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Landau theory of tilting of oxygen octahedra in perovskites
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The list of possible commensurate phases obtained from the parent tetragonal phase of Ruddlesden-Popper
(RP) systems, An+1BnC3n+1 for general n due to a single phase transition involving the reorienting of octahedra
of C (oxygen) ions is reexamined using a Landau expansion. This expansion allows for the nonlinearity of the
octahedral rotations and the rotation-strain coupling. It is found that most structures allowed by symmetry are
inconsistent with the constraint of rigid octahedra, which dictates the form of the quartic terms in the Landau
free energy. For A2BC4 our analysis allows only 10 of the 41 structures which satisfy the general symmetry
arguments of Hatch et al. [Phys. Rev. B 39, 9282 (1989)]. The symmetry of rotations for RP systems with n > 2
is clarified. Our list of possible structures for general n excludes many structures allowed in previous studies.

DOI: 10.1103/PhysRevB.85.174107 PACS number(s): 61.50.Ks, 61.66.−f, 63.20.−e, 76.50.+g

I. INTRODUCTION

The Ruddlesden-Popper (RP) compounds1 are layered
perovskites having the chemical formula An+1BnC3n+1 and
which consist of two slabs of BC6 octahedra per conventional
unit cell. Each slab consists of n layers of corner sharing
octahedra of C ions, where C is usually either fluorine or
oxygen. These systems either are or can be considered to
be developed via one or more structural transitions from the
high-symmetry tetragonal parent structure shown in Fig. 1
for the cases exemplified by K2MgF4 (n = 1) and Ca3Mn2O7

(n = 2). We refer to the RP system with n = 1 as RP214 and
to that with n = 2 as RP327.

The RP systems exhibit many interesting technologi-
cal properties such as high-Tc superconductivity,2 colossal
magnetoresistance,3 metal insulator transitions,4 and coupled
ferroelectric and magnetic order.5–7 Many of these properties
depend sensitively on the distortions from the ideal tetragonal
I4/mmm structure (see Fig. 1) of space group 139 which
appear at structural phase transitions.8–12 (Numbering of
space groups is from Ref. 13.) Accordingly, an accurate
characterization of their structure is essential to reach a detailed
understanding of their properties. Such an understanding can
potentially lead to the fabrication of new systems with en-
hanced desired properties. It is therefore not surprising that one
of the most celebrated theoretical problems in crystallography
is to list the possible structures that can result from a single
structural phase transition in which the (usually oxygen)
interlocking octahedra are cooperatively reoriented under the
constraint that they are distorted only weakly (in a sense
made precise below). One of the earliest works to address this
question was that of Glazer,14 who analyzed possible structural
distortion from the cubic parent structure of CaTiO3. It turned
out that a few of the structures he found did not actually
satisfy the constraint of not distorting the octahedra.15 For the
RP214 systems the two principal approaches to this problem
which have been used are (a) a direct enumeration of likely
structures16 and (b) the use symmetry.17 The second approach
utilizes a very useful computer program18 to generate the
isotropy subgroups of Ref. 19. In this way Hatch et al.17 gave
a listing for the RP214 structure of possible phase transitions
involving distortions at various high symmetry wave vectors.
This listing was shown to be consistent with the revised results
of method (a).17 This important work has stood unquestioned

for over a decade.20 Here we show that most of structures listed
in Refs. 17, 20, and 21 for the RP214 systems are inconsistent
with the constraint of rigid octahedra. To implement this
constraint, we assume that the spring constants for distortion
of the octahedra are larger than the other spring constants of
the lattice by a factor of λ. Most of our results are obtained
to leading order in 1/λ, which we regard as an expansion
parameter. This constraint causes the quartic terms in the
Landau free energy to assume a form which is less general than
allowed by symmetry. In some cases this constraint causes us
to reject structures which simultaneously have distorted and
undistorted sublattices, a situation which is counterintuitive,
since it is analogous to a magnetic system simultaneously
having ordered and disordered sublattices. Even for structures
which our analysis allows, it is inevitable that in the structural
phase transition the octahedra will undergo small (of order
1/λ) distortions, which are observed.22 In Glazer’s work14 this
constraint was taken into account by constructing a flexible
model of interlocking tetrahedra.23 Here this constraint is
treated analytically within the Landau expansion.

Briefly, this paper is organized as follows. In Sec. II we
enumerate the high-symmetry wave vectors of the distortions
we consider and we discuss the role of the quartic terms in
the Landau expansion in determining the detailed nature of
the distortions. Here we also develop the nonlinear constraint
induced by the rigidity of the octahedra. In Sec. III we apply
these ideas to enumerate the possible structures which are
allowed via a single phase transition involving a distortion at
these high-symmetry wave vectors for the RP214 structure.
Our results are summarized in Tables II and III, below. In
Sec. IV we extend the treatment to the analogous RP327
(A3B2C7) bilayer system. In Sec. V we use our results for
n = 1 and n = 2 RP systems to obtain results for the RP
systems An+1BnC3n+1 consisting of n-layer slabs (with n

finite). Our results for general n are given in Table VII, below.
In Sec. VI we discuss and summarize our results. In this paper
we include the coupling of octahedral reorientations to uniform
strains and in an appendix we discuss how thermal fluctuations
remove some unphysical apsects of the mean-field elastic
response to octahedral reorientations. A brief report24 in which
the coupling to strains was omitted gave results similar to those
given here. In a future paper we will consider phases which can
be reached via two or more successive phase transitions.6,17
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FIG. 1. (Color online) The high-symmetry (body-centered tetrag-
onal) parent structure of A2BO4 (left) and A3B2O7 (right). The green
squares are A ions. The B ions are at the centers of the oxygen (blue
dots) octahedra. We indicate what we call “layers” and “slabs.” For
An+1BnC3n+1 each slab contains n layers. The lattice constants a and
c, which define the unit cell, are indicated.

II. GENERAL PRINCIPLES

A. Overview

We analyze possible distortions from the parent tetragonal
system using a Landau-like formulation in which we write the
free energy F (always per unit volume) as

F = 1

2

∑
k,l

Ak,l(T )XkXl + O(X4), (1)

where Xk is a component of an ionic displacement. A structural
phase transition occurs at a temperature T0 when an eigenvalue
of the matrix A becomes zero. (For T > T0 all the eigenvalues
of A are positive.) If the zero (critical) eigenvalue is N -fold
degenerate, then for T near T0 one has

F ∼ a

2
(T − T0)

N∑
k=1

Q2
k, (2)

where Qk is the amplitude of the kth linear combination of
X’s associated with the critical eigenvector of A. As we shall
see, higher-order (in Q) corrections to the free energy in the
cases of interest involve only even powers of the Q’s.

As is customary (e.g., see Ref. 17), we restrict attention
to the cases when Q is a superposition of displacements
associated with the star of the high-symmetry wave vectors
X = (1/2,1/2,0), N = (1/2,0,1/2), or P = (1/2,1/2,1/2).25

These vectors are on faces of the first Brillouin zone as shown
in Fig. 2. The reciprocal lattice vectors are

G1 = (0,1,1), G2 = (1,0,1),

G3 = (1,1,0). (3)

P K

K

N

X

z

y

K x

FIG. 2. (Color online) The first Brillouin zone for RP systems.
There are two inequivalent X = (1/2,1/2,0) points, four inequivalent
N points, and two inequivalent P points. (Wave vectors are “equiv-
alent” if their difference involves an integer number of reciprocal
lattice vectors G.)

Instead of dealing with irreducible representations (irreps), we
develop the free energy for the most general structure which
can be constructed using the angular distortions at the wave
vectors of the star of X, N, or P.

To see how the form of the fourth-order potential affects
possible structural distortions, consider a system with two
order parameters Q1 and Q2 related by symmetry, for which
the free energy assumes the form

F = (T − T0)
[
Q2

1 + Q2
2

] + u
[
Q2

1 + Q2
2

]2 + vQ2
1Q

2
2 (4)

up to fourth order in Q with u > 0. As the temperature
is lowered through the value T0 the nature of the ordering
depends on the sign of v. (See the phase diagram of Fig. 3.)
If v is positive, then ordering has either Q1 or Q2 zero.
If −4u < v < 0, ordering occurs with |Q1| = |Q2|. At the
multicritical point26,27 where v is zero (and also a similar
sixth-order anisotropy vanishes) one can have ordering in
an arbitrary direction of order parameter (Q1-Q2) space.
However, we do not consider multicritical points because
they require adjusting two control parameters such as the
temperature and, say, the pressure or the electric field, etc.
So the results of the present paper (as well as those of Refs. 17
and 20) should be interpreted as being relevant to phenomena
which occur when only a single control parameter, such as the
temperature, is varied. However, when u and v are small, one

− 4

1        2 
Q  = Q  = 0

v/u
1   2

|Q  | = |Q  |
1           2

T

MCP

Q  Q  = 0

0

FIG. 3. (Color online) The mean-field phase diagram (Ref. 27)
(schematic) for the free energy of Eq. (4), showing the multicritical
point (MCP) at v = 0. The dashed line indicates a continuous phase
transition and the solid line indicates a discontinuous one.
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can have a weak first-order transition in which ordering can
occur in an arbitrary direction in Q1-Q2 space. Note that if
we invoke only the symmetry properties of the system, there
is no constraint on the parameters u and v, in which case
the analysis of Ref. 17 would apply. However, as we explain
below, the picture of the lattice as consisting of interlocking
oxygen octahedra implies a special form of the quartic terms
with u > 0 and v = −2u, so that in most cases only structures
with |Q1| = |Q2| will actually occur.

B. Octahedral constraint

We now discuss the possible distorted configurations as
constrained by the rigidity of the oxygen (or C ion) octahedra.
In describing the distortions we use a notation similar to
that of Refs. 17 and 20 which we deem more convenient
for the quasiplanar RP systems than the widely used Glazer
notation14 for pseudocubic perovskites. For a single RP layer,
we first consider the rotation of octahedra through an angle
2θ about the tetragonal axis. Giving the angle of rotation of
one octahedron at the origin fixes the rotation angles of all
other octahedra in this layer. In the Glazer notation this would
be specified as a0a0b+ or a0a0b−, where the superscripts 0
indicate zero rotation about the axes x and y, and b (implicitly
equal to 2θ ) is the rotation angle about the third (z) axis. The
superscript + or − on b tells how the angle varies as we move
from one layer perpendicular to z to the next layer. Since for
RP systems we have two slabs to consider, there would be
two sets of Glazer symbols, one for each slab. Accordingly,
for RP systems we introduce a notation similar to that of
Refs. 17 and 20, which applies when the star of the wave
vector is specified. (For the pseudocubic perovskites the Glazer
symbol implicitly specifies the wave vector by the array of
superscripts.)

For a rotation about the tetragonal z axis, the situation is that
shown in Fig. 4. There one sees that a vertex common to two
adjacent octahedra would, if the vertices were considered to be
separate vertices for the two octahedra, become two closely,
but distinct, separated points. In order to recover the common
vertex, the two points would have to coalesce, which would
require octahedral distortions of �x/2 and �y/2. However, it
is possible for the lattice to relax, so that this mode would take
place without any distortion of the octahedra. This relaxation
involves macroscopic strains along the x and y axes, to account
for the � displacements. For RP214 the octahedral distortions
in the x-y plane are

�x,n = 2aθ2
n , �y,n = 2aθ2

n , (5)

where �α,n is the value of �α for the nth layer (n = 1,2) for
the two layers in the RP214 system.

We need to generalize Eq. (5) to allow for the rotation
of octahedra about the tetragonal x and y axes. In the
seminal work of Ref. 14 we are reminded that the group of
rotations is non-Abelian: Rotations about different axes do not
commute with one another. Here we discuss a simple nonlinear
treatment of small rotations. We define the orientation of
an octahedron by three variables, θ , φx , and φy which
correspond to small rotations about the tetragonal axes.28

These three variables correspond to the three Euler angles
needed to specify the orientation of a rigid body when the

y

x Δ y

x

a

a = 1

2θ

2θ

2θ

Δ

FIG. 4. (Color online) The octahedral constraint for interlocking
θ rotations about the tetragonal z axis (which is perpendicular to
the plane of the paper). The squares represent the cross sections
of octahedra in an a-b plane. Here �x = �y = 2aθ2, where �α

is the mismatch that has to be absorbed either by a distortion of
the octahedron or by a macroscopic strain when the octahedron is
undistorted.

rotation from the undistorted state is small. This situation is
somewhat similar to the spin wave expansion in which one
introduces transverse spin components to describe the rotation
of a three-dimensional spin. A simple way to deal with this
situation is to express the orientation of the vectors from the
center of the octahedron to the equatorial vertices in terms of
their transverse displacements as

r1 = (√
1/4 − y2

1 − z2
1,y1,z1

)
,

r2 = (
x2,

√
1/4 − x2

2 − z2
2,z2

)
,

(6)
r3 = (−√

1/4 − y2
3 − z2

3,y3,z3
)
,

r4 = (
x4, −

√
1/4 − x2

4 − z2
4,z4

)
,

where r1, r2, r3, and r4 are the rotated positions of the vertices
whose respective original locations were (1/2,0,0), (0,1/2,0),
(−1/2,0,0), and (0, − 1/2,0). Clearly, to retain the octahedral
shape (with the center of mass fixed) we require that r3 =
−r1 and r4 = −r2. We wish to incorporate the octahedral
constraint to leading order in the transverse displacements.
This constraint leads to

|r1 ± r2|2 = 1
2 = (

x2 ±
√

1
4 − y2

1 − z2
1

)2

+ (
y1 ±

√
1
4 − x2

2 − z2
2

)2 + (z1 ± z2)2 (7)
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FIG. 5. (Color online) The structure of corner-sharing octahedra
for the star of X ≡ (1/2,1/2,0) and P ≡ (1/2,1/2,1/2). The solid
squares are the cross sections of octahedra in the z = 0 plane and
the dashed squares are those in the z = 1/2 plane. For clarity the
octahedra are slightly separated instead of sharing vertices. Here φx

means that the +x vertex moves up by an amount φx and the −x

vertex moves down by an amount φx and φy means that the +y vertex
moves up by an amount φy and the −y vertex moves down by an
amount φy . Also, 2θ is the angle of rotation about the z axis. Here
and below Q denotes −Q. For X the structure is invariant under
z → z + 1. For P the variables change sign under z → z + 1. The
octahedral labels A, B, and C are needed for the discussion in the
text.

so that

0 = x2

√
1
4 − y2

1 − z2
1 + y1

√
1
4 − x2

2 − z2
2 + z1z2. (8)

This gives

0 = x2
[

1
2 − y2

1 − z2
1

] + y1
[

1
2 − x2

2 − z2
2

] + z1z2 + O(q5),

(9)

where q is one or more of the angular variables. Thus,

x2 + y1

2
= −z1z2 + x2

(
y2

1 + z2
1

) + y1
(
x2

2 + z2
2

) + O(q5).

(10)

We transform from the variables x2 and y1 to θ and δθ :

x2 = −θ + δθ, y1 = θ + δθ, (11)

so that

δθ = −z1z2 + [−θ + δθ ]
[
(θ + δθ )2 + z2

1

]
+ [θ + δθ ]

[
(−θ + δθ )2 + z2

2

] + O(q5), (12)

which gives

δθ = −z1z2 + θ
(
z2

2 − z2
1

) + O(q4). (13)

To make contact with the body of the paper (see Fig. 5, below),
replace z1 with φx and z2 with φy to get

x1 = 1
2 − y2

1 − z2
1 = 1

2 − φ2
x − θ2 + 2θφxφy + O(q4),

x2 = −θ − φxφy + θ
(
φ2

y − φ2
x

) + O(q4),

y2 = 1
2 − x2

2 − z2
2 = 1

2 − φ2
y − θ2 − 2θφxφy + O(q4),

y1 = θ − φxφy + θ
(
φ2

y − φ2
x

) + O(q4). (14)

One sees that in terms of the variables θ , φx , and φy the actual
positions of the vertices are given by power series expansion
in these variables, the lowest term of which identifies these
variables directly with the corresponding displacements. (Of
course, this expansion is only useful if the variables are
small.) We use these variables (which are essentially the three
components of the angular momentum vector) to analyze the
free energy. In calculating scattering cross sections one must,
of course, use the actual positions of the ions given by their
nonlinear expansion, such as that in Eq. (14) or in Fig. 6, below.

III. RP214 STRUCTURES

We start by considering the RP214 structures shown in the
left panel of Fig. 1, so that each slab consists of a single layer.

A. The star of X

Here we will develop a Landau expansion for these
structures which arise from distortions associated with the
star of the wave vector, X, which includes X1 = (1/2,1/2,0)
and X2 ≡ (1/2, − 1/2,0) providing that the octahedra rotate
as constrained by their shared vertex (see Fig. 5). In the z = 0
plane both X1 and X2 each imply that all angular variables
alternate in sign as one moves between nearest neighbors.
This fact fixes the values of all the φ’s and θ ’s in the z = 0
plane in terms of the values for the octahedron labeled A in
Fig. 5. If we had only the wave vector X1, then the variables for
octahedron B would be the negatives of those for octahedron A
and the variables of octahedron C would be identical to those
for octahedron A. If we had only the wave vector X2 then
the variables for octahedra B and C would be reversed from
what they were for wave vector X1. Thus, if we have a linear
combination of the two wave vectors, the orientational state
for the plane z = 1/2 is characterized by assigning arbitrary
values to the variables of octahedron B relative to which the
values of all the other variables in that plane are fixed. Thus,
Fig. 5 gives the most general structure associated with the star
of X.

In Fig. 6 we identify the displacements of the vertices for
the star of X using Eq. (14). From this figure we obtain the
mismatch of the vertex when considered to be two independent
vertices of adjacent octahedra to be

xB − xA = 2φ2
x + 2θ2 + ∂ux/∂x

= 2φ2
x + 2θ2 + εxx,

yB − yA = 2φxφy + ∂uy/∂x

= 2φxφy + εxy,

yE − yD = 2φ2
y + 2θ2 + ∂uy/∂y (15)

= 2φ2
y + 2θ2 + εyy,
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xE − xD = 2φxφy + ∂ux/∂y

= 2φxφy + εxy,

with corrections at order q4. Here uα is the α component of
the displacement field and we have introduced the symmetric
strain tensor, defined by

εαβ = 1

2

[
∂uα

∂rβ

+ ∂uβ

∂rα

]
. (16)

We have dropped contribution from the antisymmetric strain
tensor (which corresponds to a rotation of the system).

The elastic free energy, FOct, due to the deformation of the
octahedra is proportional to the expansion parameter λ � 1.
In terms of the variables of Fig. 6, FOct is constrained by
symmetry to be of the form

FOct = c1λ[(xB − xA)2 + (yE − yD)2]

+ (c2λ/2)[(yB − yA)2 + (xE − xD)2]

+ c3λ[(yB − yA)(xE − xD) + (yE − yD)(xB − xA)].

(17)

In writing this result we did not allow cross terms like
(xB − xA)(yB − yA), which are not invariant with respect to
the mirror plane (mdR4) perpendicular to the x axis. Then,

taking account of the two layers per unit cell, we have

FOct = c1λ

2∑
k=1

[(
2φ2

x,k + 2θ2
k + εxx

)2

+ (
2φ2

y,k + 2θ2
k + εyy

)2]
+ c2λ

2∑
k=1

[(2φx,kφy,k + εxy)2]

+ c3λ

2∑
k=1

[(
2φ2

x,k + 2θ2
k + εxx

)
× (

2φ2
y,k + 2θ2

k + εyy

)]
, (18)

where k = 1,2 labels the slabs. Note that the cn are constants
of order λ0. Stability when the angular variables are all zero
implies that c1, c2, and 2c1 − |c3| are all positive. In the
undistorted phase where the angular variables are all zero one
can identify the contributions of order λ of these deformations
(within the mean-field approximation) to the elastic constants
as

C11 ≈ 4c1λ, C12 ≈ 2c3λ, C44 ≈ 4c2λ. (19)

Contributions to the elastic constants involving atomic
displacements which do not distort octahedra are of order λ0

and are not included here. As discussed in Appendix B, the
mean-field estimates of Eq. (19) are unphysical because they

y = 1/2 −      −     −

2

φ2
y φ2

x

φ x

φ2
x θ2 φ xφ y2θ

φ2
y φ2

xθ(      −      )

φ xφ y2θ

φ y

φ xφ y φ2
y φ2

xθ(      −      )

θ2 φ xφ y2θ

φ y

φ2
y φ2

x

φ xφ y φ2
y φ2

xθ(      −      )

θ2 φ xφ y2θ

φ y

φ2
y

φ xφ y φ2
y φ2

x
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x θ2 φ xφ y2θ

φ xφ y

φ xφ y

φ2
x φ xφ y

φ x φ y
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φ x φ x

φ x x−φ

x−φ x−φ
φ y

φ y

φ yy−φ

y−φ

y−φ

φ2
y

θ(     −       )θy =     −            +

z =

x = 1/2 −     −     +

θ

z = 

φ2
y θ2y = 1/2+      +     −

θx =      −            −

z = −

y = 3/2 −     −      +
θ(      −      )x =−    +           +

θ

z = 

x = −   −            +

θ

z =

y =     +           + θ(     −      )

x = 1/2+      +     + 2θ

θy = −    −           −

z = −

x

y

A

A B

B

C

C

D

D

E
E

F

F

x = 3/2 −     −     −θ

FIG. 6. (Color online) The displacements of the vertices (in the absenece of strains) for the star of X including nonlinear contributions up
to order q3. The origin is indicated by the (magenta) solid circle. The displacements of the octahedron at the origin are given in terms of the
expansion parameters of Eq. (14). The φ parameters at each vertex are shown. The θ displacements are only given in the formulas. Because
the wave vectors of the star of X are (1/2,1/2,0) and (1/2, − 1/2,0), the displacement of vertex C is related to that of vertex A by changing
the signs of all the order parameters. The displacement of vertex F is obtained similarly from vertex D. The displacement of vertex B is obtained
from that of vertex C by inversion about (1,0,0) and that of vertex E from that of vertex F by inversion about (0,1,0).
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TABLE I. Effect of symmetry operations on the variables of the
stars of X ≡ (1/2,1/2,0) and P ≡ (1/2,1/2,1/2) (shown in Fig. 5)
and on the strain variables. HereR4 is a fourfold right-handed rotation
about the positive tetragonal z axis passing through the origin, md and
mz are mirrors that take x into y and z into −z, respectively, and T

is the translation (1/2,1/2,1/2). The angular variables are odd under
the translations Tx = (1,0,0) and Ty = (0,1,0). For the star of X,
ξ = 1 and for the star of P, ξ = −1. Note that spatial inversion I
is implicitly included because I = R2

4mz (Ref. 33). In the last line
� ≡ εxx − εyy .

R4 md mz T

φx,1 φy,1 φy,1 −φx,1 φx,2

φy,1 −φx,1 φx,1 −φy,1 φy,2

φx,2 −φy,2 φy,2 −ξφx,2 ξφx,1

φy,2 φx,2 φx,2 −ξφy,2 ξφy,1

θ1 θ1 −θ1 θ1 θ2

θ2 −θ2 −θ2 ξθ2 ξθ1

εxy −εxy εxy εxy εxy

� −� −� � �

do not allow for the angular variables to relieve an applied
stress. However, for the purposes of analyzing the symmetry
the fact that this approximation for the elastic constants does
not properly allow for thermal fluctuations is not relevant.

We write the elastic free-energy density FX for the RP214
structure of Fig. 5 for the star of X as

FX = FOct + F2 + F4 + F2ε, (20)

where F2 and F4 are quadratic and quartic terms of order λ0

and F2,ε the order parameter strain coupling at order λ0, which
is quadratic in the order parameters and linear in the strain.

The result of Eq. (18) could be numerically verified by a
first-principles calculation of the energy for the rotation of the
octahedra in the two cases when (a) the lattice constants are
fixed to the values appropriate to the unrotated configuration
and (b) then the lattice constants are allowed to relax as
the octahedra are rotated. According to Eq. (18), these two
calculations should give very different results.

The free energy has to be invariant under all the symmetry
operations of the “vacuum,” which, in this case, is the parent
tetragonal structure. Accordingly, in Table I we give the effect
of symmetry operations on the variables appearing implicitly
in Eq. (20). Here and below, because the octahedral constraint
does not directly couple different layers, quartic terms of the
form θ2

1 θ2
2 , φ2

x,1φ
2
y,2 + φ2

x,2φ
2
y,1 and φx,1φy,1φx,2φy,2 which are

allowed by symmetry (see Table I), do not appear at order
λ. (However, of course, they are present at order λ0.) Only
quartic terms which arise from the octahedral constraint at
a single octahedron can appear at order λ. Using Table I, we
see that the quadratic terms which are invariant under the
symmetry operations which leave the reference tetragonal
structure invariant are

F2 = α
[
φ2

x,1 + φ2
y,1 + φ2

x,2 + φ2
y,2

]
+ 2β[φx,1φy,2 + φx,2φy,1] + γ

[
θ2

1 + θ2
2

]
≡ 1

2 [α − β][(φx,1 − φy,2)2 + (φx,2 − φy,1)]

+ 1
2 [α + β][(φx,1 + φy,2)2 + (φx,2 + φy,1)]

+ γ
[
θ2

1 + θ2
2

]
. (21)

Terms in F2,ε which cause lattice distortions when tetragonal
symmetry is broken are

F2,ε = a1εxyθ1θ2 + a2[εxx − εyy]
[
φ2

x,1 + φ2
x,2 − φ2

y,1 − φ2
y,2

]
+ a3[φx,1φy,1 + φx,2φy,2]εxy. (22)

We will deal with F4 when it is needed.
One might argue that “Constraining the form of the free

energy departs ...from the accepted way of using symmetry
in this theory. Any author is certainly free to postulate a
modified free energy and derive consequences but the general
appeal of this approach is then limited . . .”.29 The reason
this objection is invalid is that our treatment is predicated
on the fact that these RP systems consist of rigid octahedra.
(This assumption of rigidity has been accepted by the research
community for several decades and is supported by recent
first-principles calculations.6,30–32) One can imagine raising
the temperature sufficiently or reducing the internal force
constants so as to violate our assumption that the quartic
potential due to intraoctahedral interactions dominates the
quadratic terms in the Landau expansion. We refer to this limit
as the limit of “octahedral melting.” For the RP perovskites,
this limit is clearly irrelevant in practicality. In perovskites,
such as RP214, it is the geometry of the metal-oxygen bonds
that leads to the rigidity of the octahedron. To ignore this
physics and rely solely on symmetry (as implied by Ref. 29)
is not sensible. To summarize, if it is legitimate to consider
the system as consisting of rigid octahedra (as is the case
for the RP perovskites), then the elastic energy quartic in the
ionic displacements is dominated by coupling terms which
arise from the distortion of individual octahedra. Note that the
octahedra do not need to be infinitely rigid for our argument to
be valid. It is only necessary that the octahedra be rigid enough
that λ � 1; that is, that it is appropriate to consider the system
as being a system of interlocking octahedra.

We now give an analysis of the above free energy which
neglects fluctuations. Our plan is to eliminate the noncritical
strain variables by minimizing the free energy of Eq. (20) with
respect to the strains. The structural phase transitions which
we are investigating arise when one of the channels becomes
unstable, that is, when γ or α − |β| passes through zero. As
in Ref. 17, we reject multicritical points where more than one
channel simultaneously becomes unstable.

1. θ distortion

When only γ of Eq. (21) passes through zero, we set

φx,1 = φx,2 = φy,1 = φy,2 = 0. (23)

Then, at order λ we have

FOct = λc1
[(

2θ2
1 + εxx

)2 + (
2θ2

2 + εxx

)2 + (
2θ2

1 + εyy

)2

+(
2θ2

2 + εyy

)2] + λc3
[(

2θ2
1 + εxx

)(
2θ2

1 + εyy

)
+ (

2θ2
2 + εxx

)(
2θ2

2 + εyy

)] + 2λc2ε
2
xy. (24)

Minimizing FOct with respect to the strains, we get

εxx = εyy = −(
θ2

1 + θ2
2

) + O(λ−1). (25)

In order to obtain εxy to leading order in λ we have to include
the term a1εxyθ1θ2 from Eq. (22), so that

εxy = −a1θ1θ2/(4c2λ) + O(λ−2). (26)
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To leading order in λ we get

FOct = λ[4c1 + 2c3]
[
θ2

1 − θ2
2

]2
. (27)

This indicates a dominant anisotropy which forces θ2
1 = θ2

2 . It
is important that this result remain true even when corrections
from terms lower order in λ are included, as is discussed
in Appendix A. (Otherwise, additional space groups with
θ2

1 �= θ2
2 would be allowed.) The result of Eq. (27) has a

simple interpretation: The strain that relieves the mismatch
is a uniform macroscopic strain which is only consistent with
the octahedral reorientations providing they are the same in
both slabs. This will be a recurring theme of our calculations.

Now we identify the space group for the above θ distortion
(with θ2 = θ1) which is shown in panel (a) of Fig. 7. The X
structure has generators34 (X ± 1/2,Y + 1/2,Z), (X,Y,Z +
1), (X,Y ,Z), (X,Y ,Z), and (X + 1/2,Y ,Z + 1/2). In deter-
mining the space group from these generators,35 it is useful to
realize that these structures must form a subset of those listed
in Ref. 17. We thus identify the space group of the structure
of Fig. 7(a) as D18

2h or Cmca (64). Cmca is one of the three
θ -dependent structures of irrep X2

+ for the star of X which
are listed in Ref. 17. However, we do not allow the other two
structures of Ref. 17, the first of which (D9

2h or Pbam = 55)
has, according to Table III of Ref. 17, |θ1| �= |θ2|, with θ1θ2 �= 0
and the second of which (D5

4h or P 4/mbm = 127) has,
according to Table III of Ref. 17, one sublattice distorted
and the other not distorted, so that θ1θ2 = 0 (see Fig. 7).
The problem with these structures is that to avoid distorting
the octahedra we had to invoke a uniform strain which only
relieves the distortions in the two slabs when the distortions
in the two slabs are the same. Thus, when θ2

1 �= θ2
2 , there is an

unavoidable distortion energy of the octahedra of order λ.
Note also that both εxx = εyy and the induced shear strain

of Eq. (26) are consistent with orthorhombic axes shown in
Fig. 7: The x-y shear in tetragonal coordinates is equivalent to a
stretch (or compression) along the Y axis and an accompanying
compression (or stretch) along the Z axis. Rotating the crystal
by 90o (R4) changes the sign of θ1θ2 and thus changes the sign
of εxy , as one would expect.

Since the octahedral constraint forces θ2
1 = θ2

2 , we may
introduce a single-order parameter Q ≡ θ1 to describe the
phase transition at T = T0:

F = 1
2a(T − T0)Q2 + 1

4uQ4 + 1
6vQ6 + · · · , (28)

where u is of order λ0 but its sign is not fixed by symmetry.
Therefore, our analysis does not imply that the ordering
transition must be continuous. More generally, most of the
transitions in this paper are allowed to be continuous, but a
few must be discontinuous.

In comparison to other ordering transitions we can make
an analogy between the order parameters which govern the
distortion from the parent tetragonal phase and the order
parameters in, say, a magnetic system. In this formulation the
distortion of the parent lattice in perovskites is analogous to the
development of long-range magnetic order. Having a distortion
only within one sublattice of the RP system is thus analogous
to having magnetic order only on some sublattices. Although
one can have ordered systems which have some disordered
components, they differ from the present case. For instance,

y

1

θ2

θ1

θ2

x

= 2z = out

(b)
I4  /acd = 142

XY

y
Cmca = 64

x

= z = out

YZ

X

(a)

1

Z

θ

FIG. 7. (Color online) As Fig. 5. The structure of corner-sharing
octahedra obtained by θ rotations for wave vector X ≡ (1/2,1/2,0)
(top) and wave vector P ≡ (1/2,1/2,1/2) (bottom). The arrows
indicate the displacement of the oxygens in the equatorial plane. In
the top (bottom) panel the distortion is unchanged (changes sign) for
z → z + 1. In both panels we display structures for which θ1 = θ2. As
noted in the text, rotating the crystal though 90o about the z axis gives
a structure for which θ2 = −θ1. Here and in the subsequent figures we
adhere to the following conventions. (1) The (magenta) solid circle
indicates the original tetragonal origin, (2) the original tetragonal axes
are labeled by lower case letters, (3) the axes of the distorted structure
are labeled by capital letters, and (4) unless it is explicitly stated,
the axes of the distorted structure which are shown are in the plane
perpedicular to the original fourfold tetragonal axis. Here, in the top
(bottom) panel the out-of-plane axis after distortion is X = (0,0,1)t
[Z = (0,0,2)t ], where the subscript indicates that components are
taken in the original tetragonal system. In the top (bottom) panel
the distortion is unchanged (changes sign) for z → z + 1. In the top
(bottom) panel the new origin is at z = 0 (z = 3/4).

the orientational phase II of solid methane (CD4) consists
of a unit cell having six orientationally ordered and two
orientationally disordered molecules.36 In that case, the site
symmetry of the disordered molecules is high enough that the
effective field on them from the ordered molecules vanishes.
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Furthermore, the interaction energy E between two disordered
molecules is much less than kT , even at the lowest temperature
at which phase II exists, so that they do not cooperatively order.
Superficially, the situation here is similar to that for solid
methane. For instance, suppose one builds up the distorted
structure plane by plane for wave vectors in the star of X or P.
The first plane would have θ = θ0, say. Moving to the second
plane we note a frustration due to the fourfold rotation, R4

which implies that the energy is invariant against changing the
sign of θ2. (Table I indicates thatR4 leaves θ1 fixed but takes θ2

into −θ2.) If one considers the third plane, there is no analogous
frustration. One will have θ3 = ±θ1, the sign depending on the
weak interaction between octahedra in plane 1 and those in
plane 3. More generally, θn+2 = σθn, where σ can be either +1
or −1. If σ = +1, then θn+2 = θn or θ (z + 1) = θ (z) and the
structure belongs to the star of X. If σ = −1, then θn+2 = −θn

or θ (z + 1) = −θ (z), and the structure belongs to the star of
P. As in quasi-two-dimensional systems, as the temperature
at which the distortion becomes unstable is approached,
two-dimensional correlations will become significant and then
even a weak coupling in the third dimension will lead to three-
dimensional long-range order at a single phase transition. This
situation is reminiscent of the decoupling of magnetic sublat-
tices in the bcc antiferromagnet.37,38 The point is that if the
distortion order parameter becomes nonzero in, say, the even-
numbered planes, the mechanism that led to this order would
also apply to the odd-numbered planes, which would then also
distort at the same time. The distorting of both sublattices of
octahedra could only be avoided if simultaneous distortions
were strongly disfavored by the form of the quartic potential
[i.e., if v of Eq. (4) were positive]. This possibility seems
unlikely and indeed our analytic treatment of the octahedral
constraint indicates that this scenario does not occur for large λ.

The free energy which includes rotation-strain coupling
has a resemblance to the model of Bean and Rodbell,39

where the spin-strain coupling in mean-field theory gives
rise to a negative contribution to the term in the free energy
which is quartic in the order parameter. Therefore, as the
coupling is increased, mean-field theory predicts that the
ordering transition changes from a continuous one to a
discontinuous one. Here the situation is different. Unlike the
Bean-Rodbell model, the free energy in the strong coupling
limit [see Eq. (27)] does not necessarily drive the system to a
first-order phase transition, at least within mean-field theory.
It would be interesting to adapt the renormalization group
analysis of Bergmann and Halperin40 to elucidate the effects
of orientation-strain coupling on these structural transitions.

2. φ distortions

Now drop the θ variables so that that the quadratic terms in
the free energy, F2 are

F2 = α − β

2
[(φx,1 − φy,2)2 + (φx,2 − φy,1)2]

+ α + β

2
[(φx,1 + φy,2)2 + (φx,2 + φy,1)2]. (29)

There are two channels of criticality, for which

φx,1 = σφy,2, φx,2 = σφy,1, (30)

where σ = −1 if α − β becomes critical (zero) before α + β

and σ = +1 in the reverse case.
We next consider the quartic terms of order λ. When the θ

variables are dropped, FOct becomes

FOct = c1λ

2∑
k=1

[(
2φ2

x,k + εxx

)2 + (
2φ2

y,k + εyy

)2]

+ c2λ

2∑
k=1

[(2φx,kφy,k + εxy)2]

+ c3λ

2∑
k=1

[
2φ2

x,k + εxx

][
2φ2

y,k + εyy

]
. (31)

Now we minimize with respect to the strains to get

εxx = − (
φ2

x,1 + φ2
x,2

)
,

εyy = − (
φ2

y,1 + φ2
y,2

)
,

εxy = − (
φx,1φy,1 + φx,2φy,2

)
. (32)

Here and below we use the fact that 2c1 − |c3| > 0. Thus,

FOct = 2λc1
[(

φ2
x,1 − φ2

x,2

)2 + (
φ2

y,1 − φ2
y,2

)2]
+ 2λc3

(
φ2

x,1 − φ2
x,2

)(
φ2

y,1 − φ2
y,2

)
+ 2λc2

(
φx,1φy,1 − φx,2φy,2

)2
. (33)

Here we have a large (of order λ) anisotropy which favors
having

φx,1 = ηφx,2 and φy,1 = ηφy,2, (34)

where η = ±1. As shown in Appendix A these conditions
survive corrections from terms of lower order in λ. In
particular, note that terms of order λ0 in Eq. (22) are consistent
with Eq. (32). As before, the overall sign of the quartic term is
not fixed: The transition may or may not be continuous.

Now let us see what ordering vectors � ≡
[φx,1,φy,1,φx,2,φy,2] are allowed by Eqs. (30) and (34).
If α − β is critical, then the critical ordering vector is
proportional to either [1111] or [1111], whereas if α + β is
critical, then � is proportional to either [1111] or 1111]. In
each case, the two choices are equivalent.41 Figure 8 shows a
representative of these solutions for each case of criticality.42

Next, we identify the space groups of the structures of Fig. 8.
The generators of [1111] are (X ± 1/2,Y + 1/2,Z),(X,Y,Z +
1), (X,Y ,Z), (X,Y ,Z), and (X + 1/2,Y ,1/2 + Z) and those
of [1111] (which is equivalent to [1111]) are (X ± 1/2,Y +
1/2,Z), (X,Y,Z + 1), (X,Y ,Z), (X,Y ,Z), and (X,Y ,1/2 +
Z). From these generators we identify the space groups as
indicated in Fig. 8. In both structures Eq. (32) gives εxx =
εyy and εxy �= 0. The form of these results is, of course, not
modified by inclusion of corrections induced by Eq. (22) and is
consistent with the orientation of the orthorhombic coordinate
axes shown in Fig. 8.

Note that, in comparison to Ref. 17, our formulation does
not allow the structures of space groups Pccn (D10

2h = 56) and
Pnnn (D2

2h = 48). From Table III of Ref. 17 one sees that
Pccn has φx,1 = φy,2 = a and φy,1 = φx,2 = b, with a �= b,
and Pnnn has φx,1 = −φy,2 = a and φy,1 = −φx,2 = b, with
a �= b. As before, to relieve the distortion of the octahedra
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(a)
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Y = z = out
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+
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+
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(b) y
Cccm = 66

2h

z 

FIG. 8. (Color online) As Fig. 7 for the star of X (with
invariance under z → z + 1). x, y, and z are the tetragonal axes
and and X, Y , and Z are the conventional lattice vectors after
distortion. The solid magenta circle is the tetragonal origin. � ≡
[φx,1,φy,1,φx,2,φy,2] =[1111] for (a) and [1111] for (b) (Ref. 42).
The irreps are given in Table III. The new origin has z = 0 for (a)
and z = 1/4 for (b). The third new axis vector [Y for panel (a)
and X for panel (b)] is [001]t in terms of the original tetragonal
coordinates.

via strains implies that the order parameters have the same
magnitude in both layers. Similarly we do not allow space
groups P 42/ncm (D16

4h = 138) and P 42/nnm (D12
4h = 134)

which have (in one setting) φx,1 = φy,2 = 0 and |φx,2| =
|φy,1|. Our analysis of the space groups listed in Ref. 17 is
summarized in Tables II and III.

B. The star of N

Similarly, we construct the most general structure for
the star of N ≡ (1/2,0,1/2), whose wave vectors are
N1 ≡ (1/2,0,1/2), N2 = (−1/2,0,1/2), N3 = (0,1/2,1/2),
and N4 = (0, − 1/2,1/2). To do this we use Fig. 9. Consider

TABLE II. Space groups of Ref. 17 for the stars if X, N, and P
which we do not allow for RP214’s. Column headings: S, stands for
the Schoenflies symbol; H-M, the short Hermann-Maugin symbol as
given in Ref. 8; No., the number of the space group in Ref. 8. For
otherwise identical space groups, the footnotes give the basis vectors
of the unit cell in terms of the original tetragonal coordinates. The
irrep labels are from Ref. 17.

Irrep S No. H-M S No. H-M

X2
+ D5

4h 127 P4/mbm D9
2h 55 Pbam

X3
+ D16

4h 138 P 42/ncm D10
2h 56 Pccn

X4
+ D12

4h 134 P 42/nnm D2
2h 48 Pnnn

N1
+ C1

2h 10 P 2/m C1
i 2 P 1

a

N1
+ D28

2h 74 Imma D25
2h 71 Immm

N1
+ C6

2h 15 C2/c C3
2h 12 C2/mb

N1
+ C3

2h 12 C2/mc D19
4h 141 I41/amd

N1
+ D19

2h 65 Cmmm D17
4h 139 I4/mmm

P4 D18
4h 140 I4/mmm D10

2d 122 I42d

P5 D28
2h 74 Imma D24

2h 69 Fmmm

P5 S2
4 82 I4 C22

2v 46 Ima2

P5 C19
2v 43 Fdd2 C18

2v 42 Fmm2

P5 D9
2 24 I212121 D8

2 23 I222

P5 C3
2h 12 C2/m C3

2 5 C2

P5 D11
2d 121 I42m D12

2d 122 I42d

P5 D7
2 22 F222

a(111), (111), (111).
b(002), (220), (111).
c(2,0,2), (0,2,0), (0,0,2).

first the situation in the z = 0 plane when we initially fix the
φ’s for octahedron A. Since the octahedra are interlocking φx

has to alternate in sign as we move along x. This means that
φx must be associated with a linear combination of N1 and
N2 distortions. Since N1,y = N2,y = 0, we see that φx must be
independent of y. Similar reasoning indicates that φy alternates
along y and is therefore associated with a linear combination
of N3 and N4 distortions. However, since N3,x = N4,x = 0,
φy is independent of x. These wave vectors do not support
nonzero values of θ . We have thereby fixed all the values of
the variables in the z = 0 plane in terms of those of octahedron
A. Now consider the situation in the z = 1/2 plane. Suppose
we have a linear combination of N1 and N2 which gives rise
to φx,1 for octahedron A. If we had only N1, then the variables
for octahedron B would be −φx,1 and −φy,1, whereas if we
had N2, then these variables would be φx,1 and φy,1. As for
the case of the star of X, we conclude that all the variables in
the second layer are fixed in terms of the arbitrary variables
of octahedron B, so that Fig. 9 characterizes the most general
structure arising from the star of N. The effect of symmetry
operations on these variables is given in Table IV.

We need to establish the analog of Fig. 6 for the star of N,
for which, as we have already mentioned, θn = 0. Note that
for sites B and C, the sign of φy is reversed for the star of N in
comparison to that for the star of X. For site A, rA for the star
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TABLE III. As Table II. Space groups of Ref. 17 for the stars of
X, N, and P, which we do allow for RP214’s. Under “Var.” we give
the variables active in the mode and under “Fig.” we give the number
of the illustrative figure. All phases except those of irrep N1

+can be
reached via a continuous transition.

Irrep Var. S No. H-M Fig.

X2
+ θ D18

2h 64 Cmca 7(a)

X3
+ φx ,φy D18

2h 64 Cmca 8(a)

X4
+ φx ,φy D20

2h 66 Cccm 8(b)

N1
+ φxφy = 0 C3

2h 12 C2/ma 10(b)

N1
+ φ2

x = φ2
y C3

2h 12 C2/mb 10(c)

N1
+ φ2

x �= φ2
y C1

i 2 P 1
c

10(a)

P4 θ D20
4h 142 I41/acd 7(b)

P5
d φx ,φy D26

2h 72 Ibam 11(a)

P5
d φx ,φy C6

2h 15 C2/c 11(c)

P5
d φy D24

2h 70 Fddd 11(b)

a(011), (100), (011).
b(002), (220), ( 1

2
1
2

1
2 ).

c(111), ( 1
2

1
2

1
2 ), (111).

dThe wave vector may be close to, but not exactly at, the star of P.

of N is as in Fig. 6. However, now

rB = (
1/2 + φ2

x, − φxφy,φx

)
. (35)

Therefore, yB − yA = zB − zA = 0 and xB − xA = 2φ2
x .

Likewise, for site D Fig. 6 applies equally for the star of N.
However, for sites E and F the sign of φx is reversed for the
star of N from what it was for the star of X. So

rE = (−φxφy,1/2 + φ2
y,φy

)
, (36)

so that xE − xD = zE − zD = 0 and yE − yD = 2φ2
y .

A

φφ y,1x,1

y

x

φφ y,1x,1

φφx,1 y,1

φφ y,2x,2

B

φφ y,2x,2φφ y,2x,2

φφ y,2x,2

φφx,1 y,1

FIG. 9. (Color online) As Fig. 5. The structure of corner-sharing
octahedra for the star of N. The variables change sign under z →
z + 1.

TABLE IV. As Table I, but for the φ variables of the star of N ≡
(1/2,0,1/2) (shown in Fig. 9). T ≡ (1/2,1/2,1/2), Tx ≡ (1,0,0), and
Ty ≡ (0,1,0). All φ variables are odd under Tz ≡ (0,0,1). Here � ≡
εxx − εyy .

R4 md mz T Tx Ty

φx,1 φy,1 φy,1 −φx,1 φx,2 −φx,1 φx,1

φy,1 −φx,1 φx,1 −φy,1 φy,2 φy,1 −φy,1

φx,2 φy,2 φy,2 φx,2 φx,1 −φx,2 φx,2

φy,2 φx,2 φx,2 φy,2 φy,1 φy,2 −φy,2

εxy −εxy εxy εxy εxy εxy εxy

εxz εyz εyz −εxz εxz εxz εxz

εyz −εxz εxz −εyz εyz εyz εyz

� −� −� � � � �

We now write the Landau expansion for the star of N. Taking
account of the symmetries of Table IV and the preceding
discussion, we obtain the octahedral distortion energy for the
star of N to be

FOct = c1λ

2∑
k=1

[(
2φ2

x,k + εxx

)2 + (
2φ2

y,k + εyy

)2]

+ c3λ

2∑
k=1

(
2φ2

x,k + εxx

)(
2φ2

y,k + εyy

)
. (37)

When FOct is minimized with respect to the strains we find that

εxx = − (
φ2

x,1 + φ2
x,2

)
,

εyy = − (
φ2

y,1 + φ2
y,2

)
, (38)

which leads to the result that

FOct = 2c1λ
[(

φ2
x,1 − φ2

x,2

)2 + (
φ2

y,1 − φ2
y,2

)2]
+ 2c3λ

[(
φ2

x,1 − φ2
x,2

)(
φ2

y,1 − φ2
y,2

)]
. (39)

At order λ this anisotropy favors having

φx,1 = σφx,2, φy,1 = ηφy,2, (40)

with σ = ±1 and η = ±1. As discussed in Appendix A, this
result is stable against inclusion of terms of lower order in λ.

Now the free energy is

F = FOct + F4 + F2 + Fε, (41)

where F4 consists of the quartic terms of order λ0:

F4 = u

4

[(
φ2

x,1 + φ2
y,1

)2 + (
φ2

x,2 + φ2
y,2

)2]
+ v

(
φ2

x,1φ
2
y,1 + φ2

x,2φ
2
y,2

) + w
(
φ2

x,1φ
2
x,2 + φ2

y,1φ
2
y,2

)
+ x

(
φ2

x,1φ
2
y,2 + φ2

y,1φ
2
x,2

)
. (42)

F2 consists of the quadratic terms of order λ0:

F2 = α
[
φ2

x,1 + φ2
y,1 + φ2

x,2 + φ2
y,2

]
, (43)

and the interaction Fε between strains and octahedral rotations
is

Fε = b1[εxzφx,1φx,2 + εyzφy,1φy,2]

+ b2[εxx − εyy]
[
φ2

x,1 − φ2
y,1 + φ2

x,2 − φ2
y,2

]
+ b3εxyφx,1φy,1φx,2φy,2 + · · · , (44)
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where the dots indicate terms which do not break tetragonal
symmetry. We used the results of Table IV to ensure that
the above free energy consisted of terms invariant under the
symmetry of the vacuum.

We are studying the transition which occurs when α of
Eq. (43) passes through zero. The possible directions in the
four-dimensional space of these critical variables in which
ordering actually occurs is dictated by the form of F4, whose
effect we now study. When Eq. (40) is satisfied, F4 becomes

F4 = 2(v − w + x)φ2
xφ

2
y + [w + (u/2)]

(
φ2

x + φ2
y

)2
, (45)

where φ2
x = φ2

x,1 = φ2
x,2 and φ2

y = φ2
y,1 = φ2

y,2. This indicates
that we can have a structural phase transition into three classes
of states. We can have a continuous phase transition into states
of class A with φ2

x = φ2
y if (v − w + x) is negative or into a

state of class B with φxφy = 0 if (v − w + x) is positive. In
addition, we can have a phase transition to a state of class C
in which φx and φy do not assume special values if the higher-
order terms cause the transition to be discontinuous. The next
step is to determine which of these solutions are inequivalent,
that is, which are not related by a symmetry operation.41

We first show that all solutions of class A are equivalent to
one another. Using the results given in Table IV we have that(

1 + R4 + R2
4 + R3

4

)
[1111] = [{μν}11], (46)

where {μν} indicates the set of μ, ν values, that is, {μν} =
11 + 11 + 11 + 11. Then

T
(
1 + R4 + R2

4 + R3
4

)
[1111] = [11{μν}] ≡ �, (47)

and finally(
1 + R4 + R2

4 + R3
4

)
� = [{ρτ }{μν}], (48)

where (apart from an arbitrary overall amplitude) the right-
hand side of this equation includes all vectors of class A. In
class A, φ2

x = φ2
y , and we take [1111] as its representative.

Next we consider solutions of class B. From Table IV note
that [

1 + R2
4

]
[1 + Tx][1010] =

∑
μν=±1

[μ0ν0] ≡ � (49)

and

R4� =
∑

μν=±1

([μ0ν0] + [0μ0ν]) . (50)

The right-hand side includes all vectors of class B. We may
take [0101] as the representative of class B.

Finally, we consider solutions of class C, which are of the
form [x,y, ± x, ± y], where |x| �= |y| and both are nonzero.
Using Table IV we write

mdR4[xyxy] = [xyxy] (51)

so that

[1+mz][1+mdR4][x,y,x,y] =
∑

σ1,σ2=±1

[σ1x,σ2y,x,y]. (52)

From this we conclude that all vectors of class C are equivalent
to one another, and we take their representative to be [xyxy].

Thus, in all, we have the three allowed space groups
from the star of N shown in Fig. 10: [xyxy], [0101], and
[1111]. As before, to determine the space groups of the
structures we use Fig. 10 to write down their generators.
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FIG. 10. (Color online) As Fig. 8 for the star of N (with sign
change under z → z + 1) for (a) (class C) [xyxy], (b) (class B)
[0101], and (c) (class A) [1111]. x, y, and z are the tetragonal
axes, and X, Y , and Z are [(111),(1/2, − 1/2,1/2),(111)] in (a),
[(011),(100),(011)] in (b), and [(002),(220)(−1/2,1/2, − 1/2)] in
(c). All the new origins are at z = 0.

For [xyxy] the generators are (X + 1,Y,Z), (X,Y + 1,Z),
(X,Y,Z + 1), and (X,Y ,Z), which is C1

i (P 1 = 2). For
both [0101] and [1111], the generators are (X,Y,Z + 1),
(X + 1/2,Y + 1/2,Z), (X + 1/2,Y − 1/2,Z), (X,Y ,Z), and
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(X,Y,Z), which is C3
2h (C2/m = 12). Although these two

structures belong to the same space group, they are different
because their unit cells are different (see Fig. 10).

Finally, we discuss the strains which are induced by the
lowering of symmetry from the tetragonal parent structure.
First consider the structures of class A which have φ2

x,1 =
φ2

y,1 = φ2
x,2 = φ2

y,2. A representative of this family is shown in
Fig. 10(c). Note that in space group C2/m the Y axis is an axis
of twofold rotation symmetry and is perpendicular to the X-Z
pane, but X and Z make an arbitrary angle with one another.
Therefore, we expect that εxx must be equal to εyy as predicted
by Eq. (38). Also we expect, in agreement with Eq. (44), that
εxy is nonzero since the tetragonal [110] and [110] directions
are not symmetry related in the distorted phase. Also, since
X need no longer be perpendicular to the x-y plane, εxz and
εyz should not vanish. This is exactly what Eq. (44) predicts.
The term proportional to b1 in Eq. (44) implies that for the
representative shown in Fig. 10(c) εxz = −εyz, so that the X

axis is tipped in the plane perpendicular to Y . The angle
between X and Z is not fixed by symmetry but Y must be
perpendicular to both X and Z. The strains for states of class
B [see Fig. 10(b)] with � = [μ0ν0] or [0μ0ν] with μ2 = ν2

are discussed similarly. Here to have Y be perpendicular to X

and Z we must have εxy = 0, but εxx − εyy is nonzero. Also
the term in b1 in Eq. (44) is such that the z axis is tipped
in the plane perpendicular to Y (which for this representative
coincides with x). All these observations are again consistent
with Eq. (44). The strains for class C, a representative of which
is shown in Fig. 10(a), are unconstrained since the distorted
structure has only inversion symmetry.

In Table III (II) we list the structures which are (not)
allowed. We only allow one of the eight structures for the
irrep N1

+ listed in Ref. 17 which occur via a discontinuous
transition. In addition, Ref. 17 lists two space groups Cmmm

(65) for which � = [1000] and I4/mmm (139) for which � =
[1100]. Since these structures have undistorted sublattices,
they are inconsistent with the rigid octahedral constraint
because the octahedral distortion cannot be relieved by a
uniform strain. They are also counterintuitive in that they both
describe states in which nonzero order parameters appear only
on alternate planes. (Look back at the discussion in Sec. III A 1,
“In comparison to other ordering transitions . . .”.)

C. The star of P

The star of P consists of the vectors P1 ≡ (1/2,1/2,1/2)
and P2 ≡ (1/2, − 1/2,1/2). The possible structures are iden-
tical to those for the star of X, except that the variables
change sign under z → z + 1 as indicated in Fig. 5. The
transformation properties of these variables are given in
Table I. The quartic terms are the same as for the star of X.
However, the quadratic terms differ because of the ξ factors
that appear in Table I. The octahedral constraint assumes the
same form as for the star of X because the stars of X and P
differ only in how the layers are stacked.

1. θ distortions

We analyze these as before. In the channel where γ of
Eq. (21) passes through zero, since the octahedral constraint is

the same as for the star of X, we again have (for this channel)
Eq. (27):

FOct = λ[4c1 + 2c3]
[
θ2

1 − θ2
2

]2
, (53)

so that |θ1| = |θ2|. This structure has the same degeneracy
associated with the relative phase of even and odd layers that
we saw for the previous θ structures (at the star of X). Because
Pz = 1/2, the only θ -dependent structure has θn+2 = −θn. The
other two structures listed in Ref. 17 which have |θ1| �= |θ2|
are not admissible because the octahedral distortion cannot
be removed by a uniform strain if |θ1| �= |θ2|. The allowed P
structure, shown in Fig. 7(b) has generators (X − 1/2,Y +
1/2,Z + 1/2), (X + 1/2,Y − 1/2,Z + 1/2), (X + 1/2,Y +
1/2,Z − 1/2), (X,Y ,Z), (X,Y ,Z + 1/2), and (Y + 1/4,X +
3/4,Z + 1/4), which is space group D20

4h or I41/acd (142).

2. φ distortions

Now consider the φ-dependent solutions which are asso-
ciated with irrep P5 according to Ref. 17. Note that all the
subgroups from this irrep listed there and in Ref. 19 do not
satisfy the Lifshitz condition. What this means is that the
quadratic instability occurs at a wave vector that is not fixed
by symmetry43 (so that it cannot be assumed to be at the star
of P). Accordingly, the wave vector can only be at the star of
P if the transition is discontinuous.

However, we can determine which structures with wave
vectors either at or near the star of P can be condensed. To do
this, we simply ignore the Lifshitz criterion in our analysis of
the free energy. As for the θ structures, the octahedral distortion
energy is the same as for the star of X and is therefore given
by Eq. (33). Thus, as before,

φx,1 = ηφx,2 and φy,1 = ηφy,2, (54)

where η = ±1. From Table I one sees that mzη = −η, so that
we only need consider the case η = 1. The quadratic terms are
different than those of the star of X because of the appearance
of the ξ factors in Table I. Thus, the quadratic terms are

F2 = α
[
φ2

x,1 + φ2
y,1 + φ2

x,2 + φ2
y,2

]
. (55)

As before, we identify the space groups of these so-
lutions by determining the generators of the inequivalent
representatives shown in Fig. 11. For (a) ([1111]) the
generators are44 (X,Y,Z), (X,Y ,Z + 1/2), (X,Y ,Z), (X −
1/2,Y + 1/2,Z + 1/2), (X + 1/2,Y − 1/2,Z + 1/2), (X +
1/2,Y + 1/2,Z − 1/2) and thus the space group is Ibam

(D26
2h = 72). For (b) ([0101]) the generators are (X + 1/4,Y +

1/4,Z), (X,Y + 1/4,Z + 1/4), (X,Y ,Z), (X,Y + 1/2,Z +
1/2), (X + 1/2,Y,Z + 1/2), (X + 1/2,Y + 1/2,Z), and thus
the space group is Fddd (D24

2h = 70). For (c) ([xyxy]) the
generators are (X,Y,Z + 1

2 ), (X,Y ,Z), (X + 1/2,Y + 1/2,Z),
(X − 1/2,Y + 1/2,Z), (X,Y,Z + 1) and thus the space group
is C2/c (C6

2h = 15). When the Lifshitz instability is resolved,
these space groups give rise either to commensurate structures
at the star of P via a first-order transition or to structures having
incommensurate wave vectors near the star of P. If the wave
vector is not exactly at P, then the lattice distortion has to also
be incommensurate.
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FIG. 11. (Color online) As Fig. 8 for the star of P (variables
change sign under z → z + 1). x, y, and z are the tetragonal axes
and and X, Y , and Z are axes of the distorted structure. The new
origins are in the z = 3/4 plane except for (c), where z = 1/4. The
new out-of-plane lattice vector, X for (a), Z for (b), and Y for (c),
has magnitude 2 and is along z. The actual structures may involve an
incommensurate wave vector near the star of P.

IV. RP327 STRUCTURES

In this section we perform the same analysis for the n = 2
RP systems A3B2C7, which we call the RP327 systems. As

TABLE V. As Table I for the stars of X and P, except that this table
is for the variables of RP327 systems. The first and second indices on
θ label the slab and layer, respectively. The first and second indices
on φ label the component and slab, respectively. Note that z = 0
(about which mz is taken) is midway between layers a and b. T is the
translation (1/2,1/2,1/2).

R4 md mz T

θ1,a θ1,a −θ1,a θ1,b θ2,a

θ1,b θ1,b −θ1,b θ1,a θ2,b

θ2,a −θ2,a −θ2,a ξθ2,b ξθ1,a

θ2,b −θ2,b −θ2,b ξθ2,a ξθ1,b

φx,1 φy,1 φy,1 φx,1 φx,2

φy,1 −φx,1 φx,1 φy,1 φy,2

φx,2 −φy,2 φy,2 ξφx,2 ξφx,1

φy,2 φx,2 φx,2 ξφy,2 ξφy,1

shown in Fig. 1, these systems consist of two slabs. Each slab
consists of two layers which we label a and b (or 1 and 2).
If we fix the φ variables in layer a, the octahedral constraint
fixes each φ variable in layer b to be the negative of its nearest
neighbor in layer a. As a result, each structure of the RP327
system is characterized by the same number of φ variables as its
analog for the RP214 system. In contrast, since there is no such
relation between the θ variables of layers a and b, we introduce
variables θkα to describe the rotation within the αth layer (α =
a,b) of the kth slab (k = 1,2), as shown in Fig. 12. The transfor-
mation properties of the variables are summarized in Table V.

A. The star of X

1. θ structures

The distortion energy at order λ in the notation of Eq. (18)
is (when, as before, εxy = 0)

FOct = c1λ
∑
k,α

[(
2θ2

k,α + εxx

)2 + (
2θ2

k,α + εyy

)2]
+ c3λ

∑
k,α

[(
2θ2

k,α + εxx

)(
2θ2

k,α + εyy

)]
, (56)

where the sums are over k = 1,2 and α = a,b. When FOct is
minimized with respect to the strains, one finds that

εxx = εyy = −1

2

∑
k,α

θ2
k,α (57)

and

FOct = 4λ[2c1 + c3]

[ ∑
k,α

θ4
k,α − 1

4

(∑
k,α

θ2
k,α

)2 ]
. (58)

Using the symmetry operations of Table V we find that the
free energy of the θ structures for the star of X assumes the
form

F (θ ) = 4λ[2c1 + c3]

[∑
k,α

θ4
k,α − 1

4

(∑
k,α

θ2
k,α

)2 ]

+
2∑

k=1

[
a

2

(
θ2
ka + θ2

kb

) + bθkaθkb

]
+ F4, (59)
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FIG. 12. (Color online) Values of the rotation (θ ) variables in
different z-planes for the most general such distortion of RP327’s for
the stars of X and P. The (red) dashed line is the axis about which
the fourfold rotation R4 is taken and the (blue) dots show the points
x = y = 0 in the z = 0.4 and z = 0.6 planes. UnderR4 an octahedron
in slab 1 is taken either into itself or into an equivalent octahedron.
Under R4 an octahedron in slab 2 is taken into another whose rotation
angle is of opposite sign. For the star of X, θ (z + 1) = θ (z) and for
the star of P, θ (z + 1) = −θ (z).

where F4 denotes the quartic terms of order λ0. For large λ, the
minima of this free energy at criticality when (a − |b|) passes
through zero occur for

θ1a = − b

|b|θ1b, θ2a = − b

|b|θ2b, θ2
2,a = θ2

1,a. (60)

Thus, as shown in Fig. 13, we have two possible distorted
structures, depending on the sign of b:

θ1,a = −θ1,b = ξθ2,a = −ξθ2,b, b > 0, (61)

θ1,a = θ1,b = ξθ2,a = ξθ2,b, b < 0, (62)

where ξ = ±1. The fact that ξ can have either sign indicates
the decoupling of even and odd numbered sublattices which
we mentioned in connection with the analogous RP214 θ

structures.
We now determine the space groups corresponding to these

two modes. In the mode of Eq. (62) the two layers can be
coalesced continuously into a single layer. So this RP327

(b)(a)

FIG. 13. (Color online) The two θ modes for a bilayer. (Left)
The two layers rotate in phase as in Eq. (62). (Right) The two layers
rotate out of phase as in Eq. (61). The out-of-phase rotation increases
the energy by twisting the oxygen orbitals but this is compensated
by reducing the Coulomb interactions between octahedra. First-
principles calculations (Ref. 32) indicate that these modes differ only
slightly in energy.

structure has the same symmetry as the Cmca θ structure
for RP214 resulting from the star of X. The RP327 structure
is obtained by replacing the single layer slab of the RP214
structure by a two-layer slab in which the two layers are
rotated in phase as in Fig. 13(a). The mode of Eq. (61)
is shown in Fig. 14(a). We have to discuss the way we
depict bilayer systems in our figures. Within each square
(which represents the equatorial oxygens of an octahedron)
the symbols closer to the corners of the square apply to the
upper layer of the bilayer and the symbols closer to the center
apply to the lower layer of the bilayer. This convention is
convenient for visualizing the effect of rotations about an
axis perpendicular to the plane of the paper. However, note
that operations such as reflection through the plane of the
paper or inversion relative to the center of the octahedron
lead to an interchange of inner and outer symbols. Experience
indicates that for these operations one should use the results of
Fig. 15, supplemented, if need be, by a translation. Operations
such as O = (x,y,z) which involve taking z into −z are best
expressed as O = I(x,y,z) or O = mz(x,y,z). The mirror
planes perpendicular to the page do not cause any confusion
because for them outer symbols are taken into outer symbols,
thus avoiding visual complications. We now return to the
discussion of the mode of Eq. (61) in Fig. 14(a). Using, if
need be, the results of Fig. 15, one sees that this structure
has generators (X ± 1/2,Y + 1/2,Z), (X,Y,Z + 1), (X,Y ,Z),
(X + 1/2,Y ,Z + 1/2), and (X + 1/2,Y ,Z), which therefore
is Ccca (D22

2h) 68 coming from irrep X1
−.

2. φ structures

Now we analyze the free energy for φ distortions at the star
of X. Since φx and φy alternate in sign from one layer to the
next in each slab, we characterize the structures by the values
of φx (φy) in the top layer of the kth slab, which we denote
φx,k (φy,k). Here the effect of mz has the opposite sign from
the RP214 case. However, since all terms are of even order
in the φ’s, the symmetry of the free energy is the same as for
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FIG. 14. (Color online) As Fig. 7. The θ modes with θn,a = −θn,b.
The full (dashed) squares are equatorial sections of the bilayer
centered at z = 0 (z = 1/2). The outer full (inner dashed) arrows are
the displacements of the equatorial oxygens in the equatorial plane
in the upper (lower) layer of the bilayer. The upper (lower) panel is
associated with the star of X (P). In the upper (lower) panel the arrows
are unchanged (reversed) under z → z + 1. For panel a (b) the X (Z)
axis for the distorted structure is [0,0,1]t ([0,0,2]t ) and the new origin
is at z = 0 (at z = 1/4). At right we show the tetragonal z coordinates
(and the distorted X or Z coordinates) of the full and dashed layers.

RP214. So

F = 4c1λ
[(

φ2
x,1 − φ2

x,2

)2 + (
φ2

y,1 − φ2
y,2

)2]
+ 4c3λ

(
φ2

x,1 − φ2
x,2

)(
φ2

y,1 − φ2
y,2

)
+ [(α − β)/2][(φx,1 − φy,2)2 + (φx,2 − φy,1)2]

+ [(α + β)/2][(φx,1 + φy,2)2 + (φx,2 + φy,1)2]. (63)

The analysis parallels that for RP214 systems. From the first
two lines we conclude that φ2

x1 = φ2
x2 and φ2

y1 = φ2
y2. There are

two cases. The first is if α − β is critical so that φx1 = −φy2

and φx2 = −φy1. The second is if α + β so that φx2 = φy1 and
φx1 = φy2. For the first case the possible ordering vectors are
proportional to � = [1111] or [1111]. These are equivalent
structures and we take the second one as the representative for
this case. For the second case the possible ordering vectors are
proportional to � = [1111] and [1111]. These are equivalent
structures and we take [1111] as the representative for this
case. Figure 16 shows these representatives.
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FIG. 15. (Color online) The effect of the operations (a) inversion
and and (b) mz which take z into −z. Here the distortion of a bilayer
is represented by two sets of symbols within the square representing
the equatorial oxygens. The outer set of symbols applies to the upper
layer of the bilayer and the inner set to the lower layer of the bilayer.
Inversion (I) is taken with respect to the (blue) solid circle as the
origin, which for bilayers is in the plane midway between the upper
and lower layer. mz is a mirror operation with respect to the plane
perpendicular to the tetragonal z axis which passes through the origin.

Finally, we identify the space groups of the structures of
Fig. 16. Note that α + β critical corresponds to irrep X4

−
and α − β critical corresponds to irrep X3

− in the notation
of Ref. 19. The generators of [1111] are (X ± 1/2,Y +
1/2,Z),(X,Y,Z + 1), (X + 1/2,Y ,Z), (X,Y ,Z), and (X,Y ,Z)
and those of [1111] are (X ± 1/2,Y + 1/2,Z), (X,Y,Z + 1),
(X,Y ,Z), (X,Y ,Z + 1/2), and (X,Y ,Z). From these genera-
tors we identify the space groups as indicated in Fig. 16.

B. The star of N

Again the analysis parallels that for RP214. Now the analog
of Table IV is Table VI. Here mz has the opposite sign from
Table IV. However, since the free energy contains only even
powers of the φ variables, the free energy for the star of N
of RP327 is the same as that for the star of N of RP214.
In Fig. 17 we therefore show the structures in which the φ’s
for the upper layer are identical to those of the single layer
in Fig. 10. Note that of all the generators of Fig. 10, only
inversion (X,Y ,Z) will not be an invariant if the origins of
Fig. 17 were the same as those of Fig. 10. (This is because,
according to Fig. 15, inversion for n = 2 systems introduces
an extra minus sign compared to the n = 1 case.) However,
inversion can be made an invariant by moving the origins and
this is done appropriately in Fig. 17. We thereby determine
the generators to be the same as for the analogous structures
in Fig. 10: For [xyxy] the generators are (X + 1,Y,Z),
(X,Y + 1,Z), (X,Y,Z + 1), and (X,Y ,Z), which is C1

i (P 1 =
2). For both [0101] and [1111], the generators are (X,Y,Z + 1),
(X + 1/2,Y + 1/2,Z), (X + 1/2,Y − 1/2,Z), (X,Y ,Z), and
(X,Y,Z), which is C3

2h (C2/m = 12). Although these two
structures belong to the same space group, they are different
because their unit cells are different (see Fig. 10).
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FIG. 16. (Color online) As Fig. 8 but for the star of X for RP327
(with invariance under z → z + 1). The outer + or − sign gives the
sign of the z component of displacement of the upper layer of the
bilayer and the inner + or − sign gives the sign of the z component
of displacement of the lower layer of the bilayer. � = [1111] for (a)
and [1111] for (b). The new origins are in the z = 0 plane (which is
midway between the two layers of a bilayer). The third orthorhombic
axis vector (X) is [001]t .

C. The star of P

1. θ structures

The situation for θ structures at the star of P is similar to that
at the star of X except that the displacements change sign under

TABLE VI. As Table I, but for the RP327 variables of the star
of N ≡ (1/2,0,1/2) (shown in Fig. 9). T ≡ (1/2,1/2,1/2), Tx ≡
(1,0,0), and Ty ≡ (0,1,0). All variables are odd under T ≡ (0,0,1).

R4 md mz T Tx Ty

φx,1 φy,1 φy,1 φx,1 φx,2 −φx,1 φx,1

φy,1 −φx,1 φx,1 φy,1 φy,2 φx,1 −φy,1

φx,2 φy,2 φy,2 −φx,2 φx,1 −φx,2 φx,2

φy,2 φx,2 φx,2 −φy,2 φy,1 φy,2 −φy,2
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FIG. 17. (Color online) As Fig. 8 but for the star of N (with sign
change under z → z + 1) for (a) [xyxy], (b) [1010], and (c) [1111].
The new axes are X = ([111]), Y = [1/2, − 1/2,1/2], and Z =
[1,1,1] for (a), X = [1,0,1], Y = [0,1,0], and Z = [1,0,1] for (b),
and X = [0,0,2], Y = [2,2,0], and Z = [−1/2,1/2, − 1/2] for (c).
The new origins are at z = 1/4 for (a) and at z = 1/2 for (b) and (c).

z → z + 1. The structures with θn,a = θn,b have the same
symmetry as that shown in Fig. 7(b): However, each single
layer is replaced by a bilayer in which θn,a = θn,b. So the space
group is again I41/acd = 142 (D20

4h). The structure with θn,a =
−θn,b and which changes sign under z → z + 1 is illustrated
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in Fig. 14(b). This structure is generated by (X − 1/2,Y +
1/2,Z + 1/2), (X + 1/2,Y − 1/2,Z + 1/2), (X + 1/2,Y +
1/2,Z − 1/2), (X,Y ,Z), (X,Y ,Z + 1/2), and (Y + 1/4,X +
3/4,Z + 1/4) and is therefore I41/acd = 142 (D20

4h). In
identifying the generators we used Fig. 15.

2. φ structures

Again comparison of Tables I and V shows that only
the only difference for φ variables is that mz changes sign.
However, since the free energy only involves even powers
of the variables, one concludes that the free energy for the
φ variables of the star of P is the same for RP327 as for
RP214. Therefore, we have the structures shown in Fig. 18
where the upper layer is the same as what is shown in
Fig. 11. The only difference in identifying the generators
is that since inversion for RP327 differs by a sign change
from that for RP214 (see Fig. 15) we had to change the
sign of all the φ variables (in the dashed squares) for
the slab at z = 1/2. Thus, [1111] for RP214 is replaced
with [1111] for RP327 and similarly for the other cases.
We thereby identify the generators as (X,Y,Z),44 (X,Y ,Z +
1/2), (X,Y ,Z), (X − 1/2,Y + 1/2,Z + 1/2), (X + 1/2,Y −
1/2,Z + 1/2), and (X + 1/2,Y + 1/2,Z − 1/2) for (a), (X +
1/4,Y + 1/4,Z), (X,Y + 1/4,Z + 1/4), (X,Y ,Z), (X,Y +
1/2,Z + 1/2), (X + 1/2,Y,Z + 1/2), and (X + 1/2,Y +
1/2,Z) for (b), and (X,Y,Z + 1/2), (X,Y ,Z), (X ± 1/2,Y +
1/2,Z), and (X,Y,Z + 1) for (c). These lead to the space
groups listed in the figure. Because of the Lifshitz instability
the wave vector can be an incommensurate one close to P and
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FIG. 18. (Color online) As Fig. 16 but for the star of P (with sign
change under z → z + 1) for (a) [1111], (b) [0101], and (c) [xyxy].
The new out-of-plane axes are Z = [0,0,2] for (a), Y = [0,0,2] for
(b), and Z = [0,0,2] for (c). The new origins are at z = 3/4 in (a) and
in (b) and at z = 1/4 in (c). The new out-of-plane axes are (0,0,2)t .

the elastic distortion would then also be incommensurate, as
is discussed in Sec. III C 2,

V. RP SYSTEMS WITH n > 2

Now we are in a position to analyze the situation of RP
systems with n > 2. For the θ structures the important issue
is whether the eigenvalue λ(mz), which characterizes the
symmetry of the stacking sequence, is +1 or −1. For the
φ structures (for which φ is constrained to alternate in sign
from one layer to the next) the important issue is, as stated
in Ref. 20, whether n, the number of layers per substructure,
is even or odd. So the φ structures for possible space groups
for odd n are those given for RP214 systems and those for
even n are those given for RP327 systems. In both cases the
actual structures are obvious generalizations of those shown
explicitly in the figures.

A. θ structures

Accordingly, we explicitly consider θ structures (see
Fig. 19). The θ structures associated with the star of either
X or P are governed by the free energy [when, as in Eq. (26),
εxy is nonzero only at order λ−1]

F = c1λ

2∑
k=1

n∑
α=1

[(
2θ2

k,α + εxx

)2 + (
2θ2

k,α + εyy

)2]

+ c3λ

2∑
k=1

n∑
α=1

[(
2θ2

k,α + εxx

) (
2θ2

k,α + εyy

)]

+
2∑

k=1

n∑
α,β=1

Aα,βθk,αθk,β + V, (64)

where V contains interaction terms (of order λ0) between the
two different slabs. Note that quadratic terms like θ1,αθ2,β are
excluded because they are not invariant under R4, as one sees
from Table V or Fig. 12. The ordering vector of the first n-layer

θ

y

1
2

n − 1

n

z

z = 0

#1

θ#k

Top view of
layers #1  and #k

FIG. 19. (Color online) The θ structures for one of the n-layer
slabs. (Left) The cross section of the n-layer slab showing the (x,y,z)
coordinate system used to discuss the symmetry of the θ structures.
(Right) Top view showing that the structure (red dashed cross section)
is characterized by giving the value of the rotation θ for each of the
n layers.
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slab in the unit cell is

�1 = [θ1,1,θ1,2,θ1,3, . . . ,θ1,n]. (65)

Note that � is proportional to the eigenvector of the matrix
A which has the minimal eigenvalue (so that it is the one
which first becomes critical as the temperature is lowered). The
matrix A is invariant under the mirror operation mz which in-
terchanges layers k and n + 1 − k, so that θk ↔ θn+1−k . There-
fore, we know only that the eigenvector is either even or odd
[i.e., the eigenvalue of mz, λ(mz), is either +1 or −1, respec-
tively], depending on the details of the interactions in the sys-
tem. For instance, for n = 1 �1 = [1] and is even under mz. For
n = 2 the critical eigenvector is either [11] (which is even un-
der mz) or [11] (which is odd under mz). For n = 3 the critical
eigenvector is either [101] (which is odd under mz) or [αβα],
where α and β depend on the interactions within the three-layer
subsystem and this eigenvector is even under mz. On the basis
of symmetry we can definitely not posit any specific form for
the eigenvector (for n > 2), as is done in Table XIII of Ref. 20.
In all these examples the ordering vector for the second n-layer
subsystem obeys �2 = ±�1, where the indeterminacy in sign
reflects the by now familiar frustration of θ structures.

For n > 2 the state we call I, given by the critical
eigenvector of A, will develop at the structural phase transition
at a critical temperature we denote TI . For this state θ2

kα will
not be independent of k unless there is an unusual accidental
degeneracy and therefore its free energy will be of the form

FI = 1
2 (T − TI )Q2

I + αλQ4
I . (66)

The quartic term must be of order λ because θ2
k,α is not

independent of α. This state competes with state II which
satisfies (for all k and α)

2θ2
kα = −εxx = −εyy. (67)

State I becomes critical at a temperature TI , which is higher
than that, TII , at which state II becomes critical. The free
energy of state II can be written as

FII = 1
2 (T − TII )Q2

II + βQ4
II . (68)

Minimization with respect to the order parameters yields

FI = −1

2

(T − TI )2

αλ
, T < TI ,

FI = 0, T > TI ,
(69)

FII = −1

2

(T − TII )2

β
, T < TII,

FII = 0, T > TII

and these are plotted versus T in Fig. 20. One sees that for
n > 2 we have a more complicated phase diagram than for
n = 1 or 2. When λ is large, for a small range of temperature
phase I is stable, but at lower T we arrive at phase II. For
n > 3 it is possible to have more than one phase transition
before ultimately reaching phase II.

The possible θ structures of phase I depend on the wave
vector (X or P) and whether the interactions within the system
select λ(mz) = +1 or −1. First consider the star of X, for
which θ (z + 1) = θ (z). If λ(mz) = +1 [as in Fig. 7(a)], then,
irrespective of the value of the number of layers per slab n, we

F

T
T

TIT*
II

FIG. 20. (Color online) The free energies of phase I (dashed
line) and phase II (solid line), as given by Eq. (69). These
curves are drawn for ξ ≡ αλ/β = 9. Phase I is stable for
T ∗ < T < TI . From Eq. (69) the I → II phase transition occurs at
T ∗ = TII − (TI − TII )/(

√
ξ − 1).

will have a structure similar to that of Fig. 7(a) (in which each
layer of Fig. 7 is replaced by an n-layer slab) with space group
Cmca = 64. If interactions select, λ(mz) = −1 (this is only
possible for n > 1), then we have a structure of space group
Ccca = 68, similar to that shown in Fig. 14(a). Next consider
the star of P, for which θ (z + 1) = −θ (z). If λ(mz) = +1 [as
in Fig. 7(b)], then, irrespective of the value of the number
of layers per slab n, we will have a structure similar to that
of Fig. 7(b) with space group I41/acd = 142. If interactions
select λ(mz) = −1 (this is only possible for n > 1), then we
have a structure of space group I41/acd = 142, similar to
that shown in Fig. 14(b).

The above remarks relied only on symmetry. However, now
we consider the likely form of the interaction matrix Aαβ in
Eq. (64), which determines θ as a function of the layer index
α. If the dominant intraslab interactions are those between
adjacent layers, then, as illustrated in Fig. 21, we obtain
configurations analogous to ferromagnetic [panels (a) and (c)]
or antiferromagnetic [panels (b) and (d)] spin structures. Thus,
with nearest-neighbor interlayer interactions, if n, the number
of layers per slab is even, we can have either sign of λ(mz). If
n is odd, then this special ansatz of nearest-neighbor interlayer
interactions can only give λ(mz) = +1. If, experimentally, the
case λ(mz) = −1 is observed for odd n, one could conclude
the existence of significant longer range interlayer interactions.
(Such a situation is obviously possible in the presence of
Coulomb interactions.)

Our results are summarized in Table VII. Note that for the θ

structures the controlling variable is not the number of layers n,
but λ(mz). It is interesting to note that for N and P, the φ struc-
tures for even and odd λ(mz) are very similar, as one can see
by comparing Figs. 10 and 17 for N and Figs. 11 and 18 for P.

We have already compared our results with those of
Ref. 17. Now we compare our results for general n with those
of Table XIII of Ref. 20, where it seems that only results for the
star of X are given. One sees that of the 12 structures (2–13),
only 2, 5, 9, and 12 have the same distortions in both slabs and
are therefore the only structures allowed by our analysis. In that
reference the distinction is made between the cases of even and
odd values of n, the number of layers per slab. If one assumes
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FIG. 21. Typical variation of θ as a function of the layer index,
k, for dominant nearest-neighbor interlayer interaction, Ak,k+1 ≡ w.
For case (a), n is even and w < 0, so that λ(mz) = +1. For case (b),
n is even and w > 0, so that λ(mz) = −1. For cases (c) and (d) n

is odd. For case (c) w < 0 and for case (d) w > 0. In both cases
λ(mz) = +1. (mz takes k into 8 − k.) To obtain λ(mz) = −1 for n

odd requires further neighbor interlayer interactions.

(incorrectly; see Fig. 21) that |θ | is constant within a slab, then
the results of Table XIII of Ref. 20 for the allowed structures are
equivalent to ours. However, it is more accurate to classify the
distortions according to their mirror symmetry as is done here.

VI. DISCUSSION AND CONCLUSION

We did not deal with the positions of the ions at the center
of the octahedra or those between the layers of octahedra. Here
we are concerned only with such ionic positions as they are
modified by the orientational structural transition. Each such
ion sits in a stable potential well. The question is whether or
not for systems without any accidental degeneracy there is a
bifurcation so that additional space groups could be allowed
when the positions of these “inessential” ions are taken into
account. The stable potential well can be distorted and the
placement of its minimum will be modified by the octahedral
reorientation. However, a single minimum of a stable potential
well cannot be continuously deformed into a double well
without assuming an accidental vanishing of the fourth-order

term in the local potential. Similar arguments show that the
perturbative effect of the center-of-mass coordinates of the
nearly rigid octahedra do not produce anomalous effects.45

Of course, parameters of Wykoff orbits which are not fixed
by symmetry will be perturbatively modified at the structural
phase transition. As we have discussed for several cases, elastic
strains will be induced consistent with the symmetry of the
distorted phase.

Experimentally, it is striking that the structures observed as
distortions from the tetragonal phase are in our much shorter
list. For instance, in the data cited on p. 313 and following
of Ref. 20 five systems with φ tilts are shown which go into
either Cmca (64) or P 42/ncm (138), except for Rb2CdCl4
whose structure is uncertain: either Cmca or Fccm (which is
on neither our list nor that of Ref. 17 because it involves two
irreps). Systems (other than Rb2CdCl4 subsequently discussed
in Ref. 20) in Table III of Ref. 17 likewise go into either Cmca

or P 42/ncm.
To summarize, we have analyzed the possible structural

transitions of the so-called RP perovskite structure (such
as K2MnF4 or Ca3Mn2O7, etc.) using a variant of Landau
theory in which the constraint of rigid oxygen octahedra is
implemented and our results are compared to the well-known
results of Refs. 17 and 20. A check on the accuracy of our
treatment of symmetry is that our list of allowed structures
(for K2MgF4) which can be reached via a single structural
phase transition is a subset of the list of Ref. 17. We find
that the rigid octahedral constraint eliminates most of the
structures in Table I of Ref. 17 for which the octahedral
tilting transitions are discontinuous. It is also appealing
that structures which are allowed by symmetry but which
involve the simultaneous existence of distorted and undistorted
sublattices are eliminated by the octahedral constraint. The
results for the K2MgF4 structure are summarized in Tables II
and III, where one sees that our analysis allows only 10 of
the 41 structures listed in Ref. 17. A summary of our results
for commensurate structures for An+1BnC3n+1 is given in
Table VII. There one sees that if we restrict attention to
continuous transitions into a commensurate structure (thus not
allowing N or L in the last column), there are then only four
possible structures for n = 1 and six possible structures for
n > 1. (If one further restricts interlayer interactions to be
only those between adjacent layers, then when n is odd one
has only four possible structures.) The extension of the present
analysis to treat structures reached by two phase transitions (so
that they are described by two distinct irreps) will be published
separately.

ACKNOWLEDGMENTS

I am grateful to T. Yildirim for performing the first
principles calculations. I thank J. M. Perez-Mato, C. J. Fennie,
B. Campbell, and H. T. Stokes for helpful discussions. I also
thank T. C. Lubensky for calling my attention to the importance
of thermal fluctuations for the elastic constants.

APPENDIX A: ANISOTROPY

Here we show that the direction in order parameter space
which minimizes the free energy at order λ is stable when
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TABLE VII. Summary of results for commensurate structures for RP n layer systems. �Q denotes
the wave vector, Var labels the angular variable, and λ is the eigenvalue of the mirror operation within
the n-layer substructure, as discussed below Eq. (65). In the last column we indicate whether the
transition is allowed to be continuous (Y) or not (N) or whether there is a Lifshitz instability (L). The
transitions to the C2/m structure are fluctuation induced first order ones. See Table I of Ref. 19.

�Q Var. λ Space group(s) n See Fig. Y,N,L

X θ −1 68 (D22
2h) Ccca n > 1a 14(a) Y

X θ +1 64 (D18
2h) Cmca n � 1 7(a) Y

P θ −1 142 (D20
4h) I41/acd n > 1a 14(b) Y

P θ +1 142 (D20
4h) I41/acd n � 1 7(b) Y

X φ +1 64 (D18
2h) Cmca Odd 8(a) Y

66 (D20
2h) Cccm Odd 8(b) Y

X φ −1 63 (D17
2h) Cmcm Even 16(b) Y

67 (D21
2h) Cmma Even 16(a) Y

N φ +1 12 (C3
2h) C2/m Odd 10(b) N

12 (C3
2h) C2/m Odd 10(c) N

2 (C1
i ) P 1 Odd 10(a) N

N φ −1 12 (C3
2h) C2/m Even 17(b) N

12 (C3
2h) C2/m Even 17(c) N

2 (C1
i ) P 1 Even 17(a) N

P φ +1 72 (D26
2h) Ibam Odd 11(a) L

70 (D24
2h) Fddd Odd 11(b) L

15 (C3
2h) C2/c Odd 11(c) L

P φ −1 72 (D26
2h) Ibam Even 18(a) L

70 (D24
2h) Fddd Even 18(b) L

15 (C3
2h) C2/c Even 18(c) L

aIf the dominant interlayer interactions are those between adjacent layers, then, as discussed in the text,
n must be even for this case to occur.

perturbations at order λ0 are considered. For this purpose we
need to show that the gradient of the terms of lower order in
λ in order parameter space vanish at the minimum determined
by the terms of order λ. If this were not the case, then the
symmetry could be lowered by inclusion of terms of lower
order in λ.

1. θ variables at the star of X

We are interested in the situation near the minimum of the
free energy for large λ given by Eq. (27), so that θ2 = σθ1,
where σ = ±1. There are two cases depending on the sign
of σ . When σ = 1 we set θ1 = θ + ε and θ2 = θ − ε. Table I
indicates that the operator T interchanges θ1 and θ2, or, in other
words, that T ε = −ε. This indicates that

∂F/∂ε|ε=0 = 0, (A1)

which is what we needed to establish. When σ = −1 we
set θ1 = θ + ε and θ2 = −θ + ε. Then Table I gives that
T (θ + ε, − θ + ε) = (−θ + ε,θ + ε) and further that TxT =
(θ − ε, − θ − ε), so that again we conclude that TxT ε = −ε

and thus that ∂F/∂ε|ε=0 = 0. Therefore, the minimum of
Eq. (27) for large λ is stable against inclusion of corrections
at lower order in λ.

2. φ variables at the star of X

We perform a similar analysis for the φ variables of the star
of X. We consider the critical channels for σ = ±1, such that

φx,1 = σφy,2, φx,2 = σφy,1. (A2)

These relations are exact for the critical channels. We want to
study deviations from the anisotropy at large λ, where

φx,1 ≈ ηφx,2, φy,1 ≈ ηφy,2, (A3)

with η = ±1. So we have four cases depending on the signs of
σ and η. In accord with these relations we consider the wave
function

� ≡ [φx,1,φy,1,φx,2,φy,2]

= [α + ε,ση(α − ε),η(α − ε),σ (α + ε)]. (A4)

We want to show that ∂F/∂ε)ε=0 = 0 which follows from

F (ε) = F (−ε). (A5)

We show in Table VIII the effect of the operators T and Tx

on �. For η = +1 and σ = ±1, we see that T �(ε) = �(−ε),
which verifies Eq. (A5). For η = −1 and σ = ±1, we see that
TxT �(ε) = �(−ε), which verifies Eq. (A5). Therefore, for
all four cases we have established Eq. (A1) which guarantees
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TABLE VIII. � of Eq. (A4) for the star of X, T � and Tx�, where
the operators T and Tx are defined in Table I. σ and η are either +1
or −1.

φx,1 φy,1 φx,2 φy,2

� = α + ε ση(α − ε) η(α − ε) σ (α + ε)
T � = η(α − ε) σ (α + ε) (α + ε) ση(α − ε)

TxT � = −η(α − ε) σ (α + ε) −(α + ε) ση(α + ε)

that the location of the minimum for large λ is not modified
by correction terms.

3. φ variables at the star of N

Since we are studying the status of the relations of Eq. (40)
we set

� = [φx,1,φy,1,φx,2,φy,2]

= [α + ε,β + δ,σ (α − ε),η(β − δ)]. (A6)

To show that the minima for δ = ε = 0 are stable we need to
show that

|∂F/∂δ|δ=ε=0 = |∂F/∂ε|δ=ε=0 = 0. (A7)

We do that by showing that the free energy is invariant under
(ε,δ) → (−ε, − δ). We show in Table IX the symmetry prop-
erties of the wave functions for the star of N. Note that there are
four cases depending on the signs of σ and η. For σ = η = +1,
we have that T �(ε,δ) = �(−ε, − δ), which guarantees that
F is an even function of these variables. For σ = −η = 1, we
have that TyT �(ε,δ) = �(−ε, − δ), which guarantees that F

is an even function of these variables. For σ = −η = −1, we
have that TxT �(ε,δ) = �(−ε, − δ), which guarantees that F

is an even function of these variables. Finally, for σ = η = −1,
we have that TxTyT �(ε,δ) = �(−ε, − δ), which guarantees
that F is an even function of these variables. Thus, we have
shown that at all of equivalent minima the gradients vanish, so
that these minima are stable with respect to perturbations at
lower order in λ.

APPENDIX B: QUALITATIVE DISCUSSION OF THE
ELASTIC RESPONSE

Here I discuss qualitatively the role of thermal fluctuations.
For the main issue of this paper, that is, the symmetry analysis
of allowable phase transitions our mean-field treatment of
interlocking octahedra is appropriate. However, if one wishes
to discuss the elastic response, the mean-field treatment is
insufficient and it would be incorrect to interpret the results of
Eq. (19) as reasonable approximations to the elastic constants.

TABLE IX. As Table VIII, but for the star of N.

φx,1 φy,1 φx,2 φy,2

� = α + ε β + δ σ (α − ε) η(β − δ)
T � = σ (α − ε) η(β − δ) (α + ε) β + δ

TxT � = −σ (α − ε) η(β − δ) −(α + ε) β + δ

TyT � = σ (α − ε) −η(β − δ) (α + ε) −(β + δ)
TxTyT � = −σ (α − ε) −η(β − δ) −(α + ε) −(β + δ)
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FIG. 22. (Color online) The single octahedron rotational angle (θ )
probability distribution function P (θ ) in the high symmetry phase.
The solid (black) line is for the unstressed system and the dashed (red)
line is for the system under compressional stress. For comparison
we also indicate (in blue) the delta-function distribution implied by
mean-field theory.

These elastic constants would be proportional to λ � 1 if
compression or elongation were performed while keeping
the octahedra perfectly aligned. However, it is clear that the
octahedra will rotate to relieve any applied stress, σ . This
is clear when the stress involves compression (σ > 0). Under
extension, it is essential to treat the equilibrium phase as one in
which the octahedral orientations are subject to a distribution
function (see Fig. 22), so that in the generic situation the
octahedra are not perfectly aligned.

The canonical approach to include fluctuations would be to
integrate out of the partition function the fluctuations about the
mean-field state. For instance, if a fluctuation is considered to
be an oscillator having frequency ω, then its contribution to
the free energy is of order kT ln(h̄ω/kT ). This energy can be
relevant if the elastic modes have a much higher energy (as they
do) for perfectly aligned octahedra than for tilted octahedra.
Because this thermal fluctuation free energy is much higher
when the octahedra are perfectly aligned, it favors having the
tilting angle θ be nonzero. Of course, this mechanism does
not favor one sign or the other for θ . It does suggest that the
system will form regions having different signs of θ giving rise
to a probability distribution for θ as shown in Fig. 22. Thus,
the structural transformation is probably similar to an order-
disorder transition of an Ising model. However, at temperatures
slightly above the structural phase transition the system
consists of regions having θ ≈ ±θ0. As shown in Fig. 22,
the value of θ0 responds to applied stress σ with dθ0/dσ > 0.
Note that this picture does not imply that the symmetry of
the system with thermal fluctuations is any different from that
without such fluctuations. So this picture only serves to explain
that one should not use the calculations of this paper to make
statements about the magnitude of the elastic constants.
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Since the energy of domain walls competes with the energy
needed to deform the octahedra it is likely that C11 ∼ λx ,

with x < 1. If the analogy with magnetic domain walls46 is
applicable, then perhaps x = 1/2.
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