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ABSTRACT

IS THE IT REVOLUTION OVER? AN ASSET PRICING VIEW

Colin Ward

João F. Gomes

I develop a new method that puts structure on financial market data to forecast economic

outcomes. I apply it to study the IT sector’s transition to its long-run share in the US

economy, along with its implications for future growth. Future average annual productivity

growth is predicted to fall to 52bps from the 87bps recorded over 1974–2012, due to inten-

sifying IT sector competition and decreasing returns to employing IT. My median estimate

indicates the transition ends in 2033. I estimate these numbers by building an asset pric-

ing model that endogenously links economy-wide growth to IT sector innovation governed

by the sector’s market valuation, and by calibrating it to match historical data on factor

shares, price-dividend ratios, growth rates, and discount rates. Consistent with this link, I

show empirically that the IT sector’s price-dividend ratio univariately explains nearly half

of the variation in future productivity growth.
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CHAPTER 1 : Is the IT revolution over? An asset pricing view

1.1. Introduction

Information technology continues to change the way firms do business. While the market

valuations of star firms, like Apple and Google, make headlines, the broad economy’s con-

tinued adoption of IT drives improvements in output and productivity, leading Jorgenson,

Ho and Samuels (2011) to conclude that “...information technology capital input was by

far the most significant [contributor to US economic growth over the period 1995–2007].”

Substantial controversy exists, however, over IT’s future bearing on US growth, perhaps

arising from existing analyses’ heavy reliance on historical macroeconomic data.1

In this paper, I argue that we can learn more about IT’s future bearing by better structuring

our use of forward-looking financial market data. To my knowledge, the method I develop

to do this is new. While I apply it to IT because of the sector’s importance to growth and

growth’s first-order implications for pension fund financial health, government indebtedness,

and firm investment, it could in principle be applied to study other phenomena, such as

peak oil, as well.

I begin by building an asset pricing model that endogenously links economy-wide growth to

innovation in the IT sector, whose intensity is governed by the sector’s market valuation.2

Consistent with this link, I empirically show that the IT sector’s price-dividend ratio uni-

variately explains nearly half of the variation in future productivity growth. I then calibrate

the model’s transition paths to match historical data of factor shares, price-dividend ratios,

1Cowen (2011) and Gordon (2000, 2012, 2013) are pessimistic, whereas Moore (2003), Brynjolfsson and
McAfee (2011), and Byrne, Oliner and Sichel (2013) are not. Even The Economist held an internet debate
over 4-15 June 2013 on whether technological progress is accelerating. The summary is listed here: http:

//www.economist.com/debate/files/view/Techprogressartifact0.pdf.
2I define the IT sector in Appendix A.2. I call the IT sector’s complement (the “non-IT” sector) the

industrial sector. Regarding factor shares, IT capital—the sum of hardware, software, and communications
capital—is treated as a type of capital distinct from industrial capital; the former being referred to as “IT”;
the latter, simply as “capital”. Both refer to stocks of a quantity of “machines”. Hence, the IT-capital ratio,
which will be prominently featured in what follows, is analogous to a capital-labor ratio, both cases being a
relative intensity of factor use.

1

http://www.economist.com/debate/files/view/Techprogressartifact0.pdf
http://www.economist.com/debate/files/view/Techprogressartifact0.pdf


growth rates, and discount rates. This calibrated model allows me to study the IT sector’s

temporal evolution toward its long-run factor share and to estimate its future bearing on

growth.

Future average annual productivity growth is predicted to fall to 52bps from the 87bps

recorded over 1974–2012. This is due to both an intensifying of competition in the IT

sector, which reduces the marginal benefit of it innovating, and decreasing returns in the

broad economy’s employment of IT. My median estimate indicates the IT sector’s transition

ends in 2033, six decades after its 1974 inception.

I further analyze the model to make two novel predictions about the IT sector’s evolution.

First, the sector is more likely to reach its long-run share within the decade before 2033 than

within the decade after: formally, the density of convergence times of when the sector’s long-

run share is reached is right-skewed. Because dear IT sector valuations lead to economy-

wide growth and, importantly, vice versa, my model exhibits a salient equilibrium effect that

hastens the transition. Second, the information technology sector serves as a hedge against

adverse innovations to expected growth in the long run. Bad news about expected growth

raises IT’s possible future contribution to growth; upon impact, the sector’s price-dividend

ratio encodes this news and rises.

To elaborate on how we can use asset prices to forecast a sector’s growth prospects and

future relative size, consider the Gordon growth model for an economy populated by risk-

neutral investors:

P
(i)
0

D
(i)
0

=
1

r − g(i)
,

where i denotes the sector; P , the sector’s market capitalization; D, its aggregate payout;

and g, its dividend growth rate.3 Specify two sectors, and endow the first sector with

a slower growth rate, g = g(1) < g(2) = g + ∆, where ∆ > 0 is a growth wedge, possibly

3The growth rate of the sector encompasses not only the growth rate of dividends of individual firms,
but also the net increase in the number of firms in the sector: that is, g(i) = d(i) + n(i), with d denoting the
sector’s per firm dividend growth rate, and n denoting the sector’s net entry rate.
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reflecting an exceptional dividend growth rate or a growing mass of industry constituents. If

this endowment were permanent, the outcome would be trivial: sector one’s dividend share

tends to zero and sector two dominates in the long run. An interesting analysis emerges,

however, if sector two’s superior growth rate is transient.

Consider now a convergence time T > 0 when sector two’s growth rate instantaneously

converges to sector one’s. Sector two’s price-dividend ratio becomes4

P
(2)
0

D
(2)
0

=
1

r − g −∆

[
1− e−(r−g−∆)T

r − g
∆

]
. (1.1)

By estimating values of r, g, and ∆, and by observing sector two’s price-dividend ratio at a

point in time, we can back out an estimated value of T . A corollary of this exercise is that

we can infer the future relative size of the sectors because both ∆ and T are now known:

D
(2)
T

D
(1)
T

=
D

(2)
0

D
(1)
0

× e∆T ,

the current dividend ratio scaled by the temporary relative growth factor.

This stylized example illustrates the paper’s novelty in inferring a convergence time from

asset prices and relating them to future shares in the economy. In the paper, I proceed

to construct a more detailed model by introducing additional features such as stochastic

growth, uncertainty and risk, investment, and sectoral interdependence. This fleshed-out

model allows me to match historical paths of pertinent macroeconomic and asset market

data, and then to use its structure to infer both when the IT sector’s transition ends and

the associated gains to future growth.

Related literature

My paper builds on the work that relates financial market performance to shifts in the

4Equation (1.1) solves
∫ T

0
D

(2)
0 e(g+∆)se−rsds+e−rTP

(2)
T , where P

(2)
T = D

(2)
T /(r−g) = D

(2)
0 e(g+∆)T /(r−g).

Setting either T or ∆ to zero reduces it to the Gordon growth model and to sector one’s ratio.

3



technological frontier.5 Pástor and Veronesi (2006, 2009) develop models where learning

about a firm’s profitability or a technology’s productivity coincides with periods of high

volatility and bubble-like patterns in stock prices. Gârleanu, Panageas and Yu (2012b) study

the asset pricing implications of large, infrequent technological innovations that require firm-

specific investment to be adopted. Because firms are heterogeneous, firm-specific adoption

is staggered across time, generating economy-wide persistence and investment-driven cycles.

I take the presence of the IT sector as given, and study the financial market effects of a

gradual shift in the technological frontier as the sector expands and transitions towards its

long-run factor share. Furthermore, I ultimately use the model to forecast growth.

That said, my paper adds to the literature linking asset prices to aggregate growth to in-

novations in the economy.6 The model developed here extends the work done in Romer’s

(1990) seminal paper, in a similar direction to the one taken by Comin and Gertler (2006).

Kung and Schmid (2012) build a growth model similar to the one used here but focus on the

quantitative difference implied by assuming exogenous or endogenous growth; they show the

latter performs better in matching macroeconomic and asset market data. Their insight of

asset prices reflecting anticipated future growth is one shared in this paper. While their pa-

per features R&D as the chief state variable, my paper places the IT sector’s price-dividend

ratio as the centerpiece. The papers can thus be viewed as complementary. Gârleanu, Ko-

gan and Panageas (2012a) study a growth model of innovation in an overlapping-generations

economy. They find that innovation increases the competitive pressure of existing firms,

similarly to this study, and that a lack of intergenerational risk sharing introduces a new

source of “displacement” risk in the economy. The novelty in my work is in the context and

the application. I explicitly model the “innovation” sector as the IT sector, and map all

model features directly to readily available public market data and investment data. I also

focus on the model’s transition paths: I initialize the economy with a small IT sector and

5A partial list includes Jovanovic and MacDonald (1994), Greenwood and Jovanovic (1999), Hobijn
and Jovanovic (2001), Cochrane (2003), Ofek and Richardson (2003), Abel and Eberly (2012), Kogan,
Papanikolaou, Seru and Stoffman (2012), and Kogan, Papanikolaou and Stoffman (2013).

6For example, Grossman and Helpman (1991), Aghion and Howitt (1992), Beaudry and Portier (2004),
Beaudry and Portier (2006), Atkeson and Kehoe (2007), Acemoglu (2009), and Opp (2010).
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study its evolution to its larger, long-run share, triangulating the model’s transition paths

with macroeconomic and asset market data.

Finally, my paper fits into the large literature tying cross-sectional and time series asset

returns to production economies.7 Gomes, Kogan and Yogo (2009) develop a production

economy with two types of firms that links heterogeneity in output to differences in average

returns. While the firms’ decisions are intertwined through a common variable factor of pro-

duction and the representative household’s choices, they otherwise operate independently.

My model features two interdependent sectors where one sector’s output is the other’s in-

put and also generates sectoral differences in average returns. Work on investment-specific

shocks, originating with Greenwood, Hercowitz and Krusell (1997) and later being linked

to asset prices in Papanikolaou (2011), suggests that investment-good producers load more

than do consumption-good producers on investment shocks, which carry a negative price of

risk, thus earning lower returns like growth firms. In my model the IT sector is analogous to

an investment-good production sector, but it earns lower returns due to relatively smaller,

and eventually negative, loadings on factors with positive risk prices.

I structure the paper as follows. Section 1.2 describes the model environment. Section

1.3 builds a deterministic model to highlight its qualitative features being consistent with

broad movements in the data. Section 1.4 calibrates, simulates, and analyzes the full model.

Section 1.5 concludes.

1.2. Environment

There are two sectors: the industrial sector and the IT sector. The information technology

sector houses both a production division and a research division. The industrial sector rents

IT goods from the IT sector; these goods enhance the productivity of the industrial sector,

7Contributions include Cochrane (1996), Jermann (1998), Berk, Green and Naik (1999), Gomes, Kogan
and Zhang (2003), Carlson, Fisher and Giammarino (2004), Kogan (2004), Zhang (2005), Cooper (2006),
Novy-Marx (2007), Belo (2010), Gala (2010), Kaltenbrunner and Lochstoer (2010), Gourio (2012), Kogan
and Papanikolaou (2013a), Kogan and Papanikolaou (2013b), and Loualiche (2013).

5



and the greater the variety of goods, the greater the enhancement. Sustained demand for

these goods increases the value of them and incentivizes the IT sector to create more of them.

The information technology sector conducts research today in anticipation of creating new

IT goods tomorrow. The created goods are subsequently rented by the industrial sector,

and through this process, growth is endogenized.

The ratio of interest

Consistent with Jorgenson et al.’s (2011) conclusion that the chief contributor to recent

economic growth was IT’s growing factor share, I focus this paper’s analysis on the IT-

capital ratio.

Ratio of interest: the IT-capital ratio =
NtXt

Kt
,

where Kt is the quantity of capital and Xt is the industrial sector’s quantity of demand for

each IT good, of which there is a varied continuum of measure Nt. All quantities will be

explicitly defined in what follows.

The basic method to analyze this ratio’s transition follows: I start the economy at a small IT-

capital ratio relative to its larger, model-implied, long-run value. I then run the model and

analyze the ratio’s transition, which is governed by the model’s dynamics, towards its long-

run value. When the ratio nears this value, the interpretation is that the industrial sector

has effectively tapped the major productivity gains that can be exploited from adopting

IT and adjusting work practices to best use it. I explicitly define this method for the full

model in Section 1.4.

1.2.1. Information technology sector

Market structure and product division

The information technology sector is subject to the same market forces as every other

6



industry, but two critical forces affecting it are cost structures and network economies.8

Fixed costs and tiny marginal costs are rarely observed in the industrial economy, but for

the IT sector, they are common.9 This is not just true for pure information goods, such

as ebooks and other media, but even for physical goods such as silicon chips. Constructing

a chip fabrication plant can cost several billion dollars, but producing an incremental chip

only costs a few dollars. This cost structure cultivates supply-side economies of scale.

The distinguishing feature of a good exhibiting network economies is that the demand for

the good depends on how many other people use it.10 Purchasing a word processor with

the largest market share is natural, as it allows you to more easily transfer files, resolve

problems online, and work on multi-authored documents. These economies also contribute

to another market-power-granting effect: lock-in. Consider learning software. Becoming

proficient with a piece of software takes time. Switching to a new piece of software is costly

because you will have to relearn computing commands or functions; switching shoes from

Nike to Adidas, on the other hand (foot), is trivial. At the organizational level, the effect

of lock-in can potentially be huge.

Both forces coalesce to endow producers of IT goods with market power; consequently, I

model the IT sector as monopolistically competitive. There is a fixed continuum of IT firms

of unit measure that comprise the IT sector. Each IT firm is indexed by j. Information

technology goods produced by the whole sector are on a continuum of measure Nt, and are

indexed by i. Each firm monopolistically prices its good(s).11 Information technology is

8There are several other important forces that affect the IT sector, see Shapiro and Varian (1999) for an
excellent overview.

9Bakos and Brynjolfsson (1999) study a strategy of bundling a large number of information goods and
selling them for a fixed price. They show empirical evidence that this strategy works better for and is used
more widely by the IT sector because its marginal costs of production are low. Other industries rely on
bundling less often because their marginal costs are higher, which reduces the net benefit of bundling.

10Goolsbee and Klenow (2002) examine the importance of network externalities in the diffusion of home
computers. Controlling for many characteristics, they find that people are more likely to first-time buy a
computer in areas where a high proportion of households already own one. Additional results suggest these
patterns are unlikely to be explained by common unobserved traits or by features of the area.

11Thus, the measure of IT goods, Nt, reflects the entire sector’s product line. Because any firm produces
a zero-measure set of IT goods, there is no feedback from the price a single firm charges in relation to the
prices charged by other firms, so the firm consequently prices its own goods independently of its other goods
and of the rest of the sector. Since I focus on the IT sector as a whole, I abstract from intra-industry

7



notorious for depreciating quickly, so I make a further technically simplifying assumption:

it depreciates fully every period.

Consider the quantity demanded, Xt(i), which will be later explicitly modeled, for some

IT good i ∈ [0, Nt]. The monopolist of the IT good takes Xt(i) as given and sets prices to

maximize its profit, subject to a linear production function that is common to all monop-

olists.12 My assumptions imply that every monopolist sets the same price, Pt(i), in every

period (See Appendix A.1 for the derivation):

Pt(i) = µ, for every i and t.

In consequence of this result, the quantity demanded, Xt(i), and profit earned, Πt(i), for

each IT good are equal across varieties:

Xt(i) = Xt, for each i and Πt(i) = Πt = (µ− 1)Xt, for each i.

Profitability here is kept simple: each IT good producer simply charges a markup over

marginal cost, and earns the difference multiplied by the quantity demanded. A shortcom-

ing of the model is that changes in profitability are solely determined by changes in demand,

rather than by changes in markups. As an industry evolves in reality, both price and quan-

tity reductions lower incumbent firms’ profits (see Jovanovic and MacDonald (1994)). All

that matters here, however, is the aggregate amount of profits, and their being procyclical

and increasing in the total size of the industry.

I introduce a parameter 1− φ to denote the probability that an existing IT good becomes

strategies to substantially simplify the analysis. You can think about this market structure as having the IT
sector provide many differentiated products to the industrial sector; for example, the goods could be smart
phones, robots, consulting services, and even applications (apps)—any product that enhances productivity.

12In detail, the intraperiod dynamic for the IT firm follows. It observes the demand curve and sets its
price to maximize profits. From Xt(i) units of IT capital it produces Xt(i) units of the IT good, which it
sells to the industrial firm. Note the existing IT capital fully depreciates after production. Therefore, the
IT firm uses part of the industrial sector’s payment to re-invest Xt(i) units of IT capital for the following
period.

8



obsolete, is no longer demanded by the industrial sector, and thus has zero value. The value

for any IT good, Vt, then, can be written recursively as

Vt = Πt + φE[Mt+1Vt+1|Ft],

where Mt+1 is the stochastic discount factor, and E[·|Ft] denotes the conditional expectation

with respect to the filtration Ft that includes all information up to time t. Because all IT

goods have identical values, newly developed IT goods are expected to have the same value.

Thus, information technology firms will conduct relatively more research to create new IT

goods when the value of them is high.

Research division

The information technology sector as a whole spends a lot on research and development.13

The division for research is contained within the IT sector and is characterized by two

conditions. First, any zero-measure IT firm in the IT sector can conduct research subject

to a common, decreasing returns to scale technology, parameterized by ηs ∈ [0, 1).14 Second,

each firm’s research independently realizes success or failure, and the existence of a stock

market allows IT firms’ owners to diversify away these idiosyncratic risks.

These assumptions jointly lead to a condition where the marginal benefit of research is

equated with its marginal cost for every individual firm, each indexed by j:

θt × ηsSt(j)ηs−1 × E[Mt+1Vt+1|Ft] = 1, ∀j ∈ [0, 1]. (1.2)

The left side is the marginal benefit of research, which is interacted with a time-varying

13Computing and electronics, and software and internet firms constituted 35 percent of total R&D expen-
diture worldwide in 2011 according to Jaruzelski, Loehr and Holman (2012, p.6, Exhibit C). As a fraction
of sales, research and development expenditure is also higher for IT firms on average: seven to ten percent
of sales versus under two percent for industrial firms. These latter estimates are from my own calculations
on Compustat data.

14Startups in the IT sector have historically been a large beneficiary of venture capital. Metrick and
Yasuda (2011, p.18, Exhibit 1-7) document that the four largest recipients of venture capital investment
were communications, software, semiconductors and electronics, and hardware, which received 54 percent of
total venture capital investment in the post-tech-bubble period.

9



externality θt that is taken as given by an individual firm. The right side is the marginal cost

of research. I interpret the externality as a measure of research productivity and implicitly

give it the following form:

Stθt = χN1−ηs−ηk
t Kηk

t .

I choose the scale parameter χ to match the evidence on balanced growth and have St denote

aggregate research expenditure. I specify the elasticity of new IT good development with

respect to research to be ηsm, which corresponds with its research production technology.

And I index the strength of a capital reallocation friction with the parameter ηk. I assume

−1 < ηk ≤ 0 to make the externality aid the model in generating an S-shaped diffusion

curve by capturing three features:15

∂θt
∂St

< 0,
∂θt
∂Nt

> 0,
∂θt

∂(Kt/Nt)
< 0.

The left-most derivative captures decreasing returns to aggregate research expenditure,

because some new products, although researched independently, will possibly overlap in

function and use. The middle derivative sets research productivity to be increasing in Nt,

capturing the idea that a set of technologies with a rich set of components, like microproces-

sors, can be combined and recombined to produce new products. The right-most derivative

captures a capital reallocation friction that is plausible for two reasons: one, it is more

difficult to integrate IT into more capital, because differences in each type of capital could

require a specific approach; two, the accumulation of knowledge about a particular type of

capital would reduce the incentive to learn about a new type of capital, as in Atkeson and

Kehoe (2007).

Each IT firm chooses to spend St(j) units of the final good on research. And the measure

φNt remains in the next period. The law of motion for IT goods, then, takes the following

15A S-shaped diffusion curve has three temporal states: initially, the adoption of the new technology is
slow because its efficacy could be unclear; later, once the new technology becomes better understood, the
pace of adoption rapidly picks up; finally, as the economy becomes saturated with the new technology, its
rate of adoption slows and plateaus. Both Atkeson and Kehoe (2007) and Jovanovic and Rousseau (2005)
provide empirical evidence of this curve for other economic revolutions, including the IT revolution.
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form:

Nt+1 = φNt +

∫ 1

0
θtSt(j)

ηsdj (1.3)

= φNt + θtS
ηs
t , with N0 > 0. (1.4)

Together, (1.2) and (1.4) imply an aggregate condition:

St = (Nt+1 − φNt)ηsE[Mt+1Vt+1|Ft]. (1.5)

The left side denotes aggregate research expenditure and the right side summarizes the

aggregate benefit of conducting research today: the increment of novel IT goods (Nt+1−φNt)

multiplied by each good’s discounted expected value Et[Mt+1Vt+1] multiplied by the share

of research revenue expensed during development, ηs.

Plugging (1.5) into (1.4) (and temporarily holding ηk = 0 for clarity) highlights the model’s

crucial feature—a tight link between IT-sector growth and the valuation of its goods:

1 + gN,t+1 ≡
Nt+1

Nt
= φ+ χ

1
1−ηs (Et [Mt+1Vt+1])

ηs
1−ηs , (1.6)

where gN,t+1 is defined as the IT sector’s net entry rate. This equation clearly shows how IT

firms have a profit-driven motive to innovate: the greater an IT good’s value, which is closely

tied to its demand, the greater the IT sector’s growth rate. Thus, my model intimately links

innovation and growth to entry, an result consistent with empirical evidence presented by

Jovanovic and MacDonald (1994).

1.2.2. Industrial sector

Production function

The industrial sector comprises competitive firms that are identical. Because all firms are

11



identical, the economy admits a representative firm. The representative firm produces a

final good Yt by combining capital Kt, a composite IT good Gt, and labor Lt, which is

subject to a productivity shock At:

Yt =
(
Kα
t (AtLt)

1−α
)1−m

Gmt , (1.7)

where m denotes the share of IT goods in factor income, and α the capital share of non-IT

good factor income.16 I normalized the price of the final good to one. The production

function specifies capital, IT goods, and labor as having positive cross-partial derivatives.

Consequently, by renting more IT goods the marginal product of the two traditional inputs

of production, capital and labor, are enhanced.17

Composite IT good

At every date t, there is a varied continuum of measure Nt of IT goods. These information

technology goods are bundled together into a composite good defined by a constant elasticity

of substitution aggregator

Gt =

[∫ Nt

0
Xt(i)

1
µdi

]µ
.

The parameter µ measures the degree of variety that each IT good possesses. As µ goes to

one, all IT goods are perfect substitutes, and, furthermore, the incentive of the IT sector

to conduct research goes to nil; consequently, growth is not sustained. Thus, I maintain

the restriction that µ > 1. A result of this restriction is that the industrial firm is more

productive if, for example, it uses an equal amount of two IT goods versus if it uses twice

as much of one IT good. Thus, when new IT goods are created, it is in the final-good

producer’s interest to diversify existing demand and include the new spectrum of goods,

and to reduce the quantity demanded of each specific IT good. The variable Gt can be

16The production function is later rewritten as only a parametric function of α, with that share going to
capital, and the balance going to labor; see (1.14). This is the more customary interpretation taken by the
literature.

17Plant-level evidence on valve manufacturers by Bartel, Ichnowski and Shaw (2007) corroborates that
the adoption of IT does more than simply replace factors: it enhances productivity. Black and Lynch (2001)
additionally discover that greater computer usage by nonmanagerial employees raises plant productivity.
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thought of as measuring the technological complexity of the final-good producers.

Capital accumulation

I subject the accumulation of capital to Penrose-Uzawa adjustment costs, along the lines of

Jermann (1998), with current capital depreciating at rate δ

Kt+1 = (1− δ)Kt + Λ

(
It
Kt

)
Kt, where Λ

(
It
Kt

)
= c0 +

c1

1− 1
ζ

(
It
Kt

)1− 1
ζ

. (1.8)

The free parameters (c0 and c1) of the adjustment cost function are chosen to eliminate

adjustment costs in the deterministic steady state (following Kaltenbrunner and Lochstoer

(2010)).18 The parameter ζ ∈ (0,∞) sets the elasticity of the investment rate with respect

to marginal q, the expected marginal value of an additional unit of capital. If ζ is low,

marginal capital adjustment costs are high; as ζ → ∞, marginal capital adjustment costs

go to zero.

Stationary productivity

In addition, the exogenous source of total factor productivity (TFP) of the firm At follows

a stationary Markov process19

log(At+1) = ρ log(At) + εt+1,

where εt+1 is an independently and identically distributed normal random variable with

mean zero and constant variance σ2
ε . I set the autoregressive coefficient, ρ, near one, making

exogenous productivity persistent. This is a common assumption in the Real Business Cycle

(RBC) literature, one used to generate business cycles. Because this process is stationary,

long-run growth only occurs endogenously through the IT sector’s expansion.

18Explicitly, c0 = 1
1−ζ (g∗N + δ) and c1 = (g∗N + δ)

1
ζ , where the steady-state growth rate of IT goods is g∗N .

Note that Λ′
(
It
Kt

)
> 0 and Λ′′

(
It
Kt

)
< 0 for ζ > 0 and It

Kt
> 0. Therefore the steady-state investment rate

I
K

∗
= Λ

(
I
K

∗)
= gN + δ. Investment is always positive because Λ′

(
It
Kt

)
goes to infinity as

(
It
Kt

)
goes to

zero.
19The Hicks-Neutral measurement of TFP would actually be A

(1−α)(1−m)
t .
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Maximization

Given an initial capital level of K0, the firm chooses stochastic sequences of investment,

labor, and IT goods {It, Lt, {Xt(i)}i∈[0,Nt]}t≥0 to maximize the expected present value of

dividends:

Et

[ ∞∑
s=0

Mt|t+sDt+s

]
, where Dt = Yt − It −WtLt −

∫ Nt

0
Pt(i)Xt(i)di,

where Mt|t+s = Mt+1 ·Mt+2 · · ·Mt+s is the product of future stochastic discount factors

from time t+1 to t+s. The firm’s optimality conditions are in Appendix A.1. I can simplify

the first-order condition with respect to Xt(i) because of the IT sector’s market structure:

Xt =

(
m

µ

) 1
1−m

Kα
t (AtLt)

1−αN
µm−1
1−m
t . (1.9)

Because At is procyclical and persistent, the demand for IT goods, the valuations of these

goods, the IT sector’s aggregate expenditure on research, and the entry rate of new IT firms

are, too.

Output and balanced growth

Using equilibrium conditions, I can rewrite (1.7) as

Yt =

(
m

µ

) m
1−m

Kα
t (AtLt)

1−αN
(µ−1) m

1−m
t . (1.10)

To ensure balanced growth, the output equation must display constant returns to scale in

reproducible factors (see Rebelo (1991))—capital and the measure of IT goods. Thus, a

required parameter restriction for balanced growth is

α+ (µ− 1)
m

1−m
= 1. (1.11)

From of this restriction, (1.9) implies that Xt is decreasing in Nt, which would be consistent

with a competition effect driving down the profits earned by each firm in the IT sector as
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its size expands.

1.2.3. Resource constraint, households, and the steady state

Resource constraint

The final good is used for consumption, and for investment in capital, IT, and research:

Yt = Ct + It +NtXt + St. (1.12)

Thus, total investment in this economy is the sum of capital investment, It, the total

investment of the IT sector, NtXt, including its aggregate expenditure on research, St.

Households

The economy is populated by a competitive representative household that derives utility

from the consumption flow of the single consumption good Ct. It supplies labor perfectly

inelastically, so Lt = 1 for all t; I focus on analyzing the sectors’ capital quantities and

valuations, not movements in labor supply. The representative household maximizes the

discounted value of future utility flows with Epstein and Zin (1989) and Weil (1989) recursive

preferences:

Ut =

{
(1− β)C

1−γ
ϑ

t + β
(
Et[U1−γ

t+1 ]
) 1
ϑ

} ϑ
1−γ

,

where γ is the coefficient of relative risk aversion, ψ is the elasticity of intertemporal substi-

tution, and ϑ = 1−γ
1−1/ψ is defined for convenience. I assume ψ > 1

γ , so that the agent prefers

the early resolution of uncertainty and dislikes shocks to long-run expected growth rates.

This setup implies that the stochastic discount factor in the economy is given by

Mt+1 = β

(
Ct+1

Ct

)− 1
ψ

(
Et[U1−γ

t+1 ]

U1−γ
t+1

) γ−1/ψ
1−γ

, (1.13)

where the first term is the discount factor, the second term reflects tomorrow’s consumption
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growth, and the third term captures preferences concerning uncertainty about long-run

growth prospects. The agent, therefore, requires compensation for these two sources of risk

exposure. Indeed, sufficient exposure to persistent, long-run growth prospects creates a

mechanism to generate large risk premia (as in Bansal and Yaron (2004)).

The household maximizes utility by choosing consumption, earning wage income, and partic-

ipating in financial markets, taking prices as given. The household participates in financial

markets by taking positions in the bond market Bt and in the stock market St, which pays

an aggregate stochastic dividend Dt. The budget constraint of the household is

Ct + St+1Qt +Bt+1 = WtLt + (Qt +Dt)St +RtBt,

where StQt is the aggregate market capitalization and Rt is the gross real rate of interest.

Steady state

I cannot solve the system in closed form, but I can find three variables, k∗ ≡
(
K
N

)∗
, s∗ ≡(

S
N

)∗
, and g∗N , that solve a system of three nonlinear equations:20


1 = M∗

{
α(1−m)

(
Y
K

)∗
+ (1− δ)

}
1 + g∗N = (s∗)ηs (k∗)ηk + φ

s∗ = M∗V ∗(1 + g∗N − φ)

.

1.2.4. The valuation-productivity link

Productivity

20For completeness, V ∗ = Π∗/(1 − φM∗), Π∗ = (µ − 1)
(
m
µ

) 1
1−m

k∗, M∗ = β(1 + g∗N )
− 1
ψ , and

(
Y
K

)∗
=(

m
µ

) m
1−m

(k∗)α−1.
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Given the restriction in (1.11), we can rewrite (1.10) as

Yt =

(
m

µ

) m
1−m

Kα
t (AtNtLt)

1−α ≡ Kα
t (ZtLt)

1−α. (1.14)

Thus, our usual measurement of productivity is the product of two components: the ex-

ogenous, stationary component, and the endogenous, increasing mass of IT goods; call this

product Zt ≡
(
m
µ

) m
1−m

AtNt. The adoption of IT goods showing up as immediate increases

in measured productivity is consistent with the treatment of intermediate goods by Ober-

field (2013), who writes a model where an entrepreneur’s input choice of an intermediate

good comes with an associated productivity-specific match.

Focusing on this product, a straightforward derivation for an arbitrary horizon h gives

Et
[
log

(
Zt+h
Zt

)]
= (ρh − 1) log(At) + Et

[
log

(
Nt+h

Nt

)]
. (1.15)

Because At is persistent, the first term on the right-hand-side of (1.15) is near zero (and

slightly negative). What does this last equation say? It says that the conditional expectation

of the IT sector’s growth rate is key for forecasting future productivity.

Stock-market valuation

The value of the stock market StQt includes both the IT sector and industrial sector. I

normalize the aggregate supply of stock St to one. The aggregate dividend is the sum of

the dividends paid by the industrial firm plus the total profits of the IT sector in excess of

its expenditure on research:

Dt = Dt︸︷︷︸
Industrial div.

+NtΠt − St︸ ︷︷ ︸
IT div.

.

This leads to the following observation, whose proof is in Appendix A.1, and which is central
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to the paper.

Proposition 1 (Stock market valuation). The aggregate value of the stock market in this

economy is

Qt = qtKt+1︸ ︷︷ ︸
Industrial sector

+ Nt(Vt −Πt)︸ ︷︷ ︸
Assets-in-place

+ Ot︸︷︷︸
Growth options︸ ︷︷ ︸

IT sector

, (1.16)

where Ot is defined as the value of IT sector’s growth options:

Ot ≡ Et

[ ∞∑
s=1

Mt|t+s {Vt+s (Nt+s − φNt+s−1)− St+s}

]
.

The value of the stock market, therefore, incorporates three elements: the replacement

cost of installed capital, evaluated at the ex-dividend value of capital qtKt+1, and the

value of IT firms, comprised of part assets-in-place and part growth options. Important

is the addition of the state variable Nt+sVt+s to the third term. The value of the stock

market contains information about the future level of Nt+sXt+s, the future demand of IT,

and correspondingly the future stock of IT capital. Indeed, if the variety of IT goods is

expected to expand, then a dear current market valuation can be justified, even if current

IT-capital ratio is low. In the absence of a growing measure of IT goods, the value of the

IT sector would be simply Nt(Vt −Πt), the sector’s current ex-dividend value.

Price-dividend ratio

From (1.16), I define the IT sector’s price-dividend ratio:

PDIT
t ≡

Nt(Vt −Πt) +Ot
NtΠt − St

(1.17)

=
Et
[∑∞

s=1Mt|t+s {Πt+sNt+s − St+s}
]

NtΠt − St
(1.18)

The last equation shows the information contained in the price-dividend ratio about economy-
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wide future growth. As the measure of IT goods is expected to grow, and thus contribute

to the productivity of the industrial sector, the price-dividend ratio of the IT sector encodes

this information and consequently will be high, all else equal.

Predictive regression

The tight relationship between the decomposition of productivity in (1.15) and the IT

sector’s price-dividend ratio in (1.18) is a strong prediction of the model. Does it hold in

the data? I test this prediction with the following regression:

TFPt→t+h = a+ b× PDIT
t + et→t+h,

where TFPt→t+h = TFPt+1 + · · ·+TFPt+h is the cumulative growth of TFP over h periods

(the TFP variable is measured as the first difference of logarithms and is in percent), and the

independent variable PDIT
t is the annualized price-dividend ratio of the IT sector, which

has been adjusted for repurchases (see Appendix A.2). Standard errors need to reflect the

error term’s overlapping structure, which could potentially be serially correlated; for this

reason, I use Hodrick (1992) standard errors, which should perform better than Newey

and West’s (1987) adjustment because the former sums variances and avoids the latter’s

summing of autocovariances, which are poorly estimated in small samples.

I report the results in Table 1 in two panels. Panel A documents economic significance.

A unit change in the price-dividend ratio (from 50 to 51, for example) forecasts a 0.05

percentage point increase in TFP growth over the next four years. But the real economic

significance is ascertained from the last column, which reports the expected change in TFP

for a one standard-deviation change in the IT sector’s price-dividend ratio. Focusing on

the four-year result, a one standard-deviation move in the price-dividend ratio increases

TFP growth over the next four years by two percent, or nearly a half percent per year.

To put this in perspective, real GDP growth per person is around two percent on average.

Even more noteworthy are the adjusted R-squareds of the four- and five-year horizons: the
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price-dividend ratio explains effectively half of the variation in TFP growth.

Panel B checks robustness by calculating the standard errors via the Newey and West (1987)

adjustment and a Monte Carlo method. Due to the persistence of the predictor variable, es-

timates of the significance of the slope coefficient can be biased (see Stambaugh (1999)). To

address this, I compute bias-adjusted small sample t-statistics, generated by bootstrapping

10,000 samples of the long horizon regression under the null of no predictability.21

Table 1: TFP-forecasting regressions I
The regression equation is TFPt→t+h = a + b × PDIT

t + εt→t+h. The dependent variable
TFPt→t+h is the utilization-adjusted TFP measure provided by the San Francisco Federal
Reserve, which is a percentage change (quarterly log change times 100). The independent
variable is the IT sector’s price-dividend ratio adjusted for repurchases. Data are quarterly,
from 1971Q1–2012Q4. Panel A’s standard errors use the Hodrick (1992) correction equal
to the forecast horizon length. σ(E[TFP ]) is the standard deviation of the fitted value:
σ(b̂× PDIT

t ). Panel B reports the t-statistics calculated under Hodrick (tH), Newey-West
(tNW ), and a Monte Carlo bootstrap method (tMC), developed by Kilian (1999) and used
in Goyal and Welch (2008). Data sources and definitions for the IT sector are detailed in
Appendix A.2.

Panel A

Horizon h b t(b) R̄2 σ(E[TFP ])

1 year 0.01 1.0 0.08 0.45
2 year 0.03 2.1 0.21 0.97
3 year 0.04 3.4 0.39 1.56
4 year 0.05 4.7 0.48 1.97
5 year 0.06 4.9 0.48 2.23

Panel B

Horizon h b tH(b) tNW (b) tMC(b)

1 year 0.01 1.0 2.5 1.7
2 year 0.03 2.1 4.1 4.2
3 year 0.04 3.4 3.4 7.1
4 year 0.05 4.7 6.7 9.4
5 year 0.06 4.9 6.7 10.8

I further analyze this prediction in Table 2. Consistent with a research expenditure affecting

the economy with a lag, the effects of the price-dividend ratio are stronger at longer horizons.

21This bootstrapping procedure follows Kilian (1999) and Goyal and Welch (2008). It preserves the
autocorrelation of the predictor variable and the contemporaneous correlation of the predictive regression’s
and the predictor variable’s shocks.
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Horse races are also run between the IT sector’s and the industrial sector’s price-dividend

ratios. The IT sector’s price-dividend ratio drives out the industrial sector’s when comparing

the two measures over all horizons.

These regressions capture a central fact: the price-dividend ratio of the IT sector contains

significant information about the future productivity of the economy.

1.3. Deterministic model analysis

Before proceeding to the calibrated quantitative analysis, I consider a simplified version of

the model to show that its dynamics are consistent with broad movements in the data. This

version cannot accurately match the data, so I calibrate the full model that can in Section

1.4. All insight that follows carries over to the full model.

The simplifications follow:

• The economy is non-stochastic

• The representative household is risk neutral

• Capital readjustment costs are nonexistent

• The industrial firm replaces depreciated capital, adjusting for growth

The first and second simplifications allow for a closed-form solution of the model. A deter-

ministic economy sets At = 1 for all t. Risk neutrality sets the stochastic discount factor to

a constant Mt+1 = β = 1
1+r for all t, where r can be interpreted as the real interest rate.

The third simplification sets ηk = 0. Finally, the last simplification sets It = (δ + g∗N )Kt

for all t, making the dynamic between kt and kt+1 simple and putting the focus on the IT
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Table 2: TFP-forecasting regressions II
The regression equation is TFPt→t+h = a + bIT × PDIT

t + bIND × PDIND
t + εt→t+h. The

dependent variables are the standard TFP measure (“TFP”) and the utilization-adjusted
TFP measure (“Adjusted TFP”), both of which are provided by the San Francisco Federal
Reserve and are in percentage change (quarterly log change times 100). The independent
variables are the repurchase-adjusted price-dividend ratios for the IT sector and the indus-
trial sector. Data are quarterly, from 1971Q1–2012Q4. Standard errors use the Hodrick
(1992) correction equal to the forecast horizon length. t-statistics are in parentheses. Data
sources and definitions are detailed in Appendix A.2.

TFP Adjusted TFP
Horizon h Statistic (1) (2) (3) (1) (2) (3)

1 year bIT 0.01 0.00 0.01 0.01
t(bIT ) (0.30) -(0.03) (1.00) (0.44)
bIND 0.04 0.04 0.06 0.04
t(bIND) (0.50) (0.56) (1.20) (0.50)
R̄2 0.01 0.02 0.02 0.08 0.08 0.10

2 year bIT 0.01 0.01 0.03 0.02
t(bIT ) (0.60) (0.23) (2.10)** (0.89)
bIND 0.08 0.06 0.12 0.07
t(bIND) (0.80) (0.54) (1.80)* (0.59)
R̄2 0.03 0.05 0.04 0.21 0.19 0.24

3 year bIT 0.03 0.02 0.04 0.03
t(bIT ) (1.40) (0.83) (3.40)*** (1.89)*
bIND 0.12 0.05 0.18 0.07
t(bIND) (1.20) (0.38) (2.20)** (0.65)
R̄2 0.11 0.08 0.11 0.39 0.28 0.42

4 year bIT 0.05 0.04 0.05 0.04
t(bIT ) (2.90)*** (2.34)*** (4.70)*** (3.46)***
bIND 0.17 0.03 0.21 0.07
t(bIND) (1.70)* (0.26) (2.20)** (0.76)
R̄2 0.30 0.15 0.30 0.48 0.31 0.50

5 year bIT 0.06 0.05 0.06 0.06
t(bIT ) (4.30)*** (4.16)*** (4.90)*** (4.10)***
bIND 0.20 0.05 0.21 0.05
t(bIND) (1.80)* (0.43) (2.10)** (0.52)
R̄2 0.38 0.20 0.38 0.48 0.25 0.48

*** - p < 0.01, ** - p < 0.05, * - p < 0.1
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sector’s growth rate:

kt+1
Nt+1

Nt
= kt(1 + g∗N ). (1.19)

Steady state

The simplifications and (1.9) imply

NtXt

Kt
=

(
m

µ

) 1
1−m

(
Kt

Nt

)α−1

, (1.20)

and so the analysis can simply focus on the ratio kt ≡ Kt
Nt

, which is an inverse mapping of

the IT-capital ratio.

From (A.2) the steady-state optimality condition for the industrial firm’s (normalized) cap-

ital choice can be rearranged to give

(
K

N

)∗
≡ k∗ =

α(1−m)
(
m
µ

) m
1−m

r + δ


1

1−α

. (1.21)

Putting (1.20) and (1.21) together gives a simple equation for the steady-state IT-capital

ratio:

(
NX

K

)∗
=

(r + δ)
(

m
1−m

)
αµ

.

Increases in the user cost of capital (r+ δ) make capital more expensive to hold and hence

increase the steady-state IT-capital ratio. As m increases, IT goods make up a larger

share of production, and thus increases the ratio. For the opposite reason, increasing the

importance of capital in production, α, decreases the ratio. Increasing µ effectively increases
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the price paid—the user cost—for IT goods, and will thus decrease the ratio.22

Transition analysis

In this paper, I relate stock prices to the future growth rates of the economy. I structure

the analysis by starting the economy at an IT-capital ratio N0X0
K0

lower than its steady-state

value
(
NX
K

)∗
and then by running and observing the system’s dynamics as it converges to

its steady state:

N0X0

K0
<

(
NX

K

)∗
⇔ k0 > k∗.

At this point, define the first time T when kt is in the ε-neighborhood of k∗ and where kt,

from time T on, will be treated as approximately equal to k∗ the following period:23

T = inf {t : |kt − k∗| ≤ ε} and kt ≈ k∗, ∀t > T.

The time T refers to how long the transition takes to get within an epsilon of the steady

state. It also introduces an element to the analysis that would otherwise be absent because

kt would asymptotically approach (and never reach in finite time) k∗. In addition, it buys

a decomposition of the ex-dividend value of an IT good at time t:

Vt −Πt ≈ (µ− 1)

(
m

µ

) 1
1−m


T∑
s=1

βs+1kαt+s︸ ︷︷ ︸
Transition path

+ βT+1 (k∗)α

1− β︸ ︷︷ ︸
Steady state

 . (1.23)

22Solving the present value of an IT good in the steady state gives

V ∗ =
Π∗

1 − β
=

(µ− 1)X∗

1 − β
=

(µ− 1)
(
m
µ

) 1
1−m

(k∗)α

1 − β
. (1.22)

Plugging the above equation into (1.6) gives the economy’s steady-state growth rate,

g∗N = φ+ χ
1

1−ηs (βV ∗)
ηs

1−ηs − 1.

23The definition of T is actually a function of epsilon—T (ε)—but for brevity this dependence is ignored.

24



Hence, the ex-dividend value of an IT good reflects information about the duration of the

transition path (T − t) and the distance to the steady state (|kt − k∗|).

From these simplifications, I present a proposition that summarizes the model’s salient

properties (see Appendix A.1 for details):

Proposition 2 (Deterministic transition dynamics). Consider starting the economy at k0 >

0 and assume there exists a sequential bound on growth, {gN,t+1}∞t=0, then

• The system xt ≡ {kt, gN,t+1, Vt} converges monotonically to its steady state x∗

• The value of an IT good is an increasing function of both T and kt for all t:

Vt(T̃ )− Vt(T ) > 0, for T̃ > T
∂Vt
∂kt

> 0, ∀t

The sequential bound on growth simplifies the proof and is consistent with the dynamics

of the full model. Its definition is in Appendix A.1. The intuition follows for the case

k0 > k∗. Because an IT good’s value is increasing in all future discounted kt’s, its initial

value is greater than its steady-state value. This incentivizes the IT sector’s research division

to develop relatively more new IT goods. Because aggregate research expenditure has

decreasing returns, kt does not immediately reach its steady state: decreasing returns act

like a variable adjustment cost, inducing a multi-period transition. As the measure of

IT goods expands tomorrow, next period’s kt decreases (and therefore next period’s NtXt
Kt

increases), reducing an IT good’s value. This process repeats until kt ≤ k∗ + ε, at which

point the economy reaches its steady state in the following period and remains there.

The proposition’s second bullet point implies that increasing either T or k0 increases the

value of an IT good. The difference is subtle, and clarifies the model’s use in disentangling

the two effects. Figure 1 plots the price-dividend ratio of the IT sector while varying either

the distance to the steady state (kt − k∗) or the duration of the transition to the steady

state (T ). The top panel shows the price-dividend ratio as a function of T . The ratio falls

25



asymptotically until it nears the end of the transition, at which point the ratio starkly falls.

The bottom panel varies the distance between the initial IT-capital ratio and its steady

state. The transition is relatively more gradual for varying distances. The point to take

from this exercise is that a sharply falling price-dividend ratio signals that the end of the

transition period is near.

The transition paths of this deterministic model are qualitatively consistent with the data.

But the full model presented in the next section will also be quantitatively consistent.

1.4. Calibration and quantitative analysis

I present the model analysis in two parts. In the first part, I calibrate the model to match

historical data over the period 1974–2012. I do this in two steps:

1. Fix an initial IT-capital ratio N0X0
K0

near the 1974 data point

2. Simulate an entire shock sequence {At}t=1,2,... many times for a given set of parameters

• For each simulation, compute model quantities and prices

• Average the model’s output across simulations and match it to the data

In step one, I pick the initial IT-capital ratio to also match the data’s price-dividend ratios

of both sectors. I calibrate the model in step two to agree with informative asset pricing

data: price-dividend ratios, growth rates, and discount rates. This method puts structure

on financial market data that is consistent with the underlying macroeconomic quantities.

I can then use the model’s structure to observe the remaining, and currently unobserved,

dynamics.

That said, in the second part I analyze the model’s entire transition path, which includes the

years 1974 and runs until the IT-capital ratio hits its long-run share at time T , which will

now be defined. Consider a convergence time T adapted to our filtration Ft that is defined at
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Figure 1: Deterministic model: Price-dividend ratio plots
Both panels plot the price-dividend ratio of the IT sector as a function of two of its argu-
ments: the length of the transition path (T ) and the distance of the model’s input ratio
to its steady state (kt − k∗). The top panel varies T while the rest of the model is held
constant. The bottom panel varies D such that k0 = k∗ ×D while the rest of the model is
held constant.
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the first moment when the economy’s IT-capital ratio has crossed its unconditional expected

value from below:

T ≡ inf

{
t :

NtXt

Kt
≥ E

[
NtXt

Kt

]}
= inf

{
t :

NtXt

Kt
≥
(
m

µ

) 1
1−m

[(
K

N

)∗]α−1

exp

{
1

2
(1− α)2 σ2

ε

1− ρ2

}}
. (1.24)

1.4.1. Calibration

Table 3 summarizes the choice of parameters. The model is calibrated at a quarterly fre-

quency. The equilibrium is computed numerically using a high-order perturbation method

(Schmitt-Grohe and Uribe (2004)) that takes into account the high volatility of stock mar-

ket prices. Note that the calibration here is unorthodox: we do not observe the entire time

series with which to estimate the parameters, because by assumption we are currently on

the transition path and thus do not observe the data’s ergodic distribution.
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The calibrated parameters imply that the steady-state IT-capital ratio, E
[
NtXt
Kt

]
is 0.44, so

for every 100 units of industrial capital, there 44 units of IT capital. The model’s median

convergence time is 2033, and puts the revolution’s duration at 60 years.24

Information technology sector

The six parameters here to be calibrated are χ, φ, ηs, ηk, µ, and m. They are discussed in

turn. I set the scale parameter χ to 1.61 to match balanced growth evidence and generate

an annual consumption growth rate of two percent.

The rate of obsolescence of an IT good 1−φ in the model should capture two features: a high

rate of economic obsolescence and default, as weaker firms without competitive advantages

would be expected to exit the marketplace. A BEA report by Li (2012) lists a 16.5 percent

annual depreciation rate for computers and electronics in a two-step estimation procedure

that includes an adjustment for obsolescence. This rate is higher than the 15 percent rate

applied by the BEA to generic research and development goods. In addition, I estimate the

unconditional probability of defaulting using two methods, which are described in Appendix

A.2. Both methods produce results near 3 percent. Because φ is interpreted as a measure,

I assume economic obsolescence and delisting are independent and add the two measures

together to get 1 − φAnnual = 16.5 + 3 = 19.5 percent, or nearly φ = 0.95 at a quarterly

frequency.

To estimate ηs, I approximate (1.6) to get

log

(
Nt+1

Nt

)
≈ ηs

1− ηs
log (Et [Mt+1Vt+1]) ,

and then substitute this equation into (1.14) to yield

log

(
Zt+1

Zt

)
= (ρ− 1) log(At) +

ηs
1− ηs

log (Et [Mt+1Vt+1]) + εt+1.

24The industrial revolution took 70 to 80 years, and the electrical revolution took around 40 years. Jo-
vanovic and Rousseau (2005) show that IT has been diffusing across industries more slowly than electricity
did. IT’s convergence time, therefore, should be expected to take longer.
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Table 4: Estimates of ηs
This table estimates the parameter ηs from the data by running the following regression:
TFPt→t+h = a + b logPDIT

t + εt+h. The dependent variable TFPt→t+h is the utilization-
adjusted TFP measure provided by the San Francisco Federal Reserve, which is a per-
centage change (quarterly log change times 100). The independent variable is the (log)
price-dividend ratio for the IT sector, which is adjusted for repurchases. Data are quar-
terly, from 1971Q1–2012Q4. The model counterpart is log (Zt+1/Zt) = (ρ − 1) logAt +
ηs

1−ηs logEt [Mt+1Vt+1] + εt+1. The parameter η̂s is retrieved from the estimate of b̂ by the

equation: ηs(b) = b
1+b . Ninety-five percent confidence intervals are constructed using the

delta method: se (η̂) = η′s(̂b)
[
se(̂b)

]2
η′s(̂b), where se(̂b) is computed with the Newey-West

(1987) adjustment with three lags. Data are described in Appendix A.2.

Lower 95% η̂s Upper 95% R̄2

1 year 0.35 0.46 0.56 0.08
2 year 0.53 0.65 0.78 0.21
3 year 0.64 0.75 0.86 0.39
4 year 0.69 0.79 0.90 0.48
5 year 0.72 0.82 0.93 0.50

This resembles a linear regression equation. It can be taken directly to the data to estimate

ηs. I provide estimates in Table 4. Because the price-dividend ratio better explains TFP

variation at a longer horizon, estimates of the four- and five-year horizon are considered.

Estimates at these horizons range from 0.69 to 0.93. Griliches (1990) also provides some

estimates, which range from 0.6 to 1.0, depending on the use of cross-sectional or panel

data. I pick 0.855.

Estimating the parameter that governs the cost of capital readjustment ηk is difficult. Jo-

vanovic and Rousseau (2002) provide estimates of learning laws, a friction of capital real-

location, for general purpose technologies, like IT, within a range of 0.2 to 0.62. I choose

0.24. I discipline this choice by having this single parameter match the S-shaped diffusion

dynamic of the IT-capital ratio, the transitions of both sectors’ price-dividend ratios, and

the IT sector’s net entry and sales growth rates.

The parameter (µ − 1) governs the average markup charged on IT goods. It is tough to
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Table 5: IT sector markups
This table reports average markups of IT firms over the annual period 1974–2012. Markups
are estimated by µ = 1

1−x − 1, where x is the EBITDA-sales ratio, defined below. The row
“Aggregate” refers to the sum of EBITDA divided by the sum of sales, and then temporally
estimates the average value. The row “Cross section” takes the cross-sectional median of all
firms in every year, and then temporally estimates the average value. Standard errors have
the Newey-West (1987) adjustment with three lags. Data are defined in Appendix A.2.

Lower 95% Estimate Upper 95%

Aggregate 0.138 0.142 0.145
Cross-section 0.089 0.093 0.098

measure accurately, especially given the IT sector’s heterogeneity of products.25 One study

by Goeree (2008) finds that the median markups on personal computers across the total

industry range from 5 to 15 percent, depending on the degree of information possessed

by consumers in her limited-information model of consumer behavior. Moreover, direct

estimates (see Table 5) based on the IT sector’s average EBITDA-to-Sales ratio, a measure

of markups, are 9.5 and 14 percent, depending if cross-sectional medians or aggregate means

are used. I use 14.3 percent.

The IT share of factor income parameter m determines the importance of IT in the produc-

tion. This is unknown by construction, because the steady state has not yet been observed.

The choice is disciplined, however, by the balanced growth condition in (1.11) which specifies

m given µ and α, two parameters that are plausibly easier to measure.

Industrial sector

The parameters here are α, δ, ζ, ρ, and σε. The ranges of these parameters have largely been

agreed upon by the literature. A usual value for α is in the neighborhood of a third, and

I use a value of 0.3. I set the quarterly rate of depreciation δ to 0.02, or around 8 percent

at an annual rate. The adjustment cost parameter ζ is set to 1.01, which falls in line

25For example, software and hardware manufacturers abide by different standards. Hardware manufactur-
ers of chipsets, motherboards, and processors abide by an open standard: many motherboards, for example,
can take RAM, hard drives, and GPUs from several manufacturers. Software manufacturers, conversely,
often times have a dominant player; and this is a symptom of software standards being proprietary. The
markup across these two manufacturers could vary considerably.
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with estimation evidence (see, for instance, Jermann (1998), Kaltenbrunner and Lochstoer

(2010), and Croce (2012)). I choose the persistence parameter ρ to be an annualized value

of 0.978 to match the first-order autocorrelation of consumption growth. Remember that

measured productivity is a composition of the exogenous and endogenous components in

the model. Finally, I pick the volatility of the exogenous TFP process σε to be 0.0175 to

generate plausible macroeconomic volatilities.

Households

Households are characterized by recursive preferences, which are governed by three parame-

ters γ, ψ and β. Substantial empirical work has been done on these parameters, see Bansal,

Kiku and Yaron (2012), and this is followed here by setting γ = 10, ψ = 0.9, and β = 0.9915

to produce reasonable levels for price-dividend ratios. The elasticity of substitution parame-

ter is usually assumed to be greater than one in much of the long-run risks literature (Croce

(2012), Bansal and Yaron (2004)). The model, however, requires a value less than one to

match the observed relationship of risk exposures (betas), as described in the next section.

1.4.2. Transition calibration

I match five transition paths: the IT-capital ratio, both sectors’ price-dividend ratios, and

the IT sector’s average sales and net entry growth rates. The first path is the variable of

interest. The latter four ensure that the model’s asset pricing variables are consistent with

financial market data. I discuss discount rates in the next section.

IT-capital ratio

Figure 2 plots the IT-capital ratio of the data versus that generated by the model. I calibrate

the model to match the initial IT-capital ratio to as close to the 1974 data point as possible,

but I also require the model to be consistent with the data on price-dividend ratios as well.

The IT-capital ratio data are only available up until 2006. Appendix A.2 discusses in detail
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Figure 2: Model calibration I: Input ratio
This figure plots the IT-capital ratio, the ratio of the IT sector’s quantity of capital services
to the industrial sector’s. Capital services are direct estimates of factor income which
are based on flows derived from constructed constant-quality capital stock indices. The
IT sector is defined as the sum of software, hardware, and communications as listed in
the Bureau of Economic Analysis; the industrial sector comprises the remaining 62 asset
classes. See Jorgenson and Stiroh (2000) for details. A detailed description of the origin of
this figure is in Appendix A.2. I fix an initial IT-capital ratio N0X0

K0
< E

[
NX
K

]
and calibrate

the model to match the length and curve of the data.
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its construction. An important disciplining device is the model’s other transitions.

Price-dividend ratios

The price-dividend ratio of the IT sector is defined in (1.18). The price-dividend ratio of

the industrial sector is qtKt+1/Dt. Table 6 lists the values of the start- and end-points of

the model that is consistent with the data available for the IT-capital ratio. In Figure 3

I plot the system’s transitions. The model is able to match the industrial sector’s price-

dividend ratio to the time series data. Within its confidence bounds, the model can capture

the run-up in prices during the dot-com boom and even the drop during Great Recession

of 2008. The IT sector’s price-dividend ratio of the model is able to capture the trend of

the data, which is an important part of the analysis. The model’s drop in the IT sector’s
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ratio is consistent with that observed as well. The model has difficulty in generating the

magnitude of the dot-com boom. Although this is not surprising because the model is not

calibrated to match an episode of a “bubble”. What is important is that the data reverted

back to the model’s implied value after the boom.

Table 6: Price-dividend ratios
This table reports price-dividend statistics generated by the model and compares them to
the data. The model takes its calendar-time counterparts and estimates the average (across
simulations) value of the price-dividend ratios of the IT and industrial sector. The data
comes from an average of the previous sixteen quarters from data at year-end 1974 and
2006. The value ∞ represents the model’s steady-state value. I discuss the construction of
price-dividend ratios in Appendix A.2.

Model IT IND Ratio

1974 123 39 3.2
2006 44 28 1.6
∞ 40 27 1.5

Data
1974 121 33 3.7
2006 41 29 1.4

IT sector average sales growth rates

I plot the transition of the IT sector’s average sales growth rate in Figure 4. The model

matches the fast, initial increase displayed by the data and then its drawn out path to

convergence. This fast increase is consistent with a competition driving down the sales

generated per firm. In the model, initially few firms dominate the marketplace. Over time,

as more firms enter the marketplace, the industrial firm reduces the quantity demanded of

each IT firm’s good. Consequently, sales and profit earned per firm falls.

IT sector net entry rates

I depict in Figure 5 the transition of the IT sector’s net entry rate. The model matches the

sharp decline displayed initially by the data and then its drawn out path to convergence.

The model is unable to get its mean to be negative to match the data after the dot-com

boom. Indeed, this is impossible in the current setup because the entire economy’s growth
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Figure 3: Model calibration II: Price-dividend ratios
This figure plots time series paths of the sectors’ price-dividend ratios. The dashed line is
the model’s average simulation path. The dotted lines are two times the model’s standard
errors. Standard errors are estimated from the standard deviation of point estimates across
simulations. Ten-thousand simulations are run. The solid line is data. The top figure is the
IT sector; the bottom is the industrial sector. In the data, I calculate repurchase-adjusted
price-dividend ratios, as described in Appendix A.2. Data are quarterly and are smoothed
with a Hodrick-Prescott filter with a smoothing parameter equal to 1600.
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Figure 4: Model calibration III: IT sector’s average sales growth rate
This figure plots the average sales growth rate per firm of the IT sector. The dashed line is
the model’s average simulation path. The dotted lines are two times the model’s standard
errors. Standard errors are estimated from the standard deviation of point estimates across
simulations. Ten-thousand simulations are run. The solid line is data. The data use
Compustat data for the IT sector to calculate aggregate sales growth rates per public IT

firm (Nt): log
(
yt+1

yt

)
, where yt =

∑Nt
i Salesi,t
Nt

. Data are quarterly and are smoothed with

a Hodrick-Prescott filter with a smoothing parameter equal to 1600. In the model, the

variable is log
(

Πt+1

Πt

)
. IT firms are identified by NAICS codes in Appendix A.2.
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Figure 5: Model calibration IV: IT sector’s firm-count growth rate
This figure plots the net entry rate of the IT sector. The dashed line is the model’s average
simulation path. The dotted lines are two times the model’s standard errors. Standard
errors are estimated from the standard deviation of point estimates across simulations.
Ten-thousand simulations are run. The solid line is data. The data use the two-year
compound annual growth rate of the growth rate of public IT firms. Data are quarterly and
are smoothed with a Hodrick-Prescott filter with a smoothing parameter equal to 1600. IT
firms are identified by NAICS codes described in Appendix A.2.
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is driven by the expansion of the IT sector.26 The model, however, is able to match the

negative data values because the model’s lower confidence bound is negative. Note that a

concentrating of firms is consistent with a “shake-out” period of an industry, which usually

occur later in an industry’s lifecycle.

1.4.3. Quantitative analysis

Risk exposures

Until now, there has been little discussion of risk and discount rates. The stochastic discount

factor specified in (1.13) implies two sources of risk: the first source relates to innovations

26The model can be extended to incorporate another sector of growth in the economy. The current setup’s
advantage is that it lucidly links the IT sector’s market valuation to future economy-wide growth.
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in realized consumption growth; the second source, to innovations in expected consumption

growth. While there is only one source of risk to the economy (εt+1), the IT sector’s

innovation endogenously generates a low frequency source of risk—variability of expected

consumption growth rates.

Following the literature on equity premia and long-run risk, this first source is termed short-

run risk; the latter, long-run risk. The measurement of short-run risk is standard and is

taken to be the quarterly growth rate of real consumption of nondurables and services per

capita. Long-run risk is measured in the model by the return on wealth (rC,t), which is

directly measurable in the model, but needs to be estimated as a latent variable in the

data.27 The factors are standardized (to mean zero and variance one) before running the

following regression for each sector i:

ri,t = ai + βi,cg∆ct + βi,rcrC,t + νi,t, νt
iid∼ N (0, σ2

ν).

Figure 6 plots the entire transition path of risk loadings for both sectors. There is little

change in the estimates of the industrial sector. The information technology sector, however,

experiences a dramatic shift in sensitivities across the transition path. Why does it change?

Consider a standard log-linearization of the return of the sector

log(1 + rIT,t+1) = κ0 + log

(
DIT
t+1

DIT
t

)
+ κ1 logPDIT

t+1 − logPDIT
t ,

and compare this to (1.17), which I rewrite to highlight a distinction

PDIT
t =

Et
[∑T

s=1Mt|t+s {Πt+sNt+s − St+s}
]

NtΠt − St︸ ︷︷ ︸
Transition path

+
Et
[∑∞

s=T+1Mt|t+s {Πt+sNt+s − St+s}
]

NtΠt − St︸ ︷︷ ︸
Steady state

.

We can see that as calendar time t approaches the convergence time T , the information

27The return on wealth is defined recursively by the equation Wt = Ct +Et[Mt+1Wt+1] or equivalently by

rC,t+1 ≡ Wt+1

Wt−Ct . Data estimates of the long-run risk factor are described in Appendix A.2.
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Figure 6: Model: Rolling risk exposures II
The form of the regression is ri,t = ai +βi,cg× gC,t +βi,rc× rC,t + νt, where i indexes the IT
and industrial sector. The regressions are rolling and each regression includes 50 quarters
of data. The risk factors, gC,t and rC,t, are standardized in both the model and the data.
Returns are real. Ten-thousand simulations are run. Estimation details are provided in
Section 1.4.
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contained in the price-dividend ratio changes, which directly influences the return of the

IT sector as shown above. Indeed, the IT sector becomes more exposed to short-run risk

as the transition elapses. Because the initial size of IT sector is small, it absorbs a small

amount of the risk to consumption. As the transition proceeds, IT becomes a larger part

of the economy, and therefore absorbs a greater amount of the risk in consumption.

The sector’s sensitivity to long-run risks is interesting. It starts positive, and then becomes

negative, suggesting it becomes a hedge. Initially, as the economy is growing rapidly because

of investment in IT, any adverse shock to long-run growth is a risk to the IT sector, because

research is conducted in anticipation of tomorrow’s value. As the sector matures, however,
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it becomes a hedge. An adverse shock to the expected growth rate benefits the IT sector,

because it increases the potential for IT to generate growth in the future. In consequence,

the price-dividend ratio and the return of the sector increase upon a realization of an

adverse shock to long-run growth. Information technology, in the steady state, acts as a

hedge against shocks to long-run growth.

Moments

I report in Table 7 the consumption growth statistics of the model in the steady state. The

model matches the mean, standard deviation, and first-order autocorrelation of the data.

It is important to get these statistics right because they determine the properties of the

representative household’s stochastic discount factor, and thus the correct discounting for

the sectors’ price-dividend ratios. The model generates a moderate degree of consumption

smoothing, which is measured by the relative standard deviation of consumption to output.

Total investment volatility is slightly smaller than in the data, but the model nevertheless

generates a substantial amount.

Table 7: Model and data macroeconomic statistics
This table reports macroeconomic growth and volatility statistics generated by the model
and compares them to the data. The model is simulated on a quarterly basis and then
time-aggregated to an annual one. Data statistics are calculated from Bureau of Economic
Analysis’s data over the annual period 1974–2012. In the model, total investment, INV , is
the sum of capital investment, IT investment, and research expenditure; in the data, total
investment is real, nonresidential, fixed, private investment. ∆x is the log-difference of the
variable x. Data sources are discussed in Appendix A.2.

Statistic Data Model

Consumption growth
mean(∆c) 2.00 1.95

std(∆c) 2.27 2.52
AC1(∆c) 0.39 0.43

Business cycle
σ∆c/σ∆y 0.61 0.96

σ∆INV /σ∆c 4.38 3.14

The model is able to generate a risk-free rate that has both a low volatility and a high
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persistence (first-order autocorrelation is 0.99 at a quarterly rate) as shown in Table 8. It is

higher than commonly estimated because it is calibrated to match the levels of the sectors’

price-dividend ratios.

Table 8: Asset pricing moments
Panel A reports the model’s annualized moments. Equity premia include a leverage ad-
justment: with constant financial leverage, the levered equity premium is E[rlevi − rf ] ≡
E[ri − rf ](1 +D/E), where D/E is the average debt-equity ratio, which is set to one to be
consistent with firm-level data (Rauh and Sufi (2012)) for industrial firms, and is set to 0.36
for IT firms to match my estimate of the sector’s average debt-equity ratio in Compustat.
Volatility is also scaled by the same leverage factors. Panel B reports the model’s estimates
after including stochastic volatility. Panel C reports my estimates of the data’s moments.
Returns are value-weighted, monthly from the period 1971 until 2012, and deflated by the
consumer price index. The portfolio strategy would be to buy firms at their post-IPO price
at month-end and sell them at the delisting price, if occurring. All numbers are in percent
except the Sharpe ratios.

Panel A: Benchmark model
Mean Stdev Sharpe ratio

E[rf ] 3.86 0.8 0
E[rIND] 8.25 5.75 0.80
E[rIT ] 4.39 3.46 0.21

E[rMKT ] 6.46 5.40 0.51

Panel B: Model with stochastic volatility
Mean Stdev Sharpe ratio

E[rf ] 2.08 3.36 0
E[rIND] 9.82 15.2 0.50
E[rIT ] 4.24 11.0 0.20

E[rMKT ] 7.61 15.6 0.35

Panel C: Data
Mean Stdev Sharpe ratio

E[rf ] 1.49 0.9 0
E[rIND] 6.44 15.5 0.38
E[rIT ] 5.40 28.3 0.27

E[rMKT ] 6.00 16.1 0.34

In the same table, the equity returns for industrial stocks, IT stocks, and the aggregate

stock market are reasonable once leverage is accounted for. A standard estimate of the

required adjustment for leverage is two times that of an unlevered claim following Rauh

and Sufi (2012). I estimate the IT sector’s leverage to be 1.36 from Compustat data.
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The model here, moreover, does not specify volatility as being stochastic as in Bansal and

Yaron (2004), which could aid in generating risk premia and much greater equity volatility.

Calibrating an additional equation for stochastic volatility (with parameters close to Bansal

et al.’s (2012) choices, but with a higher shock volatility) such as the following

log (At+1) = ρ log (At) + σtεt+1

σt+1 = σ + ρσ(σt − σ) + ηt+1,

where ε
iid∼ N (0, 1), σ = 0.0175, ρσ = 0.985, and η

iid∼ N (0, 0.01352), aids in generating more

realistic return processes.

The model also generates a value premium if the industrial sector is taken to proxy for

value stocks and the IT sector proxies for growth stocks. This is consistent with Zhang’s

(2005) work, who generates the value premium by appealing to an asymmetric adjustment

cost. Taken together, these estimates of risk exposures and these asset pricing moments

corroborate the model’s ability to match the relevant financial market discount rates.

Full dynamics

I provide intuition on four variables’s average transition dynamics that are displayed in

Figure 7. The top-left panel shows the transition path of the IT-capital ratio, the ratio of

interest. It follows a S-shaped pattern because of how I specify the research externality.

Initially, the rate of expansion of the IT sector is slow, because the capital reallocation fric-

tion, whose strength is indexed by the parameter ηk, drags heavily on research productivity.

As time passes, the strength of this friction wanes; consequently, innovation begins feeding

on itself, as the IT sector finds it easier to build new innovations on the top of existing ones.

In the later stages of the transition, the marginal returns to both the IT sector innovating

and the industrial sector employing IT subside, thereby reducing the rate of innovating and

the expansion of IT. Because of the restriction on balanced growth, eventually IT, capital,

and the rest of the economy grow, on average, at the same rate.
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Figure 7: Model: Full transition paths
The top-left panel plots the IT-capital ratio. The top-right panel plots the quarterly growth
rate in measured TFP. The bottom-right panel plots profits made by each IT good producer.
The bottom-left panel plots the price-dividend ratios of the IT sector and the industrial
sector. Ten-thousand simulations are run and the figures below show the average across
simulations.
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The bottom-left panel displays the price-dividend ratios of the two sectors. Because the

value of an IT good is initially very high, the price-dividend ratio of the IT sector is also

high. The final-good firm’s production function specifies positive cross-partial derivatives

for capital and IT, so its value, as well, is higher than its steady state value. The price-

dividend ratios converge to their steady-state levels nearly 10 years before the IT-capital

ratio, highlighting asset market’s forward-looking information.

The top-right panel plots quarterly productivity growth. Growth is much higher, on average,

in the first half of the transition than in the latter half. This is because productivity growth

is intimately tied to the IT sector’s growth rate, and the valuation of an IT good. As the

returns to innovating fall, the productivity gains of the economy fall as well.

The bottom-right panel features a marked drop in per firm profitability resulting from a

decline in the quantity demanded for each IT good Xt that takes place as the IT sector

grows. This is consistent with competition increasing for every firm as the transition runs

its course. This intensifying of competition lowers the returns to innovating, and puts a

limit on the possible exceptional gains to growth from an expansion of the IT sector.

Density of convergence times

Figure 8 plots the density of convergence times. The distribution is skewed right. This is

because of a salient equilibrium effect of the model. A dear IT sector price-dividend ratio

encourages research to develop new IT goods. These goods are subsequently rented, raising

the industrial sector’s productivity. Importantly, greater industrial productivity increases

its demand for for IT goods, which feeds back into IT good valuations. When the model

is started at a low IT-capital ratio, IT is particularly valuable, so the dynamic is initially

strong and puts the bulk of the distribution to the left of the mean.

Distributions of productivity

Finally, Figure 9 plots the distributions of historical TFP growth and model-implied future

TFP growth. There are two things to notice. The first is that the historical distribution is
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Figure 8: Model: Density of convergence times
This figure plots the density of convergence times, as described in Section 1.4. The con-

vergence time is defined as T ≡ inf
{
t : NtXtKt

≥ E
[
NtXt
Kt

]}
. Ten-thousand simulations are

run.
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much more symmetric than the future distribution. This is because both distributions are

normalized per year, and the future distribution’s convergence time is random. Realizations

of quick convergence times are coupled with high rates of TFP growth, generating a long,

right tail.

The second is that the historical distribution’s mean is higher. This reflects the net entry

rate of the IT sector. Initially, it is fast, but later it slows as the competition lessens the

profitability of researching new IT goods. This leads to a prediction. Because of greater

competition in the future than in the present, an IT good’s value will continued to fall,

lowering the incentive to conduct research and to produce new IT goods. As a result,

future TFP growth of the economy is expected to be lower than before.28

28A reservation with this statement is that long-run TFP growth is solely generated by the IT sector and,
from the balanced growth condition, is set to two percent per year in the long-run, which is higher than the
historical rate of 0.9 percent. To adjust the current model’s implication, I take the ratio of means to adjust
the forecasted TFP growth rate per year. Therefore, expected TFP growth per year is 0.87×2.7/4.5 = 0.52,
a reduction of 35 basis points. Note this is similar to Robert J. Gordon’s “educational plateau adjustment”
of 27 basis points he calculated in The Economist ’s online debate.
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Figure 9: Model: Densities of TFP growth per year
This figure plots the density of productivity growth per year. The top figure plots the
historical amount. The actual amount observed in the data was 0.87 percent TFP growth
per year. The bottom figure generates the future TFP growth from 2012 until the stopping
time T is reached. Both cumulative growth rates are divided by the number of years. Ten-
thousand simulations are run. The figures plot the entire density of all the simulations.
Further details are provided in Section 1.4.
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1.5. Conclusion

In this paper, I build an asset pricing model that endogenously links economy-wide growth

to innovation in the IT sector, whose intensity is governed by the sector’s market valuation.

Consistent with this link, I show empirically that the IT sector’s price-dividend ratio uni-

variately explains nearly half of the variation in future productivity growth and that this

empirical finding is robust. I then calibrate the model’s transition paths to match historical

data on factor shares, price-dividend ratios, growth rates, and discount rates.

This new method I develop puts structure on financial market data to forecast future eco-

nomic outcomes. I apply this methodology to study the IT sector’s transition towards its

long-run share in the US economy, along with its implications for future growth. Future

work could apply this methodology to revolutions of the past, such as the electricity revo-

lution, to assess its predictive ability. It could also be applied in principle to study other

phenomena, such as the discovery of a large, exhaustible energy resource.

Future average annual productivity growth is predicted to fall to 52bps from the 87bps

recorded over 1974–2012. This is due to both an intensifying of competition in the IT

sector, which reduces the marginal benefit of it innovating, and decreasing returns in the

broad economy’s employment of IT. My median estimate indicates the IT sector’s transition

ends in 2033, six decades after its 1974 inception. My analysis also suggests that the sector’s

transition is likely to end within the decade before 2033 than within the decade after.
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APPENDIX

A.1. Proofs and derivations

Constant markups

The price, Pt(i), of IT good i is chosen to maximize the IT firm’s profit. Take the

quantity demanded, Xi(Pt(i);Pt(i
′ 6= i),Kt, Lt, At, Gt) ≡ arg max

Xt(i)
Πt(i), by the represen-

tative final-good firm for this particular good as given. For brevity, write Xt(i) instead

of Xi(Pt(i);Pt(i
′ 6= i),Kt, Lt, At, Gt). Each monopolist solves the following static profit

maximization problem each period:

max
Pt(i)

Πt(i) ≡ Pt(i)Xt(i)−Xt(i)

Differentiating with respect to Pt(i) and plugging in (A.4) gives

Pt(i) = 1− Xt(i)
∂Xt(i)
∂Pt(i)

= 1− Pt(i)(1− µ)

µ
,

⇒ Pt(i) = µ.

Because the parameter µ is independent of both time and a particular firm, it holds for all

i and t.
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First-order conditions

It : qt =
1

Λ′
(
It
Kt

) (A.1)

Kt+1 : qt = Et
[
Mt+1

{
α(1−m)

Yt+1

Kt+1
+ qt+1

(
(1− δ)− Λ′

(
It+1

Kt+1

)
·
(
It+1

Kt+1

)
+ Λ

(
It+1

Kt+1

))}]
.

(A.2)

Lt : Wt = (1− α)(1−m)
Yt
Lt

(A.3)

Xt(i) : Pt(i) =
(
Kα
t (AtLt)

1−α)µm [∫ Nt

0
Xt(i)

1
µdi

]µm−1
1

µ
Xt(i)

1
µ
−1
. (A.4)

The first equation relates marginal q to the investment rate. The second equation is the

usual Euler equation for capital policy. The third equation equates the marginal product

of labor with the wage rate. The fourth is the derivative with respect to Xt(i) and can be

simplified, leading to (1.9). Because the measure of IT goods Nt is a quantity not controlled

by the activity of any single firm, it is treated as exogenous by the final-good firm, consistent

with the literature’s usual treatment.
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Market values (Proposition 1)

Proof. First, multiply (A.2) by Kt+1 to give

qtKt+1 = Et
[
Mt+1

{
α(1−m)Yt+1 + qt+1

(
(1− δ)Kt+1 − Λ′

(
It+1

Kt+1

)
· It+1 + Λ

(
It+1

Kt+1

)
Kt+1

)}]
= Et

[
Mt+1

{
α(1−m)Yt+1 + qt+1Kt+2 − qt+1Λ′

(
It+1

Kt+1

)
· It+1

}]
, by (1.8)

= Et [Mt+1 {α(1−m)Yt+1 − It+1 + qt+1Kt+2}] , by (A.1).

The first expression in the parentheses is output times the industrial firm’s share of factor

income attributed to capital, and the second is the firm’s investment expenditure; the

sum of the two gives the current dividend Dt. Iterating on the equation and imposing a

transversality condition gives the result. The simpler proof that does not involve adjustment

costs can be attained by specifying qt = 1 in the last equation for all t.

Second, what needs to be shown is that

Nt(Vt −Πt) +Ot = Et

[ ∞∑
s=1

Mt|t+s {Πt+sNt+s − St+s}

]
.

A similar claim was made by Iraola and Santos (2009) and Comin, Gertler and Santacreu

(2009). By specifying φ = 1 and a constant discount factor Mt|t+s = βs, one attains the

simple version.

Begin with the observation that

Nt(Vt −Πt) +Ot = φEt [Mt+1Vt+1]Nt + Et [Mt+1Vt+1(Nt+1 − φNt)−Mt+1St+1 +Mt+1Ot+1]

= Et [Mt+1Vt+1Nt+1 −Mt+1St+1 +Mt+1Ot+1]

= Et [Mt+1 {Πt+1Nt+1 − St+1 + (Vt+1 −Πt+1)Nt+1 +Ot+1}] .

Iterating this equation forward and assuming the absence of bubbles in equilibrium (see

Santos and Woodford (1997)) proves the claim.

51



Deterministic transition dynamics (Proposition 2)

I present the result of the proposition in two parts. The first part shows that the sys-

tem, when starting from any k0 > 0, kt monotonically converges to k∗. The second part

introduces the time T = inf{t : |kt − k∗| > ε}, and analyzes the effects of its introduction.

For convenience, define here the following system objects:

• π ≡ (µ− 1)
(
m
µ

) ηs
1−ηs , so Πt = πkαt

• kt+1(1 + gN,t+1) = (1 + g∗N )kt

• k∗(1 + gN,t+1) = (1 + g∗N )kt, where {gN,t+1}∞t=0 is a sequential bound on growth

• Vt = πkαt + βVt+1 = π
∑∞

s=0 β
skαt+s

• 1 + gN,t+1 = φ+ χ
1

1−ηs (βVt+1)
ηs

1−ηs

Proof. To show the first part, it’s sufficient to show the following two-implication relation:

k0 > k∗ and∃ {gN,t+1}∞t=0 s.t. gN,t+1 < gN,t+1, ∀t⇒ kt > k∗, ∀t⇒ kt+1 < kt, ∀t.

First take the right-most implication and suppose that, for a contradiction, ∃t̃ : kt̃+1 ≥ kt̃

and kt > k∗,∀t. If there is one t̃ such that kt̃+1 ≥ kt̃, then gN,t̃+1 ≤ g∗. Because Vt+1 is a

bijective function of gN,t+1, then Vt̃+1 ≤ V ∗. Using the definition of V yields

π

∞∑
s=0

βskα
t̃+s+1

≤ π(k∗)α

1− β
,

which implies there is at least one kt+s that is less than k∗, a contradiction.

The left-most implication can be proved by induction: I’ll show the base case, when k0 > k∗

implies k1 > k∗; and then show the induction step, where kt > k∗ implies kt+1 > k∗. For

the base case, suppose that, for a contradiction, k1 ≤ k∗ < k0. There are two cases: (i)

gN,1 > g∗N , or (ii) gN,1 ≤ g∗N . If (i) holds, then we can use the bound on growth to get
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k∗ =
(

1+g∗N
1+gN,1

)
k0 <

(
1+g∗N

1+gN,1

)
k0 = k1, a contradiction. If (ii) holds, then k1 =

(
1+g∗N

1+gN,1

)
k0 >(

1+g∗N
1+gN,1

)
k∗ ≥

(
1+g∗N

1+gN,1

)
k1, again a contradiction. To show the induction step, the same

contradictions to prove the base case can be used. Because {kt}∞t=0 is a monotone sequence

and is bounded below by k∗, then kt → k∗.

Now I can show that for all t we have Vt > Vt+1, gN,t+1 > gN,t, and gN,t+1 > gN,t. For any

t, we have

Vt+1 = πkαt+1 + πβkαt+2 + · · ·

< πkαt
(
1 + β + β2 + · · ·

)
, by the two-implication relation

= π
kαt

1− β
,

which can be rearranged to give Vt = πkαt + βVt+1 > Vt+1, which holds for all t. Because

gN,t+1 is a bijection of Vt+1, then gN,t+1 < gN,t, for every t. Finally, by definition of gN,t+1:

k∗ =

(
1 + g∗N

1 + gN,t+1

)
kt =

(
1 + g∗N
1 + gN,t

)
kt−1,

so by the two-implication relation, gN,t+1 > gN,t, for all t. In sum, xt = {kt, gN,t+1, gN,t+1, Vt}

converges monotonically to x∗. Because the IT-capital ratio is an inverse mapping of kt, it

similarly converges. The argument for 0 < k0 < k∗ is similar and analogously requires the

sequence {gN,t+1}∞t=0 s.t. gN,t+1 < gN,t+1, ∀t.

We’re interested in the price-dividend ratio’s dynamics, so let’s now look at that. The price-

dividend ratio in (1.17) can have the numerator and the denominator looked at separately.

The numerator is the aggregate ex-dividend market value of the IT sector and is equal to

V IT
t =

∞∑
s=1

βsNt+sΠt+s.⇒
V IT
t

Nt
=
∞∑
s=1

βs
Nt+s

Nt
Πt+s.

Because kt and gN,t+1 follow decreasing sequences, so does the aggregate ex-dividend market

value of the IT sector per firm.
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The denominator comprises the aggregate IT sector dividend NtΠt and the IT sector re-

search expenditure St, which per firm is Πt − St
Nt

. While the difference is always positive,

its relationship as a function of time is ambiguous. On the one hand, dividends per firm

will decrease overtime, but so does the amount of research expenditure per firm. The deter-

mination of which effect will dominate depends on the parameters and steady state of the

model. When uncertainty is introduced in Section 1.4, the analysis of the denominator is

further confounded and becomes a quantitative question. Note that if research expenditure

per firm falls faster than dividends per firm, then the price-dividend ratio of the IT sector

will decline as a function of time.

For the second part, we introduce the time T . Write Vt(T ) to acknowledge V ’s dependence

on T . Start the economy at k0 > kT = k∗ + ε, and fix ε and consequently T . For the last

bullet, the value of an IT good, Vt(T ), can simply be differentiated with respect to kt to get

∂Vt(T )

∂kt
= παkα−1

t > 0.

For the second part of the fourth bullet, consider decreasing ε such that the convergence

time T increases by one period: T̃ = T + 1. Then define

Vt(T̃ ) = π

(
kαt + βkαt+1 + · · ·+ βT−tkαT + βT̃−tkα

T̃
+ βT̃−t+1 (k∗)α

1− β

)
for 0 ≤ t ≤ T̃ .

Simply subtracting Vt(T ) from Vt(T̃ ) shows Vt(T̃ )− Vt(T ) = πβT̃−tkα
T̃
> 0.
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A.2. Data construction

IT sector definition

For financial market data, I use the term “information technology” to describe the collection

of technologies related to computer software, computer hardware, communications equip-

ment, and those employed by technical consultants hired either to incept or to enhance an

adopting company’s use of information technology. This latter qualification arises because

large producers of IT, like IBM, sell consulting services along with IT itself. Earnings from

this service would show up in IBM’s financial market data.

Data are from Chicago’s Center for Research in Security Prices and Compustat. Data are

restricted to stocks trading on the NYSE, AMEX, and NASDAQ exchanges, having share

codes 10 and 11, and being US-headquartered firms. A firm is classified as being in the

IT sector if it has one of the following North American Industrial Classification System

(NAICS) four-digit codes:

• 3341 - Computer and peripheral equipment manufacturing

• 3342 - Communications equipment manufacturing

• 3344 - Semiconductor and other electronic component manufacturing

• 5112 - Software publishers

• 5172 - Wireless telecommunications carriers (except satellite)

• 5174 - Satellite telecommunications

• 5182 - Data processing, hosting, and related services

• 5191 - Other information services (includes Internet publishing and broadcasting and

web search portals)
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• 5415 - Computer systems design and related services

• 5416 - Management, scientific, and technical consulting services

A firm’s Compustat NAICS code is preferred over a firm’s CRSP code, when codes con-

flict, because Compustat NAICS data are more complete and CRSP switched NAICS data

sources from Mergent to Interactive Data Corporation in December 2009, possibly changing

some firms’ classifications. I use primary NAICS codes that are assigned to each firm and

that matches its primary activity—generally the activity that generates the most revenue

for the establishment.

Construction of IT-capital ratio

Consistent with Jorgenson et al.’s (2011) work, I measure information technology as the

sum of hardware, software, and communications capital. I treat it as a type of capital

that is distinct from industrial capital. I refer to the former as “IT”, and to the latter as

“capital”. Both types refer to stocks of a quantity of “machines” and are measured in units.

Hence, the IT-capital ratio is analogous to a capital-labor ratio, both ratios being a relative

intensity of factor use.

Dale Jorgenson provides data from 1948 until 2006 through Harvard’s DataVerse, a public

database, for two of the four series of interest: the price and value of capital services of IT

capital, and the price and value of the capital stock of tangible capital. The two remaining

series required, however, are the capital service price and value series for tangible capital,

which are not provided on DataVerse.

A capital service of an input measures the flow of services from a quality-adjusted index of

the stock of the input. Jorgenson assumes a constant quality and thus the service flow from

a stock for each asset within an input is a constant—so capital service flows match capital

quantity stocks. Using a quality-adjusted service flow, especially for a quickly changing

input such as IT, is the best estimate of an input’s periodic factor income, which has a close
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analog to quantities employed in theoretical macroeconomic models, like the one presented

in this paper.

Jorgensen estimates the capital service series from the capital stock series in great detail.

While a genuine updated series would be preferred, the task requires a tremendous amount

of work. Estimates of depreciation rates, price indices, quantity indices, investment tax

credits, capital consumption allowances, corporate and personal tax rates, property taxes,

and debt versus equity financing values are required for estimates of after-tax real rates of

return for each of the 65 investment classifications of the Bureau of Economic Analysis.

See Appendix B in Jorgenson and Stiroh (2000) for details on this. In place of this, the

following was performed:

• Both price and value series of both capital stock and capital service series for tangible

capital were taken from Jorgenson and Stiroh (2000, Table B2, p. 74), which covers

the years 1959-1998.

• Linear regressions were run of the ratio of services to stock on a constant for both the

price and value series. This estimate provided a measure of an average service flow

that is derived from the stock. The fit in both regressions resulted in R-squareds of

over 98 percent.

• The estimates for the value and price series were then multiplied by their respective

tangible capital stock series supplied by DataVerse to get estimates of the longer time

series capital services measure.

Finally, for both IT and capital, the value series was divided by the price series to compute

a quantity series for capital services, which has a close analog to the quantities NtXt and

Kt in the model. These two quantity series were divided to construct the data’s counterpart

to the ratio of interest, the IT-capital ratio.

Price-dividend ratios
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Price-dividend ratios are from the CRSP annual value-weighted return series with and

without dividends. These series are defined as

Rt+1 ≡
Pt+1 +Dt+1

Pt
, RXt+1 ≡

Pt+1

Pt
.

Price-dividend ratios are then constructed as the inverse of

Dt+1

Pt+1
=

Rt+1

RXt+1
− 1. (A.5)

By using an annual horizon, the strong seasonal component of dividends is attenuated, even

when using monthly or quarterly observations. This definition reinvests dividends to the

end of the year, consistent with the methodology of Cochrane (2011). Data are restricted

to stocks trading on the NYSE, AMEX, and NASDAQ exchanges, having share codes 10

and 11, and being US-headquartered firms.

Because the incidence of firms which repurchase shares has increased, an alternative measure

of payouts to equity shareholders is used.1 Following Bansal, Dittmar and Lundblad (2005),

for every month, denote the number of shares at time t after adjusting for splits, stock

dividends, et cetera (using the CRSP share adjustment factor) as nt. An adjusted capital

gain series is constructed for a given firm:

RX∗t+1 =

[
Pt+1

Pt

]
max

{
0.95,min

{
nt+1

nt
, 1

}}
.

The construction differs from that of Bansal et al.’s (2005) because of the additional maxi-

mum operator above, which trims the amount of a repurchase to a maximum of 5 percent

of a stock’s total shares outstanding. Without this additional operator, the price-dividend

ratios are significantly affected by outliers, especially the IT sector’s in the early 1970s when

1Fama and French (2001) document that the proportion of firms paying dividends falls after the intro-
duction of the NASDAQ index in 1973; moreover, estimates from a logistic regression model suggest the
propensity to pay dividends also declined. Grullon and Michaely (2002) provide evidence of a SEC regula-
tory change (Rule 10b-18) which occurred in 1982 granted a safe harbor for repurchasing firms against the
previously considered manipulative practice. Repurchase activity, consequently, is much larger post-1983.
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few firms are classified (only 134 firms by 1974). Bounds at 0.8 and 0.9 result in similar

price-dividend ratio series. I select a value of 95 percent because the probability of observing

a share repurchase greater than 5 percent in a month is 1 percent for both sectors, consistent

with usual winsorization practices. Moreover, FactSet, a data service, reports the largest

share repurchaser, as a percentage of total shares outstanding, was Seagate Technology, a

manufacturer of hard drives, which repurchased 35.2 percent of its shares outstanding in

2012, or about 3 percent per month.2

I also constructed another valuation measure similar to Grullon and Michaely’s (2002),

which is based on the actual repurchase dollar amounts of common shares in Compustat. For

this measure, dividends were constructed as trailing twelve-month sums. The price-dividend

ratio of this Compustat-based series was similiar to the CRSP-based series construction

above.

I created and considered price-earnings ratios as well. The time series dynamics are similar

to those of the dividend series. They are not the preferred series, however, because IT firms

spend relatively more money on research than do non-IT firms (see footnote 13). Research

can classified by management as either an expenditure before taxes and earnings or as

investment in a capital asset. Thus, this discretion can be used to manipulate earnings.

Macroeconomic and financial data

The macroeconomic data I use begins in 1974, a year thought by leading growth economists

to be the inception of the IT revolution (Greenwood and Yorukoglu (1997), Greenwood

and Jovanovic (1999), Hobijn and Jovanovic (2001)). It is also the year after CRSP added

the NASDAQ index to its database. Moreover, the first Intel microprocessor suitable for

desktop use, the “4004”, was commercialized 1971, spawning the PC industry. My financial

market data begins earlier in 1971, allowing me to apply the Hodrick-Prescott filter before

having this data share the same 1974 start date.

2Details are provided at “http://www.factset.com/” under the BuyBack Quarterly report, 2 April 2013.
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Data on US consumption of nondurables and services, gross domestic product, nonresiden-

tial, private, fixed investment, and population are from the National Income and Prod-

uct Accounts of the Bureau of Economic Analysis. Data on the value-weighted market’s

price-dividend ratio are from CRSP. Risk-free returns are from Ken French’s data library.

Consumer price index inflation and the spread between Baa and Aaa corporate bonds are

obtained from the St. Louis FRED. The TFP measure comes in two forms—adjusted and

non-adjusted—from the San Francisco Fed. The adjusted measure adjusts for variation in

capacity utilization and hours worked within a workweek.

Estimation of default

Following Campbell, Hilscher and Szilagyi (2008) and Boualam, Gomes and Ward (2012),

I proxy default with performance-related delisting events on CRSP.3 I use two methods.

First, I simply compute the frequency of delisting and divide it by the starting count of

firms for each year for the IT sector. Second, I compute annual percentage change in the

number of IT firms for each year, and take the minimum of this measure and a value of

zero to only count observations that are negative:

min

[
nt+1 − nt

nt
, 0

]
,

where nt is the number of IT firms at year t, sampled at an annual frequency. I then

temporally average both methods to estimate the unconditional probability of default. Both

methods produce results near 3 percent.

Estimation of long-run risk

I use three methods to estimate the return on the wealth portfolio (long-run risk) in the

data:

1. Kalman filter

3Delisting codes used are 500, 550, 552, 560, 561, 574, 580, and 584. They are defined at http://www.

crsp.com/products/documentation/delisting-codes.

60

http://www.crsp.com/products/documentation/delisting-codes
http://www.crsp.com/products/documentation/delisting-codes


2. Predictive regression

3. Vector autoregression

In what follows, all variables have been demeaned, and all errors below are assumed to be

iid standard normal random variables. Estimates are detailed in Table 9. The Kalman filter

method follows Croce (2012). The long-run risk component is estimated via the following

system:

∆ct+1 = xt + σνt+1

xt+1 = ρxt + σηt+1.

The Kalman filter estimates the latent state xt and treats it as the long-run risk component

rC,t. It is estimated by maximum likelihood.

The predictive regression approach follows Colacito and Croce (2011) where tomorrow’s

consumption growth is regressed on the value-weighted market price-dividend ratio, the

risk-free rate, lagged consumption growth, the consumption-output ratio, and a measure of

default risk (the Baa-Aaa spread):

∆ct+1 = βXt + σνt+1, where Xt = {∆ct, pdt, rf,t, cyt, deft}.

The long-run risk component can be extracted by projecting tomorrow’s consumption

growth onto today’s state variables Xt: rC,t = proj[∆ct+1|Xt] = β̂Xt.

Finally, specifying a vector autoregression using the same state vector as above

Xt+1 = AXt + Σνt+1

can be used to extract the long-run risk component, the expected discounted value of
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consumption growth over the infinite horizon:

rC,t = Et

[ ∞∑
s=0

κs∆ct+s

]
= (1− κA)−1Xt1∆ct ,

where 1∆ct is an indicator that picks out the vector associated with consumption growth.

The discount factor κ is related to the unconditional mean of the price-consumption ra-

tio as in Campbell and Shiller (1988). I set it to 0.965, a value consistent with Lustig,

Nieuwerburgh and Verdelhan’s (2013) work. Results are not dependent on this setting.

Table 9: Estimates of return on wealth (long-run risk)
Panel A reports the maximum likelihood estimates of a Kalman filter to extract the return
on wealth using only consumption data. Panel B reports the VAR coefficients of the matrix
A. The results from the predictive regression follow from using the predicted values of
the top row in the A matrix. Data are quarterly and cover the years 1971–2012. Data
construction is described in Appendix A.2.

Panel A: Kalman filter estimates
Parameter Estimate

ρ 0.78***
σ 0.0024***

p < 0.01 - ***

Panel B: VAR estimates

∆ct PDmkt
t rft cyt deft

∆ct+1 0.448*** 0.000 -0.0003*** -0.049*** -0.001
PDmkt

t+1 128.03*** 0.974*** 0.1239* 19.58*** -1.119***

rft+1 6.978 -0.008 0.907*** -7.022* -0.299*
cyt+1 -0.184*** 0.00005*** 0.0003*** 0.99*** 0.000
deft+1 -8.91** 0.000 0.019*** 0.610 0.812***

OLS standard errors p < 0.01 - ***, p < 0.05 - **,p < 0.1 - *

Figure A plots rolling 50-quarter regressions of beta estimates for both short-run risk and

long-run risk of the IT sector and compares the model’s estimates versus the data’s. The

model is able to match the data’s upward trend in short-run risk exposure and its downward

trend in the long-run risk exposure. The model is able to generate the correct direction

and sign of these trends because it specifies the intertemporal elasticity of substitution to

be less than one (the calibration uses 0.9).
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Figure 10: Model calibration V: Rolling risk exposures I
The form of the regression is rIT,t = aIT +βIT,cg× gC,t +βIT,rc× rC,t + νt. The risk factors,
gC,t and rC,t, are standardized. Returns are real. The regressions are rolling and each
regression includes 50 quarters of data. The dotted lines are two times the model’s standard
errors. Standard errors are estimated from the standard deviation of point estimates across
simulations. Ten-thousand simulations are run. Three data series are plotted, depending on
how the long-run expected consumption growth of the data was estimated: “Kalman”, uses
a Kalman filter; “Pred reg” uses a predictive regression; “VAR” uses a vector autoregression.
Estimation details are provided in Section A.2.
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