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We present and study a model for the nonequilibrium statistical mechanics of protein distributions in a
proliferating cell population. Our model describes how the total protein variation is shaped by two
processes: variation in protein production internal to the cells and variation in division and inheritance at
the population level. It enables us to assess the contribution of each of these components separately. We
find that, even if production is deterministic, cell division can generate a large variation in protein
distribution. In this limit we solve exactly a special case and draw an analogy between protein distribution
along cell generations and stress distribution in layers of granular material. At the other limit of extremely
noisy protein production, we find that the population structure restrains variation and that the details of
division do not affect the tail of the distribution.
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A population of proliferating cells is a stochastic dy-
namical system far from equilibrium. Proteins and other
molecules are constantly produced and degraded; at the
same time, cells grow, divide, and inherit their properties to
the next generation. These processes are both inherently
stochastic, and therefore a population is diverse in its
properties, even if genetically homogeneous. The study
of protein variation in cell populations has a long history
and has recently received renewed experimental and theo-
retical interest (reviewed by [1–5]). A general feature that
emerges from recent experiments is that, even under well-
controlled conditions of protein production, steady-state
distributions in the population generally exhibit exponen-
tial tails and large coefficient of variation (standard-
deviation-to-mean ratio) [6,7]. In some cases, this expo-
nential tail can be traced to specific intracellular noise
which is exponentially distributed [7–9]. More generally,
steady-state distributions can arise from different combi-
nations of intracellular noise and population dynamics [6].
It is therefore of interest to provide a theoretical framework
for understanding the contributions of these two processes.

Inspired by recent experimental results, we here present
and analyze a minimal model describing the two forces
shaping the population protein distribution—intracellular
production noise and proliferation dynamics. We define
two limiting regimes of parameters in which each of these
forces is dominant and compute the steady-state protein
distribution in the population in each regime. In the regime
where protein production is well-regulated and variation is
primarily induced by fluctuations in transmission along
generations, we find a nonexponential, nonuniversal be-
havior. In this regime, our model is analogous to the q
model for stress distribution in granular layers, where a
universal exponentially tailed distribution was found [10].
The differences between the two models highlight the
properties that are special to the structure of a proliferating
cell population. In the other regime, where protein produc-

tion is highly variable, we find that exponential tails arise
in several different models and without sensitivity to the
division variation. Here the population dynamics act to
restrain the total steady-state variation relative to the dis-
tribution of protein production in each cell.

We imagine a population as an ensemble of cells driven
by two forces: protein production, internal to the cells, and
dissipation by cell division and degradation [6]. For long-
lived proteins, such as many forms of gfp (green florescent
proteins) used in experiments [6,11], division is dominant
over protein degradation. Making use of the separation of
time scales between protein production (normally continu-
ous through the cell cycle) and cell division (occurring on a
short fraction of the cell cycle), we express the time
evolution of protein content in the cell as a discrete map-
ping between consecutive generations:

 xn�1 �Mxn � qn�xn � �n�; (1)

where xn is the protein content in a cell immediately
following division in generation n. The production force
�n represents the total amount of protein produced and
accumulated in the cell during generation n up to division
time; it is a random variable drawn at each generation from
a time-independent distribution ����. The division force qn
is the stochastic fraction of protein inherited at division,
similarly drawn from ��q� [12]. At this stage, we assume
that the entire population divides synchronously and write
the Liouville equation for the time evolution of the protein
distribution at generation n, Pn�x�, in these discrete time
steps:
 

Pn�1�x� �
Z 1

0
dq��q�

Z 1
0
d�����

�
Z 1

0
dx0Pn�x

0���M�x0� � x�: (2)

The nature of cell division imposes the symmetry con-
straint ��q� � ��1� q�; in particular, hqi � 1=2. The
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model admits a nonzero steady state for every well-
behaved distribution of q and �. Balance between the
source and dissipation of this nonequilibrium system is
robustly ensured by the fact that dissipation is proportional
to the amount of protein in the cell, whereas production is
not. At steady state, the dependence on n drops, and, in
terms of generating functions, the Liouville equation reads

 G�s� 	
Z 1

0
dxP�x� exp��sx� �

Z 1

0
dq��q�G�qs�H�qs�;

(3)

where H�s� is accordingly the generating function for �.
If q and � admit finite moments, then the steady-state

distribution of x has the same property: Independence
between q and � enables raising Eq. (1) to the kth power
so that averaging over the population yields

 hxki � hqkih�x� ��ki � hqki
Xk
j�0

k
j

� �
hxk�jih�ji; (4)

from which all moments of x may be extracted. In particu-
lar, the mean protein level hxi � h�i.

We now consider the limiting case where protein pro-
duction is perfectly regulated: � � const. In this re-
gime, variation comes from population dynamics, namely,
noise in cell division and inheritance. The coefficient
of variation then follows from Eq. (4) to be �x=hxi �

2�q=
��������������������
3=4� �2

q

q
, where �q is the standard deviation of

the division ratio q. Since 0 
 q 
 1 and hqi � 1
2 , 0 


�q 

1
2 , and hence 0 
 �x=hxi 


���
2
p
� 1:4. If protein is

distributed uniformly between mother and daughter cells,
�q � 1=

������
12
p

� 0:3 and �x=hxi � 1=
���
2
p
� 0:7.

For most proteins, the distribution between mother and
daughter cells at division is in correlation with cell size
with additional noise. For symmetrically dividing cells,
��q� will be centered around 1

2 , whereas for asymmetric
division, it will typically have two peaks around the frac-
tions f � 1

2 and 1� f. Small noise around symmetric
division will result in a narrow limiting distribution,
whereas the same is not true for asymmetric division.
More quantitatively, with a distribution of width a around
the typical division value f, the limiting coefficient of
variation �x=hxi will tend to zero as a! 0 for symmetric
division (f � 1

2 ), while it will tend to a nonzero value

�x=hxi�2
�������������������������������������������������������������
�1=4�f�f2�=�1=2�f�f2�

p
for the asym-

metric case (see Fig. 1). For f � 0:6, which is typical for
budding yeast cells, we obtain �x=hxi � 0:23. This is
consistent with measurements under conditions where
cell size effects were dominant in creating population
variation [13]. These experiments were previously ex-
plained using a more elaborate model taking into account
the specific features of the yeast cell cycle [13].

For a uniform distribution of protein between mother
and daughter cells ��q� � 1, the model steady-state distri-
bution is exactly solvable. Equation (3) then reads

 G�s� �
Z 1

0
dqG�qs� exp��sq��: (5)

This, by differentiation, is equivalent to the differential
equation

 G�s� � s
dG
ds
� G�s� exp���s�; (6)

which has the exact solution

 G�s� � exp
�X1
k�1

���s�k

k!k

�
	 exp� �s��: (7)

This solution provides us with an exact expression for the
cumulants of the protein distribution P�x�:

 �n � ��1�n
@n lnG
@sn

��������s�0
�
�n

n
: (8)

Choosing units of x so that � � 1, Fig. 2(a) shows the
generating function G�s�, decaying as 1=s for s!1. The
probability density P�x� is found by the inverse Laplace
transform of the generating function G�s�. The asymptotic
behavior of P�x� for large x can be computed by the
approximation of steepest descent [14]. A single point s�

on the negative real axis, satisfying x � �1� e�s
�
�=s�,

gives the leading contribution in this approximation; an
infinite number of points with imaginary parts add up
incoherently to a negligible contribution. The path of
steepest descent is found to be perpendicular to the real
axis, finally giving

 P�x� 

exp�xs� �  �s����������

2�
p

j 00�s��j1=2
: (9)

We note that this is an example of a solvable ‘‘inverse
problem,’’ where the tail of the probability density P�x� is
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FIG. 1. Coefficient of variation in protein distribution vs divi-
sion parameters. a represents the variation at cell division, and f
is the underlying asymmetry of this division, with f � 1=2
corresponding to symmetric division.
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found from the inverse transform of the cumulant-
generating function  �s� by asymptotic expansion.

Figure 2(b) displays P�x� from Monte Carlo simulations
(circles) with the asymptotic approximation Eq. (9) (line),
showing excellent agreement. The leading order behavior
of the asymptotic approximation is P�x� 
 1=xx. Also
shown in Fig. 2(b) is the Monte Carlo result for a different,
narrower distribution of protein at division ��q� (squares).
The tails of the two distributions cannot be scaled to the
same shape; thus, there is no simple universality in the
regime of dominant division noise, but rather there is
sensitivity to the details of the division function.

It is instructive at this point to draw an analogy between
cell populations and other nonequilibrium physical sys-
tems. Our model is similar in spirit to stochastic scalar
models characterizing fluctuations of stress in static granu-
lar packings [10,15] and of energy in dynamic granular
gases [16,17]. In the q model for static granular packings
[10], grains are assumed to be layered; each grain is
characterized by the weight it bears, comprised of the
grain’s constant self-weight together with the load applied
on it by other grains from the layer above it. Each grain
randomly partitions its weight among the grains on which
it rests. This is analogous to our population model in the
regime of negligible intracellular noise, where each cell
has a protein content composed of the constant amount it
produced (�) and what it inherited from the previous gen-
eration. The protein content is randomly partitioned upon
cell division, and divisions occur synchronously in the
population, in analogy to the discrete layers of the granular
packing. Thus, in both cases, the limiting distribution
reflects fluctuations in the transmission along generations.
However, the character of the limiting distributions in the
two models is very different. While Coppersmith et al. [10]
found a universal exponential tail to the distributions, we
found here a behavior that depends on the division distri-
bution and for the exactly solvable case ��q� � 1 behaves

as 1=xx. One may understand this difference by noting that
the transfer between generations (layers) in the two models
is differently structured (Fig. 3). In the population model,
each cell in generation n has a single ancestor in generation
n� 1 passing proteins to it, whereas in granular packings
each grain in layer D carries the weight of several grains
from layer D� 1. This topological difference enhances
mixing in the q model and induces a universality in the
limiting distribution which is not found in our population
model. In practice, while the analytic solution is different,
the tails of an exponent and 1=xx � e�x lnx may be difficult
to distinguish in experiment.

We now turn back to our population model in the regime
where intracellular protein production is variable. One way
to model this regime is to draw � in Eq. (1) from a broad
distribution; specifically, experiments indicate that in some
cases this distribution has an exponential tail [7]. Instead,
we consider here an exactly solvable model where intra-
cellular variation is induced by an exponentially varying
cell lifetime and show below that the steady-state distribu-
tion is very similar in the two models.

Consider a population of cells producing protein at a rate
� and dividing with a probability � per unit time. The
protein content x�t� thus evolves according to

 x�t� �t� �

8<
:

Value: Probability:
qx�t� ��t
x�t� ���t 1� ��t;

(10)

with q the division fraction as before. The coeffi-
cient of variation at steady state is �x=hxi ���������������������������������������������
�1� 4�2

q�=�3� 4�2
q�

q

 1; note that the total protein

produced per generation is drawn from an exponential
distribution with ��=h�i � 1. Taking the exponential of
Eq. (10) and averaging, one has

 G�sq� � �1� 	s�G�s�; (11)

with 	 	 �=� now setting the scale of x, determining its
mean value in the population. For ��q� � 1,

 �1� 	s�
dG
ds
� 2	G�s� � 0; (12)

with the solution G�s� � �1� 	s��2. This is readily in-
verted to yield the Gamma distribution P�x� � �x=	2��
exp��x=	�.

Figure 4 depicts this Gamma distribution, derived above
for the uniform division case (line), with Monte Carlo
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FIG. 3. (a) Topology of the inheritance in a population of
dividing cells compared to (b) the q model for stress trans-
mission in granular packings.10
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FIG. 2. Population distribution with constant protein produc-
tion. (a) Generating function G�s� for a uniform division distri-
bution ��q� � 1, computed exactly as a sum over cumulants
(�), with asymptotic approximation G�s� 
 c=x (line; c �
const). (b) Monte Carlo simulation of the distribution function
P�x� (�), compared to the asymptotic approximation equa-
tion (9) (line). Also depicted (�) is the distribution for a division
fraction with a smaller standard deviation (square of width a �
0:8 around f � 1

2 ).
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results for different division functions, all displaying
similar exponential tails. Also shown for comparison is
the distribution for a synchronously dividing population
[Eq. (1)], with �n drawn from an exponential distribution
(+). The behavior of Fig. 4 is also similar to that found in
another model with exponential internal protein production
[7–9]. We are led to conclude that, in the limit where
internal protein production is noisy (here exponential),
the steady-state population distribution reflects the internal
noise and becomes insensitive to the division details.
Moreover, it is also insensitive to the model details.

In all cases mentioned above, the variation in a dividing
population, where each cell draws production from a broad
distribution, is smaller than the variation in an ensemble of
independent particles each drawing its protein content
from that same distribution. Thus, the effect of the popu-
lation is to narrow the distribution from which protein
production is drawn. Intuitively, the reason is that roughly
half of the protein content is a remnant of the previous
generation, and this intergeneration memory reduces the
steady-state variation.

In summary, we have presented and analyzed a theoreti-
cal model for the nonequilibrium statistical mechanics of a
phenotypic quantity (such as protein content) in a dividing
cell population. The model enables one to separate contri-
butions to the variation in the population arising from the
intracellular noise in production and from variation in the
process of division and inheritance. We used the model to

calculate the steady-state protein distributions and found
that the structure of the biological population affects the
limiting distribution in both regimes where either of the
processes dominates. For dominant division variation, in an
exactly solvable case we found e�x lnx tails, i.e., nonexpo-
nentially decreasing but with a weak asymptotic correction
to an exponent. The behavior was found to be sensitive to
the details of the division function [10]. In the opposite
extreme of dominant intracellular variation, we found that
the population structure decreases the variability relative to
the bare distribution of protein production. Similar expo-
nential tails can arise either by internal protein production
noise or by variation in cell lifetime.
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FIG. 4. Protein distributions for highly variable production: the
analytical solution (line) and Monte Carlo simulation (�) for a
uniform division function; the narrower division function (�,
square of width a � 0:8 around f � 1

2 , same as in Fig. 2); and
the model with synchronous uniform division and an exponen-
tially distributed production (+).

PRL 99, 138102 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
28 SEPTEMBER 2007

138102-4


