
Using Kinds To Represent Heterogeneous
Collections In A Static Type System

(Extended Abstract)

MS-CIS-90-62
LOGIC & COMPUTATION 22

Peter Buneman
University of Pennsylvania

Atsushi Ohori
University of Glasgow

Department of Computer and Informat ion Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19 104

August 1990

Using Kinds to Represent Heterogeneous Collections in a Static

Type System (Extended Abstract)

Peter Buneman*
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104, U.S.A.

peterQcis.upenn.edu
Tel. (215) 898-7703

Abstract

Atsushi Ohorit
Department of Computing Science

University of Glasgow
Glasgow G12 8QQ, Scotland

ohori%cs.glasgow.ac.ukQnsfnet-relay.ac.uk

Tel. $44 (0)41 339-8855

We consider the problem of representing heterogeneous collections of objects in a typed polymorphic
programming language in such a way that common properties of members of a collection, such as having
commonly named field with a common type can be expressed in the type system. The use of such
collections is widespread in object-oriented and database programming and has so far been achieved in
statically typed systems only through the use of a single dynamic type, which effectively hides all the
structure of a value. In this paper we exploit a system of types and kinds (sets of types) to represent
dynamic values with some known properties. The type system is shown to be sound and to have a
complete type inference algorithm.

1 Introduction

Heterogeneous collections are commonly used in object-oriented programming and in certain database sys-

terns. For example, one might retrieve from a database two sets of records

S1 = { [Maker = "Ford", Type = "LTD" , Range = 405, NPG = 291 ,
[Maker = "Peugeot", Type = "405", MPG = 321,

[Maker = "Honda", Type = "Accord", MPG = 401)

S2 = {[Maker = "Ford", Type = "LTD", Range = 405, MPG = 291,

[Maker = "Ford", Type = "Mustang", Range = 3251)

Although neither of these sets is homogeneous, the members of each have certain common properties, and

it should be possible t o extract Maker, Type and MPG from all members of S1 and Maker, Type and Range

from all members of S2. Moreover we would expect to find the intersection of these sets of fields, Name and

Type, available on S1 U Sz and their union available on S1 n S2. Can we make use of such reasoning in a

statically typed language?

The ability t o deal with heterogeneous collections is claimed [Str87] as an advantage of object-oriented

programming, but it is not clear that in statically typed languages that exploit some form of subsumption

*Supported by research grants NSF IRI86-10617, ARO DAA6-29-84-k-0061 and ONR N000-14-88-K-0634
tsupported by a British Royal Society Research Fellowship. On leave from OK1 Electric Industry, Co., Japan.

based on subtypes or subclasses [Car88, CW85] the collections really are heterogeneous. If, for example, we

have e : Employee and 1 : list(Person) where, Employee 5 Person, such languages will allow the formation

of the list cons(e, I), but this expression is of type list(Person) and therefore head(cons(e, I)) is of type

Person. By placing e on this list we have somehow lost some of its properties, and the type system does

not allow us t o recover them.

In Amber [Car861 one can package a value together with its type into a value of type Dynamic. We

can now build homogeneous collections of such values of type Dynamic even though the values from which

they are constructed have different types. Properties of members of a collection are recovered by explicitly

coercing them to some type. This idea was developed in [ACPP89] and in [Tha88]. In the latter a universal

sum type C? was introduced (similar to ~ ~ n a m i c) and a type inference method was developed based on the

type ordering 5 induced by the relation S1 5 r lifted to other type constructors.

These approaches are too coarse in that they do not allow us t o reason about unions and intersections in

the way we have just advocated. In order to allow such reasoning we shall use a refined notion of dynamic

types that we shall call p a r t i a l types. A value of such a type can be thought of as a dynamic value with

part of its structure "revealed". Thus an assertion of the form e : P (<Make: s t r i n g , Range: in t>) (we shall

explain the syntax shortly) indicates that e denotes a dynamic value whose Make and Range information

has been revealed, which means that the operations e . Make and e . Range are legitimate expressions of type

s t r i n g and i n t respectively. Moreover the complete type of the value that was used t o form the dynamic

value e must contain Make : s t r i n g and Range : i n t fields.

<Make:string, Range: i n t > describes a set of types or kind. I t is the set of all record types that have

Make: s t r i n g and Range : i n t fields. The type [Make: s t r i n g , Range: i n t , MPG: in t] is an example of such

a type. The notation P(<Make: s t r i n g , Range: i n t >) describes the type of a dynamic value whose exact

type is some member of the kind <Make : s t r i n g , Range : in t>. In order to obtain more properties of this

value we must either explicitly coerce it to more specific partial type or project it out to its complete type.

In this paper we shall develop a polymorphic system of types and kinds that allows us t o manipulate

partially typed collections of dynamic values. During our development, we shall sometimes need t o assume

the concrete structure of collection types. In such cases we shall give accounts of both sets and lists. However,

we hope that the system of partial types can be combined with other forms of collections. To deal with

sets which require equality on elements, we single out the subsets of types which have computable equality.

This complicates our presentation but allows us to treat both sets and lists in a general way. We shall

first give the base calculus as an extension of the simply typed lambda-calculus and obtain the results

needed to establish the soundness of the type system. We shall then provide a type inference algorithm

that allows us t o extend ML-style polymorphism to include the additional features. The approach we

shall adopt is based upon a proposal originally suggested by Wand [Wan871 and subsequently developed in

[OB88, JM88, Mit90, RCm89, Wan891. Although we shall make use of an ordering on partial types, this

ordering is used t o express rules for union and intersection and is not needed to derive the polymorphism

in field selection. In particular we do not require a subsumption rule which, a s we have noted in [BTB089]

creates some problems for database operations such as equality test and join [BJOSO, Oh0891 that require the

complete structure of an object. A similar problem was also observed in [CHCSO]. Intersection and union,

when applied t o sets of dynamic values, similarly require an equality test on the complete value rather than

the part that is revealed by some partial type.

2 The Base Calculus for Partial Types

2.1 Terms

The set of terms of the base calculus is given by the following syntax:

M ::= (c : ~) I x I X2:r .M I M (M) 1 Cl=M, ..., l=MI 1 M . 1 I m o d i f y (M , l , M) (
({):{r)) 1 {M) I u n i o n (M , M) I r e d u c e (M , M , M , M) I
d y n a m i c (M : r) 1 f u s e (M , M) I a s (M : r) 1 coe rce (M: r)

(c : 7) stands for typed constants, Cl=M,. . . , l=M1 is the syntax for labeled records, M.1 is field selection,

modify (MI , I , M 2) is field modification (or update) which creates a new record by modifying the 1 field of

the record M1 to M2. {), and {M) denote respectively the empty collection and singleton collections. We

write {v , . . . , v) for some canonical representation for the values of collection types. union combines two

collections. I t is set-theoretic union for sets and append for lists. r educe is a general elimination operation.

For lists, this is defined as

For example,

sum = X~:{int}.reduce(Ax:int.~,plus,0,S)

where plus is binary addition. In order for this t o be a definition for sets, we must assume that op is an

associative and commutative binary operator, but it is not clear that there is any efficient method of checking

this. In what follows we assume nondeterministic choice of an order of the elements in the set. In the case

that o p is associative and commutative, the result does not depend on the choice. d y n a m i c (M : r) , when

evaluated, creates a dynamic value, which is the pair (r , v) of the type and the value denoted by the term

M . Although the dynamic value belongs to the domains of various partial types, this expression has the

unique type P (<T>) , which is the "least partial" type for this dynamic value. fuse is a form of equality test

generalized to partial types. If the two arguments are the same then it returns the singleton collection of

the value otherwise it returns the empty collection. The result provides a useful type information when the

arguments are dynamic values. For partial types, we have two coercion functions. One is as (M, r) which

returns a singleton collection of itself if the dynamic value denoted by M belongs to the partial type r;

otherwise it retuns the empty collection. The other is coerce(M, r) which returns a singleton collection of

the value part of the dynamic value denoted by M if its type is the same as 7; otherwise it returns the empty

collection. The collection type is used in fuse, a s and coerce to avoid run time exceptions.

2.2 Types, Kinds and Typing Rules

The set of types and eqtypes (i.e. types with computable equality) are given as:

T ::= b 1 beq 1 [l : r , . . . , 1:rI 1 {r) 1 T + T 1 P (K)
a ::= beq I C1:a. ..., 1:al) {a) I P (E)

b stands for base types and beq for those with computable equality. [I: 7 , . . . ,1: 71 is the syntax for record

types. {r} stands for collection types. P (. . .) are partial types specified by kinds (K) or eqkinds (E), which

are given by following syntax:

K ::= <r> 1 <l : r , ..., 1:r> 1 any
6 ::= = <a> (<l :u , ..., I : u > ~ ~ I eq

The following kinding relation gives the intended meaning of kinds:

r :: any

Kinds are used to define typing rules for elimination operations for dynamic values. It also plays an important

role in developing a type inference algorithm in section 3.

Partial types are naturally ordered in terms of the amount of static information:

The ordering on types is the smallest reflexive relation containing the above relation. The ordering has the

following property, which will be needed to develop type checking rules:

Proposition 1 j is a partial order with pairwise bounded joins and meets.

Using these definitions, we can now define the type system as a proof system for typings of the form

A bM : T where A is a function from a finite set of variables to types, called a type assignment. We write

A{x : r) for the function A' such that dom(A1) = dom(A) U {x}, A1(x) = r and A1(y) = A(y) for all

y E dom(A), y # x. Figure 1 shows some of the typing rules. If the collection types are sets then the types

r 1 , r 2 in the rule (union) are restricted to eqtypes 01, a2. The partiality of partial types is increased by the

rule (union), decreased by the rule (fuse) and changed by the rule (as). The complete set of typing rules will

be given in the full paper.

The calculus has a static type-checking algorithm.

Proposition 2 For any pre-term M and A, there is at most one r such that A bM : r . Moreover, there

i s an algorithm which, given A and M , computes the unique T such that A bM : r if one exists; otherwise

it reports faihre.

A b M , : ri (1 < i 5 n)
(record)

A b Cl1=M1,. . . , ln=Mnl : Ch : T I , . . . , I n :%I

A b M l : { r ~) A b M 2 : { r 2 }
(union) if r3 = rl n r 2

A b u n i o n (M 1 , M 2) : { r 3 }

A b M 1 : a l A b M 2 : a z
(fuse) i f a3 = ol U a2

A b f u s e (M 1 , M2) : (03)

A b M : r
(dynamic)

A b d y n a m i c (M 1 : P(<r>)

Figure 1: Some of the Typing Rules for the Base Calculus

This is proved by proving the stronger statement that any term has a t most one typing derivation. The

proof is by induction on the number of applications of typing rules. I
The next property guarantees that the introduction of partial types preserved the property of simple

types:

P r o p o s i t i o n 3 If M does not contain d y n a m i c then A bM : T is derivable in our system i f l i t is derivable

in the simply typed lambda calculus with records. 1

As we noted earlier, this property is needed for operations that require the complete structures of objects.

2.3 Operational Semantics

Following [ACPPSS], we give an operational semantics by defining a set of rules to reduce closed terms to

canonical values. To do this we define the set of canonical values as:

v : := (c : b) I X 2 : r . M I [l=v ,..., l=vl ({ v ,..., v) ((T , v) (wrong

and the set of canonical eqvalues as:

d : := (c:be4) I [l=d,. . .,l=dl I { d , . . . ,dl 1 (u ,d)

We have already explained {. . .) and (T , v) . If the collections are sets then we assume an appropriate

equivalence relation on values of the form {. . .) and consider them as equivalence classes. wrong is the

canonical value of a run time type error. We write M + v t o denote that M is reduced to a canonical

value v . We define the extent [K] of a kind K as T E [K] iff there is some 7' such that T 5 r' and T' :: K .

Figure 2 shows some of the reduction rules. The complete set of rules will be given in the full paper.

The type system is extended to the canonical values we have just introduced by adding the rules:

M I - d M 2 * d if d is an eqvalue
f u se (M1 ,M2) = { d)

M1 * dl M2 * d2 if d l , d2 are eqvalues and dl # dr
f u s e (M 1 . M ~) a {)

Figure 2: Some of The Reduction Rules

d b v i : ~ (l < i < n)
(collection)

db{vl, ..., vi} : {T}

d b v : T
(dval) for any K such that T E [K]

d b(~,v) : P(K)

Note that the extended terms in general have multiple typings but wrong has none. The following theorem

establishes the soundness of the type system.

Theorem 1 For any term M and any canonical expression v , i f 0 bM : T and M v then 0 bv : T

The typing is preserved by ,B-reduction, whose proof is similar to that of the subject-reduction theorem

[HS86]. The theorem is then proved by using the definitions of typings for term constructors. 1
Since wrong has no typing, we have:

Corollary 1 For any term M and any canonical expression v, i f 0 b M : T and M v then v # wrong.

2.4 Programming Examples

We show how these partial types are used in programming with heterogeneous sets. We use pairs (M , N),

M . i, M .2, product type *T2 and n-argument function definition of the form fun f (x, . . . , x) =
Then are easily defined using records.

A function to fuse a dynamic value with a member of a set of dynamic values can be implemented as

fun fusei(x:a~.~:{az}) =

reduce(~y:a2.fuse(x,y),~x:{al)*{a~}.union(x.i,x.2),({}:{~~ u ~2)) ,s)

and the intersection of two sets is then implemented as

fun intersect (S1:{ul),S2:{a~}) =

reduce(Xy:ul .fusei(y,S2) ,Xx:{al)*{a2}.union(x.l,x.2) ,({):{a1 U a2)) ,S1)

on partial types, which has the type {ul) * {uz} -+ {a1 U u2) as expected. In a similar fashion it is straight-

forward t o implement other set operations such as subtraction for sets of dynamic values.

In databases there is an ambiguity about the meaning of the is-a relationship. By asserting Employee

is-a Person we may mean that Employee is a subclass of Person in the sense that the methods of Person are

also available for instances of Employee. We may also mean that Employee and Person are sets and the is-a

relation specifies set inclusion. Notice that these two meanings are incompatible if we assume the sets are

uniformly typed, for how can a set of one type be a subset of a set of another type?. However, if we allow

sets to be heterogeneous and agree that the is-a ordering is (the inverse of) our ordering on types, then we

can derive the ordering on sets from the ordering on partial types.

Assume that Person is shorthand for the type ? (<Name : s t r i n g , Address : s t r i n g >) and Employee is

shorthand for ?(<Name: s t r i n g , Address : s t r i n g . Salary: i n t >) . The function

fun Persons-of (S : P (a n y)) =

r e d u c e (A x : P (a n y) . as (x : Person), Ax: {Person)*{Person} . union(x . I , x . 2 1 , ({I :Person) , s)

is of type {? (any) } - -+{Person)

fun ~ m ~ l o y e e s - o f (S : P (a n y)) =

reduce(Ax :? (a n y) . as (x : Employee),

Ax: {Employee)*{Employee) .union(x . I , x . 21, ({I: {Employee)) , S)

is of type {? (any) } +{Employee) and the semantics of our operations for partial types guarantees us

that Employees-of (S) Persons-of (S) . Thus the inclusion relationship is derived from the relationship

on kinds. Moreover, we shall show in the next section that the desired features of method inheritance between

those sets are automatically achieved by ML style polymorphism through type inference. To our knowledge

no other statically typed programming language allows this coupling of inheritance and subsets.

3 Type Inference Algorithm

Type inference is a method used to infer the set of all derivable typings for a given untyped term. Let e stand

for the set of untyped terms obtained form the terms of the base calculus by erasing all type specifications of

the form Ax : T. M', ({) : { r)) , d ynamic (M : r) . We write A b e : T if there is some M such that e is the

type erasure of M and A bM : T. The type inference problem is then stated as the problem to construct a

representation of the set {(A, T)(A b e : 7)

To solve this problem, we define conditional typing schemes [OB88] to represent sets of typings. This is

the refinement of type schemes [Hin69, Mi1781 with syntactic conditions on substitutions of type variables,

which are needed t o represent constraints associated with some of our typing rules. Some of the conditions

can be integrated directly in type schemes by refining them to kinded (eq)type schemes by introducing kind

constraints on (eq)type variables [Oho90]. The appropriate set of kinded type schemes (ranged over by T)

and kinded eqtype schemes (ranged over by E) are give as:

t K , uK are kinded type variables and kinded eqtype variables respectively ranging over types and eqtypes. I<

denote kind schemes which constrain their instantiation. K , E are kinds and eqkinds we have defined for the

base calculus. The set of kind schemes appropriate for our calculus is:

where U is the universal kind scheme, P is the partial kind scheme and <l : a,. . . , I : a> stands for record kind

schemes. The kinding relation is given as follows:

The notion of substitutions is refined to represent kind constraints. A kind preserving substitution 0 is a

function from the set of kinded type variables to kinded type schemes such that O(tK) # tK for only finitely

many t K , it maps eqtype variables to eqtype schemes, and O(tK) :: O (I 0 for all t K . The notion of unifier

and most general unifiers are defined as usual.

Robinson's unification algorithm is refined to kinded type schemes:

Proposition 4 There is an algorithm U which computes a most general kind preserving unifier of a given

set of pairs (equations) of kinded type schemes if one exists; otherwise it reports failure. 1

This is a simple extension of a result shown in [Oho90]. I
In order to represent the constraints associated with the rules (union) and (fuse), we have to introduce

explicit conditions on substitutions of type variables. The following definitions are straightforward adaptation

of the method developed in [OB88]. Define conditions as formula of the forms: T = l u b (T , T) or T =

glb(T,T) . We say that a kind preserving substitution 0 is ground for X if, for any type variable tK in X ,

O(tK) is a type. A substitution 0 ground for c satisfies a condition c, denoted by 0 c, if

1. c Tl = lub(Tz,T3) and O(Tl) = O(T2) U 0(T3), or

2. c = TI = glb(Tz, T3) and O(Tl) = 0(T2) fl O(T3).

Let C be a set of conditions, C be an assignment of kinded type schemes to variables. Define 0 C iff

0 c for all c E C . A conditional principal typing scheme is a formula of the form C, C b e : T such that

A b e : T iff there is a kind preserving substitution 0 such that 0 C, A (x) = O(C(x)) for all x E dom(C)

and T = O(T). Since the definition of conditional typing schemes and the conditions have similar properties

of those in [OB88], the following theorem can be proved similarly.

Theorem 2 There is an algorithm P which, given an untyped term e , returns either (C, C , T) of failure

such that if P (e) = (C, C, T) then C, C b e : T is a principal conditional typing scheme otherwise e has no

typing. 1

As in [OB88], however, this theorem does not completely solve the type-checking problem because of

possible unsatisfiability of the set of conditions. Unfortunately, the satisfiability checking turns out to be a

hard problem. Since the condition of the form T = lub(T, T) has the identical structure to those we have used

for the database operation join in [OB88], the conlplexity of the complete type-checking problem is as hard

as in [OB88], which is NP-complete. A practical solution is to delay the satisfiability-checking until all the

type variables in conditions are instantiated with ground types. Once all type variables are instantiated with

ground types, the satisfiability can be efficiently checked. To achieve this, we require the type specification

for {} if it is used in the argument of un ion with other dynamic values. Violation of this requirement can be

easily detected by the compiler. Under this restriction, it is easily shown that union and fu se are evaluated

only if the arguments have ground types and therefore this strategy prevents all run time type errors. Since

we have the singleton constructor and union , the most common situation when {} is needed as an argument

of merge is inside of reduce . Taking this into account, the typing rule for r educe (f ,op,z , S) is defined

so that the type of op must be the product of the same type.

We now show examples to demonstrate how we achieve inheritance through ML style polymorphism. We

omit the kind tag U. Suppose we have two sets:

Employees : {P(<~ame:string,Address:string,~alary:int>)}

Students : {~(<~ame:string,Address:string,~dvisor:string>)}

and define the functions

f u n advisors S = reduce(Xx. x . ~ d v i s o r) ,un ion , {} ,S) ;

f u n add-saraly S = reduce(Xx . modify (x, s a l a r y , x . Salary + 500), un ion , {} , S) ;

Since the type system infers the following schemes:

0,Q) b advisor : {t~AdVdSOr:ta' 1 4 t 2 }

0 , 0 b add-saraly : it;Salary:int> + {tyalary:int> 1

they can be applicable t o Students and Employees respectively by kinded preserving instantiation. We can

think of these polymorphic functions as "methods" applicable t o Students and Employee respectively. As

we have advocated, we expect both of the two functions t o be applicable t o the intersection of the two sets.

In the previous section, we have defined the function i n t e r s e c t . For the untyped code of this function, the

type system infers the following scheme:

{ t ~ = lub(tz,t3)},6 b i n t e r s e c t : {t2}*{t3) -+ i t l }

When a.pplied t o the two set above, this function yields the following typing:

SupportedStudents = intersect(Students,Employees) :

{P(<Name: s t r ing,Address: s t r i ng ,Sa l a ry : i n t ,Advisor: s t r i n g >) }

Our polymorphism indeed allows us to apply both of the add-salary and advisor to the above set without

any loss of type information. For example, the type of add-salary(SupportedStudents) is the same as

that of SupportedStudents as we desired.

4 Conclusions and Further Investigation

The combination of partial types with the appropriate "bulk" data type provides a method of dealing with

heterogeneous collections in a statically typed language. However these two additions to the type system

are almost independent of one another. The only operations in which they directly interact are as , coerce

and fuse which return singleton or empty collections. This is a convenience that avoids the need to deal

with run-time exceptions. I t would be possible to describe partial types without making use of a collection

type. We have discussed two examples of collection types, lists and sets, and it appears possible to use the

same techniques in connection with other bulk types, binary trees or bags, for example. What we do not

yet understand is what is the general characterization of collection types? Why do partial types appear to

fit naturally with certain types and not with others? This seems to call for a rather general insight into

programming structures.

The ordering on types we have exploited is trivial except on partial record types. Does it need to be

extended t o other types? For database and object-oriented programming, the notion of "object identity",

which appears to be similar t o reference, is often invoked. I t seems to be straightforward to extend the

ordering t o work on reference types. However, it is not clear that we need t o extend it , say, t o function

types. An issue here is whether there is some useful "information" ordering on functions. There are useful

extensionally defined functions in databases, hash tables and B-trees, for example. But is there a natural

partial description of such structures as there is for records?

Finally, implementation is a serious issue. On face value this system calls for dynamic resolution of

record fields. It may be that there are efficient architectures for doing this; it may also be possible to

find some optimization techniques. For example, in many situations our heterogeneous collections may be

interally represented by a small number of uniformly represented homogeneous collections (this would be

the case in using data derived from a relational database). Operations on heterogeneous collections could

then be decomposed into operations on homogeneous collections, for which relational database technology

has provided us with optimization techniques.

References

[ACPP89] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically-typed language.

In Proc. 16th ACM Symposium on Principles of Programming Languages, 1989.

[BJ090] P. Buneman, A. Jung, and A. Ohori. Using powerdomains t o generalize relational databases.

Theoretical Computer Science, To Appear. Available as a technical report from Department of

Computer and Information Science, University of Pennsylvania, 1989.

[BTB089] V. Breazu-Tannen, P. Buneman, and A. Ohori. Can object-oriented databases be statically

typed? In Proc. Pd International Workshop on Database Programming Languages, pages 226 -

237, Gleneden Beach, Oregon, June 1989. Morgan Kaufmann Publishers.

[Car861 L. Cardelli. Amber. In Combinators and Functional Programming, Lecture Notes in Computer

Science 242, pages 2147 . Springer-Verlag, 1986.

[Car881 L. Cardelli. A semantics of multiple inheritance. Information and Computation, 76:138-164,

1988. (Special issue devoted to Symp. on Semantics of Data Types, Sophia-Antipolis, France,

1984).

[CHC9O] W.R. Cook, W.L. Hill, and P.S. Canning. Inheritance is not subtyping. In Proc. 17th ACM
Symposium on Principles of Programming Languages, pages 125-135, 1990.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism. Com-

puting Surverys, 17(4):471-522, December 1985.

R. Hindley. The principal type-scheme of an object in combinatory logic. Pans. American

Mathematical Society, 146:29-60, December 1969.

J . R. Hindley and J . P. Seldin. Introduction to Combinators and X -Calculus. Cambridge University

Press, 1986.

L. A. Jategaonkar and J.C. Mitchell. ML with extended pattern matching and subtypes. In Proc.

ACM Conference on LISP and Functional Programming, pages 198-211, Snowbird, Utah, July

1988.

R. Milner. A theory of type polymorphism in programming. Journal of Computer and System

Sciences, 17:348-375, 1978.

J . C. Mitchell. Toward a typed foundation for method specialization and inheritance. In Proc.

17th ACM Symposium on Principles of Programming Languages, 1990.

A. Ohori and P. Buneman. Type inference in a database programming language. In Proc. ACM

Conference on LISP and Functional Programming, pages 174-183, Snowbird, Utah, July 1988.

A. Ohori. Semantics of types for database objects. Theoretical Computer Science, Special issue

dedicated to 2nd International Conference on Database Theory (To Appear). Available as a

technical report form University of Pennsylvania, 1989.

A. Ohori. Extending polymorphism to records and variants. Unpublished manuscript, Preliminary

abstract presented at 6th Workshop on Mathematical Foundation of Programming Semantics,

1990.

D. RCmy. Typechecking records and variants in a natural extension of ML. In David MacQueen,

editor, ACM Conference on Principles of Programming Languages, 1989.

B. Stroustrup. The C++ programming language. Addison-Wesley, 1987.

S. R. Thatte. Type inference with partial types. In 1 5 ~ ~ International Colloquium of Automata,

Languages and Programming, Lecture Notes in Computer Science 317, pages 615-629, 1988.

M. Wand. Complete type inference for simple objects. In Proceedings of the Second Annual

Symposium on Logic in Computer Science, pages 37-44, Ithaca, New York, June 1987.

M. Wand. Type inference for records concatenation and simple objects. In Proceedings of 4th

IEEE Symposim on Logic in Computer Science, pages 92-97, 1989.

