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We consider the problem of representing heterogeneous collections of objects in a typed polymorphic 
programming language in such a way that  common properties of members of a collection, such as having 
commonly named field with a common type can be expressed in the type system. The use of such 
collections is widespread in object-oriented and database programming and has so far been achieved in 
statically typed systems only through the use of a single dynamic type, which effectively hides all the 
structure of a value. In this paper we exploit a system of types and kinds (sets of types) to represent 
dynamic values with some known properties. The type system is shown to be sound and to have a 
complete type inference algorithm. 

1 Introduction 

Heterogeneous collections are commonly used in object-oriented programming and in certain database sys- 

terns. For example, one might retrieve from a database two sets of records 

S1 = { [Maker = "Ford", Type = "LTD" , Range = 405, NPG = 291 , 
[Maker = "Peugeot", Type = "405", MPG = 321, 

[Maker = "Honda", Type = "Accord", MPG = 401) 

S2 = {[Maker = "Ford", Type = "LTD", Range = 405, MPG = 291, 

[Maker = "Ford", Type = "Mustang", Range = 3251) 

Although neither of these sets is homogeneous, the members of each have certain common properties, and 

it should be possible t o  extract Maker, Type and MPG from all members of S1 and Maker, Type and Range 

from all members of S2. Moreover we would expect to  find the intersection of these sets of fields, Name and 

Type, available on S1 U Sz and their union available on S1 n S2. Can we make use of such reasoning in a 

statically typed language? 

The ability t o  deal with heterogeneous collections is claimed [Str87] as an advantage of object-oriented 

programming, but it is not clear that in statically typed languages that exploit some form of subsumption 
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based on subtypes or subclasses [Car88, CW85] the collections really are heterogeneous. If, for example, we 

have e : Employee and 1 : list(Person) where, Employee 5 Person, such languages will allow the formation 

of the list cons(e, I), but this expression is of type list(Person) and therefore head(cons(e, I ) )  is of type 

Person.  By placing e on this list we have somehow lost some of its properties, and the type system does 

not allow us t o  recover them. 

In Amber [Car861 one can package a value together with its type into a value of type Dynamic. We 

can now build homogeneous collections of such values of type Dynamic even though the values from which 

they are constructed have different types. Properties of members of a collection are recovered by explicitly 

coercing them to  some type. This idea was developed in [ACPP89] and in [Tha88]. In the latter a universal 

sum type C? was introduced (similar to  ~ ~ n a m i c )  and a type inference method was developed based on the 

type ordering 5 induced by the relation S1 5 r lifted to other type constructors. 

These approaches are too coarse in that they do not allow us t o  reason about unions and intersections in 

the way we have just advocated. In order to  allow such reasoning we shall use a refined notion of dynamic 

types that we shall call p a r t i a l  types. A value of such a type can be thought of as a dynamic value with 

part of its structure "revealed". Thus an assertion of the form e : P  (<Make: s t r i n g ,  Range: in t>)  (we shall 

explain the syntax shortly) indicates that e denotes a dynamic value whose Make and Range information 

has been revealed, which means that the operations e .  Make and e .  Range are legitimate expressions of type 

s t r i n g  and i n t  respectively. Moreover the complete type of the value that was used t o  form the dynamic 

value e must contain Make : s t r i n g  and Range : i n t  fields. 

<Make:string, Range: i n t >  describes a set of types or kind. I t  is the set of all record types that have 

Make: s t r i n g  and Range : i n t  fields. The type [Make: s t r i n g ,  Range: i n t  , MPG: in t ]  is an example of such 

a type. The notation P(<Make: s t r i n g ,  Range: i n t > )  describes the type of a dynamic value whose exact 

type is some member of the kind <Make : s t r i n g ,  Range : in t>.  In order to  obtain more properties of this 

value we must either explicitly coerce it to  more specific partial type or project it out to  its complete type. 

In this paper we shall develop a polymorphic system of types and kinds that allows us t o  manipulate 

partially typed collections of dynamic values. During our development, we shall sometimes need t o  assume 

the concrete structure of collection types. In such cases we shall give accounts of both sets and lists. However, 

we hope that  the system of partial types can be combined with other forms of collections. To deal with 

sets which require equality on elements, we single out the subsets of types which have computable equality. 

This complicates our presentation but allows us to  treat both sets and lists in a general way. We shall 

first give the base calculus as an extension of the simply typed lambda-calculus and obtain the results 

needed to establish the soundness of the type system. We shall then provide a type inference algorithm 

that allows us t o  extend ML-style polymorphism to include the additional features. The approach we 

shall adopt is based upon a proposal originally suggested by Wand [Wan871 and subsequently developed in 

[OB88, JM88, Mit90, RCm89, Wan891. Although we shall make use of an ordering on partial types, this 

ordering is used t o  express rules for union and intersection and is not needed to derive the polymorphism 

in field selection. In particular we do not require a subsumption rule which, a s  we have noted in [BTB089] 

creates some problems for database operations such as equality test and join [BJOSO, Oh0891 that require the 

complete structure of an object. A similar problem was also observed in [CHCSO]. Intersection and union, 

when applied t o  sets of dynamic values, similarly require an equality test on the complete value rather than 

the part that  is revealed by some partial type. 



2 The Base Calculus for Partial Types 

2.1 Terms 

The set of terms of the base calculus is given by the following syntax: 

M ::= ( c : ~ )  I x I X2:r .M I M ( M )  1 Cl=M, ..., l=MI 1 M . 1  I m o d i f y ( M , l , M )  ( 
({):{r)) 1 {M) I u n i o n ( M , M )  I r e d u c e ( M , M , M , M )  I 
d y n a m i c ( M : r )  1 f u s e ( M ,  M )  I a s ( M : r )  1 coe rce (M: r )  

( c :  7) stands for typed constants, Cl=M,. . . , l=M1 is the syntax for labeled records, M.1 is field selection, 

modify (MI , I ,  M 2 )  is field modification (or update) which creates a new record by modifying the 1 field of 

the record M1 to M2. {), and {M) denote respectively the empty collection and singleton collections. We 

write {v , . . . , v) for some canonical representation for the values of collection types. union combines two 

collections. I t  is set-theoretic union for sets and append for lists. r educe  is a general elimination operation. 

For lists, this is defined as 

For example, 

sum = X~:{int}.reduce(Ax:int.~,plus,0,S) 

where plus is binary addition. In order for this t o  be a definition for sets, we must assume that op is an 

associative and commutative binary operator, but it is not clear that there is any efficient method of checking 

this. In what follows we assume nondeterministic choice of an order of the elements in the set. In the case 

that o p  is associative and commutative, the result does not depend on the choice. d y n a m i c ( M :  r ) ,  when 

evaluated, creates a dynamic value, which is the pair ( r ,  v) of the type and the value denoted by the term 

M .  Although the dynamic value belongs to the domains of various partial types, this expression has the 

unique type P (<T>) ,  which is the "least partial" type for this dynamic value. fuse  is a form of equality test 

generalized to  partial types. If the two arguments are the same then it returns the singleton collection of 

the value otherwise it returns the empty collection. The result provides a useful type information when the 

arguments are dynamic values. For partial types, we have two coercion functions. One is as (M,  r )  which 

returns a singleton collection of itself if the dynamic value denoted by M belongs to  the partial type r; 

otherwise it retuns the empty collection. The other is coerce(M, r )  which returns a singleton collection of 

the value part of the dynamic value denoted by M if its type is the same as 7; otherwise it returns the empty 

collection. The collection type is used in fuse,  a s  and coerce to  avoid run time exceptions. 

2.2 Types, Kinds and Typing Rules 

The set of types and eqtypes (i.e. types with computable equality) are given as: 

T ::= b 1 beq 1 [ l : r ,  . . . ,  1:rI 1 {r) 1 T + T  1 P ( K )  
a ::= beq I C1:a. ..., 1:al ) {a) I P ( E )  

b stands for base types and beq for those with computable equality. [I: 7 , .  . . ,1: 71 is the syntax for record 

types. {r} stands for collection types. P ( .  . .) are partial types specified by kinds ( K )  or eqkinds (E), which 

are given by following syntax: 



K ::= <r> 1 <l : r ,  ..., 1:r> 1 any 
6 ::= = <a> ( <l :u ,  ..., I : u > ~ ~  I eq 

The following kinding relation gives the intended meaning of kinds: 

r :: any 

Kinds are used to define typing rules for elimination operations for dynamic values. It also plays an important 

role in developing a type inference algorithm in section 3. 

Partial types are naturally ordered in terms of the amount of static information: 

The ordering on types is the smallest reflexive relation containing the above relation. The ordering has the 

following property, which will be needed to develop type checking rules: 

Proposition 1 j is  a partial order with pairwise bounded joins and meets. 

Using these definitions, we can now define the type system as a proof system for typings of the form 

A bM : T where A is a function from a finite set of variables to  types, called a type assignment. We write 

A{x : r) for the function A' such that dom(A1) = dom(A) U {x}, A1(x) = r and A1(y) = A(y) for all 

y E dom(A), y # x. Figure 1 shows some of the typing rules. If the collection types are sets then the types 

r 1 , r 2  in the rule (union) are restricted to eqtypes 01, a2. The partiality of partial types is increased by the 

rule (union), decreased by the rule (fuse) and changed by the rule (as). The complete set of typing rules will 

be given in the full paper. 

The calculus has a static type-checking algorithm. 

Proposition 2 For any pre-term M and A, there is  at most one r such that A bM : r .  Moreover, there 

i s  an algorithm which, given A and M ,  computes the unique T such that A bM : r if one exists; otherwise 

it reports faihre. 



A b M ,  : ri ( 1  < i 5 n) 
(record) 

A b Cl1=M1,. . . , ln=Mnl : Ch : T I , .  . . , I n  :%I 

A b M l : { r ~ )  A b M 2 : { r 2 }  
(union) if r3 = rl n r 2  

A b u n i o n ( M 1 ,  M 2 )  : { r 3 }  

A b M 1 : a l  A b M 2 : a z  
(fuse) i f  a3 = ol U a2 

A b f u s e ( M 1 ,  M2) : (03 )  

A b M : r  
(dynamic) 

A b d y n a m i c ( M 1  : P(<r>)  

Figure 1: Some of the Typing Rules for the Base Calculus 

This is proved by proving the stronger statement that any term has a t  most one typing derivation. The 

proof is by induction on the number of applications of typing rules. I 
The next property guarantees that the introduction of partial types preserved the property of simple 

types: 

P r o p o s i t i o n  3 If M does not contain d y n a m i c  then A bM : T is derivable in  our system i f l i t  is derivable 

in  the simply typed lambda calculus with records. 1 

As we noted earlier, this property is needed for operations that require the complete structures of objects. 

2.3 Operational Semantics 

Following [ACPPSS], we give an operational semantics by defining a set of rules to reduce closed terms to  

canonical values. To do this we define the set of canonical values as: 

v : :=  ( c : b )  I X 2 : r . M  I [l=v ,..., l=vl ( { v  ,..., v )  ( ( T , v )  ( wrong 

and the set of canonical eqvalues as: 

d : := (c:be4)  I [l=d,. . .,l=dl I { d , .  . . ,dl  1 (u ,d )  

We have already explained {. . .) and ( T , v ) .  If the collections are sets then we assume an appropriate 

equivalence relation on values of the form {. . .) and consider them as equivalence classes. wrong is the 

canonical value of a run time type error. We write M + v t o  denote that M is reduced to a canonical 

value v .  We define the extent [ K ]  of a kind K as T E [ K ]  iff there is some 7' such that T 5 r' and T' :: K .  

Figure 2 shows some of the reduction rules. The complete set of rules will be given in the full paper. 

The type system is extended to the canonical values we have just introduced by adding the rules: 



M I - d  M 2 * d  if d  is an eqvalue 
f u se (M1 ,M2)  = { d )  

M1 * dl M2 * d2  if  d l ,  d2 are eqvalues and dl # dr 
f u s e ( M 1 . M ~ )  a {) 

Figure 2: Some of The Reduction Rules 

d b v i  : ~ ( l < i < n )  
(collection) 

db{vl, ..., vi} : {T} 

d b v  : T  
(dval) for any K such that T E [K] 

d b(~,v) : P(K) 

Note that the extended terms in general have multiple typings but wrong has none. The following theorem 

establishes the soundness of the type system. 

Theorem 1 For any term M and any canonical expression v ,  i f 0  bM : T and M v then 0 bv : T 

The typing is preserved by ,B-reduction, whose proof is similar to that of the subject-reduction theorem 

[HS86]. The theorem is then proved by using the definitions of typings for term constructors. 1 
Since wrong has no typing, we have: 

Corollary 1 For any term M and any canonical expression v, i f  0 b M  : T and M v then v # wrong. 

2.4 Programming Examples 

We show how these partial types are used in programming with heterogeneous sets. We use pairs ( M ,  N),  

M . i, M .2, product type *T2 and n-argument function definition of the form fun f (x,  . . . , x) = . . .. 
Then are easily defined using records. 

A function to  fuse a dynamic value with a member of a set of dynamic values can be implemented as 

fun fusei(x:a~.~:{az}) = 

reduce(~y:a2.fuse(x,y),~x:{al)*{a~}.union(x.i,x.2),({}:{~~ u ~2)) ,s) 

and the intersection of two sets is then implemented as 

fun intersect (S1:{ul),S2:{a~}) = 

reduce(Xy:ul .fusei(y,S2) ,Xx:{al)*{a2}.union(x.l,x.2) ,({):{a1 U a2)) ,S1) 

on partial types, which has the type {ul) * {uz} -+ {a1 U u2) as expected. In a similar fashion it is straight- 

forward t o  implement other set operations such as subtraction for sets of dynamic values. 



In databases there is an ambiguity about the meaning of the is-a relationship. By asserting Employee 

is-a Person we may mean that Employee is a subclass of Person in the sense that the methods of Person are 

also available for instances of Employee. We may also mean that Employee and Person are sets and the is-a 

relation specifies set inclusion. Notice that these two meanings are incompatible if we assume the sets are 

uniformly typed, for how can a set of one type be a subset of a set of another type?. However, if we allow 

sets to be heterogeneous and agree that the is-a ordering is (the inverse of) our ordering on types, then we 

can derive the ordering on sets from the ordering on partial types. 

Assume that Person is shorthand for the type ? (<Name : s t r i n g ,  Address : s t r i n g > )  and Employee is 

shorthand for ?(<Name: s t r i n g ,  Address : s t r i n g .  Salary:  i n t > ) .  The function 

fun Persons-of ( S : P ( a n y ) )  = 

r e d u c e ( A x : P ( a n y ) .  as ( x :  Person), Ax: {Person)*{Person} . union(x .  I , x .  2 1 ,  ({I :Person) , s )  

is of type {? (any ) }  - -+{Person)  

fun ~ m ~ l o y e e s - o f  ( S : P ( a n y ) )  = 

reduce(Ax :? ( a n y ) .  as  ( x :  Employee),  

Ax: {Employee)*{Employee) .union(x .  I , x .  21, ({I: {Employee))  , S )  

is of type {? (any ) }  +{Employee)  and the semantics of our operations for partial types guarantees us 

that Employees-of ( S )  Persons-of ( S )  . Thus the inclusion relationship is derived from the relationship 

on kinds. Moreover, we shall show in the next section that the desired features of method inheritance between 

those sets are automatically achieved by ML style polymorphism through type inference. To our knowledge 

no other statically typed programming language allows this coupling of inheritance and subsets. 

3 Type Inference Algorithm 

Type inference is a method used to infer the set of all derivable typings for a given untyped term. Let e stand 

for the set of untyped terms obtained form the terms of the base calculus by erasing all type specifications of 

the form Ax : T. M',  ({) : { r ) ) ,  d ynamic (M : r ) .  We write A b e  : T if there is some M such that e is the 

type erasure of M and A bM : T. The type inference problem is then stated as the problem to construct a 

representation of the set {(A, T)(A b e  : 7) 

To solve this problem, we define conditional typing schemes [OB88] to represent sets of typings. This is 

the refinement of type schemes [Hin69, Mi1781 with syntactic conditions on substitutions of type variables, 

which are needed t o  represent constraints associated with some of our typing rules. Some of the conditions 

can be integrated directly in type schemes by refining them to  kinded (eq)type schemes by introducing kind 

constraints on (eq)type variables [Oho90]. The appropriate set of kinded type schemes (ranged over by T) 

and kinded eqtype schemes (ranged over by E) are give as: 

t K ,  uK are kinded type variables and kinded eqtype variables respectively ranging over types and eqtypes. I< 

denote kind schemes which constrain their instantiation. K ,  E are kinds and eqkinds we have defined for the 

base calculus. The set of kind schemes appropriate for our calculus is: 



where U is the universal kind scheme, P is the partial kind scheme and <l : a,. . . , I  : a> stands for record kind 

schemes. The kinding relation is given as follows: 

The notion of substitutions is refined to represent kind constraints. A kind preserving substitution 0 is a 

function from the set of kinded type variables to kinded type schemes such that O(tK)  # tK  for only finitely 

many t K ,  it maps eqtype variables to eqtype schemes, and O(tK) :: O ( I 0  for all t K .  The notion of unifier 

and most general unifiers are defined as usual. 

Robinson's unification algorithm is refined to kinded type schemes: 

Proposition 4 There is an algorithm U which computes a most general kind preserving unifier of a given 

set of pairs (equations) of kinded type schemes if one exists; otherwise it reports failure. 1 

This is a simple extension of a result shown in [Oho90]. I 
In order to represent the constraints associated with the rules (union) and (fuse), we have to introduce 

explicit conditions on substitutions of type variables. The following definitions are straightforward adaptation 

of the method developed in [OB88]. Define conditions as formula of the forms: T = l u b ( T , T )  or T = 

glb(T,T) .  We say that a kind preserving substitution 0 is ground for X if, for any type variable tK  in X ,  

O(tK) is a type. A substitution 0 ground for c satisfies a condition c, denoted by 0 c,  if 

1. c Tl = lub(Tz,T3) and O(Tl) = O(T2) U 0(T3),  or 

2. c = TI = glb(Tz, T3) and O(Tl) = 0(T2)  fl O(T3). 

Let C be a set of conditions, C be an assignment of kinded type schemes to variables. Define 0 C iff 

0 c for all c E C .  A conditional principal typing scheme is a formula of the form C, C b e  : T such that 

A b e  : T iff there is a kind preserving substitution 0 such that 0 C, A ( x )  = O(C(x))  for all x E dom(C) 

and T = O(T).  Since the definition of conditional typing schemes and the conditions have similar properties 

of those in [OB88], the following theorem can be proved similarly. 

Theorem 2 There is an algorithm P which, given an untyped term e ,  returns either (C, C ,  T )  of failure 

such that if P ( e )  = (C, C, T) then C, C b e  : T is a principal conditional typing scheme otherwise e has no 

typing. 1 

As in [OB88], however, this theorem does not completely solve the type-checking problem because of 

possible unsatisfiability of the set of conditions. Unfortunately, the satisfiability checking turns out to be a 

hard problem. Since the condition of the form T = lub(T, T )  has the identical structure to those we have used 

for the database operation join in [OB88], the conlplexity of the complete type-checking problem is as hard 



as in [OB88], which is NP-complete. A practical solution is to  delay the satisfiability-checking until all the 

type variables in conditions are instantiated with ground types. Once all type variables are instantiated with 

ground types, the satisfiability can be efficiently checked. To achieve this, we require the type specification 

for {} if it is used in the argument of un ion  with other dynamic values. Violation of this requirement can be 

easily detected by the compiler. Under this restriction, it is easily shown that union and fu se  are evaluated 

only if the arguments have ground types and therefore this strategy prevents all run time type errors. Since 

we have the singleton constructor and union ,  the most common situation when {} is needed as an argument 

of merge is inside of reduce .  Taking this into account, the typing rule for r educe (  f ,op,z ,  S) is defined 

so that the type of op must be the product of the same type. 

We now show examples to  demonstrate how we achieve inheritance through ML style polymorphism. We 

omit the kind tag U. Suppose we have two sets: 

Employees : {P(<~ame:string,Address:string,~alary:int>)} 

Students  : {~(<~ame:string,Address:string,~dvisor:string>)} 

and define the functions 

f u n  advisors  S = reduce(Xx. x . ~ d v i s o r )  ,un ion ,  {} ,S)  ; 

f u n  add-saraly S = reduce(Xx . modify (x, s a l a r y ,  x . Salary  + 500), un ion ,  {} , S) ; 

Since the type system infers the following schemes: 

0,Q) b advisor  : {t~AdVdSOr:ta' 1 4 t 2 }  

0 , 0  b add-saraly : it;Salary:int> + {tyalary:int> 1 

they can be applicable t o  Students  and Employees respectively by kinded preserving instantiation. We can 

think of these polymorphic functions as "methods" applicable t o  Students  and Employee respectively. As 

we have advocated, we expect both of the two functions t o  be applicable t o  the intersection of the two sets. 

In the previous section, we have defined the function i n t e r s e c t .  For the untyped code of this function, the 

type system infers the following scheme: 

{ t ~  = lub(tz,t3)},6 b i n t e r s e c t  : {t2}*{t3) -+ i t l }  

When a.pplied t o  the two set above, this function yields the following typing: 

SupportedStudents = intersect(Students,Employees) : 

{P(<Name: s t r ing,Address:  s t r i ng ,Sa l a ry :  i n t  ,Advisor: s t r i n g > ) }  

Our polymorphism indeed allows us to  apply both of the add-salary and advisor  to  the above set without 

any loss of type information. For example, the type of add-salary(SupportedStudents) is the same as 

that of SupportedStudents as we desired. 

4 Conclusions and Further Investigation 

The combination of partial types with the appropriate "bulk" data type provides a method of dealing with 

heterogeneous collections in a statically typed language. However these two additions to  the type system 

are almost independent of one another. The only operations in which they directly interact are as ,  coerce  

and fuse  which return singleton or empty collections. This is a convenience that avoids the need to deal 



with run-time exceptions. I t  would be possible to  describe partial types without making use of a collection 

type. We have discussed two examples of collection types, lists and sets, and it appears possible to  use the 

same techniques in connection with other bulk types, binary trees or bags, for example. What we do not 

yet understand is what is the general characterization of collection types? Why do partial types appear to  

fit naturally with certain types and not with others? This seems to call for a rather general insight into 

programming structures. 

The ordering on types we have exploited is trivial except on partial record types. Does it need to be 

extended t o  other types? For database and object-oriented programming, the notion of "object identity", 

which appears to  be similar t o  reference, is often invoked. I t  seems to be straightforward to  extend the 

ordering t o  work on reference types. However, it is not clear that we need t o  extend it ,  say, t o  function 

types. An issue here is whether there is some useful "information" ordering on functions. There are useful 

extensionally defined functions in databases, hash tables and B-trees, for example. But is there a natural 

partial description of such structures as there is for records? 

Finally, implementation is a serious issue. On face value this system calls for dynamic resolution of 

record fields. It may be that there are efficient architectures for doing this; it may also be possible to  

find some optimization techniques. For example, in many situations our heterogeneous collections may be 

interally represented by a small number of uniformly represented homogeneous collections (this would be 

the case in using data derived from a relational database). Operations on heterogeneous collections could 

then be decomposed into operations on homogeneous collections, for which relational database technology 

has provided us with optimization techniques. 
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