Logic-based Regulatory Conformance Checking

Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

Department of Computer Science
University of Pennsylvania
Philadelphia, PA - 19104, USA
{nikhild,joshi,lee,sokolsky } @seas.upenn.edu

Abstract. In this paper, we describe an approach to formally assess
whether an organization conforms to a body of regulation. Conformance
is cast as a model checking question where the regulation is represented
in a logic that is evaluated against an abstract model representing the
operations of an organization. Regulatory bases are large and complex,
and the long term goal of our work is to be able to use natural language
processing (NLP) to assist in the translation of regulation to logic.

We argue that the translation of regulation to logic should proceed one
sentence at a time. A challenge in taking this approach arises from the
fact that sentences is regulation often refer to others. We motivate the
need for a formal representation of regulation to accomodate references
between statements. We briefy describe a logic in which statements can
refer to and reason about others. We then discuss preliminary work on
using NLP to assist in the translation of regulatory sentences into logic.

1 Introduction

Regulations, laws and policies that affect many aspects of our lives are repre-
sented predominantly as documents in natural language. For example, the Food
and Drug Administration’s Code of Federal Regulations’ (FDA CFR) governs
the operations of American bloodbanks. The CFR is framed by experts in the
field of medicine, and regulates the tests that need to be performed on donations
of blood before they are used. In such safety-critical scenarios, it is desirable to
assess formally whether an organization (bloodbank) conforms to the regulation
(CFR).

Conformance checking is a relatively new problem in requirements engineer-
ing, which has been gaining attention in industry and academia [1]. A key differ-
ence between regulations and other sources of informal requirements is in deter-
mining the source of a requirement. The requirements used to design a system
often arise from varied places, such as interviews with customers and discussions
with domain experts. This makes the identification of requirements a difficult
problem. However, since there are consequences associated with disobeying the
law, law-makers spend considerable effort in articulating the requirements (as

! http://www.gpoaccess.gov/cfr /index.html

normative sentences). As a result, one can informally associate a requirement
with a sentence or discourse.

The challenge in conformance checking is that the task of formalizing the
requirements is difficult, due to the large size and complexity of regulations.
The long term goal of our work is to use natural language processing (NLP)
techniques to aid in the formalization of regulation. From the perspective of
using NLP for requirements engineering, this area is epecially interesting due to
the availability of large corpora of regulations that can serve as a test-bed for
NLP techniques.

We approach the problem of formally determining conformance to regula-
tion as a model-checking question. The regulation is translated to statements
in a logic which are evaluated against a model representing the operations of
an organization. The result of evaluation is either an affirmative answer to con-
formance, or a counterexample representing a subset of the operations of the
organization and the specific law that is violated. A similar approach is adopted
by several systems [1-3].

When a violation is detected, the problem could be in one of three places:
(a) the organization’s operations, (b) the regulation or (c¢) the translation of
the regulation to the logic. To aid in determining the source of the problem,
there needs to be a notion of correspondence between the sentences of regulation
in natural language and logic. We attempt to maintain a correspondence by
translating regulation to logic one sentence at a time. An added benefit of doing
this is to be able to focus our NLP efforts at the sentence level.

In this paper, we discuss two related parts of our approach. The first part
deals with the issue of designing a logic into which we can translate regulation one
sentence at a time. The main difficulty that we encountered in doing this is the
problem of references to other laws. A common phenomenon in regulatory texts
is for sentences to function as conditions or exceptions to others. This function of
sentences makes them dependent on others for their interpretation, and makes
the translation to logic difficult. In Section 2, we argue (using examples and
lexical occurence statistics) that a logic to represent regulation should provide
mechanisms for statements to refer to others, and to make inferences from the
sentences referred to.?2 In Section 3, we briefly describe the logic that we use to
represent regulation.

In the second part of the paper (Section 4), we turn our attention to the
problem of using NLP to assist in the translation of sentences of regulation into
logic. Section 5 concludes.

2 The Problem of References to Other Laws

In this section, we argue that a logic to represent regulation should provide
a mechanism for sentences to refer to others. The discussion is divided into
two parts. In Section 2.1, we discuss examples of the phenomenon that we are

2 A study in [1] suggests that such references between sentences are common in privacy
regulation as well.

interested in and how they may be represented in a logic with no mechanism for
sentences to refer to others. We then contrast the distribution of some lexical
categories in the CFR with newspaper text, which suggest that references to
sentences are an important way of expressing relationships between sentences in
regulation (Section 2.2).

2.1 Examples

The examples in this section are shortened versions of sentences from the CFR
Section 610.40, which we will use through the course of the paper. Consider the
following sentences:

(1) Except as specified in (2), every donation of blood or blood component
must be tested for evidence of infection due to Hepatitis B.

(2) You are not required to test donations of source plasma for evidence of
infection due to Hepatitis B.

(1) conveys an obligation to test donations of blood or blood component for
Hepatitis B, and (2) conveys a permission not to test a donation of source plasma
(a blood component) for Hepatitis B. To assess an organization’s conformance
to (1) and (2), it suffices to check whether “all non-source plasma donations
are tested for Hepatitis B”. In other words, (1) and (2) imply the following
obligation:

(3) Every non-source plasma donation must be tested for evidence of infec-
tion due to Hepatitis B.

There are a variety of logics in which one can capture the interpretation of
(3), as needed for conformance. For example, in first-order logic, one can write
Vo @ (d(z) A—sp(x)) = test(x), where d(z) is true iff z is a donation, sp(x) is true
iff z is a source plasma donation, and test(x) is true iff = is tested for Hepatitis
B. Thus, to represent (1) and (2) formally, we inferred that they implied (3) and
(3) could be represented more directly in a logic.

Now suppose we have a sentence that refers to (1):

(4) To test for Hepatitis B, you must use a screening test that the FDA has
approved for such use.

The reference is more indirect here, but the interpretation is: “if (1) requires a
test, then the test must be performed using an appropriate screening test kit”. A
bloodbank is not prevented from using a different kind of test for source plasma
donations. (4) can be represented by first producing (3), and then inferring that
(3) and (4) imply the following:

(5) Every non-source plasma donation must be tested for evidence of infec-
tion due to Hepatitis B using a screening test that the FDA has approved
for such use.

It is easy to represent the interpretation of (5) directly in a logic. However,
(5) has a complex relationship to the sentences from which it was derived, i.e.,
(1), (2) and (4). The derivation takes the form of a tree:

The examples we have considered are simplified versions of the sentences in
the CFR 610.40. In the CFR, (1) has a total of six exceptions, and the exceptions
have statements that qualify them further. This process of producing a derived
obligation and translating it becomes extremely difficult.

References to other laws are not always hierarchical or acyclic. There are
two kinds of circularities that can arise. The first is a syntactic circularity which
arises due to vague references. For example, two occurences of the phrase “re-
quired testing under this section” can give rise to a cycle if one interprets “this
section” as “all the other sentences in this section”. However, such phrases typ-
ically appear in paragraphs where no tests are required and the cycle can be
broken by restricting the references to paragraphs where tests are required. The
second kind of circularity is a semantic circularity which can make the regula-
tion paradoxical, e.g., with self referential sentences. Fortunately, we have not
observed such circularities.

To summarize, if one wishes to use a logic with no support for referring
to other sentences, translating regulation to the logic would involve the follow-
ing steps: (a) resolving circularites to construct a hierarchy of references, (b)
creating derived obligations by moving up the hierarchy, until a set of derived
obligations with no references are obtained, and (c) translating the final set of
derived obligations to logic.

This procedure would not be problematic if there are few cases of references.
In the following section, we discuss the distribution of some lexical categories
in the CFR which suggest that this is a very common case. This makes the
procedure impractical in terms of the effort that would be involved. The logic
that we describe in later sections lets one express references directly, and the
resolution of cirularites and creation of derived obligations happen as part of the
semantics.

2.2 Distribution of Lexical Categories

In the previous section, we saw several examples of how sentences in regulation
refer to others. Natural language offers a variety of devices to relate sentences to
others. A large class of such devices fall under the rubric of anaphora, which is
a means of linking a sentence to the prior discourse. Common examples of such

anaphoric items are pronouns and adverbial connectives, e.g., however, instead,
furthermore, etc.?

Table 1. Differences in the distribution of some anaphoric lexical items in the Wall
Street Journal (WSJ) corpus and the CFR. Both the WSJ and the CFR have approx-
imately 1M words.

Lexical Item WSJ |CFR
he, she, him, her 8564 (297
it, its 15168(2502
they, their 4500 (862
ADV1 3162 (2402
ADV2 2453 (349
such 662 (3028
References to other laws|_ 18509

Table 1 contrasts the distribution of potentially anaphoric items in the Wall
Street Journal (WSJ) corpus, with the CFR. The first three rows show counts
of pronouns, and the CFR has a markedly lower number of pronouns than the
WSJ. The next two rows show counts of adverbial connectives. ADV1 comprises
of the connectives also, however, in addition, otherwise, for example, therefore,
previously, later, earlier, until and still. These connectives have specialized uses
in the CFR and tend to be quite frequent, with otherwise being the most frequent
in the CFR (517 cases). ADV2 is a set of 48 adverbial connectives annotated by
the Penn Discourse Treebank [4] excluding those in ADV1, e.g., instead, as a
result, nevertheless. The connectives in ADV2 are significantly more frequent in
the WSJ than in the CFR.

The last two rows in Table 1 show two common ways of establishing rela-
tionships between sentences in the CFR. The adjective such is a common way of
refering to a set discussed in an immediately preceding law, e.g., such tests. The
last row counts explicit references to other law, by searching for phrases like this
section, or references to section and paragraph identifiers. Of the categories we
considered this is by far the most frequent in the CFR.

We now describe the logic that we use to handle references. The other fre-
quently occuring anaphora (ADV1 and such) are typically accompanied by ref-
erences (e.g., however and otherwise give exceptions to other laws), and similar
mechanisms can be used to express them. Formalizing the remaining anaphora
is a subject of future work.

3 Not all uses of pronouns are anaphoric. Some pronouns are bound by quantifiers,
e.g., every one loves their mother. We report counts based on occurence of strings
and do not distinguinsh between different uses.

3 A Logic that Allows References Between Laws

In this section, we describe the logic that we attempt to translate the regulation
into. The description in this section is brief and informal, and introduces only
the machinery needed to clarify the discussion in Section 4. We refer the reader
to [5,6] for a formal account of the semantics and the computational issues.
Consider our examples again:

(6) Except as specified in (7), every donation of blood or blood component
must be tested for evidence of infection due to Hepatitis B.

(7) You are not required to test donations of source plasma for evidence of
infection due to Hepatitis B.

(6) and (7) are represented as follows:

— 6.0: d(z) A —by7(=Otest(x)) ~ Otest(x) and
— T.p: d(y) A sp(y) ~ ~Otest(y)

First, consider the formula 7.p: d(y) A sp(y) ~ —<test(y) . This is read as
“It is permitted that if y is a donation of source plasma, then it is not tested
eventually”. The letter p denotes permission, d(y) asserts that y is a donation,
sp(y) asserts that y consists of source plasma, test(y) asserts that y is tested,
and <is the linear temporal logic (LTL) operator eventually. The connective ~
is a variant of implication which we will discuss in what follows.

Now consider the subformula byr(—<{test(z)) . This is read as “By the law
(7), x is not tested eventually”. We note that this subformula should hold iff y is a
donation of source plasma. And finally, 6.0: d(z) A —by7 (= test(x)) ~ Otest(x)
can be paraphrased as “It is obligated that if = is a donation and it is not the
case (7) doesn’t permit that z is not tested eventually, then x must be tested
eventually”. The letter o denotes obligation. Formulas in the logic are evaluated
with respect to sequences of states of an implementation (in a manner similar
to LTL). Each state is associated with a set of objects and a way of evaluating
predicates.

Table 2. A run and its annotations

Time|Objects|Predicates Annotations
1 01 d(o1), sp(o1), —test(o1) |2: ~Otest(o1)
2 01 d(o1), sp(o1), —test(o1) |2: ~Otest(o1)
02 d(02), =sp(o2), —test(oz2)|1: Otest(o2)
3 01 d(o1), sp(o1), test(o1) |2: =Otest(o1)
02 d(02), =sp(o2), —test(oz2)|1: Otest(o2)

Table 2 shows a possible run of a bloodbank. First, an object o1 is entered
into the system. oy is a donation of source plasma (d(o1) and sp(o1) are true).

When a donation is added, its test predicate is initially false. Then, an object
02 is added, which is a donation but not of source plasma. In the third step, the
object o7 is tested. Unless the run is extended to test o2, the bloodbank doesn’t
conform to the statements (6) and (7). We now discuss how the annotations are
arrived at, and used to assess the regulation.

We first evaluate 7.p: d(y) A sp(y) ~ —<test(y) with respect to all variable
assignments. When y is assigned the value o1, the precondition d(y) A sp(y) is
true, and we annotate the state with 7: —=Otest(or) . This annotation happens
regardless of whether —Otest(o1) is true or false under the variable assignment.

Next, we evaluate 6.0: d(z) A —by7(—=Otest(x)) ~ Otest(x) . When x is as-
signed the value o1, d(x) is true. To evaluate by7(—~{test(z)) we check if there
is an annotation (¢) on the state such that ¢ = =Otest(oq) is valid, i.e., a theo-
rem in LTL. Since, =Otest(oy) is an annotation this is an appropriate candidate
for ¢ and we conclude that byr(—<{test(x)) is true. Hence the precondition
d(x) A =byz(=<Otest(x)) is false, and the obligation is vacuously satisfied.

When considering a non-source plasma donation (02), no annotation is pro-
vided by 7.p: d(y) A sp(y) ~ —Otest(y) . We will not be able to find ¢ such that
1 = =Otest(02) is valid. This will make the precondition d(x) A—byz(—Otest(z))
true, and if a test is not performed eventually, a violation will be detected. Vio-
lations are detected only with respect to obligations. Permissons do not produce
violations and are relevant to conformance only via references from an obligation.

Complexity:In [5], we show that conformance checking is hard for EXPTIME.
The high complexity is due to the satisfiability tests that are needed to evaluate
references. A case study of the FDA CFR motivated a restriction, called the
single copy property, which allows us to compile out the satisfiability tests [6]. For
acyclic regulations, the compilation procedure yields first-order temporal logic
statements. Conformance checking with first-order logic is PSPACE-complete.
However, the exponential factor is determined by the maximum predicate-arity,
which tends to be small. [6] describes algorithms for checking conformance at
runtime, and an evaluation using a prototype implementation.

Related Work:The logic describe here is a starting point in adding references
to systemes such as [2,3]. [2] represents business contracts as SQL queries, and
[3] uses first-order logic augmented with real time operators. References can
be added to these systems, provided that the existential quantification is rela-
tivized to either the preconditions or the postconditions. However, restrictions
are needed to ensure that the satisfiability tests remain decidable. [1] discusses
the importance of anlayzing references, but do not provide a formalization.

4 NLP as an Aid in Formalizing Regulation

In this section, we discuss preliminary work on using natural language processing
(NLP) to aid in creating a logic-based representation of regulation. We emphasize

that we use NLP purely as an assistive technology and do not attempt to replace
the human user.?

We approach the problem using the supervised learning methodology, which
has been used for a variety of tasks in NLP, e.g., parsing, computing predicate-
argument structure, named-entity recognition etc. The supervised learning method-
ology proceeds as follows:

1. Define a representation (logic) to be computed from the text

2. Manually describe/annotate how units of text correspond to units of the de-
sired representation. The number of examples manually annotated depends
on the needs of the application.

3. Train a (statistical) learning algorithm to compute the representation.

Our focus upto this point has been on Steps 1 and 2, i.e., designing the logic
and formulating an annotation scheme to associate natural language and logic. In
order for the methodology to be successful, it should be possible for a human to
describe how she went from natural language to logic. Such a description would
take the form of an annotation guideline. For example, [7] gives guidelines for
annotating phrase structure on sentences, and [8] gives guidelines for annotating
discourse relations. The process of formulating guidelines is typically one of
iterative refinement. We begin by fixing a representation, and then annotating
a few sentences with this representation. The problematic cases are analysed,
resulting in revisions to the guidelines, and the process repeats.

We have made three annotation passes over 100 sentences and are in the
process of refining guidelines. The rest of this section describes what we are
attempting to annotate and the difficulties encountered. In Section 4.1, we de-
compose the annotation process into three steps. Some of the key problems
encountered are discussed in Sections 4.2 and 4.3. Section 4.4 discusses related
work. A preliminary discussion of our approach appears in [9]. We have since
extended the logic and annotation guidelines.

4.1 Translating Regulatory Sentences to Logic

Many logics are semantically adequate for the application of conformance check-
ing. However, to be able to describe or annotate how a statement in logic is
obtained from natural language, the logic and natural language need to be syn-
tactically isomorphic. (8) and (9) are examples of what we mean by syntactically
isomorphic statements in natural language and logic.

(8) Every donation must be tested
(9) 8.0: donation(z) ~ tested(x)

We note that predicates such as tested(x) need to be refined to accomodate
references between laws, and we discuss this issue in what follows. We now sketch
the procedure for associating (8) and (9).

4 The intended users of our system are designers of software in the organization being
regulated.

First, (8) is mapped to the abstract syntax tree (AST):

eve donation be tested

The AST is obtained from (8) by moving the modal must, followed by moving
the phrase every donation to the front of the sentence. While moving a word or
phrase, a variable is optionally left behind as a placeholder.

The second step is to associate leaf nodes which are not the leftmost child
of their parent with components of the formula. donation is associated with the
predicate donation(z), and x must be tested is associated with the predicate
tested(zx).

Given the associations for non-leftmost leaves, the leftmost leaves are associ-
ated with operations that combine the associations of their siblings to create an
association for the parent. every is associated with an operation that combines
the associations of its siblings to associate donation(xz) ~ tested(x) with its
parent. Finally, must is associated with an operation that takes donation(x) ~
tested(x) and associates 8.0: donation(x) ~ tested(x) with its parent. This
procedure for translating natural language to logic can be broken into three
steps:

1. Converting a sentence to an AST
2. Associating the non-leftmost leaves of the AST with components of the logic
3. Associating the leftmost leaves with combination operations

This decomposition of the problem is the one adopted (modulo terminology)
in theoretical linguistics [10]. Of these steps, our goal is to achieve automation
with a good level of accuracy for Step 1. For Steps 2 and 3, we can only envision
partial automation in the immediate future. The goal is to design appropriate
interfaces to assist the user in performing these steps. We now discuss some of
the challenges in associating regulatory sentences with ASTs (Section 4.2). We
then turn to a discussion of some issues related to Steps 2 and 3 in Section 4.3.

4.2 Annotating sentences with ASTs

The AST produced from a sentence is a resolution of scope ambiguities. The
sentence (8) above is simple in comparison to the sentences that one encounters
in regulatory text, where a sentence has multiple noun phrases and modalities.
Consider the following sentence from CFR 610.1 (the AST is shown in Figure

1):

(10) No lot of any licensed product shall be released by the manufacturer
prior to the completion of tests for conformity with standards applicable
to such product.

licensed
product

aln

the manufacturer

prior to the compéion be released by

Fig.1. AST for (10). The structure for the noun phrase the completion of tests for
conformity with standards applicable to such product is not shown.

(11) 10.0: licensed Product(x)AlotO f (y,) ApriorTo(p) Amanu facturer(z) ~
—releasedBy(y, z)

For simplicity, we omit some details from (11). The phrase the completion of
tests for conformity with standards applicable to such product involves a reference
to other laws, i.e., the applicable standards appear in various places in Part 610.
The subformula priorTo(p) in (11) can be formalized using a variant of the
technique discussed in Section 3. We now discuss some issues related to (10),
(11) and the AST in Figure 1.

must

such
tests

one ormore

as necessary

to

reduce ... you perform

Fig. 2. AST for (12). The structure for the clause reduce adequately and appropriately
the risk of transmission of communciable disease is not shown.

Consider again the phrase the completion of tests for conformity with stan-
dards applicable to such product. While we can give this phrase an internal stuc-
ture in the AST, we do not know how to associate it structurally to its formal
interpretation. In other words, from the perspective of translation, the phrase
has to be treated as an idiom of sorts. In annotating a sentence with its AST,

we give such phrases an internal structure and leave the problem of treating it
as an idiom to subsequent steps.

Another issue is the question of what to move. In many linguistic theories,
only quantificational noun phrases, e.g., any product, are treated as candidates
for movement. In our annotation scheme, the constructs that are moved are
noun phrases, coordinated and subordinated phrases/clauses, relative clauses,
and some modals and adverbs. This lets use describe the scopal interaction of
these constructions without having to construct a separate phrase structure tree,
thus saving annotation effort.

A difficulty in annotating ASTs is that there are many constructions in nat-
ural language which we do not know how to formalize. Consider the following
statement:

(12) You must perform one or more such tests, as necessary, to reduce ade-
quately and appropriately the risk of transmission of communciable dis-
ease.

In (12) it is unclear how to order one or more such tests, as necessary and
to reduce adequately and appropriately the risk of transmission of communciable
disease. The intended interpretation of this sentence (which is also unclear) is
“if a test is required, then it must be performed repeatedly until a conclusive
result is obtained”.® In such cases, we construct an AST following the surface
order of the phrases, as shown in Figure 2.

The point to take from this discussion is that not all the structure provided
in an AST can be mapped directly to logic. On occasion one has to “undo”
some of the movements in order to perform the association. An analogous situa-
tion arises in the problem of alignment in machine translation (between natural
languages). One cannot always find a syntactically isomorphic translation of an
English sentence into French. Certain constructions have to be treated idiomat-
ically. In translating to logic, the number of constructions that we have to treat
idiomatically give us a way to evaluate the syntactic expressive power of the
logic. If there are many such constructions, it would suggest that the logic needs
to be extended. We now discuss issues in associating the leaves of the AST with
formulas in logic.

4.3 Associating the leaves of ASTs with logic

In Section 4.1, we gave the AST for the sentence “every donation must be tested”.
The leaf node “x be tested” was associated with the predicate tested(z). In order
to accomodate references between laws, we need to be able to infer, for exam-
ple, that “if no tests are required, then a test for Hepatitis B is not required”.
Such inferences would not succeed if we used predicates such as tested(x) and
testedFor HepatitisB(z) (we need —tested(x) = —testedForHepatitisB(z) to
be valid). To handle such cases, we approach the definition of the set of predicates
in two steps, which we describe below.

5 The intended interpretation was clarified in a memo released by the FDA.

The first step is creating a schema. A schema is a set of class definitions.
A class definition consists of a set of attribute definitions, and an attribute
definition is a name associated with a type. The types of attributes are taken
to be either atomic values (numbers or strings), references or sets of references.
For example, the class Donation has an attribute named tests which is a set of
references to objects in the class Test.

Predicates are treated as assertions over instances of the schema and are
defined using a description logic. The logic that we use combines graded modal
logic (modal logic with counting quantifiers), and hybrid logic (which allows
one to refer to particular objects). The predicate “testedForHepatitisB(x)” is
formalized as: @, (Jtests : (purpose = Hepatitis B)), read as “at the object
referred to by z, there is an object referenced in the tests attribute and the
purpose attribute of the test object has the value “Hepatitis B”.

Given a set of documents, there are many ways one could create a schema,
depending on domain knowledge and taste. Designing NLP-based interfaces to
aid in the extraction of schemas has been explored in the past [11,12]. Our goal
is to adapt previous work to the regulatory domain. Both creating the schema
and defining the predicates will require significant manual intervention.

The key challenge in translating natural language to logic (for our applica-
tion) is being able to decompose the problem into steps that depend mostly on
the text, and steps that depend mostly on domain knowledge. We believe that
the computation of ASTs and the creation of schemas can be tied closely to the
text, and as more documents are formalized better accuracy can be achieved.
The problem of creating predicate definitions would benefit from further decom-
position, and to our knowledge, this is an open problem.

4.4 Related Work

The problem of translating natural language to logic has received much attention
in theoretical linguistics [13]. There are many problems both in the design of logic
and the translation procedure that have yet to be resolved. More recently, there
have been efforts in NLP to automate this translation for some applications.

[14, 15] show that a good degree of automation can be achieved when the text
is constrained. The sentences considered are queries to geographical database,
e.g., “Which states does the river Delaware run through?”. The specific corpus
considered associates each sentence to logic. The associations between compo-
nents of a sentence and logic are computed during the learning phase. While this
approach reduces the annotation effort, the inference of associations during the
learning step becomes more difficult.

[16] describes a corpus annotated using a manually crafted Head-driven
Phrase Structure Grammar (HPSG). In addition to parse trees, a translation
to logic is associated. The logic produced is similar in spirit to the ASTs that
we annotate. We do not adopt this approach directly for two reasons. First,
the annotation of ASTs avoids the overhead of creating phrase structure trees.
Second, the logic produced in [16] introduces a large number of predicates (ap-
proximately one per word), and this makes the formulas large and difficult to

refine. The leaves of the AST are typically phrases, and we have found in case
studies that it is easier to define predicates at this level of granularity.

[17] discusses an approach to computing wide-coverage semantic interpreta-
tion. The goal is to be able to produce approximate translations in first-order
logic and carry out inferences. Similar problems arise in the definition of pred-
icates. The envisioned applications are those for which some errors in the logic
produced are tolerable. For our application, while it may be impossible to avoid
errors, the goal is to provide a correct translation of a sentence. This involves
a careful analysis of modalities, which is not possible in current wide-coverage
techniques.

5 Conclusions and Future Work

We have motivated the need for a formal representation of regulation to acco-
modate references between laws (Section 2). We described, in Section 3, a logic
that accomodates certain kinds of references, i.e., those appearing in precondi-
tions. There is also the need for reference in postconditions, to express naturally
cases where one law cancels obligations and permissions given by another. We
are currently working on extending the logic to allow such references.

In Section 4, we described preliminary work on using NLP to assist in creating
the formal representation of regulation. In NLP, the focus has been on computing
information tied to the surface structure of the sentence, such as parse trees
and predicate-argument structure. However, in formalizing requirements, we are
often interested in inferences drawn from sentences and the context. Relating
these inferences back to the surface structure of a sentence poses interesting
challenges to both NLP and formal methods.

We have focussed entirely on regulatory requirements in this paper, and
designed machinery to accomodate its peculiarities. The logic that we have de-
veloped is useful for expressing rules with a large number of exceptions. Since
the logic and the annotation of ASTs are not independent, there will be chal-
lenges in adapting the approach to different kinds of requirements. A particu-
larly challenging aspect is the large number of modalities in natural language. In
the regulatory texts that we have examined, time and obligation are the salient
modalities, but this may not be the case for other kinds of requirements. A study
of requirements in different domains is a topic for further research.

References

1. Breaux, T.D., Vail, M.W., Anton, A.I.: Towards regulatory compliance: Extracting
rights and obligations to align requirements with regulations. In: Proceedings of
the 14th IEEE International Requirements Engineering Conference. (2006)

2. Abrahams, A.: Developing and Executing Electronic Commerce Applications with
Occurrences. PhD thesis, Univeristy of Cambridge (2002)

3. Giblin, C., Liu, A., Muller, S., Pfitzmann, B., Zhou, X.: Regulations Expressed as
Logical Models (REALM). In Moens, M.F., Spyns, P., eds.: Legal Knowledge and
Information Systems. (2005)

10.
11.

12.

13.

14.

15.

16.

17.

Miltsakaki, E., Prasad, R., Joshi, A., B.Webber: The Penn Discourse Treebank.
In: LREC. (2004)

Dinesh, N., Joshi, A., Lee, I., Sokolsky, O.: Reasoning about conditions
and exceptions to laws in regulatory conformance checking. In Submission:
http://www.cis.upenn.edu/ "nikhild /reasoning.pdf (2008)

Dinesh, N., Joshi, A., Lee, 1., Sokolsky, O.: Checking traces for regulatory con-
formance. In: Proceedings of the Workshop on Runtime Verification (to appear).
(2008)

Bies, A., Ferguson, M., Katz, K., Maclntyre, R.: Bracket-
ing guidelines for Treebank II style Penn Treebank Project.
ftp://ftp.cis.upenn.edu/pub/treebank /doc/manual /root.ps.gz (1995)

The PDTB Group: The Penn Discourse Treebank 1.0 Annotation Manual. Tech-
nical Report IRCS-06-01, IRCS (2006)

Dinesh, N., Joshi, A.K., Lee, 1., Webber, B.: Extracting formal specifications from
natural language regulatory documents. In: Proceedings of the Fifth International
Workshop on Inference in Computational Semantics. (2006)

May, R.: Logical Form: Its structure and derivation. MIT Press (1985)
Overmeyer, S.P., Lavoie, B., Rambow, O.: Conceputal modeling through linguistic
analysis using lida. In: 23rd International conference on Software Engineering.
(2001) 401-410

Bryant, B.R.: Object-oriented natural language requirements specification. In:
ACSC 2000, The 23rd Australasian Computer Science Conference. (Jan 2000)
Heim, I., Kratzer, A.: Semantics in Generative Grammar. Blackwell (1998)
Zettlemoyer, L.S., Collins, M.: Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial grammars. In: Proceedings of UAIL
(2005)

Wong, Y.W., Mooney, R.J.: Learning synchronous grammars for semantic parsing
with lambda calculus. In: Proceedings of ACL. (2007)

Oepen, S., Flickinger, D., Toutanova, K., Manning, C.: LinGO Redwoods: A rich
dynamic treebank for HPSG. In: Proceedings of the workshop on treebanks and
linguistic theories. (2002)

Bos, J., Clark, S., Steedman, M., Curran, J.R., Hockenmaier, J.: Wide-coverage
semantic representations from a CCG parser. In: Proceedings of COLING. (2004)

