
Descriptional Succinctness of Some
Grammatical Formalisms for Natural Language

MS-CIS-90-82
LINC LAB 187

Michael A. Palis
University of Pennsylvania

Sunil Shende
University of Nebraska

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 191 04-6389

November 1990

Descriptional Succinctness of Some
Grammatical Formalisms for Natural Language*

Michael A. Palis
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 191 04-6389

and

Sunil Shende
Department of Computer Science

University of Nebraska
Lincoln, NE 68588-0115

October 25, 1990

'Supported by ARO grant DAA29-84-9-0027, NSF grants MCS-8219116-CER, MCS-82-07294, DCR-84-10413, MCS-
83-05221 and DARPA grant NOOO14-85-K-0018.

Abstract

We investigate the problem of describing languages compactly in different grammatical formalisms

for natural languages. In particular, the problem is studied from the point of view of some newly

developed natural language formalisms like linear control grammars (LCGs) and tree adjoining

grammars (TAGS); these formalisms not only generate non-context-free languages that capture a

wide variety of syntactic phenomena found in natural language, but also have computationally

efficient polynomial time recognition algorithms. We prove that the formalisms enjoy the property

of unbounded succintness over the family of context-free grammars, i.e. they are, in general, able of

provide more compact representations of natural languages as compared to standard context-free

grammars.

1 Introduction

A significant body of research in computational linguistics is devoted to the characterization of syn-

tactic phenomena in natural language by means of formalisms that can be processed efficiently. By

now, a variety of grammatical formalisms, including context-free grammars, have been considered

to be useful in specifying natural language to varying degrees of linguistic adequacy. However, not

all of them have efficient recognition algorithms and among those that do, the effect of the size of

the grammar on parsing complexity is still far from clear.

Among the different candidate formalisms, context-free grammars, by virtue of their simplicity

of description and their ease of processing, are widely accepted as a reference against which other

formalisms may be compared in terms of both linguistic power as well as computational efficiency.

Recent research has shown that a family of formalisms, the linear control languages, not only give

a more satisfactory linguistic account of natural language syntax but also possess fast sequential

polynomial time and parallel N C ~ recognition algorithms. The purpose of this note is to provide

a different perspective on the comparison between context-free and linear control grammars, viz.

that a grammar in the latter formalism can be unboundedly more succinct in terms of grammar

size than one in the former for the same language.

2 Linear control languages and descriptive succinctness

Following the characterization of derivation tree paths in a context-free derivation by Thatcher [12],

several researchers have studied the consequences of limiting derivations of context-free grammars,

e.g. EOL-grammars [4], matrix grammars [ll, 51, state grammars [7], programmed context-free

grammars [lo], and controlled linear context-free grammars [8].

Linear control grammars exploit the idea of controlling context-free derivations in a novel fash-

ion. We first restrict ourselves to a subset of the paths in a derivation tree of the context-free

grammar and associate strings of labels with these paths in a uniform way. Secondly, we a prdord

specify a language (also called the control set) to which these strings must belong. In particular,

the control set can be a language of arbitrary complexity, e.g. a context-free language.

We assume that the reader is familiar with context-free grammars and derivations; our nota-

tion is basically consistent with Harrison [I]. A standard context-free grammar is a quadruple

(VN, VT, P, Z), where VN and VT are, respectively, finite sets of nonterminals and terminals, with

Z E VN being the start symbol of the grammar. The set of grammar symbols, VN U VT, is denoted

by V. P is a finite set of context-free productions of the form ji = X + XI . . . Xn, where X E VN

and the right-hand side XI . . . Xn belongs to V*.

The following definition of control grammars is adapted from Weir [14].

LDCFG productions of GI Control set C

Figure 0.1: Control Grammar G = {Gi,C)

Definition 2.1 Let G = (V., VT, P, 2) be a standard context-free grammar. Let VL be a finite set

of production labels and Label : P + VL, a one-to-one function, which assigns to every production

from P , a unique label from VL. In addition, for every production

p = X +X1. . .Xn

there is a unique integer i, 1 5 i 5 n, that identifies the symbol X i on the right-hand side of

p as being distinguished. For the sake of clarity, if Label@) = I , then we write the labeled,

distinguished production p obtained from lj as

p = 1 : x - x l...xi...x,.'

G = (VN, VT, VL, Z, P, Label) is called a Labeled, Distinguished Context-Free Grammar (or LD-

CFG) over the underlying context-free grammar G. Now, let C VL+ be some language (not

containing the empty string E) over the alphabet of labels VL. Then G = {G, C) is defined to be

a linear control grammar. Every string in vL+ is referred to as a control string or a control word.

We say that the LDCFG G is controlled by the control set C, or that C is the control set of the

LDCFG G, in grammar G.

An example of a control grammar is shown in figure 0.1.

Consider a control grammar G = {G,C) as described above in definition 2.1. Let G be the

underlying context-free grammar of G. Following standard terminology, we say that A & a if
G

there is a standard context-free derivation in G of a E V* from A E V in zero or more steps; each

step in the derivation corresponds to the context-free rewriting of some nonterminal symbol using

an appropriate production of G.

Then A a (read A derives a in G) simply if A a , i.e. a derivation of a from A in
G

G is also a derivation in G. A derivation tree of the linear control grammar G is simply obtained

by taking a derivation tree in the underlying context-free grammar G and decorating it as follows.

Figure 0.2: Derivation Tree associated with Zl &= aabbcc
G1

For every internal node labeled X with its children labeled XI, . . . , X,, we label the edge between

the parent node (labeled X) and the child node (labeled Xi) with the production label 1 where

p = 1 : X + Xl . . . x i . . . X, is the labeled, distinguished production of G which corresponds to

the production used to derive X I . . . X, from X in the tree. We denote by TreeSet(A =$- a), the

set of all such (decorated) derivation trees which correspond to the derivation A % a.

Figure 0.2 shows a derivation tree in TreeSet(Zl &- aabbcc) for the grammar G in Figure
G1

0.1. Note that from every node in the tree, there is a unique, edge-labeled path to some leaf node

in the tree. In the rest of the paper, an edge-labeled path will sometimes be identified with the

control string labeling the path, i.e the sequence of labels from the node to the leaf node. For

simplicity, we shall also refer to the path as a labeled path or a control path.

Given a derivation tree r E TreeSet(X 3 a) , we denote the unique control path from the

root node to a leaf node of r by Spine(I') (or simply, as the spine if I' is clear from the context).

Thus, E1/211121314 is the spine in Figure 0.2. The (unique) leaf node which terminates Spine(I') is

called the foot nude of r. Finally, ControlWords(I?) is the set of control strings which label all

the maximal control paths (hereafter called c-paths) in I?. A c-path ends at a leaf node and begins

at some node which is either the root or a internal node which is connected to its parent by an

unlabeled edge. In particular, note that Spine(r) E ControlWords(r).

Definition 2.2 The Control Language L(G), generated by the control grammar

G = {G, C), with Z being the start symbol of G, is defined as

L(G) = {al . . . a, E VT* I there is a derivation tree I? E TreeSet(2 =% a1 . . . a,), and
G

ControlWords(I') C}.

Let C be any family of languages over a finite alphabet. We say that a language L is controlled in

family C if and only if there is a control grammar G = {G, C) such that L = L(B) and C E C.

The reader may verify that the control language generated by the grammar in Figure 0.1 is the

context-sensitive language L(G) = {anbncn I n > I), with the context-free control set C. L(G) is,

therefore, controlled in the family of context-free languages, CFL, but is itself not a context-free

language.

Following Weir [14], a countable hierarchy of language classes may be defined such that the

0-th family in the hierarchy is exactly the family of context-free languages, and every language in

the (i + 1)-th family is generated by a control grammar whose control set is a language in the i-th

family.

Definition 2.3 The Control Language Hierarchy (CLH) is constructed as follows:

CLHo = CFL, the family of context-free languages.

f o r a l l k > l ,

CLHk = {L I there exists a context-free grammar Go, and a sequence of LDCFGs

GI, G2, . . . , Gk such that

1. Co = L(Go),

2. for all 1 5 j < k, Cj = L({Gj,Cj-I)), and

3. L = L({Gk,Ck--1))).

We say that Go and the sequence of LDCFGs GI , G2,. . . , Gk define L.

C L H = {L (L E CLHk for some countable k 2 0).

Languages in the hierarchy have very interesting properties from the point of view of computa-

tional linguistics. For example, the languages generated a t level one in the hierarchy are basically

identical to those generated by tree adjoining grammars, a formalism for natural language which

not only has significant linguistic appeal but also has an O(n6) sequential parsing algorithm. In

general, it was shown by Palis et.al. [9] that every level in the hierarchy admits fast sequential

and parallel parsing algorithms. Moreover, all the levels are closed under linguistically plausible

operations like concatenation. However, the complexity of all the parsing algorithms depends poly-

nomidly on the size of the grammar being parsed. From a formal standpoint, this is not a serious

consideration but from the perspective of practical parsing, the question of succinct grammatical

representation becomes very important and interesting.

Informally, we say that a grammar is more succinct than another if they both generate the

same language, but the former is smaller in size than the latter. Comparing between two diflerent

formalisms is somewhat more involved. Given a specific class of languages, if there is a clear

functional relationship between the sizes of the minimal representations from each class, then the

function which maps the minimal size of one representation to the other determines, in some sense,

how much economy one formalism possesses over the other. For example, it is well known that

one can always construct, within an exponential bound, a deterministic finite automaton which is

language equivalent to some given non-deterministic one. This can also be qualitatively expressed.

We would say that non-deterministic automata are exponentially more succinct than deterministic

automata.

Formally, let C and I' be disjoint alphabets.

Definition 2.4 A formalism 3 = {Ni E I?* 1 i 1 1) is a countable set of strings (or representa-

tions) such that to every N; E 3, we can associate a language L(Ni) C* in a uniform way. Let

[F] = {L(Ni) I i > 1) denote the family of languages represented by 3.

Let the size of N; be given by the number of symbols in N;. Let C be a family of languages,

and 31 and 3 2 be two given formalisms such that L E [F1] and L [F2].

Definition 2.5 [3] The relative succinctness of 3 2 over 3i with respect to the family L is re-

cursively bounded if and only if there is a recursive function f with the property that for any

language L E C, its minimal size representations N; and lij, in F1 and 3 2 , respectively, satisfy

f(l I<j 1) > I Ni I-

We show next that no such recursive bound exists for, say, the class of context-free languages

when the two representations being compared are context-free grammars and linear control gram-

mars at level one in the hierarchy. This implies that the latter formalism must, in general, be more

succinct than the former, and in fact, must be unboundedly more succinct.

3 Main Results

Consider a Turing machine M, and let IDo(x) be an instantaneous description of the machine (i.e.

state, input head, and worktape head information) on some given input x. A halting computation

of M on x (if it indeed halts) is then a finite sequence of instantaneous descriptions IDo(x), IDl(x),

. . . , IDj(z), where IDj(x) is a description of a halting configuration of M on x. Let [zIR denote

the string obtained by reversing 2. Consider the language VALC(M) which consists of strings of

the form

IDO(X)#[IDI (x)JR#~D2(x) - - ID2j(x)

or of the form

IDO(Y)#[ID~(Y)~~#ID~(Y) - . . [I D ~ ~ + I (Y)] ~ ,

where both ID2j(x) and ID2j+l(y) are descriptions of halting configurations of 1Cl on x and y,

respectively.

It is well known [6] that VALC(M) can be described as the intersection of two context-free

languages, and that INVALC(M) = C* - VALC(M) is, in fact, a context-free language

generated by a grammar obtained effectively from a description of M. We can modify every

machine hf so that it always goes through an initial sequence of two states, before proceeding with

the rest of its computation. Using this observation, we can derive the following important result.

Theorem 3.1 [6] Given a Turing machine M , VALC(M) is context-free if and only if L(M) is

finite.

Clearly, if L(M) is finite, it has only a finite number of halting computations and so VALC(M)

must be finite, and hence context-free. Conversely, if L(M) is infinite, there is some long string x

accepted by M such that the size of IDz(x) is longer than the constant used for Ogden's pumping

lemma for context-free languages. It follows that pumping substrings within ID2(x) will result in

strings which do not describe genuine halting computations of M. Hence, VALC(M) cannot be

context-free if L(M) is infinite.

The proof outlined in the previous paragraph rests crucially on Ogden's pumping lemma. In

the next section, we demonstrate a much stronger result, viz. that every level i 3 0 family of linear

control languages has an Ogden-style "pumping" lemma. As a consequence, a slight modification

of the proof above allows us to obtain the following:

Theorem 3.2 For any i 2 0, VALC(M) is in CLH; if and only if L(M) is finite.

Many results about recursive succinctness appear in [13, 3, 21 etc. Most of these results are

proved by using a variation on the basic argument1 that we present below. We will show that for

any i 2 1, the relative succinctness between linear control grammars at level i and a t level (i - 1)

with respect to the family of co-finite languages is recursively unbounded.

For assume that such a recursive bound f exists. Then, given a grammar at level i, say G, of

size n, we can recursively enumerate all the (finitely many) level (i - 1) grammars of size at most

f(n), and then perform the following procedure. For every such level (i - 1) grammar, Gj, we

successively test each input string (in lexicographic order, say) on both G and Gj. If there is even

one string which is not accepted by both machines, then the sub-computation associated with the

pair (G,Gj) is terminated (note that the recognition problem for every level in the hierarchy is

decidable; in fact, it is decidable in polynomial time).

Now, if all such sub-computations terminate, then we may conclude that there is no level (i - 1)

grammar of size at most f (n) which is equivalent to (i.e. recognizes the same language as) grammar

'Hartmanis demonstrates some very general conditions in [2] under which there can be no recursive succinctness

bound between two formalisms. Our result can also be derived as a corollary from his general theorems.

Ii. By the definition of recursive succinctness, L (I i) must not be co-finite. Then, the foregoing

procedure gives us a way to enumerate the set of all level i grammars which recognize languages

that are not co-finite. However, by theorem 3.2, such an enumeration could be used to effectively

enumerate all Turing machines M which accept infinite sets, by simply checking to see if a level

i grammar for the language INVALC(M) is ever enumerated. We get a contradiction, since the

infiniteness (of languages accepted) property for Turing machines is not recursively enumerable.

Theorem 3.3 The relative succinctness between level i linear control grammars (i 2 1) and level

(i - 1) grammars with respect to the family of co-finite languages is recursively unbounded. Hence,

the relative succinctness between the two formalisms with respect to the family CLHi-l is also

recursively unbounded.

4 Pumping lemma for the hierarchy

For any k, the family C L H k is contained in the family CLHk+l; in this section, we show that this

containment is proper by proving a pumping lemma scheme for the hierarchy. Khabbaz defined

a special case of our hierarchy by using an identical construction, where the grammars G;, 1 5 i
< k, are restricted. In fact, a pumping lemma similar to ours is proved in [8] to demonstrate -
strict separation of his hierarchy. However, the scheme cannot be used for our purposes, since

families at any level k 2 1 in the Khabbaz hierarchy are not closed under concatenation unlike

their counterparts CLHk. Consequently, at each level k 2 1, the family CLHk properly contains

the corresponding Khabbaz family.

Let G be an arbitrary LDCFG. Productions in G of the form 2 : X -+ Z and 1 : X -+ $'

for nonterminals X ,Y are respectively called E-productions and chain-productions of G. It can be

shown that:

Lemma 4.1 For any k > 0, let L = L({G,C)) be a control language in CLHk+l, where C is in

CLHk. Then there is a control grammar H = {H, D) such that L = L('H), D is in CLHk, and

the underlying grammar of LDCFG H has no E - or chain-productions.

Given a grammar H = {H, D) for L as above, we construct an equivalent grammar G = {G, C)

for L. Let MH be the deterministic finite-state automaton corresponding to LDCFG H as follows.

For every grammar symbol X of H, there is a state qx in MH. For every production I : X +

X I . . . x i . . .X, of H , there is a transition from state qx to state qx, labeled I . All states of MH

corresponding to nonterminal symbols of H are initial states of MH; the remaining states are

designated as the final states. It should be easy to see that the grammar G = {G, C) with G = H

2 ~ o r example, for every language L at level k 2 1 in the Khabbaz hierarchy, the language LL obtained by

concatenating L to itself, is in CLHk but not in the corresponding Khabbaz family

and C = D n L (M H) , also generates the language L = L(7-t). We shall say that the grammar C7

is a reduced control grammar for L. Since CLHk for arbitrary k is closed under intersection with

regular languages, the following result is obvious.

L e m m a 4.2 For any k and any language L E CLHk, there is a grammar sequence

Go, GI, . . . ,GI, generating L with the properties that:

a Go = (Vo, Co, Po, Zo) is a standard context-free grammar free of E - and chain-productions,

for all 1 5 i 5 k, Gi = (V,, C;, II;, Z;, Pi, Label,) is an LDCFG free of 6 - and chain-

productions,

a if, for all 0 5 i < k, Li is the language generated by the grammar sequence Go, GI, . . . , G;,

then {G;, L;-l) is a reduced control grammar for L;.

We define a j-factorization of a string w to be a tuple of strings (uI , . . . , ~ j) such that

w = u1 . . . uj, i.e. w is obtained by concatenating components of its factorization. If the string w

has length n, then every integer i, 1 < i < n, is called a position of w. Informally, the position i

refers to the it" symbol in w. Hence, specifying a set of positions can also be described as naarking

the corresponding symbols of w.

Given a set of positions, F , in w, any j-factorization if? of w naturally induces a partition of F

given by (Fl, F2, . . . , Fj), such that the component F;, 1 5 i < j, contains the set of positions in

F which mark symbols of w in the substring u; in a. Formally, if if? = (ul, . . . , uj), then F / @ =

(Fl, . . . , Fj) is defined by

F; = { m E F 1 l g (~ ~ . . . u ; - ~) < m < 1g(u l . . .u;)) , 15 is j

For the sake of readability, we define the integer sequence e;, i 2 0, given by e; = 2('+2) + 1. Note

that e;+l = 2e; - 1.

T h e o r e m 4.3 (P u m p i n g L e m m a Scheme) For any k 2 0, let L = L(G) be a language in

CLHk generated by the grammar sequence G = Go, GI,. . . , Gk satisfying the conditions of

Lemma 4.2.

Then there is a constant n(G) such that for each w E L, and any set of positions F in w, if

I F (2 n(6) then there is an ek- factorization = (v l , . . . v,,) of w with the property that

1. at least one triple (Fzj-1, Fzj, F .~ j+l) , for 1 <_ j < ek-1 - 1, satisfies Fp # E, for 2 j - 1 <
p < 2 j + l ,

2. I F 2 U F3. .. U Fek-I I 5 n(6, and

3. for all m 2 0, the string w[*] with factorization

also belongs to L, where the strings ui, 1 5 i F: el, are defined by u; = v; if i is odd, and

u; = vim otherwise.

Notice that Theorem 4.3 for k = 0 is simply a restatement of Ogden's strong pumping lemma

for CFLs [I]. We prove the general result by induction, using the context-free pumping lemma as

basis. To illustrate the technique, we shall first provide the proof for the case k = 1. Extensions to

higher levels in the hierarchy are obtained by specifying an appropriate constant n(G).

At the outset, we make two simple combinatorid observations.

Proposition 4.4 Let G be an arbitrary LDCFG with N distinct nonterminal symbols. Then given

any m >_ 1, and a sequence of nonterminals (Xo,X1,. . . , XmN) of G, there exist m distinct pairs

of integers (p ; , q;), 1 5 i 5 m, such that (i - l)N 5 p; < q; 5 i N and Xpi = Xqi.

The proposition is easily proved by applying the pigeonhole principle m times to contigu-

ous segments of length (N + 1) of the sequence, i.e. to the segment (Xo, . . . , XN), the segment

(XN, . . . , X2N) etc.

Now let {G, C) be a reduced control grammar with Z as the start symbol of LDCFG G, and
G consider some derivation tree I' in TreeSet(Z 7 w) for some terminal string w. A node in I' is

called a source node if it begins a c-path.

Root Node

v Y
e

m copies

Figure 0.3: A Recursive Subtree of T

Consider the subtree ro of I' as shown in Figure 0.3. To is called a recursive subtree of I' if and

only if both its root node and the unique internal node of T (denoted as the foot node of To) which

is at the frontier of r o , are labeled by the same nonterminal symbol A. Furthermore, both the root

node and the foot node of To are required to be source nodes in I?. As shown in the figure, the

recursive subtree I'o induces a factorization @ = (u, v, x, y, Z) of the string w. By Lemma 4.1, the

string vy is always non-empty.

Proposition 4.5 Let ro be a recursive subtree of a valid derivation tree

I' for w E L({G,C)), i.e. Words(I') C C. Then the tree F obtained from I' by replacing ro by

a stack of m 2 0 identical copies of ro (see Figure 0.3), is also a valid derivation tree for a string

in L({G, C}). In particular, if I' derives the string w = uvxyz as shown then derives the string

uvmxymZ.

Proof: (of Claim 4.5): Observe that since the root and the foot nodes of ro are also source nodes

in I?, every c-path of I' either passes through nodes entirely inside Fo or through nodes entirely

outside I'o (the c-path which begins at the foot node of ro belongs to the latter category). But

Words(I') C C; hence, all control words which label c-paths in I'o are all in the control set C.
Therefore, replacing ro by a stack of rn of its identical copies within I' produces derivation tree F
which is also valid, i.e. with Word@) C C, for the replacement simply produces copies of the

c-paths already in ro without extending any of the c-paths originally in I'. Note that if (u, v, x, y, t)

is the factorization of w induced by ro, then the substrings v and y on the frontier of I' are replaced

by v m and ym in f' as shown in Figure 0.3.

We now proceed to prove Theorem 4.3 for the case k = 1. Let Q = {Go,G1) be a control

grammar for L E CLHl as in Lemma 4.2. Let N1 be the number of nonterminals of GI, and

let no be the context-free pumping lemma constant for Go. Then we claim that the corresponding

constant nl n(Q) is given by nl = d12n0(4N1+3) where dl is the maximum length of right hand

sides of productions in GI.

Some preliminary definitions and observations are needed next. Let w be a string in L(Q) and

let F be a set of positions of w with I F I> nl. Then for any derivation tree, A, for w, we can

define the following subsets of the set of nodes of A. A D-node is an ancestor of some position in

F. A B-node is a D-node with the following additional property. It has at least two immediate

sons in I' which are both D-nodes. Stated somewhat differently, every node which is on the path

from the root node to some position in F belongs to the set of D-nodes. The B-nodes are simply

those which belong to at least two such distinct paths. Given these definitions, it is easy to show

([I], pp.187) that

Proposition 4.6 For every tree r, if w is the string of terminal symbols at the leaves of I', F is

a set of marked positions of w, and every root-teleaf path in I' has at most i B-nodes, then the

number of positions of w in F is at most dli.

3The notation is consistent with the terminology used in [I], pp.187

10

Recall that we chose I F I to be greater than nl. Consequently, by the contrapositive of

proposition 4.6, there is a path in I' with at least 2no(4N1 + 3) B -nodes; without loss of generality,

let P be the path with the maximum number of B-nodes over all such paths. P begins at the root

node of I' and ends at some leaf node labeled, say, by the l th symbol of w, denoted as wl.

Consider, P, which is the smallest contiguous part of the path P such that it contains the leaf

node labeled wl and has exactly 2no(4N1 + 3) B-nodes, i.e. p starts at some B-node, denoted

7 and contains the "lowest" 2no(4N1 + 3) B-nodes of P (see Figure 0.4). We denote the set of

A source

/\ copies

Figure 0.4: Pumping a c-path from a source node on P

B-nodes in p by Bp, and the subtree of I' rooted at 7 by A. It is easy to see that every path in

A has a t most 2no(4N1 + 3) B-nodes; hence, by proposition 4.6, the number of positions on the

frontier of A is at most nl. All the strings that will be "pumped" in the remainder of the proof

belong to the frontier of A. This takes care of condition (2) in Theorem 4.3.

Let S be the set of source nodes on P . For any B-node in S, it must be an ancestor of some

position from F in w in subtree I', such that the position either lies to the left or to the right of

the leaf node labeled wl. We shall denote the set of B-nodes in S with marked descendents to the

left of wl as BI; the set B, is defined analogously. It is easy to see that Bl U B, = Bp. Since Bp

contains exactly 2no(4N1 + 3) nodes, at least half of those nodes must belong either to Bl or to B,.

We now have three cases depending on the number of source nodes on path P (recall that source

nodes begin c-paths in tree I?); Either I S I equals 0, or I S (is between 1 and (4N1 + 3) (inclusive),

or I S I is at least 4(N1 + 1).

1. (S I = 0: Since none of the internal nodes on P are source nodes, it follows from our

definitions that P forms the "tail" of the c-path beginning at some source node on path P

(see Figure 0.4).

Without loss of generality, suppose that Bl contains at least half of the nodes in Bp. For

every node in Bl, we naark the label on the directed edge out of the node (note that every

B-node has such a directed edge out of it which lies on P) . These marked labels now serve

as "positions" on the control word. We denote the set of these positions by Ir'; the size of

Ir' equals that of Bl, and is clearly greater than no. Hence, by Ogden's lemma (or Theorem

4.3 with k = 0), we can find a 5-factorization, 5 , of the control word, such that either

Ir'l, Ic2, K3 or K3, IC4, are all non-empty with respect to 6. But the factorization 6 of

the control word induces a 9-.factorization of w as shown in Figure 0.5. Statement (1) in

Theorem 4.3 is now immediate, where either Fl , Fz, F3 or, respectively, F3, F4, F5 are all

non-empty with respect to a.
Furthermore, by Theorem 4.2, the substrings 5 2 and 5 4 can be "pumped"; this corresponds to

"pumping" strings Q2, a4, a6, and as thus proving statement (3) of the theorem. Statement

(2) follows from the remark made above, i.e. from proposition 4.6. Note that if we substitute

the set B, for Bl in the above discussion, then a similar argument provides the other two

symmetric cases in statement (1) of the theorem.

2. 1 < - (S / < (4N1 + 3): An easy counting argument confirms that there is at least one source

node on whose corresponding c-path passes through at least 2no B-nodes on P . Let aJl
the B-nodes associated with the above c-path be denoted by set B'; define the sets ~ 1 ' and

B,' for B' analogous to B1 and B, respectively for Bp. Without loss of generality, we may

assume that the set B,' is at least as large as B,'. Clearly, BI' U B,' = B', and hence ~ 1 '

contains at least no nodes. The reader may note that if the labels on the directed edges out

of these B-nodes are now marked, then an argument along the same lines as the case above

(i.e. I S (= 0) suffices to prove the theorem (see Figure 0.4).

Observe that the subtree rooted at this source node is also a subtree of A and hence contains

no more than nl positions in w; statement (2), therefore, follows.

3. 1 S I 2 4(N1 + 1): If any of the c-paths associated with the source nodes in S contains a

minimum of 2no B-nodes from Bp, then this case reduces to the previous one. Otherwise,

there must be at least 4(N1 + 1) source nodes, such that the parts of their c-paths along

contain at least one B-node from Bp. If we let B to be the set of such B-nodes, and define

BI and B, analogous to Bl and B, respectively (for Bp), then B = B1 U B,. So, without

loss of generality, let BI be the larger set. Then it is not difficult to see that there are at

least 2(N1 + 1) source nodes on P such that the parts of their c-paths (along p) contain at

least one node in B,. Choose 2(N1 + 1) such source nodes, labeled (XI, X2,. . . , X2(N,+1))

in sequence with the property that for all 0 < i < 2N1, the source node labeled Xi is an

ancestor of the one labeled Xi+1 on path P. By proposition 4.4 (with m = 2), there must

be two pairs of nodes, labeled (X;,Xj) and (Xk,XI), with 1 5 i < j < k < 1 5 2(N1 + I),

such that Xi = X j and Xk = XI. These pairs respectively define two mcursive subtmes of l?

(see the shaded trees in Figure 0.5), thereby inducing a el-factorization of w which satisfies

copies

m
copies

Figure 0.5: Pumping two recursive subtrees below

Fl, F2, F3, F4, F5 all non-empty (note that, in this case, we have a stronger condition than (1)

in theorem 4.3). Moreover, by proposition 4.5, it is possible to "pump" both these recursive

subtrees m times independently to obtain a valid derivation tree for w [~] . Condition (2) is

satisfied as before, by observing in Figure 0.5 that all "pumpedn portions lie in the subtree

I?, which contains at most nl positions from F.

This concludes the proof of the theorem for the case k = 1. It can be easily extended to

levels k > 1 in the following way. Let Nk be the number of nonterminals of Gk, and induc-

tively let be the iteration theorem constant for the control set of L generated by the se-

quence of grammars Go, GI, . . . , Gk-1. Then the corresponding constant nk = n(G) is given by

nk = dk2nk-l(2k+1[Nk+1]-1) where dk is the maximum length of right hand sides of productions in

Gk. The proof then follows along exactly the same lines as above, except that we use proposition

4.4 with m = zk.

5 Conclusions

Linear control grammars are promising candidates for describing natural language syntax. This

paper provides another yardstick to measure the usefulness of these formalisms, viz. an estimation

of the relative sizes of a context-free grammar and a linear control grammar for the same language.

Our result shows that linear control grammars can be unboundedly more compact than equivalent

context-free ones. In the process, we also solve another open problem by showing that the linear

control language progression is a properly separated hierarchy of language classes.

Bibliography

[I] M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Reading, MA,

1978.

[2] J. Hartmanis. On godel speed-up and succinctness of language descriptions. Theoretical

Cornput. Scd., (26):335-342, 1983.

[3] J. Hartmanis. On the succinctness of different representations of languages. SIAM J. Comput.,

9(1):114-120, Feb 1980.

[4] G. T. Herman and G. Rozenberg. Developmental Systems and Languages. North-Holland

Publishing Co., Amsterdam, 1975.

[5] 0. H. Ibarra. Simple matrix languages. Info. and Control, 17:359-394, 1970.

[6] Hartmanis J. Context-free languages and turing machine computations. In Proc. Symposia in

Applied Math. 19, American Mathematical Society, Providence, R.I., 1967.

[7] T . Kasai. An hierarchy between context-free and context-sensitive languages. J. Comput. Syst.

Sci., 4:492-508, 1970.

[8] N. A. Khabbaz. A geometric hierarchy of languages. J. Comput. S31st. Sci., 8:142-157, 1974.

[9] M. A. Palis and S. Shende. Upper bounds on recognition of a hierarchy of non-context-free

languages. Theoretical Computer Science, to appear in 1991.

[lo] D. J. Rozenkrantz. Programmed grammars and classes of formal languages. J. ACM, 16:107-

131, 1969.

[ll] A. Salomaa. Matrix grammars with a leftmost restriction. Info. and Control, 20:143-149,

1970.

[12] J. W. Thatcher. Tree automata: An informal survey. In A. V. Aho, editor, Currents in the

Theory of Computing, pages 143-172, Prentice Hall Inc., Englewood Cliffs, NJ , 1973.

1131 L. G . Valiant. A note on the succinctness of descriptions of deterministic languages. Info. and

Control, 32:139-145, 1976.

[14] D. J . Weir. Context-Free Grammars to Tree Adjoining Grammars and Beyond. Technical Re-

port, Department of Computer and Information Science, University of Pennsylvania, Philadel-

phia, 1987.

