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WEver since tne early days of elecctronic computers, man has been
using his ingenuity to save himsclf from the chores of progromming.n
Alan W, Biermann

Appronches to Autsratic Preerarrine

-

"Declining costs of the (progreﬁma lc ) devices themselvzs have
made them avzilnile to an ever widenirng scoment of coclety; n-weover,
true democratizorien rests on the elimation of the progracmer.”

Rochalle Fleischroun

A Prencial for Traals Todaccd Proepoes.

s B L




CHAPTER [
INTRODUCTION

Program Synthcrnis

Upon tr: introduction of ths ENIAC (.uctronic Mucrical
Incegrator and Computer)} in 1947 new profesuions were born, the
computer softvare designer and the computer hardware designer. Man
had invented a tool thot would eventually affect aimost cvery segrant
of his daily life. However, the great mojority of mankird not only

dces not know how to uce this tgoal but alze cosrzidors the cooozuzor Lo

be some form of maglec. The hordware dosigrer ozt lesrn the charaolers

istics of the target machine and know tha tech:olesy avatleble in
order to create A machine with those features. The softuzre destcioy
must learn the regquirements of the desircd norucdure and wrow the
machine's characterictics ia order to treatg an apprepriate prourim.

It can be srgued that the herdware desiguer anrd the softvare
decigner have cssentially tha same toske Carr (1976) has shewn that
a8 program is & finite state machine which can be repnresented as a

Moore or Mealy wndel of a sequential machine. Miwy researchers are

curcently woriiing en the inference of Turine raehincs, finiraestarte

deseptors, and cumbular proacdms Dron sampic Lo o0 ol € ..aniinL.
The resainder of this o ¢ v seildl o -ovoles to Ygsenreh done in oo

aren of program cynthesie frem evam=lo traces of thae pregran's
behaviere. Cnce the cumputer can “loarn® prosrews frem siniesl dnnur

suppllied by the user then it can be statad that this tosl serves man,



Research and Problems of lecarnine Fothods

The most fundamental rese&rch is in designing systems which
actually synthesize programs from very weak information such ns

input-output pairs or from the speci{ication of desired periors: -

nve

&

Amarel (1902,19271), Chang (1374), Lco (1974), end Usldinger (1974)
are well known rescarchers of this method. Thelr work addresae
very basic problems concerning artificel intalligcnce; the definttion
of knowledge, methcd of representation, utilizaticn of zcguired
knowledge, and so forth. Amarel (1982) states that construction of
a8 synthesizing algorithnm, g!ven_this veasl informntion, is {ncyadi

1.
IR alH

difficult.
A synthesirzr of this type could have at its cemmund a soz

of allawable instructions and than attewpt to perform its task by

enumerating the set of all possible progrems of length N, testing

each against the cample input-cutput pairs to sce 1f it behavey in
the desired manner, snd increasing N until such time 23 a suitoble
program ic found. An example of the input-ocutput pairs could be
(1,1), (2,1), (3,2), (4,3), and (5,5) where the syathesizer wouid
be expected to prcduce a program that has any positive integer I,
as Input and as cutput would record the I:h term of the Fibonacci

-~ e i PR, . o D Ik 4 [ e S T - P
sequence.  Using thia ¢woimple, the syniozsicer -mueld probably nod

§ -4, -
Gex (13} 4x(1-V5)")//5. One can c2sily see thot this method of
research c¢an be frustrating, becausz even aftur & vrasrawm is found
it may not be the correct one or it may mot halt upon new inputs

(Hoperoft and Ullwzn, 1969).
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The major problem area confronting the zbove rescarch ia

the formation of a set of instructions that would convert all inputs

xl to the appropriate outputs Yt’ Biermsnn (1976) suggests sub-

dividing the toske Initially a set of instruoctions is found for

-

each input X, that setirfiecs the transformatica ta output Y

i

i° Cace

thic is done all thot remains is developmint of a procedure which

will execute each required sequence of instructions when ziven tta

associated input xi. The task of finding a sct of instructions for

each Xi is the difficult tesk it was previously.

If some form of

~ 4

communication existed botweoen the user and systen, such as fnputtiny

exsrnples ef transfeumetions, only the developisnt of

execute the correct transfermaticn would be a mrobh

1o

4 proccdure to

oy
e

The motivation for program synthesic ig to relieve the user

from the chores of progrzrming. Since man naturally teaches znd

learns throuzh cxample, the vequirement for the user to supnply

example transformations to this system does not segn uarcasoncble.

In fact, the user must know examplcs of the computaticns he desires

before be has the need for the process to be available to himon a

cemputer.

=nis Czrmoutations

A L 3 e e PR

Syathesds from ¢

The problen of develeping the correct procslure glvin exarvle
computation: cv trorcs hui beea ctudied ooasgcersaly, sog viriosus

ressonnble Zechioiques nwist for the conseructiag

of

~ols procsuure.

ALl tzenuiques l{mit the class of synthesizable progroms and provide

epproschea and restrictions to the human teaching inceraction. Bauer

(1975) limits procedure representafon to three kinds of instructicens




and forces the traces to show the fallures or conditions not
satisfied as terminal left nodes of a tracé trec. An cxample of
this kind of trace for a LISP (List Processing Language) prozram
for adding a list of elcumonts, L (possibly wiinty) and roturaing

the sum, S is sus.a fur L -‘},Z,EZin figure 1. FBauer thon previs-s

a method for construction ef a program from two of these type

traces.
S<0
NULf?Z;/ S~ S¢CAR(L)
Le—éti(z)
e
NILL(L) S« S«CAR(L)
L~ COR (L)
NULz?Z;/ S+ S+CAR (L)
L<—éDE(L)
NULL (L)
RETéﬂH(S)

Figure 1. Bauer~type LISP trace for susmation of list,
L= {1,2,5].

Biermana (1972) presunts an algorithm for firnding a Turing
machira which {5 canible of perferming the zsme gct of Turins richine
computations thst wvere crinlefely dezcrited to its Corr (10700
Suggeats & desk calcuizteor with @ special copare button ¢35 {nput
exzisple calculations, He uses state minimization techniques with
two such example calculstions to infer programs. A waodel trace for
the greatest common divisor for M= 3, N= 2 i3 as follows (Carr,

1976, p.3)1




STO 3 in H

STO 2 in N

M:N—M

Rermainder—r

CMP 0:(r) *Falaew
r> N

M:N—M

Remainder—»v

4P Qi (r) *Trua™
M-+»Rcsuli,.

The Autoprocrasmer

While these methods are workable, thz restriction: regarding
the inputting of an acceptable trace to thec methond may seem as
unnatural as programming to the uninformed uscy. COne additional
method of conirenting thiis problew docerves spocial attonnion ans
will be the c¢hief topic of this thesis., This rathsad unos rare of
an interaction befween ucer and machine. Blorionn and Krisbmauvzmy
(197%, 1976) have described this prccess a8s an "sutopregrommer ...
an {nteractive cemputer programming system whies curtomaticslly
constructs ccoputer precrins from exsmple crmputstions evocuted by

the user® (1975, p.l41), They have asctually i{uplem=nted a system

which allows the user to display hiz dats structurss eoan a8 C27 screen

<

and manipulate them via a2 light pen driven languaze. In this vay

excmple traczs are shiwn to the system with user vevifiecation st

each stazp of tha ermputetien, Flesozreann (V9720 Par developed an
guteprosranmiy type systen that ssbe tre urer Iry informotion ohat

it nust krowe This system will be cegeribed in Chapter Three.
Chiectivs
PR AR RO /. LS

The purpoce of this study is to examine the nodern calculster

23 a possible medium Jor program synthesis techniquese. A baseline

calculator is presented as the basic medium and {s used to demonstrate
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synthesis algorithi that are decscribed. Tiis study does not address
the problem of mc@ory space in a calculator or execution speeds for
it is believed that techrology will continue to find more efficlent
methods of sterage &nd retricwval. 1Imstead, the logicul puoblems of
program synthesis will be cnulyzzd.

Three methods of progrenm synthecis are delinested in sube
sequent chapters. The first twec zre exteasisns and adaptaticns of
two existing methods, Fleischmann®g (1975) end Bisrisnn's et al.
(1974, 1975, 1976). Each method is described in torms of user
requirements, wodificatisns to tho bassline cxloalator, and deteiicd
examples of the syathosis peeonesse I iz slosa thae whils Fleisch-sna's
method reguires the swallest aumount of pricr knowledpe needed by the
user to utjilize ths system, it 13 only capable of iafering programs
with sequertial and "If ... then ... else® logic. Diermann's rmethod
requires a slight amount more structure frem the uzer in his example
calculaticn. UHowever, his process is capable of producing sequential,
"If ... then +.. else®, and “Do while {given condition)" logic.

The firel method ef program synthesis in a calceulstor utillizes
concepts frem both the previous methads to require the least possible
prior kncwlcdge of the user, yer still be &ble to infer programs
that contrin 211 of the previous forms of precrem puric plun MDo whtle
(conditis: inveiving & knnp counioe)? lagic.. frewples of thils mothod
are given as well as guidelines £or the use s this autopronrommer/
casleuletor in order to insure the crryoctness of the resulting prosram.
This study concivdes with a discucsien of the problem and the presented

methods,



CRAPTER II
THE CALCULATCR AS TEE INTECRFACE MEDIUM
OF AW AUTOPICCORAMIER

Why the Caleulater

While the previous rcsearch hna given us rcasonably effective
techniques for dealing with program syatiiesis, thuy are liited In
many ways. The expense of large scitle computers dictates the naed
for a well infermed user (programmer) so that it can be used effectively
and cfficiently, Tue synthceizar, ot tast, can culy preduce fhe lanic

that {3 implicitly describzd in the givea excmpley i can not

¥

P

te

-

¢
a procedure vhere non2 existed befgre. In order for the proegrasrer
to devise a few examples for the cutoprogrammar he cesseatially
develops the program,

A truly complex pregram weuld read many excoples &nd b
tedicus to describe. The user must have a firm grasp of the logic
contained in tha desired process and thaz be well informed. This
would cscem to indicate less of a nced for an auteprogrammer system
on large computers and complex programs. Tha autoprogramner anpelrs
to be a wore uscful tool to the nzneprcrvammar who finds himself with o
repetitive task and dres nsr ununzstand how to oz & procodure L
eliminate such reoonetition.

In the !230'c 2ad 1960's computers were bulkier, slover,

contzined less memory, ond worz made of rpare costly materials than

today's machines. Compared to tha high rost of equipment, the cest



e
of software developwment did not appear to be exorbitant. This
caused pressure to be applied to ensure that the coftware had
optimal speed and efficiency, thus producing specislized uscrs.
The average pcovian wa&s not likely to soe many coopncers, let alane
use cone to bolance his chaclbook or coilcointe hic income tur. Times
have changed, technelogy has advenced, and now maore people than
ever come in contact with pragramable devices. The most ccoimoen
of these is the new programaable hand czleulater.

These programmable machines generzlly are priced cut of

- Bed H - w e = D -ty - -~ - oy
the range of the dverage bow ciold, as ororecd ©o thoge caloulnstors

vhich =i oly agd; subtzace, rnultipdy, 0o dividao Piozrius inis
calculutors cenrli~ue to decrease n coart at en Zrzzing rate. for
e¥arnle the HivwicttoPaekard Br-53 licted at £395 in 1973 znd 1o noa

aveilable for $149.95. The comparably footured Tersd Instrurceais
model SR-56 (rekurs of electreonic chins for Hewlstt-Pachard) -
currently sclling for $79,95, Thz SR~36 has ten general purpo::
registers, 100 mezory locations, and is supplied with an ovwnexr®s

manual and an applications library booklet which are essentially

& "how Lo progris¥ rcaurie,
Wi 6f trr irndivicual who does mot fo2l tho nocd or i
to botloy ehouil becoirine a programmer but desivcs o o el o fa
repotyiive tonk uwbat he nuct perforal o Mautenrn wiater?
eould bz very wooiul fov rhis type of user. This device, & cflculator

with & bullt in covoprograc-oy, could allew the uvscer to input a8 Icw
exemnle ealeulations and thoa copstruct & pregram tost woold push

the keys for him,



Advantzazes/Disadvantaqcs

The availability of the calculator has a distinct advantage
over other types of interface -- familiarity. Any {nterface used

in an sutoprogrammer systedichould not be forziin to the

~

othorwlze training would h2 raguirad. 3y usi:z
can further assume that the user i3 czpable of executing exn-osles
of his problem. Instead of using a new languagze, a trace zsy be
keyed in directly. The system could be used by any person familicr
with a standard pocket caleulator,.

Unfortunztaly, by choasing tha caleulator, we have

Lt
AV
e
]
N
b}
o

& restriction on ftne disnlay area. A lorge arca such as'a sy
display could be used convaaiontly o depict data structures and
graghically maaipulaze thedir contonts liks blocks on 8 tatlez. However,
even the size of the QRT display iinizs ¢ho numder of diffzrent data

structures that may b2 visually minlpuletzies Tha calculaterts

a
=
0
(e}
i
r
(1))
(&
[ ]
pua
-~
Vi
[ %
13
(¥}
1]
"
(AA
w
1]
Pt
&)
%]
%)
Q
[a}]
0
<
]
"W
[~
'3
2]
[ad
o
(%]
3
7
o
[
a
”
[v]
H
«w
-
)
<
(o]
p—
2
Iy)
o8
L ]

This ciacs is th2 =sne dasired in ardar to insure the syntnesis o &

pro

-~ id . - -~
grom fren exzapla oowpoy

heve a sinzlc ztart dnstructison ani will he a factionzl precclure,

'3
o
4
(1)
"

that i3, a progs

. : . - M -t
computativn s2veral veviables codd constants rey exlst 5ot fhe Tesult-

‘ - ': PR A

ing valuz wili be fn The <ets siructurz display. This should not
present sy diffienlty, Take far axuirsle & calculator trace solving

a quadratic equation, the first roat can be thought of 2s a
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temporary variable of the computaticn &nd the second root (if any)
will be the final result of the proccdure.

Currently, the physical size of an autoprogramulator ray
not permit ernourh logical memory to centein the sutoonroers-mnr,
sample traces, and other wirk areas. For the sake of argurent, this
paper a2ssumes that there will be encugh memory for the autoproprammer,
two cample traces, and & certain number eof compartments for previously
inferred programs. In this presentatijon the length of any resulting
progran will be arbitrerily limited to onc hundred instructions. In
this wvay it can Lo determined if 2 reasonzble progesm existe for
agsinmilation of the example computations,

The Eazcling Calculator

Each of tha varicus cutoprograrm:cr systems under discussion
uses the calculator as the interface betdcen user and wacaine. Theze
autoprogrammer systcms require additicral features net fncluded in
the usual hand calculator. An example baseline calculator is
described in order to provide a better uanderstandinp of the devisticns
betwecn the proposed systems.

This baceline calculator is very =similar to the average
scientific czlculator. In faect, mynt of its functiony are wodiled
after ti: Texas JIastrumcnts SB-30 calculoture Fayslezl size and
weight zre such that it cen be band beld er corried dw & salrt
pocket. The keyhnerd is comprised of thirty-teur keve which serve
as the vehicle for uscr input. 4 ten digit disolay scr;cs as the
top element of on eight element operand stack. Inclucded in the ctvplay

18 an error indicator which will light on overflow, divide by zexo
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and other illegal operationc. Also, internal to the calculator
are ten storage lovations and a seven elcmént operater stack,
These two stacks allow for mathamatical expressions to a maximum
of seven pending enarations.
The keybersd ia divided into Lwuv olusses of Leys: (1) ¢o--
entry/storage keys; (2) unsry oparater keysi (3) binary operator keys;

and (4) a terainzte last pending opercticn key (Table 1).

TABLE 1

TEE BASELINID CALCULAT O BEYT-RD

Data Eatry/ Uneryy (sevnior Linnry T
Storaza Kazys (15) Ezys® (17 RGBS Opevatinn hov (1)
0 [X| change sizn + add e equil s
1 Xz sguure - subtrect
2 1/X reciprecal X multiply
3 VX  equerc xeot + divide
4 SIN toiponnometris ;?_ root of
5 cos funﬁticns v power to
6 TAN o
7 10x power of 10
8 ex peyar of e
9 LogX lag
W 151 InX rnotar’ o dog
. Do PadX X--r-:lizns
CIR C—X

STQ X~—~lecaticn n

RCL lucztion n—X

* X 15 the top element of the operand
stack, Y iz the next to top elenznt.
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The data entry keys are used when the user wishes to place
a value on top of the operand stack. Initially the top of the
operand stack (the display) is equal to zero. Unless the user
depresces a data cntry key it wlll be ausicnnd as zero. The user me

depress any ccmbination of up to 10 azrabic nuoubhors vith at most

one decimal point, recall a storage location, or depress the
special Pi key to set the value of Pi onto the stack. Ten storage
locations (0-9) are reserved for temporary storage during a computsztion
and are initially set to zero. De2pression of the STO key and an
arabic nﬁmbcr causea the current display to be stored ot the

specified location. Tha RCL key followed by an erabic number sets

the display to the current value of the location. A clear disploy

key 1s included in czze of a mistsken entry. Entering over ten

digits cauces an errcr conditicn.

Upcn the depressicn of eay unery cpsrator, the depressed
operator is irmediately applied o the veclue on top of the operand
stack and the resulting value replaces the previocus top of the
operand stack. 1If the calculater display contained a value of
three and the square key was depressed the tap of the coerand

stack (display) would be replawad with tha valuz of nivcw.

in
th
oy

Selecting 2 binary cperateoyr causes a diffcrent type of
action. A zero is "pushed" down on top of the operand stack
(providing the stack is kot full), thus replacing the previcus
dizplay. The operator chosen is then "pichcd® down on top of the
operator stack. If the operand stack is full the crror indicator

will light and no operstion will be performed. The display, now
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equal to zero, is ready for enother operand to de entercd.

Finally, ﬁhe equal sign cr terminator causes the top
operator to be "popped" from the operator stack and spplied to
the top two operends. The resulting valuc will replace thoue
operands and appear in the display. If thlic operator stack s expLy,
the error condition will ecccur.

In addition te the above ways of cutering the error conditicn
some operators restrict the types of opersnds thsat cea Le uzed, such
as the reciprocal key being depressad when tha current dicplay
equals zero. Th2 erver conditien is clecred by turuincs the caleulotor
off and en which alse returns the calcoluter to its initicl stete.
Use of the bLaseline calculator te solve the euustion 2:((-3x4)+5)

is shown in Table 2. QNotice the wvay in which the equel sign is being

TABLE 2
USE OF DASELIHE CALCULATCI

TO SOLVE 2x((-3::4)93)

a—— B RS

User Function Resulting Cnerend Stack fesulting Oscroter Strcok
caleculator on Q &Rt
2 2 enply
b 4 C,2 X
3 3,2 b4
1% =3,2 X
X 0,-3,2 X, X
4 4,-3,2 X, X
- -12,2 x
0,-12,2 +,X
5,~12,2 +, X
- =742 x
- ‘ :l& empty

n fndicates displayed operand
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usad. 7Tihis :method was caosen in order to elimindte the need for
parenthcses, but still allow the user to input the calculatioa in
a normal form instecad of Polish notation or similar non-parenthettcal
methods,

1

The caleouildtsrs Bis Tasn choten bzoause pf its foamilicorie

o

erd practieszlity 25 @ mediun for En Suteprogracmcer Sysicm. Inherent

in this chuice i3 a limit o the nuober of diffcreat instructisn

ns
that ray ¢zroarise an exazple cemputation. Also, there are limt:s

frzosad cn the nuzder of instructicns that can comprise an example

1 . - o - Y . - - AR -l -~ o 1
trzoe and 51 Inforrod nroctsse  Tazze limitotiong @rz such Lnot the
3 | » - = b ~ 2 s -
algorinii.» can be dezcosibad Tully oul o 12y for -sut

applicaticas purizr=:d en & calculator. 7The succeeding chorters

discuns thrae soprezchas to creating an autoprograme

£
[yl
la ]
(7]
e
(7]
(A4
[}
¥}
[
73
pos
8 ]
o0

the trgxlire ¢rlculator,



CHAPTER III
THE FLEISCIMANN PROCESS ADAPTED TO
THE BASELINE CALCULATGR
Arnroach

In A Frapoeal for Exennle Irducsd pre-roswaina, Fleischmana

(1975) analyzed a progrem as a formal siructure of a user's concept.
It is the programmor-analyst's task, she stated, to interfecc between
user and machine by comprehending the uscr!s concept and constructing
a program thot s scceptrble to the machine. Her plsn wis to in-
corpsrate the programmerecnclyse ints thz prorrocaable device a3
a "“student", vharse job it was to learn the concept tirough user
(teachar) supplicd examples gnd induce an eppreprizte progranm.

In order for the calculatsr (student) to leorn the conceprt
from the uninfurmed user (neon-progrormcr), the studzat' must take
an active role by acking questions of thc user when the example i3
ambigusus, Flelschmann envisionasd the sample cormputation &z 2 path
in a binsty tree from the rost te a terminal nade. The syntheocizing
process would eccept the first user suppllied sarple computation as

a trca, and subsrquent somple calculaticns es bLraoszhes to be intervetoed

psssible for tbe synthasicer to wodify tiie criginal tree to 2llow

varicble operurnds or concatenatica of a new branch to the tree.

15
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Modifications Reguired to tusic Calculator

Implementation of the Fle!schmann'induction process in

the autoprogremulator will require several additions to the baseline
calcelastor. lMsodi{ications uare necessary in order that the user can
notify the procsse that he is starting or ending aa examnle. He
must also be able to signal when an example calculatiocn is to be
used to extend a synthesized process, or when execution of a pre-
existing process is desived. These necds are satisfied by the
signal keys (Table 3). The nusber deprusczed after those keys
indicates in wilceh comparsnont the syatheszized pregraa is to be

stored ad alsye varves ag the prenram ivee.  The cgual sien is

used &s the terminator for these cormands,

TABLE 3

PROLESS SIGHAL ERYS

Sicaal Keys Meaning
START n Clear comportment n anu prepare to start
syntheais
SAVE n End of current example, store progren
EXTEND n Prepare for caditional exutaple of
progrun n
YECUTE = Exagute nrg-Curniluifnd pTofraT o

The autaprocraculatar will take an active role in the syninzecis
process wien it nozds information to modify the preprou (or trez im
this zase) ond during the exccution of a program. The display will

be able to show questions that the Fleischrmann proceas needs to ask
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when interrupting a user example. The needed questions are "C Q3 v,
Wy, and "REASON". For the user to anawer these questions, six
additional keys are needed. Keys that denote relational operators,

{EQ (equal), NE (not equal), LT (less than), GIEQ (gxreater th-~ or

-

equal)} &rd keys wkich cnsuwer the ¥C OR V' question, CONSTANT,
VARIABLE;, must be included.
Methodology

The syntliesis procezs is divided inte two phases. The firet
phase consists of the user depressing the START key, entering a
sanple czlculaticn, and depressing the SLVE keye Tha autonrarr. cer
is pescive during this phass siree this 15 a pow cxnupgle and thore ar
no previcus ones witit waich to compare. It simply accepts the sausple
calculztion gs a sequence of conztmnts end operations thca stores
it away as the induced progron.

The second phase beglus with tho user deprezcing the EXTEND
key., This signals the autoprograzwer thst an additional examnle is
to bte entered which may affect the state of the previously stored
program. As the user enters thz second (or subsequent) trace the
autoprogrammer storts comparing this trace to the stored program,

As long 2s they are exactly tha some the autoprogvacTer romains
passive und sllows the user to concirue. If, houever, the operatar
or cperands chanpge curing the trace, the autoprograuser “freczes!
the keys of the celculntor aid guestiens the user in order to {ina
the veason for the change.

If the operator (or botu the cperator snd cperand) have

changed frcm the stored program tree then a new branch must Mzrouw”
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from the previous instruéfion. The autoprogrammer will insert a
branch on conditlén immediately after the previous instruction, but
first it must know the condition involved. 1In order to do this it
cauczes Y“HEASQON' to be displayed to the user and waits for the specific
user input. The user is then obligsted to name a storege locsttan,
one of the relation opcrators, a value or second storage Loca:ion;
and the terminator symbol. Qnisslon of the first storage location
indicates that the value of the display is ts bz used.

The autaprogranmer will recelve the condition as keyed-in
by the uszar and check for the proper forme I¢ must then test that
the condivion doscriboed actually sepersies this cxample Irom the
previcus tree. If eithoer of these tests are not met, the zuto-
programecr will loop &nd repeat the question, "REASON", ctherwice
1t will pernmit the user to continue tha example.

If, on the othar hand, the operand differs it may be thet
the operand is a vsriable, or that it i3 a cecnstent and a new branch
must Ygrew? from the previous instruction. To determine which ceuse
is the correct onas, the autoprogrammer displays the quecstion "C CR V"
whichs means constant or variable. If the user enters "COHSTANTY @

Thiaktars

aew brarch must Yorow® asad the autsprogromser enters the UYODAZONM
questioning previsusly describeds 1L "VOUIALLIT s entecca the
autspreprenaar marks this instructicn so 1c.wi11 know to ushk the
user for a vazlue during the execution procers.

The execution process invelves rertrieving a stored program

- and executing cach instruction starting from the root of the tree.

When it encounters a branch on condition statement it tests the
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condition and control continues accordingly. No uscr interaction

is required during this process except when the autoprogremmer finds
an instruction marked a3 containing a variable. The autoprogrammer
will display "V" and wait for the user to input the valuc followed
by the terminator. An examsle of thcse processes 1s precented in
Appendix A.

Restrictions of the Fleischmnnn Procass

While this method presents a workable solution of program
synthesis with the least amount of user interaction and training it
hzs several prcblem arcas. One of thece deficicacias is that the
user is expected to identify all of the varichles eid present theom
before they &are needed. For instanc¢a, hz may want a process that
can compute the average of two, three, or four numbers. His first
trace may be (2+13)/2 znd his next trace may be (5+8+1)/3. Vhen
he entered the second "¢" in the last trace, the autopregremmer
would display "REASON'*. The user would have had to realize that
the variable 3 nceded to be declared before it was cven used. The
autoprogramsier needs a way of learning this information and unfortu-
nately no other way seems practical.

A second problesa inhoerent in this mathszd 4s that the
interrogatisn of the ucor's actisns reguives aiftexthought on the
part ol tage user. The user has already uadé & declision hbut the
autoprogramrer system dozs not know it neceds to ask a guestion
until after it lLies cbserved an fnconsistency.

The remaining probleas are directly or indirectly related

to the tree approacit. Due to this approach cnly the trivial
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sequential process with "If ... thcn ... else" statements can be
realized. The length of the induced program will be at lcast as
long as the originsl trzace since the autoprograrmer is psssive
during the first trace. For each branch on conditicn the progven
under synthzsis will "grow' directly preocoviionzl to the recnining
number of instructicns. 1In Appendix B the example of inducing e
process that will cowmpute the average of twe, three, or four nurbers
is used again. It shows that tha threc tracas required centzin
eleven, fourtecn, and seventeen instruction respectively vhoreas
the rcsﬁlting preszam contrins (oenty-five tnstocctions excluding
the nceded conditicn loglc.

Since it {s not possible to infler leoeps, thz user has not
been efectively relieved from his tedicus task. If he wanted to
create a program that would find the first N primes he would be
required to enter N seperate traces. Firally, due to the propor-
tionel grewth of the synthesized progrsm it is hard to place &
limit on the space necessary to contaln the resulting programn.

The method which Fleischmann used to pull together the user
transformaticns of input to output is very bacsic and simnle. It
requiras oaly th-rt the user be able to tell the wutenvervormer
system why the pracess is being transferred to 2 new bronch. The
system then "remembers"™ the reason by 1nciuding it 2s a "branch on
condition® instructicn in the synthesizod progrsm cnd concatenates
the remainder of this tracc to the pre-existing one. However,
Fleischmann's mcthod has restrictions and methods requiring more
user interaction will be examined to see if some of these restictions

can be avoided.



CHAPTER 1V
THE BIERMANN PROCESS ADAPTED TO
TEE BASELINE CALCULATCR

Aprroich

In a number of articles by Biermann et al. & diffc¢rent
approach to the synthesis problem has been teken. Througihicut the
remainder of this peper this apprecach is called the Dieraann process.
The goal of this process is to automatically synthasize the zhortest
pessible prosyam tihnt could execute the user supolied eunnoles ond
stiil providz an easy methed for trouvomitting the uvnsets coincont e
the machine. 7Tiv order to develop a synthesis systenm thiot is cound,
complete, and ¢ble to infer the shertest possible prozram, it is necosonry
to require more(information frem the user's exomple than was done In
the previous methed,.

In the Bicrumann process, an example colculation beginsg with
the user naming the program to be crosted and declaring all input
variables tc be used in this example. The computstion trzce is then
composed ¢f the user selecsted instructions and thelr order of exacution.
Additicnally, tho user is requircd to isdicate whon a condirien oTiurTs

which wili aflvct the exzcutien of the evzmple. Noticz thnt the

[

%
i

-

synthenis algeelichm new roguires the user to indicate o coutre
cendition befere rcha trove doviates £rom a baseline trace, without
prompting by =he slporitlim, The requirements of declarinpg inputs cnd

control couditions are nccessuary to male this approach possible.

21

e



22

Blermaun ct &8l. envisicned thils trsce as a Moorc-type
representation of a finite state machine. Each occurrence of an
instruction can be thought of as a state. When an instruction is
execut¢d the next instruction (state) that will be tronsferred to
is dependeat ou ths current prossam dnstructien (uachine state) el
the condition (input). State minimizetion processes are then usco
to synthesize the shortest pessible correct programe A large
portion of the notation uced in this chapter is from Soowdine Up

s o, s e s . st b -

the Synthesis o° Preoqrams Fraa Tranes, Biermsnn, Baum, and Petry

(1975},
Ae the vooy enters z2n gxample cuiculctien, the cat of
distinct !nstructicus will be formed srnd denoted as Il’ 12, 13,
etc. Also, at the csme time th: set ¢f distinet conditions wili
etc, Tre absence cof a condition

be formod and densted as C Cz, o

1’ 3
preceding an instruction indicates that the transiticn is not
depcndent on & condition or that control cenditions were not met.
Each cendition (if sny) end the following instruction dounotes a
level of the trace. For example, level four of the trace shown in

figure 2 i3 the cet XCI, IIE.

After the ceciaratior of the progranm reme szad its inputs, o

} whule L, end I, aTe custruction:, I, is the

halt instruction, a2nd C, and C, zre conditions that affect the execution

1 2
of the exormple (refer to figuxe 2). Notice that specific imstructions
and control ccnditions may occur scveral times in an exusample trace.

Multiple occurrences of an instructicn are caused by "looping'

I S
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through part of the previously traversed logic contained in the
computation and/or because the instruction occurs in logically
separate parts of the computation., In the sample calculation,
instruction Iloccurs six times, hewvever in the minimized Hoore~tvyns
representation of the turgst preogrow (ficuvre 2(d)) it fs shown thne
only two distinct Il's occur., The first occurrence of an instructicn
in a program will be labled IIj, the secend distinct occurrence 2Ij,'

and so on.
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I8

Continuing vith the cowpavissn of machires, ebzerve that an
exarple trace is en incouupletely spzeificd finite state macnine
comprised of the finite cet of triples Hl, Mz, H3, ctc, cach of the

form (nIl, Cj’ mIk). This stater that for the nth occurrence of I1

(specific state) under condition Cj (tnput) a transformation will
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aoccur to the mth occurrence of Ik (next state). The Bierm2nn process
is an algorithm which determines the numbér of distinct occurrences
per each instruction such that the summation of these numbers
(é;l number nf distinct Ii’ wvhere n 1s the nucber of dificrent
instructions used in ths trace) will be minimel, thus producting o5
Shortest possible program. As in the Fleischuann process, a
synthesized program can be extended by additional siople caleulatiszns,

Modificaticns Reculted to Basic Czlculator

Implerentation of the Blermunn process in the autanrogramulctoer
will require {cw cdditicas to the basic calcovlatar. Fewer wodificsiiun:

o

(2]
@
0

are nocessitaled Ly tuadl

"y

285 Locouse 18 ages not take oo a

(8]
(&3
»

role in quecticning the user, a3 wes doue in the Fleischuznn process.
Instead it places the restriction on the user toe declave cll inpute
before starting en cxample &nd te doclare conditions that 2ffact tha
execution of the trace.

The process signel keys (Teble 3) are again needed in order
for the user to declarc the start of a ncw exzanle, the terminaticn
of an example, tha start of an exemple to extend & previously
synthesized progrcm, or tha execution of a praoviocusly syniinesiced

S &

’ o ~h, Ny r o m Veate [ - .y - ~aap 1 e P IR Ll
program. The four rsluticnsl eperaters, (R (anuel), HE (ot eguall,

LT (less thrn), GTZ0 (sr.ater than oF squui}:, i1t sezin be neededy

to state conditisns. Iwwever, the curceprogresalater does nol fnitiate
the quzsticning of the conditisn in this proccss so it oust be told
that a comparison is to he made. This is done by the addition of

the compare key, CMP, &8 sugpasted by Carr (1976). For exarvle,

the sequence: CMP, RCL, 2, EQ, 176, = indicatcs the fact that storage
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location iwo equals 176 is affecting the computation.

Because the types of program logic that the Biermann process
can infer include loobs, it is felt that two additional functions
should be added to the basic calculator primarily for conventence.
Thesé functions are READ and REZCCTD. As opnosed to a process withaut
loops, there may be many more instances where & great deal of cutput
is produced, as with a prime number gererator. The RECCRD key is
an autoprogranulator command that, when executed 2s part of a
synthesi:ed‘prcgram, will cause the current top of the operend steck
(the display in a uror examsle) to be displived for 2 second. I%is
would be similer to the PAUSE instruction on the S50 (Texas
Instrurents, 1976) which causes & ¥ second delay before the noxt
instruction is executed. If the autusrogremuletor was corpatible
with a printing unit the RLCCRD key cuould cause the top of the operand
staclk to be ocutput.

Instead of declaring all inputs to this process beforc the
example actually started, the READ key could be used as an autupro-
gramulator command that would indicate the next entry in the sawple
calculation is a varfable. For example, the sequence: RIAD, 17,

STO, 2 weuld indicate thot the auteprupvonmey imweld expect urer

input every ti.: thils occurrcncs ol the cwample Y. Do Mas erausira.
In this exsmpie th2 READ can be theught of as replacing the 17 as 2
remembered ifnstruction by the auteprogramulator. The caleulator
will fghore both the READ and RECCRD irsiructicaz as they are
autoprogrsnulatnr commends &nd sre not executed until the exccution

of the synthesized progroam 18 requested.
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synthesis procesz assumes that each instruction it encounters is the
first distinct occurrence. The process of assoclating an encountered

instruction Ij with a particular distinct program occurrence kI, s

3

celled & "move®. C(cneildering ths first four levels of the saraic

o

\ ~ - M * . 2
trace, 111,I2.1?,LE,L13, the process wnull nssocinng thoerm o8

{111,112,112,1113 rroducing the flow diagram of figure 2(z)., These

.
th

associzations impoly that instruction 112 will follow instruction lIl

under the null condition, instruction 112 loops to itzelf under the

null ccrdition, znd a transition to lI, takes place from instruction

112 when conditic. O, eccurszs, Frem this seint on, vwhen the lene

s

instruction is 111 sud 6o conuiznion occurs, & transitlon to 17, «will
be a "forcoed" uove.

In other words, the process firct attespts the move of
associating le vith the encsuntared instruetion Ij unless this rave
has beer forced by a previcus move, If this ettempt is incorrsct, &
contradiction wil!l ceceour latwer in the process. A contradiction
occurs when a forced move dictates kIj e£s the next instruction and
the next instruction is not 2 j-type instruction. It can also occur
vhen, during a move, the process must add another dictinct j-tyne
inztructiocn, since 2ll known j-~type Ingtructions czuse contraciciions,
and thie audition would czuse the guess of instructions, L, to i
exceetded., When a contradicticn oceurs the process nast backup to
the last non~forcsd mave it nude and incremeat k &t that level. 7
the tackup coatinucs as far back as the first instruction, L must

be incrcased if posslble, otherwise the synthesis can not occur.

Continuing with the cxacple, the fifth level of the trace
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has no condition, thus the previous moves force the next i{nstruction
to be 112. However, the next instructfon is of the Il-type, s0 &
contradiction has occurred. The last non-forezd move was in
asslpning tho socond 111 go that move 15 changeo to 2I.. Tie mave
ascociating the new instruction to 11l now occurs. The sirih level
states condition C2 bas occurred. Since no previous move dealr

with being &t lI and having condition C, occur, tne move of

2
associating II1 with the gixth level instruction is made to obtalin
the flow diagram of figure 2(b). The entire synthesis process for

the examplzs troce depicted in fizure 1 is presentad in table 4.

TAELE 4

THE SYNTHESIS PROCLESS USING THE EXAIAFLE TRACE

initial First  Secvena laarg

evel ondition structicn N .
Leve ¢ ° In Synthesis Backup Backup Bachkun

1 L I

2 1, 112

3 12 112

4 c, I, 11, 21,

5 I, X 1L

6 c, I, 11, 21,

7 I, X (111)

8 c, I, Q1))

9 c, I, 1, 71,
10 1, X l1,

- ’ ———

X indicatas & conrradiction
() indicates & forced move
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A more degalled example of this process involving a prime
number generator implemented on the baseline calculator is presented
in Appendix C. It appears that the number of conditions are
gencrally small compared to the number of sequential instructisns
in a normal calculation. A flowchart of tiie synthesis algorithm has

been taken from Speeding Up the Synthesis of Procrams froem Traces,

Biermann, Baum, and Petry (1975) and is dcpicted in figure 3.

Hale instruction

(4-Give {nstructicn I, tan newe LI, rioched P PrinT the oo
i 3= seluticn |
CIND—THD ¢ 1 o
Forced move yisldsl Forced move
contradiction
T ‘ ,
Decreaze IND te luzty | ‘Indicate force movae | |
unparenthesized wove | i parenthosinnd
: .
1

Increncnt néme kI, |
tc (k+l)Ii F‘

Allowed nuwbar of states,
L, is exceeded
Figure 3. Flewchart for the synthecis algoritha. (Blermunn,

(44
Baum, cad Patry 1975, p. 120)

The stored program will bz compriscd of thz determined distine:
instructicns alung with ecamparison and bronching legle,  When the user
wishes to oxtead a previously stored progrzm, the requested progrdw
will be retvrnad and used to build the proper transition tables detore

the new example is input,
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Enhancements

A strictly enumerative technique has been shown in order to
demonstrate that the Biermann process could be ndapted to the
calculator in a simplistic manner. It is recognized that it is
always posciblc to cnurerate the set of all rossible programs of
increasing length until a solution which satisfies the sample trace
ts found. This is essentially vhat was done in the synthesis
algorithm except that the trace included not only input/output pairs
but instructions and conditions that comprise the prozram,

Bierw:znn notcd in the algeorithm, wion L hecoics larger
"the searci spaca grews exponentially and the peocessing time
for the synthesis becaomes prohibitive® (1975, p. 125). He prozoscs
methods of static and dynsmic pruning techniques and parallel trsce
processing to speed up the process. On the sutoeprogrisulator the user
s not required to in;eract with the procoss other tnen inputting the
sample trece so multiple "passes" on the sample trace by the synthacis
algorithm is transparent to the user.

Briefly, the static or preprocessing pruning technique is an
initf{al ccan of the sa2mple calculation to obtain a “difference sett
for cach lovel. hz difference set of 2 level is compriscé S
set of pnoncguivalent occurrences for the instrucetiocan &t the lewol,

This i{s u o1 to det2rmine a lower bouud for L, and to pruveat instructions
to ke associated vith ccourrzacog that they cin not be eguivalent
with. The dynamic processing consists mainly of the creation and
‘use of & "failure memory". It prevents the process from making an

assignmeut that i3 knewn to lead to & contradiction more than once,

as can happen wvhen backups occur. These pruning techniques should




31
be utilized in an implementation of the synthesis algortithm for
speed cansideratiéns, but they do not affect the method's capabilities
in any other way. The interested reader is directed to the referenced
Biermann et al, articles.

An additicnal enhancement can relicve the user from a revetiticues
task in some caces. When the next move is forced, the autoprogfammer
could display the ferced move and allow the user to verify the rove
via depression of & "CONTINUZ® key. This could cowe in handy dﬁring
a very repetitious example since the user need only verify repetition
instend of entering it,. Howeve?, the addition of this fecture precluces
the preprocessing jvuaning teciniques which would be necded {n &an scrusi
implemertation.

estrictinus of thr Biermsnn Pracess

Apart from the guidelines set for the way in which a sample
calculation 18 entered, the major ares of concern i3 wvhether a suitsble
program can be synthesized after a reasoncble asmount of computation.
This problem can be alleviated by the previcusly mentioned techniques
and the availability ef faster memozries cuch 25 the new bubble-type
memory. The guidcline forclug the user to declare all variables
before the caiculution seewms restrictive but, with the sddition of
the REaD key, this dses not anpant s te 2 wooblem.

An inhercyr problem with elther o Lha presented systems,
and wore so with Dicruann's guidelines, 1s the abillty of the ucer

to produce correct and sufficicnt sample calculaticens for the procrenm

synthesis. The form of communication to thes autoprogramulator has

L D ST
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been solved through the use of the calculator as a medium but the
domain of examples remain.

The sample calculation must exhibit instructions that the
correct progrem would exhibit. The user must refrain freom skipplac
steps in & calculatien (ie. no mantal arithastic such &5 sdding twa
to eleven to find the next prime). The sufficient condition {s
also difficult to enforce. All "paths" through the desircd pregrem

must be presented in excmples, and for logic that "loops" an example

should be included which cycles the minimal zmount of times.




CHAPTER V
THE INTEGRATION OF METHODS

Objective

It is desirable to have a methaod which requires the least
dependence on the user's prior knowledge yet is still able to
synthesize a class of programs which contains sequential, "If...
then...else'", and "Do while (condition)" logic. The Fleischmann
method requircs only the sample traces, asks the user for any
further informaticn it noocds, and successiully svnthosizes the cloas
of prosrams containing sequentisl and YIf...thunse.cize” instc.
Biermann method requires input of the zasmple troave and conditions
used for legic flow determinaticn. It then syrnthcosizes a class of
programs containing the logic feund in the Fleischmann c¢lass and
"Do while (uscr given condition)® logic that is limited to relying
upon the user given conditians.

The aim of the integration of these methnds is to require
only a small user demand &g that in the Fleischmuann process and be
able to synthzsize a class of programs cqual to, in fact greater thon,
that of the Biermsnn process
Aprreach

From ag external view the intooratod rethod Iirst ang-ers
as the Fleiscironn method. Tho user enters a nunmbary of Uracss (4
the autoprogranulator and also enters eny reasons for trace deviation:
a3 rcquested. It has been shown that this alluws the autoprogrerulators

to form a tree representation of the sample traces. The user then

33
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instructs the autoprogramulator to syanthzasize this tree by resnu, of
a new control key. The tree is traversed and a chain from each terminal
node to the root is parsed to a Biermann-like process. The integrated
method is then 2 mcrger of motheds: the Fleischmann mathod as a
preprecesser to the 3lerswon process.

This merger satisfies the objective of user demsands &nu
can cynthesize 2 class of programs equal to those synthesizable
by the Blermann process. lowever, a severe restriction remains,
The locps that are produced by the Biermann process are coutrolled
golcly by the stated reasons for trace deviatien as sumplicd by

the uszr. Acg long as the reocon is conntant over trules a rea:chsbie

[¢]

program will be developed and the loop will be eble to handle ccueral
cases. For instance, the conditiens stoted for pregram control in
the priso nuvber generator of Appendix C weculd be constant over

any size trace. However, if the rcascn for program contraol chanzes
with each trace the producsd loop will only be able to handle the
specific coces that were samples and extensione to more generalized
cases are lost.

This problem is exemplified in figure 4. The three chains
that are passed to the Biermann process sre shown. Any instructions
denoted as VARIARLE by the Fleischmann precess sre replaced by 4
READ commend durirs this procevs. Note that the synthastesd prooren
(figure 5) contairs a8 leop formed by twe distinct conditions. The
synthesized program onlybreflects the thrce sawple traces and dees
not cxtend to the generalized averaging problem. A method which -

starts to alleviate this problem by creation of a loop counter is

presented.
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PROGRAM 7

VARIABLE
{
510 0
G
v

ARTABLE

:
+
i
VARIABLE

A//’//////+’4L \\\\\\\\SEEE_O NE 2)

RCL 0 | | i \A“InnLL

- /' ‘

| — \‘5\‘\“‘\‘~\\9553~° NE 3)
HALT :

CL O T ARIIELE

4——.*—-”-4—' w— -
O
o
o

[
-
t“
pt

Filgure 4. Tree structure and parses of averaging progran
synthesized in Apvendix C.

Madificarinns Teovired (o Rasie falanlor.r
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Nearly all of the noaificevicns revicuoly propozed to the
basic ealculater deseribed in Chapter 2 will be uced in the intesreted
synthesis mathod. Therz is a need to signal the autcprogresmer that
the Flelschmann tree representation is to be psrscd and sent to the

second part of the integrated process. This is done by the addition
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of the SYNTHZSIZE (n) key to the process signal keys (table 3)., It
will cause the actual program synthesis with loop infereance snd storing
of the inferred program. When the synthesis is8 complete the resulting

progrem could be flashed on the display (% second per instrucrion) or,

if & compatible printing unit existed, could be cutmutied to allow

for user v@ification/review. In order to exhibit the synthesized

program a f >thied could be devised for depiction of the conticl &nd

branching 1sgic which the auteprogrammer system crcated. The SAVE

and EXEC (n) keys are modified slightly., SAVE simply halts the

R YRR
e le e Lo

TR E ARG Goed hot store Lhic CUIYent jrogTam tIce.

currentl
(n) witl yse cliner the curvent procrem tree or the SLorcu progran

to ke ¢ ,;tcd depending on whether SYNTHESIZE (n) has been depressed.

PROGRAN 7
READ
STO O

READ
g

RCL O MNE 3 RCL O NE 2 EAD

+
i
R
!
'
{
RCL O
;
}
S

TOP

Figure 5. Unaltcered Biermann synthesis of averaging program.
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Since the autoprogramulator agafn essumcs an active role, the
questions: "C OR V“, and "REASON" together with the mesans of answering
them {EQ, NE, LT, LTEQ, CONSTANT, VARIABLE} are fncluded. The READ
option proposed under the Biermann process cen bz included as an
unnccessary but alternate way in vhich te declare the entrouce of
8 variable. (Recall the Fleischmonn method "{inds" wvariables). 1The
READ is used to replace any found varicble fer passing to the Biermann
process during the parsirg phase.

The RECORD key is included as a conventent wvay in which to

handle multiple cutpute The (P key i3 ns longer vocdod since the
user will nct eater conditicis unless askad soecifivsily by the
integretcd synthasis method. Table 5 shows the entire Izeyboard that
will be veed in the integrated mathnd feor the autoprogramulator.
Methodoincy

It has been discussed that by using the resgulting program
tree from the Fleischmann process, by changing the variable refercnces
to the READ statiment, and by narsing the tree into the Biermann process,
a8 program cea be synthzsized. While thic process may induce seme
loops, a method wihich induces loeps in such a way that extensicns to
more generalized cases cccur i3 desired. PRecall that a loop was

- ¢ . TE e :
identitled by e triple, gnIi, Cj’ ml, b such tust if Lj is true and
S )

the present state (o nIi the noext fncrructlon will be mik.

In the Blermaun proczes described in Chspter & cach occurrance
of &n instruccion waz identified. Also identiifled, bit not foriinlly

stated, was each occurrence of a condition, A condition C, which

i

occurs after instruction nI1 will be denoted n.iC,, mecaning thic

i

h
occurrence of Cj occurs after the n*" occurrence of an i-type instruction.
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TABLE 5

CALCULATOR KEYBOARD FOR INTEGRATED METHOD

Keys Keys (continucd) Keys (continucd)
ON/OFF X START (n)

0-9 10% SAVE

< & EXTEND (n)

. Log X SYNTHESIZL (n)
CLR | In X EXECUTE (n)
STO (n) Rad X EQ

RCL (n) + NE

|X] - LT

/X 7 CONSTANT

SIN XA VARIAELE

cos e READ

TAN - RECORD

The number of times a specific occurrence of a conditicn is
found to be true in a user trcce is esseutially a locp counter. In
the integrated method, during the course of inputting the Flelschmann
chain to the Biermsnn process there are two additional tasks perfcrmed.

First, a condition counter is kept for cecch distinct occurrence of

a condition. It i3 incremented each time the distinct eccurrence of

t

that condition {s traversed ond found te be true duriag input of &

4

chain f{ycom the coipleted Fleischmann procecs.,  In cddition te itncrasmentti...
the ccunter, whea eacountering a true ceadition, the expressiont of
the coudition are crxamineds. Pecall that the REASCN was cowprised of

storage location/display, relarinn, and value/storage location. If

a value was used the inteprated metnod will ettormpt to substitute
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the loop counter (plus or minus a constant if nccessary)., For
example, note that in the second parse of figure 4 the loop>counter
plus one could be substituted for the value two, thus producing the

flow {n figure 6. The loop counter i3 depicted as LC.

PROCRAM 7

|

READ

TTO 0

READ

RCL G HE LC+1 READ

|
?CL 0
STOP

Figure 6. Integrated synthesis after input of two parses
of averaging prograzm.

The sccond task performed in this intecrface scction is te

find equivolent conditione, Tws conuiticus are coquivalent 17 tbo

Hal

define thwe saue losn aad thoy Logews $dancicel when on cuproession
involving this lewn?s counter is zubstituted for thedr value partion.

In terms of ous Aotatioh, C, i3 equivnlent to Ch wvhen they both

]

occur after ins=Cruction nI1 (ie. n.iC.j and n.lCh are equivalent

whene..), they transfer to instruction ml and differ only in thelr

k!
values which can be substituted by a single expression involving

the loop counter,
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’;wﬂen two or more conditions are equivalent they control the
same loop counter. Returning to the example inr figurs 6, the loop
counter is equal to one after the second parse. When, in the third
and final parse, the condition RCLlO NE 3 is encountecred it is found
to be equivelent to the previous condition. The previously modift.d
condition, RCL O NE LC+1, will suffice. Therefore the program shown
in figure 6 is the program capable of averaging any amount of numbecrs.
By using the loop counter as part of the encountered conditions the
number of cases that the synthesized program can perform has been
extended.

Appendix D demonstrates the integrated method to synthesize
a program that will compute factortials. It is shown that two traces,
one for two-factorizl and one for three-factorial, are sufficient
to infer a program capable of computing N-factorial.

Enhancements

The integrated method, as presented so far, can only
discover loops that are brought to its attention via trace dis-
crepancies. The user is still responsible for demonstrating the
logic of the reiterative concept through proper traces. For loops,
a propar trace is composed of a minimal looping example and then &
nunber of more involved examples until the trace discrepancies in
these eranples have forced the autoprogrammer to ask for all the
controlliig reasons.

‘In some cases this method may not be practical or even
feasible. For instasnce, in the prime number generator there is no

way to force the autoprogrammer to ask why or how the next prime hés
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been chosen (since, after any trace deviation the remaining trace
is taken in as a single branch in the Fleilschmenn process). For
these cases the CMP key as described in Chapter 4 should be added
to the integrated method keyboard. This will combine the loop-
inference capability of both the Fleischmann génd Biermann processes.
Therefore this enhancement is effective for inter-example traces
whereas tha Fleischmann-type questioning is intra-example orieated.

Another enhancement to the method presented would be extending
the searsh for expressions involving the loop counter that replace
the value portion of the REASON conditicn. While using the cslculetor
as the interface nmedivm for 2n cutoprozvazmer system it appears that
expresslions involving the loop counter plus or minus a constant are

sufficient.




CHAPTER VI
SUMMARY AND CONCLUSIONS

The purpose of thi# study was to analyze current eutopresrsmsming
techniques and to present fessible methodz for implemcntation of an
autoprogrammer System on & calculator or similar programmable device.,
Three such methods have been described. It has been shown that three
forms of program logic (sequential, "If,..then...elcze®™, and "Do while®)
are synthesizable using the presented methods. B5hm and Jacopini (1966)
have demonstrated that these three basic tuilding blocks are sufficient
to form cvery Turing machine or program.

While developing the mathcds, characteristics of the calculator
were cbserved to be somewhat deficient fer an autoprogrammer system.
A discussion of the presented methods, the guidelines for utilizotion
of the proposed autoprogramulators, and a discussion of other
approaches to program synthesis using an autoprograrmer-type system
follow,

Discusston of Matheds

The methods described are approaches to autematic program
writing through user supplied examples. In order to develop or
synthecize a program from & seguential trace 1t is nccessary to obtain
knowledge on conditions affecting the excwple. The methods differ in
how they accept the user supplicd examples, in how thcy obtein acdditional
knowledge needed to formrthe different types of program logic, «nd in

the types of programs that they can produce.

42
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In Fleischmann's system synthesis is pcrformed by comparing
multiple user supplied traces to find inconsistencies, When
discrepancies are found, the user is questioned regarding the
motivation for such tracsz deviations. This sllows for “If...then...
else" logic to be synthesized in addition to sceuential logic.
However, the condition portion of that logic iz obtainable only
if the user creates at least two traces to show & logical branch
in the concept being conveyed to the machine,

Assuming that the user did supply corrcct examples, this
method presents two major drawbsckse. The leagth of the resulting
program grows proportignately to the nunber of examples put inte ths
synthesis process. The second drawback compounds the first in thos
this process does not create loops or extend the user supplicd examples
to more generalized cases. This causes the uger to enter cxamples
for every case he wishes the resulting program to be able to handle.

In an attempt to cause loop inferrence znd minimize the size
of synthesized programs, the Blermann process was adapted to the
basic calculator. It provides a means for user stipulation of
affecting conditions. This enables the synthesis of all of the
basic forms of program leogie. The codition portion of the "If...
then...elce” and Do whiles.o® loglic is user specificd, so ¢nzin
the auteprogrammar 18 dependent on the user declaring all guntrnlling
conditione and providing exzmples of zll lagic flow.

While Biermann'’s method is able to produce the ﬁypcs of
programs that are desired a prics has been paid. The uder must

state conditions affecting the flow of the progrem. He i8 no longer
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simply supplying examples but instcad he treads a fine line betwecn
being an uninformed user and a fpll fledged programmer. All the loops
that this process crcates are actually user defined. It is desired
that submissiocn of simple excmples to the systenq will cause the
machine to develop all control structures (or at least cuestion the
user in order to obtain them).

The Integrataed method was an attempt to relieve the user
of the burden of declaring control conditions yet still be able
to synthesize all of the basic program logic forms. Becsuse of the
"blind" acceptance of new traces it was feund that pre-declarineg
control conditions was still neccssary in somz cases. Both the
Biermann and Integrated systems find minimal progrems to cexecute
the supplied examples and also provide extensions to generslized
programs. To further decrcase progrem size, & subrecutine scanner
could be added to scan the finalized program for groups of re-occurrin:
instructions and replace them with "subroutine"™ calls.

In addition to not completely relicving the need for user
declaraticna of control conditicns the Integrated system still can
not finé all typoes »f conditions that could be desired for the
“"Do whilc.ss" construct, Cosditions were cither user supplied or
involved a compere cosinst tue lucp-counter plus or ninus a constont.

Whst are thke guidclines for use of the sutopreogromultor?

To effectively utilize the presented mathecds the user must know
his concept end all branches of it. To cause synthesis of &

"sufficient program he must transmit those aspects of his concept
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through the example traces. In order to cause lcap generation he
must show the smallest or simplest possible loop, use an extendable
condition for program flow control, and then show increcasingly

difficult looping

1

unti1l the goneralizatien can take place. For
extencions to tha general coucept the conditions supplicd by the
user must be consistent with cach other ond a pattern for the
extension must be shown.

It can be argued that the user then has not been succcssfully
relieved from the task of developing programs. On the other hord,
once the user learns how to become a teacher for the autonrezrzsming
systems, the systens can be an effective pregram development teol.

Futurs Appreachos fo Autenroa:raming

The calculator, althcugh rzadily available, is limited in
its form and methods of ccmmunication with the user. Note that for
every enhancenent to the bascline calculator, additicnal calculsator
modificaticns and devices were required (i.e. english-type questions,
keys, and a printer). Other devices should be considered for
automatic program synthesis where the user can transmit the deslired
concept more explicitly and precisely. Requirementse-speciflicaticn
languages gppesr to step in that direction but they still require
training of the urer.

For implementation of the Integratéd system mejor advances
should bo developud in two aress (in addition to speed gnhance:ahts
as suggested in Chapter V). These arcas are functions of the
loop-counter and trace acceptance in the Fleischmann phase of the

user example.
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The proposed leop-counter creation to be used in program
control is limited to an add or subtract function., The conditions
that are under scrutiny for possible equivalence can be thought of
as simultaneous equations or incompletely specified functions, Wark
in these areas regarding the finding or synthesis of suitable functions
could possibly be utilized to expand the loop-counter control
capability.

After dectermining that a new branch has been taken in the

first (Fleischmann) phase of the Integrated masthed, all further

I3

user input is accopted as sequentizl construects, This caused the
neccessity ef continuing the input of contrclling coaditions without
prompting from the autoprogramning system. A pessible solution to
this problem would 1nvoive using alarger display such as a CRT. %hen
a new branch is taken a lcop-watcher could be added to this first
phase. At any time the loop-watchar has reason to believe that this
new branch may be looping it could display tha full instruction loop
and ask for user verification. To terminate the looping the user
will then be prompted to supply the controlling reason.

Work continucs to be needed in the interacticn process
between uscr and machine. It has bean shoua that by asking the
proper questions a machine can begin to grasp or learn a concepnt
from the user. Some uscr intevactions haQe been prescnted here, and

it 13 hoped that more will follow.



APPENDIX A
ADAPTATICON OF FLEISCHMAKN"S EXAMPLE OF

"HERO'S ALGCRITHM FOR THE ART4 OF A TRIANGLE"
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Adaptation of Fleischmann's (1975, p.73-6) example of "Hero's

Algorithm for the Area of a Triangle" to the baseline calculator.

Note that the area of a triangle is equal to /bx(p~a)x(p-b)x(p-c)

where p=k(a+b+c).

TABLE 6

FIRST EXAMPLE

Autoprogramner User Actions Display Comments

START 9 0 progrem name & locntion

3 3 side a length
(autoprogrammer STO 0 3 loc 0 = side a lenzth
remains 5 5 side b length
passive STO 1 5 loc 1 ~ side b lensth
during the ) 7 side ¢ length
first example) STO 2 7 loc 2 = side ¢ lensth

+ 0 add to ¢

RCL 1 5 b

- 12 b+c

+ 0 add to bsc

RCL O 3 a

- 15 a+b+c

* 0 divide as+b+c

2 2 2

- 7.5 (a+b4c)/2 (p)

STO 3 7.5 . loc 3 = p

x 0 multiply p

RCL 3 7.5 P

- 0 subtract frﬁm p

RCL O 3 a

- 4.5 p-a

- 33.75 px(p-a)
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TABLE 6--Continued

Autoprogrammar User Actions Display Comments
x 0 multiply px(p-a)
RCL 3 7.5 p
- 0 subtract frem p
RCL 1 5 b
- 2.5 p-b
= 846.375 px(p-a)x(p-t)
x 0 multiply px(p-&)x(p-b)
RCL 3 7.5 p
- 0 subtract from p
RCL 2 ' 7 c
= 0.5 p-¢C
- 42.1875 px(p-a)=z(p-b)x(n-c)
/E 6.49516{523 /px(p~ﬂ)x(p-bfi(p~z)
SAVE store program no. 9
TABLE 7

TRY OF P2QGRAM AFTER FIRST EXAMPLE

.

s

Autoprogramner  User Actions Display Cowments

EXECUTE 9 6.495160528 syztom not awsre of anv
variables ar uranches
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SECOND EXAMPLE

50

Autoprograwmer User Acticne Display Conmants
EXTEND ¢ 0 extend program no. 9
5 S side a length
COR YV COR YV constant ot variable?
v user states variable
§T0 O
12 12 side b length
CORV COR V
12
STO 1 12
13 13 side ¢ lcugth
COR YV corv
v 13
ST0O 2 13
+ 0
RCL 1 12
- 25
*
RCL © 3
- 30
+ 0
2
- 15 p
STO 3 15
x 0
RCL 3 15
- 0
RCL O 5
- 10
- 150 px(p-a)
x 0
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TABLE 8--Continued

Autoprogrammer  User Actions Display Comments
RCL 3 15
- 0
RCL 1 12
- 3
= 450 px(p=a)x(p-b)
x 0
RCL 3 15
- 0
RCL 2 13
- 2
- 900 prp~a)nin-b)x(o-c)
X 30 /px(p=a)x(p-b)x(p-c)
SAVE ' stere program no, 9
TABLE 9
TRY OF PRCGRAM AFIER SECCHD EXZMPLE
Autoprogrammer Usex Actions BRisplay Comanents
EXECUTE 9 execute propgram no. 9
v v asking for varizble 1 (side &)
3 3
v v asiing for varioable 7 (side b)
4 4
v v asking for variechble 3 (side <)
5 5
-

answevt
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EXTENSION OF PROGRAM TO INCLUDE CALCULATION

FOR AREA OF RECTANGLE

Autoprogiammor User Actions Licnlay Cooeenty
EXTERD © G exiend program no. 9
4 4 g8ide & length
STO 0 4
6 6 side b length
STO 1 6
0 0 side ¢ does not exict
STO 2 G
RCL O REASCN
REASOH RCL 2 0 sutcplegramnsy v'anta o
: know way branca taxen,
EQ usox indicataes thit
0 sidc ¢ = O is th~ ceason
- s0o RCL O takes effect
1y ¢ C

(no fuither x multiply a

autonrozroomer

interaction RCL 1 6 b

since new branch

similar to the 2 axb

first exanple) SAVE

storc proaram no. 9
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TRY OF PROGRAM AFTER LATEST EXTENSION

Autoprogrammer Uner Actions Display Comnents

EXLCUTE 9 execute [royram no. 9

v v asking for voriable I (uide &)
10 10

v \ asking for vartable 2 {side b)
50 50
-

v v asking for veriadle 3 (sida ¢)
0
-

500 answer




APPENDIX B
EXAMPLES CONCERNING RELATICHSHIP OF TRACES TO THE

RESULTING PROGRAM IN THE FLEISCHMANN PROCESS
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At least three traces are needed to cause the autoprogrammer

to infer a process that is able to compute the average of two, three,

or four numbers.

Table 12 shows three such sample traces, the result-

ing program, and their respective lengths,

TABLE 12

SYNTHES1IS OF AN AVERAGING PROCRAM

Trace 1 Trace 2 Trace 3 Synthesized Program
START 7 START 7 START 7 EXECUTE 7
2 3 4 *V
STO O STO O STO0 O STO O
1 1 1 *y
+ + + +
2 2 2 *Y
T + + *RCL O : Z—EE——
RCL O 3 3 -
- - - RCL O
SAVE + + -
RCL 0 4 *STOP
- - .
SAVE + *y
RCL O -
- *RCL 0 : 3 T
SAVE +
RCL O
*STOP
X —

*v

e ———

e et bl i o e et - <t el e £
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TABLE 12--Continued

Trace 1 Trace 2 Trace 3 Synthesized Prozram
RCL O
*STOP

11 steps 14 steps 17 steps 25 steps




APPENDIX C

AN EXAMPLE OF TKE BIERMANN SYHTHZSIS MZITHGD
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The following examples demonstrate the Blermann synthesis
method. Table 13 shows the sample computation that records all
prime numbers up to twelve. Note that the user instructions are
labled by type snd order of sccurrences For the purposes of this
example the baseline calculator includes the unary operator, "FRACT,
which strips off the integer portion of the current display.

The second table (Table 14) shows the actual synthesis
process in which the occurrence of the labeled instructions are
identified, thus creating a flow diagram., Figure 7 is the Moore-
type representation or flowchart of the synthesized program. Note
that the minimal sample trace nceded for this ccmputation was the one
shown for N = 12, Inspection of the synthesized program’s flowchart
shows that this was necessary to traverse the {Cz, 3111,...} logic.
The minimsl trace, then, was comprised of eighty-one key strokes
where the resulting program contains twenty-cight distinct Instructions

with control and brenching logic.

R Tt
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TABLE 13
TRACE OF COMPUTATION THAT RECORDS ALL

PRIME NUMBERS UP TO N, WHERE N=12

Condition Instruction User Actions Display Comments

START 8 program name & location
READ indicate parameter input
I1 {12 12
12 STO 2 12 initislize N to 12
13 ! 1
Ia RECORD 1 record automatically
I5 2 2 primes 1, 2, & 3
Ia RECCRD 2
16 3 3
Ia RECCRD 3
I7 + 0 increment last prime by
I, 2 2 2, skip even numbers
18 - S
19 STO O S
16 3 3 set number to begin divide
Ilo "STO 1 3 with initial value of 3
11 RCL O 5
12 ® 0
113 RCL 1 3 )
Ig - 1.666 check for ceven divisibility
114 FRAC 666
Lig RgL 1 3
I15 X 9 are all checks dene?
C1 Ill DISPLAY-RECL O3RCL O 5 number 1§ a prirc
I& RECCRD 5
I7 + 0 increment last prime by
IS 2 2 2, skip even numbers
I - 7
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TABLE 13--Continued

Condition Instruction User Actions Display Comments
I9 ST0 O 7
I6 3 3 se¢t number to begin divide
I10 STO 1 3 with initial value of 3
I11 RCL O 7
12 * 0
113 RCL 1 3
18 - 2.333 check for even divisibility
114 FRAC «333
I13 RgL 1 3
I15 X 9 are all checks dene?
Cl Ill DISPLAY>RCL O3RCL O 7 number is a prime
IQ RECORD 7
I7 + 0 increment last prime by
15 2 2 2, skip even numbers
18 - 9
19 STo 0 9
16 3 3 get number to begin divide
IIO STO 1 3 with inttial valu: of 3
111 RCL O 9
I12 + 0
113 RCL 1 3
I8 - 3
I14 FRAC 0
C2 I11 DISPLAY=0, RCL O 9 number not prime,
I7 + g increment to next
Ig 2 odd number
I - 11
19 ST0 O | ,
I6 3 3 reset number to begin divide
Lo STO 1 3 with initial value of 3
I

1 RCL 0 11
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TABLE 13--Continued

Condition Instruction VUser Actions Display Comments
I12 % 0
113 RCL 1 3 _
IB - 3.666 check for even divisibility
114 FRAC 666
113 RCL 1 3 are all checks done?
2
115 X 9
113 RCL 1 3
I7 + 0 inerement number to divide
I5 2 2 with next cdd number
18 - 5
Ilo STO 1 5
Ill RCL O 11
112 + 0
113 RCL 1 5
18 - 2.2 check for even divisibility
I14 FRAC o2
113 RCL 1 5 arc all checks done?
2

115 X 25

Cl I11 DISPLAY>RCL O;RCI O 11 number is a prime
I4 RECORD 11
I7 + 0 increment last prime by
I5 2 2 2, skip cven nuubers
18 " 13

C3 Il6 DISFLAY>RCL 2; SAVE computaticn of orimes

up to 12 cooplets

e P P ———
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Figure 7. Moore-typ: representaticn cof synthesived privsz nvabsr soncrator



_APPENDIX D
AN EXAMFLE OF THE INVECRATED SYNTHESIS METHOD

FOR A FACTORIAL PROCGAM
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TABLE 15
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PHASE ONE OF FACTORIAL PROCRAM SYNTHESIS (FLEISCHMANN PHASE)

Trace 1 Trace 2 Synthesized nskruction
Trece
START 4 EXTEND & (bafore cynthzais)
2 3 ®V I1
STO O STO O STO 0 I2
- - - 13
1 1 1 I4
- - - IS
St 1 STO 1 ST0 1 IG
x x ¥ I,
ECL O RCL O RCL O 18
- - - IS
HALT STO 0 YRCL 1 3 1=
RCL 1 HALT I I9
- STO O 12
1 RCL 1 I10
- - I3
STO O 1 14
X » IS
RCL O STo 1 16
- x I7
HALT RCL O Ia
- IS
HALT I9




TABLE 16
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PHASE TWO OF FACTORIAL PROGRAM SYNTHESIS (BIERMANN PHASE)

Level Condition Instruction S;:i;éi:s 3“;352;;zp Zn:tszggzp

1 I1 111

2 12 112

3 13 113

4 I“ 114

L) 15 115

6 16 lI6

7 17 lI?

8 18 118

¢ I 115 215
10' none 19 X II9

10 1.9(:1 I2 IIZ 212
11 I10 X lIlO
12 13 113
13 I, (11,)
14 I5 (115)
15 I (115)
16 I7 (117)
17 I8 (118)
18 15 (215)
19 I9 (119)
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Figure 8. Moore-type recpresentation of factcrial program
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