).

Proof of ineq. (11.13) Consider that the objective function J is non-decreasing and
submodular in the active robot set, such that (without loss of generality) J is non-negative
and J[ui.7(0)] = 0. Since, per Proposition 12, Algorithm 22 calls the coordinate descent
algorithm in step 4, the equivalence in eq. (11.55) is now invalid, and, in particular, using
Lemma, 49, the following inequality holds instead:

1
JWV\L) > = max Jlur.r(V\ £)]. (11.75)
2 Gy eligicV,
t=1,2...,T

Using ineq. (11.75), and following the same steps as in eqgs. (11.55)-(11.58), we conclude:

JV\L) > %JT (11.76)

Using ineq. (11.76) the same way that ineq. (11.54) was used in the proof of Theorem 24’s
part 1, ineq. (11.14) is proved.

Proof of ineq. (11.14) Consider that the objective function J is non-decreasing in the
active robot set, such that (without loss of generality) J is non-negative and J[uy.7(0)] = 0.
Similarly with the observations we made in the proof of ineq. (11.13), since, per Proposi-
tion 12, Algorithm 22 calls the coordinate descent algorithm in step 4, the equivalence in
eq. (11.55) is now invalid, and, in particular, using Lemma 49, the following inequality holds

242

instead:

1—
JV\L) > — max J[ar(V\ £)]. (11.77)
2 Ui €U, i €V,
t=1,2...,T

Using ineq. (11.77), and following the same steps as in eqgs. (11.55)-(11.58), we conclude:

JV\L) > 1=

J* (11.78)

Using ineq. (11.78) the same way that ineq. (11.54) was used in the proof of Theorem 24’s
part 1, ineq. (11.14) is proved. |

Proof of Proposition 12’s part 2 (communication rounds)

The description of the generalized coordinate descent in Appendix 11.7.1 implies that the
generalized coordinate descent terminates in at most |V| rounds, since each robot in V
needs to communicate with at most one robot in V and at most once. Therefore, per the
notation in Theorem 24, for the generalized coordinate descent it is p = |V|. Overall, per
Theorem 24°s part 2, when Algorithm 22 calls generalized coordinate descent in step 4, it
requires 2|V| + p = 3|V| rounds of communication among the robots in V to terminate. l

243

1]

7]

18]

[10]

[11]

[12]

BIBLIOGRAPHY

Z. Liu, A. Clark, P. Lee, L. Bushnell, D. Kirschen, and R. Poovendran, “A submodular
optimization approach to controlled islanding under cascading failure,” in ACM/IEEFE
8th International Conference on Cyber-Physical Systems, 2017, pp. 187-196.

V. Kumar and N. Michael, “Opportunities and challenges with autonomous micro
aerial vehicles,” The International Journal of Robotics Research, vol. 31, no. 11, pp.
1279-1291, 2012.

C. Nieto-Granda, J. G. Rogers 111, and H. Christensen, “Multi-robot exploration strate-
gies for tactical tasks in urban environments,” in SPIF Defense, Security, and Sensing.
International Society for Optics and Photonics, 2013, pp. 87410B-87410B.

T. Summers, “Actuator placement in networks using optimal control performance met-
rics,” in IEEFE 55th Conference on Decision and Control, 2016, pp. 2703-2708.

S. T. Jawaid and S. L.. Smith, “Submodularity and greedy algorithms in sensor schedul-
ing for linear dynamical systems,” Automatica, vol. 61, pp. 282-288, 2015.

P. Tokekar, V. Isler, and A. Franchi, “Multi-target visual tracking with aerial robots,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp.
3067-3072.

A. Olshevsky, “Minimal controllability problems,” IEEE Transactions on Control of
Network Systems, vol. 1, no. 3, pp. 249-258, 2014.

A. Clark, L. Bushnell, and R. Poovendran, “On leader selection for performance and
controllability in multi-agent systems,” in IEEE 51st Annual Conference on Decision
and Control (CDC), Dec 2012, pp. 86-93.

A. Clark, B. Alomair, L. Bushnell, and R. Poovendran, “Toward synchronization in
networks with nonlinear dynamics: A submodular optimization framework,” IFEE
Transactions on Automatic Control, vol. 62, no. 10, pp. 5055-5068, 2017.

H. Zhang, R. Ayoub, and S. Sundaram, “Sensor selection for kalman filtering of lin-
ear dynamical systems: Complexity, limitations and greedy algorithms,” Automatica,
vol. 78, pp. 202 — 210, 2017.

R. K. Williams, A. Gasparri, and G. Ulivi, “Decentralized matroid optimization for
topology constraints in multi-robot allocation problems,” in IEEE Conference on
Robotics and Automation, 2017, pp. 293-300.

M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, “An analysis of approximations
for maximizing submodular set functions — I1,” in Polyhedral combinatorics, 1978, pp.
73-87.

244

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

U. Feige, “A threshold of In(n) for approximating set cover,” Journal of the ACM,
vol. 45, no. 4, pp. 634-652, 1998.

R. Tyer, S. Jegelka, and J. Bilmes, “Fast semidifferential-based submodular function
optimization,” in International Conference on International Conference on Machine
Learning, 2013, pp. 855-863.

M. Sviridenko, J. Vondrak, and J. Ward, “Optimal approximation for submodular and
supermodular optimization with bounded curvature,” Math. of Operations Research,
vol. 42, no. 4, pp. 1197-1218, 2017.

A. Krause and D. Golovin, “Submodular function maximization,” Tractability: Prac-
tical Approaches to Hard Problems, vol. 3, p. 19, 2012.

G. Calinescu, C. Chekuri, M. Pal, and J. Vondrak, “Maximizing a monotone submod-
ular function subject to a matroid constraint,” SIAM Journal on Computing, vol. 40,
no. 6, pp. 1740-1766, 2011.

F. Pasqualetti, S. Zampieri, and F. Bullo, “Controllability metrics, limitations and
algorithms for complex networks,” IEEE Transactions on Control of Network Systems,
vol. 1, no. 1, pp. 40-52, 2014.

P. Muller and H. Weber, “Analysis and optimization of certain qualities of controlla-
bility and observability for linear dynamical systems,” Automatica, vol. 8, no. 3, pp.
237 — 246, 1972.

V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray, “On a stochastic sensor selection
algorithm with applications in sensor scheduling and sensor coverage,” Automatica,
vol. 42, no. 2, pp. 251-260, 2006.

V. Tzoumas, Y. Xue, S. Pequito, P. Bogdan, and G. J. Pappas, “Selecting sensors in bi-
ological fractional-order systems,” IEEE Transactions on Control of Network Systems,
2018, in press.

M. Kaess, A. Ranganathan, and F. Dellaert, “isam: Incremental smoothing and map-
ping,” IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1365-1378, 2008.

A. S. Willsky, “A survey of design methods for failure detection in dynamic systems,”
Automatica, vol. 12, no. 6, pp. 601-611, 1976.

A. D. Wood and J. A. Stankovic, “Denial of service in sensor networks,” Computer,
vol. 35, no. 10, pp. 5462, 2002.

Z. Liu, A. Clark, P. Lee, L. Bushnell, D. Kirschen, and R. Poovendran, “Submodular
optimization for voltage control,” IEEFE Transactions on Power Systems, vol. 33, no. 1,
pp. 502-513, 2018.

R. B. Myerson, Game theory. Harvard University Press, 2013.

245

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Z. Liu, A. Clark, L. Bushnell, D. Kirschen, and R. Poovendran, “Controlled islanding
via weak submodularity,” arXiv preprint arXiv:1803.05042, 2018.

G. Yan, G. Tsekenis, B. Barzel, J.-J. Slotine, Y.-Y. Liu, and A.-L. Barabési, “Spectrum
of controlling and observing complex networks,” Nature Physics, vol. 11, no. 9, p. 779,
2015.

V. Tzoumas, L. Carlone, G. J. Pappas, and A. Jadbabaie, “Sensing-Constrained LQG
Control,” arXiv e-prints: 1709.08826, 2017.

A. Schrijver, Combinatorial optimization: Polyhedra and efficiency. Springer Science
& Business Media, 2003, vol. 24.

R. K. Iyer, S. Jegelka, and J. A. Bilmes, “Curvature and optimal algorithms for learn-
ing and minimizing submodular functions,” in Advances in Neural Inform. Processing
Systems, 2013, pp. 2742-2750.

A. A Bian, J. M. Buhmann, A. Krause, and S. Tschiatschek, “Guarantees for greedy
maximization of non-submodular functions with applications,” in Int. Conf. on Ma-
chine Learning, 2017, pp. 498-507.

M. Conforti and G. Cornuéjols, “Submodular set functions, matroids and the greedy
algorithm,” Discrete Applied Mathematics, vol. 7, no. 3, pp. 251 — 274, 1984.

J. B. Orlin, A. S. Schulz, and R. Udwani, “Robust monotone submodular function
maximization,” arXiv preprint:1507.06616, 2015.

I. Bogunovic, J. Zhao, and V. Cevher, “Robust maximization of non-submodular ob-
jectives,” ArXiv e-prints:1802.07073, 2018.

B. Mirzasoleiman, A. Karbasi, and A. Krause, “Deletion-robust submodular maximiza-

tion: Data summarization with ‘the right to be forgotten’,” in International Conference

on Machine Learning, 2017, pp. 2449-2458.

E. Kazemi, M. Zadimoghaddam, and A. Karbasi, “Deletion-robust submodular maxi-
mization at scale,” ArXiv e-prints:1711.07112, 2017.

K. Poularakis, G. losifidis, G. Smaragdakis, and L. Tassiulas, “One step at a time:
Optimizing SDN upgrades in ISP networks,” in IEEFE Conference on Computer Com-
munications, 2017, pp. 1-9.

D. Golovin and A. Krause, “Adaptive submodularity: A new approach to active learn-
ing and stochastic optimization,” in Annual Conference on Learning Theory, 2010, pp.
333-345.

G. L. Nemhauser and L. A. Wolsey, “Best algorithms for approximating the maximum
of a submodular set function,” Mathematics of operations research, vol. 3, no. 3, pp.
177-188, 1978.

246

[41]

[42]

[43]

[44]

[45]

[46]

47]

48]

[49]

[50]

[51]

[52]

[53]

S. Mitrovic, I. Bogunovic, A. Norouzi-Fard, J. M. Tarnawski, and V. Cevher, “Stream-
ing robust submodular maximization,” in Advances in Neural Information Processing
Systems, 2017, pp. 4560-4569.

N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Information acquisition with
sensing robots: Algorithms and error bounds,” in IEEE International Conference on
Robotics and Automation (ICRA), 2014, pp. 6447-6454.

M. Michini, M. A. Hsieh, E. Forgoston, and I. B. Schwartz, “Robotic tracking of
coherent structures in flows,” IFEFE Transactions on Robolics, vol. 30, no. 3, pp. 593~
603, 2014.

A. Krause and C. Guestrin, “A note on the budgeted maximization of submodular
functions,” 2005.

A. Jadbabaie, A. Olshevsky, G. J. Pappas, and V. Tzoumas, “Minimal reachability is
hard to approximate,” arXiv preprint arXiw:1710.10244, 2017.

Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabasi, “Controllability of complex networks,”
Nature, vol. 473, no. 7346, pp. 167-173, 2011.

F. Muller and A. Schuppert, “Few inputs can reprogram biological networks,” Nature,
vol. 478, no. 7369, pp. E4-E4, 2011.

T. Zhou, “Minimal inputs/outputs for a networked system,” IEEE Control Systems
Letters, vol. 1, no. 2, pp. 298-303, 2017.

A. Clark, B. Alomair, L. Bushnell, and R. Poovendran, “Minimizing convergence error
in multi-agent systems via leader selection: A supermodular optimization approach,”
IEEE Transactions on Automatic Control, vol. 59, no. 6, pp. 1480-1494, 2014.

A. Clark, L. Bushnell, and R. Poovendran, “A supermodular optimization framework
for leader selection under link noise in linear multi-agent systems,” ITEEE Trans. on
Aut. Contr., vol. 59, no. 2, pp. 283-296, 2014.

S. Pequito, S. Kar, and A. P. Aguiar, “A framework for structural input/output and
control configuration selection in large-scale systems,” IEEFE Trans. on Automatic Con-
trol, vol. 61, no. 2, pp. 303-318, 2016.

T. H. Summers, F. L. Cortesi, and J. Lygeros, “On submodularity and controllability
in complex dynamical networks,” IEEE Transactions on Control of Network Systems,
vol. 3, no. 1, pp. 91-101, 2016.

V. Tzoumas, M. A. Rahimian, G. J. Pappas, and A. Jadbabaie, “Minimal actuator
placement with bounds on control effort,” IEEE Trans. on Control of Network Systems,
vol. 3, no. 1, pp. 67-78, 2016.

247

[54]

[55]

[56]

[57]

[58] ——

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Y. Zhao, F. Pasqualetti, and J. Cortés, “Scheduling of control nodes for improved
network controllability,” in ITEEFE 55th Conference on Decision and Control, 2016, pp.
1859-1864.

S. Pequito, G. Ramos, S. Kar, A. Aguiar, and J. Ramos, “Robust minimal controlla-
bility problem,” Automatica, vol. 82, pp. 261-268, 2017.

V. Tzoumas, K. Gatsis, A. Jadbabaie, and G. J. Pappas, “Resilient monotone sub-
modular function maximization,” in IEEE Conference on Decision and Control, 2017,
pp- 1362-1367.

V. Tzoumas, A. Jadbabaie, and G. J. Pappas, “Sensor placement for optimal kalman
filtering,” in Proceedings of the American Control Conference, 2016, pp. 191-196.

, “Near-optimal sensor scheduling for batch state estimation,” in IEEE 55th Con-
ference on Decision and Control, 2016, pp. 2695-2702.

H. Zhang, R. Ayoub, and S. Sundaram, “Sensor selection for kalman filtering of lin-
ear dynamical systems: Complexity, limitations and greedy algorithms,” Automatica,
vol. 78, pp. 202-210, 2017.

L. Carlone and S. Karaman, “Attention and anticipation in fast visual-inertial naviga-
tion,” in Proceedings of the IEEE International Conference on Robotics and Automa-
tion, 2017, pp. 3886-3893.

M. Amin and J. Stringer, “The electric power grid: Today and tomorrow,” MRS
bulletin, vol. 33, no. 04, pp. 399-407, 2008.

7. Liu, A. Clark, P. Lee, L. Bushnell, D. Kirschen, and R. Poovendran, “MinGen: Min-
imal generator set selection for small signal stability in power systems: A submodular
framework,” in Proceedings of the IEEE 55th Conference on Decision and Control,
2016, pp. 4122-4129.

California Partners for Advanced Transit and Highways, 2006. [Online|. Available:
http://www.path.berkeley.edu/

S. Gu et al., “Controllability of structural brain networks,” Nature communications,
vol. 6, 2015.

C. Tu, R. P. Rocha, M. Corbetta, S. Zampieri, M. Zorzi, and S. Suweis, “Warnings
and Caveats in Brain Controllability,” ArXiv e-prints, 2017.

V. Tzoumas, A. Jadbabaie, and G. J. Pappas, “Minimal reachability problems,” in
Proceedings of the IEEE 54th Annual Conference on Decision and Control, 2015, pp.
4220-4225.

7. Liu, A. Clark, P. Lee, L. Bushnell, D. Kirschen, and R. Poovendran, “Towards

248

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

[78]

[79]

[30]

scalable voltage control in smart grid: A submodular optimization approach,” in Pro-
ceedings of the Tth International Conference on Cyber-Physical Systems, 2016, p. 20.

M. Sviridenko, J. Vondrak, and J. Ward, “Optimal approximation for submodular and
supermodular optimization with bounded curvature,” in Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms. STAM, 2014, pp. 1134—
1148.

S. Arora and B. Barak, Computational complexity: a modern approach. Cambridge
University Press, 2009.

G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approximations for maxi-
mizing submodular set functions — I,” Mathematical Programming, vol. 14, no. 1, pp.
265-294, 1978.

C.-T. Chen, Linear System Theory and Design, 3rd ed. New York, NY, USA: Oxford
University Press, Inc., 1998.

D. Foster, H. Karloff, and J. Thaler, “Variable selection is hard,” in Proceedings of the
Conference on Learning Theory, 2015, pp. 696-709.

V. Tzoumas, M. Rahimian, G. Pappas, and A. Jadbabaie, “Minimal actuator place-
ment with bounds on control effort,” arXiv preprint:1409.3289, 2014.

M. Newman, A.-L. Barabési, and D. Watts, The structure and dynamics of networks.
Princeton University Press, 2006.

A. M. Hermundstad, D. S. Bassett, K. S. Brown, E. M. Aminoff, D. Clewett, S. Free-
man, A. Frithsen, A. Johnson, C. M. Tipper, M. B. Miller et al., “Structural foun-
dations of resting-state and task-based functional connectivity in the human brain,”
Proceedings of the National Academy of Sciences, vol. 110, no. 15, pp. 6169-6174, 2013.

Y. Katz, K. Tunstrgm, C. C. Ioannou, C. Huepe, and I. D. Couzin, “Inferring the

structure and dynamics of interactions in schooling fish,” Proceedings of the National
Academy of Sciences, vol. 108, no. 46, pp. 18 720-18 725, 2011.

F. Jordan and I. Scheuring, “Network ecology: topological constraints on ecosystem
dynamics,” Physics of Life Reviews, vol. 1, no. 3, pp. 139-172, 2004.

G. Orosz, J. Moehlis, and R. M. Murray, “Controlling biological networks by time-
delayed signals,” Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 368, no. 1911, pp. 439-454, 2010.

I. Rajapakse, M. Groudine, and M. Mesbahi, “What can systems theory of networks
offer to biology?” PLoS computational biology, vol. 8, no. 6, p. e1002543, 2012.

A. Khanafer and T. Basar, “Information spread in networks: Control, games, and

249

[81]

[82]

[33]

[84]

[85]

[36]

[87]

[38]

[39]

[90]

[91]

[92]

(93]

equilibria,” in Information Theory and Applications Workshop (ITA), 2014, 2014, pp.
1-10.

L. Chen, N. Li, L. Jiang, and S. H. Low, “Optimal demand response: problem formu-
lation and deterministic case,” in Control and Optimization Theory for Electric Smart
Grids, A. Chakrabortty and M. Ilic, Eds. Springer, 2012.

A. Olshevsky, “Minimal controllability problems,” IEEE Transactions on Control of
Network Systems, 2014, in press.

G. Ramos, S. Pequito, S. Kar, A. P. Aguiar, and J. Ramos, “On the np-completeness
of the minimal controllability problem,” arXiv preprint arXiw:1401.4209, 2014.

F. Pasqualetti, S. Zampieri, and F. Bullo, “Controllability metrics, limitations and
algorithms for complex networks,” IEEE Transactions on Control of Network Systems,
vol. 1, no. 1, pp. 40-52, March 2014.

C.-T. Chen, Linear System Theory and Design, 3rd ed. New York, NY, USA: Oxford
University Press, Inc., 1998.

G. Yan, J. Ren, Y.-C. Lai, C.-H. Lai, and B. Li, “Controlling complex networks: How
much energy is needed?” Phys. Rev. Lett., vol. 108, p. 218703, May 2012.

J. Sun and A. E. Motter, “Controllability transition and nonlocality in network con-
trol,” Phys. Rev. Lett., vol. 110, p. 208701, May 2013.

F. Cortesi, T. Summers, and J. Lygeros, “Submodularity of energy related controlla-
bility metrics,” in IEEE 53rd Annual Conference on Decision and Control, 2014, pp.
2883-2888.

S. Jafari, A. Ajorlou, and A. G. Aghdam, “Leader localization in multi-agent systems
subject to failure: A graph-theoretic approach,” Automatica, vol. 47, no. 8, pp. 1744~
1750, 2011.

C. Commault and J.-M. Dion, “Input addition and leader selection for the controlla-
bility of graph-based systems,” Automatica, vol. 49, no. 11, pp. 3322 — 3328, 2013.

A. Clark, B. Alomair, L. Bushnell, and R. Poovendran, “Minimizing convergence error
in multi-agent systems via leader selection: A supermodular optimization approach,”
IEEE Transactions on Automatic Control, vol. 59, no. 6, pp. 1480-1494, June 2014.

A. Clark, L. Bushnell, and R. Poovendran, “A supermodular optimization framework
for leader selection under link noise in linear multi-agent systems,” IEEFE Transactions
on Automatic Control, vol. 59, no. 2, pp. 283-296, Feb 2014.

D. S. Bernstein, Matrix mathematics: theory, facts, and formulas. Princeton Univer-
sity Press, 2009.

250

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

L. A. Wolsey, “An analysis of the greedy algorithm for the submodular set covering
problem,” Combinatorica, vol. 2, no. 4, pp. 385-393, 1982.

K. B. Petersen and M. S. Pedersen, The mairiz cookbook, 2012.

G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization. New
York, NY, USA: Wiley-Interscience, 1988.

D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,”
in Proceedings of the nineteenth annual ACM symposium on Theory of computing,
1987, pp. 1-6.

A. Reusken, “Approximation of the determinant of large sparse symmetric positive
definite matrices,” SIAM J. Matriz Anal. Appl., vol. 23, no. 3, pp. 799-818, Mar.
2001.

M. Minoux, “Accelerated greedy algorithms for maximizing submodular set functions,”
in Optimization Techniques. Springer, 1978, pp. 234-243.

P. Benner, J.-R. Li, and T. Penzl, “Numerical solution of large-scale lyapunov equa-
tions, riccati equations, and linear-quadratic optimal control problems,” Numerical
Linear Algebra with Applications, vol. 15, no. 9, pp. 755-777, 2008.

S. Arora and B. Barak, Computational complexity: a modern approach. Cambridge
University Press, 2009.

V. Tzoumas, A. Jadbabaie, and G. J. Pappas, “Sensor placement for optimal Kalman
filtering,” in Amer. Contr. Conf., 2016, pp. 191-196.

T. Kailath, A. H. Sayed, and B. Hassibi, Linear estimation. Prentice Hall, 2000.

F. Lin, M. Fardad, and M. R. Jovanovic, “Design of optimal sparse feedback gains
via the alternating direction method of multipliers,” IEEE Transactions on Automatic
Control, vol. 58, no. 9, pp. 2426-2431, 2013.

S. Pequito, G. Ramos, S. Kar, A. P. Aguiar, and J. Ramos, “On the Exact Solution
of the Minimal Controllability Problem,” arXiv preprint arXiv: 1401.4209, 2014.

T. H. Summers, F. L. Cortesi, and J. Lygeros, “On submodularity and controllability
in complex dynamical networks,” IEEE Transactions on Control of Network Systems,
vol. 3, no. 1, pp. 91-101, 2016.

V. Tzoumas, M. A. Rahimian, G. J. Pappas, and A. Jadbabaie, “Minimal actuator
placement with bounds on control effort,” IEEE Transactions on Control of Network
Systems, 2015, in press.

N. Matni and V. Chandrasekaran, “Regularization for design,” in IEEE 53rd Annual
Conference on Decision and Control (CDC), 2014, pp. 1111-1118.

251

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

S. Pequito, S. Kar, and A. Aguiar, “A framework for structural input/output and con-
trol configuration selection in large-scale systems,” IEEFE Trans. on Automatic Control,
vol. 61, no. 2, pp. 303-318, 2016.

V. Tzoumas, M. A. Rahimian, G. J. Pappas, and A. Jadbabaie, “Minimal actuator
placement with optimal control constraints,” in Proceedings of the American Control
Conference, July 2015, pp. 2081 — 2086.

G. Yan, G. Tsekenis, B. Barzel, J.-J. Slotine, Y.-Y. Liu, and A.-L. Barabasi, “Spectrum
of controlling and observing complex networks,” Nature Physics, no. 11, pp. 779-786,
2015.

Y. Zhao and J. Cortés, “Gramian-based reachability metrics for bilinear networks,”
arXiv preprint arXiv:1509.02877, 2015.

R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal
of Fluids Engineering, vol. 82, no. 1, pp. 35-45, 1960.

A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in gaussian
processes: Theory, efficient algorithms and empirical studies,” J.l of Machine Learning
Research, vol. 9, pp. 235-284, 2008.

M. Shamaiah, S. Banerjee, and H. Vikalo, “Greedy sensor selection: Leveraging sub-
modularity,” in 49th IEEE Conference on Decision and Control (CDC),, 2010, pp.
2572-25717.

A. Krause and C. Guestrin, Beyond convexity: Submodularity in machine learning,
2008, iCML Tutorials.

V. Tzoumas, A. Jadbabaie, and G. J. Pappas, “Minimal reachability problems,” in
54th IEEE Conference on Decision and Control (CDC), December 2015, to appear.

C. Jiang, Y. Chai Soh, and H. Li, “Sensor placement by maximal projection on mini-
mum eigenspace for linear inverse problem,” arXiv preprint arXiv: 1506.00747, 2015.

S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE Transactions
on Signal Processing, vol. 57, no. 2, pp. 451-462, 2009.

N. K. Dhingra, M. R. Jovanovic, and Z.-Q. Luo, “An admm algorithm for optimal
sensor and actuator selection,” in IEEE 53rd Annual Conference on Decision and
Control (CDC), 2014, pp. 4039-4044.

U. Munz, M. Pfister, and P. Wolfrum, “Sensor and actuator placement for linear
systems based on hg and heo optimization,” IEEE Transactions on Automatic Control,
vol. 59, no. 11, pp. 2984-2989, Nov 2014.

M.-A. Belabbas, “Geometric methods for optimal sensor design,” arXiv preprint arXiv:
1505.05968, 2015.

252

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

D. P. Bertsekas, Dynamic programming and optimal control, Vol. I. Athena Scientific,
2005.

S. Venkatesh, The Theory of Probability: Explorations and Applications. Cambridge
University Press, 2012.

Y. Fang, K. Loparo, X. Feng et al., “Inequalities for the trace of matrix product,”
IEEE Transactions on Automatic Control,, vol. 39, no. 12, pp. 2489-2490, 1994.

V. Kumar, D. Rus, and S. Singh, “Robot and sensor networks for first responders,”
IEEE Pervasive computing, vol. 3, no. 4, pp. 24-33, 2004.

R. Nowak, U. Mitra, and R. Willett, “Estimating inhomogeneous fields using wireless
sensor networks,” IEEE Journal on Selected Areas in Communications, vol. 22, no. 6,
pp. 999-1006, 2004.

M. P. Vitus, “Sensor placement for improved robotic navigation,” Robotics: Science
and Systems VI, p. 217, 2011.

E. Masazade, M. Fardad, and P. K. Varshney, “Sparsity-promoting extended kalman
filtering for target tracking in wireless sensor networks,” IEEE Signal Processing Let-
ters, vol. 19, no. 12, pp. 845-848, 2012.

H. Rowaihy, S. Eswaran, M. Johnson, D. Verma, A. Bar-Noy, T. Brown, and
T. La Porta, “A survey of sensor selection schemes in wireless sensor networks,” in

Defense and Security Symposium. International Society for Optics and Photonics,
2007, pp. 65621A-65621A.

A. O. Hero IIT and D. Cochran, “Sensor management: Past, present, and future,”
IEEE Sensors Journal, vol. 11, no. 12, pp. 3064-3075, 2011.

S. Liu, M. Fardad, E. Masazade, and P. K. Varshney, “Optimal periodic sensor schedul-
ing in networks of dynamical systems,” IEEE Transactions on Signal Processing,
vol. 62, no. 12, pp. 3055-3068.

S. Anderson, T. D. Barfoot, C. H. Tong, and S. Sarkké, “Batch nonlinear continuous-
time trajectory estimation as exactly sparse gaussian process regression,” Autonomous
Robots, vol. 39, no. 3, pp. 221-238, 2015.

H. Strasdat, J. Montiel, and A. J. Davison, “Real-time monocular slam: Why filter?”
in 2010 IEEE International Conference on Robotics and Automation (ICRA),. TEEE,
2010, pp. 2657-2664.

V. Roy, A. Simonetto, and G. Leus, “Spatio-temporal sensor management for environ-
mental field estimation,” Signal Processing, vol. 128, pp. 369 — 381, 2016.

J. Liu, D. Petrovic, and F. Zhao, “Multi-step information-directed sensor querying
in distributed sensor networks,” in Acoustics, Speech, and Signal Processing, 20083.

253

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145)

[146]

[147]

[148]

Proceedings. (ICASSP’03). 2003 IEEE International Conference on, vol. 5. IEEE,
2003, pp. V-145.

M. P. Vitus, W. Zhang, A. Abate, J. Hu, and C. J. Tomlin, “On efficient sensor
scheduling for linear dynamical systems,” Automatica, vol. 48, no. 10, pp. 2482-2493,
2012.

Y. Mo, R. Ambrosino, and B. Sinopoli, “Sensor selection strategies for state estimation
in energy constrained wireless sensor networks,” Automatica, vol. 47, no. 7, pp. 1330—
1338, 2011.

H. Zhang, R. Ayoub, and S. Sundaram, “Sensor selection for optimal filtering of linear
dynamical systems: Complexity and approximation,” in IEEE Conference on Decision
and Control (CDC), 2015.

M. F. Huber, A. Kuwertz, F. Sawo, and U. D. Hanebeck, “Distributed greedy sensor
scheduling for model-based reconstruction of space-time continuous physical phenom-
ena,” in Information Fusion, 2009. FUSION’09. 12th International Conference on.
IEEE, 2009, pp. 102-109.

J. Vondrik, “Submodularity and curvature: The optimal algorithm,” RIMS Kokyuroku
Bessatsu, vol. 23, pp. 253-266, 2010.

L. G. Molinari, “Determinants of block tridiagonal matrices,” Linear algebra and its
applications, vol. 429, no. 8, pp. 2221-2226, 2008.

A. Nemirovski, “Interior point polynomial time methods in convex programming.”

J. E. Weimer, B. Sinopoli, and B. H. Krogh, “A relaxation approach to dynamic
sensor selection in large-scale wireless networks,” in 28th International Conference on
Distributed Computing Systems Workshops (ICDCS), 2008, pp. 501-506.

A. S. Leong, S. Dey, and J. S. Evans, “Asymptotics and power allocation for state
estimation over fading channels,” IEEE Transactions on Aerospace and FElectronic
Systems, vol. 47, no. 1, pp. 611-633, January 2011.

C. Moler and C. Van Loan, “Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later,” SIAM review, vol. 45, no. 1, pp. 3—49, 2003.

T. McMillen, T. Williams, and P. Holmes, “Nonlinear muscles, passive viscoelasticity
and body taper conspire to create neuromechanical phase lags in anguilliform swim-
mers,” PLoS computational biology, vol. 4, no. 8, p. e1000157, 2008.

Y. Kobayashi, H. Watanabe, T. Hoshi, K. Kawamura, and M. G. Fujie, “Viscoelastic
and nonlinear liver modeling for needle insertion simulation,” in Soft Tissue Biome-
chanical Modeling for Computer Assisted Surgery. Springer, 2012, pp. 41-67.

254

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

157]

[158]

[159]

[160]

C. Wex, M. Fréhlich, K. Brandstiddter, C. Bruns, and A. Stoll, “Experimental anal-
ysis of the mechanical behavior of the viscoelastic porcine pancreas and preliminary
case study on the human pancreas,” Journal of the mechanical behavior of biomedical
materials, vol. 41, pp. 199-207, 2015.

K. Wang, R. McCarter, J. Wright, J. Beverly, and R. Ramirez-Mitchell, “Viscoelas-
ticity of the sarcomere matrix of skeletal muscles. the titin-myosin composite filament
is a dual-stage molecular spring,” Biophysical Journal, vol. 64, no. 4, pp. 1161-1177,
1993.

T. M. Best, J. McElhaney, W. E. Garrett, and B. S. Myers, “Characterization of the
passive responses of live skeletal muscle using the quasi-linear theory of viscoelasticity,”
Journal of biomechanics, vol. 27, no. 4, pp. 413-419, 1994.

T. C. Doehring, A. D. Freed, E. O. Carew, and 1. Vesely, “Fractional order viscoelas-
ticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity,” Journal of
biomechanical engineering, vol. 127, no. 4, pp. 700-708, 2005.

E. Macé, I. Cohen, G. Montaldo, R. Miles, M. Fink, and M. Tanter, “In vivo mapping
of brain elasticity in small animals using shear wave imaging,” IEEFE transactions on
medical imaging, vol. 30, no. 3, pp. 550-558, 2011.

S. Nicolle, L. Noguer, and J.-F. Palierne, “Shear mechanical properties of the spleen:
experiment and analytical modelling,” Journal of the mechanical behavior of biomedical
materials, vol. 9, pp. 130-136, 2012.

N. Grahovac and M. Zigié, “Modelling of the hamstring muscle group by use of frac-
tional derivatives,” Compuiers & Mathematics with Applications, vol. 59, no. 5, pp.
1695-1700, 2010.

V. E. Tarasov, Fractional dynamics: applications of fractional calculus to dynamics of
particles, fields and media. Springer Science & Business Media, 2011.

P. Bogdan, B. M. Deasy, B. Gharaibeh, T. Roehrs, and R. Marculescu, “Heterogeneous
structure of stem cells dynamics: statistical models and quantitative predictions,”
Scientific reports, vol. 4, 2014.

M. Ghorbani and P. Bogdan, “A cyber-physical system approach to artificial pancreas
design,” in Proceedings of the ninth IEEE/ACM/IFIP international conference on
hardware/software codesign and system synthesis. IEEE Press, 2013, p. 17.

Y. Xue, S. Rodriguez, and P. Bogdan, “A spatio-temporal fractal model for a cps
approach to brain-machine-body interfaces,” in Design, Automation & Test in Europe
Conference & Ezhibition (DATE), 2016. TEEE, 2016, pp. 642-647.

Y. Xue, S. Pequito, J. R. Coelho, P. Bogdan, and G. J. Pappas, “Minimum number
of sensors to ensure ohservability of physiological systems: A case study,” in Commu-

255

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

nication, Control, and Computing (Allerton), 2016 54th Annual Allerton Conference
on. TEEE, 2016, pp. 1181-1188.

Y. Xue and P. Bogdan, “Constructing compact causal mathematical models for com-
plex dynamics,” in Proceedings of the 8th International Conference on Cyber-Physical
Systems. ACM, 2017, pp. 97-107.

C. Song, S. Havlin, and H. A. Makse, “Self-similarity of complex networks,” arXiv
preprint cond-mat/0503078, 2005.

K.-I. Goh, G. Salvi, B. Kahng, and D. Kim, “Skeleton and fractal scaling in complex
networks,” Physical review letters, vol. 96, no. 1, p. 018701, 2006.

F. Klimm, D. S. Bassett, J. M. Carlson, and P. J. Mucha, “Resolving structural vari-
ability in network models and the brain,” PLoS computational biology, vol. 10, no. 3,
p- 1003491, 2014.

Y. Xue and P. Bogdan, “Reliable multi-fractal characterization of weighted complex
networks: Algorithms and implications,” Scientific Reports, vol. 7, 2017.

J. Klafter, S. Lim, and R. Metzler, Fractional dynamics: recent advances. World
Scientific, 2012.

S. Guermah, S. Djennoune, and M. Bettayeb, “Controllability and observability of lin-
ear discrete-time fractional-order systems.” Applied Mathematics and Computer Sci-
ence, vol. 18, no. 2, pp. 213-222, 2008.

Y. Zhao and J. Cortes, “Gramian-based reachability metrics for bilinear networks,”
IEEE Transactions on Control of Network Systems, vol. PP, no. 99, pp. 1-1, 2016.

S. Pequito, N. Popli, S. Kar, M. Ilic, and A. Aguiar, “A framework for actuator place-
ment in large scale power systems: Minimal strong structural controllability,” in IEEE
5th International Workshop on Computational Advances in Multi-Sensor Adaptive Pro-
cessing (CAMSAP), 2013, pp. 416-419.

Y. Xue, S. Pequito, J. M. Coelho, P. Bogdan, and G. J. Pappas, “Minimum number of
sensors to ensure observability of physiological systems: A case study,” in 54th Annual
Allerton Conference on Communication, Control, and Computing, 2016.

S. Pequito, P. Bogdan, and G. J. Pappas, “Minimum number of probes for brain
dynamics observability,” in 5/th IEEE Conference on Decision and Control (CDC),
2015, pp. 306-311.

V. Tzoumas, A. Jadbabaie, and G. J. Pappas, “Sensor placement for optimal kalman
filtering: Fundamental limits, submodularity, and algorithms,” in American Control
Conference (ACC), 2016, pp. 191-196.

256

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185)]

[186]

[187]

M.-A. Belabbas, “Geometric methods for optimal sensor design,” in Proc. R. Soc. A,
vol. 472, no. 2185. The Royal Society, 2016, p. 20150312.

S. Guermah, S. Djennoune, and M. Bettayeb, “Controllability and observability of lin-
ear discrete-time fractional-order systems,” Int. J. Appl. Math. Comput. Sci., vol. 18,
no. 2, pp. 213222, Jun. 2008.

V. Tzoumas, N. A. Atanasov, A. Jadbabaie, and G. J. Pappas, “Scheduling nonlinear
sensors for stochastic process estimation,” in American Control Conference, 2017, pp.
580-585.

G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw,
“BCI2000: A general-purpose brain-computer interface (BCI) system,” IEEE Trans-
actions on Biomedical Engineering, vol. 51, no. 6, pp. 1034-1043, 2004.

“EEG motor movement/imagery dataset,” PhysioNet. [Online|. Available: http:
//www.physionet.org/pn4/eegmmidb/

Y. Xue, S. Rodriguez, and P. Bogdan, “A spatio-temporal fractal model for a CPS
approach to brain-machine-body interfaces,” in Design, Automation & Test in Furope
Conference & Ezhibition (DATE), 2016, pp. 642—647.

“Emotiv EPOC website.” [Online|. Available: https://emotiv.com/epoc.php

C.-W. Ko, J. Lee, and M. Queyranne, “An exact algorithm for maximum entropy
sampling,” Operations Research, vol. 43, no. 4, pp. 684-691, 1995.

T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons,
2012.

V. Tzoumas, N. A. Atanasov, A. Jadbabaie, and G. J. Pappas, “Scheduling nonlinear
sensors for stochastic process estimation,” in American Control Conference, 2017, pp.
580-585.

N. Karnad, Robot Motion Planning for Tracking and Capturing Adversarial, Cooper-
ative and Independent Targets. U. of Minnesota, 2015.

S. Karlin, A first course in stochastic processes. Academic press, 2014.

V. Tzoumas, A. Jadbabaie, and G. J. Pappas, “Near-Optimal Sensor Scheduling for
Batch State Estimation: Complexity, Algorithms, and Limits,” in 55th IEEE Confer-
ence on Decision and Control (CDC), 2016.

J. L. Ny, E. Feron, and M. A. Dahleh, “Scheduling continuous-time kalman filters,”
IEEE Transactions on Automatic Control, vol. 56, no. 6, pp. 1381-1394, 2011.

X. Shen, S. Liu, and P. K. Varshney, “Sensor selection for nonlinear systems in large

257

188

[189)]

[190]

[191]

[192]

193]

[194]

[195]

[196]

[197]

198

[199]

[200]

[201]

sensor networks,” IEEE Transactions on Aerospace and Electronic Systems, vol. 50,
no. 4, pp. 2664-2678, 2014.

Y. He and E. K. P. Chong, “Sensor scheduling for target tracking: A monte carlo
sampling approach,” Digital Signal Processing, vol. 16, no. 5, pp. 533-545, 2006.

R. Durrett, Probability: theory and ezamples. Cambridge University Press, 2010.

J. Vondrak, “Optimal approximation for the submodular welfare problem in the value
oracle model,” in Proceedings of the fortieth annual ACM symposium on Theory of
computing. ACM, 2008, pp. 67-74.

F. Dellaert and M. Kaess, “Square root sam: Simultaneous localization and map-
ping via square root information smoothing,” The International Journal of Robotics
Research, vol. 25, no. 12, pp. 1181-1203, 2006.

A. Quarteroni, R. Sacco, and F. Saleri, Numerical mathematics. Springer Science &
Business Media, 2010, vol. 37.

V. Tzoumas, L. Carlone, G. J. Pappas, and A. Jadbabaie, “Control and Sensing Co-
design,” ArXiv e-prints: 1802.08576, 2018.

N. Elia and S. Mitter, “Stabilization of linear systems with limited information,” IEFEE
Trans. on Automatic Control, vol. 46, no. 9, pp. 1384-1400, 2001.

G. Nair and R. Evans, “Stabilizability of stochastic linear systems with finite feedback
data rates,” SIAM Journal on Control and Optimization, vol. 43, no. 2, pp. 413-436,
2004.

S. Tatikonda and S. Mitter, “Control under communication constraints,” IEEE Trans.
on Automatic Control, vol. 49, no. 7, pp. 1056-1068, 2004.

V. Borkar and S. Mitter, “LQG control with communication constraints,” Comm.,
Comp., Control, and Signal Processing, pp. 365-373, 1997.

J. L. Ny and G. Pappas, “Differentially private filtering,” IEEE Trans. on Automatic
Control, vol. 59, no. 2, pp. 341-354, 2014.

E. Shafieepoorfard and M. Raginsky, “Rational inattention in scalar LQG control,” in
Proceedings of the 52th IEEE Conference in Decision and Control, 2013, pp. 5733—
5739.

J. L. Ny, E. Feron, and M. A. Dahleh, “Scheduling continuous-time kalman filters,”
IEEE Trans. on Aut. Control, vol. 56, no. 6, pp. 1381-1394, 2011.

E. Nozari, F. Pasqualetti, and J. Cortés, “Time-invariant versus time-varying actuator

scheduling in complex networks,” in American Control Conference, 2017, pp. 4995
5000.

258

[202]

[203]

[204]

[205]

[206]

207]

208

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

T. Summers and J. Ruths, “Performance bounds for optimal feedback control in net-
works,” arXiv e-prints:1707.04528, 2017.

T. Summers and M. Kamgarpour, “Performance guarantees for greedy maximization
of non-submodular set functions in systems and control,” arXiv e-prints:1712.04122,
2017.

A. F. Taha, N. Gatsis, T. Summers, and S. Nugroho, “Time-varying sensor and actua-
tor selection for uncertain cyber-physical systems,” ArXiv e-prints:1708.07912, 2017.

G. Nair, F. Fagnani, S. Zampieri, and R. Evans, “Feedback control under data rate
constraints: An overview,” Proceedings of the IEFE, vol. 95, no. 1, pp. 108-137, 2007.

J. Hespanha, P. Naghshtabrizi, and Y.Xu, “A survey of results in net- worked control
systems,” Pr. of the IEEE, vol. 95, no. 1, p. 138, 2007.

J. Baillieul and P. Antsaklis, “Control and communication challenges in networked
real-time systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 9-28, 2007.

T. Tanaka and H. Sandberg, “SDP-based joint sensor and controller design for
information-regularized optimal LQG control,” in IEEE 5jth Annual Conference on
Decision and Control, 2015, pp. 4486-4491.

T. Tanaka, P. M. Esfahani, and S. K. Mitter, “LQG control with minimum directed in-
formation: Semidefinite programming approach,” IEEFE Trans. on Automatic Control,
vol. 63, no. 1, pp. 37-52, 2018.

L. A. Wolsey, “An analysis of the greedy algorithm for the submodular set covering
problem,” Combinatorica, vol. 2, no. 4, pp. 385-393, 1982.

S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum coverage problem,”
Info. Processing Letters, vol. 70, no. 1, pp. 39-45, 1999.

M. Sviridenko, “A note on maximizing a submodular set function subject to a knapsack
constraint,” Operations Research Letters, vol. 32, no. 1, pp. 41-43, 2004.

V. Tzoumas, L. Carlone, G. J. Pappas, and A. Jadbabaie, “Sensing-Constrained LQG
Control,” arXiv e-prints: 1709.08826, 2017.

U. Feige, “A threshold of In(n) for approximating set cover,” Journal of the ACM,
vol. 45, no. 4, pp. 634-652, 1998.

D. S. Berustein, Matriz mathematics. Princeton University Press, 2005.

D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,”
J. of Symbolic Comp., vol. 9, no. 3, pp. 251-280, 1990.

259

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

V. Tzoumas, A. Jadbabaie, and G. J. Pappas, “Resilient Non-Submodular Maximiza-
tion over Matroid Constraints,” ArXiv e-prints: 1804.01013.

A. Clark, L. Bushnell, and R. Poovendran, “On leader selection for performance and
controllability in multi-agent systems,” in [EEE 51st Annual Conference on Decision
and Control, 2012, pp. 86-93.

G. Calinescu, C. Chekuri, M. Pal, and J. Vondrak, “Maximizing a submodular set
function subject to a matroid constraint,” in International Conference on Integer Pro-
gramming and Combinatorial Optimization, 2007, pp. 182-196.

L. Carlone and S. Karaman, “Attention and anticipation in fast visual-inertial naviga-
tion,” in Int. C. on Rob. and Autom., 2017, pp. 3886—-3893.

E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and
inaccurate measurements,” Communications on pure and applied mathematics, vol. 59,
no. 8, pp- 1207-1223, 2006.

C. Boutsidis, M. W. Mahoney, and P. Drineas, “An improved approximation algorithm
for the column subset selection problem,” in ACM-SIAM Symposium on Discrete al-
gorithms, 2009, pp. 968-977.

E. R. Elenberg, R. Khanna, A. G. Dimakis, and S. Negahban, “Restricted strong
convexity implies weak submodularity,” ArXiv e-prints:1612.00804, 2016.

V. Cevher and A. Krause, “Greedy dictionary selection for sparse representation,”
IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 5, pp. 979-988, 2011.

A. Das and D. Kempe, “Submodular meets spectral: Greedy algorithms for subset
selection, sparse approximation and dictionary selection,” in International Conference
on Machine Learning, 2011, pp. 1057-1064.

R. Khanna, E. Elenberg, A. Dimakis, S. Negahban, and J. Ghosh, “Scalable greedy
feature selection via weak submodularity,” in Artificial Intelligence and Statistics, 2017,
pp. 1560-1568.

M. Sviridenko, J. Vondrék, and J. Ward, “Optimal approximation for submodular
and supermodular optimization with bounded curvature,” in Proceedings of the 26th
Annual ACM-SIAM Symposium on Discrete Algorithms, 2015, pp. 1134-1148.

D. Sharma, A. Kapoor, and A. Deshpande, “On greedy maximization of entropy,” in
Inter. Conf. on Machine Learning, 2015, pp. 1330-1338.

B. Schlotfeldt, V. Tzoumas, D. Thakur, and G. J. Pappas, “Resilient Active Informa-
tion Gathering with Mobile Robots,” ArXiv e-prints: 1803.09730, 2018.

C. Bishop, Pattern recognition and machine learning. Springer, 2006.

260

[231]

[232]

[233]

[234]

[235)]

[236]

[237]

238

239

[240]

[241]

[242]

[243]

V. Tzoumas, A. Jadbabaie, and G. J. Pappas, “Resilient Monotone Sequential Maxi-
mization,” ArXiv e-prints: 1803.07954, 2018.

D. Golovin and A. Krause, “Adaptive submodularity: Theory and applications in ac-
tive learning and stochastic optimization,” Journal of Artificial Intelligence Research,
vol. 42, pp. 427-486, 2011.

A. Clark, B. Alomair, L. Bushnell, and R. Poovendran, “Scalable and distributed
submodular maximization with matroid constraints,” in International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, 2015, pp. 435—
442.

B. Schlotfeldt, V. Tzoumas, D. Thakur, and G. J. Pappas, “Resilient Active Informa-
tion Gathering with Mobile Robots,” ArXiv e-prints: 1803.09730.

S. Karaman and E. Frazzoli, “High-speed flight in an ergodic forest,” in IEEE In-
tern. Confer. on Robotics and Automation, 2012, pp. 2899-2906.

C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and
J. J. Leonard, “Past, present, and future of simultaneous localization and mapping:
Toward the robust-perception age,” IEEE Transactions on Robotics, vol. 32, no. 6, pp.
1309-1332, 2016.

T. Cieslewski, E. Kaufmann, and D. Scaramuzza, “Rapid exploration with multi-rotors:
A frontier selection method for high speed flight,” in IEEE/RSJ Int. Conf. on In-
tel. Robots and Systems, 2017, pp. 2135-2142.

M. Santos, Y. Diaz-Mercado, and M. Egerstedt, “Coverage control for multirobot
teams with heterogeneous sensing capabilities,” IEEE Robotics and Automation Let-
ters, vol. 3, no. 2, pp. 919-925, 2018.

A. Krause, “Optimizing sensing: Theory and applications,” Ph.D. dissertation,
Carnegie Mellon University, 2008.

J. L. Williams, “Information theoretic sensor management,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 2007.

G. M. Hoffmann and C. J. Tomlin, “Mobile sensor network control using mutual in-
formation methods and particle filters,” IEEE Transactions on Automatic Control,
vol. 55, no. 1, pp. 32-47, 2010.

B. J. Julian, M. Angermann, M. Schwager, and D. Rus, “Distributed robotic sensor
networks: An information-theoretic approach,” The Inter. Journal of Robotics Re-
search, vol. 31, no. 10, pp. 1134-1154, 2012.

P. Dames, M. Schwager, V. Kumar, and D. Rus, “A decentralized control policy for
adaptive information gathering in hazardous environments,” in IEEE Conference on
Decision and Control, 2012, pp. 2807-2813.

261

[244]

[245]

[246]

[247]

248

[249)]

[250]

P. Dames and V. Kumar, “Autonomous localization of an unknown number of targets
using teams of mobile sensors,” IEEE Trans. on Autom. Science and Eng., vol. 12,
no. 3, pp. 850-864, 2015.

B. Charrow, V. Kumar, and N. Michael, “Approximate representations for multi-robot
control policies that maximize mutual information,” Autonomous Robots, vol. 37, no. 4,
pp. 383-400, 2014.

T. H. Chung, J. W. Burdick, and R. M. Murray, “A decentralized motion coordination
strategy for dynamic target tracking,” in IEEFE International Conference on Robotics
and Automation, 2006, pp. 2416-2422.

C. M. Kreucher, “An information-based approach to sensor resource allocation,” Ph.D.
dissertation, University of Michigan, 2005.

B. Schlotfeldt, D. Thakur, N. Atanasov, V. Kumar, and G. J. Pappas, “Anytime
planning for decentralized multi-robot active information gathering,” IEEE Robotics
and Automation Lelters, 2018.

N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Decentralized active infor-
mation acquisition: Theory and application to multi-robot SLAM,” in IEEE Conf. on
Robotics and Autom., 2015, pp. 4775-4782.

J. B. Orlin, A. S. Schulz, and R. Udwani, “Robust monotone submodular function
maximization,” in Inter. Conference on Integer Programming and Combinatorial Op-
timazation, 2016, pp. 312-324.

262

