
Effecting Database Transformations Using Morphase

MS-CIS-96-05

Susan B. Davidson
Anthony S. Kosky

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

Effecting Database Transformations Using Morphase*

Susan B. Davidson An thony S. Kosky
Dept. of Computer and Information Science Lawrence Berkeley National Laboratory,

University of Pennsylvania 1 Cyclotron Road,
Philadelphia, PA 19104 Berkeley, CA 94705.

Email: susan@central.cis.upenn. edu Email: Anthony-li'osky@lb1.gov

February 23, 1996

Contact author: Anthony Kosky, Phone: (510) 486 5471, Fax: (510) 486 4004

Abst rac t

Database transformations are a frequent problem for data managers supporting scientific
databases, particularly those connected with the Human Genome Project. The databases in-
volved frequently contain complex data-structures not typically found in conventional databases,
such as arbitrarily nested records, sets, variants and optional fields, as well as object identities
and recursive data-structures. Furthermore, programs implementing the transformations must
be frequently modified since the databases involved evolve rapidly, as often as 3 to 4 times a
year. We present in this paper a language (WOL) for specifying transformations between such
databases and describe its implementation in a system called Morphase. Optimizations are per-
formed at all stages, with significant impact on the compilation and execution time of sample
t~ransformations.

1 Introduction

Scientific d a t a of importance t o biologists involved in the Human Genome Project (HGP) resides in
a variety of databases, including relational and object-oriented systems, as well as in a mixture of
data formats used for storage and da t a exchange, such as ASN.l and ACeDB. These d a t a sources
frequently contain complex da t a types not found in conventional databases, such as arbitrarily
nested records, sets, variants and optional fields, as well as object identities and recursive data-
st~.nctures. As the scope of the HGP has grown, the heterogeneity and complexity of d a t a has
become increasingly problematic, and a wide variety of problems involving da t a transformations
have arisen. Examples include sharing d a t a between different database and software systems,

'This research was supported in part by DOE DE-FG02-94-ER-61923 Sub 1, NSF BIR94-02292 PRIME, ARO
AASERT DAAH04-93-G0129, ARPA N00014-94-1-1086 and DOE DE-AC03-76SF00098.

clnerying irlultiple databases, supporting database evolution, migrating data from one system to
another, and implementing data input utilities and user views, which typically represent data in a
\.Pry different form from how it is actually stored.

111 each of the data transformations alluded to above, the problem is one of mapping instances of
one or more source database schemas to instances of some target database schema. Incompati-
bilities between the sources and target may exist at all levels - in the choice of data-model, the
representation of data within the model, and the data within a particular instance - and must
explicitly be resolved.

The problems of data transformation are not unique to the HGP but exist in business, academia,
lnilitary and many other applications. Throughout the paper, we therefore use simple, intuitive
exalrlples that typify the complexities we have encountered rather than using actual biological
esai~iples that require significant background to understand.

Example 1.1: As a simple example, consider the problem of integrating the US Cities-and-States
and European-Cities-and-Countries databases shown in Figure 1. The graphical notation used here
is inspired by [3]: the boxes represent classes which are finite sets of objects; the arrows represent
ctttributes, or functions on classes. An instance of such a schema consists of an assignment of finite
iets of objects to each class, and of functions on these sets to each attribute. (See [lo] for details).

str str

Schema of US Cities and States

name /Str

lan ua e str I City, , 1->I CountyE e>
I I currency hstr

name 1 is-capital

str Boo1

Schema of European Cities and Countries

Figure 1: Schemas for US Cities and European Cities databases

The first schema has two classes: City and State. The City class has two attributes: name,
1,epresenting the name of a city, and state, which points to the state to which a city belongs. The

Sl,a.te class also has two attributes, representing its name and its capital city.

The second schema also has two classes, this time City and Country. The City class has attributes
representing its name and its country, but in addition has a Boolean-valued attribute is-capital
which represents whether or not it is the capital city of a country. The Country class has attributes
17epresenting its name, currency and the language spoken.

Suppose we wanted t o combine these two databases into a single database containing information
about both US and European cities. A suitable schema is shown in figure 2, where the "plus"
node indicates a variant. Here the City classes from both source databases are mapped t o a
hingle class CityT in the target database. The state and country attributes of the City classes
are mapped t o a single attribute place which takes a value that is either a State or a Country,
depending on whether the City is a US or a European city. A more difficult mapping is between
tlre representations of capital cities of European countries. Instead of representing whether a city
is a capital or not by means of a Boolean attribute, the Country class in our target database
has an attribute capital which points to the capital city of a country. To resolve this difference
in representation a straightforward embedding of data will not be sufficient. Further constraints
O I I the source database, ensuring that each Country has exactly one City for which the is-capital
attribute is true, are necessary in order for the transformation to be well defined. a

str

Country.

ce

Figure 2: An integrated schema of European and US Cities

State,
str

To date within the HGP, these transformation problems have been attacked by writing special-
pnrpose programs doing explicit data conversions between fixed schenias. However, since the un-
derlying data sources represent the results of scientific experiments, the schemas evolve rapidly in
response to changing experimental techniques and requirements. These special purpose programs
therefore quickly beconie obsolete and cannot be easily modified. It is also difficult t o reason about
the correctness of the transformation implemented.

name >str
I

ca~ital I

\Vithin the database research community, work in data transformation typically focuses on database
integration. The most common approach taken is to apply a series of small transformations or
lleuristics to source schemas in order to transform them into the target schema [13, 4, 11, 141.
ITnt'ortunately such work generally focuses on schema manipulation but neglects t o describe the
elfect of the transformations on the actual data. Further the expressibility of such approaches

i\ inherently limited by the selection of transformations or heuristics supported. For example,
none of the systems mentioned would be able to deal with the transformation between the Boolean
i5-cEtpital attribute of Cites and the capital attribute Countries in the example above. An alternative
,\l,p~oach is to use some high-level language to describe the transformations as in [l, 81. The
111 ol)lenl here is to find a language which is declarative and easy to specify transformations in, but
15 \ufTitiently expressive t o deal with all the transformations and data-structures likely to arise,
ant1 can he implemented in an efficient manner. The rewrite rules of [I] are the closest existing
n orli to satisfying these goals; however, they are limited in their expressibility and cannot deal with
transforinations involving recursive data-structures or object identity.

I11 this paper, we present a declarative, Horn-clause language, WOL (Well-founded Object Logic),
for specifying data transformations, and describe its implementation in Morphase.' WOL is based
on a very general data-model, supporting complex data-types and object-identity, which is capable
ol representing the data-types found throughout the BGP databases as well as in more established
data-models. The language, though similar in flavor t o other Horn-clause based languages such
dh f'rolog and Datalog, differs from these in allowing partial descriptions of complex data objects.
Object identities are handled using methods similar to those of [9]. Section 2 gives an informal
tlescription of WOL through a series of examples, and illustrates how it can be used t o express a
\vide variety of database constraints as well as transformations. We also show how constraints and
tidnsformation clauses interact with each other. Section 3 discusses how t o effect non-recursive
WOL transformations in one-pass over the underlying data sources by translation t o a normal
form. Although this translation significantly reduces the run-time cost of a WOL transformation,
the translation itself (a compile time cost) is inherently expensive. We therefore present a number
of optimization techniques to improve the performance of the translation process. In Section 4,
n e describe the Morphase system which implements WOL. Morphase translates complete, non-
lecur5ive IVOL programs t o CPL, a database programming language also developed a t Penn, whose
ilrrpleinentation within the Kleisli system can be used to query and combine data from numerous
data sources important within the HGP [5]. We also describe trials in which Morphase was used
011 a transformation problem arising within the HGP at the Medical School of the University of
l'ennsylvania. Section 5 summarizes our contributions and describes future work.

2 The WOL Language

111 this section we will give an informal description of the language WOL, based on a series of
clsa~rlples. A formal definition of the WOL language, its semantics, and the various requirements
('01 . a well-defined WOL transformation program may be found in [lo].

The data lnodel on which WOL is based supports named finite extents of object-identities (classes)
as well as arbitrarily nested set, list, record and variant constructors. The model is basically equiv-
alent to t,hat of [2] and includes the features normally found in object-oriented, nested-relational
01. flat-relational models.

I &.lorphase has no relation to the god of slumber, Morpheus, rather it is an enzyme (-ase) for morphing data.

2.1 Formulae and Clauses

;\ specification of a transforniation written in WOL consists of a finite set of clauses, which are
logical statements describing either constraints on the databases being transformed, or part of the
relationship between objects in the source databases and objects in the target database. Each
clause has the forni

head-atoms += body-atoms

where head-atoms and body-atoms are both finite sets of atomic formulae or atoms. A11 example
of a simple clause for the Cities and States database shown in figure 1 would be

Here t,he body atoms are Y E StateA and X = Y.capita1, and the head atom is X.state = Y.
Each atom is a basic logical statement, for example saying that two expressions are equal or one
esl~ressioiz occurs within another.

'l'he meaning of a clause is that if all the atoms in the body are true then the atoms in the head
:Ire also true. More precisely, a clause is satisfied iff, for any instantiation of the variables in the
body of the clause which makes all the body atoms true, there is an instantiation of any additional
variables in the head of the clause which makes all the head atoms true.

So the clause above says that for any object Y occurring in the class State*, if X is the capital
ci ty of T' then Y is the state of X . This is an example of a constraint. We can use constraints
to clefine the keys of a schema that can be used to uniquely identify objects. In our database of
('itieh and States, we would like to say that a State is uniquely determined by its name, while a
('it!, can be uniquely identified by its name and its state (one can have two Cities with the same
tl;rllle belonging to different States). This can be expressed by the clauses

X = ~ k ' ~ ~ y ~ (n a r n e = N, state = S) +== (C2>
X E City*, N = X.name, S = X.state;

y MkStateA (N) +== Y E StateA, N = Y.name; (C3)

I\ lkC'it~.~ and fifjiState~ are examples of Skolem functions, which create new object identities associ-

ated urriquely with their arguments. In this case, the name of a City and the s ta te object identity
are used t o create an object identity for the City.

II'OL can be used to express a wide variety of constraints, including functional and existence
clependencies, key constraints, and other kinds of constraints supported by established data-models.
It can also express constraints which cannot typically be expressed in the constraint languages of
clatabases. For example, suppose that State and City each had an attribute population and we
wanted t o impose a constraint that the population of a City was less than the population of the
State in which it resides. We could express this as

2.2 Well-formed Clauses

Not d l syntactically correct W O L clauses are meaningful. We require two conditions t o hold on
n wc.11-forined \/VOL clause, namely that it be turll-t?jped and range-restricted. A clause is said t o
tw ircll-type(1 iff we can assign types to all the variables in the clause in such a way that all the
,\to111s of thc clause make sense. For example a clause containing the atom X' < If.yoyulation and
,rlt tom S t (,'ityA would not be well-typed. For the first atom to make sense X would have to
l ~ v c type znfegtr, and for the second it would have to be an object of class City*.

' I Ire\ c.orrc~>pt, of' range-restriction is used to ensure that every variable in the clause is bound to
~ O I I ~ C ol)j(lct or value occurring in the database inst,ance i n order for t l ~ c ;it orns of a clause to be
t I ne. This is similar to the idea of sajcty in Datalog clauses. For example the in clause

t lrc. \a rial)lc 1' is not range restricted.

\I1 t lrc. (lauses we consider in this paper will be both well-typed and rangc-restricted

2.3 Expressing transformations using IVOL

I11 atlditioil to c\xpressing constraints about individual databases, W O L clauses can be used to
c.slvrss r ~ l i ~ t i o ~ ~ s h i p s between the objects of distinct databases.

('onsider the clause

'I'lli, states that , for (.very Country in our European Cities and Countries database (figure l), there
is a corresponclit~g Cfountry in our target international database (figure 2) with the same name,
I,~nguage and nlrl.c.ncy. This is an example of a tmnsformation clause, which states how an object
0 1 11c~rt c~f an o l~ . j~c t in the target databasc arisrs from various objects in the source and target
tlntabases.

.\ hit~~ilal- c.l;~use can be used to describe the relationship between European Cit.y and Cit.y in our
target database:

1' E Cit.yT, Y.nrzme = E.name, IT.placr = ins ,,,,.,, ty(X) (7'2)
+== E: E Cit.yE, X E CountryI, X.name = E.country.name;

Notc tllat the body of this clause refers to objects both in the source and the target databases:
i t hay, that if there is a City I3 in the Enropean Cities database and a Conntry X in the target
tlatabahc wit11 thc same rlarlle as tl1e rlatne of the c0untr.y of E , then there is a City Y in the target
tlnt<~l~;iw with the same narnc as E and with coljntry X. (ins,,,,_,,t, accesses the ruro-city choice
ol t hc varial~1).

-4 final clause is needed t o show how to instantiate the is-capital attribute of City in our target
database:

.!-.capital = Y -+== (T3)
,ri E CountryT, Y E CityT, Y.place = ins ,,r,_, ;,(XI
E E CityE, E.name = Y.name, E.state.name = X.name, E.is-capital = True;

Notice that the definition of Country in our target database is spread over multiple WOL clauses:
tlie first clause describes a country's name, language and currency attributes, while the third
clause describes its capital attribute. This is an important feature of WOL: in order t o simplify
writing transformations involving complex data-structures with many fields, and particularly those
involving variants, it is useful to be able to split up the specification of the transformation into
s~llall parts involving partial information about the data-structures.

.\nother point to notice is that , in order to combine these two clauses to get a full description of
,I ('ou~ltry in the target database, we need some way of determining when the two clauses refer to
the saine object in the CountryT class; that is, a way of uniquely identifying objects. To do this
lve can combine these two clauses with a key constraint for the class CountryT:

JC ~ l ~ c o u n t r y ~ (N) X E CountryT, N = X.name; (C5)

This illustrates an important principle on which WOL is based: there are important interactions
het~veen database transformations and constraints. Firstly, as we have just shown, constraints
niay play a part in determining transformations; secondly, in order for a transformation to be well-
tlefined it may imply certain constraints on the source and target databases; and thirdly, constraints
on source da.tabases axe important in optimizing transformations as will be seen in section 3.2.

.\ 1rcrn.iforrnntion program therefore consists of a finite set of transformation clauses and constraints
for soiue source and target database schemas. Given such a transformation program, say Tr, a
Tr-transformation of an instance of the source database would be an instance of the target database
s i ~ c h that the two instances satisfy all the clauses in Tr.

Since WOL clauses represent logical statements, there may be many instances of a target database
satibfying a set of clauses for a particular source database. For example the clauses (TI), (T2)
and (T3) above would imply that there are objects in our target Country class corresponding t o
each ('0untr.v in our source database, but would not rule out the possibility of having lots of other
('ollntries, not related t o any in our source database. When dealing with transformation programs,
\ve are therefore interested in the unique smallest transformation of a particular source database.

.\ tl.ansforination program Tr is said to be complete iff whenever there is a Tr-transformation
of a particular source database instance, there is a unique smallest such Tr-transformation (upto
renaming of object identities). In general, if a transformation program is not complete, it is because
I he programmer has left out some part of the description of the transformation. The algorithms
used in the hlorphase system, described below, will detect incomplete transformation programs
and indicate t o the programmer where additional information is needed.

3 Normal-Form WOL Programs

To iinplenlent a transforniation directly using clauses such as (TI) , (T2) and (T3) would be difficult
a ~ l d computationally expensive: to infer the structure of a single object we would have to apply
nlultiple clauses, for example clauses (Tl), (T3) and (C5) would be needed for a single Country
object. Further, since some of the transformation clauses, such as (T l) and (T3), involve target
clashes and objects in their bodies, we would have to apply the clauses recursively: having inserted
a new object into CountryT we would have to test whether clause (T2) could be applied to that
('ountry in order to introduce a new CityT object.

Since a TWOL program may be used to transform entire databases and may be used multiple
tittles for different instances, we choose an implementation strategy which at compile time finds
aa equivalent, more efficient transformation program in which all clauses are in normal form. A
tra,nsformation clause in normal form completely defines an insert into the target database in terms
of the source database only. That is, a normal form clause will contain no target classes in its body,
and will completely and unambiguously determine some object of the target database in its head.
For example a normal form transformation clause for our target class CourltryT would be

-1- E C O U I I ~ ~ Y ~ , X ~ l i ~ ~ ~ ~ ~ ~ ~ ~ (N) , X.name = N, X.language = L, X.currency = C, (Nl)
.$-.capital = J!4kCityT(name = Z.name,place = N)

+== Y E CountryE, Y.name = N, Y.language = L, Y.currency = C ,
Z E CityE, Z.country = Y, Z.is-capital = True;

Given a transformation program in which all the transformation clauses are in normal form, the
tl-ansformation may then be easily implemented in a single pass using some suitable database
~,vogran~ming language. Such a transformation program is said to be in normal form. Implementing
the normal-form transformation program rather than the original program significantly improves
the run-time performance of the transformation.

ITnfortunately, not all complete transformation programs have equivalent normal form transforma-
tion programs. and it is not decidable whether a transformation program is complete or such an
equivalent normal form transformation program exists. We therefore place syntactic restrictions on
tlansforination programs so that they are non-recursive, such that most natural transformations
\ati\fy these restrictions.

3.1 Computing Normal Form Transformation Programs

'L'he algorithm for computing equivalent normal form transformation programs works by starting
w i t h a clause which describes one object in the database, and repeatedly unfolds that clause using
other clauses of the W O L program until a normal form clause is reached. The description clauses,
xvit,h which the algorithm starts, have a set of atoms completely describing an object as both their

1lea.d and their body. For example a description clause for the CountryT class would be:

X E CountryT, X = M ~ ~ ~ ~ ~ ~ ~ ~ J ' T (Y), X.name = N , (Al ?
X.language = L, X.currency = C, X.capital = Z

+== X E Country,, X = M ~ ~ ~ ~ ~ ~ ~ ~ T (Y), X.name = N,
X.language = L, X.currency = C, X.capital = 2;

The process of tinfolding such a clause involves unifying its variables with the variables of a program
clause, removing any atoms from its body for which equivalent atoms occur in the head of the
program clause, and replacing them with the atoms in the body of the program clause. Note that
atoms can only be removed from the body of the clause being unfolded if doing so does not break
the range restriction of the clause. For example unfolding (Al) on the clause (C5) and unifying
(7' F- N , X h X? N H N, C H C, L H L, Z H Z) would give:

_Y E Countr.yT, X = MlcCountryT (N) , X.name = N, (A21
aX7.1anguage = L, X.currency = C , X.capital = Z

% S E CountryT, X.name = N , X.language = L, X.currency = C, X.capital = Z;

11nfolding (A 2) on the clause (TI) gives

X E CountryT, X = ~k~~~~~~~~ (E.name), X.name = E.name, (A31
X.language = E .language, X.currency = E .currency, X. capital = Z

+= X E CountryT, X.capital= Z, E E CountryE;

As each unfolding is performed, the algorithm decorates each atom by marking it with the transfor-
l~latioil clauses that have been used in generating it. Further, any atoms introduced by an unfolding
are decorated with the marks of any of the atoms that are matched by the unfolding. For example,
the atoms X E CountryT and X.name = N in (A 2) and the atom X E CountryT in (A3) would
be nlarkecl as generated by (C5); the atom E E CountryE in (A3) would be marked with both
(C'5) a.nd (T I). We disallow an unfolding using a transformation clause if no atoms that have not
;~lreatl!; been inarked with this clause are matched and removed by the unfolding. This process
coiltinues until no more unfoldings are possible, or until the clause is in normal-form.

Psendo-code for this naive algorithm for computing equivalent normal form transformation pro-
grams is shown in figure 3. The next subsection will describe a number of optiniizations to improve
it,.

\I7e can prove that this algorithm always terminates; however, if it terminates in a failure there
~iiight actually be an equivalent normal form WOL program which was not found. Since determining
\~llether there is an equivalent normal form WOL program is an undecidable property, we have
iinposed syntactic conditions t o characterize a WOL program as recursive if it has an infinite
~u~folcling sequence. This characterization of recursion is a finer notion than that of Datalog[6], in
t ha t it allows clauses such as (T3) which define part of an object in terms of other parts of the same
ohjcct or other objects in the same class. However clauses such as the following, which represents

Generate all description clauses;
REPEAT

FOR each transformation clause A DO
Generate unfoldings of description clauses on A;
FOR each unfolding U DO

IF all atoms matched in U are marked with A
THEN FAIL ("recursive program") ;
ELSE add unfolded clause to description clauses;

OD
mark atoms introduced in description clauses with A;

OD
UNTIL no more unfoldings are possible;

Test for incomplete clauses;
RETURN normal form clauses;

Figure 3: Naive algorithm for generating normal form clauses

t r;l.iisitive closure, are clearly recursive:

If we included this clause in a transformation program then we could unfold it infinitely many
t.imes, never reaching a normal form. (See [lo] for a complete characterization of recursive WOL
programs).

If the normal form program terminates with a failure, the user may use error information provided
to reformula.te the original program in a way that could be normalized.

3.2 Optimizing the normalizatioii algorithm

'l'lle algorithm suggested in section 3.1 first generates description clauses for each class, and then
finds maximal sequences of unfoldings starting from each description clause t o see which ones end
in ~lorinal form clauses. Generating the maximal unfolding sequences involves doing a breadth-first
unfolding of each description clause on all the transformation rules, a process that is inherently
exponential. In addition, a t each stage there may be many possible unifiers for each transformation
rule, and the number of description clauses is potentially exponential in the number of set and
variant type constructs in the schema. It is clear that such a naive algorithm would be infeasible.

L'ort unately. we can reduce the search space and restrict our attention to a small subset of relevant
r~nfolcling sequences. Many unfolding sequences are equivalent in that they differ only in the order
in x\-hich rules are applied, but result in the same final clauses, while others are subsumed by more
general unfoldiilg sequences or can never reach a normal form. We therefore have two objectives in
optimizing the normalization process:

1 . explore as few equivalent unfolding sequences as possible; and

2. tlibcontiirue unproductive unfolding sequences as early as possible.

\\'e have cleveloped a number of optiinizatiolls aimed a t these two goals, whicll combine t o make a,
practically feasible normaliza,tic~n algorithm. We describe some of thcse optimizations below.

Using maximal unifiers. The idea behind maximal unifiers is t o unify as many variables as
~)ov,iiblr at each stage. For example i l we are unfolding the clause

lisillg the transforma,tion clause

X' = C', Y' E XI, lJ' = Y'.n += @;

(\\.here !P and @ denote some sets of atoms), there is an obvious unifier which may be written
(.I. c- -k t , 1' +- J7', U H U ') (X illatches XI, Y matches Y' and so on). However there are also
many other possible unifiers, such as (U r U ') and (I ' H Y', W H U') and so on. In general the
I I I I I I I ~) C I - of unifiers is exponential in the number of variables. I-iowever wc ciln prove that we will
I I O I loiv anything if we unify as many variables as possible a t each stage.

Ordering transformation rules. In general, there may be many equivalcrlt r~nfolding sequences
lo1 a particular target clause, differing only in the order in which they apply clauses. For example,
\111)1)05e me I I ~ I V P :I targcl class C' with attributes a and 0. and we are unfolding the clansc

\ ~ i I 1 1 I hc t ra r~slormation clauses

'I ' l~eu we can either unfold (A4) first on (T4) and tlren on (T5) , clr first on ('1'5) and then cln (T4) .
111 either case the result is

= 4'1 ,@2

i o i t i b rlilllecessary to corlsider hot11 unlolding sequences.

\ \ (\ (.;III avoid suclr multiple unfolding paths by assuming some arbitrary ordering on the trans-
lor.rr~irtio~r clauses of il program. For example, i f WP decided that (T4) came before (T5) in the
o~.tlci.itrg. illen we wol~ltl not attempt to unfold on (T.1) after having unfolded on (T5).

-1 prol)lem \\it11 this approach is that unfolding on one clause might enable an unfolding on another
(1a11he wllicll was not previously possible. For example, suppose wc have two transformation clauses:

wlrere (T4') comes before (T5') in our ordering, and we were trying to unfold a clause

Thcn (Ad') is not unfoldable on (T4'). However we can unfold (A4') on (T5') followed by (T4'), to
get the clause

@ * '3'1,@2;

'rllis unfolding sequence should be allowed, even though (T4') comes before (T5') in the ordering,
I~ecause the unfolding on (T4') involves matching some atoms that were not available at the start
of the unfolding sequence. We can use the markings of atoms discussed in section 3.1 in order to
avoid this problem: an unfolding on (T4') is allowed after an unfolding on (T5') provided that the
unfolding on (T4') matches some atom that is marked as being generated by (T5'), or by some
other clause that comes after (T4') in the ordering.

Avoiding redundant unfoldings. An unfolding on one clause can also be made redundant by
a n liilfolding on some later clause in an unfolding sequence. For example if we had transformation
clauses

and we a.re unfolding a clause

'I'llell unfolding (A5) first on (T6) and then on (T8) yields the clause

which is subsumed by the clause reached by just unfolding (A5) on (T8):

I<cluallg an application of (T7) would be made redundant by a following application of (T8), though
an application of (T6) could usefully follow an application of (T7) and vice versa. In general an
iulfolding on some clause will make an earlier unfolding redundant if it matches all the atoms
matched by the earlier unfolding. We call use a system of markings of atoms, similar to those
tlcscribed before, to detect and avoid such unfoldings.

Dynamically altering transformation programs. The rules of a transforniation program
will in general define the objects of one target class in terms of the objects of other target classes.
('o~isetluently it is often necessary to repeat a series of unfoldings in several different unfolding
wclucnces, possibly for different target classes.

For example, suppose our target schema had four classes, {Cl,C2, C3, C4), our source schema
cotltai~led three classes, {Dl, D2, D3), and our transformation program Tr consisted of the clauses:

Then in order to get a normal form clause for the class C1 it is necessary to unfold a description
(I;~use on first (T9), then (T11) and then (T12); to find one for Cz it is necessary t o unfold on (T10)
then (71 1) and then (T12); and t o find one for C3 it is necessary to unfold on (T11) then (T12).
('learly, there is duplication of effort here, and we could improve efficiency by "memo-izing" the
I-esult of unfolding (T11) then (T12). In particular, we can first generate a new rule, say (T1ll) ,
by unfolding (T11) on (T12):

\\P can then use this rule in place of (T11) in our transformation program. This replaces the
repeated unfolding sequences with single unfoldings on (T1ll).

Note that . in general, unfolding a transformation clause may introduce new atoms into its head.
Therefore, it is possible that replacing rules with memo-ized rules this way will increase the number
of rules in our program which can match a particular set of atoms. For example, suppose we had
rules

X E C, Y = X.a -+== X E C, Z = X.b, @,5; (T13)
X E C, Z = X.b, W = X.c @6; (T14?

~vhere Q5 and (P6 contain no target terms. Then unfolding (T13) on (T14) returns the partial
~lorilial form rule

X E C, Y = X.U, W = X.c % @ 5 , @6; (T13')

11 n P replaced (T13) with (T13/), there would then be two clauses with heads containing atoms t o
u i a t c l ~ _y E C' and W = X.c instead of one. Consequently, when unfolding other clauses which had
~ ~ l a t i v e l y base variables with this term path, there would be more clauses to unfold them on.

'rllis increase in the number of clauses matching a particular set of atoms could potentially outweigh
ally advantage gained by converting rules into partial normal form. However we can avoid this
problem by only considering the sets of atoms in the head of the original program clause when we
replace it with a memo-ized clauses. In the above example we would then count the head atoms

of' (TI?) as being X E C , Y = X.a - the same as those of (T13) - and only consider these when
trying to ~liifold clauses on (T13'). It is safe to do this since any new atoms in the head of (T13')
~ ~ o u l d have been generated by some other clause, and will therefore already be implied by other
(.lauses in the transformation program.

The optimizations described above and others are described in more detail in [l o] .

4 Morphase

The yystem wl~icli compiles W O L programs into C P L using the algorithms and techniques of the
previous section is called Morphase. A prototype of Morphase written in M L [12] and based
on a restricted version of the W O L language, has been implemented and used in several trial
transformations within the Philadelphia Genome Center for Chromosome 22 (see [7,10] for details).
Ti1 this section, we describe Morphase and how transformations are effected, and briefly review the
results of one of our trials.

4.1 Architecture

'l'lle architecture for the Morphase system is illustrated in figure 4. As shown in this figure, WOL
transformation rules are typically written by the user of the system; however a large number of
constraints which complete the transformation rules can frequently be automatically generated
Sronl the illeta-data associated with the source and target databases. The kind of constraints that
can be derived in this way depend on the particular DBMSs being used, but frequently include type
information, keys and some other dependencies. Such constraints represent a significant part of a
transformation program, but are time consuming and tedious to program by hand. Deriving them
directly from meta-data therefore reduces the amount of grunge work that needs to be done by the
programnler, and allow him or her to concentrate on the structural part of a transformation.

'The translation of a W O L transformation program has several stages. The program is first trans-
Inter1 into semi-normal form (sn f) . This involves a rewriting of the W O L clauses in order to reduce
t l~c. number of forms the atoms of a clause can take, so that any two equivalent clauses or sets
of dtomb will differ only in their choice of variables. The purpose of the semi-normal form is t o
sill~l~lifj- the unification of clauses, and also to make keeping track of certain information for the op-
tirrlizations simpler. (However we avoided using snf clauses for the examples of the previous section,
5ince they are generally larger and more difficult to read). The snf program is then transformed
into a normal-form program if possible, using the methods of section 3.

IIaving transformed a W O L program to normal form, it must then be executed against the source
databases to produce the target database. The problem, as alluded to in the introduction, is that
the hource as well as target databases are heterogeneous. We therefore compile complete, normal
form WOL programs into CPL, a database programming language developed at the University of
Pcunsylvania. The reason for using CPL as an implernentation language is that it supports many

Meta-
data il

snf tranformation program

I
I

I

I Morphase
system

I
I
I
I

Translator to snf
I

Figure 4: Architecture of the Morphase system

I I
normal-form transformation

I I

I I

I
I Translator to CPL

I
I

I I

I I
CPL code

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - _ I

1nput Output
data data

- CPL >-

Source DBs Target DB

of the data-types that we are interested in and is easily extensible. The Kleisli system accesses a
\vide variety of database systems, including those that we wished to use in our trials; furthermore,
it is an easy task t o add additional data drivers as new database systems are encountered (see [5]
for details of the Kleisli system). However translating normal form W O L programs into some other
hufficieirtly expressive DBPL should be a straightforward task, so the implementation should be
easily adaptable t o other systems.

4.2 Trials

111 order to test the feasibility of Morphase a series of trials were carried out using a prototype
implementation of WOL. These trials gave us significant insights into optimizations for the normal-
izatjon procedure, including those described in section 3.2, and they were subsequently incorporated
into the prototype. We are currently working on a full implementation of W O L in which we ex-
p c ~ l t o achieve significant performance improvements over the prototype by using more efficient
data-structures.

ltathcr than go into details of all the trials, we will focus on one involving the two primary cen-
t~1.s of information about Chromosome 22, ACe22DB and Chr22DB, since the transformation was
structurally complex. ACe22DB is an ACeDB2 database located a t the Sanger Centre in Cam-
bridge, England. ACeDB represents data in tree-like structures with object identities, and is well
suited for representing "sparsely populated" data [15]. Chr22DB is a Sybase relational database
lnaiirtained by the Philadelphia Genome Center for Chromosome 22. The informatics groups sup-
~ ~ o r t i n g these databases must routinely download data from the complementary database t o keep
their local database up-to-date, aid in planning experiments, and carry out mapping activities.
TTirfortunately, data is structured very differently in the two databases, since it is based on incom-
~ ~ a t i b l e data-models, as well as on different interpretations of the underlying data and how it should
IN. str11ct~red.

-1 series of lVOL programs transforming various molecular biology data in Chr22DB t o ACe22DB
n-ere written and tested along three measures: ease of use, compilation time, and size and complexity
of the resulting normal form program. The size and complexity of the normal form program is an
indirect indicator of the execution time of the actual transformation, since the Kleisli optimizer
will actually rewrite the CPL code t o a more efficient form. Furthermore, we felt that measuring
the execution time of the CPL program reflects more on Kleisli than on Morphase.

Ease of use is a qualitative measure, so we can only report our observations. W O L transformations
were programmed by researchers connected with the Philadelphia Genome Center, who used their
tlo~llaiil kllowleclge to formulate the transformations. Learning W O L and using it t o express the
tra~lrformations was found t o be an easy and natural process. The most difficult part of the
process was in fact understanding the foreign databases, and the semantic differences between the
datal~ases. As ACe22DB and Chr22DB have evolved over time, it has also been relatively easy to

2 A C. elegans Database (AceDB). While "C elegans" may sound like a contradiction in terms to a computer
scient,ist,, it is actually a small worm.

16

Figure 5: Conlparison of performance of various versions of the Chr22DB to -4Ce22DB transfor-
ma tioil program

Program

STS. direct
STS.xref
STS.constr

~notlify the original WOL program to reflect schema changes.

The coillpilation time and complexity of the normal form program depend heavily on how the
initial TYOL program is written. Various versions of the transformation program were therefore
tried to see how they affected these measures. The versions divided into two basic types: "direct"
programs and "external-reference9' programs. All transformation clauses of tlze direct versions
were a,lready in pa,rtial normal-form: that is, they contained no target atoms in their bodies.
(I'onsequent,ly normalizing the direct versions involved no sequences of multiple unfoldings, and
resulted in the smallest possible number of normal form clauses. The time taken t o normalize
direct programs showed us how much time was taken by the system on such tasks as parsing, type-
checking, converting clauses to semi-normal form, building description clauses and so on. In a sense
this provided a upper bound on the performance we might hope to achieve. The external reference
~.ersions of the program included various external reference constraints of the A c e schema, and
used these constraints t o generate many of the attributes of certain classes rather than deriving
them directly from the source database. These versions of the program involved a considerable
nllillber of unfoldings in order t o build normal form clauses.

Compilation
Time

5:33.63
1:53:32.70
37:28.16

In addition the programs were tried with and without various key and other constraints, which
provided an indication of how effective optimizations based on such constraints were, and how
inlportant proper constraint information is to performing efficient transformations. It was found
that certain constraints, in particular keys, were essential in obtaining acceptable performance
fro111 the system. For this reason various optimizations for the application of key constraints will
l ~ e incorporated in the full implementation of Morphase.

Number of CPL
Primitives

3 7
515
205

Figure 5 shows some results of these experiments; the times quoted were measured using the unix
tin1cx utility. The STS.direct program was a direct implementation of the transformation using
system-generated object identities. The STS.xref and STS.constr versions make use of the A c e
external reference constraints in order to instantiate the target tables. In STS.xref we avoided
using system generated object identities, and replaced them with values for which key constraints
lvere not available. This implenientation was somewhat unrealistic, but illustrated the importance
of keys in implementing transformations efficiently. The STS.constr also makes use of system
generated Skoleln functions to implement object identities for each class.

.Ah can he seen from these results, the use of transformation programs based on external-references

nlay increase the time taken for normalizing a program by a factor of six compared to the direct
versions. Nevertheless the times remained tolerable for a one-time operation. Also notable was
the fact that the size of the resultant normal form programs varied dramatically: in this particular
exanlple ranging from 205 clauses down to 37 for otherwise similar programs. This phenomenon
c ~ ~ u l t l be attributed to an unusual feature of the ACeDB data-model: virtually all attributes are
optional. Because of this, a large number of normal form clauses which only partially instantiate
t arget data-structures are generated, even though we would not expect these clauses to be used in
practice. It can be noted that more complete constraint information rules out many of these extra
norinal forin clauses, and provides better performance as well as a normal form program which is
(,loser to that of the direct version of the program.

5 Conclusions

The T/tTOL language is well-suited for the structural manipulations of complex data-types found in
tlilta transformation problems within the HGP. It is simple, declarative, and allows clauses which
only partially specify a target object. These qualities make it easy for non-database specialists to
rlsc3. a~lt l make W O L programs easy to modify as the schemas of source and target databases evolve.

Although the examples in section 2 only illustrate manipulations involving sets, records, variants
and object identities, in general W O L allows arbitrary nesting of these types as well as lists and
I~ags. Furthermore, although our trials of Morphase only discuss ACeDB and Sybase data sources,
it is quite easy to adapt the system to accommodate new data sources. Beyond adding new data-
clrivers to CPL (we currently support ASN.l in addition to ACeDB and Sybase), the only other
t ; l ~ l i is to add mechanisms for reading meta-data from the new data sources and translating the
uleta-data into W O L constraints.

Since W O L is coinpiled to CPL, which is being used to query and combine results from the multiple,
Ilcterogeneous databases, a natural question is why don't we directly use CPL for these transfor-
illations and eliillinate the compile-time overhead of Morphase? There are several answers to this
cluehtions.

First. no one language is right for every task. CPL is a query language for these complex types,
a n t 1 is therefore strictly more powerful than WOL. In contrast, W O L is a specification language
which lzas been designed be simple and easy to reason about. It also captures constraints in the
same paradigm as transformations; Morphase capitalizes on interactions between the two during
compilation to CPL.

Scc.ond, we want deal with structural manipulations that can be performed efficiently on laxge
q~~a~r t i t i es of data, and to avoid recursive transformation programs. The practical motivation for
illis is that computing recursive programs, such as the transitive closure of an entire database,
coultL have a very high run-time cost. We also feel that people don't really want to store something
Like the transitive closure of a graph, and prefer more compact representations.

Third. much of the compile time overhead of WOL arises because of features introduced to simplify

the specification of a structural transformation. For example, in the trials we conducted people
fveclnently took advantage of the ability to write partial clauses. They also frequently wrote incom-
plete programs, which were completed by the automatic inclusion of constraints from the source
clatabases. The trade-off is the compile-time of W O L programs versus programmer coding time.

In future work, we want t o complete the implementation of W O L in Morphase. We also need to
co~lsider how well the implementation scales to larger problems than we have considered (HGP
databases are typically rather small, less than a gigabyte). It is also clear that there is a potential
for graphical schema manipulation tools generating W O L transformation programs, which would
in~prove the user-interface t o the system.

Acknowledgements. We would like to thank Peter Buneman for his help, suggestions and ex-
a.nlples, and Barbara Eckman and Carmem Hara for their help with the Morphase trials.

References

[l] S. Abiteboul and R. Hull. Restructuring hierarchical database objects. Theoretical Computer
,Science, 62:3-38, 1988.

['L] S. Abiteboul and P. Kanellakis. Object identity as a query language primitive. In Proceedings
of ACM SIGMOD Conference on Management of Data, pages 159-173, Portland, Oregon,
1989.

[3] Serge Abiteboul and Richard Hull. IFO: A formal semantic database model. ACM Transactions
0 1 , Database Systems, 12(4):525-565, December 1987.

[4] .J. Banerjee, W . Kim, H. Kim, and H. Korth. Semantics and implementation of schema
evolution in ob ject-oriented databases. SIGMOD Record, 16(3):311-322, 1987.

[5] P. Buneman, S.B. Davidson, K. Hart, C. Overton, and L. Wong. A data transformation
system for biological data sources. In Proceedings of 21st VLDB, September 1995. Also
Technical report MS-CIS-95-10, Dept. of Computer and 1nforma.tion Science, University of
Pennsylva,nia. March 1995.

[(i] S. Ceri, G . Gottlob, and L. Tanca. What you always wanted to lrnow about datalog and never
dared t o ask. IEEE Transactions on Knowledge and Data Engineering, 1(1):146-166, 1989.

[TI S. B. Da,vidson, A. S. Kosky, and B. Eckman. Facilitating transformations in a human
genome project database. Technical Report MS-CIS-93-94/L&C 74, University of Pennsyl-
vania, Philadelphia, PA 19104, December 1994.

[S] U . Dayal and H. Hwang. View definition and generalisation for database integration in Multi-
l~ase: A system for heterogeneous distributed databases. IEEE Transactions on Software
Engineering, SE-10(6):628-644, November 1984.

[9] R.. Hull and M. Yoshikawa. ILOG: Declarative creation and manipulation of object identifiers.
In Proceedings of 16th International Conference on Very Large Data Bases, pages 455-468,
1990.

[lo] Anthony Kosliy. Transforming Databases with Recursive Data Structures. PhD thesis, De-
partment of Computer and Information Science, University of Pennsylvania, Philadelphia, PA
19104, November 1995.

[I l l R. J . Miller, Y. E. Ioannidis, and R Ramakrishnan. Schema equivalence in heterogeneous
systems: Bridging theory and practice. Information Systems, 19, 1994.

[I 21 Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press,
1990.

[1:3] A. Motro. Superviews: Virtual integration of multiple databases. IEEE Transactions on
,Softzuc~re Engineering, SE-13(7):785-798, July 1987.

[14] P. Shoval and S. Zohn. Binary-relationship integration methodology. Data and Knowledge
Engineering, 6:225-249, 1991.

[I 51 J. Thierry-Mieg and R. Durbin. Syntactic Definitions for the ACEDB Data Base Manager.
Technical Report MRC-LMB xx.92, MRC Laboratory for Molecular Biology, Cambridge,CB2
2QH, UK, 1992.

