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ABSTRACT 

 
ELUCIDATING THE REGULATORY ROLE OF 3D GENOME FOLDING 

DURING NEURAL DIFFERENTIATION AND SYNAPTIC ACTIVATION 

 
Jonathan A. Beagan 

Jennifer E. Phillips-Cremins 

 
The causal link between the three-dimensional conformation of the genome and 

spatiotemporal control of gene regulation has long been studied in the form of enhancer-

promoter interactions. Only recently have advances in molecular biology and next 

generation sequencing allowed higher-order chromatin folding to be queried genome-wide 

at ultra-high-resolution. In this thesis we leverage Chromosome Conformation Capture 

Carbon Copy (5C) along with RNA-seq and ChIP-seq to elucidate how the genome is 

reconfigured during neural development, cellular reprogramming, and synaptic activation. 

We observe that the first step in neural differentiation is accompanied by a bulk 

decommissioning of nearly half of the architectural protein CTCF’s binding sites in the 

pluripotent genome, a trend which continues throughout terminal neuronal differentiation 

and results in the dissolution of many chromatin loops present in embryonic stem cells 

(ESCs). We identify another zinc finger protein, Yin Yang 1 (YY1), at the base of looping 

interactions between neural progenitor cell (NPC) specific genes and enhancers; siRNA 

knockdown of YY1 specifically disrupts interactions between key NPC enhancers and their 

target genes. Additionally, we find that many of the CTCF sites that are decommissioned 

during neural lineage commitment are not efficiently restored during cellular 
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reprogramming of NPCs to induced pluripotent stem cells (iPSCs). CTCF sites that do not 

successfully regain binding in iPSCs underlie incompletely reprogrammed chromatin 

architecture, resulting in an iPSC genome folding and transcriptional signature that 

resembles an intermediate state between ESCs and NPCs. Culture in 2i media conditions 

restores the CTCF binding, genome folding, and gene expression of iPSCs to patterns 

resembling those of ESCs. Finally, we find that a large subset of chromatin loops 

surrounding select neuronal activity response genes (ARGs) are induced de novo during 

cortical neuron activation. We observe a striking correlation between the number, length, 

and kinetics of loops an ARG forms and how much time that ARG takes to be upregulated 

in response to neuronal activity. Additionally, we find that common single nucleotide 

variants (SNVs) associated with Autism Spectrum Disorder connect activity-inducible 

enhancers to upregulated genes, whereas Schizophrenia SNVs anchor pre-existing loops 

connecting activity-decommissioned enhancers to activity-downregulated genes. 

Altogether this work begins to elucidate how the 3-D genome orchestrates cellular state 

and function decisions during mammalian brain development from the earliest neural 

lineage commitment through the refinement of connections between terminally 

differentiated neurons. 
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Figure 4.3.  Progression of 5C data through alternative 5C analysis approaches. (A-D) Grid showing 
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raw, (B) primer corrected, (C) distance-dependence normalized via parametric model described in 9 and (D) 
interaction score computed as -10*log2(p-value) on p-values computed with compound normal-lognormal 
distribution fits described in 9. From left to right: (i) contact probability heatmaps for ES Rep1 and NPC 
Rep1, (ii) boxplots of counts for each primer/bin in the Sox2 region in order of increasing median, (iii) 
distance dependence curves, showing the mean of the counts at distance scales binned every 40 kb, (iv) kernel 
density estimates of the counts probability density. (E-G) Grid showing downstream effects of alternative 
placement of quantile normalization step within the main 5C analysis pipeline. Primer normalized data 
shown in (B) were binned (E), then quantile normalized (in contrast to Figure 4.2, where quantile 
normalization is the first step) (F), and finally distance corrected (G)……………………………… …………107 
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data, supporting their utility in computing empirical False Discovery Rates. (C) Empirical false discovery 
rates computed from simulated data reported for each classification. FDRs vary slightly depending on which 
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window used in this study. (I) Spearman’s rank correlation coefficient was calculated using the distance-
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transitions. (A-C) Scatterplot comparison of distance-corrected interaction scores between (A) ES cells and 
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of distance-corrected interaction scores (bottom) highlighting ES only interactions surrounding the Mis18a 
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gene expression fold change: (F) promoter acetylation alone (model 1), (G) promoter acetylation plus the 
acetylation of the nearest enhancer within 200 kb of the TSS (model 2). Expression fold change is plotted on 
the y-axis while acetylation fold change (of promoter in (F) and nearest enhancer in (G)) is plotted on the x-
axis. The expression fold change in (G) has been adjusted to remove the values predicted by the promoter 
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coefficients for terms included in models (Fig. 2f-i). (B-C) Results of promoter-only (B) and promoter plus 
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R2 values of models presented in (B-C). (E) Coefficients of each explanatory variable term in models 
presented in (B-C)……………………………………………………………………………………………………..151 
 
Figure 5.10. Unique topological motifs underlie the activity-dependent transcriptional response. (A) Cartoon 
representation of hypotheses in which activity-induced enhancers operate to control gene expression via 
poised (top) or dynamic (bottom) loops. (B) Scatterplot of enhancer acetylation across Bic and TTX 
conditions, thresholded by fold change of input normalized signal and classified into activity-induced 
(green), activity-invariant (blue), and activity-decommissioned (purple) enhancers. (C) Acetylation 
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CHAPTER 1: INTRODUCTION 

 
A critical unanswered question in genome biology is how the tremendous diversity 

of neuronal subtypes and synaptic connections are established during development and 

maturation of the mammalian brain (Figure 1.1). Transcriptional signatures unique to each  

 

 

Figure 1.1. The link between 3D genome folding, neural differentiation and synaptic 
plasticity in human brain development and neurological disorders is unknown. 
 
 

cell type must be intricately regulated in space and time to orchestrate the exquisite cellular 

and synaptic diversity of the adult brain1. A growing consensus is that numerous epigenetic 

modifications across the genome function together to create the ‘Epigenome’ - a molecular 

barcode on top of the linear DNA sequence that distinguishes one phenotype from another2. 

Genome-wide mapping studies have made great progress in elucidating the spatial 

distribution of epigenetic marks on the linear DNA polymer and how such marks differ 

among cell types. Nevertheless, there is still a large gap in our knowledge of how a wide 

range of epigenetic marks are spatiotemporally regulated to control the formation and 

cooperation of the extensive cellular heterogeneity in the developing brain. Understanding 



2 
 

the mechanisms governing differentiation and synaptogenesis in the healthy brain will shed 

new light into how these processes go awry in neurological disorders.  

Mammalian genomes are folded into sophisticated configurations that both shape, 

and are shaped by, a diverse range of cellular functions3. Recent advances in molecular and 

computational technologies have enabled the query of higher-order chromatin architecture 

at unprecedented resolution and scale4-6. The emerging model from these studies is that the 

mammalian genome is folded into a complex hierarchy of highly self-interacting Megabase 

(Mb)-scale structures termed topologically associated domains (TADs), nested subTADs 

and long-range looping interactions 7-10 (reviewed in Chapter 2). The highest resolution 

maps to date have enabled the detection of tens of thousands of long-range looping 

interactions genome-wide 10, 11. Loops connected by the architectural protein CTCF are 

thought to create TADs/subTADs that demarcate the search space of enhancers for their 

target promoters 12-15. Enhancers loop to promoters via architectural proteins such as 

mediator and cohesin to govern spatiotemporally regulated transcription 16-19. Initial studies 

have shown that long-range interactions can markedly reconfigure in development, disease, 

and in response to genetic perturbations 11, 14, 16, 17, 20-26.  

Chapter 3 of this thesis begins with the simple question of how CTCF is 

reconfigured between pluripotent embryonic stem cells (ESCs) and multipotent neural 

progenitor cells (NPCs). Surprisingly we find a large number of CTCF binding sites that 

are lost during differentiation which is accompanied by a loss of looping at those sites. 

However, we find that within larger looping domains formed by constitutively bound 

CTCF, NPC-specific loops arise to connect NPC enhancers to their target genes such as 

Nestin, Olig1-2, and Sox2. These NPC-specific enhancer-promoter loops are often 
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mediated by the transcription factor YY1, knockdown of which disrupts the loops and 

alters gene expression. Thus, we implicate YY1 as an important regulator of early neural 

lineage commitment. 

Chapter 4 of this thesis then tests how the 3-D genome is reconfigured when NPCs 

are reverted back to pluripotency through somatic cell reprogramming. We find that the 

CTCF sites that were lost initially during differentiation are often not efficiently restored, 

resulting in genome folding patterns that both retain signatures of the NPC state and exhibit 

pluripotency-specific enhancer-promoter interactions. Culture of iPS cells in 2i media 

conditions restored pluripotency-like CTCF binding, genome folding patterns, and 

expression of key pluripotency genes. 

Finally, in Chapter 5 we investigate how the 3-D genome organizes the process of 

synaptogenesis. Neurons form an interconnected network in the mammalian brain. 

Synaptic connections among neurons allow the mammalian CNS to process and store 

information. An emerging body of evidence suggests that past synaptic activity of a neuron 

influences how that neuron operates within its neuronal networks in the future by regulating 

cellular properties such as dendritic outgrowth, synapse maturation, synapse elimination, 

and synaptic plasticity (reviewed in27). A critical component of this feedback pathway is 

an upregulation of hundreds of activity response genes (ARGs) rapidly upon neuron 

depolarization28-35; activity response genes such as fos28-32 and arc33-35 are expressed on the 

order of minutes36 and are essential for proper long-term learning and memory37. A 

fundamentally important goal toward understanding complex brain functions such as 

learning and memory is to elucidate the molecular mechanisms governing gene expression 

changes occurring as a cause or consequence of neuronal activity and synaptic plasticity. 
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Chapter 5 seeks to begin to answer this question by mapping dynamic genome folding 

across neuronal activity states. We find that activity response genes loop to a subset of 

activity-induced enhancers in an activity-dependent manner. Surprisingly the complexity 

and kinetics of these loops were different depending on whether the gene is expressed in a 

rapid or delayed manner in response to neuronal activity. Finally, we observe that 

Schizophrenia and Autism Spectrum Disorder (ASD) genetic variants fall preferentially at 

the base of chromatin loops with different classes of activity-responsive enhancers. In 

Chapter 6 I propose future work that is required to establish the causal connection between 

3-D epigenome reconfiguration and mammalian synapse formation and function which 

underlies memory and cognition. 
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CHAPTER 2: BACKGROUND 

 
A fundamental mystery in genome biology is how three billion base pairs of DNA 

sequence (~2 meters long) is folded, looped and coiled to fit into a mammalian nucleus that 

is roughly 5-10 µm in diameter. Mounting evidence suggests that higher-order chromatin 

structure is linked to spatiotemporal regulation of a wide range of unique cellular functions 

(e.g. transcription, replication, recombination and repair)23, 38-41. Thus, a leading hypothesis 

is that chromatin packaging cannot be random but must be arranged in precise 

configurations that are amenable – and perhaps causally linked - to dynamic epigenetic 

modifications that orchestrate complex phenotypic outcomes. 

Rapid progress has been made over the last decade in advancing our understanding 

of how the genome folds in three-dimensions (3-D)42. The emerging picture is that 

chromatin is arranged in a nested hierarchy of topological features with unique properties 

at each length scale7, 9, 10, 38, 43-45. The recent influx of new insight into genome folding has 

been primarily driven by advances in molecular and computational sequencing 

technologies, ultimately enabling scientists to overcome the resolution and throughput 

limitations of conventional microscopy4, 46. In this chapter I introduce the foundational 

insights into how the genome folds to regulate gene expression and cell identity, upon 

which my thesis will build.  

 

2.1 How does the genome fold? 

Metazoan genomes are folded into a nested series of unique 3-D configurations 

(illustrated in Figure 2.1). At the first level of the packaging hierarchy, the primary DNA  
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Figure 2.1. Diagram of hierarchical genome organization, ranging through the 
length scales of: (A) DNA wrapped around nucleosomes, (B) gene loops, (C) sub-
TADs, (D) TADs, (E) compartments, (F) chromosome territories, and (G) the nucleus. 
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sequence is wrapped around histones to form nucleosomes that make up the 10 nm 

chromatin fiber47 (Figure 2.1A). It has long been known that the 10 nm fiber is arranged 

into an interconnected web of long-range interactions, but the precise details of folding 

patterns at each length scale have remained unclear48. Recent molecular and computational 

breakthroughs have now enabled a more lucid and precise understanding of several unique 

chromatin folding configurations4, 46, 49. At the second level of packaging, long-range 

contacts between two non-adjacent loci on the linear genome facilitate the spatial proximity 

of distal regulatory elements via the “looping out” of intervening, non-contacting 

sequences50-54 (Figure 2.1B). These so-called ‘looping interactions’ are hypothesized to in 

turn serve as the structural foundation that connects the edges of larger architectural folding 

units generally classified as ‘contact domains’ (CDs)9, 10, 38, 42. CDs are large genomic 

regions (i.e. numerous genomic loci in series) that have a higher interaction frequency with 

each other than the surrounding genome sequence – thus creating a domain-like 

architecture (Figure 2.1C-D). CDs are often nested within each other (discussed in detail 

below) and exhibit a large dynamic range in length scale (i.e. megadomains (5-20 

Megabase (Mb)); topologically associating domains (TADs) (200 kilobase (kb) - 3 Mb); 

sub-TADs (40 kb - 1 Mb))7-10, 55-57. Importantly, spatial proximity among two or more 

TADs or smaller sub-TADs can create higher-order ‘compartments’ or ‘sub-

compartments’, respectively (Figure 2.1E)10, 44, 45. Compartments are generally 

hypothesized to represent spatial neighborhoods of co-regulation within the larger 3-D 

nucleus58. Finally, at a highest level of organization in the hierarchy, individual 

chromosomes occupy distinct territories with respect to the other chromosomes and the 

nuclear periphery45, 48 (Figure 2.1F). The spatial placement of territories can in turn affect 
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the genomic loci that are adjacent to the lamina and also physically proximal to key genetic 

sequences in other territories59-61. 

  

2.2 Hypothesizing 3-D architecture from 2-D contact density maps 

Much of our recent knowledge of genome folding has been provided by newly 

published genome-wide data generated by Chromosome-Conformation-Capture (3C)-

based methodologies. The unique technological details of each methodology have been 

extensively reviewed elsewhere4, 5, 46. Despite key procedural differences, 3C-based 

methods generally partition the linear DNA sequence into fixed interval bins that can be 

plotted on both X and Y axes of a contact density map. Contact maps serve as a 2-D grid 

in which any given pixel (Ci,j where i and j are indices of intervals on X and Y axes, 

respectively) represents the relative interaction frequency between any two fixed interval 

bins on the genome. The 2-D contact grid is often visualized as a heatmap to reveal patterns 

of high and low frequency chromatin architecture (Figure 2.2).  

 

Figure 2.2. Representative heatmaps of chromatin interaction data at different 
length scales of interactions. Frequency of interaction is depicted on color scale 
ranging from white (low) to dark red (high). Heatmaps are depicted for the following 
organizational units: (A) gene loops, (B) sub-TADs, (C) TADS, (D) compartments, 
(E) chromosomes. 
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2.2.1 Looping interactions: single or clustered pixels in kilobase-resolution maps 

Looping interactions are identified in proximity ligation data as pairs of genomic 

loci (generally <10 kb in size) that exhibit a higher contact frequency with each other than 

with adjacent loci. In 3C-PCR or Circular-3C (4C) data, a looping interaction is identified 

when a pre-determined anchor sequence exhibits a higher frequency interaction with a 

specific distal locus than with the intervening genomic sequence (Figure 2.2A). For high-

throughput 3C methods that query large portions of the genome, such as Hi-C and 

Chromosome-Conformation-Capture-Carbon-Copy (5C), looping interactions are 

represented as single or clustered groupings of pixels at key loci in contact density heat 

maps (Figure 2.2B). In practice, it is easiest to discriminate sufficiently between adjacent 

pixels to reveal underlying looping structure if Hi-C and 5C maps are <10-15 kb resolution 

(discussed in detail below).  

  

2.2.2 TADs vs. subTADs vs. contact domains: a question of length-scale and resolution 

Recent Hi-C maps have uncovered a clear underlying structure to looping 

interactions and how they intertwine with several higher-order levels of genome 

organization10, 38, 57, 62, 63. For example, in addition to connecting distal regulatory 

sequences, a leading hypothesis is that looping interactions might form the structural basis 

for larger architectural folding units termed ‘topologically associated domains’ (TADs)7, 8, 

24, 55, 64 (Figure 2.2C) and their smaller counterparts termed sub-TADs9 (Figure 2.2B). 

TADs and sub-TADs – recently referred to more generally as contact domains - range in 

size from 40 kb to 3 Mb10. Noteworthy, sub-TADs are often nested within larger TADs9 

(Figure 2.2B-C) and both are represented as large squares of elevated interaction 
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frequency in contact density heat maps. Often, a group of adjacent, high-count pixels are 

located at the apex of the square, indicating a further enrichment for a loop between 

genomic segments on opposite edges of the TAD/subTAD – suggesting that looping 

interactions might form the structural basis for larger CDs. There is also evidence that 

TADs can then assemble into much larger 5-20 Mb ‘Megadomains’10. 

  A critical issue to consider when interpreting proximity ligation data is that the 

underlying structure visualized in heatmaps is dependent upon the resolution at which the 

experiment is performed and analyzed. The resolution of interaction frequency matrices is 

often discussed in terms of the number of base pairs, ‘n’, at which a matrix should be binned 

(resulting in heatmap pixels with dimensions n x n). For example, Rao et al.10 define Hi-C 

mapping resolution as the smallest binning size in which the underlying features of genome 

folding can be reliably distinguished. Several factors contribute to resolution (e.g. library 

complexity, genome size, genome coverage, sequencing read depth). As a consequence, 

published data is available at mapping resolutions ranging from low (~1 Mb-sized pixels) 

to high (~250-1000 bp pixels).  

During the design and analysis of a proximity ligation experiment, it is of utmost 

importance to select a resolution that is appropriate for the specific length scales of genome 

folding that will be studied. For example, in genome-wide 3-D folding maps binned at 1-

10 Mb resolution, the genome appears organized into a series of large ‘Megadomains’ (5-

20 Mb)10, 45. By contrast, matrices binned at 40 kb mapping resolution readily display 

TADs (median size of 880 kb) tiled along the diagonal of heatmaps7. Moreover, higher-

resolution maps (~5-10 kb resolution) exhibit sub-TAD structures nested within larger 

TADs9. Ultra-high resolution maps at ~250 bp-5 kb resolution highlight looping 
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interactions and sub-TADs, but lose sensitivity in resolving larger TAD and Megadomain 

structures10. Thus, it is important to tune experimental and computational parameters to 

query genome folding features at the length scale of interest to a particular biological 

question.  

 

2.2.3 Compartments & sub-compartments: spatial neighborhoods of contact domains 

A/B compartments were first identified in Mb-resolution maps as ultra-long-range, 

off-diagonal interactions among a series of two or more TADs with similar chromatin 

features45 (Figure 2.2D). For example, ‘A’ compartments are represented by marks 

characteristic of open chromatin, such as DNAseI hypersensitivity, high gene density, high 

transcription, and active chromatin marks such as H3K4me3, H3K36me3 and H3K4me1. 

By contrast, ‘B’ compartments are represented by marks characteristic of closed chromatin, 

including: H3K27me3, H3K9me3, association with the nuclear lamina, absence of DNAseI 

hypersensitivity, low gene density and/or low/silenced transcriptional activity10, 44, 45, 58. 

Recently, the highest resolution Hi-C maps to date have uncovered that sub-TADs within 

larger TADs can co-localize with other sub-TADs via ultra long-range interactions to 

create sub-compartments – thus overturning the model that compartments are only formed 

by a series of TADs10. 

To date, the functional role for Compartments/sub-Compartments remains 

unknown. A recent Hi-C analysis showed that gene expression is only marginally altered 

during the switch between compartments during stem cell differentiation, suggesting that 

the finer-scale temporal and developmental regulation of individual genes is not causally 

governed by the larger scales of genome architecture44. We speculate that compartments 
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serve as sub-nuclear locations in which large contiguous chromatin regions can spatially 

co-localize to utilize similar genome machinery. Thus, active or similarly replicating TADs 

might share one set of chromatin-modifying enzymes (and thus co-localize in A 

Compartments/sub-Compartments), whereas silenced TADs/sub-TADs might share 

another very different set of chromatin modifying enzymes (and thus co-localize in B 

Compartments/sub-Compartments). 

 

2.3 Organizing principles governing looping 

The mechanisms regulating the establishment, maintenance and function of 3-D 

architecture remain scarcely understood – largely because 3-D genome folding studies to 

date have been descriptive in nature. At the folding level of looping interactions, it remains 

unknown how specific genomic loci find their precise contact point. Furthermore, it 

remains unclear whether loops are a cause or consequence of transcriptional activity. 

  

2.3.1 What governs the specificity and directionality of CTCF-mediated interactions? 

The most well understood mechanism regulating loop formation involves CCCTC 

binding factor (CTCF). CTCF contains a highly conserved eleven zinc finger central DNA 

binding domain embedded within slightly more divergent N- and C-termini65. The protein 

was originally described with in vitro biochemical studies as a ‘multivalent factor’ due to 

its ability to bind to a wide range of variant sequences through combinatorial use of 

different zinc fingers66. Since its discovery 25 years ago, the function of this protein has 

long been shrouded in controversy due to its pleiotropic effects on genome function in vivo. 

Indeed, CTCF has been specifically linked to transcriptional activation, repression, 
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splicing, recombination, insulation, and imprinting67. Yet the mechanisms by which CTCF 

performs these distinct functions remain unresolved. 

An important question is whether CTCF is a true multivalent factor with the ability 

to perform many contrasting functions, or if there is a single unifying mechanism that can 

explain its divergent roles. Recently it has been proposed that CTCF has a conserved role 

across metazoans as a master architectural protein that orchestrates different categories of 

chromatin interactions as a function of the combination of zinc fingers engaged with the 

genome. The “master weaver” hypothesis would predict that all genome regulatory roles 

linked to CTCF would be secondary effects of its architectural role67. Proximity ligation 

studies support this idea. For example, several seminal 3C-PCR studies have identified 

CTCF at the base of specific looping interactions and confirmed that knockdown of the 

protein resulted in decreased/abrogated looping68-70. A genome-wide analysis with ChIA-

PET (chromatin interaction analysis by paired-end tag) uncovered ~1,500 CTCF-mediated 

looping interactions in pluripotent cells71. More recently, high-resolution (~10 kb 

resolution) architecture maps surrounding developmentally regulated genes demonstrated 

that a large subset of looping interactions are unchanged during pluripotent stem cell 

differentiation and are enriched for CTCF and its binding factor cohesin9. Similarly, the 

highest resolution genome-wide contact maps to date (~1-5 kb resolution) identified 

~10,000 looping interactions across the genome. The large majority of interactions 

identified in this study were anchored by CTCF10. Consistent with these results, a genome-

wide Hi-C analysis demonstrated that CTCF knockdown in HEK293T cells disrupts 

looping interactions within subTADS72. Together, these data support the idea that CTCF 
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has a causal role in facilitating looping, but the mechanism by which CTCF works to create 

long-range interactions remains a significant unaddressed issue. 

CTCF’s capacity to confer vastly different functions has been attributed to distinct 

conformations of the protein, which are posited to be governed by differential ZF binding 

to divergent consensus sequence variants65. The ‘CTCF code hypothesis’ has remained 

unproven to date, but recent reports have begun to unravel possible links between the 

underlying genome sequence and 3-D architecture73-78. ChIP-seq mapping studies across 

more than 20 mammalian cell types have uncovered 50,000+ CTCF binding sites. 

Biochemical and computational studies have identified a 20 bp core consensus sequence 

that engages with ZF’s 4-7 and is essential for occupancy of the protein 65, 79, 80 (Figure 

2.3A). Moreover, a fraction (10-25%) of consensus sites are flanked by additional 

secondary motifs that are hypothesized to stabilize CTCF binding81-83. Seminal studies 

exploring the interplay between ZF’s and genome sequence relied on in vitro transcribed 

CTCF mutants and gel shift assays. Recently, Nakahashi et al. used cell lines 

overexpressing CTCF ZF mutants in combination with ChIP-seq to confirm that the central 

ZF’s 4-7 are essential for binding to the core 20 bp consensus sequence81. Importantly, this 

study also linked ZF’s 9-11 association with the upstream motif, thus demonstrating that 

the protein’s orientation can be regulated by the directionality of the consensus sequence. 

Finally, this study also systematically identified a relationship between CTCF binding 

affinity and single nucleotide variants within the core consensus sequence, highlighting the 

critical importance of CTCF occupancy patterns in genetic diversity that might be linked 

to phenotypic variation and disease susceptibility among individuals.  
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Figure 2.3. CTCF binding orientation influences local chromatin architecture. 
(A) CTCF’s eleven zinc-fingers bind distinct DNA sequences within the canonical 
CTCF binding motifs, resulting in CTCF engaging with the genome in specific 
directions depending on the underlying sequence. (B) The four combinations of 
‘direction’ that two CTCF motifs along the same DNA strand can occupy are 
displayed.  The majority of CTCF motif pairs that form significant three-dimensional 
interactions are in the ‘convergent’ orientation. (C) Representative diagram of changes 
in chromatin interactions upon deletion/inversion of CTCF binding sites, based on data 
presented in Guo et al. 2015.  Significant interactions are represented as green arches. 
 
 

A leading prediction from the ‘CTCF code hypothesis’ is that alterations in CTCF’s 

conformation due to the underlying genome sequence will ultimately impact the manner in 

which CTCF organizes higher-order genome folding. Indeed, very recent reports have 
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provided the first descriptive evidence that the orientation of CTCF binding motifs with 

respect to the linear genome might be a critical feature governing the specificity/selectivity 

of long-range interactions among CTCF binding sites10, 62, 84-86. Starting with a group of 

~10,000 loops identified by ultra-high resolution Hi-C analysis in human cell lines, Rao et 

al. focused on a subset of ~4,000 loops that (1) exhibit CTCF binding at both loop anchors 

and (2) the anchoring CTCF sites contain only a single CTCF consensus sequence. In this 

group of CTCF-mediated loops, >90% contain CTCF binding motifs in a ‘convergent’ or 

‘forward-reverse’ orientation. Specifically, one anchor at the base of a loop exhibits a 

‘forward’ orientation (the CTCF motif is aligned in the 5’-3’ direction along the strand in 

question) and the second anchor at the base of a loop exhibits either (1) a 5’-3’ consensus 

orientation on the antisense strand or (2) the reverse complement of the consensus in a 5’-

3’ orientation (Figure 2.3B). Similarly, Hadjur and colleagues reported that the 

directionality of CTCF’s consensus sequence is correlated with directionality in looping. 

More recently, using CTCF ChIA-PET analysis, Tang et al. focused on ~35,000 loops in 

which CTCF motifs were found at the base of both loop anchors with a unique orientation. 

In this case, ~65% of interactions showed a convergent consensus orientation while >30% 

exhibited tandem/same-direction orientation. Intriguingly, the loops with tandem 

consensus orientation exhibited lower interaction strength than loops with convergent 

consensus orientation, suggesting that each looping class might have a different function 

and/or that differential thresholding during the “peak-calling” of looping interactions might 

influence the results. Independent studies from Guo et al. and de Wit et al. have also 

reported 10-30% of looping interactions with tandem orientations of the CTCF consensus. 

Together, these results suggest that the CTCF consensus orientation is an important 
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contributing factor regulating looping interactions and predict that a convergent orientation 

is favorable, but not necessarily essential, for a looping interaction to occur.  

Guo et al. have recently employed the CRISPR-Cas9 system to explore the causal 

link between convergent CTCF consensus sequences and looping interactions84. Within the 

protocadherin gene cluster, the authors inverted a specific regulatory sequence containing 

two CTCF binding sites oriented in the ‘reverse’ direction in wild type cells (Figure 2.3C). 

The regulatory sequence encodes a putative enhancer element known to loop to upstream 

alternative promoters in the alpha protocadherin gene cluster. Consistent with the 

convergent CTCF looping model, CTCF binding sites at alternative alpha promoters 

contain CTCF sites oriented in the ‘forward’ direction. Inversion of the protocadherin 

enhancer element significantly disrupted the convergent promoter-enhancer looping 

interactions without depleting CTCF binding. Similarly, de Wit et al. also used CRISPR-

Cas9 genome editing to demonstrate that deletion of a CTCF binding site can abrogate 

looping interactions85. Intriguingly, re-insertion of CTCF at its endogenous location but in 

opposite orientation did not fully recover endogenous looping. Thus, these results provide 

the first evidence that convergent orientation of the CTCF consensus is an important 

mechanistic feature that causally contributes to chromatin looping.  

Additional observations from CRISPR-Cas9 genome editing studies suggest that 

the CTCF consensus orientation model is likely not the only causally important principle 

governing looping. Intriguingly, after inversion of the protocadherin enhancer element, 

new, ectopic loops were formed between CTCF sites in both convergent and same direction 

orientations84. This was not a locus-specific observation, as Guo et al. also observed 

inverted ectopic loops with both convergent and same direction consensus orientations 
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upon CTCF site inversion at the β-globin locus. Presumably, if convergent consensus 

orientation was the sole mechanism governing looping, one would expect it would still 

apply in the establishment of de novo ectopic loops. Moreover, convergently oriented 

consensus sites mediate higher strength looping interactions than same direction consensus 

sites. To explain these conflicting results, we favor a model in which convergent CTCF 

orientation is favorable, but not essential, for high-affinity looping interactions; additional 

regulatory mechanisms likely work in concert with CTCF orientation to govern the 

specificity and downstream transcriptional activation facilitated by CTCF-mediated 

interactions.  

 

2.4 Loop extrusion is a leading mechanism that governs chromatin domain formation 

Significant progress has been made toward understanding the mechanisms that 

govern the formation of both unnested (Fig. 2.4A-B) and nested (Fig. 2.4C-D) 

chromatin domains. Mammalian genomes contain a large number of domains structurally 

characterized in Hi-C maps by the presence of ‘corner dots’ -- a punctate group of adjacent 

pixels with significantly enhanced interaction frequency compared to the surrounding local 

domain structure (Fig. 2.4E, Fig. 2.4F). Corner dot structures are thought to represent long-

range looping interactions (schematically drawn in Fig. 2.4G) that exhibit a persistently 

high interaction frequency in a large proportion of cells (i.e. persistent loops). It has been 

hypothesized that chromatin domains which co-localize with corner dots at their apex 

represent so-called loop domains. Our own qualitative observation of Hi-C maps in 

mammalian systems reveals the presence of Mb-scale, unnested loop domains and nested 

loop domains (Fig. 2.4E, Fig. 2.4F).   



19 
 

 

Figure 2.4. The structural features of topologically associating domains. (A-
D) Heatmap representations (top) and schematized globular interactions (bottom) 
of topologically associating domains (TADs, A-B) and nested subTADs (C-D). 
(E) Cartoon representation of different classes of contact domains parsed by their 
structural features and degree of nesting. (F) Identification of contact domains 
classes from (e) in cortical neuron HiC data from Bonev et al. 2017 binned at 10 
kb resolution. (G) Cohesin translocation extrudes DNA in an ATP-dependent 
manner into long-range looping interactions that form the topological basis for 
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TAD and subTAD loop domains.  (H-K) Contact frequency heatmaps of high 
resolution Hi-C data (Bonev et al. 2017) performed on embryonic stem cells (ESC, 
H+J) and neural progenitor cells (NPC, I+K). H-I: Green arrows denote the 
corners of a subset of the nested chromatin domains evident in this genomic 
region. J-K: Green arrow annotates a high insulation strength, cell type invariant 
TAD boundary. Blue arrow points to a lower insulation strength, cell type dynamic 
subTAD boundary. 
 
 

Recent reports and forthcoming studies by large consortia have identified 

10,000-50,000 corner dot structures representing persistent loops in various human 

cell types10, 11. The majority of corner dots are anchored by motifs bound by the 

architectural protein CTCF67. Specifically, 60-90% of all corner dots (estimates vary 

across studies) with an interpretable CTCF motif in both anchoring fragments display 

a ‘convergent’ motif orientation10,86 (Fig. 2.4G). Inversion of CTCF motifs using 

CRISPR genome editing disrupt the corner dot and the TADs/subTADs demarcated 

by the dot, demonstrating that convergent CTCF motif orientation is necessary for 

the formation of loop domains84, 85, 87. Moreover, short-term degradation of the CTCF 

protein results in severe ablation of a large proportion of loop domains13. Thus, a 

significant subset of persistent loops represented by corner dots require binding of the 

architectural protein CTCF in a convergent orientation on both loop anchors.  

A windfall of new data has also recently advanced our understanding of the manner 

in which the two convergently oriented CTCF binding sites establish and maintain spatial 

proximity. In principle, the orientation of CTCF motifs should not matter if loop 

establishment occurs through simple diffusion in the 3-D nucleus. The seminal model of 

‘loop extrusion’ asserts that molecular motors loaded on the genome could track along the 

DNA sequence, thus ‘extruding’ the intervening DNA in the process88, 89. Compelling 
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evidence supporting this theory was provided by computational studies indicating that 

polymer simulations of loop extrusion could recapitulate loop domains from Hi-C maps87, 

90-92. The authors of these studies predicted the existence of DNA extruding factors. 

The mechanisms governing loop extrusion are an intense area of international 

investigation. It has long been thought that structural maintenance of chromosomes (SMC) 

complexes, such as cohesin or condensin, could serve as loop anchoring factors, either by 

stabilizing pre-formed loops or through an active extrusion mechanism. Peaks of enriched 

cohesin occupancy on DNA identified via ChIP-seq co-localize with CTCF binding sites79, 

93-95, but are slightly shifted to the 3’ end of convergently oriented motifs86, 91. This was a 

clue suggesting a tracking mechanism of cohesin-CTCF recruitment. Knock-out of the 

cohesin release factor WAPL resulted in increased cohesin residence time on the genome, 

longer looping interactions that cross conventional TAD boundaries, and a marked increase 

in the number of both TAD and nested subTAD loop domains96. Moreover, knock-out of 

the cohesin loading factors Scc4 and Nipbl, or the Rad21 cohesin subunit, ablated a large 

fraction of loop domains across multiple mammalian cell types18, 19, 96. Direct evidence 

supporting loop extrusion via SMC complexes came from single molecule imaging studies 

showing that condensin97, 98 and cohesin99-101 can translocate along naked DNA in vitro in 

an ATP-dependent manner. Thus, loop extrusion, in which SMC complexes pass over 

divergently oriented CTCF motifs and stall at those in convergent orientation (Fig. 2.4G) 

has been proposed as a leading hypothesis for the mechanism of loop domain formation.  

We also define a key subgroup of chromatin domains that neither co-localize with 

corner dots nor register with compartments (Fig. 2.4E, Fig. 2.4F, ‘non-

compartment+non-corner dot domains’). It is important to highlight that, for those 
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domains formed by extrusion mechanisms, preferential contacts within the domain (i.e. not 

at corner dots) are hypothesized to be composite signal of active extrusion events (i.e. 

transient loops)91. Therefore, it is possible that non-compartment+non-corner dot domains 

are mechanistically formed by extrusion. Furthermore, an important area of active 

exploration is the discovery and dissection of additional extrusion blocking factors. Precise 

annotation of the suite of diverse proteins that influence extrusion rates across the 

genome would give credence to the hypothesis that boundaries with unique molecular 

characteristics can give rise to differential extrusion blocking strength, thus causing 

corner dots with varying interaction frequency. Thus, alternative mechanisms that could 

contribute to non-compartment+non-corner dot domains include: (1) loop extrusion against 

transient boundaries (i.e. highly dynamic boundaries in individual cells), (2) loop extrusion 

against weak boundaries present in a high proportion of cells,  (3) so-called ‘exclusion 

boundaries’ in which the boundaries are strong and contribute to extrusion blocking in the 

TADs/subTADs upstream and downstream of the domain in question, therefore the non-

corner dot domain is created as a consequence of placement between two strong TADs,  or 

(4) novel still unknown mechanisms. Future studies to unravel the mechanisms that form 

transient versus persistent loop domains are of high importance for future inquiry, and the 

field’s progress in understanding the mechanisms governing persistent loop domains is 

discussed in this Perspective.   

 

2.5 Compartmentalization is a second mechanism that contributes to chromatin 

domains 

A second mechanism that contributes to the establishment or maintenance of 
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chromatin domains in eukaryotes is compartmentalization. Compartments were 

initially identified in 1 Mb binned Hi-C heatmaps by their chromosome-wide plaid 

pattern of ultra-long-range intra-chromosomal and inter-chromosomal contacts45 (Fig. 

2.4E). It has been hypothesized that the empirically defined plaid pattern represents 

the partitioning of the human genome into either A compartments of actively 

transcribed genes and active histone marks or B compartments with inactive genes and 

repressive marks45. The initial low-resolution Hi-C maps suggested that multiple Mb-

scale TADs were nested within a single contiguous segment of an A or B compartment. 

However, in high-resolution heatmaps it was recently discovered that the mammalian 

genome was instead partitioned into at least six significantly smaller sub-compartments 

with various combinations of repressive and active chromatin modifications10. Notably, 

ultra-high-resolution Hi-C maps in flies have uncovered so-called ‘compartment domains’ 

- fine-grained compartments that perfectly register with chromatin domains devoid of 

corner dots102. Indeed, the overall quantity of corner dot domains in flies is minimal102, 103, 

suggesting that compartmentalization may be the primary driver of chromatin domain 

formation at least in some non-mammalian eukaryotic organisms.  

Together, these high-resolution analyses provide evidence that an intriguing subset 

of chromatin domains across eukaryotes could be classified as ‘compartment domains’ due 

to a perfect alignment between the domain-like structure and compartment coordinates and 

the absence of a corner dot (Fig. 2.4E, Fig. 2.4F, ‘compartment domain only’, ‘nested 

compartment domain only’, Definitions Box). A critical unanswered question is whether 

loop extrusion occurs in organisms where compartmentalization is the driving chromatin 

domain mechanism, and, if so, which proteins serve as the extrusion factors, and how the 
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extrusion blockers work to circumvent the formation of corner dot TADs/subTADs. 

Ongoing and future work, some of which is discussed below, will shed light on the cause-

and-effect relationship of compartment domains in governing transcription, compartment 

organizing principles, their unknown abundance in unperturbed mammalian genomes, and 

their interplay/competition with other genome organizing forces. 

 

2.6 What’s in a name? Refining the definition of TADs/subTADs as loop extrusion 

domains mechanistically distinct from compartment domains 

One question under intense debate is how to update the historical definitions of 

TADs/subTADs in light of recent discoveries, most importantly the existence of loop 

extrusion and the striking competition between compartmentalization and looping 

mechanisms that underlie the formation of chromatin domains18, 19, 96, 102. Indeed, 

cohesin knock-down results in strengthening of existing compartments and finer-scale 

compartmentalization upon loss of corner dot TADs/subTADs in mammalian 

systems18, 19, 96. These results suggest that loop extrusion and compartmentalization are 

distinct and competing forces, thus reinforcing the concept that chromatin domains 

formed by the two mechanisms need to be uniquely and clearly defined.  

Data thus far are consistent with a model in which a subset of both TADs and nested 

subTADs represent composite signals of loops in the making and thus are loop domains 

established by dynamic extrusion of SMC complexes blocked by boundaries created by 

architectural proteins such as CTCF. Importantly, TADs as originally historically 

discovered are also strongly demarcated by CTCF7. Thus, in an effort in this Review to 

link the definition of TADs to underlying mechanism, we propose to refine the definition 
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of TADs as unnested, corner dot domains formed mechanistically by persistent loops (Fig.  

2.4, Table 2.1). TAD loop domains may also be sub-stratified into those that also perfectly 

correspond to compartments or do not co-localize with compartments (Fig. 2.4E, Fig. 2.4F, 

‘TAD only’, ‘TAD+compartment domain’). We refine the definition of subTADs as 

nested, corner dot domains formed mechanistically by persistent loops. subTAD loop 

domains may also be substratified into those that perfectly correspond to compartments or 

do not co-localize with compartments (Fig. 2.4E, Fig. 2.4F, ‘nested subTAD only’, 

‘nested subTAD+compartment domain’). As discussed above, we define the most 

abstract and poorly understood domain type ( i.e. ‘non-compartment + non-corner dot 

domains’), as those that do not correspond to compartments and are not persistent 

corner dot TADs/subTADs, but could still be created by extrusion blocking from weak 

boundaries or still unknown mechanisms (‘non-compartment + non-corner dot 

domains’, Fig. 2.4E, Fig. 2.4F). Evaluating the possible functional or mechanistic 

difference between loop domains that also co-localize with compartments and loop 

domains that do not register with compartments is of high importance for future functional 

and mechanistic dissection.  

 

2.7 TADs, subTADs, and their boundaries can be structurally distinguished by their 

nested properties 

Another currently debated question is whether contact domains are folded  
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Table 2.1. Chromatin domain definitions box 

 

hierarchically, or if the largest, Mb-scale TADs are simply an artifact of the high spatial 

noise and low resolution of early Hi-C maps. For example, a recent report in one specific 

cell type has suggested that the Drosophila genome is partitioned into relatively small 

compartment domains tiled along the diagonal102. An emerging interpretation of new high-

resolution Hi-C data is that Drosophila may only have a small number of loop domains102, 

103, and this important structural feature will require confirmation across a range of cell 

types and functional studies. There is less evidence for nesting in Drosophila than in 

mammalian systems, suggesting that complex hierarchical domain structures might be less 

prominent in some organisms. Although more analyses are required to quantitatively 

resolve the existence of nested domains across species and cell types, it is worth pointing 
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out that there is strong visual evidence of large TADs and smaller, nested subTADs in the 

highest resolution Hi-C maps published to date in mouse104 (Fig. 2.4H-I, green 

arrowheads). Thus, in addition to the classification of TADs as compartment and non-

compartment domains loop domains (detailed above), we hypothesize that it is also 

important to stratify chromatin domains and their boundaries by their nested properties 

during the design and interpretation of functional and mechanistic experiments (Fig. 2.1E-

F). 

Several lines of evidence support the possibility that nested versus unnested 

boundaries might have different structural and functional properties. First, Mb-scale TADs 

are largely cell type-invariant, whereas subTADs exhibit a higher tendency to reconfigure 

in a cell type-specific manner7, 9, 105. In mammalian systems, boundaries on both sides of 

unnested TADs are conventionally cell type-invariant. Moreover, we observe that one of 

the subTAD boundaries will often co-localize with TAD boundaries, and in these cases the 

boundaries are typically invariant across cell types (Fig. 2.4J-K, green arrow). By 

contrast, many subTAD boundaries, often the side truly nested within larger TADs, exhibit 

cell type-specific structural features (Fig. 2.4J-K, blue arrow). Moreover, because long-

range interactions occur more frequently over boundaries demarcating nested versus 

unnested domains, subTAD boundaries exhibit mechanistically weaker insulation than 

TAD boundaries.  

Together, these results leave open the possibility that TAD and subTAD boundaries 

are regulated by unique organizing principles and might play distinct functional roles. 

Indeed, we hypothesize that extrusion may assemble both TAD and subTAD corner dot 

domains, but that the nested, cell type-specific boundaries unique to subTADs might be 
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governed by different densities or types of architectural proteins than those at unnested, 

invariant boundaries. Interestingly, recent reports have reported the role for transposable 

elements in the formation of cell type-specific boundaries106, 107. Progress toward testing 

this hypothesis will be further expedited by computational methods to sensitively and 

accurately identify the full sweep of domains in ultra-high-resolution Hi-C data. Thus, an 

important area for future inquiry will be to unravel the structural, functional, and 

mechanistic differences among boundaries across length scales. 

In this Review, we define TADs according to their structural manifestation in the 

historically first Hi-C maps as Mb-scale continuous genomic intervals (or blocks) in which 

DNA  sequences exhibit significantly higher interaction frequency with other DNA 

sequences within the block compared to those outside of the block10. We also add 

additional qualifiers: (1) TADs are formed by loop extrusion and contain corner dots 

indicative of strong extrusion boundaries and persistent loops and (2) TADs, and their 

respective boundaries, should be at the top level of the domain folding hierarchy and cannot 

be further nested under larger, on-diagonal corner dot domains (powder blue corner dot 

domain, Fig. 2.4F). We define subTADs as sub-Mb scale corner-dot domains that are 

nested within larger TADs (purple corner dot domains, Fig. 2.4F). subTAD boundaries 

exhibit weaker long-range contact insulation than those at the top of the folding hierarchy; 

the molecular basis for this difference and if it is functionally significant remains to be 

uncovered.  Finally, we note that although ‘mini-domains’ or ‘microTADs’ have recently 

been used to describe the smallest scale chromatin blocks encompassing a single gene 

unit in mammals108, 109 and flies102, we currently do not define them in this Review. If 

further studies illuminate that gene unit domains have corner dots and are created by 
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loop extrusion, then we suggest to either continue to define them as nested subTADs 

or re-define them as ultra-nested micro-TADs.  However, if future studies indicate that 

gene unit domains are not formed by loop extrusion, then they should be defined in 

their future by their mechanism of formation, whether it be by compartmentalization 

and/or phase separation or a novel organizing principle.  

 

2.8 Chromatin domains and boundaries are clearly present but stochastically 

detected in single cells 

It has long been emphasized that chromatin domains were empirically defined 

from Hi-C maps – and thus they may only represent an ensemble average interaction 

frequency across millions of cells. Do domain-like structures indicative of 

compartment domains, TADs, or subTADs exist in individual eukaryotic nuclei? 

Seminal single cell Hi-C studies shed initial insight into this question, suggesting that 

even sparse, low complexity matrices created from individual nuclei were consistent 

with the possibility that domain-like structures could exist in single cells57, 110. Recent 

super resolution microscopy experiments coupled with Oligopaint probes have 

enabled the direct visualization of the spatial positioning of thousands of adjacent 

genomic loci. Consistent with single cell Hi-C, Oligopaint experiments confirmed 

that genomic loci are spatially grouped into high interaction frequency interaction 

domains in individual mammalian cells (Fig. 2.5A) 111. Importantly, the most 

frequently detected boundaries in single cells occurred at the locations predicted by 

ensemble Hi-C maps111 (Fig. 2.5A).  Many wild type single cells also showed random 

placement of domain-like blocks, which is consistent with the established transient  
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Figure 2.5. Chromatin domains and their boundaries are present in single 
cells. (A-B) Cartoon representations of contact domains identified in single cells 
via high resolution imaging (Bintu et al. 2018). A: Wild type cells displayed a 
biased preference for boundary locations. B: Upon cohesin degradation, globular 
domains still existed but did not display the same boundary preference. (C) 
Representative heatmaps of the effects of cohesin/Nipbl removal on loop and 
compartment domains, as portrayed in Rao et al. 2017 and Schwarzer et al. 2017. 

 

nature of the extrusion process and would be expected due to imaging a snapshot in 

time across a populations of individual cells in which extrusion was not synchronized. 

Indeed, the randomized placement of domain-like blocks in single cells, with 

preference to strong boundaries observed in ensemble Hi-C data, would be expected 

given that ensemble Hi-C maps have always shown clear demarcation of TAD blocks 

as well as low interaction frequencies across boundaries. Overall, Oligopaint imaging 

studies have attenuated concerns that TADs are only a statistical artifact of Hi-C data 

by demonstrating that chromatin domains and their boundaries are detectable and 

tiled across the mammalian genome in single cells. Our own current working 

hypothesis is that the precise domain demarcations which are strongest in ensemble 

maps and most frequent in single cell maps might indeed point to the true functional 

boundary elements. Low frequency demarcation points of blocks in single cells might 

indeed only represent “loops in the making” and may not be functional boundaries.  

One exciting area for future inquiry is to determine if there are structural 

differences between unnested TADs versus nested subTADs and compartment 

domains versus TADs/subTADs formed by loop extrusion in single cells. Oligopaint 

experiments in Drosophila suggest that compartment domains can be readily 

detected in single cells112, 113, whereas the individual single cell behavior of loops 
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and loop domains remains poorly understood at the current time. Surprisingly, 

chromatin domains in mammalian systems are still distinctly observable in single 

cells after cohesin depletion, but are distributed across the genome randomly, with a 

loss in preferential positioning at CTCF sites (Fig. 2.5B) 111. We note that this 

particular study did not explicitly distinguish among TADs with corner dots, nested 

subTADs with corner dots, or compartments, so further classification of the precise 

types of chromatin domains imaged will aid in interpretation of this data. Ensemble 

Hi-C analyses of genome folding revealed that loop domains are destroyed and that 

compartment domains are strengthened and become more fine-grained upon knock-

down of cohesin (Fig. 2.5C)18, 19, 96. The ensemble strengthening of compartment 

domains in cohesin knock-down cells forms the basis for our own working hypothesis 

that compartment domains would become less random and more synchronized in single 

cells in a cohesin knock-down imaging experiment. Data from Bintu et al. is in direct 

opposition to our working model because it shows that domain-like structures remaining 

after cohesin knock-down are truly random111, which is not consistent with the 

compartment domain strengthening from ensemble Hi-C18, 19, 96. Thus, the mechanistic 

and functional nature of chromatin domains that remain in single cells after extrusion 

disruption remains an important open and unanswered question. It also remains to be 

seen if the phenomena observed across the ~2 Mb genomic region studied in this 

first high-resolution imaging study111 extend genome-wide. Together, these data 

provide strong evidence that domain-like structures proposed in the early Hi-C 

studies indeed exist in single cells, and raise new exciting questions regarding 

whether and how compartment domains undergo random placement in the absence 
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of cohesin. 

 

2.9 Evidence to date suggests compartments can both instruct and form as a 

consequence of transcription, potentially via membrane-less organelles 

A final leading question covered by this Review is related to the eukaryotic 

genome’s structure-function relationship – does form follow function or does 

function follow form? Perturbative studies have thus far led to conflicting results, and 

it is likely that the functional role for chromatin domains is highly specific to the 

genomic context, developmental timing, and eukaryotic organism in question. We 

also highlight that genetic dissection of the effect of key architectural features on 

genome function will be greatly facilitated by first delineating the compartment 

domains, unnested corner dot TADs, and nested corner dot subTADs. Emerging 

evidence thus far suggests that compartment and loop domains have strikingly 

different cause-and-effect relationships with transcription and other genome 

functions. The functional role of chromatin domains will likely be more difficult to 

unravel by conflating these structures given their clear mechanistic differences. 

It is well established that compartment domains closely correlate with active 

and repressive chromatin marks, suggesting that there might be functional 

relationship between compartment domains and transcription10. For example, 

compartments are strongly present on the active X chromosome in mammals and only 

present on the inactive X at escaper genes with high transcriptional activity114. In 

Drosophila, zygotic genome activation occurs in early development via recruitment 

of RNA polymerase II to genes at nuclear cycle 13 (nc13) and transcriptional 
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elongation at nuclear cycle 14 (nc14). Structures that resemble compartment 

domains102 form in parallel with transcriptional events, emerging at n13 and 

strengthening at nc14115. In early mouse development, compartments are absent or 

only weakly present in the zygote and form in parallel with, or subsequent to, zygotic 

genome activation at approximately the  two cell stage116, 117. 

Despite the correlation in developmental timing between 

compartmentalization and gene expression activation, the possibility that their 

functional link is more nuanced  was recently raised in mammalian systems with a 

genome-wide, 40 kb-resolution Hi-C study examining A/B compartment switching as 

embryonic stem cells differentiate along multiple lineages44. The authors observed that a 

large proportion of genes were not upregulated or downregulated during the A-to-B or B-

to-A compartment shift, respectively, during differentiation. Similarly, despite slight 

genome-wide shifts in expression levels, a very large proportion of genes in A-to-B and 

B-to-A compartment shifts during reprogramming did not commensurately change their 

expression level118. Moreover, in an independent study, only ~10% of the genes 

upregulated during the reprogramming of B cells to iPS cells undergo a B-to-A 

compartment switch119; ~20% and ~70% remain in stable B and A compartments, 

respectively, indicating that in the majority of cases transcriptional changes are not 

accompanied by compartment structure changes. Finally, large numbers of genes fall into 

the categories of compartment changes that precede, delay or occur in parallel with 

expression changes during T cell lineage commitment120. Thus, a major insight from these 

studies in aggregate is that compartmentalization across multiple cell fate transitions 

cannot deterministically regulate gene expression, despite strong correlation with active 
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genes and chromatin marks (A compartments) and repressive chromatin marks (B 

compartments). 

Understanding how compartment domains form will ultimately enable researchers 

to conduct gain-of-structure and loss-of-structure studies, and thus further evaluate their 

cause-and-effect relationship with transcription and other genome functions such as 

replication40, 121. For example, elegant studies have been performed to assess the 

functional role for global spatial positioning with respect to the nuclear periphery and 

internal nuclear bodies on gene expression levels122-124. Although the mechanisms of 

compartment domain assembly are not yet definitively known, an emerging idea is that 

phase separation125, 126 of multivalent transcription factors into nuclear bodies could create 

membrane-less organelles with high local concentrations of activating or repressive 

biomolecules. Phase separated nuclear bodies might be responsible for segregating 

genomic segments with similar chromatin features into A or B compartments127, and this 

spatial proximity within the global nucleus might prevent extensive inappropriate inter-

compartment contacts. For example, punctate bodies of RNA polymerase, known as 

transcription factories, might be membrane-less organelles that contribute to at least a 

subset of A compartments observed in Hi-C maps128. In Drosophila, transcription 

disruption via chemical inhibition of RNA polymerase II initiation or heat shock 

resulted in mild but not full disruption of compartment domains as assessed by Hi-

C102, 115. The degree of disassociation of RNA polymerase II from the genome 

correlated with the extent of compartment domain disruption102. Importantly, in early 

mouse development, compartments still qualitatively appear to form after chemical 

disruption of transcription initiation during the timing of zygotic genome activation, 
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but the degree to which RNA polymerase II genome occupancy and compartment 

strength was affected by the treatment remains unclear from these studies116, 117.   

We also emphasize that we cannot yet rule out the possibility that compartment 

structure, and the consequent nuclear clustering of active/inactive genomic segments, 

might passively influence or actively instruct transcription. Compartmentalization might 

aide in transcriptional regulation by facilitating an increased local concentration of 

biomolecules needed for gene activation/repression. Indeed, seminal studies indicate that 

Drosophila insulator proteins such as CTCF can form punctate nuclear bodies that visually 

resemble membrane-less organelles129. Recently, two specific domain-like structures in 

Drosophila which resemble fine-scale compartment domains via single cell imaging were 

topologically disrupted upon deletion of a 4 kb genomic segment containing CTCF113. 

Therefore, we speculate that in forthcoming studies a subset of the many insulator proteins 

in Drosophila might be revealed to function in collaboration with transcription to aid in 

the establishment or maintenance of phase-separated compartments.  

Overall, the early evidence toward the question of A/B compartment’s 

structure-function relationship are thus far consistent with the possibilities that (1) 

compartments might occur as a consequence of transcription rather than the cause, 

(2) transcription and compartmentalization might be uncoupled in many genomic 

locations, or (3) compartments and/or nuclear periphery localization might 

instructively contribute to gene expression levels in some cases. Gain- and loss-of-

structure studies via compartment engineering will be critical to further dissect whether 

and how compartment domains might form via transcription and phase separation of 

nuclear factors into membrane-less organelles. In mammals, B compartments strongly 
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correlate with lamina associated domains (LADs)130, therefore new technologies such as 

CRISPR-GO which allow tethering of specific genomic segments to the nuclear periphery 

and subnuclear bodies will be highly useful in determining if compartments functionally 

contribute to transcription131. Elegant recent work revealed strong evidence that at least a 

proportion of mammalian genes undergo activation when moved away from LADs at the 

nuclear periphery132. Moreover, further insight into how A/B compartment domains relate 

to other genome folding features, such as LADs, nuclear bodies, TADs, subTADs, and 

loops (currently out of the scope of the current manuscript, but reviewed elsewhere133) 

will continue to facilitate mechanistic and structural stratification that will enable precise 

dissection of the genome’s structure-function relationship. 

 

2.10 Initial causal evidence for CTCF as an enhancer-constraining insulator when 

forming the boundaries of contact domains 

As new features of chromatin architecture emerge, the role for CTCF at multiple 

layers in the folding hierarchy also complicate the simple model for CTCF as a “looping 

facilitator”. It has been well-documented that CTCF binding sites are highly enriched at 

the boundaries of TADs and sub-TADs7, 9, 41, 55, 64, 72, suggesting that the protein could serve 

traditional enhancer-blocking insulation roles to prevent looping across specific genomic 

locations. For the purposes of this Review, we define enhancer-blocking (EB) insulators as 

sequences that block communication between adjacent regulatory elements in a position-

dependent manner in ectopic transgene systems. Although extensive insight into potential 

insulation mechanisms have been gained through the use of ectopic transgene systems, our 
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knowledge of the function of EB insulation in endogenous mammalian systems remains 

sparse. 

Genome editing approaches have provided new global and functional evidence for 

EB insulation in the endogenous mammalian genome. Young and colleagues recently used 

ChIA-PET to identify cohesin-mediated interactions across the genome in pluripotent 

cells12. First, consistent with results from previous studies, Dowen et al. found that the vast 

majority of cohesin-mediated interactions connect enhancers, promoters and CTCF 

binding sites. Second, Dowen et al. discovered that cohesin-mediated interactions between 

super enhancers and developmentally regulated genes are often nested within much larger 

structures (so-called super-enhancer domains (SDs)) created by CTCF/cohesin-mediated 

looping interactions. These findings are consistent with the previously reported model of 

nested, hierarchical looping of smaller, developmentally regulated Mediator/cohesin sites 

within larger CTCF/cohesin-mediated structures9. Third, Dowen et al. reported that the 

majority of interactions within SDs do not typically cross over the larger CTCF/cohesin 

loops and that chromatin modifications characteristic of super enhancers do not cross over 

SD boundaries. Together, these results suggest the CTCF/cohesin-mediated looping 

interactions form the structural basis for sub-TADs and might serve as classically defined 

EB insulators at the sub-Mb level of the genome folding hierarchy. 

To directly test the EB insulation activity of CTCF/cohesin loops around SDs, 

Dowen et al. used CRISPR/Cas9 genome editing to delete CTCF binding sites at the 

boundaries of five SDs12. Intriguingly, the change in expression of the gene closest to the 

deleted CTCF site (but outside of the SD) followed one of two patterns, depending on 

whether a CTCF site remained between the enhancer and gene. In the first case, a SD 
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boundary with a single CTCF binding site, expression of the adjacent gene was increased 

after deletion of the CTCF site (Figure 2.6A). Importantly, the consequent increase in gene 

expression appeared to occur only if no additional CTCF sites were located between the 

boundary and the adjacent gene. In the second case, in which a SD boundary has a single 

CTCF binding site, but several additional CTCF sites also exist between the boundary and 

the adjacent gene, the expression of the first adjacent gene outside of the boundary does 

not change upon CTCF deletion (Figure 2.6B). Finally, for the case in which a SD 

boundary has dual CTCF binding sites, the first adjacent gene outside of the boundary 

exhibits a marked increase in expression upon deletion of both CTCF sites (Figure 2.6C). 

These results would predict that CTCF deletion would release the super enhancer to 

aberrantly loop to and activate off-target genes outside of the domain. The current data  

 

Figure 2.6. Model of sub-TAD gene regulation. (A) CTCF binding site deletion 
leads to inappropriate enhancer-to-gene interactions, resulting in gene upregulation. 
(B) When two CTCF binding sites appear between the queried enhancer and nearest 
gene, deletion of a single CTCF site does not affect gene expression. (C) When both 
CTCF binding sites are deleted, the off-target gene is upregulated. Adapted from 
Dowen et al. 2014. 
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further supports the idea that additional CTCF sites in between the SD boundary and the 

adjacent gene could further protect the super enhancer from aberrant long-range gene 

activation. Together, these results support a model in which the subset of CTCF-mediated 

looping interactions that create the structural foundation of sub-TADs around super 

enhancers can function as bona fide endogenous EB insulators. 

 

2.11 Loop domains exhibit a markedly different cause-and-effect relationship 

with genome function compared to compartment domains 

Evidence to date indicates that TADs/subTADs exhibit a distinct functional 

connection to gene regulation compared to A/B compartments. We discuss data supporting 

three emerging mechanisms by which loop domains might influence transcription: (1) 

direct, strong contact of enhancers and promoters via persistent loops (i.e. the enhancer and 

promoter are at the anchors of the corner dot domains and co-localize with extrusion 

boundaries) (Fig. 2.7A), (2) weak contact of enhancers and promoters via transient 

extrusion of SMC complexes across the loop domain (i.e. the enhancer and promoter are 

within a loop domain but not co-localized by a boundary so extrusion factors pass over the 

elements transiently) (Fig. 2.7B), and (3) developmental miswiring of enhancers to non-

target promoters outside of the TAD/subTAD after genetic destruction of loop domain 

boundaries (Fig. 2.7C). The majority of the seminal works thus far have used the 

historically identified TAD definition of a Mb-scale chromatin domain7, so it is thus far 

unclear which class of chromatin domain was genetically dissected in each study. For the 

sake of this Review, we make the assumption that the large Mb-scale domains identified  
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Figure 2.7. Evidence for and against TADs as a critical functional 
intermediary in the regulation of genes by developmentally active enhancers. 
a-c: Schematics of three emerging mechanisms by which loop domains can 
influence transcription. (A) direct, strong contact of enhancers and promoters via 
persistent loops (red arcs) at the corners of domains,  (B) transient, weak contact 
of enhancers and promoters via transient loop extrusion (blue arcs) across the loop 
domain, (C) developmental miswiring of enhancers to non-target promoters 
outside of the TAD/subTAD after genetic destruction of loop domain boundaries. 
(D) Representation of the activity readout of a reporter assay upon random 
integration in genomic loci, from Symmons et al. 2014, 2016. (E) Three published 
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examples of boundary disruption/inversion leading to developmental issues. (F) 
Depiction of a model of long-range transcriptional regulation in which an 
enhancers regulatory contribution trends with its activity signature and HiC 
contact frequency with the target gene (Fulco et al. 2019). (G)  Schematized 
boxplot of measured enhancer to Sox2 promoter distances in actively expressing 
(left) and inactive (right) cells (Alexander et al. 2019). (H) Representation of the 
relatively modest transcriptional changes observed upon cohesin/Nipbl depletion 
observed in Rao et al. 2017 and Schwarzer et al. 2017.  (I) Cartoon of 
unencumbered development that was observed upon perturbation of a TAD 
boundary opposing the Shh gene (Williamson et al. 2019). 
 
 

in Dixon et al. in mammalian cells represent loop domains7, but future studies will further 

test and build upon our assumptions. For the interpretation of future studies, it will be of 

high importance to delineate corner loop TADs versus nested corner loop subTADs versus 

compartment domains prior to the genetic dissection of the functional role of these 

topological features. 

First, several elegant genetic perturbation studies over the last ten years have 

together allowed a model to gain traction in which TADs create insulated neighborhoods 

that demarcate the enhancer search space for target genes (Fig. 2.7C). Importantly, random 

insertion of an ectopic transgene sensor across the mouse genome showed enhancer 

activation patterns during embryonic development that correlate with some large Mb-scale 

TADs134 (Fig. 2.7D). Across numerous studies, it has been demonstrated that genetic 

disruption of specific TAD boundaries (via experimental intervention or disease) causes 

ectopic inter-domain contacts between enhancers and non-target promoters and consequent 

aberrant gene expression12, 14, 15, 20, 22, 135-138 (Fig. 2.7E). Most notably, the studies which 

focused on model systems connected to key developmentally regulated biological 

phenomena (e.g. X chromosome inactivation, mammalian limb development, motor 
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neuron differentiation) have shown a convincing link between TAD boundary 

disruption, ectopic enhancer-promoter interactions, and alteration of gene expression 

levels14, 15, 20, 22, 135, 136, 138. Moreover,  boundary disruptions have also been reported as 

strongly correlated to pathologically altered gene expression in human cancers15, 20, 

neurological disorders139, rare congenital disorders137, and diseases of limb 

development21, 22. In these early reports, miswiring of enhancer-promoter interactions 

across the disrupted boundary has been proposed as the mechanism for pathologically 

altered gene expression. Thus, evidence continues to grow to support the model that 

boundaries created by TADs function generally to ensure proper spatio-temporal 

regulation of gene expression by topologically confining enhancers to their target 

promoters in the appropriate developmental time window140.  

In addition to the architectural role of corner loop TADs/subTADs in preventing 

developmental miswiring of enhancer-promoter interactions, corner loop domains also can 

directly connect enhancers to promoters via CTCF-dependent and -independent 

mechanisms9, 39, 86 (Fig. 2.7A-B). Spatial proximity can be achieved during the extrusion 

process (1) when both the enhancer and promoter are placed within the same loop domain 

and transiently come into contact due to the movement of the extrusion factor (so-called 

transient loops) (Fig. 2.7B) or (2) when the enhancer and promoter anchor the boundaries 

of a corner loop domain where extrusion factors stall against boundaries and form so-called 

persistent loops (Fig. 2.7A). The direct role for enhancer-promoter contacts in gene 

expression is only at the early stages of the perturbative studies essential to dissect the 

cause and effect roles of transient versus persistent loops. A recent high-throughput 

CRISPRi screen recruited dCas9-KRAB and guide RNAs to thousands of putative 
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non-coding regulatory elements141. The authors found that the multiplicative 

contribution of interaction frequency and enhancer activity together serve as the best 

predictor of gene expression levels (‘ABC model’, Fig. 2.7F). Noteworthy, the 

genomic distance-dependent background interaction frequency (i.e. the diagonal on 

Hi-C heatmaps) was as predictive of gene expression levels in the ‘ABC model’ as the 

observed interaction frequency at every bin-bin pair. Persistent corner loops did not 

provide any clear additional predictive power, at least for the regions queried by this 

paper in this specific screen141. Imaging studies have also provided evidence that 

enhancers are spatially proximal to their target promoters in single cells with high 

expression of the gene113, 142. However it is not yet known if the contacts imaged in 

these studies are persistent or transient loops. Moreover, in some cases enhancers 

might activate their distal targets without proximity143 (Fig. 2.7G), but the genome-

wide extent of this finding has yet to be shown. Finally, forced looping experiments 

result in upregulation in gene expression upon gain of an engineered long-range 

connection, but the effects of enhancer proximity on gene expression can sometimes 

be modest144, 145. Together, these early data highlight that enhancer-promoter spatial co-

localization can contribute to gene expression levels, however there is a great need 

systematically dissect the functional role for transient and persistent loops across genomic 

contexts in governing transcription.  

In addition to locus-specific studies, investigators have also assessed gene 

expression changes globally upon ablation of corner loop TADs/subTADs. Specifically, 

after depletion of CTCF with an auxin-mediated degron, thousands of loop domains across 

the genome were disrupted while compartments were unaffected13. Moreover, acute 



45 
 

degradation of subunits of the cohesin complex destroyed the majority of loop domains 

and led to stronger partitioning of the genome into compartment domains18, 19. Despite the 

severe global ablation of corner loop domains, these studies have surprisingly modest 

effects on transcription on short time scales. CTCF depletion for 24 hours resulted in only 

370 differentially expressed genes in mouse embryonic stem cells. After only 6 hours of 

complete cohesin degradation, only 146 genes showed a 1.75 fold change in expression, 

and only 2 showed a 5-fold change in expression (Fig. 2.7H). The lack of notable gene 

expression changes despite widespread loop domain dissolution was even more notable 

because the authors used Pro-seq for nascent transcript detection18. Cohesin depletion over 

a longer 5 day time frame resulted in more than 1000 dysregulated genes, but this higher 

number is likely due to secondary effects that occur with long-term perturbation studies19.  

It remains of high interest to determine if all enhancer-promoter interactions were 

abolished with cohesin knockdown (for example, those in non-compartment+non-corner 

dot domains or compartment domains) or if only those connected via strong corner dot 

TADs/subTADs were abolished. Moreover, for each gene the functional effect of loop 

domain disruption may only be made manifest in the specific developmental lineage where 

nearby enhancers are active and the topological features are relevant; in each of these 

studies only a single cell type and developmental stage was queried. Indeed, after cohesin 

removal from mature macrophages, gene expression was preferentially altered upon 

inflammatory signaling induction, suggesting the effects of cohesin removal may be 

especially evident upon induction of a new gene expression program146. Finally, we note a 

very recent study demonstrated that Pol II elongation can reduce cohesin binding and 

disrupt CTCF/cohesin-mediated loops, indicating that transcription can also affect 
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TADs/subTADs147. Recent data also demonstrates that chemical inhibition of 

transcriptional elongation can compromise TAD boundary strength148. Overall, in the case 

of loop domains, the limited data we have thus far indicates that loops can influence 

function, albeit to a modest degree in some cases, and genome function in the form of 

transcription can also influence looping structure.  

Beyond our three general models for the functional role of loop domains, the 

challenging work to assess the link between each individual boundary and developmentally 

regulated transcription is now in its early stages. Data has recently accumulated providing 

a nuanced view for the role of specific boundaries in specific genomic contexts in 

regulating locus-specific gene expression. For example, several studies have genetically 

dissected topological features at the Sonic Hedgehog (Shh) locus in mouse limb 

development, which is particularly important for the topic of this Review because a clear 

corner loop domain connects the Shh gene to its target ZRS enhancer. In one study, specific 

deletions of a specific CTCF site or a 35 kb region encompassing the boundary next to ZRS 

resulted in minimal disruption of Shh expression and no clear developmental defects (Fig. 

2.7I)149. Importantly, structural maps show that the contact domain, including the corner 

dot connecting ZRS to Shh, remains intact with these two deletions, with a minor degree 

of inter-TAD interactions between ZRS and the adjacent domain (Fig. 2.7I). Thus, further 

genetic perturbations which fully abolish the corner loop connecting ZRS-Shh are of high 

interest toward understanding the role for boundary ablation in Shh expression. In an 

independent study, two CTCF sites at the ZRS boundary were both deleted, including an 

additional CTCF site not included in the 35 kb deletion from the other study150. Deletion 

of both CTCF sites led to disruption of the corner loop domain and a 50% reduction in Shh 
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levels. Thus, these results reinforce that boundaries consist of multiple protein binding 

sites, and that ablation of TAD structure often requires multiple deletions to overcome 

redundancies that preserve important chromatin topological features151.  

Our working model is that chromatin interactions between a gene’s enhancer and 

promoter must be severely abolished (such as by switching the enhancer into a completely 

different domain) before an effect on gene expression becomes evident at the precisely 

important developmental timing. This model was built in part by a recent systematic 

dissection of genome structure-function at the Sox9-Kcnj2 locus in mouse138. The authors 

show that the boundary demarcating the TADs around Sox9 and Kcnj2 is only ablated upon 

homozygous disruption of all occupied CTCF sites at the boundary and within adjacent 

domains, highlighting the remarkable redundancy of architectural protein binding sites 

governing TAD structural integrity. Importantly, despite complete fusion of both TADs, 

only minor alterations on Sox9 and Kcnj2 expression were observed, and there were no 

apparent phenotypic consequences. Sox9 and Kcnj2 could still contact their target 

enhancers, presumably because cohesin-based loop extrusion still occurs, thus suggesting 

that developmentally important enhancers-promoter contacts can occur even when their 

search space is not delimited by TAD boundaries. Another important lesson from this study 

was acquired through the author’s careful analysis of structure and gene expression after a 

series of genome inversions and insertions. By contrast to the TAD fusion results, the 

inversion of the boundary or the aberrant placement of the boundary led to gained/lost 

contacts of Sox9 and Kcnj2 with enhancers, thus leading to pronounced effects on gene 

expression and severe developmental phenotypes. Together, these results teach us that, at 

least at this locus, ectopic placement of boundaries can break wild type enhancer-promoter 
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interactions and redirect enhancers to new target genes, thus leading to severe gene 

expression changes that give rise to pathologic phenotypes. Simply removing a boundary 

element is not sufficient to modify endogenous enhancer-promoter contacts because it does 

not sufficiently abolish the endogenous interactions.  

Given that genetic inversions at boundaries have a more pronounced effect on gene 

expression than genetic perturbation of boundary strength, one might hypothesize that 

severe chromosome rearrangements might have the strongest genome-wide effect on 

transcription. A recent important study created high resolution maps of genome folding in 

the case of a Drosophila species with highly rearranged balancer chromosomes152. The 

authors show that extensive genome-wide deletions, duplications, and inversions in 

Drosophila can markedly shuffle chromatin domain placement, but that this leads only to 

a minor alteration in gene expression. As evidence continues to accumulate regarding 

whether and how extrusion occurs in Drosophila and whether or not domain-like structures 

in Drosophila are compartment domains, it will be critical to determine if the modest effect 

of domain-like structures on transcription in certain fly species is due to their status as 

strictly compartment domains. Another critical point is that balancer chromosomes have 

been selected for their ability to allow animal viability, therefore, it would be interesting to 

determine how severe chromosomal rearrangements in cases where there are visible 

phenotypes would affect gene expression. Beyond these exciting questions for future work, 

it remains important to emphasize that a lesson from this work is that not all genes might 

be regulated through long-range spatial contacts. 

Many of the hypotheses proposed here remain to be rigorously tested. One 

emerging principle is that distinguishing compartment domains from loop domains, 
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and careful quantitation of their nested and cell type-specific properties, will be 

essential to obtain clear insight into the functionality of chromatin domains and their 

boundaries. Forthcoming studies pairing population- and single cell-based data will 

account for the strengths and weaknesses of both approaches and will likely yield 

new insight into the genome’s structure-function relationship. Although early 

studies in the 3-D genome folding field focused on cell lines, emerging studies across 

model organisms, early developmental stages, time points across the cell cycle, 

genetic perturbations, and in human disease models will continue to build our 

understanding of how transcription and other genome functions shape and are 

shaped by the 3-D genome. 

 

2.12. The functionality of mammalian looping interaction classes 

High-resolution 3C-based studies have confirmed and extended the long-

hypothesized connection between long-range enhancer promoter interactions and 

transcriptional activation 9, 23, 153, 154. Ectopic induction of an enhancer-promoter loop can 

induce expression from an inactive globin gene 144, 155. Roughly 10,000 loops have been 

identified across the human genome with the highest-resolution genome architecture maps 

to date 10. Notably, fewer than one third of the loops in a transformed cancer cell line 

connect enhancers and promoters 10, suggesting that loops with different functional roles 

and organizing principles might exist. The diversity of looping classes has further been 

illuminated by the publication of dynamic 3D genome folding changes across 

developmental conditions and reprogramming 9, 153, 156, 157. A critically important question 

in genome biology is whether there are different classes of loops and if they differ in the 
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organizing principles governing their formation and decommissioning in development and 

disease. While the mechanisms of ctcf/cohesin mediated loop extrusion are being 

elucidated, it remains unclear the extent to which these findings hold true across all classes 

of loops, especially those that do not involve CTCF. Beginning to answer this fundamental 

question starts with first accurately identifying the different classes of loops. 

Perhaps the most well understood class of loops are ‘developmentally invariant’ or 

‘constitutive’ interactions that play a structural role by anchoring the base of TADs and 

nested ‘sub-TADs’ 7, 9, 10, 12. Constitutive loops are anchored by constitutive occupancy of 

CTCF and cohesin and often correspond to the boundaries of TADs 10. A leading model is 

that constitutive looping interactions provide a framework that constrains the search space 

of developmentally regulated enhancers for target genes. Two recent studies have tested 

the functional role for structural looping interactions forming domain boundaries by 

CRISPR editing the CTCF binding sites. Mutation of the CTCF consensus led to the 

breakdown of a subTAD boundary, leading to the escape of developmentally regulated 

superenhancer into an adjacent domain, thereby ectopically upregulating an off-target gene 

12. Moreover, Hnisz et al. reproduced genetic mutations/deletions observed in cancer at 

CTCF motifs under sub-TAD boundaries surrounding oncogenes using CRISPR-Cas9 

editing.  Mutating these sites had the effect of ablating CTCF occupancy and the subTAD 

boundary, allowing for the invasion of an enhancer into the protected domain and 

upregulating the oncogene 20. Consistent with these results, several additional studies have 

reported ectopic enhancer activation of genes in adjacent domains upon boundary 

disruption in disease 22, 158. Thus, structural loops anchored by constitutively-bound, 

convergent CTCF work to establish genomic contact domains, thereby constraining 
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developmentally-regulated enhancers to interact specifically with their target genes (Fig. 

2.8A). 

Recently, Beagan et al. found that CTCF occupancy was significantly depleted 

during the transition from naïve pluripotency to neural progenitor cells. Consequently, 

short-range, developmentally regulated loops between pluripotency genes and enhancers 

bound by dynamic CTCF/cohesin or Mediator/cohesin were decommissioned, while 

invariant loops remained intact and created a larger structural framework 153. Additional 

recent studies hint that CTCF loop decommissioning may continue through terminal 

differentiation (at least in some lineages) by finding (i) CTCF expression gradually 

decreases throughout mammalian brain development 37 and (ii) loops that are lost across 

the differentiation of monocytic precursors to mature macrophages are enriched for CTCF 

157. Together these results suggest that CTCF binding site inactivation, or ‘pruning’, may 

be a mechanism of deactivating structural and/or regulatory loops that had the potential to 

be activated in other lineages but were no longer necessary, while also increasing the 

‘search-spaces’ of lineage-relevant enhancers 153 (Fig. 2.8B). Importantly, investigation of 

3D genome folding during cellular reprogramming suggests that loss of CTCF occupancy 

leading to loop deactivation may be an epigenetic decision that is difficult to reverse during 

cellular reprogramming or drug treatment 156. It is well established that methylation of the 

CTCF consensus sequence disrupts CTCF binding, however, it is less clear whether and 

how CTCF reengages with the genome upon DNA demethylation. Knock out of DNA 

methyltransferases DNMT1 and DNMT3B in human cells reactivated only a small fraction 

(3,237 out of >40,000) CTCF sites that are occupied in other cell types 159. Together, these 

results suggest that CTCF pruning may be a mechanism of reinforcing lineage decisions  
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Figure 2.8. Long-range chromatin looping interactions can be divided into 
classes based on developmental dynamics and underlying mechanism. (A-D) 
Depictions of theorized looping dynamics across looping classes before (left) and after 
(right) differentiation, based primarily on recent reports investigating neural lineage 
commitment (Beagan et al. 2017) and terminal macrophage differentiation (Phanstiel 
et al. 2017). (A) Structural loops are bound by constitutive CTCF and constrain 
enhancers to interacting only with genes in the same insulated neighborhood. (B)  
During certain differentiation steps, specific CTCF binding sites are inactivated, 
thereby decommissioning the loop that was connected before differentiation. (C) 
Loops gained de novo during differentiation form within structural loops and are often 
anchored by proteins other than CTCF, such as YY1. (D) Some ‘poised’ loops are pre-
established by CTCF early in development, before the genes/enhancers at the base of 
the loop are activated via the binding of additional factors. 
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by eliminating unneeded topological signatures from other lineages. It is important to note 

that Beagan et al. did not observe a decrease in CTCF expression and genome occupancy 

in all cellular lineages 153. Thus, the extent to which CTCF-mediated loop 

decommissioning pervades mammalian lineage development remains an open question. 

Another class of dynamic looping interaction are those that arise de novo upon 

changes in cellular state. Developmentally regulated loops often connect cell type specific 

enhancers and promoters 9, 10, 23, 39, 153, 156, 157. In embryonic stem cells, dynamic loops 

connecting developmentally regulated pluripotency genes to their target enhancers were 

anchored by mediator and cohesin, but depleted for CTCF 9, 39. More recently, a wide range 

of lineage specific transcription factors can be observed anchoring the base of loops, but it 

is unclear to what extent they are necessary and sufficient for loop formation. Indeed, 

architectural proteins such as CTCF should have the capability of connecting looping 

interactions in the absence of any clear recruitment of activating chromatin marks. 

Recently, Mehra et al. expressed truncated versions of YY1 without its activation domain 

in YY1-deleted splenic cells. Importantly, the truncated YY1 protein was sufficient to 

rescue chromatin loops at the Igh locus 160, suggesting transcriptional/enhancer activation 

is not necessary for YY1’s looping function. It remains an exciting line of inquiry to dissect 

whether cohesin-mediated loop extrusion plays a similar role in the formation of these 

loops by interacting with and being stalled by YY1 at YY1-mediated looping sites. Data 

are consistent with a model that YY1 might be a developmentally regulated architectural 

protein connecting lineage-specific enhancers and their target genes (Fig. 2.8C). 

 Finally, recent developmental looping studies have not only focused on loops that 

are gained/lost but also regulatory loops that are constant across differentiation but connect 
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enhancers that are only active after differentiation. Termed ‘activated’ 157 or ‘poised’ loops, 

such interactions are often enriched for BOTH CTCF and dynamic looping factors such as 

YY1 and AP-1 153, 157 (Fig. 2.8D). It has been hypothesized that CTCF at these sites may 

form smaller ‘seed’ interactions early in development, which can act as an interaction 

scaffold for the larger loop that is formed upon the binding of dynamic looping factors and 

enhancer activation 86, 153. It remains an important question the extent to which proteins 

found at these poised loops, such as YY1 and Ldb1, can heterodimerize with CTCF, and 

what role that may play in loop formation 161, 162. It should be noted that ‘gained’ and 

‘poised’ loops may often act together to regulate target genes through the formation of 

‘enhancer hubs’ 157. Thus, while the roles of some architectural proteins and looping classes 

can be clearly parsed, the extent to which they act together to regulate the 3D epigenome 

is still unknown and appears to be a promising next frontier. 

 High-resolution chromatin architecture assays now allow us to readily identify 

looping interactions and classify their presence/absence across different stages of 

development. Understanding the organizing principles governing different looping classes 

will provide insight into the regulatory processes of lineage specification and how they go 

awry in disease. A detailed understanding of the diverse functionality of distinct looping 

classes and their underlying mechanisms is therefore significant toward the development 

of therapeutic strategies to correct malformed chromatin architectures in human disease.  
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CHAPTER 3: YY1 AND CTCF ORCHESTRATE A 3-D 

CHROMATIC LOOPING SWITCH DURING EARLY 

NEURAL LINEAGE COMMITMENT 

 
3.1 Introduction 

The spatial organization of the genome within the three-dimensional nucleus is 

dynamic during development and linked to spatiotemporal regulation of gene expression. 

Recent advances in proximity-ligation and deep sequencing technologies have enabled the 

interrogation of genome organization at a genome-wide scale and nucleosome resolution 4, 

163. Within individual chromosomes, open chromatin and active genes tend to spatially 

cluster into ‘A’ compartments, while closed, inactive chromatin spatially segregates into 

‘B’ compartments 10, 45. Although compartments undergo marked reorganization during 

cell fate transitions, the restructuring only modestly correlates with changes in gene 

expression, suggesting that transcription is not deterministically regulated at the 

compartment level 44. Within compartments, the mammalian genome is partitioned into 

Megabase (Mb)-sized topologically associating domains (TADs) that are largely invariant 

across cell types 7, 8. TAD structural integrity is critical for proper gene expression; 

perturbation of TAD boundaries leads to ectopic enhancer looping and aberrant activation 

of non-target genes 12, 14, 15, 20, 22. Finally, at the sub-Mb scale within TADs, two classes of 

highly dynamic architectural features exist: (i) small-scale contact domains termed sub-

TADs 9, 10, 12 and (ii) loops 10. Looping interactions and subTADs often link genes to 

developmentally regulated enhancers and are markedly reorganized between cellular states 
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9, 12, 23, 24, 53. Thus, the emerging model is that mammalian genomes are arranged into a 

nested hierarchy of unique structural features, of which the finer, sub-Mb scale 

configurations within TADs are critical for the proper activation and inactivation of genes 

during development. 

CCCTC-binding factor (CTCF) is a ubiquitously expressed zinc finger protein 

implicated in the regulation of a wide range of genome functions including transcription, 

insulation, splicing, replication, recombination and repair 164. A leading hypothesis is that 

CTCF’s diverse regulatory roles can be explained by a unifying mechanism in which it 

functions as an architectural protein to connect higher-order chromatin configurations 67. 

CTCF is found at the base of looping interactions and knockdown of the protein abrogates 

chromatin connections 68, 69, 71, 165. In a recent high-resolution, genome-wide proximity 

ligation study, approximately 10,000 looping interactions were reported in human cells. 

Importantly, of the subset of loops bound by CTCF with clear consensus sequences, 92% 

were anchored by consensus sequences pointed toward each other in a convergent 

orientation 10, 62. CTCF-mediated interactions can be disrupted by mutation, inversion 

and/or deletion of the CTCF motif, indicating that consensus orientation is a critical 

contributing factor in loop establishment and/or maintenance 84, 85, 87. CTCF is also enriched 

at the boundaries of TADs 7, 8 and deletion or inversion of these motifs can perturb domain 

boundaries and disrupt nearby gene expression 12, 14, 15, 22, 84, 85, 87. Together, these data 

indicate the CTCF is an architectural protein that functions in an orientation-dependent 

manner to organize mammalian genomes across several length scales. 

Genome-wide CTCF occupancy patterns have been mapped across more than 100 

mammalian cell types 73, 75, 78, 159, 166. Early studies comparing ChIP-seq signal between two 
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or three cell types reported that CTCF binding was largely invariant, with 65-90% of 

~35,000 binding sites detected in all cellular states queried 73, 75. More recent studies 

comparing CTCF occupancy across 40 cell lines showed a range of 35,000 – 75,000 

binding sites per cellular state, with a total of ~110,000 possible unique genomic locations 

159. Notably, at most 20% of possible unique sites were classified as constitutive when 

comparing 40+ cellular states, indicating that CTCF binding is more dynamic during 

development than previously reported 78, 159. Thus, it is critically important to understand 

the dynamic patterns of CTCF binding and whether/how they are causally linked to 

chromatin architecture and gene expression during cellular state transitions in 

development. 

Recent genetic studies have confirmed that CTCF is essential for proper 

spatiotemporal gene expression in the developing mammalian brain. Conditional 

knockdown of CTCF at early, embryonic stages of mouse development triggered marked 

apoptosis of primary neural progenitor cells (NPCs), premature neurogenesis and 

disruption of tissue architecture 167. Moreover, CTCF knockout in postmitotic cortical and 

hippocampal neurons 168 or the hippocampus more broadly 37 resulted in defects in gene 

expression, synaptic connectivity and learning and memory behavior. Finally, CTCF 

binding is also required for the differential expression of protocadherin (Pcdh) isoforms 

that enable branching neurites to self-recognize 169. Together, these studies indicate that 

CTCF plays an essential role in early neural development and highlight the importance of 

unraveling the currently unknown mechanisms linking occupancy with genome 

architecture and expression in the brain. 
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Here we set out to understand the dynamic CTCF occupancy landscape and how it 

is linked to the restructuring of fine-scale chromatin architecture at the earliest stages of 

the establishment of neuronal gene expression programs. We used well-established cellular 

models of early neural lineage commitment: (i) mouse embryonic stem (ES) cells cultured 

in Gsk3/MEK inhibitors (‘2i’ conditions) representing a state of naïve pluripotency from 

the earliest stages of a pre-implantation embryo 170; (ii) ES cells cultured in serum/LIF 

representing a slightly more mature state of pluripotency with increased poising of 

developmentally regulated genes 171; and (iii) primary multipotent neural progenitor cells 

(NPCs) representing the earliest departure from pluripotency and commitment to lineages 

in the mammalian brain 172. We uncover several new organizing principles governing 

higher-order chromatin folding during neural lineage commitment. Our observations 

support a model in which looping interactions connecting developmentally regulated 

enhancers to genes undergo an architectural protein switch from CTCF to YY1 early in 

neural development; YY1-anchored looping interactions arise de novo in NPCs within a 

larger topological framework connected by constitutively bound CTCF. 

 

3.2 Results 

3.2.1 CTCF engagement with the genome decreases during neural development 

To investigate CTCF dynamics during the earliest stages of neural development, 

we performed ChIP-seq in NPCs derived from neonatal mouse brains as well as embryonic 

stem (ES) cells cultured under both 2i/LIF (2i) and serum/LIF (serum) conditions. The 

three cellular states were chosen to capture the initial establishment of neural gene 

expression programs and to benchmark the changes against a presumably less dramatic 
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transition between naïve and primed/mature pluripotency. Equivalent genetic backgrounds 

were achieved by utilizing v6.5 ES cells (C57Bl6 x 129SvJae) and NPCs from mice 

maintained on a mixed C57Bl6/129SvJae background 173. We first noticed that the number 

of CTCF binding sites decreased in a stepwise manner during the transition from naïve 

pluripotency to multipotency, with the sharpest drop in binding sites between ES serum 

and NPC conditions (Fig. 3.1A). To further explore dynamic CTCF during neural 

development, we utilized available ENCODE CTCF ChIP-seq data sets from the mouse 

174. Consistent with trends in our cellular models, published ENCODE CTCF ChIP-seq 

peaks also showed a global decrease in adult brain regions (cortex, cerebellum, olfactory) 

compared to the E14.5 brain tissue (Fig. 3.1B). Notably, when we investigated other 

developmental lineages, we found that CTCF binding can display the opposite trend, in 

some cases increasing between the embryonic and adult stages (Fig. 3.2A, B). Thus, while 

CTCF occupancy appears to decrease during the transition from pluripotency to early 

neuronal lineage commitment, it is not a pervasive trend across all developmental lineages. 

To gain insight into why NPCs have a unique pattern of decreased CTCF occupancy 

during early neuronal lineage commitment, we next conducted an analysis of CTCF gene 

expression and protein levels. We observed a general accordance between the ChIP-seq 

and RNA-seq results in our cellular models: CTCF gene expression decreased between the 

pluripotent stem cell states and multipotent NPCs (Fig. 3.1C) and also between the 

embryonic mouse brain and mature adult brain regions (Fig. 3.1D). Moreover, Western 

blot analysis of CTCF protein levels showed a similar decrease in NPCs compared to 

pluripotent ES cells (Fig. 3.2C). Corroborating our results, while this manuscript was under 

review an independent study also reported a decrease in CTCF protein levels in whole  
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Figure 3.1. CTCF binding and expression decrease during neural development. (A) 
Number of CTCF ChIP-seq peaks called across the ES 2i, ES serum and NPC cellular 
states. (B) Number of CTCF ChIP-seq peaks across several mouse ENCODE brain 
tissues (Shen et al. 2012). (C) Relative CTCF gene expression across 3 developmental 
cell types (error bars represent 1 s.d. from mean). (D) Normalized CTCF gene expression 
(FPKM) across mouse ENCODE brain tissues (error bars represent 1 s.d. from mean) 
174. 
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Figure 3.2. Genome-wide CTCF occupancy may not decrease during lineage 
commitment in some tissues. (A) Number of CTCF binding sites across mouse 
ENCODE embryonic and adult liver tissues. (B) Number of CTCF binding sites across 
mouse ENCODE embryonic and adult heart tissues. All ChIPseq data from (Shen et al. 
2012). (C) Western blot analysis querying CTCF and Gapdh protein levels in ES cells 
in serum-LIF media and NPCs. 
 

mouse brains during the transition from E15 to postnatal week 1 (Sams et al. 2016). Sams 

et al. also identified differential CTCF levels across neurons, astrocyte, and 

oligodendrocytes from the hippocampus, highlighting that we cannot rule out the 

possibility that heterogeneity in cells derived from ENCODE tissues may contribute to the 

aggregate decrease in CTCF levels. Our NPC cultures exhibited a highly consistent 

morphology throughout the population and > 90% were Sox2 positive (data not shown), 

suggesting that our NPC preparations were substantially less heterogenous than brain tissue 

lysates. Our data indicate that CTCF gene and protein expression levels decrease in the 

transition from pluripotency to multipotent neural progenitor cells in parallel with a global 

decrease in the number of genome-wide CTCF binding sites. 
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3.2.2 CTCF occupancy in NPCs is largely pre-established in the pluripotent state 

 To better understand the CTCF sites that are dynamic among our cellular states, we 

parsed CTCF peaks present in the ES 2i, ES serum and NPC conditions into classes based 

on their cell-type specific occupancy (Fig. 3.3A, Appendix I Methods). We identified 

56,138, 50,185 and 28,860 binding sites in ES 2i, ES serum and NPCs, respectively, with 

a total of 60,688 unique, non-redundant sites across all three cell types. We found that 

approximately 44% of CTCF sites (n=26,435) displayed constant occupancy across our 

three cell types of interest and were thus classified as ‘constitutive’. We also explored 

several classes of dynamically occupied CTCF sites, including: (i) the ‘2i only’ class 

present in naïve pluripotency conditions and lost in the transition to a more primed/mature 

pluripotent cellular state, (ii) the ‘2i+serum’ class present across pluripotency conditions 

and lost in NPCs and (iii) the ‘NPC only’ class arising only upon the departure from 

pluripotency. We confirmed the validity of our parsing scheme for our four CTCF classes 

of interest by plotting the composite ChIP-seq signal for all three cell types centered on the 

midpoint genomic location of a given class (Fig. 3.3B, Fig. 3.4). The ChIP-seq pileup plots 

indicate that constitutive CTCF binding sites display markedly higher occupancy signal 

than sites that are dynamically altered upon changes in cellular state. These results confirm 

and extend recent reports suggesting that there is a larger class of dynamically occupied 

CTCF sites than previously appreciated 159, 174.  

We next sought to understand dynamic CTCF occupancy patterns in the naïve to 

mature pluripotency transition and the mature pluripotency to multipotency transition. At 

the outset of our analysis, we hypothesized that CTCF binding may decrease severely  
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Figure 3.3. Sites bound by CTCF in NPCs are predominantly pre-existing from 
earlier stages of development. (A) Classification of CTCF binding sites parsed between 
three developmental cell states. (B) Composite CTCF ChIP-seq signal in NPCs (green), 
ES serum (blue) and ES 2i (red) centered around the peaks of Constitutive, 2i+Serum, 
NPC only and 2i only CTCF classes. (C) Stacked barplot representing the distribution 
of CTCF binding classes across ES cells in 2i, ES cells in serum, and NPCs. (D) 
Theorized landscape plot depiction of constitutive and dynamic CTCF during the early 
time points of development. Colors represent same CTCF classes as presented in (C). 
(E) Library read depth is comparable across conditions. After redundant read removal 
and downsampling, 11 million reads were utilized for the CTCF ChIP-seq analysis of 
each cell type. 
 
 

 

Figure 3.4. CTCF binding strength in additional CTCF occupancy classes. (A) 
CTCF ChIPseq signal in NPCs (green), ES serum (red) and ES 2i (blue) centered at 
parsed CTCF peaks (serum only, serum+NPC and 2i+NPC occupancy classes). 
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between 2i and serum conditions due to the known hypomethylated state of naïve 

pluripotent stem cells 175-177, but we observed only a relatively minor reduction in CTCF 

occupancy between ES 2i and ES serum (‘2i only’ class, n=8,832). By contrast, we noticed 

that the number of CTCF sites lost between ES serum and NPCs nearly matched that of the 

constitutive class (‘2i+Serum’ class, n=20,068), suggesting that the transition from 

pluripotency to multipotent progenitor cells represents a critical developmental window in 

establishing the neural CTCF landscape. Importantly, the number of ‘NPC only’ CTCF 

sites that arose during differentiation was relatively small (n=1,119), indicating that the 

vast majority of CTCF peaks called in NPCs were already present in the pluripotent cell 

types (Fig. 3.3C). Our results suggest that the CTCF occupancy landscape in NPCs does 

not result from a marked reshuffling and/or extensive de novo acquisition of new CTCF 

binding sites. Rather, a large proportion of CTCF sites are pre-established at least as early 

in development as naïve pluripotency and selectively lost in early neural lineage 

commitment (Fig. 3.3D, orange and purple classes). ChIP-seq experiments were conducted 

in the same batch, sequenced on the same flow cell and downsampled to the same read 

depth to attenuate technical artifacts that might influence our observed results (Fig. 3.3E).  

 

3.2.3 The 3D genome is reconfigured during early neural development 

 CTCF has a well-established role in connecting long-range looping interactions 84, 

85. Given the large number of CTCF peaks that are dynamic across development, we sought 

to investigate how chromatin folding is altered as a function of occupancy during each cell 

fate transition. We generated fine-scale chromatin architecture maps (~4-12 kilobase (kb) 

matrix resolution) across > 7 Mb of the mouse genome surrounding key developmentally 
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regulated genes with Chromosome-Conformation-Capture-Carbon-Copy (5C) and high-

throughput sequencing. In a previous study focused on chromatin folding during somatic 

cell reprogramming, we generated 5C libraries (n=2 biological replicates) in ES serum, ES 

2i and NPC conditions 156. Here, we elected to begin our 3-D analyses and mechanistic 

exploration with the raw reads from our published 5C libraries because they were 

genetically- and culture condition-matched to the pellets used to generate our RNA-seq 

and CTCF ChIP-seq libraries. 

 Building on the foundation of our previously published 5C analysis pipeline 156, we 

further developed and applied a new set of computational methods to better resolve 

punctate looping interactions present within each cell type. We normalized the intrinsic 

biases in 5C data, corrected for library complexity and sequencing depth differences and 

attenuated spatial noise via a 16 kb blocked smoothing window. The resultant ‘Relative 

Interaction Frequency’ data binned at 4 kb matrix resolution exhibited high reproducibility 

between biological replicates (Fig. 3.5A, Fig. 3.6A). Additionally, our 5C data showed 

strong biological concordance with published Hi-C data from the murine cortex 7 across a 

1 Mb region surround the Sox2 gene NPC (Fig. 3.6B). 

Looping interactions can be detected in 5C heatmaps as concentrated points of high 

interaction frequency compared to the surrounding local background 10. Although one 

universal distance-dependence expected model could be computed on 5C data, we have 

found that application of a global expected often leads to over- or under-estimation of 

looping strength. To compute a local expected interaction frequency, we applied the 

‘donut’ and ‘lower-left’ background filters (Fig. 3.5B, blue and green outlines, 

respectively) recently proposed by Aiden and colleagues 10. Local background filters 
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capture the more nuanced aspects of the distance-dependence expected interaction 

frequency and the TAD/subTAD domain structure (Fig. 3.5C,D, Figs. 3.7, 3.8). To take a 

conservative approach for loop detection, we corrected our 5C counts with the maximum 

of the two filters (Fig. 3.5E, Fig. 3.9). We next modeled the ‘expected-corrected interaction 

frequency’ data as a continuous random variable with a logistic distribution (Fig. 3.10). 

The resultant p-values for each pixel were converted to an ‘Interaction Score’ (IS = -

10*log2(p-value)), allowing for systematic comparison of looping signal within and 

between 5C regions and experiments. Punctate looping structures were readily apparent in 

the uncorrected and interaction score heatmaps (Fig. 3.5A, 3.5F).  

As a critical first step toward understanding the relationship between CTCF 

occupancy and 3-D chromatin architecture changes, we computationally parsed looping 

interactions into sub-classes based on their interaction score in each cell type (Fig. 3.5G). 

Pixels in which both replicates of each biological condition similarly passed or failed each 

threshold (Fig. 3.11A) were classified into one of seven looping classes (Figs. 3.5G, H). 

Thresholds were chosen so that our top five largest dynamic looping classes achieved an 

empirical false discovery rate less than 15% (Fig. 3.11B-D, Appendix I Methods). 

Consistent with previous reports 10, we noticed that pixels of the same looping class were 

often adjacent to each other and therefore could be clustered together into a contiguous 

architectural feature. Altogether, we identified several classes of 3-D interactions (Fig. 

3.5I) and elected to focus our analysis on three main groups: (i) 141 loops present in all 3 

cell types (‘Constitutive’, grey class), (ii) 46 loops present in both ES 2i and ES serum but 

lost in NPCs (‘2i+Serum’, purple class) and (iii) 75 loops specific to the NPC state (‘NPC 

only’, green class). We confirmed that our looping class interaction scores trended across  
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Figure 3.5. Dynamic Classes of 3D Interactions Arise during Neural Lineage 
Commitment. (A) Heatmaps displaying the relative chromatin contact frequency in a 1 
Mb region surrounding the Sox2 gene in ES 2i, ES serum and NPCs. Color bars range 
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from low (grey) to high (red/black). (B) Schematic depiction of donut (blue) and lower 
left (green) expected background models. (C-E) Expected background heatmaps for the 
region surrounding the Sox2 gene. (C) Donut filter, (D) Lower left filter and (E) 
Maximum value of donut and lower left filters. (F) Interaction score heatmaps at the 
Sox2 locus. Color bar ranges from low (blue) to high (red/black). (G) Schematic of 
looping classes parsed by their dynamic behavior across three cellular states. (H) Scatter 
plot of 5C interaction scores for each pixel classified as part of a looping interaction 
across the ES 2i, ES serum and NPC states. (I) Number of significant looping clusters in 
each dynamic 3-D interaction class. (J) Boxplots representing interaction scores across 
each cell type for the pixels classified into each looping class. (K) Visualization of a 
Sox2-pluripotency enhancer interaction in relative interaction frequency heatmaps (top 
left row), interaction score heatmaps (bottom left row) and classified loop clusters 
(right). 
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Figure 3.6. Relative interaction frequency heatmaps at key developmental loci. (A) 
Relative interaction frequency heatmaps of 1 Mb surrounding several developmental 
genes (rows; Sox2, Olig1-Olig2, Nestin, Klf4, Nanog, Oct4) in replicates of ES 2i, ES 
serum and NPCs (columns). (B) Comparison of mouse cortex HiC heatmaps at 40 kb 
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(left) and 20 kb bins (middle) with our 4 kb binned pNPC 5C heatmaps in a 1 Mb region 
surrounding the Sox2 gene. HiC data from 7.  
 

 

Figure 3.7. Donut expected background model heatmaps at key developmental 
loci. (A) Donut expected background model heatmaps of 1-2 Mb surrounding several 
developmental genes (rows; Sox2, Olig1-Olig2, Nestin, Klf4, Nanog, Oct4) in 
replicates of ES 2i, ES serum and NPCs (columns). 
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Figure 3.8. Lower left expected background model heatmaps at key 
developmental loci. (A) Lower left expected background model heatmaps of 1-2 Mb 
surrounding several developmental genes (rows; Sox2, Olig1-Olig2, Nestin, Klf4, 
Nanog, Oct4) in replicates of ES 2i, ES serum and NPCs (columns). 
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Figure 3.9. Max(donut, lower left) expected background model heatmaps at key 
developmental loci. (A) Max(Donut, Lower Left) expected background model 
heatmaps of 1-2 Mb surrounding several developmental genes (rows; Sox2, Olig1-
Olig2, Nestin, Klf4, Nanog, Oct4) in replicates of ES 2i, ES serum and NPCs 
(columns).  
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Figure 3.10. Distance-corrected 5C counts fit with the logistic distribution. (A) 
Histograms of distance corrected 5C counts overlaid by logistic distributions fit 
independently for each region and replicate.  
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Figure 3.11. Thresholding Interaction Scores to Achieve Reasonable False 
Discovery Rates. (A) 2D Scatterplot of the minimum interaction scores across the two 
replicates of each cell type for all bin-bin pairs. Blue lines show applied thresholds. (B) 
Tables of expected-corrected interaction frequency correlations (left) and real 5C data 
pixel counts within looping classes compared to simulated pixel count and false 
discovery rate (FDR) within looping classes of simulated ES serum and NPC replicates 
(right). (C) 2D scatterplot of the minimum interaction scores across the two replicates of 
each simulated cell type for all bin-bin pairs. Blue lines denote applied thresholds. (D) 
3D scatterplot of the classified interactions from the first NPC simulation.  
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the three cellular states in a manner that was commensurate with their intended 

classification (Fig. 3.5J). Visual inspection of the data confirmed that gold-standard 

looping interactions, such as the ‘NPC only’ interaction between the Sox2 gene and an 

upstream regulatory element were accurately detected, clustered and classified (Fig. 3.5K, 

colored green). Finally, we assessed the orientation of the CTCF motifs at loop anchors 

and confirmed that loops in all three cell types were highly enriched for convergently 

oriented motifs compared with divergent or tandem orientations (Fig. 3.12A-B). 

Altogether, our analysis pipeline allowed us to accurately identify and visualize looping 

interactions critical to each cellular state within our 5C regions. 

 

Figure 3.12. CTCF anchoring classified interactions are preferentially oriented in 
a ‘convergent’ manner. (A) Stacked barplot characterizing the presence of CTCF in 
each looping class. Classifications were: no CTCF in loop (dark blue), CTCF found on 
only 1 side of the looping interaction (light blue), complex CTCF orientations such as 
conflicting CTCF orientations at the same peak or on the same side of a loop (dark grey) 
and unique CTCF orientations anchoring both sides of each loop (light grey). (B) Fold 
change enrichment of pairs CTCF motifs in specific orientations across the two sides of 
interactions present in constitutive, Serum+2i, and NPC-only loops compared to 
background levels. P-values calculated using Fisher’s exact test.  
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3.2.4 CTCF binding correlates with loss of 3D interactions during the departure from 

pluripotency 

 We next investigated the relationship between the significant loss of CTCF binding 

between the pluripotent and multipotent states and coincident architectural rearrangements. 

Sox2 forms a pluripotency-specific loop with a putative ES-specific enhancer ~120 kb 

downstream that is essential for proper expression of the gene in ES cells 178 (Fig. 3.13A-

B, magenta arrowhead). We identified several ‘2i+Serum’ CTCF sites at the putative ES-

specific enhancer (Fig. 3.13B, green boxes on x-axis). During the departure from 

pluripotency, CTCF binding is lost and the looping interaction connecting the Sox2 gene 

to the putative ES-specific enhancer concurrently breaks apart (Fig. 3.13B-C, Fig. 3.14A-

B, red arrow). Nanog displays a similar behavior: in ES 2i and ES serum, the gene interacts 

with a putative ES-specific enhancer element ~80 kb downstream that is essential for 

proper expression of the gene 179. Several ‘2i+Serum’ CTCF sites anchor the ‘2i+Serum’ 

looping interaction connecting Nanog and its putative enhancer (data not shown). In 

concordance with these locus-specific examples, ‘2i+Serum’ looping interactions across 

our 5C regions were enriched with ‘2i+Serum’ CTCF sites (Fig. 3.13D). Together, these 

data suggest that the loss of CTCF occupancy at key looping interactions during the 

departure from pluripotency is accompanied by a decrease in looping strength. 

We questioned some conflicting observations: although the loss of CTCF often 

coincides with the loss of a looping interaction (Fig. 3.13D) and NPCs have substantially 

fewer CTCF peaks than the pluripotent states (Fig. 3.3C), NPCs have roughly the same 

number of looping interactions as ES serum/ES 2i in the genomic regions covered by our 

5C primers (Fig. 3.5J). Notably, when we explored the percentage of key looping classes  
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Figure 3.13. Pluripotency interactions that disengage in multipotent NPCs display 
reduced CTCF occupancy. (A) Global view of relative interaction frequency heatmaps 
of 1 Mb surrounding the Sox2 gene. (B) Zoom in highlighting a strong pluripotency-
specific looping interaction between Sox2 and an ES-specific enhancer. CTCF binds at 
both loop anchors (note green boxes). Heatmaps include relative interaction frequency 
(top row) and background corrected interaction score (bottom row). Sox2 gene is colored 
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green. (C) Classified interaction clusters are plotted above relevant ChIP-seq tracks. (D) 
Fold enrichment/depletion of chromatin features in 2i+serum and NPC only looping 
interaction classes compared to presence in background interactions. P-values included 
in each entry are calculated using Fisher’s exact test. (E) Stacked barplot contrasting the 
proportion of loops connected by CTCF in one or both anchoring fragments versus not 
anchored by CTCF. 
 
 

 

Figure 3.14. Summary of crucial interactions made by the Sox2 gene. (A) Relative 
interaction frequencies for the interactions between the 5C bin containing the Sox2 
gene (highlighted in purple) and surrounding bins are plotted for the first ES 2i, ES 
Serum, and NPC replicates. Putative enhancer elements of interest are highlighted in 
green box(es). (B) UCSC genome browser tracks are displayed for the same locus as in 
(A), displaying the H3K27ac, YY1, and CTCF ChIP-seq data utilized in this study. 
 
 
 

anchored by CTCF, we found that almost 40% of ‘NPC only’ interactions were not 

anchored by CTCF binding, whereas only <5% and <10% of ‘constitutive’ and ‘2i + serum’ 
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interactions lacked CTCF binding, respectively (black bars, Fig. 3.13E). Moreover, ‘NPC 

only’ looping interactions across our 5C regions were not enriched for ‘NPC only’ CTCF 

binding (Fig. 3.13D). These results suggested that CTCF might not be the critical 

architectural protein connecting developmentally regulated looping interactions that arise 

de novo in differentiated NPCs. 

 

3.2.5 YY1 binding is enriched at looping interactions connecting NPC-specific genes and 

distal regulatory elements 

 We posited that an additional class of looping proteins might connect 

developmentally regulated ‘NPC only’ interactions. We searched for the presence of 

candidate architectural proteins at the base of 3D interactions between genes critical to the 

NPC phenotype and their putative target enhancers. Since its discovery, the Nes gene has 

been a widely referenced marker of proliferating NPCs 180, 181. Therefore, we began our 

search by investigating published NPC ChIP-seq libraries for their signal at the ‘NPC only’ 

long-range interactions between Nes and Bcan and a putative NPC-specific enhancer 

roughly 200 kb downstream of the genes (Fig. 3.15A,B, magenta arrowhead, Figs. 3.16A-

B, green box). As expected, Nes and Bcan expression markedly increased in NPCs in 

concert with the increase in 3D contact with the putative enhancer element (Fig. 3.15C). 

Interestingly, we observed strong occupancy of the zinc-finger protein Yin Yang 1 (YY1) 

at the putative NPC-specific enhancer (Figs. 3.15B+D, Fig. 3.16B, green box x-axis). 

Moreover, globally across all our 5C loops, we observed that YY1 was strongly enriched  
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Figure 3.15. YY1 is enriched at NPC-specific enhancers that form developmentally 
regulated loops. (A) Relative interaction frequency heatmaps of the global view of 1 
Mb surrounding Nes (top row), and zoom in of 400 kb surrounding nestin with putative 
NPC enhancer annotations (bottom row, blue bars). Nes (upstream) and Bcan 
(downstream) genes are colored green. (B) Zoom-in interaction score heatmaps of the 
nestin/bcan genes interacting with a downstream putative NPC enhancer. Heatmaps are 
overlaid with ChIP-seq tracks of CTCF in NPCs and YY1 in ES serum and NPCs. The 
Nes(upstream) and Bcan (downstream) genes are colored green. (C) Relative gene 
expression of Nes and Bcan across ES 2i, ES serum, and NPC cellular states. (D) 
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Interaction cluster outlines of the loop boxed in magenta in (B). Plot is overlaid with 
ChIP-seq tracks of H3K27ac, YY1, and CTCF in the ES 2i, ES serum and NPC 
conditions. Cluster outline classifications include NPC only (green), serum+NPC 
(yellow), and constitutive (grey). (E) Fold enrichment/depletion of the presence of 
chromatin features in NPC-only interaction class compared to presence in background. 
P-values are computed with Fisher's Exact test and listed in each entry. (F-G) YY1 ChIP-
seq signal in NPCs (green) and ES serum (blue), and ProB cells (red), centered at: (F) 
putative NPC enhancers at the base of NPC only loops, (G) NPC enhancers that do not 
fall at the base of any looping interactions. (H) YY1 binding sites parsed by their 
occupancy across ES cells, NPCs, and ProB cells. (I) Fold enrichment/depletion of YY1 
peak classes and NPC enhancers parsed based on the presence/absence of CTCF/YY1 in 
NPC-only loops compared to their presence background interactions. (J) Stacked barplot 
of the breakdown of ES and NPC enhancers that are bound with confidence by a 
combination of CTCF and/or YY1. 
 

 

Figure 3.16. Summary of crucial interactions made by the Nestin gene. (A) 
Relative interaction frequencies for the interactions between the 5C bin containing the 
Nestin gene (highlighted in purple) and surrounding bins are plotted for the first ES 2i, 
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ES Serum, and NPC replicates. Putative enhancer elements of interest are highlighted 
in green box(es). (B) UCSC genome browser tracks are displayed for the same locus as 
in (A), displaying the H3K27ac, YY1, and CTCF ChIP-seq data utilized in this study. 
 

in ‘NPC only’ 3D interactions compared to background non-loops (Fig. 3.15E). These data 

demonstrate that YY1 binding is enriched at ‘NPC only’ looping interactions. 

To better understand the role for YY1 in NPC looping, we parsed our putative 

genome-wide NPC-specific enhancers into those that engage in ‘NPC only’ loops (Fig. 

3.15F) and those that do not participate in long-range interactions (Fig. 3.15G). We found 

strong YY1 signal at NPC-specific enhancers engaged in ‘NPC only’ looping interactions 

and negligible YY1 binding at NPC-specific enhancers that do not loop. Similarly, YY1 

signal was also enriched at NPC-specific and constitutively expressed genes in looping 

interactions compared to non-loops (Figs. 3.17A-C). These data suggest that YY1 is 

present at NPC regulatory elements engaged in 3D interactions and support our working 

hypothesis that YY1 might serve as an architectural protein to connect NPC-specific genes 

and enhancers.  

We next set out to understand YY1 occupancy across cellular states and its co-

binding with respect to CTCF. In the case of CTCF, 47%, 53% and 92% of classified 

binding sites were constitutive (n=26,435) in the ES 2i, ES serum and NPC cellular 

conditions, respectively (Fig. 3.3A). By contrast, a markedly lower proportion of classified 

YY1 sites were constitutive among ES serum, NPCs and primary pro-B cells (36%, 39% 

and 25%, respectively; n=3,474), indicating that YY1 might exhibit more cell type specific 

binding than CTCF (Fig. 3.15H). To understand if YY1 co-localizes with CTCF, we 

explored pileup plots of average ChIP signal over the different classes of dynamic YY1 

binding sites (Figs. 3.17F-H). CTCF signal was negligible at all classes of YY1 binding, 
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suggesting that YY1 and CTCF do not, for the most-part, directly co-localize (Figs. 3.17F-

G).  We also observed a striking overlap of YY1 with H3K27ac signal (Fig. 3.17H), which 

prompted us to query the overlap of cell type-specific genes and regulatory elements with 

CTCF and YY1 and how this impacts looping. Importantly, NPC-specific enhancers were 

strongly enriched in ‘NPC only’ looping interactions when bound by YY1 without CTCF, 

but not when bound by CTCF without YY1 (Fig. 3.15I). Similarly, constitutive and NPC-

specific genes were also significantly enriched in ‘constitutive’ and ‘NPC only’ looping 

interactions, respectively, when bound by YY1 without CTCF (Figs. 3.17K, M). Together, 

these data indicate that NPC-specific enhancers, constitutive genes and NPC-specific genes 

can engage in strong 3-D interactions in NPCs when bound by YY1 in the absence of 

CTCF.   

In contrast to the role for YY1 at NPC regulatory elements, the role for YY1 at ES-

specific genes and enhancers was less clear. YY1 occupancy signal was low and diffuse 

across putative ES-specific regulatory elements and did not show a clear preference 

between those engaged in loops vs. non-loops (Figs. 3.17D-E). By focusing on distal cell 

type-specific regulatory elements that overlap binding sites of CTCF, YY1, or both (and 

not considering those bound by neither), we observed that the majority of architectural 

protein-bound NPC-specific enhancers were bound by YY1 without CTCF, whereas the 

majority of ES-specific enhancers were bound by CTCF without YY1 (Fig. 3.15J). 

Additionally, ‘2i + serum’ looping interactions were enriched for ES-specific enhancers 

regardless of CTCF and YY1 occupancy, whereas ES-specific genes were only enriched 

in ‘2i + serum’ looping interactions when bound by CTCF without YY1 (Figs. 3.17J, L). 

It is not clear to what extent our observed differences between ES and NPC YY1 are due  
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Figure 3.17. YY1 is enriched across genomic annotations ‘active’ in NPCs in 
looping interactions. (A-E) Pileups of YY1 ChIP-seq signal at (A) NPC enhancers, 
(B) NPC genes, (C) constitutive genes, (D) ES enhancers, and (E) ES genes for the 
total set of each annotation (left), the subset of each annotation found at the base of the 
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loops of the relevant class (middle), and the subset of each annotation not involved in 
any looping interaction (right). (F) Pileups of YY1 ChIP-seq signal at (top left) all 
YY1 peaks called in NPCs, (top right) YY1 peaks present in ES cells, NPCs, and ProB 
cells, (bottom left) NPC-specific YY1 peaks, and (bottom right) ES-specific YY1 
peaks. (G) Pileups of CTCF ChIP-seq signal across the same set of YY1 peaks as 
presented in (K). (H) Pileups of H3K27ac ChIP-seq signal across the set of YY1 peaks 
listed above. (I-M) Fold enrichment/depletion of the parsed chromatin regulatory 
elements from (A-E) in the relevant looping class compared to background 
interactions. P-values are computed with Fisher's Exact test and listed in each entry.  
 

to: (1) an increased reliance by ES cells on CTCF as the primary architectural protein, (2) 

different ChIP methods between the ES and NPC YY1 datasets or (3) a different regulatory 

role for YY1 in the two cell types. Thus, although our data indicate that YY1 might be 

important for developmentally regulated looping in somatic cells, we cannot conclusively 

define or rule out any role for YY1 in mediating loops in ES cells. 

 

3.2.6 YY1-mediated developmentally regulated looping interactions are often nested 

within a larger framework mediated by constitutive CTCF 

While exploring the gene-enhancer interaction formed by the Nes and Bcan genes, 

we noticed a constitutive interaction at the outer corner of the larger ‘NPC only’ and 

‘Serum + NPC’ looping interaction cluster (Fig. 3.15D). At the base of this constitutive 

interaction, we identified convergently oriented constitutive CTCF sites (Fig. 3.15D, lower 

red boxes on both axes, consensus orientation not shown). We hypothesized that a subset 

of constitutive CTCF sites might form loops that create a pre-existing topological 

framework within which critical, developmentally dynamic chromatin interactions form 24, 

86, 134. Constitutive topological frameworks may be critical for proper gene expression 

because they create insulated neighborhoods around co-regulated genes and enhancers that 
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will interact during subsequent differentiation steps 12. Consistent with this idea, 

constitutive CTCF was the most significantly enriched chromatin mark underlying 

constitutive interactions (Fig. 3.18A). Importantly, NPC genes were also slightly enriched 

in constitutive interactions (Fig. 3.18A), corroborating our observation that NPC gene-

enhancer loops connected by YY1 often appear adjacent to and nested within constitutive 

looping events.  

We sought additional examples of punctate ‘constitutive’ interactions adjacent to 

‘NPC only’ interactions. The Olig1 and Olig2 genes encode bHLH transcription factors 

involved in differentiation along the oligodendrocyte lineage 182. In NPCs, putative 

enhancer(s) marked by NPC-specific H3K27ac connect to both Olig1 and Olig2 in a 

rosette-like structure and these genes show markedly increased expression in NPCs 

compared to ES 2i/ES serum (Fig. 3.18B-D, magenta arrows). We observed significant 

NPC YY1 signal at all NPC-specific genes and enhancers at the Olig1/2 locus (Fig. 3.18E, 

Figs. 3.19 A-D). Similar to the Nes locus, we observed two constitutive interactions 

anchored by constitutive CTCF sites in a convergent orientation adjacent to the NPC 

specific interactions formed by the Olig1 and Olig2 genes (Fig. 3.18F, red boxes/green 

arrows). Similarly, the Sox2 gene also forms a long-range ‘NPC only’ interaction with a 

putative NPC-specific enhancer marked by H3K27ac (Fig. 3.18G, magenta arrow, Figs. 

3.14A-B, second green box). YY1 is detected at both Sox2 and the putative NPC-specific 

enhancer (Fig. 3.18H-I, upper green boxes). Again, the NPC only interaction exists 

adjacent to and nested within a punctate constitutive interaction anchored by convergent 

CTCF (Fig. 3.18I, lower red boxes, consensus orientation not shown). Together, these 

results support a working model of 3D genome folding in which developmentally regulated  
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Figure 3.18. YY1 connects neural regulatory elements nested within and adjacent 
to a framework of constitutive CTCF-mediated interactions. (A) Fold 
enrichment/depletion of chromatin regulatory elements in the constitutive looping class 
compared to background interactions. P-values are computed with Fisher's Exact test and 
listed in each entry. (B-C) Relative interaction frequency heatmaps of (B) ~1Mb region 
and (C) ~200kb region surrounding the Olig1 and Olig2 genes in ES 2i, ES serum and 
NPCs. Heatmaps in (C) are overlaid with ChIP-seq tracks of H3K27ac in ES serum cells 
and NPCs. (D) Relative gene expression of Olig1 and Olig2 genes across the ES 2i, ES 
serum, and NPC cellular states. (E) Zoom-in interaction score heatmaps of looping 
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interactions between the Olig1 and Olig2 genes and surrounding putative NPC enhancers 
(green boxes). (F) Zoom-in cluster map of classified looping interactions at Olig2 and 
Olig1 with NPC-only (green), serum+NPC (yellow) and constitutive class looping 
interactions (grey). (G-I) Heatmaps and cluster map at different length scales around the 
Sox2 gene in ES 2i, ES serum and NPCs. Zoom-in heatmaps of relative interaction 
frequencies (G) and background corrected interaction scores (H) across ~500 kb 
downstream of Sox2. Relative interaction frequency heatmaps are overlaid H3K27ac 
tracks. Interaction score heatmaps are overlaid with ChIP-seq tracks of YY1 and CTCF 
across cell types. Sox2 gene is colored green. (I) Zoom-in classified cluster map of a 
~100 kb window around a Sox2-enhancer interaction with NPC-only (green), 
serum+NPC (yellow) and constitutive classified looping interactions (grey), overlaid on 
ChIP-seq tracks. 
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Figure 3.19. Summary of crucial interactions made by the Olig1/Olig2 genes. 
(A,C) Relative interaction frequencies for the interactions between the 5C bin 
containing the Olig2 gene (A) and Olig1 gene (C) (highlighted in purple) and 
surrounding bins are plotted for the first ES 2i, ES Serum, and NPC replicates. 
Putative enhancer elements of interest are highlighted in green box(es). (B,D) UCSC 
genome browser tracks are displayed for the same loci as in (A,C), displaying the 
H3K27ac, YY1, and CTCF ChIP-seq data utilized in this study. 
 
 

 

genes such as Nes, Olig1, Olig2 and Sox2 form de novo connections to their target 

enhancers via YY1 within a larger topological framework pre-existing from naïve 

pluripotency and connected by constitutive CTCF. 

 

3.2.7 YY1 knockdown results in the loss of key NPC enhancer to gene looping 

interactions 

 Finally, to better understand the role for YY1 in fine-scale chromatin architecture, 

we knocked down YY1 in NPCs and assessed changes in looping. We performed YY1 

knock down using an siRNA pool purchased from Dharmacon to target multiple sites along 

the YY1 transcript. Transfection of the YY1-targeting siRNA pool produced a >50% 

decrease in YY1 expression and protein levels compared to a control non-targeting pool 

condition (Fig. 3.20A-B). Reduction in YY1 levels resulted in a striking loss of interaction 

frequency between the upstream putative NPC-specific enhancer and the Sox2 gene (Figs. 

3.5K, 3.14A-B (second green box), 3.20C) and a decrease in Sox2 expression (Figs. 

3.20D). We also observed loop ablation upon YY1 knockout at interactions between the 

Klf4 gene and a downstream putative NPC-enhancer (Fig. 3.21A-B, 3.22A-B, second green 

box) and at the Zfp462 gene (Fig. 3.21C-D). Due to technical issues related to poor library 

complexity across all conditions in this batch of experiments, we were unable to obtain  
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Figure 3.20. YY1-mediated developmentally regulated looping interactions form 
within a constitutive framework demarcated by CTCF. (A)  Western blot analysis 
querying YY1 and Gapdh protein levels in NPCs exposed to non-targeting control and 
YY1-targeting siRNA. (B) Gene-expression quantified by qPCR of the YY1 gene in 
NPCs exposed to control and YY1-targeting siRNA. (C) Zoom-in interaction score 
heatmaps of a loop between the Sox2 gene and an upstream enhancer (originally 
presented in Fig. 3K) in NPCs exposed to non-targeting control siRNA (left) and an 
siRNA targeting YY1 (right). (D) Gene-expression quantified by qPCR of the Sox2 gene 
in NPCs exposed to control and YY1-targeting siRNA. (E) Schematic depicting a CTCF-
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mediated constitutive interaction, present across all early stages of neural lineage 
commitment, and a YY1-mediated gene-enhancer interaction, present only in NPCs. 

 

Figure 3.21. 3D looping interactions at the Klf4 and Zfp462 loci are disrupted upon 
YY1 knockdown. (A) Zoom-in interaction score heatmaps of a loop between the Klf4 
gene and downstream enhancer(s) in NPCs exposed to non-targeting control siRNA 
(left) and an siRNA targeting YY1 (right). (B) Gene-expression quantified by qPCR of 
the Klf4 gene in NPCs exposed to non-targeting and YY1-targeting siRNA. (C) Zoom-
in interaction score heatmaps of a loop between the Zfp462 gene and downstream 
enhancer(s) in NPCs exposed to non-targeting control siRNA (left) and an siRNA 
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targeting YY1 (right). (D-F) Gene-expression quantified by qPCR of the Zfp462 (D), 
Olig2 (E), and Nestin (F) genes in NPCs exposed to non-targeting and YY1-targeting 
siRNA. 

 
Figure 3.22. Summary of crucial interactions made by the Klf4 gene. (A) Relative 
interaction frequencies for the interactions between the 5C bin containing the Klf4 gene 
(highlighted in purple) and surrounding bins are plotted for the first ES 2i, ES Serum, 
and NPC replicates. Putative enhancer elements of interest are highlighted in green 
box(es). (B) UCSC genome browser tracks are displayed for the same locus as in (A), 
displaying the H3K27ac, YY1, and CTCF ChIP-seq data utilized in this study. 
 

high complexity 5C maps at Olig1, Olig2 and Nes regions. However, upon YY1 

knockdown we observed a striking reduction in the expression of these genes, suggesting 

that the enhancer-promoter loops that Nes, Olig1 and Olig2 engage in might be disrupted 

by YY1 knock down (Fig. 3.21E-F). Together, these results support our working 
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hypothesis that YY1 is critical for the formation developmentally regulated looping 

interactions in NPCs. 

 

3.3 Discussion 

CTCF is ubiquitously expressed across cell types and developmental stages and has 

a well-established role in connecting higher-order genome architecture. Here we seek to 

shed light on the dynamic CTCF binding landscape and how it is linked to the 

reconfiguration of chromatin architecture during the earliest stages of the establishment of 

neuronal expression programs. We present evidence for several organizing principles 

governing 3D genome folding during early brain development. First, we find that CTCF 

occupancy is predominantly lost in the transition from ES cells to multipotent NPCs, 

suggesting that the CTCF occupancy landscape might be saturated in naïve pluripotency 

and regulated primarily through selective pruning of CTCF binding sites. Second, reduced 

CTCF occupancy is correlated with the loss of chromatin interactions between ES-specific 

genes and enhancers, indicating that loss of CTCF binding is a critical step during the 

decommissioning of pluripotency gene expression programs. Third, we did not observe a 

strong correlation between CTCF occupancy and NPC-specific interactions. Rather, we 

detected high levels of occupancy of the zinc finger protein YY1 at NPC-specific genes 

and enhancers when engaged in NPC-specific 3D interactions and negligible YY1 levels 

when these regulatory elements did not interact. Upon knockdown of YY1 in NPCs, many 

3D interactions break apart, suggesting that YY1 may serve as an architectural protein 

connecting developmentally regulated genes and enhancers in NPCs. Finally, we found 

that key YY1-mediated NPC-specific looping interactions occur adjacent to and nested 
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within punctate constitutive looping interactions anchored by convergently oriented, 

constitutively bound CTCF. Our data support a model in which YY1-anchored looping 

interactions arise de novo in NPCs within a larger topological framework established prior 

to or during naïve pluripotency and connected by constitutively bound CTCF (Fig. 3.20E). 

Seminal genome-wide CTCF occupancy studies based on 2-3 cell types initially 

suggested that the CTCF binding landscape remains largely unchanged across mammalian 

lineages 73, 75. A more recent comparison of CTCF occupancy across 40 cell types revealed 

that at least 80% of CTCF sites are dynamic across cellular states 159. Here we find that 

CTCF occupancy is highest in the naïve pluripotent stem cell state and globally decreases 

in parallel with its expression during the commitment to multipotent NPCs. A large cohort 

of ~8,000 and ~20,000 CTCF sites are lost during the transition from ES 2i to ES serum 

and ES serum to NPCs, respectively. By contrast, we only observe a small group of ~1200 

CTCF sites that are acquired de novo in NPCs, suggesting that the vast majority of the 

CTCF sites occupied in NPCs were pre-existing from earlier stages in development. We 

speculate that one hallmark of the initial establishment of the neuronal lineage is a wave of 

CTCF occupancy loss to remove residual topological configurations required for 

pluripotency-specific gene expression and off-target lineages that will not be expressed in 

brain cell types. In the future, additional studies across non-neuronal lineages will also be 

important to determine how widely our model of CTCF pruning in neural development 

applies, as our initial analyses of ENCODE data indicated that CTCF occupancy does not 

always decrease during development across all lineages.  

DNA methylation is a critical regulator of neural lineage commitment 183 and CTCF 

binding 80. Recent reports suggest that the largest re-arrangement of DNA methylation 
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during neural development occurs during upon the departure from pluripotency 172, 184. The 

transition from ES cells to early NPCs is associated with a large increase in DNA 

methylation 172. Importantly, a large proportion of genomic loci that are methylated in 

NPCs maintain the mark through the duration of neural development 172, 184. Because CTCF 

binding is anti-correlated with DNA methylation, we posit that a notable proportion of the 

large class (n~20,000) of ‘2i + serum’ CTCF sites might be might be methylated during 

the initial establishment of the neural lineage and subsequently remain methylated and 

unbound through terminal differentiation in the developing/maturing brain. In support of 

this hypothesis, we observe the highest levels of CTCF occupancy in our naïve 

pluripotency cellular state (ES 2i) in which cells have consistently been found to exhibit 

an extreme state of hypomethylation across the genome 175-177. The large-scale shifts in 

DNA methylation and CTCF binding during the transition from ES cells to NPCs suggest 

that elucidating the CTCF landscape in the progenitor state of development is critically 

important for understanding the CTCF sites and 3-D topological configurations available 

for binding across terminally differentiated lineages in the brain.   

Although CTCF is the best understood protein-mediated mechanism for connecting 

3D chromatin interactions, we hypothesized that additional architectural proteins might 

exist to connect the 3-D genome. Here, unexpectedly, we found that CTCF was not 

significantly enriched in NPC-specific loops in our 5C regions. Rather, we observed high 

levels of the zinc finger protein YY1 at NPC-specific genes and enhancers when engaged 

in 3-D looping interactions and negligible/low YY1 occupancy when these regulatory 

elements were not connected. Several key NPC-specific enhancer-gene looping 

interactions were ablated upon YY1 knock down. YY1 is an intriguing architectural protein 
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candidate: (i) it is strongly enriched in genome-wide looping interactions in human cell 

lines 10, (ii) it is necessary for the formation of specific 3D interactions in B cells 185, (iii) 

it can connect a long-range interaction in B cells in the absence of its transcriptional 

activation domain 160 and (iv) it is required for proper neural development 186. Biochemical 

studies have indicated that the zinc fingers of YY1 may interact with the N-terminus of 

CTCF 161, suggesting that YY1 could function via homodimerization or heterodimerization 

mechanisms to connect the genome. Overall, our data are consistent with a model in which 

YY1 serves a key role in development as a dynamic architectural protein connecting 

lineage-specific genes and enhancers. Future studies should aim to elucidate the 

mechanisms by which YY1 connects long-range chromatin interactions and the extent to 

which YY1 functions as an architectural protein in non-neural lineages. It will also be 

important to rule out the possibility that YY1’s critical role in looping is not due to indirect 

effects on chromatin activity.  

A key finding of this manuscript is that YY1-mediated looping interactions in NPCs 

are nested within larger constitutive interactions anchored by constitutively occupied 

CTCF sites. A leading hypothesis is that subTAD/TAD boundaries, anchored by 

constitutive CTCF, might constrain developmentally regulated enhancers from aberrantly 

looping to off-target genes 12, 15, 20, 22, 134. We and others have previously reported that 

pluripotency genes connect to enhancers in smaller looping interactions nested within 

larger constitutive structures 9, 12. Here, our results confirm and extend this model to suggest 

that CTCF-mediated constitutive interactions might also might serve to pre-mark genomic 

locations of connections between somatic developmentally regulated gene-enhancer 

interactions through punctate, constitutive ‘seed’ interactions. In agreement with this idea, 
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Ruan and colleagues reported evidence that CTCF-mediated looping interactions might 

function to coordinate nearby interactions involving RNA Pol II 86. Furthermore, a recent 

genomics analysis showed that up to 30% of YY1 sites bind at locations directly adjacent 

to CTCF and might work together to cooperatively influence occupancy 187. Thus we posit 

that architectural proteins such as YY1 might cooperatively build upon a constitutive 

CTCF architectural ‘seed’ scaffold to connect nearby developmentally regulated genes and 

enhancers. Future work teasing out the causal interplay between architectural seeds, CTCF 

and additional architectural proteins will shed light on the fundamental mechanisms 

governing proper spatiotemporal regulation of gene expression during development. 
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CHAPTER 4: LOCAL GENOME TOPOLOGY CAN 

EXHIBIT AN INCOMPLETELY REWIRED 3D-FOLDING 

STATE DURING SOMATIC CELL REPROGRAMMING 

 
4.1 Introduction 

Mammalian genomes are folded in a hierarchy of architectural configurations that 

are intricately linked to cellular function. Individual chromosomes are arranged in distinct 

territories and then are further partitioned into a nested series of Megabase (Mb)-sized 

topologically associating domains (TADs) 7, 8 and smaller sub-domains (sub-TADs) 9, 10. 

TADs/subTADs vary widely in size (i.e. 40 kb - 3 Mb) and are characterized by highly 

self-associating chromatin fragments demarcated by boundaries of abruptly decreased 

interaction frequency. Long-range looping interactions connect distal genomic loci within 

and between TADs/subTADs 9, 10, 23, 38. Single TADs, or a series of successive 

TAD/subTADs, in turn congregate into spatially proximal, higher-order clusters termed 

‘A/B compartments’. Compartments generally fall into two classes: (i) ‘A’ compartments 

enriched for open chromatin, highly expressed genes and early replication timing and (ii) 

‘B’ compartments enriched for closed chromatin, late replication timing and co-

localization with the nuclear periphery 10, 40, 44, 45. The organizing principles governing 

genome folding at each length scale remain poorly understood.  

Recent high-throughput genomics studies have shed new light on the dynamic 

nature of chromatin folding during embryonic stem (ES) cell differentiation. Up to 25% of 

compartments in human ES cells switch their A/B orientation upon differentiation 44. 
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Compartments that switch between A and B configurations display a modest, but correlated 

alteration in expression of only a small number of genes, suggesting that compartmental 

switching does not deterministically regulate cell type-specific gene expression 44. 

Similarly, lamina associated domains are dynamically altered during ES cell differentiation 

188. For example, the Oct4, Nanog and Klf4 genes relocate to the nuclear periphery in 

parallel with their loss of transcriptional activity as ES cells differentiate to astrocytes. 

TADs are largely invariant across cell types and often maintain their boundaries 

irrespective of the expression of their resident genes 7. By contrast, long-range looping 

interactions within and between sub-TADs are highly dynamic during ES cell 

differentiation 9, 189. Pluripotency genes connect to their target enhancers through long-

range interactions and disruption of these interactions leads to a marked decrease in gene 

expression 39, 190. Thus, data is so far consistent with a model in which chromatin 

interactions at the sub-Mb scale (within TADs) are key effectors in the spatiotemporal 

regulation of gene expression during development. 

In addition to the forward progression of ES cells in development, somatic cells can 

also be reprogrammed in the reverse direction to induced pluripotent stem (iPS) cells via 

the ectopic expression of key transcription factors 191. Since the initial pioneering 

discovery, many population-based and single cell genomics studies have explored the 

molecular underpinnings of transcription factor-mediated reprogramming 154, 192-194. 

Recent efforts have uncovered changes in transcription, cell surface markers and classic 

epigenetic modifications during intermediate stages in the reprogramming process 195-197. 

Although there is some evidence of epigenetic traces from the somatic cell of origin 198-200, 
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the emerging model is that ES-like epigenetic and transcriptional states can be generally 

reset under proper reprogramming conditions 201.  

The role for chromatin topology in the acquisition of pluripotency during 

reprogramming has not yet been elucidated. Recent studies have suggested that specific 

long-range interactions between Nanog and/or Oct4 and target enhancers can be reset 

during reprogramming and precede re-activation of the involved genes 190, 202-205. Beyond 

these initial locus-specific studies, it remains unknown whether the somatic cell genome 

unfolds/refolds at the sub-Mb scale within TADs and how chromatin topology is linked to 

gene expression changes during reprogramming. Here we report a detailed analysis of local 

chromatin folding changes during somatic cell reprogramming. We created ~4-12 kilobase 

(kb) resolution chromatin architecture maps in primary neural progenitor cells (NPCs), iPS 

cells derived from primary NPCs and pluripotent ES cells. We employed Chromosome-

Conformation-Capture-Carbon-Copy (5C) to query fine-scale architectural changes in Mb-

sized regions around key developmentally regulated genes. We find that chromatin folding 

is markedly reconfigured within TADs during the transition from primary NPCs to iPS 

cells. In many cases, pluripotency genes re-engage in fully reprogrammed interactions with 

their target ES-specific enhancers. Unexpectedly, we also observe NPC interactions around 

key pluripotency genes (e.g. Sox2, Klf4) that remain persistently tethered in our iPS clone. 

Pluripotency genes engaged in ‘persistent NPC-like’ interactions can exhibit over/under-

shooting of gene expression levels in iPS, despite the fact that they may have also re-

established contact with their target ES-specific enhancer(s). We also uncover a subset of 

‘poorly reprogrammed’ interactions that break apart during differentiation and do not fully 

reconnect in our iPS clone. Many ‘poorly reprogrammed’ interactions exhibit ES-specific 
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CTCF occupancy that is lost during differentiation and only partially recovered in iPS cells. 

Importantly, 2i/LIF conditions can (i) abrogate ‘persistent NPC-like’ interactions, (ii) 

recover ‘poorly reprogrammed’ interactions, (iii) re-instate inadequately reprogrammed 

CTCF occupancy and (iv) restore precise gene expression levels.  

 

4.2 Results 

4.2.1 Chromatin folding markedly reconfigures at the sub-Mb scale during 

reprogramming 

To investigate changes in 3D chromatin topology during somatic cell 

reprogramming, we first generated ~4-12 kb-resolution chromatin architecture maps in 

primary NPCs, iPS cells derived from primary NPCs and ES cells (Fig. 4.1A). To achieve 

a comparable genetic background to our pluripotency model (V6.5 ES cells; 129/SvJae x 

C57BL/6), we selected a previously published iPS clone derived from primary NPCs 

isolated from neonatal brains of Sox2-green fluorescent protein (Sox2-GFP) indicator mice 

(mixed 129/SvJae x C57BL/6 genetic background) 173, 206. Hochedlinger and colleagues 

generated this iPS clone via the transduction of primary Sox2-GFP NPCs with 

doxycycline-inducible lentiviral vectors encoding Oct4, Klf4 and c-Myc. Importantly, this 

iPS clone was extensively characterized for its pluripotent properties as assessed by (i) 

expression of endogenous pluripotency markers (Oct4, Sox2, Nanog), (ii) demethylation 

of Oct4 and Nanog promoters, (iii) transgene-independent self renewal, (iv) in vivo 

teratoma formation of all three germ layers and (v) generation of chimeric mice 206. Our 

three cellular states enable a detailed analysis of how chromatin unfolds/refolds between  
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Figure 4.1. High-resolution architecture maps reveal marked chromatin 
reconfiguration during somatic cell reprogramming. (A) Phase contrast images of 
the reprogramming model system. (B) Genome-wide ES cell Hi-C data 7 at different bin 
sizes illustrating chromosome territories, A/B compartments and TADs. Images made 
with the Juicebox tool (http://www.aidenlab.org/juicebox/). The 4-12 kb resolution 
heatmaps from the present study query fine scale genome folding at the sub-Mb scale 
within TADs. (C) Relative contact frequency heatmaps are displayed for all biological 
replicates and regions queried. Color bars range from low (grey) to high (red/black) 
interaction frequencies. (D) Distance-corrected interaction score heatmaps for a select 
region around the Sox2 gene illustrating the presence of dynamic chromatin architecture 
among ES, NPC and iPS cells. Color bars range from low (blue) to high (red/black) 
interaction scores. 
 

NPCs and iPS cells and also facilitate the comparison of genome topology between ES/iPS 

of comparable genetic background.  

We employed 5C and high-throughput sequencing to create fine-scale chromatin 

architecture maps spanning > 7 Mb of the mouse genome within a set of TADs 43. 5C 

combines Chromosome-Conformation-Capture (3C) with a primer-based hybrid capture 

step to facilitate cost-effective detection of sub-Mb scale interactions in Mb-sized loci of 

interest 5. We used a tiled/alternating primer design around Nanog, Sox2, Klf4, Oct4, 

Nestin, and Olig1-Olig2 (described in detail 9). Our 5C primer design scheme enabled the 

creation of ~4-12 kb resolution architecture maps for all loci combined across three cellular 

states with less than 30 million reads per replicate. The power in this approach is that it 

focuses on elucidating fine scale architecture changes at the sub-Mb scale within TADs 

(Fig. 4.1B). 

We first visualized 5C data with contact frequency heatmaps. To resolve underlying 

topological features, we developed an analysis pipeline to correct for known biases in 5C 

data and to normalize samples within and between biological replicates. Briefly, raw data 

http://www.aidenlab.org/juicebox/
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(Fig. 4.2A) were quantile normalized to bring the dynamic range of all samples onto 

equivalent scales and to account for technical differences in sequencing depth and library 

complexity (Fig. 4.2B). To account for differences in primer efficiency that lead to non-

uniformities in coverage across genomic regions, we applied our previously published 

primer correction algorithm to quantile-normalized data (Fig. 4.2C, 9). We then applied a 

blocked binning/smoothing algorithm to attenuate spatial noise in 5C data (Fig. 4.2D). Our 

‘Relative Contact Frequency’ heatmaps revealed striking topological patterns that are 

dynamic across cellular states and unique to each genomic region (Fig. 4.1C). 

To further resolve the underlying architectural signal, we corrected for the known 

distance-dependence background in 5C data 23 (Fig. 4.2E-G). Consistent with recent 

reports 10, we found that a local distance-dependence model computed independently for 

each region would more precisely account for locus-specific differences in chromatin 

folding that are often over/under-estimated by a global background model (Fig. 4.2G). Our 

‘Distance-Corrected Interaction Score’ heatmaps showed striking changes in topological 

features among NPCs, iPS and ES cells (Fig. 4.1D, Fig. 4.2E-F) with high consistency 

between replicates and marked differences among biological conditions. A systematic 

comparative analysis at each stage in the pipeline confirmed that we have reduced known 

biases in 5C data (Figs. 4.2A-I, 4.3A-G). 

 

4.2.2 iPS genomes can exhibit imperfectly rewired folding patterns 

We next explored fine-scale chromatin folding features within TADs by visually 

inspecting our heatmaps. Consistent with our previous work, we observed marked changes  
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Figure 4.2.  Progression of 5C data through analysis pipeline. (A-F) Grid showing 
progression of Sox2 region through data processing steps. From top to bottom: (A) raw, 
(B) quantile normalized, (C) primer corrected, (D) binned (4 kb bins; 20 kb smoothing 
window), (E) distance-dependence corrected and (F) interaction score computed as -
10*log2(p-value) on p-values computed from the distance-dependence corrected data 
after logistic distribution modeling parameterized for each genomic region. From left to 
right: (i) contact probability heatmaps for ES Rep1 and NPC Rep1, (ii) boxplots of counts 
for each primer/bin in the Sox2 region in order of increasing median, (iii) background 
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distance-dependence interaction frequency, showing the mean of the counts at distance 
scales binned every 40 kb, (iv) kernel density estimates of the counts probability density. 
(G) Boxplots of ‘Relative contact frequency’ values at 4 kb intervals across the genomic 
coordinates queried for each 5C region. Plots for the Olig1-Olig2 and Nestin regions of 
ES Rep 1 are shown.  (H) Violin plots showing the distribution of log fold enrichment 
of total cis primer counts over the mean of cis primer counts (x-axis) as a function of 
each primer’s GC content (y-axis). Data for ES Rep 1 is shown at raw, quantile 
normalization and primer correction stages in the analysis pipeline. (I) Heatmaps 
comparing GC content bias in ES Rep1 in pairwise fragment-to-fragment contacts before 
and after primer correction. Fold enrichment is computed within each two-sided GC bin 
as the sum of the counts for all cis primer-primer pairs falling in the GC content range 
of the bin divided by the expected number of counts for a bin with that many primer-
primer pairs in it.  
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Figure 4.3.  Progression of 5C data through alternative 5C analysis approaches. (A-
D) Grid showing progression of Sox2 region through our previously published analysis 
pipeline 9. From top to bottom: (A) raw, (B) primer corrected, (C) distance-dependence 
normalized via parametric model described in 9 and (D) interaction score computed as -
10*log2(p-value) on p-values computed with compound normal-lognormal distribution 
fits described in 9. From left to right: (i) contact probability heatmaps for ES Rep1 and 
NPC Rep1, (ii) boxplots of counts for each primer/bin in the Sox2 region in order of 
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increasing median, (iii) distance dependence curves, showing the mean of the counts at 
distance scales binned every 40 kb, (iv) kernel density estimates of the counts probability 
density. (E-G) Grid showing downstream effects of alternative placement of quantile 
normalization step within the main 5C analysis pipeline. Primer normalized data shown 
in (B) were binned (E), then quantile normalized (in contrast to Figure 4.2, where 
quantile normalization is the first step) (F), and finally distance corrected (G). 
 

 
Figure 4.4. iPS genomes can exhibit intermediate folding and expression patterns 
between somatic and pluripotent stem cell states. Principal component analysis of (A) 
distance-corrected interaction frequency data and (B) normalized RNAseq data for ES, 
NPC and iPS replicates. (A, B) Principal components 1 and 2 are scattered and the 
proportion of variance explained by each principal component is plotted below each 
scatterplot. 
 
 
 

in chromatin architecture between ES cells and NPCs. Importantly, we also noticed a 

striking architectural reconfiguration between NPCs and NPC-derived iPS cells (Fig. 4.1C-

D). At many loci, iPS genome folding recapitulates the patterns seen in V6.5 ES cells. 

However, we also noticed several intriguing cases where iPS topology retained remnants 

of the folding patterns from NPCs (Fig. 4.1D). 
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To further explore the possibility that genome folding might be mis-wired during 

reprogramming, we conducted principal component analysis on our ‘Distance-Corrected 

Interaction Frequency’ data across all replicates and cellular states. Interestingly, we 

observed that genome topology in our iPS clone exhibited folding patterns that were 

intermediate between NPCs and the pluripotent stem cell state (Fig. 4.4A). To explore the 

functional significance of potential intermediate iPS folding patterns, we queried the 

transcriptome of all three cellular states using RNAseq. Consistent with our 3D 

observations, global gene expression profiles in our iPS clone were also parsed as 

intermediate between ES cells and NPCs (Fig. 4.4B). Together, these results support the 

possibility that genome architecture of some iPS clones might be imperfectly wired within 

TADs during reprogramming. 

 

4.2.3 Dynamic 3-D interaction classes during cell fate transitions 

To identify high-confidence, long-range interactions across all developmentally 

regulated loci, we fit our ‘Distance-Corrected Interaction Frequency’ data with a logistic 

distribution with location/scale parameters computed independently for each region (Fig. 

4.5A, Appendix II Methods). We then converted the p-values from our fitted models into 

an interaction score (-10*log2(p-value)) that is comparable within and between 

experiments and allows for the robust detection of interactions that are significant above 

the expected background signal.  

We next employed a thresholding strategy to classify 3D interactions by their 

dynamic contact frequencies across the three cellular states (Fig. 4.6A-D). To minimize 

false positives, we required that interaction scores cross the threshold boundaries in both 
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replicates for a given biological condition. Moreover, we iteratively defined thresholds to 

achieve an empirical False Discovery Rate (eFDR) of < 10% when applied to simulated 

5C replicates (Figs. 4.6E-H, 4.5B+C, Appendix II Methods). Upon application of our 

classification scheme, we uncovered several dynamic interaction classes among ES, NPC 

and iPS cellular states (Figs. 4.6I-J), including: (i) 537 interactions present in ES cells, lost 

in NPCs and reacquired upon reprogramming (purple class) (Fig. 4.6K), (ii) 3004 

interactions present only in ES cells and not reprogrammed (red class) (Fig. 4.6L), (iii) 

5043 interactions absent in ES cells, acquired upon differentiation and lost in iPS cells 

(green class) (Fig. 4.5D), (iv) 1708 interactions present only in iPS cells (orange class) 

(Fig. 4.5E), (v) 148 interactions that are high in ES cells and NPCs and not present in iPS 

(gold class) (Fig. 4.5F) and (vi) 282 interactions absent in ES cells, acquired in NPCs and 

residually connected in iPS cells (blue class) (Fig. 4.5G). Noteworthy, we found that the 

sensitive detection of these interaction classes, particularly those that distinguish iPS from 

ES cells, was contingent upon the resolution and read depth afforded by the 5C approach 

(Figs. 4.5H-I). Importantly, we note that the majority of high-count pixels were spatially 

adjacent each other in our ‘Distance-corrected Interaction Score’ heatmaps and appear to 

form larger clusters of enriched 3-D contact (Fig. 4.6K-L, 4.6N, 4.5D-G). To ensure that 

our approach was not inflating the number of significant interactions, we clustered adjacent 

pixels that were similarly classified, resulting in a total of only 1,248 unique interactions 

across three cellular states in our 5C regions (~7.5 Mb)  (Fig. 4.6M). Our clustering 

approach is similar to the methodology employed by Aiden and colleagues for high-

resolution Hi-C data 10. We emphasize two important points regarding the  
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Figure 4.5. Methodology for identification of significant 3-D interaction classes. (A-
B) Histograms and empirical cumulative distribution functions (ECDF) of distance-
corrected interaction frequency values. (A) Distributions of NPC Rep 1 (red) 
superimposed upon a logistic distribution fit with location/scale parameters computed 
for each region and biological replicate (black). Juxtaposition of models illustrates that 
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our distance-corrected data can be modeled with logistic fits. (B) Distributions of the two 
NPC replicates (red and green) plotted alongside the simulated data distribution (blue). 
Simulated data closely approximate 5C data, supporting their utility in computing 
empirical False Discovery Rates. (C) Empirical false discovery rates computed from 
simulated data reported for each classification. FDRs vary slightly depending on which 
cell-type replicates are used to model parameters of the simulations (see Appendix II 
Methods). (D-G) Zoomed-in contact density maps for specific (D) NPC only 
interactions (green class), (E) iPS only interactions (orange class), (F) ES-NPC 
interactions (yellow class), and (G) NPC-iPS interactions (blue class). Classified 
interaction pixels are outlined in green for each interaction class. (H) 5C primer-primer 
counts data are binned with decreasing bin sizes and displayed as contact density 
heatmaps. From left to right, heatmaps are shown for bin sizes of 300 kb, 100 kb, 30 kb 
and finally the 4 kb with a 20 kb smoothing window used in this study. (I) Spearman’s 
rank correlation coefficient was calculated using the distance-corrected interaction 
frequency data of replicates displayed in (H) at each bin size.  
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Figure 4.6. Genome architecture can be classified into several distinct dynamic 
groups during cell fate transitions. (A-C) Scatterplot comparison of distance-corrected 
interaction scores between (A) ES cells and NPCs, (B) ES and iPS cells and (C) NPCs 
and iPS cells. Thresholds are displayed as blue lines. For pairwise plots, cell type-
specific, invariant and background interactions are represented by blue, grey and brown 
colored shading, respectively. (D) 3D scatterplot of distance-corrected interaction scores 
for cellular states in which both replicates cross the thresholds displayed in (A-C). 
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Interaction classes are indicated by color (red, ES only; green, NPC only; orange, iPS 
only; gold, ES-NPC; purple, ES-iPS; blue, NPC-iPS; black, Background). Empirical 
false discovery rates computed from simulated data in (E-G) are reported for each 
classification. (E-G) Scatterplots of distance-corrected interaction scores from simulated 
replicates. Empirical false discovery rates were computed based on the number of 
interactions that cross pre-established thresholds in the simulated data versus the real 
data. (H) 3D scatterplot of distance-corrected interaction scores for simulated libraries 
that cross the thresholds displayed in (A-C, E-G). (I) Number of interactions called 
significant in each cell-type specific interaction class. (J) Schematic illustrating the 3D 
interaction behavior for each interaction class. (K-L) Zoomed-in heatmaps of distance-
corrected interaction scores for specific (K) ES-iPS (purple class) and (L) ES only (red 
class) interactions. Classified interaction pixels are outlined in green. (M) Number of 
interactions called significant for each 3-D classification after clustering directly 
adjacent 4 kb bins. (N) Depiction of all interactions called as significant in the Sox2 
region. Each interaction is outlined by the corresponding classification color. 
 
 

3-D interaction classes called in this study: (i) the interactions represent both specific 

looping contacts and subTAD boundaries that are dynamic across three cellular states and 

(ii) rather than a traditional peak calling approach in just one cell type, we are reporting 

seven classes of long-range interactions called across three cellular states with a focus on 

the regions of the genome that are most likely to undergo dynamic restructuring during the 

reprogramming process. Overall, these results indicate that chromatin architecture is highly 

dynamic during cell fate transitions, with unique folding classes emerging during the 

reprogramming process. 

 

4.2.4 Pluripotency genes form interactions that can successfully reprogram 

We next set out to explore the biological relevance of our dynamic interaction 

classes. We utilized a series of integrative computational approaches to elucidate the 

underlying relationships among: (i) fine-scale chromatin folding, (ii) gene expression, (iii) 
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histone modifications characteristic of cell type-specific regulatory elements and (iv) 

binding profiles of the architectural protein CTCF.  

We first investigated the interactions that were present in ES cells, lost in NPCs and 

reconnected during reprogramming (ES-iPS; purple class) (Fig. 4.7A). We noticed that the 

Sox2 gene formed a strong 3D interaction with a pluripotent enhancer element ~120 kb 

downstream marked by a large domain of H3K4me1/H3K27ac in ES cells (Fig. 4.7B). 

Upon differentiation, the Sox2-pluripotent enhancer interaction disassembled in parallel 

with loss of H3K27ac signal and then subsequently reassembled in iPS cells (Fig. 4.7B,C). 

We also identified ES-iPS (purple class) interactions between the Oct4/Pou5f1 gene and a 

putative enhancer element ~20 kb upstream marked by ES-specific H3K4me1/H3K27ac 

(Fig. 4.7D). As expected given the pluripotent properties of our iPS clone, the Oct4-

enhancer interaction breaks apart in NPCs and reconnects again in iPS cells (Fig. 4.7D,E). 

We next quantitatively assessed the enrichment of a wide range of genomic elements in the 

ES-iPS class of successfully reprogrammed 3D interactions. Consistent with previous 

reports 190, 202-205 and our qualitative observations, pluripotency genes and putative ES-

specific enhancers were significantly enriched at the base of ES-iPS interactions (Fig. 

4.7F). Together, these results indicate that pluripotency genes can form long-range 

connections with ES-specific enhancer elements and that these interactions can reprogram 

in iPS cells. 

To explore the functional significance of fully reprogrammed interactions, we next 

conducted genome-wide RNA-seq analysis in ES, NPCs and iPS cells. We examined Oct4 

and Sox2 gene expression after normalization among libraries to account for any potential  
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Figure 4.7. Pluripotency gene-enhancer interactions can be re-established in iPS 
cells. (A) Schematic illustrating the ES-iPS (purple) interaction class. (B,D) Relative 
contact frequency heatmaps (top) and zoomed-in distance-corrected interaction score 
heatmaps (bottom) highlighting key ES-iPS interactions (purple class) between (B) Sox2 
and (D) Oct4 genes and their target enhancers. Heatmaps are overlaid on ChIPseq tracks 
of H3K27ac and H3K4me1 in ES cells and NPCs. (C+E) Distance-corrected interaction 
score changes at (C) the Sox2-enhancer interaction and (E) Oct4-enhancer interaction 
among ES, NPC and iPS cells. Error bars represent the standard deviation across two 5C 
replicates. (F) Fold enrichment of cell type-specific regulatory elements in ES-iPS 
(purple class) interactions compared to the enrichment expected by chance across the 
genome. Color bar represents fold change enrichment over background (blue, depletion; 
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red, enrichment). P-values are computed with Fisher’s Exact test and listed in each bin. 
(G-H) Normalized gene expression is plotted for (G) Sox2 and (H) Oct4 genes. Error 
bars represent standard deviation across two RNAseq replicates.  
 
 

batch effects and differences in sequencing depth (Fig. 4.8A-D). Unexpectedly, despite 

reconnection with target pluripotent enhancers, Sox2 expression was markedly lower than 

target ES cell expression levels (Fig. 4.7G), whereas Oct4 expression was more than 2-

fold higher than target ES cell expression levels (Fig. 4.7H). Our observations highlight 

the importance of further understanding the relationship between genome folding and 

expression, and led us to question if more global architectural connections around these 

pluripotent enhancer-promoter interactions could be linked to inaccurately reprogrammed 

gene expression levels in iPS cells. 

 
Figure 4.8. RNA-seq library normalization and quality control. (A,C) Frequency 
histograms of read counts across all genes for each RNA-seq library before (A) and after 
(C) normalization. (B,D) Cumulative distributions of read counts across all genes for 
each RNA-seq library before (B) and after (D) normalization. (E) Boxplots of the logged 
normalized counts of genes parsed as ES-specific or NPC-specific for each replicate. 
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4.2.5 Some pluripotency genes reconfigure into new NPC interactions that remain 

persistent in iPS 

We next sought to understand larger-scale chromatin folding patterns around Sox2 

(Fig. 4.9A). We hypothesized that chromatin architecture dynamics surrounding the short-

range enhancer-promoter interaction might impact the incompletely reprogrammed Sox2 

expression in our iPS clone. Unexpectedly, we observed that Sox2 is also engaged in NPC-

iPS (blue class) interactions classified by (i) absence in ES cells, (ii) acquisition in NPCs 

and (iii) residual tethering in iPS cells (Fig. 4.9A-B). In NPCs, the Sox2-pluripotent 

enhancer interaction breaks apart and the gene forms long-range contacts with two distal 

NPC-specific enhancers marked by NPC-specific H3K27ac/H3K4me1. Intriguingly, 

although the Sox2-pluripotent enhancer interaction is reassembled (purple box), the gene 

also remains partially tethered to the NPC-specific enhancer in iPS cells (blue box) (Fig. 

4.9A). We observed a similar phenomenon at the Klf4 locus, where the Klf4 gene is highly 

expressed in ES cells and interacts with a putative ES-specific enhancer element marked 

by ES-specific H3K4me1/H3K27ac ~75 kb upstream of the gene (Fig. 4.10A-D). In NPCs, 

Klf4 disconnects from its pluripotent enhancer and engages with a downstream NPC-

specific enhancer (Fig. 4.10E-F). In iPS cells, Klf4 retains its interaction with the NPC-

specific enhancer (blue box) while also partially re-tethering to its target pluripotent 

enhancer (purple box) (Fig. 4.10F).  

We hypothesized that the dual tethering of Sox2/Klf4 genes to their target ES-

specific pluripotent enhancers and their decommissioned NPC-specific enhancers might 

lead to inaccurate reprogramming of proper expression levels in our iPS clone. As a first 

step toward testing this hypothesis, we cultured our iPS clone under 2i/LIF conditions to  
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Figure 4.9. Pluripotency genes can exhibit ‘persistent-NPC-like’ folding patterns in 
iPS cells. (A) Relative contact frequency heatmaps (top) and zoomed-in distance-
corrected interaction score heatmaps (bottom) highlighting an NPC-iPS interaction (blue 
class) around the Sox2 gene. Heatmaps are overlaid on ChIPseq tracks of H3K27ac and 
CTCF in ES cells and NPCs. (B) Schematic illustrating the NPC-iPS (blue) interaction 
class. (C) Distance-corrected interaction score changes at an NPC-iPS interaction around 
the Sox2 gene among ES, NPC, iPS, ES+2i and iPS+2i conditions. Error bars represent 
standard deviation across two 5C replicates. (D) Normalized expression for the Sox2 
gene. Error bars represent standard deviation across two RNAseq replicates. (E, F) Fold 
enrichment of cell type-specific regulatory elements in NPC-iPS (blue class) interactions 
compared to the enrichment expected by chance across the genome. P-values are 
computed with Fisher’s Exact test and listed in each bin. (E) Enrichment for any given 
genomic annotation at the base of NPC-iPS interactions. (F) Enrichment for any given 
pairwise combination of genomic annotations in the two anchoring bins at the base of 
NPC-iPS interactions. (G) Relative ChIP-qPCR enrichment of CTCF binding at the 
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NPC-iPS interaction (left, denoted by blue star in (A)) and ES only interaction (right, 
denoted by red star in (A)). 
 

 
Figure 4.10. The Klf4 gene engages in both ES-iPS (purple class) and NPC-iPS (blue 
class) 3-D interactions. (A) Schematic illustrating the ES-iPS (purple) and NPC-iPS 
(blue) interaction classes. (B) Contact frequency heatmaps (top) and zoomed-in 
heatmaps of distance-corrected interaction scores (bottom) highlighting a key interaction 
between Klf4 and an upstream enhancer. Interaction score heatmaps are overlaid on 
ChIP-seq tracks of H3K27ac and H3K4me1 in ES cells and NPCs. (C) Distance-
corrected interaction score changes among ES, NPC and iPS cells at the Klf4-enhancer 
ES-iPS (purple class) interaction. Error bars represent standard deviation across two 
replicates. (D) Normalized gene expression for the Klf4 gene is plotted for ES, NPC and 
iPS cells, as well as ES and IPS cells cultured in 2i media. Error bars represent standard 
deviation across two replicates. (E) Distance-corrected interaction score changes at an 
NPC-iPS interaction around the Klf4 gene among ES, NPC and iPS cells. Error bars 
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represent standard deviation across two replicates. (F) Contact frequency heatmaps (top) 
and zoomed-in heatmaps of distance-corrected interaction scores (bottom) highlighting 
the NPC-iPS interaction between the Klf4 gene and a downstream NPC-specific 
enhancer. Plotted similar to (B). 
 
 

promote a naïve, ground state of pluripotency and ensure morphological/phenotypic 

uniformity across the population 170, 207. Strikingly, we noticed that 2i/LIF culture of iPS 

cells resulted in (i) loss of the Sox2- or Klf4-NPC enhancer (blue class) interactions, (ii) a 

further amplification in strength of the Sox2- or Klf4-pluripotent enhancer (purple class) 

interactions and (iii) a fine-tuning of Sox2 or Klf4 expression to ES levels (Fig. 4.9A, 4.9C-

D, 4.10E+F). These results indicate that 2i/LIF conditions are capable of untethering 

persistent somatic cell chromatin architecture in a population of iPS cells and restoring 

inaccurately reprogrammed gene expression to levels equivalent to those found in V6.5 ES 

cells. Future causative studies will be necessary to further dissect the link among 

architectural persistence, naïve vs. primed pluripotency and precise gene expression levels 

during reprogramming.  

We then set out to further understand the mechanistic basis of NPC-iPS (blue class) 

interactions. Quantitative enrichment analysis revealed three key genomic annotations 

enriched at the base of NPC-iPS contacts: (i) ES-specific genes, (ii) NPC-specific CTCF 

and (iii) constitutive CTCF (Fig. 4.9E). We then computed ‘sided’ enrichments by 

accounting for the presence/absence of genomic annotations in both anchoring loci at the 

base of the NPC-iPS interactions (see schematic, Fig. 4.9F). Consistent with our qualitative 

observations, ES-specific genes most significantly contact NPC-specific enhancers when 

located at the base of NPC-iPS interactions (Fig. 4.9F). We note that Sox2 and Klf4 are 

classified as ES-specific genes in our study due to their markedly increased expression in 
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ES cells vs. NPCs. However, both genes are still expressed at levels at least 8-fold higher 

than background in NPCs. Together, these results led us to hypothesize that genes with 

developmental roles in both ES cells and NPCs, but regulated by different enhancers in the 

two cellular states, might be particularly susceptible to inappropriate tethering to off-

lineage enhancers in iPS cells.  

Our quantitative enrichment analyses also indicated that ES-specific genes formed 

significant 3-D connections with NPC-specific and constitutively bound CTCF sites (Figs. 

4.9E-F). Consistent with this quantitative result, we noticed a constitutively bound CTCF 

site at the base of the Sox2 NPC-specific enhancer (Fig. 4.9A) and an NPC-specific CTCF 

site at the base of the Klf4 NPC-specific enhancer (Fig. 4.10F), suggesting that CTCF 

might work together with enhancers to facilitate 3-D connections to the correct target 

gene(s). To understand how CTCF binding might be altered during reprogramming, we 

performed CTCF ChIP-qPCR across all five of our cellular states. We queried CTCF 

occupancy levels in the NPC-specific and ES-specific enhancers (Fig. 4.9A, blue and red 

stars, respectively) at the Sox2 locus. We found that the NPC-specific enhancer remains 

constitutively bound by CTCF in ES, NPC, iPS, ES+2i and iPS+2i conditions (Fig. 4.9G, 

left). By contrast, the ES-specific enhancer exhibited high CTCF in ES cells, loss of 

binding in NPCs, sustained low CTCF occupancy in iPS cells and subsequent restoration 

of occupancy in 2i/LIF (Fig. 4.9G, right).  

Intriguingly, CTCF binding patterns correlate with the changes in chromatin 

architecture around Sox2. In ES cells, the constitutive CTCF site interacts with the ES-

specific CTCF site, resulting in spatial co-localization of the ES- and NPC-specific 

enhancers (Fig. 4.9A, red box). Loss of CTCF binding at the ES-specific enhancer 
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correlates with disconnection of the enhancer-enhancer interaction in NPCs. In parallel, the 

constitutive CTCF site at the NPC-specific enhancer forms a strong NPC-iPS (blue class) 

interaction with the Sox2 gene (Fig. 4.9A, blue box). We posit that the Sox2-NPC-enhancer 

interaction remains tethered in iPS cells because CTCF does not fully rebind to the ES-

specific enhancer (Fig. 4.9G, right). In support of this idea, 2i/LIF leads to (i) reacquisition 

of CTCF binding at the ES-specific enhancer, (ii) reconnection of the interaction between 

both ES-specific and NPC-specific enhancers and (iii) abrogation of the Sox2-NPC-

specific enhancer interaction. These observations are consistent with a working model in 

which ‘persistent-NPC’ interactions can remain in iPS cells when some developmentally 

regulated genes are tethered to NPC-specific enhancers, possibly at constitutive or NPC-

specific CTCF sites. 

We highlight that somatic cell-specific elements were not specifically enriched in 

NPC-iPS interactions (Fig. 4.11A-C). For example, NPC-specific genes and enhancers 

were primarily enriched in NPC only (green class) interactions, supporting our finding that 

it is ES-specific genes, particularly those that remain somewhat active in NPCs, that are 

redirected into NPC-iPS contacts. An example illustrating this idea can be found at the 

Olig1/Olig2 genes that are expressed in an NPC-specific manner and equivalently form 

NPC only (green class) interactions with a downstream NPC-specific enhancer (Fig. 

4.11D-E). Expression of Olig1/2 is lost in parallel with loss of the green class 3-D 

interaction. Together, these results support the intriguing possibility that ES-specific genes 

that remain partially active in NPCs form new interactions with somatic cell-specific  
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Figure 4.11. NPC-specific genes and enhancers are enriched in NPC only (green 
class) interactions. (A) Schematic illustrating the NPC only (green) interaction class. 
(B) Bar plot displaying the fraction of each looping class containing NPC-specific 
enhancers compared to the expected background fraction. Fisher’s Exact test: *, P= 
3.55182e-58; **, P= 0.00063607.  (C) Bar plot displaying the fraction of each looping 
class containing NPC-specific genes compared to the expected background fraction. 
Fisher’s Exact test: *, P= 1.20143e-86. (D) Zoomed-in heatmaps of distance-corrected 
interaction scores highlighting key interactions between the Olig1 and Olig2 genes and 
nearby NPC-active enhancers. Distance-corrected interaction score heatmaps are 
overlaid on ChIP-seq tracks of H3K27ac and CTCF in ES cells and NPCs. (E-G) 
Normalized gene expression for the Olig1 and Olig2 (E), Nestin (F) and Bcan (G) genes 
are plotted for ES, NPC and iPS cells. Error bars represent standard deviation across two 
replicates. 
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enhancers during differentiation and that these contacts can remain tethered as a form of 

architectural persistence in iPS cells. Noteworthy, because 5C is performed on a population 

of millions of cells, we cannot distinguish between the possibilities that (i) pluripotency 

genes simultaneously form both ES-iPS and NPC-iPS contacts in individual cells or (ii) 

pluripotency genes form two different sets of interactions in distinct ES-like 

subpopulations. 

 

4.2.6 Pluripotent interactions that do not reprogram display dynamic CTCF occupancy 

 Finally, we explored the interactions that are present in ES cells and lost in NPCs, 

but do not reconnect in iPS cells (red group, Figs. 4.12A-B, 4.13A-B). A notable 

illustration of these ‘poorly reprogrammed’ interactions is found at the Zfp462 gene 

(highlighted in green, Fig. 4.12A), which interacts with a downstream putative ES-specific 

enhancer element in ES cells. Zfp462 expression is reduced in NPCs in parallel with loss 

of H3K27ac at the putative downstream enhancer and loss of the interaction. By contrast 

to the previously discussed ES-iPS (purple) group, this gene-enhancer interaction is not 

reassembled in iPS. Similarly, the genes Mis18a and Urb1 form interactions in ES cells 

that are not reprogrammed (highlighted in yellow and green, respectively; Fig. 4.13A). 

Together, these genomic loci reveal a class of interactions that are refractory to 

reprogramming in iPS cells. 

To investigate the mechanistic basis for poorly reprogrammed (red class) 

interactions, we again looked for possible dynamic CTCF binding. We noticed that 

genomic loci where CTCF is bound in ES cells, but severely depleted in NPCs, were 

preferentially located at the base of poorly reprogrammed interactions (green boxes; Figs.  
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Figure 4.12. Interactions that do not reprogram display poorly reprogrammed 
CTCF occupancy. (A) Relative contact frequency heatmaps (top) and zoomed-in 
distance-corrected interaction score heatmaps (bottom) highlighting an ES only (red 
class) interaction at ES-specific CTCF binding sites at the Zfp462 gene (indicated in 
green). Heatmaps are overlaid on ChIPseq tracks of H3K27ac and CTCF in ES cells and 
NPCs. (B) Schematic illustrating the ES only (red class) interactions. (C) Fraction of ES 
only (red class) interactions enriched with distinct cell type-specific regulatory elements 
compared to the expected enrichment in background. P-values are computed with 
Fisher’s Exact test and listed in each bin. (D) Bar plot displaying the fraction of each 
interaction class containing ES-specific CTCF binding sites compared to the expected 
background fraction. Fisher’s Exact test: *, P= 2.06016e-21; **, P= 0.000541696. (E) 
Distance-corrected interaction score changes at an ES only interaction around the Zfp462 
gene among ES, NPC, iPS, ES+2i and iPS+2i conditions. Error bars represent standard 
deviation across two 5C replicates. (F) Zfp462 gene expression among ES, NPC, iPS, 
ES+2i and iPS+2i conditions. Error bars represent standard deviation across two 
RNAseq replicates. (G) Aggregate distance-corrected interaction score changes among 
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ES, NPC, iPS, ES+2i and iPS+2i conditions for genes anchoring red class. (H) Relative 
ChIP-qPCR enrichment of CTCF binding at the ES only interaction (denoted by blue 
star in (A)). 
 

 
Figure 4.13. The Mis18 and Urb1 genes engage in ES only (red class) 3-D 
interactions linked to inaccurately reprogrammed, ES-specific CTCF binding. (A) 
Contact frequency heatmaps (top) and zoomed-in heatmaps of distance-corrected 
interaction scores (bottom) highlighting ES only interactions surrounding the Mis18a 
and Urb1 genes. Interaction score heatmaps are overlaid on ChIP-seq tracks of CTCF 
and Smc1 in ES cells and NPCs. (B) Schematic illustrating the ES only (red) class of 
looping interactions. (C-D) Normalized gene expression for the Mis18a (C) and Urb1 
(D) genes are plotted for ES, NPC, iPS cells and ES/iPS cells cultured in 2i media. Error 
bars represent standard deviation across two replicates. (E-F) Distance-corrected 
interaction score changes at Mis18a (E) and Urb1 (F) ES-only interactions highlighted 
on heatmaps with small red boxes in (A). Error bars represent standard deviation across 
two replicates. (G) Relative ChIP-qPCR enrichment of CTCF binding at the ES only 
interaction displayed in (A). CTCF site queried is denoted by red star in (A). Error bars 
represent SD across three technical replicates. 
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4.12A, 4.13A). Consistent with this observation, ES-specific CTCF sites were significantly 

enriched in ES only (red class) interactions (Fig. 4.12C+D). ChIP-qPCR analysis of CTCF 

occupancy revealed consistent depletion of CTCF in our iPS clone compared to ES cells 

(Fig. 4.9G, 4.12H, 4.13G). Importantly, culture of our iPS clone in 2i/LIF media resulted 

in (i) reacquisition of the red group interactions, (ii) re-establishment of CTCF occupancy 

and (iii) restoration of gene expression levels in iPS (Figs. 4.12E-H, 4.13C-G). 

Corroborating locus-specific observations, a global analysis of red class interactions 

demonstrated a marked increase in interaction score upon addition of 2i/LIF media to iPS 

cells (Fig. 4.12G). On the basis of these results, we posit that the loss of CTCF binding at 

critical developmentally regulated loci can be inefficiently restored during a cell-fate 

transition like somatic cell reprogramming. 

 

4.2.7 Somatic elements are disconnected and pluripotent genes hyperconnected in our 

iPS clone  

We hypothesized that distinct types of regulatory elements exhibit differential 

connectivity patterns as ES cells transition to NPCs and back to iPS cells. To address this 

hypothesis, we computed a ‘connectivity’ metric for each class of genomic element in each 

of the three cellular states. ES-specific enhancers lose their connectivity in NPCs and then 

reconnect in iPS cells (Fig. 4.14A). Intriguingly, ES-specific genes become increasingly 

more connected upon differentiation and subsequent reprogramming (Fig. 4.14B). By 

contrast, NPC-specific genes/enhancers increase connectivity in NPCs, but then resume  
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Figure 4.14. Pluripotency genes can be hyperconnected in iPS cells. Connectivity of 
distinct regulatory elements in ES cells, ES-derived NPCs and NPC-derived iPS cells. 
(A) ES-specific enhancers; (B) ES-specific genes; (C) NPC-specific enhancers; (D) 
NPC-specific genes; (E) Poised enhancers; (F) Invariant CTCF; (G) ES-specific CTCF; 
(H) NPC-specific CTCF. (I) Schematic illustrating a model of the ‘hyper-connectivity’ 
of certain pluripotency genes in our NPC-derived iPS clone. Key ES-specific genes 
(denoted by colored arrows) display the ability to reprogram their connections with ES-
specific enhancers (denoted by green/blue ‘transcription factor’ binding sites) and retain 
remnants of their somatic connections. This intermediate architectural state correlates 
with inaccurate reprogramming of gene expression levels (represented by colored +/-) 
and can be fully restored upon culture in 2i/LIF media. 
 
 
 

ground state ES-like connectivity in iPS (Fig. 4.14C-D). Poised enhancers and invariant 

CTCF sites display minor differences in connectivity across the three cellular states (Figs. 

4.14E+F), whereas ES-specific CTCF sites lose their interactions upon differentiation and 

only partially gain back connectivity in iPS (Fig. 4.14G). NPC-specific CTCF sites 
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increase in connectivity in NPCs and then partially resume their disconnected state in iPS 

cells (Fig. 4.14H).  

Overall, our results support a model in which somatic cell regulatory elements 

reconfigure to a ground connectivity state during reprogramming, whereas pluripotency 

genes (particularly those that retain a low level of activity in NPCs) can be 

‘hyperconnected’ in our iPS clone due to persistent cell-of-origin interactions (Fig. 4.14). 

We hypothesize that ‘persistent-NPC’ and ‘poorly reprogrammed’ interactions contribute 

to inaccurate reprogramming of gene expression levels. Consistent with this idea, 2i/LIF 

can erase ‘persistent-NPC’ interactions, restore ‘poorly reprogrammed’ interactions and re-

establish precise ES-like expression levels in our iPS clone.  

 

4.3 Discussion 

Understanding the molecular mechanism(s) governing somatic cell reprogramming 

is of paramount importance to our knowledge of cell fate commitment and the use of iPS 

cells for regenerative medicine applications. Mechanistic studies have primarily focused 

on profiling gene expression and classic epigenetic modifications at intermediate stages in 

the reprogramming process 173, 193, 194, 197. However, the molecular roadblocks that impede 

the efficiency and timing of epigenome resetting in iPS cells are just beginning to emerge. 

Here we examine a unique aspect of reprogramming: the higher-order folding of chromatin 

in the 3D nucleus. We demonstrate that iPS genome architecture at the sub-Mb scale within 

TADs can be imperfectly rewired during transcription factor-mediated reprogramming.  
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Recent studies focusing on a single locus (e.g. Nanog, Oct4) reported that 

pluripotency genes can re-establish long-range connections with their target enhancers in 

iPS cells 190, 202-205. Motivated by the need to understand how chromatin unfolds/refolds 

more generally in iPS, we created high-resolution maps of chromatin architecture in Mb-

sized regions around developmentally regulated genes. Consistent with previous reports, 

we observe that many pluripotency genes interact with ES-specific enhancers in ES cells; 

these interactions break apart in NPCs and then reassemble in iPS cells. Additionally, we 

find that somatic cell interactions between NPC-specific genes and NPC-specific 

enhancers generally disconnect in iPS cells. Thus, our data confirm and extend several 

known locus-specific principles of genome folding during reprogramming. 

We also uncover new classes of chromatin interactions that do not behave in the 

expected manner. We identified a small subset of NPC-iPS (blue class) interactions 

representing persistent chromatin folding patterns from the somatic cell of origin in iPS 

cells. Unexpectedly, we find that some key pluripotency genes can form new 3-D 

connections in NPCs that remain tethered in our iPS clone. For example, Klf4 and Sox2 are 

dually tethered to their target ES-specific enhancers and their decommissioned NPC-

specific enhancers in iPS cells. We posit that this rare, but intriguing form of ‘architectural 

persistence’ might be causally linked to inaccurate reprogramming of target gene 

expression levels in certain iPS clones. In support of this working model, we find that 

2i/LIF conditions are capable of untethering persistent somatic cell chromatin architecture 

and restoring the inaccurately reprogrammed expression to levels equivalent to those found 

in a genetically comparable ES cell line. Noteworthy, NPC-specific genes/enhancers form 

contacts in NPCs that subsequently disassemble in iPS, suggesting that somatic genes are 
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not driving the architectural persistence in iPS cells. These results agree with previous 

studies suggesting that somatic cell gene expression is downregulated during the initiation 

phase of reprogramming and precedes the re-activation of the pluripotency network 197. We 

favor a model in which reconfiguration of higher-order chromatin topology could be a 

potential rate-limiting step in the reprogramming process and that architectural persistence 

or incomplete architectural reprogramming (discussed below) can block the formation of 

fully reprogrammed iPS cells 195, 208.  

CTCF is a key player in the organization of the 3D genome and anchors the base 

of a large number of long-range interactions in ES cells 7, 9, 10, 39, 209Here we provide a new 

link between CTCF and reprogramming. We identify a new class of chromatin interactions 

that are high in ES cells, break apart in NPCs and are not fully reconfigured in iPS cells. 

Importantly, we find that these ‘poorly reprogrammed’ interactions often contain ES-

specific CTCF binding sites that lose occupancy in NPCs and do not re-acquire full binding 

in our iPS clone. CTCF has largely stable occupancy patterns during development, with 

60-90% of sites remaining bound to the genome between cell types 73. Thus, we speculate 

a model in which CTCF binding is difficult to lose during differentiation, but once 

occupancy is abolished it is inefficiently re-established during reprogramming. 

Importantly, DNA methylation is refractory to CTCF binding 210, suggesting a possible 

link between poorly reprogrammed chromatin contacts and previously reported sources of 

cell of origin epigenetic persistence 198, 199. Indeed, because ES cells cultured in 2i/LIF 

display global hypomethylation 175, 176, we speculate that the interplay between CTCF and 

dynamic DNA methylation might serve as a mechanism underlying our observation that 

2i/LIF media can fully restore CTCF occupancy and ‘poorly reprogrammed’ interactions. 
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Epigenetic and transcriptional signatures are generally reset in fully reprogrammed 

iPS cells cultured under optimal conditions 201, 211, 212. However, variations in epigenetic 

profiles among iPS clones have been attributed to reprogramming method, passage 

number, genetic background or lab-to-lab procedural discrepancies 199, 200. Therefore, we 

sought to confirm that our observations were truly linked to inefficiencies in the 

reprogramming of our iPS clone, and not experimental artifacts due to (i) residual somatic 

cells in our iPS population or (ii) lab-specific culture conditions. Importantly, Hochedlinger 

and colleagues have extensively characterized the iPS clone used in this manuscript for its 

pluripotent properties 206. Additionally, our iPS clone was cultured to > 15 passages in 

serum+LIF-containing growth conditions not amenable to NPC proliferation/survival. 

Finally, known NPC markers are not upregulated in our iPS population vs. ES cells (Fig. 

S6E-G). Thus, we see no evidence of contaminating NPCs in our iPS cells. Although 

somatic cells are absent, we cannot rule out the possibility that there could be a gradient of 

pluripotent properties (e.g. a continuum between naïve and primed pluripotency) across 

single cells within our fully reprogrammed iPS clonal population. Because we are 

conducting population-based assays, we would detect all interactions that exist across the 

different pluripotent states. Consistent with this possibility, we see that conversion of the 

population to a uniform, naïve pluripotent state with 2i/LIF media abrogates “architectural 

persistence” interactions and re-instates “poorly reprogrammed” interactions. 

Additionally, although we subjected our iPS cells with or without 2i/LIF to the same 

number of passages (p > 15), we cannot rule out the possibility that further long-term 

passaging might also resolve any mis-wired chromatin interactions. Noteworthy, these 

results raise the interesting possibility that an iPS clone capable of creating transgenic mice 
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might still exhibit some level of architectural heterogeneity that can be fully resolved with 

2i/LIF media. Exciting lines of future inquiry will query genome folding in higher 

passages, alternative reprogramming conditions, tetraploid-complementation verified iPS 

cells and a range of iPS clones derived from multiple somatic cell lineages. 

While Beagan et al. was under review, de Laat, Graf and colleagues published a 

genome-wide analysis of chromatin architecture in iPS cells derived from four independent 

somatic cell lineages 213. The authors take a top-down approach in which they generate 

genome-wide, albeit low resolution, Hi-C maps suited to query higher-order levels of 

genome organization (i.e. A/B compartments, TADs, nuclear positioning of TADs). 

Importantly, they demonstrate that A/B compartments are largely reset during 

reprogramming. Moreover, consistent with the leading idea that TADs are largely invariant 

among cell types 7, TAD boundaries remained for the most part consistent among iPS 

clones and ES cells. At the level of sub-Mb scale genome folding, however, the design of 

the two studies is such that different findings arise. Here we take a bottom-up approach in 

which we create high-resolution, high-complexity maps focused on fine-scale chromatin 

folding dynamics within TADs around developmentally regulated genes. Given the 

sensitivity and statistical power afforded by the 5C assay, it is not surprising that we detect 

a larger number of dynamic looping interactions and subTAD boundaries than reported in 

Krijger et al. during the transition among ES, iPS and NPC cellular states. Noteworthy, 

when we increase our bin size from 4 kb up to 300 kb (Fig. S3H), we can recapitulate the 

author’s high level of correlation between the ES and iPS cells (Fig. S3I). Krijger et al. and 

Beagan et al. offer complementary viewpoints into genome architecture dynamics across a 

wide range of length scales and resolutions during reprogramming. Together, the findings 
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from these studies are consistent with our working hypothesis that architectural changes 

causally linked to developmentally relevant alterations in gene expression occur within 

TADs at the sub-Mb scale.  

Overall, we present high-coverage, fine scale maps of chromatin folding within 

TADs in iPS cells and use our maps to uncover several new organizing principles for 

genome folding during reprogramming. We find that different cell type-specific regulatory 

elements exhibit contrasting 3-D connectivity patterns as cells switch fates in forward and 

reverse directions. A deeper understanding of the role for chromatin folding at each step in 

the reprogramming process is of critical importance toward the use of iPS cells for disease 

modeling and regenerative medicine purposes. Future work combining high- and low-

resolution mapping approaches will provide a comprehensive view of genome folding 

across length scales and cellular states to create a catalogue of “hotspots” of incomplete 

architectural reprogramming and address whether specific somatic cell types are more or 

less resistant to topological changes.  
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CHAPTER 5: 3-D GENOME FOLDING COMPLEXITY AND 

KINETICS DISTINGUISH EXPRESSION TIMING OF KEY 

NEURONAL ACTIVITY RESPONSE GENES 

 
5.1 Introduction 

Neurons have the remarkable ability to receive, transmit, and store information via 

a dynamic synaptic network. Experience-dependent neuronal activity regulates synaptic 

features such as dendritic outgrowth, maturation, elimination, and synaptic plasticity27. 

Neural activity governs synaptic structure and function via the upregulation of hundreds of 

activity-dependent genes214. Rapid-response IEGs (rIEGs), including c-fos28-32 and 

Arc/Arg3.133-35, are expressed on the order of minutes upon neuronal activation and are 

essential for long-term learning and memory. Secondary response genes (SRGs) are 

induced on the order of hours and require de novo protein synthesis215, 216. More recently, 

a class of activity-induced delayed-response IEGs (dIEGs) with transcription kinetics 

intermediate between rIEGs and SRGs was reported36. Cis-acting enhancers – e.g. Synaptic 

Activity Responsive Elements (SAREs) – have been identified using epigenetic signatures 

characteristic of cis-regulatory activity and verified using reporter transgenes217-221. 

However, the precise genomic elements determining the differential temporal expression 

of each specific rIEG, dIEG, and SRG remain elusive, in part because SAREs are 

distributed across the genome in introns and non-coding regions and their specific target 

genes are generally unknown.  
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Chromosome-Conformation-Capture (3C) techniques have recently been used to 

reveal that the mammalian genome is folded into a hierarchy of structurally and 

functionally distinct architectural signatures, including chromosome territories222, 223, A/B 

compartments10, 45, 224, topologically associating domains (TADs)7, 8, nested subTADs9, 10, 

and long-range looping interactions10. The highest resolution maps to date have enabled 

the detection of tens of thousands of loops genome-wide across multiple mammalian cell 

types10, 11. Little is known about 3-D genome dynamics during synaptic plasticity, due in 

part to the paucity of high-resolution architecture maps across a time course of neural 

activity. In a cerebellum-dependent motor learning task, in vivo cohesin deletion in granule 

neurons disrupted the tactile startle response, suggesting that cohesin-dependent loops 

might be required for learning225. The authors also observed, using H3K4me3-specific 

PLAC-seq, that 40 minutes of optical stimulation of granule neurons involved in the tactile 

startle response resulted in a small number of enhancer-promoter interactions with altered 

contacts225. Given the limited understanding of these processes,  there is great need for 

studies that investigate how activity-dependent enhancers are temporally integrated within 

the nucleus via long-range loops to regulate gene expression during a wide range of 

neuronal activity paradigms. 

Here, we set out to elucidate the extent to which long-range chromatin loops are 

altered during short- and long-term changes in neural activity and to analyze the dynamic 

interplay between the 3-D genome and the linear epigenome during the activity-dependent 

transcriptional response. We create high-resolution genome folding maps in > 12 

Megabases (Mb) around key IEGs, SRGs, and synaptic genes using Chromosome-

Conformation-Capture-Carbon-Copy (5C-seq) and a double alternating primer design. The 
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5C-seq approach enabled us to achieve high complexity, fine-scale architecture maps to 

explore genome folding dynamics without bias toward a particular chromatin feature across 

seven acute or chronic time points of neural activity inhibition and activation. We 

demonstrate that activity-inducible enhancers engage in either pre-existing or de novo 

loops connected to genes that exhibit a 1.3- to 24-fold activity-dependent increase in 

expression, respectively. We observe that H3K27ac signal at distal looped enhancers, but 

not nearest enhancers, is a strong predictor of activity-dependent target gene expression. 

Using both 5C and genome-wide Hi-C data, we demonstrate that rapid-response IEGs 

(rIEGs) Arc and Fos connect to target enhancers via singular short-range loops that occur 

de novo upon activation, whereas delayed-response IEGs (dIEGs) and SRGs connect to 

multiple activity-inducible enhancers via a complex network of pre-existing and de novo 

loops. Due to our multiple, acute time points, we uncovered that Fos and Arc short-range 

loops form within 20 minutes post-stimulation, prior to maximum mRNA levels. By 

contrast, Bdnf long-range loops connect on a later time scale of 60-360 minutes, indicating 

that looping dynamics might be linked to transcription kinetics. We also identify a subclass 

of pre-existing loops anchored by enhancers decommissioned upon chronic, 24 hours of 

neural activation. Unexpectedly, we find that common SNVs linked to schizophrenia 

anchor pre-existing loops connecting activity-decommissioned enhancers to activity-

downregulated genes, whereas autism-associated SNVs connect activity-inducible 

enhancers to upregulated genes. Together, our data links 3D genome architectural 

complexity to transcriptional kinetics and uncovers distinct architectural motifs associated 

with neuropsychiatric disorders.  
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5.2 Results 

We first created high-resolution maps of higher-order chromatin architecture after 

24 hours of pharmacologically induced low or high activity in primary cultured mouse 

cortical neurons. We employed an established in vitro model system226 in which murine 

cortical neurons were cultured for 15 days in vitro and then treated for 24 hours with either 

10 µM bicuculline (Bic)227, which increases neuronal firing by blocking GABA (γ-amino 

butyric acid)-mediated inhibition, or 1 µM tetrodotoxin (TTX)228, a sodium channel 

blocker that inhibits neuronal firing (Fig. 5.1A, Fig. 5.2). Chronic pharmacological 

induction of activity results in multiple forms of synaptic plasticity, including homeostatic 

changes in AMPA-type glutamate neurotransmitter receptor levels at synapses229. Our 

model system allowed us to interrogate the transcriptional, epigenomic, and architectural 

features of the mammalian genome in non-dividing, terminally differentiated cortical 

neurons across inactive (TTX-mediated activity inhibition), moderately active (Untreat), 

and highly active (Bic-mediated increased activity) states.  

 We used 5C-seq43 and a double alternating primer design230 to create high-

resolution maps of genome folding in 12.2 Megabases (Mb) surrounding the rIEGs Arc 

and c-fos, dIEG/SRG Bdnf, synaptic scaffold genes Neurexin-1 (Nrxn1) and Neuroligin-3 

(Nlgn3), and the synaptic vesicle gene Synaptotagmin-1 (Syt1) for a total of N=157 unique 

transcripts (Fig. 5.1, Fig. 5.3). Our genome-wide RNA-seq data confirmed that Arc, c-fos, 

and Bdnf were upregulated ~10-100 fold in Bic vs. TTX conditions, whereas Nrxn1, Nlgn3, 

and Syt1 were unchanged (Fig. 5.1B). As expected, under the Untreat (basal activity) 

condition we observed an intermediate level of Arc, c-fos, and Bdnf expression between 

Bic (high activity) and TTX (inactive) conditions (Fig. 5.2B-C). To confirm data quality, 
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we compared the highest resolution Hi-C maps published to date in mouse embryonic stem 

(ES) cells, neural progenitor cells (NPCs), and in vitro differentiated cortical neurons104 

(Fig. 5.1C, Fig. 5.3A) to our 5C maps (Fig. 5.1D, Fig. 5.3B). Visual inspection confirmed 

that 5C maps achieved similar library complexity and minimal spatial noise as the gold-

standard Hi-C data. 5C maps from our mature primary cortical neurons and published Hi-

C maps from ES-derived cortical neurons were highly correlated and exhibited similar 

loops (Fig. 5.3). Consistent with previous reports16, we observed a marked restructuring of 

the 3-D genome during the transition from ES cells to NPCs, whereas the global 

architectural landscape is highly similar between NPCs and neurons (Fig. 5.1C-D, Fig. 

5.3). Loops and overall contact frequency surrounding synaptic genes Synaptotagmin-1 

and Neurexin-1 appeared especially specific to cortical neurons across both HiC and 5C 

datasets (Fig. 5.1C, 5.3, 5.4). We confirmed that our 5C data correlates more strongly with 

Hi-C from cortical neurons than NPC or ES cell Hi-C data (Fig. 5.5A). Moreover, we 

confirmed high reproducibility of loops across n=4 5C replicates taken across two 

independent batches of neuronal cultures (Fig. 5.5B-C, Fig. 5.6). Thus, we have created 

high complexity, ultra-high-resolution maps of genome folding across three neuronal 

activity states.   

We next set out to quantify the extent that loops are altered across different activity 

states. We normalized the intrinsic biases in 5C data, binned maps to 4 kb matrix resolution, 

and applied our previously published modeling approaches to identify loops with 

statistically significant interaction frequency above the local distance-dependence and 

TAD/subTAD background16, 156, 231, 232 (Fig. 5.7a, Appendix III Methods). We formulated 

a statistical method, 3DeFDR233, to stratify loops into invariant and cell type-specific  
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Figure 5.1. Identification of dynamic and invariant looping interactions across 
neuronal activity states. (A) Primary cultured cortical neuron preparation used to 
interrogate 3-D genome changes during low, basal or high neuronal activity states. (B) 
RNA-seq data in bicuculline (Bic) and tetrodotoxin (TTX) conditions with selected genes 
highlighted in colored dots. (C) Interaction frequency heatmaps of 1-3 Mb regions 
surrounding Bdnf and Synaptotagmin-1 genes (labeled in green) across embryonic stem 
(ES) cells, neural progenitor cells (NPCs), and cortical neurons (CNs) (data analyzed from 
Bonev et al, 2017). (D) Interaction frequency heatmaps of the regions presented in (c) 
across TTX-treated, untreated, and Bic-treated DIV16 cortical neurons. (E) Scatterplot of 
the interaction scores of thresholded loops in TTX and Bic conditions. (F) Activity 
inhibited (TTX-only), Activity induced (Bic-only), and Activity Invariant (constitutive) 
loops after thresholding (Appendix III Methods). (G) Interaction scores across the TTX, 
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Untreat, and Bic conditions for each looping class. (H) Interaction score heatmaps and 
thresholded loops demonstrating activity-induced (Bic-only) loops created by c-Fos (top) 
and the Synaptotagmin-1 TSS (bottom). 

 
Figure 5.2. Maintenance of neuronal phenotype across neural activity states. (A) 
Representative immunofluorescence images of DAPI (blue), MAP2 (green), PSD95 
(magenta) signal across conditions. (B-C) Fold change vs amplitude plots of RNA-seq data 
comparing the Bic vs Untreat conditions (B) and TTX vs Untreat conditions (C).  
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classes by thresholding on differences in modeled interaction strength across inactive and 

highly active neurons (Fig. 5.1E, Appendix III Methods). Thresholds were iteratively 

adjusted to a target empirical false discovery rate computed between real and simulated 5C 

maps, resulting in the sensitive detection of 215 activity-invariant, 29 activity-induced, and 

9 activity-decommissioned interactions within the 12.2 Mb of the genome queried (Fig.  

 
Figure 5.3.  Mapping genome folding across neural activity states. (A) Interaction 
frequency heatmaps of 1-3 Mb regions surrounding the Fos, Arc, Neurexin-1, and 
Neuroligin-3 genes (labeled in green) across embryonic stem (ES) cells, neural progenitor 
cells (NPCs), and cortical neurons (CNs) (data analyzed from Bonev+ 2017). (B) 
Interaction frequency heatmaps of the regions presented in (A) across tetrodotoxin-treated 
(TTX), untreated, and bicuculline-treated (Bic) DIV16 cortical neurons. 
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Figure 5.4.  Activity-induced loops are not present earlier in cortical neuron 
differentiation. (A) Zoom-in heatmaps of critical loops presented throughout the paper. 
From left to right the columns are Obs/Exp heatmaps of HiC (Bonev et al.) data from 1) 
embryonic stem (ES) cells, 2) neural progenitor cells (NPC), 3) cortical neurons (CN), 
followed by 5C interaction score heatmaps across the 4) TTX, 5) untreated, and 6) BIC 
treated conditions. Genes of interest in each zoom window, Figure panels where same 
loop is further analyzed, and loop classification are listed on left. 



145 
 

 
Figure 5.5. 5C data correlates most strongly with cortical neuron HiC, clusters by 
condition. (A) Spearman’s correlation coefficients of comparisons between Bonev et al. 
HiC data (ES, NPC, CN) and 5C data. Regions of interest were extracted from raw HiC 
data; HiC and 5C counts were then binned to equivalent 10kb bins, quantile normalized 
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together and ICE matrix-balanced prior to correlation computation.  (B-C) Pearson’s 
correlation coefficients of background-normalized contact frequencies 
(”observed/expected”) at activity-induced loops (B) and activity-invariant loops (C) 
across each pair of replicates. Replicates were then hierarchically clustered based on 
correlation results. 
 

 
Figure 5.6. Activity-induced and activity-invariant loops are reproducible across 
condition replicates. (A) Zoom-in interaction score heatmaps from each of the 12 5C 
replicates generated for critical loops presented throughout the paper. Genes of interest 
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in each zoom window, Figure panels where same loop is further analyzed, and loop 
classification are listed on left. 
 

 
Figure 5.7. Identifying dynamic looping across neural activity states. (A) Diagram 
of 5C processing pipeline used to call significant constitutive and dynamic loops (bottom 
right) starting from 5C interaction frequency counts for all pairs of 4 kb genomic bins 
within queried regions across 4 replicates (from two litter/culture batches) of each 
condition (top left).  First the local domain background signal is quantified using a donut 
expected model (Rao+ 2014) and removed from the interaction frequency signal. 
Probabilistic modeling converts these expected-normalized interaction frequencies to an 
“interaction score” (bottom left). For a bin-bin pair to be classified as looping, its 
interaction score must fall above a given “significance threshold”. For a looping bin-bin 
pair to be classified as “Bic-only” the minimum interaction score of the Bic replicates 
must exceed the maximum interaction score of the four TTX replicates by a given 
“difference threshold” (Supplemental Methods). Looping pixels not classified as Bic- or 
TTX-only are classified as constitutive (top right). Bin-bin pairs of the same class are 
then grouped into clusters if they are directly adjacent; clusters below a selected size 
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threshold are removed from looping classification (bottom right). See Methods for more 
details. (B) Scatterplot of the background-normalized contact frequency 
(”Observed/Expected”) counts of looping-classified pixels in TTX and Bic conditions. 
 
 
 

5.1F, Fig. 5.7B). We observed that activity-invariant loops exhibited high interaction 

frequencies across Untreat, TTX, and Bic conditions (Fig. 5.1G). Importantly, activity-

induced and activity-decommissioned loops showed 2-3-fold up- or down-regulation in 

interaction frequency, respectively, but were still lower in overall looping strength than the 

activity-invariant contacts (Fig. 5.1G). We confirmed that an enhancer-promoter loop at 

the c-fos rIEG previously reported as activity-dependent via 3C-PCR234 was classified here 

as an activity-induced loop (Fig. 5.1H, top) and that additional activity-induced loops 

occurred across our 5C regions (Fig. 5.1H, bottom). These data highlight that both 

activity-invariant and -dynamic loops encompass IEGs and synaptic genes. 

We wondered if the looping landscape and its relationship to activity-dependent 

enhancers could shed light on the regulation of activity-dependent gene expression. 

Because the histone mark H3 lysine 27 acetylation (H3K27ac) correlates with enhancer 

and promoter activity, we conducted H3K27ac ChIP-seq to identify changes in putative 

non-coding enhancer elements genome-wide in neural activity states. We noticed a strong 

correlation between activity-dependent changes in promoter H3K27ac signal and gene 

expression (Fig. 5.8A). By contrast, the total sum interaction frequency by each gene was 

not correlated with gene expression (Fig. 5.8B). Next, using thresholded loops (Fig. 5.1F), 

we then applied an adapted ABC model141, to identify the single loop/enhancer for each 

gene that displayed the maximum value of (loop strength x enhancer H3K27ac signal) (Fig. 

5.8C, Appendix III Methods). Importantly, by testing only the thresholded loop with the  
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Figure 5.8. Activity-induced enhancers connected to distal target genes via looping 
interactions predict activity response expression. (A-B) Boxplots of the promoter 
acetylation (A) and total interaction frequency (B) fold changes of genes grouped by 
expression fold change. (C) Schematic representation of algorithm used to pair each gene 
with a single loop/enhancer that offered the highest predictive value. Only genes that 
formed such a loop (N = 45) were queried in the following models (D,E,H,I). (D-E) 
Boxplots of the loop strength (D) and looped enhancer acetylation (E) after loops and 
enhancers are matched to genes using schema presented in (C). (F-G) Cartoon 
representations and scatter plots of the two ‘null’ models of Bic/TTX gene expression fold 
change: (F) promoter acetylation alone (model 1), (G) promoter acetylation plus the 
acetylation of the nearest enhancer within 200 kb of the TSS (model 2). Expression fold 
change is plotted on the y-axis while acetylation fold change (of promoter in (F) and 
nearest enhancer in (G)) is plotted on the x-axis. The expression fold change in (G) has 
been adjusted to remove the values predicted by the promoter activity term in the model.  
Values have been min/max scaled to allow cross-model comparison. (H-J) Cartoon 
representations and scatter plots of loop-containing models, plotted in the same manner as 
(G). (K) R2 values for each of the three models. (L) Barplot of explanatory variable 
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highest (loop x enhancer) score for each gene, we observed a strong increase in interaction 

strength at the most strongly activity-upregulated genes (Fig. 5.8D). Moreover, when using 

the same enhancer-gene pairing schema (Fig. 5.8C), H3K27ac signal was consistently 

increased at distal putative enhancers linked via looping to activity-upregulated target 

genes (Fig. 5.8E). Together, these data indicate that signal strength of epigenetic marks at 

distal regulatory elements and the interaction frequency of their long-range loops correlate 

with activity-dependent gene expression. 

It is poorly understood which activity-dependent enhancers regulate specific target 

genes. The best studied examples of activity-dependent enhancers, those at the c-fos and 

Arc217, 218, 234, are relatively close (≤ 40 kb) to the promoters of these genes, however in 

many cases nearest enhancers are insufficient to explain transcriptional regulation. We 

built a predictive model of activity-dependent gene expression (Appendix III Methods). 

Promoter H3K27ac alone explained only 51.7% of the variance in gene expression upon 

neuronal activation in our 5C regions (Fig. 5.8F,K-L). By adding the covariate of H3K27ac 

signal at the nearest enhancer, we only marginally increased model performance (Fig. 

5.8G,K-L). We then built a third model with covariates of activity-dependent H3K27ac at 

(i) promoters and (ii) only distal enhancers engaged in maximum  ABC-thresholded loops 

with their target genes (Fig. 5.8C, Appendix III Methods). Our third ‘long-range enhancer 

model’ markedly increased the variance of activity-dependent expression explained from 

51.7% to 65% (Fig. 5.8H, 5.8K-L). Surprisingly, models using the strength of the loop 

(Fig. 5.8I) or the value of (loop strength x enhancer H3K27ac) between the selected 

coefficients from models 1-5. t-statistic p-values and standard errors represented via stars 
and error bars, respectively. 
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enhancer and promoter (Fig. 5.8J) as predictors performed similarly well (Fig. 5.8I-L), 

suggesting that further work is required to determine  how loop strength alterations 

contribute to gene expression levels141. These trends remained consistent when we 

analyzed the promoter and nearest enhancer models for genes that only form long-range 

loops (Fig. 5.9). Together, these data indicate that long-range loops can provide significant 

improvement in the prediction of activity-dependent expression by connecting specific 

distal enhancers to their target genes.  

 
Figure 5.9. Correlation coefficients of modeled regulatory element signals. (A) 
Spearman’s correlation coefficients for terms included in models (Fig. 2f-i). (B-C) 
Results of promoter-only (B) and promoter plus nearest enhancer (c) models for only 
genes that form loops to classified enhancers within 5C regions. (D) R2 values of models 
presented in (B-C). (E) Coefficients of each explanatory variable term in models 
presented in (B-C). 
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We next set out to determine the extent to which looping reconfiguration occurred 

in parallel with activity-dependent enhancer changes or if enhancers were pre-wired to their 

targets independent of their activation state (Fig. 5.10A). We first stratified H3K27ac peaks 

into activity- invariant (n=14,424), activity-induced (n=6014), and activity-

decommissioned (n=5402) putative enhancers (Fig. 5.10B-C, Appendix III Methods, Fig. 

5.11A-C). We quantified the degree of overlap between our enhancer classes and the 

anchors of our looping interactions. We identified three major enhancer+loop classes for 

further exploration: (i) activity-induced loops anchored by activity-induced enhancers 

(n=11) (Class 1), (ii) activity-invariant loops pre-wired in inactive neurons and anchored 

by activity-induced enhancers (n=41) (Class 2), and (iii) activity-invariant loops pre-wired 

in inactive neurons and anchored by activity-decommissioned enhancers which lose their 

H3K27ac signal upon chronic neuronal activation (n=15) (Class 3) (Fig. 5.10D-E). These 

data reveal a complex long-range cis-regulatory landscape in which enhancer activation 

does not always correlate with de novo loop formation and suggest that diverse loop classes 

might play unique roles in regulating activity-dependent gene expression. 

 We next investigated the potential structural and functional properties of our three 

loop classes. We noticed that activity-induced loops anchored by activity-induced 

enhancers (Class 1) underwent a 2.2-fold change in interaction frequency after 24 hours 

Bic treatment (Fig. 5.10F). Activity-invariant loops anchored by activity-decommissioned 

enhancers showed strong and unchanged interaction frequency (Class 3, Fig. 5.10F). By 

contrast, interaction strength further strengthens upon neuronal activation in the case of 

activity-invariant loops pre-wired to activity-induced enhancers (Class 2, Fig. 5.10F). 

Importantly, although Class 1 loops are a rare occurrence, they corresponded to a 24-fold  
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Figure 5.10. Unique topological motifs underlie the activity-dependent 
transcriptional response. (A) Cartoon representation of hypotheses in which activity-
induced enhancers operate to control gene expression via poised (top) or dynamic 
(bottom) loops. (B) Scatterplot of enhancer acetylation across Bic and TTX conditions, 
thresholded by fold change of input normalized signal and classified into activity-
induced (green), activity-invariant (blue), and activity-decommissioned (purple) 
enhancers. (C) Acetylation heatmaps of classified dynamic enhancers. (D) Stacked 
barplot displaying the percent of loops in each looping class with a classified enhancer 
at either of its anchors. Enhancer class key located to left. Number of loops in each subset 
depicted on top of bar. Loops could only be assigned to one enhancer class; enhancer 
class priority order ranges from bottom of barplot (activity-induced enhancers, 
considered first) to top (TSSs, considered last). (E) Cartoon representations of three loop-
enhancer classes of top interest from (D). Classified loop anchor colors match those in 
(B-D). (F) Boxplots of background normalized contact frequencies for looping pixels in 
the five looping classes. P-values presented in F-H calculated using two-tailed Wilcoxon 
signed-rank test. Number of loops in each class listed above boxes. (G) Expression fold 
change (log2(Bic/TTX)) of the transcripts whose promoters intersect each looping class. 
Number of genes in each class listed above boxes. (H) Expression (TPM) of the genes 
whose promoters fall opposite activity-induced (class 2) and activity-decommissioned 
(class 3) enhancers in genome-wide cortical neuron loops, original data from Bonev et 
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al. 2017.  Number of genes in each class listed above boxes. (I) Percent of differentially 
expressed genes (parsed using Sleuth235 Wald test, q-val < 0.05) in each genome-wide 
looping class that are upregulated in Bic compared to TTX (light grey) or downregulated 
in Bic compared to TTX (dark grey). (J) Gene ontology enrichment of transcripts 
presented in (G-H). Class 1 genes are from 5C regions only (g), class 2,3 genes were 
parsed using the genome-wide analyses in (h). Only the top 5 terms for classes 2 could 
be shown, see Fig. 5.13 for remaining terms at FDR < 0.05. 
 
 

 
Figure 5.11. Parsing activity dependent enhancers. (A-C) Acetylation heatmaps, 
pileups of classified activity-induced (A), activity-decommissioned (B), invariant (C) 
enhancers. 
  

 
 

increase in activity-induced expression (Fig. 5.10G, 5.12A). Comparatively more genes 

engaged in Class 2 loops but on average displayed a modest 1.3-fold increase in expression 

in active neurons (Fig. 5.10G, 5.12A). These results suggest that, in our 5C regions, 

activity-induced loops are rare and connect to genes with large activity-dependent increases 
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in expression, whereas pre-existing loops exist in larger numbers but correlate with only 

minor gene expression changes. 

To extend our findings genome-wide, we assessed the link between activity-

invariant loop Classes 2 and 3 and gene expression using the high-resolution Hi-C maps 

published in primary cortical neurons104 and our activity-dependent RNA-seq and ChIP-

seq data (Fig. 5.10H, Fig. 5.12B-C). We applied established published methods10 to 

identify 24,937 loops in cortical neurons (Fig. 5.12B-C) and stratify them into Class 2 

(n=4,764) and Class 3 (n=3,259) groups (Appendix III Methods). Consistent with 5C 

loops, genes connected to activity-induced enhancers via activity-invariant loops (Class 2) 

displayed a modest but significant upregulation in expression upon neuronal activation 

when we queried genome-wide loops (Fig. 5.10H, 5.12D). By contrast, genes looped to 

activity-decommissioned enhancers via activity-invariant loops (Class 3) genome-wide 

exhibited a slight reduction in expression upon neural activation (Fig. 5.10H). The majority 

of differentially expressed genes in Class 2 versus Class 3 loops were upregulated and 

downregulated, respectively, due to activity (Fig. 5.10I). Together, our data reveal that the 

genes connected to activity-induced enhancers via rare de novo loops show the largest 

effect size in activity-dependent expression. Genes can also exhibit modest but notable up- 

or down-regulation when connected via pre-wired, activity-invariant loops to activity-

induced (Class 2) or activity-decommissioned (Class 3) enhancers, respectively. Pre-

existing Class and Class 3 loops are markedly more abundant in number compared to Class 

1. 

We explored the ontology of the long-range target genes anchoring each looping 

class. Class 1 loops connect c-Fos, Bdnf, and Tmed10 to activity-inducible enhancers,  
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Figure 5.12. Murine HiC (Bonev et al., 2017) loop calls. (A) Expression (TPM) of the 
transcripts whose promoters intersect each looping class. (B) Number of loops called in 
HiC data obtained from embryonic stem cells (ES), neural progenitor cells (NPCs), and 
cortical neurons (CN) (Bonev et al. 2017). (D) Interaction frequency heatmaps (top) and 
thresholded loop calls (bottom) for a ~2.5 Mb region surrounding the Synaptotagmin1 
gene. (D) Expression (log2(TPM)) of the genes whose promoters fall opposite activity-
induced (class 2) and activity-decommissioned (class 3) enhancers in genome-wide 
cortical neuron loops, original data from Bonev et al. 2017.  Number of genes in each 
class listed above boxes. 
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suggesting that the rapid upregulation of IEGs involves de novo loop and de novo enhancer 

induction during neural activation (Fig. 5.10J). Class 2 pre-existing loops connect genes 

involved in several general cellular functions such as RNA processing to activity-induced 

enhancers, whereas Class 3 pre-existing loops anchored by activity-decommissioned 

enhancers connect genes linked to synaptic organization and the regulation of synaptic 

activity (Fig. 5.10J, Fig. 5.13A). We were intrigued by the placement of synaptic genes in 

Class 3 loops given that they connect to enhancers that are turned off during chronic (24 

hour) high activity levels. Thus, we further stratified genes connected in Class 3 loops by 

those undergoing a (i) 1.5-fold downregulation, (ii) 1.5-fold upregulation, and (iii) 

remaining unchanged upon neural activity (Appendix III Methods). We found that the 

cohort of genes undergoing decreased expression in Class 3 loops were predominantly 

genes involved in synapse organization and signaling, including Gria1, the main AMPA 

receptor subunit (Fig. 5.10J, Fig. 5.13B). These results open up the possibility for future 

inquiry into a potential mechanistic role for Class 3 loops and activity-decommissioned 

enhancers in facilitating homeostatic plasticity during chronic high neural activity. 

Together, these data support our working hypothesis that both activity-induced loops 

connecting activity-induced enhancers (Class 1) and activity-invariant loops connecting 

activity-decommissioned enhancers (Class 3) play a role in synaptic plasticity. It is 

well established that rIEGs such as c-fos and Arc are activated on the order of seconds to 

minutes in a translation-independent manner, whereas dIEGs/SRGs such as Bdnf are 

activated on the order of minutes to hours214. Consistent with this idea, we re-analyzed a 

recently published RNA-seq time course during pharmacological neuronal activation36 and 

found maximum activation of c-fos and Arc by 60 minutes, whereas maximum Bdnf  
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Figure 5.13. Significantly enriched gene ontology terms Associated with looping 
classes 2,3. (A) The remaining gene ontology terms passing the FDR < 0.05 threshold 
for class 2 (a) which could not be presented in Figure 5.10. (B) (Left) Gene ontology 
enrichment ratios for class 3 genes parsed by expression into activity downregulated 
(Bic/TTX < 2/3), activity invariant (5/6 < Bic/TTX < 6/5), and activity upregulated 
(Bic/TTX > 3/2) groups. (Right) Genes found in the ‘regulation of trans-synaptic 
signaling’ and ‘synapse organization’ GO terms enriched in activity downregulated class 
3 genes. 
 
 
 

upregulation occurred at 6 hours (Fig. 5.14A). Visual inspection of our 5C heatmaps 

revealed two unexpected observations linking the kinetics of activity-dependent 

transcription to looping complexity (Fig. 5.14B). First, rIEGs in our 5C regions form 

simple short-range loops with activity-dependent enhancers, and thus fall nearly 

exclusively in the Class 1 category. For example, after 24 hours of Bic treatment, c-Fos 

was upregulated more than 100-fold (Fig. 5.14C), but we identified only a single 40 kb-

sized Class 1 loop with an activity-induced enhancer (Fig. 5.14D). Similarly, Arc was 

upregulated more than 12-fold upon neural activation (Fig. 5.14C) and also connected in a  
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Figure 5.14. Rapid immediate early genes form shorter and less complex loops than 
secondary response genes. (A) Expression timing of Bdnf, Fos, and Arc following the 
initiation of cortical neuron stimulation from Tyssowski et al. 2018. (B) Cartoon 
representations of two loop classes identified in Fig. 3. (C)  Expression (TPM) of the 
Arc, Bdnf and Fos genes across the 5 days in vitro (DIV5), untreated, TTX, and Bic 
conditions. (D) Loop calls (left), TTX interaction score heatmap (middle) and Bic 
interaction score heatmap (right) of a ~65 kb region surrounding the Fos gene (green). 
Plotted beneath maps are cortical neuron CTCF (Bonev et al. 2017), Bic H3K27ac, and 
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TTX H3K27ac tracks. Bic specific enhancer underlying Bic loop highlighted in orange. 
(E)  TTX interaction score heatmap (left) and Bic interaction score heatmap (right) of a 
~35 kb region surrounding the Arc gene (green). (F) TTX interaction score heatmap 
(top), Bic interaction score heatmap (middle), and loop calls (bottom) of a ~2 Mb region 
surrounding the Bdnf gene (green). Bic loops plotted in orange, and constitutive loops in 
grey. (G-I) Interaction score heatmaps of 3 looping regions highlighted in (F) across 
TTX (left) and Bic (right) conditions.  Plotted beneath maps are cortical neuron CTCF 
(Bonev et al. 2017), Bic H3K27ac, and TTX H3K27ac tracks. Bic specific enhancers are 
highlighted in orange and CTCF peaks highlighted in red. (J) Genomic distance spanned 
by each loop formed by the Fos (n=3) and Bdnf (n=17) genes. (K-L) Boxplots overlaid 
by stripplots of loop count (K) and max looping distance (L) for rapid immediate early 
genes (rIEGs, as defined as rPRGs in Tyssowski et al. 2018), delayed immediate early 
genes (dIEGs), secondary response genes (SRGs), and all genes. P-values presented for 
two-sided Mann Whitney rank tests comparing of rIEGs to other 3 classes. (M) Model 
representation of the distinct looping patterns of the Bdnf and Fos genes. 
 
 

singular loop with an activity-induced enhancer (Fig. 5.14E). We note that the Arc 

interaction falls below our 30 kb distance threshold and therefore is not formally added to 

the Class 1 loop list (Fig. 5.10G-J). By contrast, Bdnf was upregulated 30-fold upon 

neuronal activation (Fig. 5.14C) and connected into a complex network of multiple long-

distance Class 1 and Class 2 loops (Fig. 5.14F-I), including: (i) at least two Class 1 activity-

induced loops anchored by activity-induced enhancers, but spanning longer distances (840 

and 1,700 kb) than those formed with IEGs (Fig. 5.14G-H) and  (ii) at least two Class 2 

activity-invariant loops anchored by activity-induced enhancers (Fig. 5.14H-I). The loops 

formed by Bdnf were preferentially located at Bdnf’s first promoter, from which we 

observed the highest level of transcription and strongest upregulation after 24 hours of Bic-

induced neuronal activation (Fig. 5.15). Loops connected by Bdnf were significantly longer 

than those connected by c-fos and Arc (Fig. 5.14J). These observations provide the basis 

for our working hypothesis that loop complexity and size contribute to the timing of IEG 

versus SRG upregulation in response to neuronal activation.   
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Figure 5.15. Expression of Bdnf transcripts. (A) Depiction of the 12 RefSeq transcript 
isoforms of the Bdnf gene, above which we annotate the 8 promoters as in Hong et al., 
Neuron, 2008.  (B) Expression strip plots of each Bdnf isoform, organized in columns by 
shared promoter. (C) Boxplots overlaid by strip plots of count of opposing looping 
anchors that contain an activity-dependent enhancer for rapid immediate early genes 
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(rIEGs, as defined as rPRGs in Tyssowski et al. 2018), delayed immediate early genes 
(dIEGs), secondary response genes (SRGs), and all genes. 
 
 
 

We next explored loop complexity genome-wide using published annotations of 

rIEGs, dIEGs, and SRGs36 and our 24,937 loops in ES-derived mouse cortical neuron Hi-

C (Fig. 5.12B-C). Published Hi-C data only represents one untreated activity state, thus we 

could not assess activity-induced loops (Class 1) genome-wide. Nevertheless, we could 

integrate our enhancers with cortical neuron Hi-C data to query the complexity of activity-

invariant Class 2 loops surrounding known activity-dependent genes genome-wide. 

Consistent with our locus-specific 5C results, we found that rIEGs form significantly fewer 

loops (Fig. 5.14K), shorter loops (Fig. 5.14L), and connect to a lower number of activity-

induced putative enhancers (Fig. 5.15C) compared to dIEGs and SRGs genome-wide. 

Together, these data are consistent with our working model in which dIEGs engage in a 

complex network of long-range regulatory interactions, whereas rIEGs form simple, short-

range loops to activity-induced enhancers to facilitate rapid activation independent of new 

protein synthesis (Fig. 5.14M). 

The disparate length and number of loops which emerged after chronic neuronal 

activity at Fos/Arc compared to Bdnf, as well as the differences in the expression timing 

of the genes, led us to hypothesize that the two sets of loops may display distinct formation 

kinetics. To explore looping dynamics after short term activity induction, we next created 

5C architecture maps in an acute time course of 0, 5, 20, 60, and 360 minutes of 

pharmacologically induced high activity in primary cultured mouse cortical neurons. To 

normalize baseline activity across different cultures, we pre-silenced our neural 

preparations via 24 hours of TTX treatment prior to addition of Bic (Fig. 5.16, Appendix 
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III Methods). We found that the Class 1 loops surrounding c-Fos and Arc achieved peak 

contact frequency within 20-60 minutes of neuronal activation (Fig. 5.16A-B). We also 

created total RNA-seq libraries at these time points and observed that enhancer-promoter 

loop strength for IEGs peaked prior to maximum mRNA levels at 60 min (Fig. 5.16C-D). 

Importantly, at early time points c-Fos interacted with an additional enhancer (Fig. 5.16A, 

‘Enhancer 2’, magenta arrowhead) compared to its 24-hour activity-induced loop (Fig. 

5.14D, ‘Enhancer 1’), suggesting dynamic engagement with differential activity-induced 

enhancers over short time scales. We next measured enhancer activity dynamics by 

quantifying the RNA-seq signal that mapped to each enhancer (eRNAs)219 (Appendix III 

Methods). We verified that our eRNA analysis approach produced activity-dependent 

dynamic patterns that resembled a previously published activity-induced eRNA data set219 

and our own H3K27ac ChIP-seq (Fig. 5.17). The enhancers that loop to both c-Fos and 

Arc peak in activity 20 minutes post neuronal activity, exhibiting lower activity at all other 

time points (Fig. 5.16C-D). Altogether, our data suggests that Class 1 activity-induced 

enhancers and loops connect rapidly and prior to maximum IEG levels. While we have not 

determined the full extent to which loops causally drive gene expression, our observation 

that the rapid activation of enhancer-promoter loops is concordant with the earliest 

signatures of activity-dependent gene upregulation, and prior to maximum expression 

levels, supports the assertion that the two are linked.   

To test our hypothesis that looping dynamics contribute to the relatively delayed 

timing of SRG expression (Fig. 5.14K-N), we quantified interaction frequency, enhancer 

activity, and mRNA levels for the Class 1 loops formed by dIEG/SRG Bdnf (Fig. 5.14G-

H). Consistent with our hypothesis, Bdnf Class 1 loops did not display looping signals until  
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Figure 5.16. Activity-induced loops form before and persist after peak expression 
of rapid IEGs. (A-B) Interaction score heatmaps surrounding Fos (A) and Arc (B) 
across 6 hours of Bic treatment (preceded by 24 hours of TTX silencing). Heatmap 
coordinates are identical to Figs. 4d (Fos) and 4e (Arc). Enhancers quantified in (c,d) 
represented by green boxes. Magenta arrowhead denotes Fos loop present only at early 
time points. (C-D) Quantifications of Fos (C) and Arc (D) enhancer activity (top, 
quantified by eRNA signal), loop strength (middle, observed/expected 5C counts), and 
gene expression (bottom, transcripts per million) across the activation time course. (E-
F) Interaction score heatmaps of activity-induced loops formed by the first Bdnf 
promoter. Heatmap coordinates in (F), “enhancer 2”, match those in Fig. 5.14G. 
Heatmap coordinates in (E), “enhancer 1”, represent a zoomed subset of Fig. 5.14H to 
highlight activity-induced loop. Enhancers quantified in (g,h) represented by green 
boxes. (G-H) Quantifications of Bdnf enhancer 1 (G) and enhancer 2 (H) activity (top) 
and loop strength (middle), coupled with the expression (bottom) of the Bdnf isoform 
with the strongest expression (see Fig. 5.15). 
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Figure 5.17. Verification of the eRNA signature captures enhancer activity 
dynamics. (A) Genome browser view of ~50 kb window surrounding the Fos gene. 
Rows from top to bottom present: 1) RNA signal in active neurons from Kim et al. 2010, 
2) RNA signal in inactive neurons from Kim et al. 2010, 3) RNA signal from neurons in 
the Bic condition, 4) RNA signal from neurons in the TTX condition, 5) H3K27ac ChIP-
seq signal from neurons in the Bic condition, 6) H3K27ac ChIP-seq signal from neurons 
in the TTX condition. (B) RNA-seq signatures at enhancers near Fos across 0, 5, 20, 60, 
and 360 minutes of acute neuron activation. 
 
 
 

60 (enhancer 1, Fig. 5.14H, 5.16E,G) or 360 minutes (enhancer 2, Fig. 5.14G, 5.16F,H) 

after activity induction. Bdnf enhancers and expression were upregulated in parallel with 

loops and did not reach maximum signal in our time course until 360 minutes of stimulated 

activity (Fig. 5.16G-H). Thus, Bdnf loop and enhancer dynamics are significantly delayed 

in comparison to c-Fos and Arc loop dynamics, corroborating our model that looping 
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structure and dynamics contribute to the delayed expression of SRGs in response to 

neuronal activation. 

Finally, we set out to elucidate whether the long-range 3-D regulatory landscape 

might give insight into how activity-dependent gene expression could be affected in 

neuropsychiatric disorders236.  We investigated the link between our loop classes and 

common SNVs statistically associated with schizophrenia237 and autism spectrum disorder 

(ASD)238 via genome-wide association studies (GWAS). More than 90% of disease-

associated SNVs are localized in non-coding regions with unknown target genes239, and 

this has hindered mechanistic understanding of how SNVs might disrupt transcription to 

cause pathological phenotypes. We identified 24,544 unique loops from published Hi-C 

data created in human brain tissue derived from the germinal zone and cortical plate240 

(Fig. 5.18). We lifted our activity-dependent enhancer classes to the human genome and 

classified 4,098 Class 2 and 3,822 Class 3 loops from human brain tissue (Fig. 5.19A, 

Appendix III Methods). We then assessed if common SNVs for two major 

neuropsychiatric disease states were enriched in a specific looping class compared to 

background SNVs matched by the size of the linkage disequilibrium (LD) block, minor 

allele frequency, distance to nearest gene, and gene density (Appendix III Methods)241. 

We found that non-coding SNVs associated with schizophrenia237 (P < 5 x 10-8) co-localize 

at Class 3 loops anchored by activity-decommissioned enhancers, whereas ASD-associated 

SNVs colocalize with Class 2 loops anchored by activity-inducible enhancers238 (P < 10−4) 

(Fig. 5.19B, Appendix III Methods). We cross-validated this result using an independent 

statistical test, LD score regression242, to quantify the enrichment of heritability for the two 

diseases within the looping classes. Our LD Score regression analysis confirmed a stronger  
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Figure 5.18. Human HiC (Won et al., 2016) loop calls. (A) Number of loops called in 
HiC data obtained from human fetal cortical plate (CP) and germinal zone (GZ) tissue 
(Won et al. 2016). (B) Interaction frequency heatmap (left) and thresholded loop calls 
(right) of the 2.5 Mb region surrounding the Bdnf gene in human cortical plate (CP) fetal 
tissue. 
 
 

 
Figure 5.19. Neurodevelopmental disease-associated genomic variants display 
disease-specific enrichment for activity-induced and -decommissioned enhancer 
loop anchors. (A) Schematic of Class 2 and Class 3 loop classes computed from human 
brain tissue Hi-C data reported in Won et al 2016 (Supplemental Methods). (B) Odds 
ratios representing the enrichment of schizophrenia-237 and ASD-associated238 common 
SNVs at the enhancer-containing anchor of each looping class compared to linkage 
disequilibrium size- and minor allele frequency-matched background SNVs (N=100 sets 
of background SNVs). tagSNPs which overlap coding regions or could not be matched 
to background LD blocks were removed prior to analysis. Median Fisher’s exact p-
values across 100 background sets are included. (C) Disease-associated heritability 
enrichment in each looping class (left) and associated p-values (right), calculated using 
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LD score regression242 and summary statistics from ASD and Schizophrenia GWAS 
studies used in (b). (D) Activity-dependent transcription at disease-associated SNV 
anchored human looping classes plotted as the percent of genes connected to disease-
associated SNVs in Class 2 and Class 3 loops that fell within each expression stratum. 
Expression of the mouse homologs of human genes was used to stratify genes. (E) 
Schematic of our working model of topological regulation in the neuronal activity 
response. (Row 1) Activity upregulated genes are targeted by activity-induced enhancers 
in activity-induced (class 1) and activity-invariant (class 2) loops. (Row 2) Autism 
spectrum disorder SNVs at the base of class 2 loops may disrupt looped enhancer 
regulation of target gene expression in active neurons. (Row 3) Activity-
decommissioned enhancers interact with target genes in invariant looping interactions 
(class 3). (Row 4) Disruption of looped enhancer function by genome variants associated 
with schizophrenia at the base of class 3 loops may lead to altered transcriptional control 
in inactive neurons. 
 
 
 

enrichment of ASD-associated heritability in Class 2 loop anchors compared to Class 3, 

while heritability for Schizophrenia displayed the opposite trend (Fig. 5.19C).  

We next annotated the genes that contain promoters co-localized to the opposite 

side loops anchored by disease-associated SNVs (daSNVs). This allowed us to generate a 

list of long-range candidate genes associated with neural activity for future functional 

dissection of the effect of common daSNVs. Disease-associated Class 2 loops connect 

activity-inducible enhancers to target genes that are preferentially upregulated upon neural 

activation (Fig. 5.19D). We identified intriguing candidate genes for further future 

functional inquiry in this set, including Foxp1, which has previously been found to regulate 

brain development and synaptic plasticity243, displays remarkable mouse to human 

conservation of local genome architecture, and interacts with several ASD-associated 

SNVs (Fig. 5.20A) and activity-induced enhancers (Fig. 5.20B-C). By contrast, disease-

associated Class 3 loops connect activity decommissioned enhancers to activity  
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Figure 5.20. Foxp1 and Slc4a10 fall opposite disease-Associated variants in 
conserved classified loops. (A-C) Human (A) and mouse (B) interaction frequency 
heatmaps of a 2 Mb region surrounding the Foxp1 gene. The expression of the looping 
Foxp1 isoform labeled in green in (B) is plotted in (C). (D-F) Human (A) and mouse (B) 
interaction frequency heatmaps of a <2 Mb region surrounding the Slc4a10 gene (green), 
followed by expression of its 5 expressed isoforms (C). 
 
 
 

downregulated target genes (Fig. 5.19D). One such gene is Slc4a1051244, which loops 

downstream to a Schizophrenia-associated SNV (Fig. 5.20F) that overlaps a region of 
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activity-decommissioned H3K27ac (Fig. 5.20G-H). Thus, loops anchored by daSNVs 

predict long-range target genes that change expression in the same direction as their 

connected activity-dependent enhancers.  

In conclusion, our data show that pre-wired and de novo loops anchored by activity-

inducible enhancers connect to target genes exhibiting activity-dependent upregulation 

(Fig. 5.19E, top row). Conversely, invariant loops anchored by activity-decommissioned 

enhancers connect to genes that are downregulated upon neuronal activity (Fig. 5.19E, 

third row). Future functional dissection will be required to test the model that (i) common 

ASD daSNVs will disrupt activity-dependent enhancers or the structure of Class 2 loops, 

leading to pathologically altered activity-induced target genes (Fig. 5.19E, second row) 

and (ii) common Schizophrenia daSNVs will alter activity-dependent enhancer 

decommissioning or the structure of Class 3 loops, leading to pathological alterations in 

the normal activity-dependent downregulation of target genes (Fig. 5.19E, bottom row). 

These data reveal that specific common SNVs associated with neuropsychiatric diseases 

co-localize with loops anchoring distinct activity-dependent enhancer classes, and these 

loop classes can connect non-coding daSNVs to unique target genes. 

  

5.3 Discussion 

Experience- and activity-dependent gene expression is crucial for sculpting the 

brain during development and for normal cognition. Here, we show that neuronal activity 

results in dynamic changes in the 3-D genome that may lead to precise temporal control of 

activity-dependent gene expression over short and long time scales. We created high-

resolution genome folding maps in 12.2 Megabases around IEGs and synaptic genes (total 
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of N=157 unique transcripts) after multiple time points of acute and chronic exposure to 

pharmacological agents that activate or inhibit neural activity. We find that >10% of loops 

in our 5C regions are induced de novo during cortical neuron activation. Our identification 

of numerous activity-induced loops is surprising given that we have previously observed 

that loops are markedly reconfigured during the developmental transition of ES cells to 

NPCs, but remain highly similar in the NPC to neuron transition16. We  observed that most 

activity-induced loops connecting IEGs to activity-induced enhancers are relatively short-

range, and therefore high read depth 5C with a double alternating design was particularly 

suited for their detection230, 232. Future studies focused on genome-wide detection of Class 

1 architectural features will require extremely high-resolution maps using Micro-C109 or 

high read depth Hi-C created with restriction enzymes that cut four bp restriction sites.  

Using chronic (24 hour) neuronal activation and inhibition conditions, we 

demonstrate that activity-inducible enhancers engage in either de novo (Class 1) or pre-

existing (Class 2) loops. Class 1 and Class 2 loops connect to genes exhibiting a 24- and 

1.3-fold activity-dependent increase in expression, respectively. Our 5C and genome-wide 

Hi-C results support a working model in which poised/pre-existing loops connected to 

target genes in advance of activity-induced enhancer activation are abundant in availability 

but exhibit a modest effect on gene expression. Moreover, our 5C results suggest that loop 

formation stimulated by activity in parallel with enhancer induction are relatively rare and 

exhibit a markedly higher effect on activity-dependent upregulation of distal target genes. 

The quantitative effect of these two looping classes on activity-dependent gene expression 

levels will be more precisely estimated in the future with genome-wide Hi-C and more 

diverse activity-induction conditions. 
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A long-standing question in the transcription field is to what degree enhancer 

activation and/or looping strength are linked to gene expression. We used our loops and 

linear epigenetic data in chronic activity inhibition and induction conditions to create 

simple predictive models of activity-dependent expression changes. We find that H3K27ac 

signal at distal looped enhancers is a markedly better predictor of activity-dependent target 

gene expression than nearest enhancers. Additionally, changes in looping strength were 

only observed in the highest fold-change stratum of activity-dependent gene expression. 

The ability of our predictive models to explain the variance of activity-dependent gene 

expression was achieved by building on a critical advance in the functional genomics field. 

Engreitz et al. published the “Activity-by-Contact” (ABC) model, in which the 

multiplication of enhancer activity and 3-D interaction frequency was the best predictor of 

enhancer-target gene pairs141. We used the ABC approach to choose a specific enhancer 

linked to each gene in our model, and this allowed us to prioritize and identify the looped 

enhancers that most significantly contributed to activity-dependent gene expression. 

Together, these data suggest that enhancer-target gene prediction would be facilitated by 

the use of chromatin architecture maps, instead of relying on the enhancer that is closest 

on the linear genome.  

An important area of active research in neurobiology is focused on elucidating the 

molecular mechanisms by which the differential kinetics of IEGs and SRGs are regulated. 

Here, we unexpectedly observed that rapid-response IEGs Arc and Fos connect to 

enhancers via singular short-range loops that occur de novo upon activation. By contrast, 

we observed that dIEGs/SRGs such as Bdnf connect to multiple activity-inducible 

enhancers via a complex network of invariant and de novo loops. We furthered this model 
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by demonstrating with genome wide Hi-C data that rIEGs form fewer, shorter loops 

compared to more complex looping architectures formed by dIEGs/SRGs genome-wide. 

Consistent with our observations, Yamada et al. reported, using H3K4me3 PLAC-seq, that 

the delayed IEG Nr4a3 engages in multiple long-range contacts after neuronal 

stimulation225. These observations inspired our working hypothesis that looping 

complexity and distance are contributing factors to the timing of IEG/SRG activity-induced 

expression (Figure 5.14M). To critically assess this model, we induced acute 

pharmacological activation of neuronal activity and gathered looping, epigenetic, and 

transcription data across multiple short time points. We observed striking differences in 

loop and enhancer induction kinetics for rIEGs vs. dIEGs/SRGs in our 5C regions. For 

example, the activity of the enhancers and loops surrounding Fos and Arc peak in signal 

strength roughly 20 minutes after the induction of neuronal activity, prior to maximum 

mRNA levels. In contrast, Bdnf loops and enhancers gain strength in parallel with mRNA 

levels over a longer time of sustained activity (360 minutes). We note that, in our study, 

Bdnf is primarily transcribed from its first promoter in response to Bicuculline. However, 

transcripts initiated from Bdnf’s fourth promoter were highly expressed in previous studies 

using KCl for activation245, which raises the exciting possibility that different mechanisms 

of neuronal activation might engage different loops and enhancers. Finally, we also note 

that Fos engages in different short-range loops at 5 minutes versus 20 minutes versus 24 

hours of neural activation, shifting interaction strength from a nearby enhancer to one more 

distal, suggesting that rapid activity-induced enhancer switching via alternative looping 

might be a mechanistic aspect of rapid IEG upregulation. Together, these data suggest that 

the 3-D epigenome regulates activity-dependent gene expression across vast (>1 Mb) 



174 
 

genomic distances to ultimately control IEG and SRG expression levels with tight temporal 

precision.  

Finally, the exploration of the link between looping and common SNVs associated 

with neuropsychiatric disorders is a critical area of inquiry. It is well-established that the 

large majority of SNVs associated with neuropsychiatric disorders via genome-wide 

association studies (GWAS)236, 246-249 are localized to non-coding elements distal from 

genes239, 250. An increased understanding of how activity-dependent enhancers co-localize 

with disease-associated SNVs and connect over vast distances to distal target genes would 

provide critical new insight into the molecular mechanisms governing disease 

pathogenesis. Here, we identify a unique set of loops that are pre-existing before 

stimulation but anchored by enhancers that decrease in activity during chronic activation 

conditions. We speculate that enhancer decommissioning may be an epigenetic mechanism 

involved in homeostatic plasticity. Consistent with this hypothesis, we found that specific 

genes involved in homeostatic plasticity, such as Gria1, are connected in Class 3 loops to 

activity-decommissioned enhancers and downregulated during chronic high activity. We 

find that Schizophrenia SNVs are anchored in Class 3 loops and connected to 

downregulated genes upon synaptic activity. By contrast, Autism SNVs are anchored in 

Class 2 loops to activity-inducible enhancers and connected to activity-upregulated target 

genes. These results are striking as they suggest that non-coding SNVs may have very 

different effects in neuropsychiatric disorders depending on the class of loops that they 

anchor (Figure 5.19E). Moreover, the co-localization of Schizophrenia SNVs with Class 

3 loops suggests that defects in enhancer decommissioning might contribute to synaptic 

plasticity defects in neuropsychiatric diseases251. Future work to build human activity-
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dependent loop and enhancer maps and dissect their functionality with genome editing will 

continue to refine our observations of distinct activity-dependent architectural features 

associated with neuropsychiatric disorders.  
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CHAPTER 6: SUMMARY AND FUTURE DIRECTIONS 

 
6.1 Summary 

The three-dimensional conformation of the genome is directly linked to 

spatiotemporal control of gene regulation during mammalian cellular development252 

(reviewed in Chapter 2). Recent technological advances combining Chromosome-

Conformation-Capture(3C)-based technologies with deep sequencing have enabled 

dramatic advances in the throughput and length-scale of regulatory connection mapping163. 

The overall objective of this thesis was to apply these cutting-edge approaches to study the 

mechanisms governing the restructuring of fine-scale chromatin architecture across critical 

stages of mammalian central nervous system (CNS) development. My initial hypothesis 

was that dynamic chromatin loops within topologically associating domains (TADs) 

connect epigenomic regulatory features that have critical roles in mammalian brain 

development and neurodevelopmental disease. This hypothesis originated from 

preliminary data and previously published works showing that (i) large-scale TADs are 

predominantly invariant across cell types and anchored by invariant binding of the 

architectural protein CTCF7; (ii) dynamic interactions of cell type specific enhancers occur 

within TADs9; (iii) knockout of CTCF at early167 and late37, 168 stages of neurogenesis 

resulted in disruption of neural progenitor cell (NPC) division, tissue architecture, and 

synaptic connections;  (iv) genome folding within TADs is noticeably dynamic across 

embryonic stem cells (ESCs), NPCs, and induced pluripotent stem cells (iPSCs); (v) CTCF 

binding is dynamic across some models of neural development. Through the development 

and/or use of in vitro cellular models, 5C, HiC, RNA-seq, ChIP-seq and a suite of 
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computational tools, this work has begun to shed light on the dynamic three-dimensional 

genome folding landscape which regulates stages of mammalian brain development. 

The departure from pluripotency and commitment to the neural lineage is a critical 

cellular state decision point during mammalian brain development. In Chapter 3 we found 

that this cellular state transition was accompanied by a dramatic decrease in CTCF 

expression, protein levels, and number of genome binding sites. At the conclusion of this 

work it remained a critical unknown whether this trend continued or reversed as 

development progressed into terminally differentiated neurons. Through re-analysis of 

recently published data104 we have now confirmed that this trend continues in murine 

cortical neurons (Figure 6.1); the number of CTCF binding sites in cortical neurons are 

notably decreased even beyond the NPC level (Figure 6.1A). The decrease in CTCF sites 

correlates with an increase in overall loop length in cortical neurons (Figure 6.1B), which 

is particularly evident when comparing loops specific to cortical neurons (‘CN-only’) 

compared to those present in other cell types (Figure 6.1C). The anti-correlation between 

CTCF site number and loop length led us to hypothesize that dynamic CTCF sites that 

formed a boundary of smaller, ESC-specific domains were being ‘pruned’, allowing loop 

extrusion to continue unimpeded for longer genomic distances leading to longer, neural-

specific loops, as we had previously observed at Sox2 (Figures 3.13, 3.14, 3.18G-I). 

Indeed, greater than 60% of CN-only loops (filtered for those >200 kb) shared a looping 

anchor with a shorter ES-only or ES-NPC loop (Figure 6.1D). At these loci the majority 

of both the shared looping anchors and CN-specific looping anchors contained CTCF peaks 

which were bound in all 3 cell types (Figure 6.1E, ‘constitutive’ CTCF peak class). 

Conversely, the ES-specific looping anchors consistently contained CTCF peaks that were  
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Figure 6.1. Loop length increases across neuronal differentiation due to CTCF site 
pruning. (A) Number of CTCF peaks called (p-value < 1e-4) across embryonic stem 
(ES) cells, neural progenitor cells (NPCs), and cortical neurons (CN). Data analyzed 
from Bonev et al. 2017. (B) Boxplots of loop distance for each cell type. (C) Boxplots 
of loop distance for each loop class, parsed by cell types in which the loop was called 
significant. (D) Percent of CN-only loops (> 200 kb in length) that share an anchor 
with a shorter ES loop. (E) Percent of each loop anchor that contains each class of 
CTCF peak, parsed by cell-type presence. (F) Relative interaction frequency heatmaps 
surrounding the Synaptotagmin-1 gene. CTCF tracks for each cell type plotted below 
heatmaps. Green boxes highlight constitutive CTCF site (y-axis), ES-specific CTCF 
site (x-axis), ES-specific loop (small overlaid on heatmap), and CN-specific loops 
(large overlaid on heatmap). 
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deactivated during early neural lineage commitment (Figure 6.1E, ‘ES-only’ CTCF peak 

class). Altogether this data supports a model of dynamic genome folding during neuronal 

differentiation similar to what we observe at the Synaptotagmin-1 gene (Figure 6.1F): (1) 

the abundance of CTCF in ES cells results in many small contact domains (small green 

box on heatmap), (2) during neuronal development, CTCF sites at specific domain 

boundaries are decommissioned (green box, x-axis), (3) smaller ES-specific contact 

domains dissolve as ES-specific CTCF sites are decommissioned, allowing loop extrusion 

to proceed farther and connect constitutively-bound CTCF sites (green box, y-axis) in 

neural-specific loops (large green box overlaid on heatmap). In this way CTCF site pruning 

is a critical process in establishing the chromatin landscape that is necessary for proper 

mammalian neural development. 

  CTCF site pruning has far reaching implications for how the neuronal chromatin 

landscape functions to regulate genes in a proper spatiotemporal manner. At the highest 

level, the increase in neural loop/domain size allows a large number of NPC-specific 

(Chapter 3) and neuronal activity-induced (Chapter 5) enhancers to regulate their target 

genes over vast genomic distances; it is presumably safe to assume this model extends to 

most subsets of enhancers that operate along the neural lineage. Due to the decrease in 

CTCF binding in neural progenitor cells, we found NPC-specific enhancers were 

increasingly reliant on YY1 to operate as an architectural protein17 to connect them to their 

target genes (Chapter 3). Similarly, the activity-induced enhancers we identified in 

response to neuronal activity did not exhibit CTCF binding (Figure 5.14).  Thus, our 

working model suggests that neural cell types rely on an additional suite of architectural 
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proteins to connect enhancers to their target genes more than pluripotent stem cells and 

perhaps more than other developmental lineages. 

 Furthermore, in Chapter 4 we found that the CTCF sites that were pruned during 

neural lineage commitment were not completely restored in NPC-derived induced 

pluripotent stem (iPS) cells. Improperly reprogrammed CTCF sites in iPS cells fell at the 

base of incompletely reprogrammed genome architecture, which correlated with disrupted 

expression of key pluripotency genes (Figures 4.9, 4.10, 4.12, 4.13). Culturing iPS cells in 

2i media conditions was sufficient to restore CTCF binding at pruned sites, resulting in 

genome folding and gene expression profiles that more closely resembled those of mouse 

embryonic stem cells. Altogether this work further confirmed that precise regulation of 

CTCF levels is necessary for the establishment of cellular gene expression programs and 

re-establishing target CTCF levels can act as a roadblock during cellular reprogramming195. 

 Finally, in Chapter 5 we investigated the manner in which neuronal activity-

induced enhancers leverage the 3-D genome to regulate activity response genes. Although 

we found that activity-induced enhancers are often poised near their target in invariant 

looping interactions, those target genes were on average only modestly upregulated in 

active neurons (Figure 5.10). Genes that were robustly upregulated (Fos, Bdnf, Arc), in 

addition to forming such poised loops, also dynamically looped to enhancers in an activity-

dependent manner (Figure 5.14). Surprisingly the kinetics and complexities of these loops 

differed when comparing rapid response genes (Fos, Arc) to delayed response genes 

(Bdnf); Bdnf forms many more loops which span vast genomic distances (> 1 Mb) and form 

slower in response to activation than the dynamic loops that Fos and Arc form. Finally, we 

investigated the enrichment of heritability of neurodevelopmental diseases at the base 



181 
 

human looping interactions that contained activity-induced or activity-decommissioned 

enhancers. Due to the well-established function of activity-induced and activity response 

genes in regulating the proper synapse formation underlying memory and cognition, our 

hypothesis was that neurodevelopmental disease heritability would be enriched at loops 

with activity-induced enhancers. While this was the case for Autism Spectrum Disorder 

(ASD), we were surprised to identify a strong enrichment for the heritability of 

Schizophrenia at activity-decommissioned enhancers instead (Figure 5.19). Altogether 

this chapter links architectural complexity to transcriptional kinetics and reveal the rapid 

time scale with which the 3-D genome folds during synaptic plasticity. 

 In combination the results in this thesis reveal that the neural genome landscape has 

a very distinct folding signature. A decrease in CTCF binding and expression of the cohesin 

unloading complex WAPL104 establish very large contact domains and increase the 

distances over which developmentally dynamic enhancers can loop to their target genes. 

Indeed a general theme throughout this work is that identifying the focused puncta of 

dynamic chromatin architecture within larger contact domains enables focused 

identification of enhancers and genes that regulate a particular neural cellular state. One 

principal goal of this approach is to identify particular epigenomic features linked to 

genetic diseases and connect those features and genetic variants to target genes, which 

could in turn be targets for therapeutic intervention. The conclusion of this work (Figure 

5.19) used Schizophrenia and ASD genetic variants to show that insight is indeed gained 

by analyzing these variants in the context of human brain chromatin loops and activity-

dynamic enhancers. At the conclusion of this work it is my strong belief that further 
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investigation into the 3-D epigenomic bases of neurodevelopmental diseases will lead to 

critical, fundamental insights into our understanding and treatment of these diseases. 

 

6.2 Limitations and Future Directions 

 It is important to highlight one key limitation of these results as a whole: a lack of 

precise genome-editing experiments that directly test the causal influence of the loops and 

enhancers identified. This is especially important in the case of testing the function if 

activity-decommissioned enhancers in the pathogenesis of Schizophrenia. Chapter 5 is the 

first work to my knowledge that has identified activity-decommissioned enhancers as 

potentially critical to proper brain development, meaning these enhancers have never been 

studied in depth. Thus, an important next step is to use CRISPR-Cas9 genome editing 

and/or epigenetic editors like the CRISPRi system to perturb activity-decommissioned 

enhancer activity and loop presence in developing, inactive neurons and look for resulting 

changes in gene expression. A thorough investigation will connect epigenetic and 

transcriptional perturbations to alterations in how synapses form and function, thus leading 

to changes in properties of neuronal networks and behavioral changes in an animal model. 

Because our initial findings suggest these enhancers and loops play a role in homeostatic 

scaling of synaptic strength (Figure 5.10) and may be dysregulated in Schizophrenia 

(Figure 5.19), I propose that such follow-up studies have a high probability of revealing 

foundational insights into how the 3-D epigenome directs mammalian brain development, 

memory and cognition. 

 A second tantalizing observation that requires further exploration resides within the 

deactivation kinetics of the loops that Fos and Arc form (Figure 5.14). We note that the 



183 
 

enhancers in these loops peak in activity at 20 minutes post neuronal activation, which is 

also when loop strength peaks and prior to max mRNA levels. First, it is important to test 

the dynamics of nascent transcription in this system using a method like PRO-seq253, 

because it remains possible that nascent transcription also peaks at 20 minutes post 

activation but mRNA continues to accumulate between the 20 and 60 minute timepoints. 

Additionally we observe that while enhancer activity returns to near baseline by 60 minutes 

post stimulation, loop strength remains high at the same timepoint and even remains 

elevated above baseline at 360 minutes post stimulation. This raises the exciting possibility 

that slow loop decommissioning kinetics may retain an epigenetic ‘memory’ of past 

activation events so that neurons are primed for a stronger/faster upregulation of activity 

response genes upon subsequent stimulation events. To test this hypothesis, I propose an 

experimental paradigm in which after 360 minutes of activation, activation cues 

(Bicuculline, KCl and/or Bdnf) are temporarily removed and TTX is added to inactivate 

the culture on the time scale of minutes to hours. During this inactivation time, enhancer, 

loop and gene expression inactivation kinetics should be mapped, with the goal of 

identifying a time point at which enhancer activity and gene expression have fully returned 

to baseline but residual loop strength remains. If this time point exists, neurons should then 

be re-stimulated to test the hypothesis that the higher residual loop strength primers the 

enhancer to activate Fos and/or Arc on a more rapid timescale or to a higher peak 

expression value. The results of these experiments have the potential to implicate 

chromatin loop activation and deactivation as a tool for each neuron to record past 

activation events within the nucleus and thus integrate the effects of multiple activation 
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events across time. Such a finding would have large-scale implications for our 

understanding of the molecular underpinnings of human cognition and memory. 
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APPENDIX I: METHODS ASSOCIATED CHAPTER 3 

Embryonic Stem (ES) Cell Culture 

V6.5 ES cells from Novus Biologicals (NBP1-41162) were cultured as previously 

described 156 under standard pluripotent (serum/LIF) conditions on Mitomycin-C 

inactivated MEFs. To generate the 2i/LIF condition, ES cells were transitioned to serum-

free media containing 3 uM CHIR99021 (Axon Medchem #1386), and 1 uM PD0325901 

(Axon Medchem #1408) (as described in 156) and propagated for 2 passages on feeder cells. 

Before fixation, both ES cell conditions were passaged onto 0.1% gelatin coated plates to 

remove the feeder layer, and fixed at ~60% confluency. Thus, the 2i/LIF ES cells were 

cultured for 3 passages under 2i/LIF conditions before fixation. 

 

Primary Neural Progenitor Cell (NPC) Culture 

Neural progenitor cells were cultured as previously described 156. Briefly, NPCs were 

cultured as neurospheres for two passages to purify the population of non-adherent NPCs. 

Neurospheres were then dissociated and passaged onto Poly-D-Lysine Hydrobromide (100 

ug/mL, Sigma P7280), and laminin (15 ug/mL, Corning 354232) coated plates, and fixed 

next day. 

 

CTCF ChIPseq 

Chromatin immunoprecipitation was performed as previously described 156. Libraries were 

prepared for sequencing using the NEBNext Ultra Library Prep Kit (NEB #E7370) and 

following the manufacturer’s protocol for ChIP-seq library preparation. No size selection 

step was performed following adapter ligation. The libraries were amplified over 18 PCR 
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cycles using NEBNext Multiplex Oligos for Illumina (NEB #E7335). The final ChIP 

libraries were eluted in 30 uL 0.1x TE from the Agencourt AMPure XP beads, at which 

point we confirmed the library contained DNA fragments ranging from 250 to 1200 bp, 

including the adapters, by running a High-Sensitivity DNA assay on an Agilent 

Bioanalyzer. The concentration of these libraries was assayed via the KAPA Illumina 

Library Quantification Kit (#KK4835), diluted to equivalent concentrations and pooled, 

and finally sequenced with 75-cyles per paired-end on the Illumina NextSeq500. 

 

ChIP-seq peakcalling 

Published ChIP-seq data was downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo/) 

and reanalyzed according to. Reads were aligned to mouse genome build mm9 using 

Bowtie with default parameters 254. Reads were considered if they had two or fewer 

reportable alignments. To facilitate the comparison of ChIPseq libraries across cell types, 

the mapped reads were filtered to remove optical and PCR duplicates and then 

downsampled to equivalent read numbers across cellular states. The CTCF ChIP libraries 

for ES 2i, ES serum and pNPC were downsampled to 11 MM reads and the whole cell 

extract libraries were downsampled to 15 MM reads. For YY1 ChIPseq libraries, the ES 

serum, ProB, and pNPC samples and inputs were downsampled to just over 7 MM reads. 

The H3K27ac ChIP libraries for ES serum and pNPC were downsampled to 7 MM reads 

and the whole cell extract libraries were downsampled to 7 MM reads. Peaks were 

identified using Model-based Analysis for ChIP Sequencing v2.0 (MACS2) 255. For CTCF 

ChIPseq, default parameters were used with a p-value cutoff of p < 1E-8. For YY1, we 

modified the parameters to facilitate accurate detection of broad peaks (--broad --broad-
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cutoff 1E-4 -p 1E-8). For histone modification H3K27ac ChIPseq, the same broad peak 

calling approach was utilized. 

 

Parsing Cell Type-Specific CTCF Occupancy Sites 

CTCF ChIP-seq peaks (p < 1x10-8) were utilized to parse CTCF sites into cell type specific 

occupancy classes with Galaxy. ‘ES 2i only’ CTCF peaks were defined as CTCF sites that 

were present in ES cells under 2i/LIF conditions and the absence of CTCF in ES cells in 

serum/LIF conditions and in NPCs. This class was generated using Galaxy to subtract ES 

serum and NPC CTCF peaks (p < 1x10-8) from ES 2i CTCF peaks. Similarly, ‘ES serum 

only’ CTCF was defined by the presence of CTCF in serum/LIF ES cells and the absence 

of CTCF in ES cells in 2i/LIF conditions and in NPCs; ‘NPC only’ CTCF was defined by 

the presence of CTCF in NPCs and the absence of CTCF in ES cells in 2i/LIF and 

serum/LIF condition. ‘2i+serum’ CTCF was defined by the presence of CTCF in ES cells 

in 2i/LIF and serum/LIF conditions and the absence of CTCF in NPCs. This class was 

generated via the intersection of ES 2i CTCF sites with ES serum CTCF sites, followed by 

the subtraction of NPC CTCF sites. ‘Serum+NPC’ and ‘2i+NPC’ CTCF sites were 

similarly parsed. Finally, ‘Constitutive’ CTCF was defined by the presence of CTCF in ES 

cells in 2i/LIF and serum/LIF and in NPCs. 

 

siRNA Knockdown of YY1 in pNPCs 

pNPCs were cultured as described above. After two passages in suspension, cells were 

seeded adherently at a density of 20,000 cells/cm2. In order to allow cells to reach a critical 

density before the start of transfection, 40 hours were allowed to pass between seeding and 
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the application of siRNA. The following siRNA pools were purchased from Dharmacon: 

YY1 (# L-050273-00-0005), Non-targeting Pool (# D-001810-10-05). Cells were 

transfected with a final concentration of 20 nM siRNA. RNAimax (Lifetech #13778-075) 

was used as a transfection reagent at 1/3 the recommended concentration (2.5 uL per well 

of 6 well plate, 14.5 uL per 10 cm dish). Reagents were prepared in Optimem according to 

RNAimax manufacturer’s instructions and then added dropwise to culture well/dish. 

Transfection continued for 78 hours, with media and transfection reagents replaced at hours 

24 and 48 after start of transfection. After 78 hours, cells were harvested for RT-qPCR, 

Western blot, and 3C/5C. 

 

In situ 3C 

pNPCs subjected to siRNA transfection were fixed with formaldehyde for 3C as previously 

described 156. 4 million cells were utilized per replicate and subjected to an in situ 3C 

protocol adapted from 10. Cell pellets were resuspended in lysis buffer consisting of 10 mM 

Tris-HCl (pH 8.0), 10 mM NaCl, 0.2% Igepal CA630 and 1x protease inhibitor and 

incubated with frequent agitation on ice for 20 minutes. Nuclei were washed twice with 

1.2X NEBuffer. SDS was added to a final concentration of 0.3% and the homogenate was 

incubated for 1 hr at 37°C. SDS treatment was inactivated by the addition of 20% Triton 

X-100 to a final concentration of 1.8% and incubation at 37°C for 1 hr. Chromatin was 

digested with HindIII (300U) overnight at 37°C then 65°C for 30 minutes.  Chromatin was 

then ligated upon the addition of ligation buffer components at final concentrations of: 

0.83% Triton X-100, 1X BSA, 1mM ATP, 50mM Tris-HCl, 50mM NaCl, 10mM MgCl2, 

1mM DTT and 15 uL of T4 DNA ligase (Invitrogen). The ligation reaction occurred at 
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16°C for 4 hours and then at room temperature for 30 minutes. Finally, samples were 

Proteinase-K digested, RNase treated, phenol-chloroform extracted with ethanol 

precipitation and resuspended in 1X TE buffer. 600 ng of 3C template was utilized for 5C 

as described in 9, 156.  

 

Gene expression quantification via RT-qPCR 

RNA isolation was done using the mirVana miRNA isolation kit (Lifetech #AM1560), 

following manufacturers protocol for total RNA isolation. Cells were lysed in mirVana 

supplied lysis buffer and stored temporarily at -20°C until all samples were collected. 

Volume of lysate utilized in organic extraction was adjusted to contain the lysate from 

500,000 cells. Manufacturer’s protocol was then followed precisely. cDNA was prepared 

for each sample using the SuperScript First-Strand Synthesis System (Lifetech #11904-

018) according to manufacturer’s specifications. 100 ng of RNA, quantified via Qubit, was 

loaded into each reaction. The following primers were designed to query relevant gene 

expression: 

YY1: F: CACGCTAAAGCCAAAAACAACC ; R: ATTCCCAATCACACTCCTGAAG 

Sox2: F: GCACATGAACGGCTGGAGCAACG ; R: 

TGCTGCGAGTAGGACATGCTGTAGG 

Olig2: F: GCAGCGAGCACCTCAAATC ; R: GATGGGCGACTAGACACCAG 

Nestin: F: AGGCCACTGAAAAGTTCCAG ; R: TAAGGGACATCTTGAGGTGTGC 

Zfp462: F: CAAAGCCCATGCTGGTGAAC; R: TTTGCCATGGACCTTGAGGG 

Klf4: F: AGACCAGATGCAGTCACAAGTC ; R: TTTTGCCACAGCCTGCATAG 
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Standard curves for each primer set above were generated by quantifying the product of a 

conventional PCR reaction and serially diluting the amplicon to create 200 – 0.0002 pM 

standards. qPCR reactions were performed on the Applied Biosystems StepOnePlus 

system using the Power SybrGreen PCR Master Mix (Applied Biosystems #4364659). For 

each qPCR reaction, primers were added to a final concentration of 400 nM and 1 uL of 

each standard and sample cDNA was loaded. The resulting CT values of the standards were 

used to generate a standard curve and calculate the concentration of transcript cDNA per 

100 ng of RNA loaded into the first strand reaction. 

 

Western blotting 

Cells for each condition were washed with ice-cold PBS and lysed in RIPA buffer (Sigma 

R0278, ~100 uL per 1 million cells). Cells in RIPA were scraped off of the dish and rotated 

for 30 min at 4°C. Samples were then spun for 20 minutes at 12,000 rpm and 4°C, after 

which the supernatant was stored at -20°C until further use and the pellet was discarded. 

Total protein content was estimated by BCA assay (Thermo scientific #23227) in order to 

target equal total protein loading. Sample to be loaded was then diluted in 4X Laemmli 

buffer (BioRad #161-0747) and 2-mercaptoethanol (final concentration 355 mM). Samples 

were run through a BioRad TGX 4-15% gel (#456-8084) and transferred to an LF-PVDF 

membrane using the BioRad TransBlot Turbo transfer system. After transfer, membranes 

were washed twice with TBS, then blocked for 1 hour in 3% BSA in TBS at room 

temperature. The membrane was incubated with primary antibodies (CTCF=Cell Signaling 

#3418 at 1:200, YY1= Santa Cruz #sc-1703 at 1:50, Gapdh=Cell Signaling #2118 at 

1:1000) in 3% BSA in TBS/T overnight at 4°C under constant agitation, then at room 
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temperature for 10 minutes. 3 washes in TBS/T were performed before incubation with 

secondary antibody (anti-Rabbit Dylight 650, abcam #ab96894) in 3% BSA in TBS/T at 

room temperature for 1 hour. Finally, blots were imaged on the ChemiDoc MP Imaging 

system after 3 washes in TBS/T. 

 

5C data analysis 

Technical note on preliminary processing of two analysis groups 

Two sets of 5C data, group1 and group2, were processed independently for this study. 

Group1 represents a re-analysis of raw reads from previously published 5C experiments 156 

and consists of ES 2i (n=2 replicates), ES Serum (n=2 replicates) and pNPC (n=2 

replicates) conditions. Group2 5C libraries were generated in the present study and consist 

of YY1 siRNA treated pNPCs (n=2 replicates) and scrambled siRNA treated pNPCs (n=2 

replicates). These 5C replicates were sequenced on the Illumina NextSeq 500 with 37 bp 

paired-end reads and then aligned to a pseudo-genome of the 5C primer set using Bowtie 

with default parameters 254. To be considered a count for downstream processing, reads 

were required to: (i) have only one unique alignment, (ii) have both paired-ends map to the 

pseudo-genome, (iii) represent an interaction between one forward and one reverse primer. 

Before downstream analyses, mapped 5C reads were trimmed of entire primers if the total 

counts sum of that primer was less than 10 or the primer was visually identified as low 

quality. Group1 data were high quality/high complexity. Preliminary analysis of Group2 

revealed a high level of spatial noise likely due to technical artifacts caused by suboptimal 

ligation for these particular libraries. Although we provide sequencing reads for all our 

queried 5C regions for Group2, we only publish downstream processing and analysis in 
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Group2 for the Sox2 and Klf4 regions, as these were highest complexity regions 

resembling our high quality NPC maps obtained from Group1. Thus, for Group2 data sets, 

the 5C primers for all regions other than Sox2 and Klf4 were removed before assembling 

primer-primer junction counts files. Group1 5C libraries were processed separately from 

Group2 5C libraries. 5C libraries were analyzed as detailed below. Custom scripts for all 

of the analysis steps are provided as supplemental material for full reproducibility of 

figures. 

 

Quantile normalization 

To account for sequencing depth and technical complexity differences among libraries, 5C 

replicates were conditionally quantile normalized. Briefly, the GC content of each 5C 

primer was calculated. Each primer-primer pair could then be assigned a pair of GC content 

values based on the two constituent primers. Primer-primer pairs with the same GC content 

pair were grouped. Within each group, counts for primer-primer pairs were quantile 

normalized across replicates as previous described 156. Counts of the same starting value 

(i.e. a tie) were assigned the average value of the lowest rank in the set of tied counts. 

Group1 and group2 data were quantile normalized separately. 

 

Primer correction 

To account for known primer-specific biases in our 5C data, we applied a modification of 

the published Express algorithm in which we computed joint bias factors by using counts 

data from all replicates 256. Group1 and group2 data were primer corrected separately. 
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Removal of low confidence primer-primer pairs 

Primer-primer pairs were removed from downstream analyses if they did not register at 

least 10 normalized reads in at least 3 of the replicates (group 1) or if they did not register 

at least 5 normalized reads (group 2).  

 

Interaction matrix binning 

We divided each of our queried regions into adjacent 4 kb bins because 4 kb is roughly the 

average restriction fragment size after HindIII digestion. Each entry of the binned 

interaction frequency matrix represents the relative frequency with which two 4 kb bins 

interact. The relative interaction frequency in each bin was set as the arithmetic mean of 

the normalized, logged primer-primer pair reads that mapped to within a 16 kb (Group1) 

or 20 kb (Group2) square smoothing window surrounding the coordinates of the midpoints 

of the two bins.  

 

Removal of low information content bins 

Interaction frequency matrix entries were set to ‘NaN’ and thus removed from downstream 

processing if the number of primer-primer pairs within the smoothing window of that 

matrix entry that were ‘NaN’ or zero exceeded 80% of the possible primer-primer pairs.  

 

Expected background modeling 

To evaluate looping interactions, we employed slight modifications of the donut and lower 

left background models recently developed by the Aiden group 10. This approach requires 

a global distance-dependence model, which we generated by first computing the arithmetic 
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mean of the interaction frequency matrix entries that represent interactions of equivalent 

genomic distance. For the shortest 1/3 of interaction distances queried we used the 

empirical mean as the distance-dependent expected; for the remaining interaction distances 

we calculated a lowess fit to the empirical means and utilized each fit value as the distance-

dependent expected. Global expected values were ‘corrected’ for local background 

interaction frequencies through the use of donut and lower left background filters specific 

to each entry in the binned interaction frequency matrix. The ‘Donut’ correction was 

applied according to (1): 

                                                    𝐸𝐸𝑖𝑖𝑖𝑖𝑑𝑑 =  𝐷𝐷𝐹𝐹(𝑖𝑖,𝑖𝑖)
𝐷𝐷𝐸𝐸(𝑖𝑖,𝑖𝑖)

×  𝐸𝐸𝑖𝑖𝑖𝑖                                                (1) 

where Eij is the global distance-dependence expected interaction frequency of bins i and j, 

and DF(i,j) and DE(i,j) are evaluations of a function ‘D’ over the interaction frequency 

matrix F and the global distance-dependence expected matrix E, respectively. The function 

‘D’ finds the sums of the values falling within the donut window for the entry (i,j) of the 

matrix of interest (represented here as ‘A’) with chosen parameters p and w (2): 

𝐷𝐷𝐴𝐴(𝑖𝑖, 𝑗𝑗) =  � � 𝐴𝐴𝑥𝑥𝑥𝑥
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) 

The ‘Lower Left’ correction was applied according to (3):  
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                                                              𝐸𝐸𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙 =  𝐿𝐿𝐿𝐿𝐹𝐹(𝑖𝑖,𝑖𝑖)
𝐿𝐿𝐿𝐿𝐸𝐸(𝑖𝑖,𝑖𝑖)

×  𝐸𝐸𝑖𝑖𝑖𝑖                                                                        

(3) 

where the LL function for a matrix A is defined as in (4) : 

𝐿𝐿𝐿𝐿𝐴𝐴(𝑖𝑖, 𝑗𝑗) =  � � 𝐴𝐴𝑥𝑥𝑥𝑥
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                                                                                                                                        (4) 

A schematic of the donut and lower left windows defined by these functions is shown in 

Fig. 3.5B. Eqn. 1 generated ‘Donut background’ matrices (see Fig. 3.5C). Eqn. 3 generated 

‘Lower left background’ matrices (see Fig. 3.5D). 

The parameters p and w determine the dimensions of the donut/lower left window 

surrounding each interaction frequency matrix entry as detailed by Aiden and colleagues 

10. p and w are defined as the number of bins between the pixel/entry of interest to the inner 

(p) and outer (w) edges of the donut window, respectively. Thus, if the donut window is 

conceptualized as two squares, one larger containing the second smaller square, p = (width 

of small square – 1) / 2, w = (width of large square – 1) / 2 (Fig. 3.5B). By applying 

guidelines from Rao et al. that p should have a distance of 20-25 kb, we set p equal to 5 

bins of size 4 kb. Similarly, we iterated through values of w, ranging from the minimum 

allowed by the formula (p+2=6) to 20 and selected w=15.  

 To capture the most stringent local background model represented within the Donut 

and Lower Left background models, for each matrix entry we calculated the maximum of 

the two models and entered this into a new ‘Donut/LL Max’ background matrix (see Fig. 

3.5E). If a matrix entry was non-existent (‘NaN’) in one background model but not both, 

the available real background value was utilized. Moreover, to avoid propagating expected 
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values in which we had low confidence, we set the corrected expected matrix entry to 

‘NaN’ and excluded the bin-bin interaction from further analysis if greater than 80% of all 

possible values within the corresponding donut or lower left window were non-existent.  

 

Probabilistic modeling 

As previously described 156, we modeled the background-corrected interaction frequencies 

as a continuous random variable using the logistic distribution. Using the R fitdistr() 

function, we parametrized the fit independently for each region and replicate, and 

computed right-tail p-values. Finally, we computed ‘background-corrected interaction 

scores’ with the equation:  

IS𝑖𝑖,𝑖𝑖 = −10 × log2�𝑝𝑝𝑖𝑖,𝑖𝑖� 

where pi,j is the logistic p-value for a given entry in the background-corrected interaction 

frequency matrix. Background-corrected interaction score matrices were plotted as 

heatmaps to visualize 3D chromatin interactions that were enriched above the local 

interaction background (Fig. 3.5F). 

 

Removal of interactions below distance limit 

We identified 20 kb as our lower limit of bin to bin distance at which we could 

meaningfully identify 3D interactions; distance-corrected interaction p-value and distance-

corrected interaction score entries for bins that were less than 20 kb apart were also set to 

‘NaN’ and excluded from further analysis.  

 

Thresholding interaction scores into cell-type specific interaction classifications 
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Each background-corrected interaction score matrix entry was subjected to a series of 

thresholds to classify each into a set of classifications based their value in each cell type 

(Fig. 3.5G, similar to strategy pursued in Beagan et al. 2016). Both replicates of each cell 

type were required to pass each threshold in order for an interaction (matrix entry) to be 

classified into a specific class. Refer to Fig. 3.11A for visualization of the thresholds 

discussed below. Matrix entries with interaction scores ≤ 3.22 (p-value of 0.8) across all 

six replicates were classified as ‘background’ interactions. If an entry had interaction score 

from each cell type less than 25.99 (p-value of 0.165, referred to as the ‘significance 

threshold’), it was not classified into any interaction class. Otherwise, if both replicates 

from at least one cell type cleared the significance threshold, that entry could be classified 

as either (i) constitutive, (ii) present in two cell types but not the third (i.e. Serum+2i, 

Serum+NPC, NPC+2i), (iii) specific to one cell type (Serum-only, 2i-only, NPC-only). As 

in Supplemental Fig. 8A, this is simplified by first considering pairwise combinations of 

the cell type interaction scores; in this step, assuming the significance threshold has been 

passed in at least one of the cell types, an entry can be classified as either ‘present only in 

cell type A’, ‘present only in cell type B’, or ‘present in both’. Interactions were ‘present 

in both’ if: (i) both replicates for each cell type had an interaction score greater than or 

equal to 40 (p-value of 0.0625, referred to as the ‘constitutive threshold’), or (ii) if all four 

replicates under consideration cleared the significance threshold and the differences 

between all pairs of the four interaction scores were less than 30.2 (referred to as the 

‘difference threshold’). Otherwise in these two-way comparisons, entries were considered 

only in cell type A or B if in the ‘present’ cell type their interactions scores passed the 

significance threshold and the difference threshold when compared to the other cell type. 
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Finally, the results of these two-way comparisons were stitched together such that matrix 

entries were parsed as ‘constitutive’ if always classified as ‘present in both’ of the cell 

types queried, present in two cell types (Serum+2i, Serum+NPC, NPC+2i) if classified as 

‘present in both’ when comparing the two named cell types but classified as ‘present only 

in’ each of these cell types when compared to the third un-named cell type, or cell type 

specific (Serum-only, 2i-only, NPC-only) if classified as ‘present only in’ the named cell 

type across both comparisons with the other two cell types. Fig. 3.5H displays the three-

way scatterplot for these classes. 

 

Clustering and Cluster Trimming 

Similarly classified interactions that were spatially adjacent were grouped into interaction 

clusters as previously described 10. Briefly, for a given classified interaction, if it existed 

next to an already identified cluster, the interaction was added to that cluster; if not, a new 

cluster was assigned to that interaction. After iterating through all classified interactions, 

adjacent clusters of the same classification were merged.  

 Interaction clustering enabled us to threshold our data based on interaction size in 

addition to interaction score. For each interaction cluster, the number of individual 

interaction matrix entries within that cluster and any clusters directly adjacent (of any 

classification) was tallied. If the individual interaction sum across itself and all directly 

adjacent clusters was not greater than 2, that cluster was removed as a low confidence 

cluster. The process of iterating through all clusters was repeated until no clusters were 

trimmed. The thresholding, clustering, and trimming methods produced our significant 

interaction cluster calls (Fig. 3.5I). 
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Empirical false discover rates 

Six simulated 5C replicates were generated for each of our three cellular conditions as 

described in detail previously 156. The 6 simulated background-corrected interaction 

frequency replicates were then passed through the same processing stages as the real 

background-corrected interaction frequency replicates (see above). Because the replicates 

were simulated to be from the same cell type, any interaction that is classified as a dynamic 

looping category was considered a false positive. Simulations of six biological replicates 

of the same condition were performed 1000 times and the average number of interactions 

that were classified for each cell type across the 1000 simulations were reported (Fig. 

3.11B). One simulation round of six 5C library simulations of the NPC condition was 

chosen as representative in Figs. 3.11C-D. 

 

Parsing Cell-Type Specific YY1 

YY1 ChIP-seq datasets (NPC = 257, ES = 258, ProB = 185) were downsampled together and 

peak-called with the MACS2 broad-peak caller using a diffuse p-value of 1e-8 and a broad 

cutoff of 1e-4 (see above). The subsequent broad peaks were parsed into cell type specific 

occupancy classes using Galaxy. ES serum only YY1 was defined by the presence of YY1 

in serum/LIF ES cells and the absence of YY1 in NPCs and ProB cells (subtraction of NPC 

YY1 and ProB YY1 peaks from ES serum YY1). NPC only and ProB only peaks were 

parsed similarly. Constitutive YY1 was defined by the presence of YY1 in ES cells in 

serum, NPCs and ProB cells (intersection of the ES serum YY1 with NPC YY1 and ProB 
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YY1). A two-way class such as ‘NPC and ProB, not ES’ was parsed via the intersection of 

NPC and ProB peaks and the subtraction of ES peaks. 

 

Parsing ES and NPC Enhancers 

ES enhancers were defined as overlap between H3K27ac peaks and H3K4me1 peaks in ES 

cells in serum/LIF and absence H3K27ac in NPCs. This was calculated via the intersection 

of ES serum H3K27ac (p < 1x10-8) with ES serum H3K4me1 (p < 1x10-4, from 156) 

followed by subtraction of low-confidence NPC H3K27ac (p < 1x10-2). Similarly, NPC 

only enhancers were defined by overlap between H3K27ac peaks in NPCs and H3K4me1 

peaks in NPCs and absence H3K27ac in ES cells in serum. To ensure exclusion of all genes 

from enhancer calls, we required that all parsed ES and NPC enhancers were not within 2 

kb of a transcription start site (TSS). 

 

Gene expression and Gene Annotation 

Normalized, log2 gene expression counts were utilized from 156. Genes were required to 

have a normalized, log2 expression count of at least 4 across both replicates of the cell type 

in which they were being considered active. Genes for which all pairwise replicate 

comparisons of ES serum expression with NPC expression displayed at least a 1.8 fold 

upregulation in ES cells were then intersected with H3K27ac (p < 1 x 10-8 in ES in serum); 

the resulting annotations were classified as ‘ES-specific genes’. Similarly, genes with at 

least a 1.8 fold upregulation in NPCs compared to ES cells in serum across all replicates 

were then intersected with NPC H3K27ac (p < 1 x 10-8) and classified as ‘NPC-specific 

genes’. Active genes across both cell types that exhibited than a 1.8 fold difference with 
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respect to each other were intersected with H3K27ac from both cell types and classified as 

‘Constitutively expressed’. Genes with normalized, log2 expression counts less than 2.5 

across both cell types were classified as ‘Inactive’.  

 

Computing the enrichments of genomic annotations within interaction classes 

Enrichments of annotations within interaction classes were calculated and visualized as 

previously described in detail 156.  

 

CTCF Intersection with Consensus Motif and Directionality Enrichment Calculation 

The CTCF position weight matrix was selected from the JASPAR core 2014 

vertebrates motifs library. The position and orientation of the motif in the mm9 mouse 

genome were determined with PWM Tools (http://ccg.vital-

it.ch/pwmtools/pwmscan.php). We then intersected our called CTCF peaks with this 

orientation file to assign orientations to each CTCF peak.  

First, we parsed CTCF peaks with forward and reverse consensus motif 

orientations. We then identified the 4 kb bins intersecting with directionally oriented 

annotations. To take into account our 16 kb 5C smoothing window, we also considered a 

bin to contain an annotation if an adjacent bin on either side of the bin in question contained 

the annotation. Next, for each classified interaction, we determined whether the bins at the 

base of that interaction contained (i) no CTCF, (ii) CTCF on only one side, (iii) conflicting 

CTCF orientations over a single peak or in a single bin or (iv) unique CTCF orientations 

within both bins (Fig. 3.12A). We next parsed the interactions with unique CTCF 

orientations on both sides by which motif orientations actually appeared in the two bins: 

http://ccg.vital-it.ch/pwmtools/pwmscan.php
http://ccg.vital-it.ch/pwmtools/pwmscan.php
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(i) interactions with the forward motif orientation in its upstream bin and the reverse 

orientation in its downstream bin were classified as ‘Convergent’; (ii) interactions with the 

same orientation on both sides, i.e. both forward or both reverse, were classified as ‘Same 

Direction’ or ‘Tandem’; finally (iii) an interaction was considered ‘Divergent’ if only 

reverse motif(s) were present on the upstream side of the interaction and forward motif(s) 

present on the downstream side. This analysis was performed on the ‘constitutive’, 

‘2i+Serum’, and ‘NPC-only’ interaction classes. The enrichment above background for 

each of these orientations in each interaction class was also calculated as described above 

(see ‘Computing the enrichments of genomic annotations within interaction classes’). 
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APPENDIX II: METHODS ASSOCIATED CHAPTER 4 

ES cell culture 

V6.5 ES cells (murine; C57Bl/6 x 129SvJae; male) were purchased from Novus 

Biologicals. ES cells were expanded on Mitomycin-C inactivated MEF feeder layers in 

media consisting of DMEM, 15% FBS (Hyclone), 103 U/mL leukemia inhibitory factor 

(Millipore), non-essential amino acids (Lifetech), 0.1 mM 2-mercaptoethanol, 4 mM l-

glutamine (Lifetech) and penicillin/streptomycin (Lifetech). Prior to fixation, ES cells were 

passaged onto gelatin-coated, feeder-free plates to remove feeder layer, and fixed at 

approximately 70% confluence. Cells were grown to ~7e6 cells per 15 cm dish at the time 

of fixation. 

 

Primary NPC isolation 

Neural progenitor cells were isolated from whole brains of newborn 129SvJae x C57/BL6, 

Sox2-eGFP mice and cultured as neurospheres in Neural Stem Cell media: DMEM/F12 

media (Invitrogen 12100-046 and 21700-075) containing 72 mM glucose, 120 mM Sodium 

Bicarbonate, 5.6 mM Hepes (Sigma H-0887), 27.5 nM Sodium Selenite (Sigma S-9133), 

18 nM progesterone (Sigma P0130), 90 ug/mL Apo-transferrin (Sigma T1428), 23 ug/mL 

insulin (Sigma I6634), 100 uM putrescine (Sigma P-7505), 2 mM L-glutamine (Gibco 

25030-081), 1% Pen/Strep (Sigma P0781), 2 ug/mL heparin, 20 ng/mL rhEGF (R&D 

Systems) and 10 ng/mL rhFGF (R&D systems). Neurospheres were passaged every 3-4 

days to prevent the formation of necrotic cores. After two passages, neurospheres were 

dissociated with Accutase and plated on Poly-D-Lysine Hydrobromide (100 ug/mL, Sigma 
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P7280), and laminin (15 ug/mL, Corning 354232) coated plates at 60,000 cells/cm2. Cells 

were fixed with 1% formaldehyde one day after adherent plating. 

 

iPS cell culture 

The iPS cells analyzed in this study were reprogrammed from primary NPCs (pNPCs) as 

described in 206. Briefly, pNPCs were transduced with lentiviral vectors to ectopically 

express Oct4, Klf4, and c-Myc (OKM). iPS cells derived from pNPCs were cultured on 

irradiated MEFs in medium consisting of Knock-Out DMEM, 15% FBS, Glutamax, non-

essential amino acids, penicillin-streptomycin, b-mercaptoethanol and Leukemia 

Inhibitory Factor (LIF). iPS cells were grown to ~7e6 cells per 15 cm dish at the time of 

fixation. This iPS clone was extensively characterized for its pluripotent properties as 

assessed by (i) high expression of endogenous pluripotency markers (Oct4, Sox2, Nanog), 

(ii) demethylation of Oct4 and Nanog promoters, (iii) in vivo teratoma formation of all 

three germ layers and (iv) generation of chimeric mice 206. 

 

Culture of pluripotent cells in 2i media 

iPS and ES cells were removed from serum-containing media described above and cultured 

in 2i serum-free media comprised of 500 mL Knock Out DMEM (Life Technologies # 

10829-018), 15% Knockout Serum Replacement (Life Technologies #10828), 5 mL N2 

supplement (Life Technologies #17502-048), 5 mL B27 Supplement (Life Technologies 

#17504-044) , 5 mg/mL BSA (Sigma A9418),  1 mM L-Glutamine (Life Technologies # 

25030-081), 1% Non-Essential Amino Acids (Millipore #TMS-001-C), 0.1 mM B-

Mercaptoethanol (Life Technologies #21985-023), 1% Penicillin-Streptomycin (Sigma 
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#P0781), 103 units/mL LIF (Millipore #ESG1107), 3 uM CHIR99021 (Axon Medchem 

#1386), and 1 uM PD0325901 (Axon Medchem #1408) 154. After two passages on feeder 

cells, ES and iPS cells in 2i media were passaged onto 0.1% gelatin to remove 

contaminating feeder cells.  Cells were grown to ~7e6 cells per 15 cm dish at the time of 

fixation with 1% formaldehyde before 5C. 

 

3C template generation and characterization 

3C templates were produced as previously described 9, 259-261 for ES (n=2), NPC (n=2), iPS 

(n=2), ES+2i (n=2) and iPS+2i (n=2) pellets. Briefly, cells were fixed in base culture media 

(serum-free) supplemented with formaldehyde added to a final concentration of 1%. After 

10 minute incubation at room temperature, fixation was terminated by adding 2.5M glycine 

stock to a final concentration of 125 mM glycine. Cross-linking termination was carried 

out for 5 minutes at room temperature followed by 15 minutes at 4°C. Cells were harvested 

with silicone scraper and pelleted, washed once with PBS, snap-frozen and stored at -80°C 

until processing. 

Pellets were resuspended in lysis buffer consisting of 10 mM Tris-HCl (pH 8.0), 10 

mM NaCl, 0.2% Igepal CA630 and 1x protease inhibitor (Sigma) in sterile water and 

incubated on ice for 30 minutes. Cells were lysed with a dounce homogenizer and washed 

with NEB2 buffer. SDS was added to a final concentration of 0.1% and chromatin was 

solubilized by incubating at 65°C for 10 minutes. Triton X-100 was added to quench the 

SDS, and HindIII digestion was performed overnight at 37°C. The next day, the HindIII 

was inactivated and ligation was performed under dilute conditions at 16°C for 2 hours 

using T4 DNA ligase (Invitrogen) in ligation buffer consisting of 1% Triton X-100, 
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0.1mg/mL BSA, 1mM ATP, 50mM Tris-HCl, 50mM NaCl, 10mM MgCl2 and 1mM DTT. 

After ligation, cross-links were reversed via incubation with 63.5µg/mL Proteinase K 

(Invitrogen) for 4 hours at 65°C, at which point the Proteinase K concentration was doubled 

and the solution was incubated overnight at 65°C. The 3C template DNA was then purified 

via a phenol extraction and a subsequent phenol-choloroform extraction before 

precipitation in ethanol. The resulting DNA pellet was resuspended in TE buffer consisting 

of 10 mM Tris-HCl (pH 8.0) and 1 mM EDTA (pH 8.0), and again purified by a series of 

phenol-chloroform extractions and precipitated in ethanol. The resulting DNA pellet was 

resuspended in TE buffer and treated with 100 ug/mL RNase A for 3 hours at 37°C.  

 

5C primer design 

5C primers were designed at HindIII restriction sites using the my5Csuite primer design 

tools 262, as described in detail in 9.  

  

5C library generation and sequencing 

5C libraries were generated as described previously 9, 43, 260, 263, 264. 600 ng of each 3C 

template was mixed with final concentration 1 fmol of each 5C primer in 1x NEB4 buffer. 

Solution was incubated at 55°C for 16 hr to anneal primers to 3C templates. 5C primers 

annealed to 3C ligation junctions were ligated via the addition of 1x Taq ligase buffer 

containing 10 U Taq DNA ligase. Solution was mixed by pipetting and incubated for 1 

hour at 55°C. Ligated 5C primers were then selectively amplified via the addition of 

universal forward (T7) and reverse (T3) primers, which anneal to the complementary 

universal primer tails of the 5C primers. 5C libraries (400 ng per library) were prepared for 
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sequencing using the NEBNext Ultra DNA Library Prep Kit (NEB # E7370S) 

and NEBNext Multiplex Oligos for Illumina (NEB # E7335S). After ligation of adapters 

following manufacturer's protocol, nuclease-free water was added to bring the reaction 

volume to 100 uL. Fragments of size ~ 220 bp (100 bp 5C product + 120 bp Illumina 

adapters) were preferentially selected using AgenCourt Ampure XP beads (Beckman 

Coulter  A63881), by first adding 70 uL beads and retaining the supernatant, then adding 

25 uL beads, removing the supernatant, and washing and eluting sample from the beads 

following the manufacturer's protocol. Following adapter ligation and size selection, the 

libraries with Illumina adapters were amplified with 10 cycles of PCR. The size distribution 

of the purified libraries were assessed on the Agilent BioAnalyzer using the DNA 1000 kit 

(Agilent  5067-1505). The resulting 5C libraries were pooled and sequenced with 37-

cycles per paired-end on the Illumina NextSeq500. 

 

iPS cell transgene integration detection by 5C primers 

This iPS clone was generated via integration of transgenic Oct4, Klf4, and c-Myc genes 

206. Hochedlinger and colleagues demonstrated that this iPS clone exhibits transgene-

independent self-renewal potential, which would exclude that these cells still depended on 

transgenic OKM expression. We note that our 5C approach does not exclude detection of 

the exogenous Oct4 and Klf4 genes (which were likely virally integrated at sites distal to 

our 5C regions) with 5C primers that directly bind to the Oct4/Klf4 coding sequence. 

However, short-range, cis interactions represent the majority of the 5C signal, and we do 

not analyze trans interactions in this study. Thus, we would expect the transgenes to 
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contribute relatively little to the interaction counts between these genes and other sites 

within our designed primer set. 

 

RNA-seq library preparation 

900,000 cells of each cell type were lysed with Trizol (Life Technologies 15596-026) and 

snap frozen. Total RNA was extracted and purified using the miRvana miRNA Isolation 

Kit (Ambion AM 1561) and samples were eluted into 100 uL nuclease free water. All RNA 

samples had an RNA Integrity Number >9 as assessed by Agilent BioAnalyzer. 50 uL of 

each RNA sample was treated with 1 uL rDNAse I (Ambion 1906) to remove residual 

genomic DNA. 350 ng DNAse-treated total RNA was prepared for sequencing using the 

Illumina TruSeq Stranded Total RNA Library Prep kit with RiboZero (Illumina RS-122-

2202) following the supplier’s protocol. cDNA libraries with Illumina adapters were 

amplified with 15 cycles of PCR. Libraries were purified using AgenCourt Ampure XP 

beads (Beckman Coulter A63881) with two rounds of 1:1 bead:sample selection. The size 

distributions of the purified cDNA libraries were assessed on the Agilent BioAnalyzer 

using the DNA 1000 kit (Agilent 5067-1505).  Libraries were pooled and sequenced with 

75-cyles per paired-end on the Illumina NextSeq500. 

 

RNA-seq data processing 

RNA-seq reads were aligned to the mouse genome (build mm9) using the Tophat (Tophat 

v2.1.0) alignment tool 265 with the parameters: -r 100 --no-coverage-search --library-type 

fr-firststrand and UCSC gene annotations. Gene level read counts were computed using the 

htseq-count tool (http://www-huber.embl.de/users/anders/HTSeq/doc/count.html) with 
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parameters: -m union --stranded=reverse and UCSC gene annotations. For analyses of all 

10 samples (ES_Rep1, ES_Rep2, pNPC_Rep1, pNPC_Rep2, iPS_Rep1, iPS_Rep2, 

ES2i_Rep1, ES2i_Rep2, iPS2i_Rep1, iPS2i_Rep2), genes with more than three counts in 

at least five libraries were retained, resulting in a total of 11,767 genes analyzed. To account 

for library-specific differences in sequencing depth, log2-transformed libraries were 

normalized by read depth of the 75%tile gene. Libraries were assessed for the absence of 

batch effects before proceeding to downstream biological analyses (Figure 4.8). 

 

CTCF binding detection by ChIP-qPCR 

Approximately 20 million cells were fixed in serum-free culture media supplemented with 

formaldehyde added to a final concentration of 1%. After 10 minute incubation at room 

temperature, fixation was terminated by adding 2.5M glycine stock to a final concentration 

of 125 mM glycine. Cross-linking termination was carried out for 5 minutes at room 

temperature followed by 15 minutes at 4°C. Cells were harvested with silicone scraper and 

pelleted, washed once with PBS, snap-frozen and stored at -80°C until processing.  

Cell pellets were thawed for 10 min on ice before use. Nuclei were isolated by 

resuspending each pellet in 1 mL Cell Lysis Buffer (10 mM Tris pH 8.0, 10 mM NaCl, 

0.2% NP-40/Igepal, Protease Inhibitor, PMSF), incubating on ice for 10 min, and spinning 

to pellet. Nuclei were resuspended in 500 uL Nuclear Lysis Buffer (50 mM Tris pH 8.0, 

10 mM EDTA, 1% SDS, Protease Inhibitor, PMSF) and incubated on ice for 20 min. After 

bringing the samples up to volume by the addition of 300 uL IP Dilution Buffer (20 mM 

Tris pH 8.0, 2 mM EDTA, 150 mM NaCl, 1% Triston X-100, 0.01% SDS, Protease 

Inhibitor, PMSF), samples were sonicated for 45 minutes using an Epishear sonicator set 
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at 100% amplitude, with cycles of 30 seconds on and 30 seconds off. The resulting sheared 

chromatin was spun down, and the supernatant was transferred to a preclearing solution of 

3.7 mL IP Dilution Buffer, 0.5 mL Nuclear Lysis Buffer, 175 uL of Agarose Protein A/G 

beads, and 50 ug Rabbit IgG, and rotated at 4°C. 35 uL Protein A/G agarose beads were 

pre-bound with 10 uL anti-CTCF antibody (Millipore #07-729) and incubated for 2 hours 

during the pre-clear stage. After a two hour pre-clear incubation, the beads were pelleted, 

and 4.5 mL supernatant was removed. 200 uL was reserved for input control, while the 

remaining supernatant was transferred to agarose beads pre-bound with antibody and 

rotated overnight at 4°C. Bound bead complexes were washed once with 1 mL IP Wash 

Buffer 1 (20 mM Tris pH 8.0, 2 mM EDTA, 50 mM NaCl, 1% Triton X-100, 0.1% SDS), 

twice with 1 mL High-Salt Buffer (20 mM Tris pH 8.0, 2 mM EDTA, 500 mM NaCl, 1% 

Triton X-100, 0.01% SDS), once with IP Wash Buffer 2 (10 mM Tris pH 8.0, 1 mM EDTA, 

0.25 M LiCl, 1% NP-40/Igepal, 1% Na-deoxycholate), and finally once with 1x TE. 

Complexes were eluted by twice resuspending bound beads in 110 uL Elution Buffer (100 

mM NaHCO3, 1% SDS), pelleting the beads after each elution and transferring 100 uL 

supernatant to a new tube. Finally, 12 uL of 5M NaCl and 20 ug RNase A were added to 

both 200 uL IP and input samples and incubated at 65 degrees for 1 hour, followed by the 

addition of 60 ug of Proteinase K and overnight incubation at 65 degrees. DNA was isolated 

via phenol-chloroform extraction and ethanol precipitation, and concentration was 

quantified using Qubit fluorometer. 

 ChIP libraries were prepared from 3 ng of IP and input DNA using the NEBNext 

Ultra Library Prep Kit (NEB #E7370) following the manufacturers protocol for preparation 

of ChIP libraries. After adapter ligation, no size selection step was performed, and ligated 
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samples were enriched through 18 PCR cycles using NEBNext Multiplex Oligos for 

Illumina (NEB #E7335). Libraries were eluted in 30 uL 0.1x TE, and a fragment size 

distribution between 250 and 1200 bp including sequencing adapters was confirmed using 

a High-Sensitivity assay on a Agilent Bioanalyzer.  

 Primers were designed to query specific CTCF binding sites:  

Figure 
Panel Forward Primer Reverse Primer 

Genomic 
Coordinates 

5G  
(NPC
-iPS) 

TGTGGTCCTTTGTCCTTC
CTG 

TGTCACGCATCCTGAAT
CTTC 

Chr3:350021
12-35002461 

5G  
(ES 
only) 

AACTCACTAAGTGGCCC
GAAG 

ACCCCAGCTCCACGAAA
ATG 

Chr3:346588
34-34659306 

6H 
GTGTACAAGCACGCACG
TATG 

AAAGGGAGGTGCTCAA
TGGTC 

Chr4:549363
08-54936574 

S7G 
TAACCCTCACTGCTTGC
GTAG 

TGTGTCCTTAGCAGACG
TGTC 

Chr16:90635
525-
90635762 

 

Quantitative PCR was performed by loading 1 ng of each sample library into each 20 uL 

reaction, including 10 uL Power SYBR Green PCR Master Mix (Applied Biosystems # 

4367659), and corresponding primers (200 nM final concentration). Reactions were loaded 

onto an Applied Biosystems StepOnePlus in three replicates and assayed using standard 

qPCR cycling conditions (95°C for 10 min, followed by 40 cycles of 95°C for 15 sec and 

65°C for 1 min). The CT threshold was set at 1900 so as to fall in the middle of the 

exponential phase for all primers and to capture the CT value for all samples. To facilitate 

comparison among the five cellular conditions, relative enrichment in CTCF ChIP signal 

was assessed by normalizing data by a reference control primer representing a 

constitutively bound CTCF site.  
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5C data processing pipeline 

Paired-end read mapping and counting 

5C data were generated with paired-end sequencing (37 bp paired-end reads) on the 

Illumina NextSeq 500 instrument. The two ends of paired-end (PE) reads were aligned 

independently to a pseudo-genome consisting of all 5C primers using Bowtie with default 

parameters (http://bowtie-bio.sourceforge.net/index.shtml) 254. Only reads with one unique 

alignment were considered for downstream analyses. Interactions were counted when both 

paired-end reads could be uniquely mapped to the 5C primer pseudo-genome. Only 

interactions between forward-reverse primer pairs were tallied as true counts.  

 

Low count primer removal 

Primers with fewer than 100 total reads across all possible cis primer ligation partners were 

excluded from further analysis. Removed primers are listed below: 

#track Start Stop Primer ID 
chr3 87677389 87683794 5C_326_Nestin_FOR_117:0 
chr3 88032708 88035039 5C_326_Nestin_FOR_192:0 
chr3 88124897 88125644 5C_326_Nestin_FOR_214:0 
chr3 88283586 88286361 5C_326_Nestin_FOR_248:0 

chr16 91242594 91247280 
5C_325_Olig1-
Olig2_FOR_193:0 

chr17 35285175 35292115 5C_327_Oct4_FOR_191:0 
chr17 36018525 36020858 5C_327_Oct4_FOR_378:0 
chr17 36023358 36024542 5C_327_Oct4_FOR_380:0 
chr17 36393683 36395722 5C_327_Oct4_FOR_472:0 
chr3 34546431 34549386 5C_329_Sox2_REV_154:0 

  

Raw contact matrix visualization 

First we designated the restriction fragments to which 5C primers were designed as 

“queried restriction fragments”. Raw contact matrices were generated for each region by 
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placing the number of counts read for the interaction of the ith queried restriction fragment 

in the region with the jth queried restriction fragment in the region in the ijth entry of the 

contact matrix. This created a square, symmetric matrix of contacts with dimensions equal 

to the number of primers in the region. Because interactions between fragments whose 

corresponding primers are oriented in the same direction cannot be detected with our 5C 

primer design, not every entry of this matrix corresponds to a detectable fragment-fragment 

interaction. 

Because approximately half of the entries in this contact matrix represent 

undetectable fragment-fragment interactions, we visualized raw contact matrices at the 

fragment level by arranging the forward primers on the x-axis and the reverse primers on 

the y-axis, in order of primer number, which corresponded directly with the sorted order of 

genomic coordinates (heatmaps in Fig. 4.2A). Thus, the ijth cell of the resulting heatmap 

represents the number of counts for the interaction of the fragment queried by the jth 

forward primer with that queried by the ith reverse primer. This heatmap, used only for 

initial visualization, is therefore asymmetric and not necessarily square. 

 

Quantile normalization 

It is essential to account for technical variation among 5C replicates - in particular, batch 

effects for experiments processed or sequenced on different days - before comparing 

dynamic architecture between biological conditions. Indeed, we have found that two 

important factors driving experimental variability between biological replicates are (i) 

library complexity and (ii) sequencing depth differences between each batch of processed 

samples. We have found that a simple normalization factor is insufficient to remove bias 
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due to sequencing depth because the differences in read counts between replicates tend to 

compound in a nonlinear manner based on the underlying complexity of the library.  

 Quantile normalization is a rank-based approach that has successfully been used to 

normalize microarray 266, RNAseq 267 and Hi-C 44 data prior to downstream modeling. Here 

we also find that quantile normalization is effective at placing different 5C libraries on the 

same distributional scale (compare distance dependence and histograms in Fig. 4.2A-B) 

while preserving biologically significant architectural features (compare heatmaps in Fig. 

4.2A-B). We have noticed that quantile normalization is particularly effective on 5C 

datasets because the strongest signal in the raw data is the distance-dependence 

background, providing a smooth, ubiquitous rank-order gradient for the comparison of 

contacts across replicates and conditions. Indeed, we found that our analysis was largely 

insensitive to the exact placement of the quantile normalization step relative to the other 

steps. For example, we moved the quantile normalization step to the end of our 5C analysis 

pipeline (Fig. 4.3A+B,E-G) and found that all views of the data show striking similarity 

to the corresponding stages of our implemented data processing pipeline (Fig. 4.2A-F).  

 

Primer correction 

Consistent with our findings in 9, we noticed the presence of primer-specific bias in our 5C 

data. For example, we observed strongly underenriched or overenriched stripes in our raw 

heatmaps – indicating that entire rows/columns can have increased or decreased counts 

(heatmaps in Fig. 4.2A). Consistent with this observation, the cis interactions for each 

primer show up to an ~8500-fold variation in mean interaction frequency, suggesting the 

presence of artifacts independent from the biology that influence the 5C signal (boxplots 
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in Fig. 4.2A). To account for primer-specific artifacts, we applied our previously developed 

primer correction method that uses stochastic gradient descent to compute primer-effect 

normalization factors 9. After the primer correction step, we observed a marked attenuation 

of primer-specific artifacts (heatmaps and boxplots, Fig. 4.2C). 

 

Low count fragment-fragment pair removal 

Fragment-fragment pairs with primer-corrected counts below 10 in any replicate were 

flagged as low outliers with essentially unreliable values and were excluded from further 

analysis. 

 

Contact matrix binning 

We next generated a binned contact frequency matrix by binning each of our queried 

regions at regular 4 kb intervals (approximately equal to the average cut frequency of our 

chosen restriction enzyme, HindIII). To assign a value to each element of the binned 

contact probability matrix, we computed an arithmetic mean of logged counts using a 

square, 20 kb smoothing window as: 

 

𝑏𝑏𝑖𝑖,𝑖𝑖 =
∑ log2�𝑛𝑛𝑘𝑘,𝑙𝑙 + 1�𝑘𝑘,𝑙𝑙∋|𝑚𝑚𝑘𝑘−𝑀𝑀𝑖𝑖|≤10 kb,�𝑚𝑚𝑙𝑙−𝑀𝑀𝑗𝑗�≤10 kb

∑ 𝟏𝟏(𝑑𝑑𝑘𝑘 ≠ 𝑑𝑑𝑙𝑙)𝑘𝑘,𝑙𝑙∋|𝑚𝑚𝑘𝑘−𝑀𝑀𝑖𝑖|≤10 kb,�𝑚𝑚𝑙𝑙−𝑀𝑀𝑗𝑗�≤10 kb
 

 

where 𝑏𝑏𝑖𝑖,𝑖𝑖 is the value assigned to the ijth entry of the binned contact matrix for the region 

and represents the contact frequency of the ith and jth bins in the region, 𝑚𝑚𝑘𝑘 represents the 

midpoint of the kth primer in the region, 𝑀𝑀𝑖𝑖 represents the midpoint of the ith bin in the 
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region, and 𝑛𝑛𝑘𝑘,𝑙𝑙 represents the number of counts for the interaction of the kth queried 

fragment in the region with the lth queried fragment in the region after primer 

normalization. 𝟏𝟏(𝑑𝑑𝑘𝑘 ≠ 𝑑𝑑𝑙𝑙) represents an indicator function that checks whether the kth and 

lth primer in the region have the same directionality. This ensures that the average is 

computed only over the possible primer-primer interactions. 

If more than 80% of all the fragment-fragment pairs in a bin-bin pair’s smoothing 

window had values that were zero, impossible, or had been previously removed as low 

outliers, that bin-bin pair was determined to be located in a low-confidence region and was 

excluded from further analysis. The bin-bin pair removal condition can be represented as: 

 

∑ 𝟏𝟏�𝑛𝑛𝑖𝑖,𝑖𝑖 > 0�𝑖𝑖,𝑖𝑖∋|𝑚𝑚𝑖𝑖−𝑀𝑀𝑘𝑘|≤10 kb,�𝑚𝑚𝑗𝑗−𝑀𝑀𝑙𝑙�≤10 kb

∑ 1𝑖𝑖,𝑖𝑖∋|𝑚𝑚𝑖𝑖−𝑀𝑀𝑘𝑘|≤10 kb,�𝑚𝑚𝑗𝑗−𝑀𝑀𝑙𝑙�≤10 kb
< 20%

⇒ 𝑏𝑏𝑘𝑘,𝑙𝑙 excluded from further analysis 

 

We selected the 20 kb smoothing window size and the 4 kb matrix resolution 

through a process of (1) iteratively testing window sizes and matrix resolutions, (2) visually 

inspecting the resultant heatmaps and (3) qualitatively comparing heatmaps to classic 

epigenetic marks. Our final strategy optimally accounted for sampling noise in 5C data 

while retaining what we term a pseudo-fragment (~12 kb) resolution (discussed in detail 

below). We chose to assign values to the entries of the binned contact matrix using an 

average rather than a sum because HindIII has been previously shown to exhibit highly 

variable restriction site density across the genome. To attenuate the spatial noise present in 

our fragment-level data, our binning strategy effectively averages counts across a 20 kb 
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window (compare heatmaps in Fig. 4.2C+D and Fig. 4.3B+E). This reduction of spatial 

noise is concurrent with a tightening of the distribution of counts across this step (compare 

histograms in Fig. 4.2C+D). 

 

Pseudo-fragment level 5C mapping resolution 

Many definitions of 3C/4C/5C/Hi-C resolution have been reported. Therefore, it is 

important to clarify our definition of resolution and our strategy for matrix binning. In a 

recent publication, the so-called “mapping resolution” of a Hi-C contact density map was 

defined as the smallest locus size such that 80% of the loci have at least 1000 contacts 10. 

Importantly, Rao et al. reported the numbers in this definition as the finest scale at which 

they could reliably discern and distinguish architectural features in a Hi-C heatmap. By 

contrast to the “mapping resolution” metric, Rao et al. also define an alternative “matrix 

resolution” metric which is simply the bin size selected by the investigator when 

constructing a contact density matrix. In our lowest read depth replicate, iPS+2i Rep 1, 

97% of the queried fragments have more than 1000 contacts. Thus, if we define our loci as 

the individual restriction fragments queried by the assay, all our datasets have a mapping 

resolution equal to the fragment size (~4 kb). We find a 4 kb bin size as the finest scale at 

which we can discern architectural features in our 5C contact density matrix. On the basis 

of a strictly “matrix resolution” definition, the resolution of our 5C data would be 4 kb. 

However, because we use a square 20 kb smoothing function (discussed below), there are 

hypothetical situations in which we cannot resolve two perfectly punctate features that are 

within 20 kb of each other. Thus, our “mapping” resolution falls in the range of 4-20 kb. 
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 The design and orientation of 5C primers is another critical factor unique to 5C that 

must be considered in calculating resolution. Importantly, the true alternating 5C primer 

design used here and in 9 only queries a subset of possible fragment-fragment interactions. 

Specifically, forward and reverse primers were tiled in a true alternating manner across our 

genomic regions. Only forward-reverse (F-R) and reverse-forward (R-F) ligation products 

can be detected with the ligation-mediated amplification approach. Thus, although we can 

distinguish most interactions at a ~4 kb resolution, our more generalized resolution due to 

the alternating primer design is at the level of F-R-F or R-F-R fragment sequences (~12 

kb; also the midpoint between our 4-20 kb mapping resolution). 

 To our knowledge, no Hi-C map has been reported at true single-fragment 

resolution as even the highest density maps have been binned to 1-5 kb resolution with a 4 

bp cutter that cuts approximately every 200-300 bp in the genome. Thus, the highest 

resolution maps to date still average or sum information from at least 4 (1 kb resolution) 

but as many as 1000’s (1 Mb resolution) of adjacent restriction fragments prior to 

modeling, parameterization of models, and downstream analyses. The reason for this 

requisite binning step is that the sampling noise in 5C/Hi-C contact matrices represents a 

significant barrier in obtaining high-confidence information for the read counts in every 

bin across the genome. However, a high-confidence understanding of the interaction 

frequency can be modeled at the expense of losing some resolution by averaging or 

summing counts from nearby fragment-fragment pairs. Here, we use 5C, which offers key 

advantages over Hi-C in its ability to obtain high complexity contact density maps with a 

logistically reasonable sequencing depth. Thus, we have high complexity libraries (i.e. 

most restriction fragment ligation products have been sampled at an ultra-high count 
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density). For example, in iPS+2i Rep 1, our lowest-mapping replicate, 80% of our 

originally queried fragments received >5340 counts. Ultimately, to account for spatial 

noise, we chose a 20 kb windowing function to yield a search space over an approximately 

5x5 grid of primer-primer pairs (F-R-F-R-F or R-F-R-F-R). Overall, we propose that our 

resolution falls between 4 and 20 kb – with approximately a 12 kb resolution due to the 

true alternating primer design. 

 

Identification of bad primer gaps 

Restriction site density varies widely across the genome. Additionally, it is possible that 

certain primers fail to produce any counts due to technical error. Finally, many restriction 

fragments did not receive a primer due to low quality scores, leaving several loci unqueried 

by the assay. All three factors may affect the distance between one existing "working" 

primer and the next downstream "working" primer. When this distance is small compared 

to the smoothing window, the gap will be successfully spanned by multiple unique 

smoothing windows. When this distance is on a similar scale to the smoothing window, the 

smoothing window will be too small to reliably smooth across the gap. Within each region, 

we identified columns of bins that contained no positive counts from any primer ligation. 

When the length of a run of consecutive missing or zero fragments was greater than half 

the size of the smoothing window plus one bin, we classified the gap as "unsmoothable." 

Unsmoothable gaps are marked with dark gray on the heatmaps and excluded from all 

statistical analyses. 

 

Distance-dependence normalization 
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To account for the distance-dependence background inherent in 3C-related assays, we 

computed an empirical expected distance-dependence model (Fig. 4.2G). Within each 

region and replicate, we first grouped the bin-bin pairs according to their interaction 

distance d, as measured by the number of bins separating the constituent bins in the bin-

bin pair. We then computed the mean of the binned interaction frequencies within each 

group, as follows: 

𝜇𝜇𝑑𝑑 = mean𝑖𝑖�𝑏𝑏𝑖𝑖,𝑖𝑖+𝑑𝑑� 

where 𝜇𝜇𝑑𝑑 is the mean value at distance d (measured in number of bins of separation), and 

�𝑏𝑏𝑖𝑖,𝑖𝑖+𝑑𝑑�𝑖𝑖 is the sequence of binned contact frequencies for bin-bin pairs at distance d. Since 

the number of matrix entries included in each average will decrease with increasing 

distance d, these mean values are statistically weak predictors at long (> 600-700 kb for a 

1 Mb region) distance scales. To account for any noise in our empirical distance-

dependence estimations, we lowess-smoothed a subset of the empirical expected values in 

order to obtain a smooth approximation to the empirical expected values. Due to the high 

number of matrix entries at distances <= 300 kb, we retained the original mean values at 

short distance scales (<= 300 kb for a 1 Mb region). 

We next used our empirical expected model to normalize the binned contact 

matrices by computing a fold-enrichment of counts relative to the expected (Figs. 4.2E, 

4.3G). Since the values in our binned contact matrices were already log-transformed, we 

directly computed a log-scale fold-enrichment as: 

𝑓𝑓𝑖𝑖,𝑖𝑖 = 𝑏𝑏𝑖𝑖,𝑖𝑖 − 𝜇𝜇|𝑖𝑖−𝑖𝑖| 

where 𝑓𝑓𝑖𝑖,𝑖𝑖, the ijth entry of the distance-normalized contact matrix, represents the log-scale 

fold-enrichment of interactions between the ith and jth bins in the region, 𝑏𝑏𝑖𝑖,𝑖𝑖 is the ijth 
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element of the binned interaction matrix, and 𝜇𝜇|𝑖𝑖−𝑖𝑖| represents the distance-dependence 

normalization factor appropriate for a bin-bin pair at distance 𝑑𝑑 = |𝑖𝑖 − 𝑗𝑗| within the region 

under consideration (described above). Distance dependence-normalized counts show no 

discernable relationship with interaction distance compared to data at earlier stages of the 

analysis (histograms in Figs. 4.2E, S2G). 

Noteworthy, the Klf4 region spans two distinct sub-TADs with markedly different 

interaction frequencies. We divided Klf4 into two separate sub-regions and created 

independent expected models for sub-region_1 (single block: chr4:54,899,978-55,371,978 

x chr4:54,899,978-55,371,978) and sub-region_2 (the union of three blocks: 

chr4:54,899,978-55,371,978 x chr4:55,371,978-55,887,978, chr4:55,371,978-55,887,978 

x chr4:55,371,978-55,887,978 and chr4:55,371,978-55,887,978 x chr4:54,899,978-

55,371,978).  

 

Probabilistic model fitting and distance-corrected interaction scores 

We modeled our distance-corrected interaction frequency values as a continuous random 

variable using a logistic distribution parameterized independently for each region and 

replicate (Fig. 4.5A). We fit the logistic distribution by computing region-specific and 

replicate-specific location (l) and scale (s) parameters with maximum likelihood estimation 

through the R fitdistr() function. We computed right-tail p-values for every entry of 

distance-normalized contact matrices via the R plogis() algorithm, the lower.tail=FALSE 

argument and the below logistic cumulative distribution function: 

 

𝑝𝑝𝑖𝑖,𝑖𝑖 = 1 −
1

1 + 𝑒𝑒−�𝑓𝑓𝑖𝑖,𝑗𝑗−𝑙𝑙�/𝑠𝑠
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where 𝑝𝑝𝑖𝑖,𝑖𝑖 represents the right-tailed p-value for the relative interaction frequency found in 

the ijth entry of the distance-normalized contact matrix. 

Prior to downstream thresholding/classification of significant 3-D interactions, p-

values were transformed into distance-corrected interaction scores with: 

IS𝑖𝑖,𝑖𝑖 = −10 × log2�𝑝𝑝𝑖𝑖,𝑖𝑖� 

Our computed distance-corrected interaction score offers a specific metric for 

identification/detection of significant 3-D interactions that are visually evident but difficult 

to disentangle from the underlying noise in the raw data (illustrated in heatmaps Fig. 4.2F). 

The highest (red/black) bins in ES and NPC heatmaps show strong cell type-specific 

correlation with known cell type-specific chromatin marks (heatmaps in Fig. 4.2F) while 

exhibiting strong attenuation of primer effects, absence of distance-dependence 

background signal and minimal distribution skewing due to technical differences in library 

complexity (boxplots and histograms in Fig. 4.2F).  

 

GC content bias investigation 

We assessed the degree of GC content bias in our original data and the degree to which our 

primer correction step attenuated the bias. First, we grouped restriction fragments into 

strata according to the GC content of the genome-binding portion of each 5C primer (i.e. 

the full 5C primer sequence minus the universal T7/T3 tail). We computed the sums of cis 

interactions for all primers in each strata and plotted each data point as an enrichment over 

the average cis interaction sum across all primers (Fig. 4.2H). A comparison of G-C 

content bias for each of the first three stages of our analysis pipeline demonstrated that 
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primers with extreme GC content are relatively depleted for counts in our raw data and that 

this bias is attenuated after primer correction (Fig. 4.2H). The attenuation in primer bias in 

extreme GC content strata is consistent with the goal of our primer correction scheme to 

push all primers towards equal visibility. 

To further investigate the GC bias relationships in our data, we stratified our 

primer-primer pairs into a 2-D grid of strata depending on the GC content of the upstream 

and downstream primer comprising the forward-reverse primer pair. We then visualized 

the enrichment of counts within each stratum, computed as described by Ren and 

colleagues 38 as: 

 

𝐸𝐸𝑎𝑎,𝑏𝑏 =
∑ 𝑐𝑐𝑖𝑖,𝑖𝑖𝑖𝑖,𝑖𝑖∋𝑙𝑙𝑎𝑎<𝑔𝑔𝑖𝑖≤𝑢𝑢𝑎𝑎,𝑙𝑙𝑏𝑏<𝑔𝑔𝑗𝑗≤𝑢𝑢𝑏𝑏,𝑖𝑖>𝑖𝑖

∑ 𝜇𝜇𝑖𝑖,𝑖𝑖∋𝑙𝑙𝑎𝑎<𝑔𝑔𝑖𝑖≤𝑢𝑢𝑎𝑎,𝑙𝑙𝑏𝑏<𝑔𝑔𝑗𝑗≤𝑢𝑢𝑏𝑏,𝑖𝑖>𝑖𝑖
 

 

where 𝐸𝐸𝑎𝑎,𝑏𝑏 is the enrichment value for the abth stratum in the grid, 𝑙𝑙𝑎𝑎 and 𝑢𝑢𝑎𝑎 are the lower 

and upper GC content limits, respectively, of the ath stratum, 𝑙𝑙𝑏𝑏 and 𝑢𝑢𝑏𝑏 are the lower and 

upper GC content limits, respectively, of the bth stratum, 𝑔𝑔𝑖𝑖 is the GC content of the ith 

primer, 𝑐𝑐𝑖𝑖,𝑖𝑖 is the number of counts for the interaction of the ith primer with the jth primer, 

and 𝜇𝜇 is the mean number of counts across all primer-primer pairs.  

We generated GC strata heatmaps for raw and primer corrected data (Fig. 4.2I). 

Although the strata with the most extreme GC contents show less bias after normalization, 

there was still a noticeable enrichment of counts centered on the 50-60% to 50-60% 

pairwise GC content range. This result is consistent with previous observations by Ren and 

colleagues suggesting that there might be a biologically significant enrichment for 3-D 
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interactions between genomic elements with high GC content levels at distance scales < 2 

Mb 38. 

 

Comparison of 5C analysis pipeline to alternative approaches 

We compared the results from our current 5C data analysis steps to the results of the 

corresponding steps in our previously published 5C analysis pipeline (Fig. 4.3A-D). In our 

previous approach, data were not quantile normalized, the distance-dependence 

background was modeled parametrically with a Weibull distribution, no binning was 

performed and p-values were computed via modeling single fragment resolution data with 

a compound normal-lognormal distribution 9.  

 First, we corrected for primer effects by employing the same primer normalization 

strategy in our current and original analysis pipelines. The primer correction step attenuated 

under/over-enriched stripes in the heatmaps, pushing all rows/columns toward equal 

visibility, independent of whether or not the data were quantile normalized (compare 

boxplots and heatmaps in Figs. 4.2C and 4.3B). Second, our 2016 empirical, region-

specific distance-dependence models show improved ability to correct for the short-range 

distance-dependence relationship than our previous 2013 parametric distance-dependence 

model (compare heatmaps and distance-dependence curves in Figs. 4.2E and 4.3C). Third, 

our 2016 binning approach at ~12 kb ‘pseudo-fragment resolution’ (discussed above) 

offers key improvements in highlighting the true looping signal vs. noise when compared 

to our 2013 ~4 kb ‘single fragment resolution’ maps (compare heatmaps in Figs. 4.2D-F 

and 4.3C-D). Finally, our 2016 approach to model distance-corrected interaction 

frequencies as a continuous random variable with the logistic distribution results in the 
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clear illumination of underlying looping patterns in distance-corrected interaction score 

heatmaps. Our previous approach modeling single fragment resolution data with a 

compound normal-lognormal distribution did allow for the identification of a few of the 

strongest structural features that change dynamically between cell types. However, 

distance-corrected interaction score maps from the 2013 pipeline exhibited a much greater 

degree of spatial noise that obscured many important 3-D interactions (compare heatmaps 

in Figs. 4.2F and 4.3D). Finally, we moved the order of our current pipeline steps  - 

conducting quantile normalization after binning, performing the binning step on unlogged 

data and logging only for visualization – and the resultant heatmaps showed similar results 

to our current pipeline steps, suggesting that the biological conclusions are robust to the 

order at which we conduct our pre-processing steps (Figs. 4.3E-G).  

Overall, our 5C methods were chosen because they yield highly sensitive and 

quantitative identification/detection of significant 3-D interactions while exhibiting strong 

attenuation of primer effects, absence of distance-dependence background signal and 

minimal distribution skewing due to technical differences in library complexity (Fig. 4.2F). 

 

Principal component analysis  

Principal component analysis was performed to scatter the six experimental replicates 

according to their distance-corrected interaction frequencies at each bin-bin pair. The R 

prcomp() function with active center and scale parameters was used to compute the 

principal components for our six conditions. We plotted the projection of our six conditions 

onto the first two principle components as a scatterplot. 
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Classification of cell type-specific 3-D interactions 

To classify cell type-specific 3-D interactions, we generated scatterplots of distance-

corrected interaction scores for pairwise combinations of ES cells, NPCs and iPS cells (Fig. 

4.6A-F). Specifically, for every 4 kb bin, the minimum distance-corrected interaction score 

between the two replicates for each cell type was plotted to ensure both replicates must fall 

above any threshold to be considered for classification. Distance-corrected interaction 

scores ≤ 3.219 in ES cells, NPCs and iPS cells were classified as “background” 

interactions. Interactions for which all cell types had a distance-corrected interaction score 

≤ 30 were not considered in the parsing of any 3-D interaction class.  

For each pairwise comparison, distance-corrected interaction scores were classified 

as: (i) ‘present in both cell types’, (ii) ‘present in cell type 1’, (iii) ‘present in cell type 2’, 

(iv) ‘unable to be differentially assigned with confidence’, or (v) a ‘background’ interaction 

(i.e. low interaction score) in both cell types (Fig. 4.6). Pairwise interaction classifications 

were then combined to determine differential interactions among all three cell types.  

Reproducible distance-corrected interaction scores ≥ 53.219* in cell type 1 and cell 

type 2 were considered ‘present in both cell types’. Similarly, if the difference between the 

minimum interaction scores of both cell types did not exceed 14, the interaction was also 

classified as ‘present in both cell types’. Interactions with differences between the distance-

corrected interaction scores of the two cell types greater than 14 that also had interaction 

scores ≥ 43.219 but < 53.219 in all cell types were removed from consideration because of 

uncertainty whether to classify them as constitutive or cell-type specific. The remaining 

interactions (i.e. at least one cell type interaction score > 30, at least one cell type 

interaction score < 43.219, and the difference between the minimum replicates of the cell 



227 
 

types > 14) were classified as ‘present in cell type 1’ if the interaction score in ‘cell type 

1’ was greater and ‘present in cell type 2’ if the interaction score in ‘cell type 2’ was greater. 

Pairwise classifications were combined to construct the 3-D interaction categories 

between the three cell types. Interactions that were considered ‘present in both cell types’ 

in all pairwise comparisons were parsed into the “constitutive” (grey class) 3-D interaction 

category. Interactions that were classified as ‘present in both ES and iPS cells’ but were 

found to be ES- and iPS-specific when comparing these cell types to NPCs were parsed 

into the “ES-iPS” (purple class) 3-D interaction category. Interactions that were classified 

as ‘present in ES cells’ when thresholded against both iPS and NPC distance-corrected 

interaction scores were parsed into the “ES-only” (red class) 3-D interaction category. 

Similarly, interactions classified as ‘present in both iPS cells and NPCs’ but were found to 

be iPS- and NPC-specific in comparison with ES cells were parsed into the “NPC-iPS” 

(blue class) 3-D interaction category. ‘Present in both ES cells and NPCs’ interactions were 

parsed into the “ES-NPC” (yellow class) 3-D interaction category if the interactions were 

not present when compared to iPS cells. Finally, interactions classified as ‘present in iPS 

cells’ when thresholded against both ES cells and NPCs were parsed into the “iPS-only” 

(orange class) 3-D interaction category, and interactions classified as ‘present in NPCs’ 

when thresholded against both ES and iPS cells were parsed into the “NPC-only” (green 

class) 3-D interaction category. We subsequently removed any interaction that was 

classified but spanned less than 20 kb between the bins involved in the interaction. 

Additionally, we removed interactions that spanned greater than 400 kb if they did not form 

an adjacency cluster (See “Interaction Adjacency Clustering” below) of at least 5 pixels.  
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*Note on thresholds: 53.219 = −10 ∗ log2(0.025) ; 43.219 = −10 ∗ log2(0.05) ; 30 =

−10 ∗ log2(0.125) ;  3.219 = −10 ∗ log2(0.8), thus interaction scores of 53.219, 43.219, 

30, and 3.219 correspond to interaction p-values of 0.025, 0.05, 0.125, and 0.8, 

respectively. 

 

Empirical false discovery rate calculation 

Justification of strategy 

To compute an empirical false discovery rate (eFDR) for our interaction score thresholds, 

we employed a strategy in which we simulated 5C experiments consisting of three identical 

cellular conditions with two replicates each. The motivation/rationale for this strategy was 

that we wanted to determine how many 3-D interactions would be called by our 

thresholding/classification scheme (Figs. 4.5, 4.5) when comparing three cellular states 

(n=2 biological replicates each) that have been simulated to contain equivalent 3-D 

architecture. For example, we simulated ES1_Rep1, ES1_Rep2, ES2_Rep1, ES2_Rep2, 

ES3_Rep1, and ES3_Rep2, where all six replicates were generated from the same model 

(modeled based on our experimental ES data, discussed below). After the creation of the 

simulated replicates, ES1, ES2, and ES3 were treated as the distinct conditions for 

categorization purposes. By quantifying the number of interactions that we would expect 

by chance to pass our thresholds (discussed above), we can compute an eFDR for each 3-

D interaction class identified when comparing ES vs. NPC vs. iPS cells.  

 

Model generation – mean parameter estimation 
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First, we generated simulations of 5C data. To generate each of the simulations, we created 

three independent models, each of which was based on one of three cell type subsets (ES, 

NPC, iPS) of our experimental data. For each of these three models, we first computed a 

mean parameter by calculating the mean distance-corrected interaction frequency for that 

bin-bin pair among the two experimental replicates for the cell type the model was based 

on. We represent this mathematically as: 

𝜇𝜇𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖 =
∑ 𝑓𝑓𝑐𝑐,𝑟𝑟,𝑠𝑠,𝑖𝑖,𝑖𝑖
2
𝑟𝑟=1

2
 

where 𝜇𝜇𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖 is the mean distance-corrected interaction frequency for the ijth bin-bin pair 

of the sth region in the model for cell type 𝑐𝑐 and 𝑓𝑓𝑐𝑐,𝑟𝑟,𝑠𝑠,𝑖𝑖,𝑖𝑖 is the distance-corrected interaction 

frequency for the ijth bin-bin pair of the sth region in the experimental data for replicate 𝑟𝑟 

in cell type 𝑐𝑐. 

 

Model generation – estimating the mean-variance relationship 

Second, to obtain reasonable estimates for variance, we estimated a region-specific mean-

variance relationship by performing a linear regression on the scatterplot of mean versus 

sample standard deviation of the distance-corrected interaction frequency for each bin-bin 

pair in each region among the two experimental replicates for the cell type being 

considered. This linear regression allowed us to compute a predicted standard deviation 

given a mean as: 

𝜎𝜎�𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖 = 𝑚𝑚𝑐𝑐,𝑠𝑠𝜇𝜇𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖 + 𝑏𝑏𝑐𝑐,𝑠𝑠 

where 𝜎𝜎�𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖 is the predicted standard deviation of distance-corrected interaction frequency 

for the ijth bin-bin pair of the sth region in the model for cell type 𝑐𝑐, 𝜇𝜇𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖 is the mean 

distance-corrected interaction frequency for the ijth bin-bin pair of the sth region in the 
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model for cell type 𝑐𝑐, and 𝑚𝑚𝑐𝑐,𝑠𝑠 and 𝑏𝑏𝑐𝑐,𝑠𝑠 are the slope and y-intercept parameters obtained 

from the linear regression of mean versus standard deviation for the sth region in the 

experimental data from cell type 𝑐𝑐. 

 

Model generation – variance parameter estimation 

Third, we used the mean-variance relationship to estimate the standard deviation 

parameter. We set the simulation standard deviation at each bin-bin pair to a linear 

combination of the observed standard deviation for that bin-bin pair in the experimental 

data for that cell type and our predicted standard deviation at that bin-bin pair as follows: 

𝜎𝜎𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖 = 𝛼𝛼𝜎𝜎�𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖 + 𝛽𝛽�
1
2
� �𝑓𝑓𝑐𝑐,𝑟𝑟,𝑠𝑠,𝑖𝑖,𝑖𝑖 − 𝜇𝜇𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖�

22

𝑟𝑟=1
 

where 𝜎𝜎𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖 is the final standard deviation parameter for ijth bin-bin pair of the sth region 

in the model for cell type 𝑐𝑐, �1
2
∑ �𝑓𝑓𝑐𝑐,𝑟𝑟,𝑠𝑠,𝑖𝑖,𝑖𝑖 − 𝜇𝜇𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖�

22
𝑟𝑟=1  is the sample standard deviation 

of the distance-corrected interaction frequencies of the ijth bin-bin pair of the sth region in 

the experimental data from cell type 𝑐𝑐 (r indexes the replicates), and 𝛼𝛼 and 𝛽𝛽 are constants 

chosen to ensure that the noise in the data generated by the model closely approximates the 

noise in the actual experimental data. 

 

Simulations 

Fourth, after computing the model parameters 𝜇𝜇𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖 and 𝜎𝜎𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖, we generated simulated 

5C experiments by drawing simulated distance-corrected interaction frequencies from a 

normal distribution with mean, variance parameters as follows: 

𝐹𝐹𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖  ~ 𝑁𝑁�𝜇𝜇𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖 ,𝜎𝜎𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖� 
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where 𝐹𝐹𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖  is a random variable representing the simulated distance-corrected interaction 

frequency for the ijth bin-bin pair of the sth region for a simulation of cell type 𝑐𝑐 and 𝜇𝜇𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖 

and 𝜎𝜎𝑐𝑐,𝑠𝑠,𝑖𝑖,𝑖𝑖 are the mean distance-corrected interaction frequency and the final standard 

deviation parameter, respectively, for the ijth bin-bin pair of the sth region in the model for 

cell type 𝑐𝑐. We chose a normal distribution in accordance with our assumption that the 

replicate-to-replicate noise for repeated measurement of the same exact bin-bin interaction 

would be normally distributed. 

 

Monte Carlo, p-value calculation, classification 

Fifth, we used the above approach to generate six simulated 5C experiments from the same 

model, and then applied our logistic fits and our thresholding/classification scheme 

(described above) to each of the simulations. As in our real 5C data, we modeled the 

distribution of simulated distance-corrected interaction frequencies with a logistic 

distribution parameterized independently for each region. Logistic fits were used to assign 

p-values to every bin-bin pair in the simulation. P-values were converted to interaction 

scores as described above. The six independently constructed simulations were grouped 

into three equivalent categories containing two replicates each and subjected to the same 

thresholding/classification scheme as our experimental data. The number of simulated bin-

bin pairs that were categorized into each of our 3-D interaction classes was recorded. This 

process was repeated 1000 times for each of our three cell types, and the numbers of 

simulated bin-bin pairs falling into each category were averaged across the 1000 trials and 

across the three cell types. We confirmed that our simulations fairly recapitulated the noise 

seen in the experimental data by comparing Spearman's and Pearson's correlation 
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coefficients as well as histograms and empirical cumulative distribution functions for our 

simulations to those we observed in our experimental data. 

 

Computing the false discovery rates for each 3-D interaction class  

Finally, we computed false discovery rates. Because the six simulated experiments 

represent simulated biological replicates, any bin-bin pair that was categorized into any 

category other than constitutive or background represents a false positive. Therefore, we 

estimated the false positive rate (FPR) for our thresholds for each of the other categories 

as the number of simulated bin-bin pairs falling into that category divided by the total 

number of bin-bin pairs in the simulation. Mathematically, this is represented as: 

FPR𝑡𝑡
sim =

𝑛𝑛�𝑡𝑡sim

𝑁𝑁
 

where FPR𝑡𝑡
sim is the simulation false positive rate for category t, 𝑛𝑛�𝑡𝑡sim is the average number 

of bin-bin pairs categorized into category t across all simulations, and 𝑁𝑁 is the total number 

of bin-bin pairs in each simulation. We then assumed that the FPR for our simulation was 

a good estimate for the FPR in the categorization of our real experimental data. 

FPR𝑡𝑡
sim ≈ FPR𝑡𝑡

exp 

where FPR𝑡𝑡
sim is the simulation false positive rate for category t and FPR𝑡𝑡

exp is the 

experimental false positive rate for category t. Our real experimental data and our 

simulations had the same number of bins and therefore the same number of bin-bin pairs 

to be categorized. Therefore, we estimated that for each category other than background 

and constitutive, the number of false positives observed in our simulations was equal to the 

number of false positives in our experimental data. 

FPR𝑡𝑡
sim ≈ FPR𝑡𝑡

exp ⇒ 𝑛𝑛�𝑡𝑡sim ≈ FP𝑡𝑡
exp 
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where 𝑛𝑛�𝑡𝑡sim is the average number of bin-bin pairs categorized into category t across all 

simulations and FP𝑡𝑡
exp is the experimental number of false positives in category t. 

We then estimated the false discovery rate (FDR) in our experimental data by 

dividing this estimated number of false positives by the total number of bin-bin pairs 

declared significant in the experimental data. Mathematically, this is represented as: 

FDR𝑡𝑡
exp =

FP𝑡𝑡
exp

𝑛𝑛𝑡𝑡
exp ≈

𝑛𝑛�𝑡𝑡sim

𝑛𝑛𝑡𝑡
exp 

where 𝑛𝑛𝑡𝑡
exp is the number of bin-bin pairs categorized into category t in the experimental 

data. Because a different number of bin-bin pairs were declared significant in different 

categories, we computed different FDRs for different categories (Fig. 4.6H-I). 

 

6 sample vs 10 sample 5C data processing 

5C data was processed either in a 6 sample batch, which includes only ES, NPC, and iPS 

replicates, or a 10 sample batch, which includes all 2i replicates in addition to the core 6 

samples. Cell-type specific 3D interactions were classified using the ‘6-sample’ group of 

ES, NPC, and iPS replicates. In instances where heatmaps are displayed for only these 

three cell types (i.e. Fig. 4, S5B, S6), we use ‘6-sample’ normalized data, whereas when 

data is displayed for all 5 cell types (i.e. Fig. 5, S5F, 6, S7), we present ’10-sample’ 

normalized data. 

 

Interaction adjacency clustering 

Spatially adjacent interactions of the same classification were iteratively grouped into 

clusters in order to quantify the number of interaction clusters present in our data. For a 

given classified pixel, we queried if that pixel was adjacent to an already identified cluster 
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– if adjacent, the pixel was appended to that cluster - if not adjacent, the pixel was assigned 

its own cluster. Clusters of the same classification that were directly adjacent to themselves 

at the end of the iterative process were merged. 

 

ChIP-seq peakcalling 

Data was downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo/). Sequences were 

aligned to NCBI Build 37 (UCSC mm9) using default parameters (-v1 -m1) in Bowtie. 

Only sequences that mapped uniquely to the genome were used for further analysis. Model-

based Analysis for ChIP Sequencing (MACS) was used for peak calling 

(http://liulab.dfci.harvard.edu/MACS/00README.html). For CTCF ChIP-seq, default 

parameters were used with a p-value cutoff of p < 1 x 10-8. For histone modification ChIP-

seq (e.g. H3K4me1, H3K27ac, H3K4me3), we skipped the model-building step by calling 

the parameter --no model with at p-value cutoff of either p < 1 x 10-8, p < 1 x 10-6 or p < 1 

x 10-4 . 

 

Parsing ES-specific and NPC-specific genes 

Normalized RNA-seq counts were parsed by fold change between ES cells and NPCs into 

ES-specific and NPC-specific gene expression categories. Genes that were at least two-

fold upregulated in ES cells compared to NPCs were classified as ES-specific, whereas 

genes that were at least two-fold upregulated in NPCs compared to ES cells were classified 

as NPC-specific. ES-specific genes were further refined by required overlap with high-

confidence H3K27ac signal (peaks called at p < 1 x 10-6) in ES cells. NPC-specific genes 

were further refined by required overlap with high-confidence H3K27ac signal (peaks 

http://www.ncbi.nlm.nih.gov/geo/
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called at p < 1 x 10-4) in NPCs. Inactive genes were parsed by identifying those genes 

falling within queried 5C regions that did not exhibit H3K27ac signal (peaks called at p < 

1 x 10-2) in either ES cells or NPCs. 

  

Parsing ES-specific and NPC-specific enhancers 

H3K27ac peaks (ES, p < 1 x 10-6; NPC, p < 1 x 10-4) were merged if they fell within 500 

bp end-to-end distance of each other. NPC H3K27ac was peak-called at a lower threshold 

than the ES H3K27ac after visual observation that there appeared to be a smaller dynamic 

range of the NPC H3K27ac ChIPseq data between the active and inactive state. ES-specific 

enhancers were defined by overlap between merged H3K27ac peaks and H3K4me1 peaks 

(p < 1 x 10-4) in ES cells and the absence H3K27ac in NPCs (defined by subtraction of 

low-confidence NPC-binding sites for H3K27ac (p < 1 x 10-2)). NPC-specific enhancers 

were defined by overlap between merged H3K27ac peaks and H3K4me1 peaks (p < 1 x 

10-4) in NPCs and the absence H3K27ac in ES cells (defined by subtraction of low-

confidence ES-binding sites for H3K27ac (p < 1 x 10-2)). To ensure subtraction of all 

potential genes, it was required that parsed ES-specific and NPC-specific enhancers did 

not fall within 2 kb of a transcription start site. 

  

Parsing ES-specific and NPC-specific CTCF sites 

ES-specific CTCF was defined by the presence of high-confidence binding sites (p < 1 x 

10-8) in ES cells and the absence of CTCF in NPCs (defined by subtraction of low-

confidence NPC-binding sites for CTCF (p < 1 x 10-2). NPC-specific CTCF was defined 

by the presence of high-confidence binding sites (p < 1 x 10-8) in NPCs and the absence of 
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CTCF in ES cells (defined by subtraction of low-confidence ES-binding sites for CTCF (p 

< 1 x 10-2)). Constitutive CTCF was defined by the presence of high-confidence binding 

sites (p < 1 x 10-8) in both cell types. 

 

Computing enrichments 

Annotation intersections 

For each bin in each of our 5C regions, we identified the genomic elements that overlapped 

that bin, or the neighboring 2 bins on either side (matching our 20 kb window, see Contact 

matrix binning above); the bin was then considered to ‘contain’ those genomic elements. 

Next, to interrogate pairwise connections between distinct genomic elements, we found all 

the bin-bin pairs whose upstream bin contained the first type of genomic element and 

whose downstream bin contained the second type of genomic element, or the reverse. For 

each of these bin-bin pairs, we checked which interaction classification category, if any, 

they fell into. We recorded the total number of intersections of this interaction class for 

every pair of types of genomic elements being considered and for every category in our 

interaction categorization scheme. By considering pairs of genomic elements in this way, 

we attempted to identify instances of one type of genomic element interacting with another 

type of genomic element.  In our analysis, we included pairs of the same type of genomic 

elements (e.g., ES-specific genes interacting to ES-specific genes). We also created an 

artificial type of genomic element (referred to as “wildcard” element) that was present in 

every bin of every 5C region. Including this “wildcard” genomic element allowed us to 

query interactions that involved one specified type of genomic element interacting with 
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any other location, irrespective of what genomic elements were present on the other side 

(see Fig. 4.12D). 

 

Computing percentage incidence, fold-enrichment above background, and p-values 

Next, we divided the interaction counts for each pair of genomic element classes in each 

interaction category by the total number of interactions in that category to obtain the 

percentage of interactions in that category that involved an interaction between the two 

types of genomic elements in the pair. We then computed a fold-enrichment for each 

interaction type’s percentage above the background interaction type’s percentage. Finally, 

we computed p-values for the enrichment by applying Fisher’s exact test to the contingency 

table below: 

  

Number of interactions in 
the selected category 
involving the two selected 
annotations 

Number of interactions in 
the background category 
involving the two selected 
annotations 

Number of interactions in 
either the selected or the 
background category 
involving the two selected 
annotations 

Number of interactions in 
the selected category not 
involving the two selected 
annotations 

Number of interactions in 
the background category not 
involving the two selected 
annotations 

Number of interactions in the 
selected or the background 
category not involving the two 
selected annotations 

Total number of 
interactions in the selected 
category 

Total number of interactions 
in the background category 

  

  

We used the p-value for the particular tail of the distribution that matched the direction of 

the enrichment (i.e., the right-tail p-value if the interaction was enriched over background, 

and the left-tail p-value if the interaction was depleted below background, generally 
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equivalent to the lesser of the two p-values). P-values were computed using the 

scipy.stats.fisher_exact function from the scipy Python computational library. 

  

Visualizing enrichments 

These enrichment quantification strategies were employed to investigate the intra-regional 

interactions of a selected annotation on either side of the interaction (via our “wildcard” 

annotation), and interactions between one selected annotation and another selected 

annotation falling within each interaction classification. Enrichments were visualized as 

either bar plots (showing the percentages of interactions between a pair of annotations 

falling into each of the interaction categories with the height of the different bars) or heat 

maps (with the color representing the log base 2 fold-enrichment of a certain interaction 

category above background for the percentage of interactions between a pair of annotations 

and the text showing the upper bound for the p-value for that enrichment).  

  

Computing connectivity 

To compute the ‘connectivity’ metric for each genomic annotation (Fig. 4.14), we first 

summed the number of significant interactions present in a given cell type that contained 

that annotation on at least one side of the interaction. A ‘connectivity’ value was computed 

by dividing the total number of interactions made by each annotation by the total number 

of interactions called significant in that cell type. For example, for the “ES enhancers in 

ES cells" data point, we counted the number significant interactions that intersected an ES 

enhancer and were categorized as either ES only, ES-iPS, ES-NPC, or constitutive (the 
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four interaction classes present in ES cells); this sum was then divided by the total number 

of interactions categorized as ES only, ES-iPS, ES-NPC, or constitutive. 
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APPENDIX III: METHODS ASSOCIATED CHAPTER 5 

Cell Culture 

Murine cortical neurons were cultured using a protocol established previously in 

226. Briefly, cortices were dissected from E18 WT C57/BL6 mouse embryos. Cortices were 

then dissociated in DNase (0.01%; Sigma-Aldrich, St. Louis, MO) and papain (0.067%; 

Worthington Biochemicals, Lakewood, NJ), then triturated with a fire-polished glass 

pipette to obtain a single-cell suspension. Cells were pelleted at 1000xg for 4 min, the 

supernatant removed, and cells resuspended and counted with a TC-20 cell counter (Bio-

Rad, Hercules, CA). Neurons were plated in 6-cm dishes (Greiner Bio-One, Monroe, NC) 

coated with poly-L-lysine (0.2 mg/mL; Sigma-Aldrich) at a density of 200,000 cells/mL. 

Neurons were initially plated in Neurobasal media containing 5% horse serum (NM5), 2% 

GlutaMAX, 2% B-27, and 1% penicillin/streptomycin (Thermo Fisher Scientific) in a 37ºC 

incubator with 5% CO2. On DIV4, neurons were fed via half media exchange with 

astrocyte-conditioned Neurobasal media containing 1% horse serum (NM1), GlutaMAX, 

and penicillin/streptomycin, 2% B-27, and 5 µM cytosine β-D-arabinofuranoside (AraC; 

Sigma-Aldrich). Neurons were fed with astrocyte-conditioned NM1 media every three 

days thereafter. For chronic activity experiments, neurons were treated for 24 hours with 

either 1 uM Tetrodotoxin (TTX) or 10 uM Bicuculline (Bic) at DIV15 via addition to the 

cell culture media or left untreated. For short-term activity induction experiments, samples 

were subjected to 24 hours of TTX treatment at DIV15 followed by 0, 5, 20, 60, or 360 

min of Bic treatment on DIV16. All animal experiments were approved by the Institutional 

Animal Care and Use Committee of the University of Utah. 
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ChIP-seq library preparation 

At DIV16, neuronal cultures were fixed in 1% formaldehyde for 10 minutes (room 

temp) via the addition (1:10 vol/vol) of the following fixation solution: 50 mM Hepes-

KOH (pH 7.5), 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 11% Formaldehyde. Fixation 

was quenched via the addition of 2.5 M glycine (1:20 vol/vol) and scraped into pellets of 

8 million cells. Each pellet was washed once with cold PBS, flash frozen, and stored at -

80oC. Immunoprecipitation was performed as described previously153, 156 with slight 

modifications. Briefly, IP reactions were prepared a day prior to cell lysis by combining 20 

uL of protein A and protein G conjugated agarose beads (Invitrogen# 15918-014 and 

15920-010, respectively) with 10 uL of anti-H3K27ac antibody (Abcam# ab4729) in 1 mL 

of cold PBS and rotated overnight. The next day cell pellets were resuspended in 1 mL 

lysis buffer (10 mM Tris pH 8.0, 10 mM NaCl, 0.2% NP-40/Igepal, Protease Inhibitor, 

PMSF) and incubated on ice for 10 min. Cells were further lysed with 30 strokes of a 

dounce homogenizer (pestle A) and then nuclei were pelleted. Nuclei were lysed on ice in 

50 mM Tris pH 8.0, 10 mM EDTA, 1% SDS, Protease Inhibitor, PMSF for 20 min. SDS 

concentration was reduced before sonication by the addition of 300 uL IP Dilution Buffer 

(20 mM Tris pH 8.0, 2 mM EDTA, 150 mM NaCl, 1% Triston X-100, 0.01% SDS, 

Protease Inhibitor, PMSF), after which samples were sonicated for 60 minutes (30 seconds 

on, 30 seconds off cycle, 100% amplitude) using a Qsonica Q800R2 Sonicator. Insoluble 

fractions were removed via spin, and the supernatant was removed of non-specific binding 

chromatin via rotation with preclearing solution (3.7 mL IP Dilution Buffer, 0.5 mL 

Nuclear Lysis Buffer, 175 uL of Agarose Protein A/G beads, and 50 ug Rabbit IgG) for 2 

hours at 4°C. Beads were pelleted and 4.7 mL of supernatant was removed. 200 uL of 
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supernatant was retained as input control (stored at -20°C) while the remaining 4.5 mL was 

transferred to the beads that had been pre-bound with the H3K27ac antibody overnight; the 

IP reaction then rotated overnight again at 4°C. Bound bead complexes were washed once 

with 1 mL IP Wash Buffer 1 (20 mM Tris pH 8.0, 2 mM EDTA, 50 mM NaCl, 1% Triton 

X-100, 0.1% SDS), twice with 1 mL High-Salt Buffer (20 mM Tris pH 8.0, 2 mM EDTA, 

500 mM NaCl, 1% Triton X-100, 0.01% SDS), once with IP Wash Buffer 2 (10 mM Tris 

pH 8.0, 1 mM EDTA, 0.25 M LiCl, 1% NP-40/Igepal, 1% Na-deoxycholate), and finally 

twice with 1x TE. Complexes were eluted by twice resuspending bound beads in 110 uL 

Elution Buffer (100 mM NaHCO3, 1% SDS), pelleting the beads after each elution and 

transferring 100 uL supernatant to a new tube. Finally, 12 uL of 5M NaCl and 20 ug RNase 

A were added to both 200 uL IP and input samples and incubated at 65 degrees for 1 hour, 

followed by the addition of 60 ug of Proteinase K and overnight incubation at 65 degrees. 

DNA was isolated via phenol-chloroform extraction and ethanol precipitation and 

concentration was quantified using Qubit fluorometer. 

ChIP-seq libraries were prepared for sequencing using the NEBNext Ultra II DNA 

Library Prep Kit (NEB# E7645S), following manufacturer’s protocol with the following 

user-chosen specifications. 3 ng DNA from all IP and input samples was used as starting 

material. NEBNext Adaptors were diluted 15x in 10 mM Tris-HCL, pH 8.0 with 10 mM 

NaCl prior to adaptor ligation. Large DNA fragments were removed via a size selection by 

adding 15 uL of AMPure XP beads at the first bead addition step and 87 uL of beads at the 

second bead addition step. Size-selected DNA was amplified using 9 cycles of PCR 

enrichment. The size-range of the final libraries was confirmed to be between 200-1000 bp 

using an Agilent Bioanalyzer High Sensitivity DNA test. H3K27ac enrichment was 
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confirmed prior to sequencing by querying the IP/input qPCR enrichment of primer pairs 

designed to the Arc, Synaptotagmin-1, and Tcf25 promoter regions. Library concentrations 

were calculated and normalized using the KAPA Illumina Library Quantification Kit 

(#KK4835) so that libraries could be equally pooled before sequencing 75 bp single-end 

reads on the NextSeq500. IP libraries were sequenced to a depth greater than 48 million 

reads and all input libraries were sequenced to greater than 67 million reads. 

 

ChIP-seq Analysis 

H3K27ac ChIP-seq reads were aligned to the mm9 genome using Bowtie254. Reads with 

more than two possible alignments were removed (-m2 flag utilized). IP libraries across 

the Bic, Untreat, and TTX conditions were downsampled to 38 million reads, while input 

libraries were downsampled to 44 million reads. Peaks were identified using MACS2255 

with a p-value cutoff parameter of   1x10e-8 and the broadpeak flag also invoked with a 

broadpeak cutoff of 1x10e-8.  

 

Parsing Putative Activity-Dependent Enhancers 

H3K27ac peaks (p-value, broadPeak thresholds = 1x10-8) called in the TTX and Bic 

conditions were concatenated together and peaks within 2 kb of RefSeq TSS’s were 

removed. The remaining peaks were merged so that peaks within 10 kb of each other were 

also merged together, thus generating a list of enhancer sites shared across the Bic and TTX 

conditions. From this master list of enhancer sites, each was parsed into activity-response 

classes by (i) calculating the average bigwig signal across the enhancer interval using the 

pybigwig package in both the Bic and TTX IP libraries, (ii) dividing those signal averages 
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by the average signal in the corresponding input library, (iii) calculating the Bic/TTX fold 

change of those input-normalized enhancer signals. An enhancer was defined as Bic-

specific (activity-induced) if it exhibited a >2 Bic/TTX fold change and its Bic input-

normalized signal was in the top 80% of all enhancers; TTX-specific (activity-

decommissioned) enhancers were defined in the same manner with the conditions reversed. 

The remaining enhancer sites were classified as constitutive (activity-invariant) if their Bic 

and TTX input-normalized signals fell in the top 80% of enhancer signals in both 

conditions. H3K27ac signal heatmaps for each enhancer class were plotted using the 

Deeptools package268. 

 

3C Template Generation 

Neuronal cultures were formaldehyde fixed as described for ChIP-seq and stored at -80oC. 

For each condition (Bic, Untreat, TTX), in situ 3C was performed on 4 replicates (divided 

evenly across two animal/culture batches) of 4-5 million cells as described previously10, 

230. Briefly, cells were thawed on ice and resuspended (gently) in 250 uL of lysis buffer (10 

mM Tris-HCl pH 8.0, 10 mM NaCl, 0.2% Igepal CA630) with 50 uL protease inhibitors 

(Sigma P8340). Cell suspension was incubated on ice for 15 minutes and pelleted. Pelleted 

nuclei were washed once in lysis buffer (resuspension and spin), then resuspended and 

incubated in 50 uL of 0.5% SDS at 62oC for 10 min. SDS was inactivated via the addition 

of 145 uL H2O, 25 uL 10% Triton X-100, and incubation at 37oC for 15 min. Subsequently, 

chromatin was digested overnight at 37oC with the addition of 25 uL 10X NEBuffer2 and 

100U (5 uL) of HindIII (NEB, R0104S), followed by 20 min incubation at 62oC to 

inactivate the HindIII. Chromatin was re-ligated via the addition of 100 uL 10% Triton X-
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100, 120 uL NEB T4 DNA Ligation buffer (NEB B0202S), 12 uL 10 mg/mL BSA, 718 uL 

H2O, and 2000 U (5 uL) of T4 DNA Ligase (NEB M0202S) and incubation at 16oC for 2 

hours (NOTE: This is a deviation from in situ HiC (Rao et al. 2010) in order to promote 

sticky-end ligation over blunt-end). Following ligation nuclei were pelleted, resuspended 

in 300 uL of 10 mM Tris-HCl (pH 8.0), 0.5 M NaCl, 1% SDS, plus 25 uL of 20 mg/mL 

proteinase K (NEB P8107), and incubated at 65oC for 4 hours at which point an additional 

25 uL of proteinase K was added and incubated overnight. 3C templates were isolated next 

day via RNaseA treatment, phenol-chloroform extraction, ethanol precipitation, and 

Amicon filtration (Millipore MFC5030BKS) (for more details see153, 156). Template size 

distribution and quantity were assessed with a 0.8% agarose gel. 

 

5C Library Preparation 

5C primers were designed according to the double-alternating design scheme20, 139, 145, 230 

using the My5C primer design software 

(http://my5c.umassmed.edu/my5Cprimers/5C.php)262 with universal “Emulsion” primer 

tails. Regions were designed to capture TAD structures immediately surrounding the genes 

of interest (Bdnf, Fos, Arc, Neurexin-1, Neuroligin-3, Synaptotagmin-1) in published 

mouse cortex HiC data7. 5C reactions were carried out as previously described139, 145, 230. 

600 ng (~200,000 genome copies) of 3C template for each replicate was mixed with 1 

fmole of each 5C primer and 0.9 ug of salmon sperm DNA in 1x NEB4 buffer, denatured 

at 95oC for 5 min, then incubated at 55oc for 16 hours. Primers which had then annealed in 

adjacent positions were ligated through the addition of 10 U (20 uL) Taq ligase (NEB 

M0208L) and incubation at 55oC for 1 hour then 75oC for 10 min. Successfully ligated 

http://my5c.umassmed.edu/my5Cprimers/5C.php
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primer-primer pairs were amplified using primers designed to the universal tails (FOR = 

CCTCTC TATGGGCAGTCGGTGAT, REV = CTGCCCCGGGTTCCTCATTCTCT) 

across 30 PCR cycles using Phusion High-Fidelity Polymerase. Presence of a single PCR 

product at 100 bp was confirmed via agarose gel, then residual DNA <100 bp was removed 

through AmpureXP bead cleanup at a ratio of 2:1 beads:DNA (vol/vol). 100 ng of the 

resulting 5C product was prepared for sequencing on the Illumina NextSeq 500 using the 

NEBNext Ultra DNA Library Prep Kit (NEB E7370) following the manufacturer’s 

instructions with the following parameter selections: during size selection, 70 uL of 

AMPure beads was added at the first step and 25 at the second step; linkered fragments 

were amplified using 8 PCR cycles. A single band at 220 bp in each final library was 

confirmed using an Agilent DNA 1000 Bioanalyzer chip, and library concentration was 

determined using the KAPA Illumina Library Quantification Kit (#KK4835). Finally, 

libraries were evenly pooled and sequenced on the Illumina NextSeq 500 using 37 bp 

paired-end reads to read depths of between 11 and 30 million reads per replicate. 

 

5C Interaction Analysis 

The adoption of the double alternating primer scheme and in situ 3C significantly 

improved 5C data quality (see Kim and Titus 2018230 for more detail) such that some steps 

of our 5C analysis approach could be changed from those previously utilized153, 156 to more 

closely resemble those used for analyzing HiC10. Paired-end reads were aligned to the 5C 

primer pseudo-genome using Bowtie, allowing only reads with one unique alignment to 

pass filtering. Only reads for which one paired end mapped to a forward/left-forward 

primer and the other end mapped to a reverse/left-reverse primer were tallied as true counts. 
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5C is subject to specific biases, such as primer GC content resulting in 

annealing/PCR biases, that methods such as HiC are not. This manifests in primer-primer 

pairs with mapped counts that are orders of magnitude higher than the neighboring primer-

primer pairs. Such an extreme enrichment of single primer-primer pairs does not resemble 

the broader distribution of elevated counts, spanning clusters of neighboring primer-primer 

pairs, that exists at bona fide looping interactions across 5C and HiC data. Therefore, we 

decided to remove these biased primer-primer pairs before proceeding with interaction 

analysis. This was done by calculating for each primer-primer pair the median count of 

itself and the 24 primer-primer pairs nearest to the primer-primer pair in question (i.e. a 

scipy.ndimage.generic_filter window of size 5 was passed over the primer-primer pair 

matrix and the median of each window was recorded). If the count of one primer-primer 

pair was greater than eight-fold higher its neighborhood median then it was flagged as a 

high spatial outlier and removed. This process was performed for all primer-primer pairs, 

except for those in the 5C region surrounding the Arc gene for which the 8-fold threshold 

was found to be too stringent due to low region complexity and a 100-fold threshold was 

utilized instead. 

After high-outlier removal, primer-primer pair counts were quantile normalized 

across all 12 replicates (4 per condition) as previously described230, 232. For plotting 

purposes quantile normalized counts were merged across replicates via summation, 

whereas for loop calling analysis all replicates were kept separate. Primer-primer pair 

counts were then converted to fragment-fragment interaction counts by averaging the 

primer-primer counts that mapped to each fragment-fragment pair (max of 2 if both a 

forward/left-forward and a reverse/left-reverse primer were able to be designed to both 
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fragments and were not trimmed during outlier removal). We then divided our 5C regions 

into adjacent 4 kb bins and computed the relative interaction frequency of two bins (i,j) by 

summing the counts of all fragment-fragment interactions for which the coordinates of one 

of the constituent fragments overlapped (at least partially) a 12 kb window surrounding the 

center of the 4 kb ith bin and the other constituent fragment overlapped the 12 kb window 

surrounding the center if the jth bin. Binned count matrices were then matrix balanced using 

the ICE algorithm232, 269, at which point we considered each entry (i,j) to represent the 

‘Relative Interaction Frequency’ of the 4 kb bins i and j. Finally, the background contact 

domain ‘expected’ signal was calculated using the donut background model as previously 

described14 and used to normalize the relative interaction frequency data for the 

background interaction frequency present at each bin-bin pair. The resulting background-

normalized interaction frequency (“observed over expected”) counts were fit with a logistic 

distribution from which p-values were computed for each bin-bin pair and converted into 

‘Background-corrected Interaction Scores’ (interaction score = -10*log2(p-value)) as 

previously described153. Interaction scores have proven to be informatively comparable 

across replicates and conditions9, 153, and as such were used for most visualization analysis 

and all loop-calling analysis to follow.  

 

Quantitative 5C Loop Identification 

We applied the 3DeFDR analysis package233 to our dataset in order to identify 

differential interactions across the TTX and Bic conditions (4 replicates of each). Briefly, 

3DeFDR identifies differential interactions and empirically estimates a false discovery rate 

(eFDR) for each identified dynamic looping class. Interactions are only considered for 
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analysis if the interaction scores of all 8 replicates across both conditions surpassed a 

‘significance threshold’. Interactions are classified as ‘TTX-only’ if all 4 interaction scores 

of the TTX replicates surpassed the interaction scores of the Bic replicates by more than a 

specified ‘difference threshold’. ‘Bic-only’ interactions are classified in the same manner. 

Those interactions that pass the significance threshold but are not classified as Bic-only or 

TTX-only are classified as ‘Constitutive’. Finally, significant interactions that pass our 

thresholds are clustered based on spatial adjacency into ‘loops’. Looping clusters smaller 

than 5 pixels were removed. The 3DeFDR package simulates null replicate sets (i.e. 8 

replicates of the same cell type/condition) using on a negative binomial counts generating 

function parameterized with mean-variance relationships computed from the real data. We 

compute an empirical FDR (eFDR) for each differential loop class as the total number of 

significant interactions called in that class on a simulated null replicate set divided by the 

total number of significant interactions called as that class with the original real replicate 

set.  

We utilized the ‘non-adaptive’ functionality option of the 3DeFDR analysis 

package, which sweeps across a wide range of difference threshold and calculates an eFDR 

for each loop class at each iteration. We generated 250 simulated null replicate sets of 8 

replicates based on mean-variance relationships underlying the real TTX replicates. We 

utilized the default 3DeFDR initialization parameters with the exception of 

‘bin_properties’, which is a tunable parameter that specifies the distance scales over which 

fragment level interactions are stratified prior to fitting the negative binomial counts 

generating function to those interactions. We modified ‘bin_properties’ to capture the full 

extent of our regional matrices: (1) for close-range interactions (0-150 kb), we stratified 
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the interactions using fine-grained, 12 kb-sized sliding windows with a 4 kb step, (2) for 

mid-range interactions (151-600 kb), we stratified the interactions into 24 kb-sized sliding 

windows with an 8 kb step, and (3) for longer range interactions (601-2500 kb), we 

stratified the interactions into coarse-grained, 60 kb-sized sliding windows with a 24 kb 

step. Through this approach we achieved an eFDR of 6.6% for Bic-only (activity-induced) 

loops utilizing a difference threshold of 6.75, a significance threshold of -10*log2(0.08) 

(i.e. a p-value of 0.08 resulting from the logistic fit to the observed over expected data), 

and a cluster size threshold of 5. 

 

RNA-seq library preparation 

At DIV5 and DIV16, 900,000 neurons were lysed in 1 mL Trizol (Thermo Fisher Scientific 

15596026). Lysates were snap frozen and stored at -80oc until use. Total RNA was then 

isolated using the mirVana miRNA Isolation Kit (Thermo Fisher Scientific AM1561) 

according to manufacturer’s protocol and eluted from the spin-column using 100 uL 

nuclease-free water. Samples were DNase treated (Thermo Fisher Scientific AM1906) and 

tested for quality using an Agilent Bioanalyzer RNA chip. All samples produced an RNA 

Integrity Number (RIN) greater than 9. To avoid poly-A selection, we utilized the TruSeq 

Stranded Total RNA Library Prep Kit with Ribo-Zero Gold (Illumina RS-122-2301) and 

prepared each RNA sample for sequencing according to the manufacturer’s protocol. 

cDNA libraries were amplified across 15 PCR cycles followed by AMPure XP Bead clean-

up (1:1 bead:solution ratio). Finally, the library sizes were confirmed to be between 200-

500 bp using the BioAnalyzer before sequencing 75 bp paired-end reads on the Illumina 

NextSeq500. To minimize and identify technical variation, three replicates spanning two 



251 
 

culture batches were prepared, pooled, and sequenced to depths of greater than 60 million 

reads per library. 

 

RNA-seq analysis 

RNA-seq reads were mapped to the RefSeq transcriptome (transcriptome fasta downloaded 

from the UCSC genome browser on July 28, 2017) using Salmon270. In accordance with 

the TruSeq Stranded Total RNA Library Preparation, mapping was done using the -ISR 

flag. Additionally, 100 bootstraps of transcript quantification were performed. The 

resulting TPM quantifications for each RefSeq transcript were utilized for all downstream 

analyses. The Wasabi package (https://github.com/COMBINE-lab/wasabi) was utilized to 

convert Salmon bootstraps to the format necessary for differential expression analysis by 

Sleuth235. Differentially expressed transcripts were called using the Sleuth wald test, with 

a q-value threshold of 0.05. For enhancer RNA (eRNA) analysis, RNA-seq reads were 

mapped to the mm9 genome using STAR version 2.7.1271 using default settings. Resulting 

bigwig files were used to quantify RNA signal overlapping each enhancer interval. 

 

Linear Regression Modeling 

To assess the relative contributions of cis-regulatory elements to activity response gene 

expression, for each transcript in our 5C regions we sought to quantify its promoter activity, 

looping strength, looped enhancer activity, and nearby enhancer activity. Transcripts 

whose promoter fell within 200kb of the edge of a 5C region were removed due to 

incomplete/truncated ability to query loops outside the 5C regions. Additionally, if 

transcripts of the same gene had overlapping promoters (+/- 2kb from TSS), only the 

https://github.com/COMBINE-lab/wasabi
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transcript with the highest maximum expression (TPM) across the TTX and Bic RNA-seq 

replicates was carried forward for further analysis. The promoter activity of each gene was 

calculated using the PyBigWig package to find the log2(Bic/TTX) fold change of the sum 

H3K27ac bigwig signal across the 4 kb promoter (+/- 2kb from TSS) in each condition 

(Figure 5.8A,F).  

Each transcript was paired with the enhancer nearest to its TSS along the linear 

genome. If no enhancers fell within 200kb of the promoter, the transcript was considered 

to have no ‘near enhancer’ (only the case for NM_026271). The “activity” of the near 

enhancers were then also calculated as the log2(Bic/TTX) fold change of the sum H3K27ac 

bigwig signals across the enhancer (Figure 5.8G). Additionally, the total interaction 

frequency for each promoter was calculated by summing the observed 5C counts in the Bic 

and TTX conditions of all 5C bins the promoter overlapped and calculating the 

log2(Bic/TTX) fold change (Figure 5.8B). Similarly, the promoter of each transcript was 

intersected with 5C loops so that it could be paired with enhancers that fell at the other 

anchor of each loop. Often, promoters formed several loops, interacting with multiple 

enhancers. To select the single enhancer-promoter loop (so that we could accurately 

compare to the single nearest enhancer) predicted to have the largest regulatory role on the 

gene in question, we leveraged an adapted ‘ABC model’ approach originally reported by 

Engreitz and colleagues141, selecting the enhancer-promoter loop that had the highest 

((H3K27ac signal) * (5C Obs/Exp)) value (Figure 5.8C). Only promoters that looped to 

enhancers were included in calculations of loop strength and looped enhancer signal 

(Figure 5.8D-E, H-I). Notably, the looped enhancer models were more predictive of 

activity-dependent gene expression than the nearest enhancer and promoter-only models, 
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and this trend remained whether we used only genes engaged in loops (N=45, Figure 5.9B-

E) or all genes (N=69, Figure 5.8D-E, H-I). ‘Loop strength’ was then calculated as the 

log2(Bic/TTX) fold change of the 5C Obs/Exp counts of the ABC prioritized loop for each 

gene (Figure 5.8D,H). ‘Looped enhancer’ signal was calculated as the log2(Bic/TTX) fold 

change of the sum H3K27ac bigwig signal in each condition at the selected looped 

enhancer (Figure 5.8E,I). Finally, the ((H3K27ac signal) * (5C Obs/Exp)) score itself was 

used to build a regression model (Figure 5.8J). The expression fold change of each 

transcript was calculated as the log2(Bic/TTX) fold change of the transcripts per million 

(TPM) estimate provided by the Salmon quantification algorithm (a pseudocount of 1 was 

added to the TPM expression counts in each condition before log transformation). 

Representative boxplots depict: center line, median; box limits, upper and lower quartiles; 

whiskers, 1.5x interquartile range; points, outliers. 

For linear regression modeling, the vectors of each epigenetic feature described in 

the prior paragraphs were min-max scaled to a range of -0.5 to 0.5 using the 

sklearn.preprocessing minmax_scale function so that the calculated coefficients of each 

model could be compared to each other. The ordinary least squares function of the 

statsmodels.formula.api package was then used to generate linear regression models from 

combinations of these epigenetic features as explanatory variables and expression fold 

change as the response variable. The performances of these models were evaluated by the 

coefficient (slope) and significance of each term (Figure 5.8K) and the percent of the 

transcriptional variance explained (R2) of each model (Figure 5.8L). 

 

HiC Pre-processing 
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Mouse104 and human240 paired-end reads were aligned to the mm9 and hg19 genomes, 

respectively, using bowtie2272 (global parameters:–very-sensitive –L 30 –score-min L,-

0.6,-0.2 –end-to-end–reorder; local parameters:–very-sensitive –L 20 –scoremin L,-0.6,-

0.2 –end-to-end–reorder) through the HiC-Pro software273 (Servant et al., 2015). 

Unmapped reads, non-uniquely mapped reads and PCR duplicates were filtered, uniquely 

aligned reads were paired, and replicates were merged (Table S1). Cis-contact matrices 

were assembled by binning paired reads into uniform 20 kb (human) or 10 kb (mouse) bins. 

After matrix assembly, poorly mapped regions were removed based on the mm9 and hg19 

50-mer CRG Alignability tracks from ENCODE. The interactions of 50kb windows that 

uniquely aligned at a rate below 40% (mouse) and 50% (human) were set to NaN. Due to 

noticeably lower complexity in the human libraries, rows containing less than seven non-

zero pixels within 200kb of the diagonal were completely removed during the human HiC 

analysis only. Matrices containing the remaining cis-contact counts were balanced using 

the Juicer implementation of the Knight Ruiz (KR) algorithm with default parameters274. 

The final bias factors were retained for subsequent loop calling (see next section). Balanced 

matrices were used for plotting (Figure 5.1C, Figure 5.3). 

 

HiC Loop Calling 

HiC interactions were tested for significance using methods first reported by Aiden and 

colleagues10 with some minor alterations. To estimate the local background domain 

interaction frequency at each locus we utilized the donut expected model approach 

(described above,10) with parameters p=1, w=4 for the 20kb resolution human libraries and 

p=2, w=6 for the 10kb resolution mouse libraries. For each matrix entry the expected values 
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were calculated using both the full donut window and just the lower-left region of the donut 

and the higher of the two was carried forward (i.e. expected = max(donut,lower-left))153. 

However, due to the extremely high on-diagonal counts we found this approach often over-

estimated the expected background at short range interactions (less than 100kb). In order 

to accurately capture short range interactions, we modeled the on-diagonal (less than 

100kb) background expected using only the upper-triangle region of the donut footprint. 

Expected contact matrices were then ‘deconvoluted’ back to discrete counts using the bias 

factors generated during KR balancing (see previous section)10.  Each entry in the cis-

contact matrix (pre-balancing) was tested for significance using a poisson distribution 

parameterized by its corresponding deconvoluted expected value10. Resulting p-values 

were corrected for multiple testing using the Benjamini-Hochberg procedure. In order for 

an interaction to be called as significantly enriched above background, it was required to 

pass 3 thresholds: 1) a q-value threshold (q<0.01 human, q<0.025 mouse); 2) a balanced-

count threshold (count>10 human, count>20 mouse); 3) a distance threshold (distance>60 

kb human, distance > 40 kb mouse). Matrix entries passing these thresholds were clustered 

by adjacency into loops; loops made up of fewer than 2 (human) or 3 (mouse) constituent 

matrix entries (interactions) were removed from further analysis. 

  

Activity-Dependent Loop Classification and Gene Expression Analysis 

Both 5C and mouse HiC loops were classified by the presence of enhancers at their 

anchors into mutually exclusive loop classes. 5C loops (Bic-only, TTX-only, constitutive) 

were classified using a specific order of intersection: loops were classified as containing a 

Bic-specific (activity-induced) enhancer (Classes 1+2, Figures 5.10D,E green) if a Bic-
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specific (activity-induced) enhancer fell at (at least) one of its loop anchors. Of the loops 

that did not intersect a Bic-specific or constitutive enhancer, the loop was then Class 3 if a 

TTX-specific (activity-decommissioned) enhancer intersected a loop anchor (Class 3, 

Figures 5.10D,E, purple). If the loop’s anchors intersected no enhancers but did intersect 

a promoter (defined as +/- 2kb surrounding RefSeq TSS’s downloaded from UCSC 

genome browser) it was classified as a ‘TSS loop’ (Figure 5.10D, orange). The remaining 

loops of each class (Bic-only, TTX-only, constitutive loops) were ‘Unclassified’ because 

they did not intersect a queried epigenetic feature. The three classes highlighted in 

subsequent analyses (Figures 5.10D-J) were Bic-specific enhancers in Bic-only loops 

(Class 1), Bic-specific enhancers in constitutive loops (Class 2), and TTX-specific 

enhancers in constitutive loops (Class 3). The average observed/expected signal for each 

looping cluster in each looping class was calculated (Figure 5.10F). The promoter (+/- 2kb 

of TSS) of each RefSeq transcript was then tested for whether it overlapped a loop anchor 

of each class. If multiple transcripts of the same gene shared (had overlapping) promoters, 

only the transcript with the maximum expression (TPM) across the Bic and TTX conditions 

was considered. Additionally, genes were not considered if they fell within 200kb of the 

edges of our 5C regions because we could not accurately capture their looping profiles. 

Those transcripts linked to promoters that fell at the base of each loop class were analyzed 

for Bic/TTX expression upregulation (Figure 5.10G) and Class 1 genes were analyzed for 

their gene ontology (GO) enrichment (Figure 5.10J). 

Genes at the base of genome-wide mouse cortical neuron (CN) HiC loops (original 

data from Bonev+ 2017) were similarly classified into mutually exclusive groups based on 

the enhancers to which they looped (Figures 5.10H-J). HiC loops were first classified 
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based on enhancers that intersected each anchor; Class 2 anchors contain activity-induced 

enhancers with no activity-decommissioned enhancers, Class 3 anchors contain activity-

decommissioned enhancers with no activity-induced enhancers. If an enhancer class 

overlapped the upstream anchor, the downstream anchor was queried for intersection with 

promoters. If multiple transcripts of the same gene had promoters that overlapped the same 

anchor, only the transcript with the highest average expression across the Bic and TTX 

conditions was considered.  

Gene ontology enrichment was performed using WebGestalt275 

(http://www.webgestalt.org/) with the following settings: Organism of interest = 

mmusculus; Method of interest = overrepresentation enrichment, Functional database = 

geneontology, biological_process_noRedun. refSeq mRNA IDs were uploaded for each set 

of classified genes. The genome_protein-coding set was used as the reference set for 

genome-wide HiC gene classes; all genes that fell within our 5C regions were used as the 

reference set for 5C gene class enrichment. The enrichment ratios and -log10(BH FDR) 

values for all GO terms with an FDR < 0.05 were plotted (Figure 5.10H, Figure 5.13). 

 

Rapid/Delayed Immediate Early Gene and Secondary Response Gene Analysis 

We analyzed rapid primary response genes (rIEG), delayed primary response genes 

(dIEG), and secondary response genes (SRG) by downloading Supplemental Table 5 from 

Tyssowski et al. 201836. Genes were removed from each class if their promoter (upstream 

10kb from TSS) did not overlap an H3K27ac peak called in the Bic condition or the gene 

(plus 10kb promoter) did not intersect the anchor of a mouse HiC CN looping interaction. 

The number of loops each gene (plus 10kb promoter) intersected was recorded (Figure 

http://www.webgestalt.org/
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5.14K). Additionally, the distance of each loop was calculated as the difference between 

the center point of the two anchors (Figure 5.14L). For each loop in which an rIEG, dIEG, 

or SRG gene was at one anchor, the other anchor was tested for an intersection with Bic-

specific enhancers. The number of loop anchor paired with each gene that intersected a 

Bic-specific enhancer were tallied (genes which did not loop to any Bic-specific enhancers 

were not considered) (Figure 5.15C). Representative boxplots depict: center line, median; 

box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. 

Expression timing of Bdnf, Arc, and Fos were calculated using Supplemental Table 2 from 

Tyssowski et al. 201836. Each count was normalized to the maximum count for that gene 

across the 4 time points. The mean normalized count at each time point was plotted along 

with 95% confidence intervals (Figure 5.14A). 

 

Disease-Associated GWAS Single Nucleotide Variant (SNV) Enrichment 

Common variants associated with neurodevelopmental diseases were analyzed from the 

following sources: 

• Schizophrenia: Schizophrenia Working Group of the Psychiatric Genomics, 

Nature, 2014 237 

o P-value  ≤ 5 × 10−8, Table S2 from the referenced paper 

• Autism Spectrum Disorder: Autism Spectrum Disorders Working Group of The 

Psychiatric Genomics, Mol Autism, 2017 238 (European population) 

o P-value < 10-4, Additional File S3 from the referenced paper 

Disease-associated SNVs (daSVs) that fell within exons or gene promoters (2 kb upstream 

of TSS) were discarded from analysis. RsIDs for each disease set were uploaded to 
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SNPSNAP241 in order to generate 10,000 matched ‘background’ SNVs for each daSNV. 

daSNVs were matched according the 1000Genomes Phase 3 European dataset at an LD 

distance cut-off of r2=0.7 and LD buddies at r2=0.7. daSNVs that could not be background 

matched using SNPSNAP were discarded. Genome-wide linkage disequilibrium (LD) r2 

values for SNV pairs were downloaded from the SNIPA tool276. For each daSNV and 

background SNV, an LD block was identified as the set of nucleotides for which the SNV 

in question had an r2>0.7. Background LD blocks that overlapped each other or a disease-

associated block were removed. The size of each LD block, disease and background, was 

calculated as the number of constituent SNVs. For each daSNV, 5 background SNVs with 

the same size LD block were selected. If fewer than 5 background LD blocks of the exact 

same size existed, background LD blocks of size one greater and one smaller than the 

disease-associated LD block in question were included in the set of 5 size-matched 

background LD blocks. The size of included background blocks was iteratively increased 

by one until 5 size-matched background LD blocks could be selected. If fewer than 5 

background LD blocks had a size within 10 of the disease-associated block, successful 

background matching could not occur and the process was stopped. For example, for a 

daSNV with an LD block of size 75, background SNVs with LD blocks of sizes 65-85 

could be matched, with preference given to those of size 75, then 74/76, and so on. Disease-

associated SNVs which could not be successfully matched to 5 background LD blocks 

were removed from further analysis. (Note: For schizophrenia-associated SNVs, the 

number of size-matched LD blocks was decreased to 4 per daSNV.) If more than 5 

background LD blocks were equally able to be matched to a given daSNV, 5 were 

randomly chosen. Due to this randomness in the algorithm, 100 different sets of 
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background size-matched SNVs were chosen for each daSNV (note 100 datapoints in 

Figure 5.19B, one per background set). 

LD blocks (disease and background) were tested for their presence at loop anchors 

in the following manner. Loops were called on germinal zone (GZ) and cortical plate (CP) 

fetal brain tissue HiC data from Won et al. 2016240 (see HiC processing steps above). CP 

and GZ loops were then merged to create a master set of 24,544 loops spanning the two 

brain tissues. Additionally, 25,722 ‘background loops’ were identified as those HiC contact 

matrix entries which had a p-value > 0.99 and an interaction frequency count > 0 in both 

CP and GZ datasets. Background loops were confirmed to display the same loop distances 

and loop sizes as the real loop set. Bic-specific, TTX-specific, and constitutive enhancers 

were lifted over to the hg19 genome build using the liftOver tool on the UCSC genome 

browser with default parameters. Fetal brain loops were classified by enhancer presence at 

its anchor(s) in the same way mouse cortical neuron HiC loops were (see above). Queried 

LD blocks were then classified based on their presence at loop anchors: if any SNV in the 

LD block overlapped a loop anchor that was shared by a TTX-specific enhancer and not a 

Bic-specific enhancer, the LD block was considered a Class 3 variant; if any SNV in the 

LD block overlapped a loop anchor that was shared by a Bic-specific enhancer and not a 

TTX-specific enhancer, the LD block was considered a Class 2 variant. LD blocks had to 

fall at the same anchor as the enhancer to be classified. Finally, those LD blocks that did 

not overlap a classified loop anchor were tested for their presence at the anchor of a 

background loop. For each class, enrichment was calculated using Fisher’s Exact Test with 

the following contingency table:  

[[disease-associated blocks in loop of class X, background blocks in loop of class X], 



261 
 

[disease-associated blocks in background loops, background blocks in background loops]].  

The resulting odds ratios were recorded for each of the 100 background size-matched SNV 

sets and plotted (Figure 5.19B) with the median p-value of the 100 tests. 

 

LD Score Regression 

To assess the polygenic enrichments of GWAS datasets listed above within looping 

classes, we applied LD score regression242, 277. LDSR was run on European subset of 

summary statistics from each GWAS. We used precomputed LD scores based on the 

European ancestry samples of the 1000 Genomes Project278, 279 restricted to HapMap3 

SNVs and generated partitioned LD scores for each looping class. All default LDSR 

parameters were used. LDSC version 1.0.0 was used (https://github.com/bulik/ldsc). 

We conducted enrichment analyses of the heritability for SNVs located in each 

looping class. We regressed the χ2 from the GWAS summary statistics on to looping class-

specific LD scores, with baseline scores (original 53 annotation model), regression weights 

and allele frequencies based on European ancestry 1000 Genome Project data. The 

enrichment of a looping class was defined as the proportion of SNV heritability in the 

category divided by the proportion of SNVs in that category; we report enrichment values 

and statistical significance of this enrichment as p-values (Figure 5.19C). 

 

Disease-Associated Gene Expression 

For each loop that was found to have a disease associated LD block and classified enhancer 

at one anchor (see previous section), the other anchor of the same loop was tested for 

intersection with promoters (+/- 2kb from TSS of human RefSeq database, downloaded 

https://github.com/bulik/ldsc
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from UCSC genome browser). To identify as many target genes as possible, disease-

associated LD blocks that could not be size-matched in the previous section were included 

here because no enrichment against background SNVs was being calculated (however, 

those SNVs that were not in the 1000Genomes database and therefore could not be 

assigned LD blocks or matched in SNPSNAP were still excluded, along with all daSNVs 

that overlapped exons and promoters). Promoters that colocalized on the other side of 

classified loops are annotated in Figure 5.19D. Human gene symbols were matched to 

mouse homologs using the Jackson labs complete list of human and mouse homologs 

(http://www.informatics.jax.org/downloads/reports/HOM_MouseHumanSequence.rpt ). 

Mouse homologs of classified genes that fell in loops across from disease-associated LD 

blocks could then be stratified by their Bic/TTX expression (TPM) fold change and plotted 

(Figure 5.19D). 

 

 

  

http://www.informatics.jax.org/downloads/reports/HOM_MouseHumanSequence.rpt
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