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Parkinson’s disease (PD) is a neurodegenerative disease that actively furthers the 
degeneration of dopaminergic neurons in substantia nigra and is characterized by the 
accumulation of α-synuclein (αS) in Lewy Bodies. During oxidative stress, increased 
levels of free radicals induce lipid peroxidation of polyunsaturated fatty acids, leading to 
the generation of reactive aldehydes within the body. Specifically, 4-hydroxy-2-nonenal 
(HNE) is known to be a lipid peroxidation product that can post-translationally modify 
αS, especially histidine 50 (H50). While studies have focused on the toxic effects of 
HNE-modified αS oligomers, no studies have determined how the site-specific H50-HNE 
interaction affects the biological and physical properties of αS. The purpose of this study 
is to identify how the site-specific modification of H50-HNE contributes to the 
pathogenesis of αS. To accomplish this, αS monomers were reacted with HNE, and the 
site-specific modification of H50 by HNE was confirmed using trypsin digest. These 
adducts were used to study its effect on αS aggregation, lipid binding, and cell uptake. 
Congo Red assay, incorporation assay, and dynamic light scattering (DLS) experiments 
showed that the H50-HNE modification was enough to significantly hinder the 
aggregation of αS, leading to a slower aggregation kinetics and smaller aggregate sizes. 
Moreover, the H50-HNE modification of αS induced a two-fold increase in lipid binding 
affinity, which may play a significant role in neurotransmitter release or synaptic vesicle 
integrity. Lastly, although both αS WT and HNE-modified monomers showed low levels 
of uptake in SH-SY5Y cells, where they were internalized by the lysosomal/endosomal 
system, the accuracy of these results is unconclusive and needs be addressed in future 
studies. The data collectively demonstrate that H50-HNE modification alone can 
significantly affect the biophysical properties of αS.  
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Introduction 
 
Parkinson’s disease (PD) is a neurodegenerative disorder that promotes progressive loss 
of dopaminergic neurons in the substantia nigra and accumulates abnormal aggregates of 
protein called “Lewy Bodies”.1, 2 It is the second most common neurodegenerative 
disease and contributes to tremor, bradykinesia, rigidity, postural instability, 
neuropsychiatric disturbances, and sleep disorders. Many risk factors have been 
proposed, but it is believed that α-synuclein (αS) plays an important role in its 
pathology.1, 2  
 
αS is an intrinsically disordered protein (IDP), a protein that lacks a definitive secondary 
or tertiary structure. It consists of three distinct domains: the N-terminus (residues 1-60), 
with KTEGV motif repeats; the hydrophobic domain (residues 61-95), also called the 
non-amyloid component (NAC); and the C-terminus (residues 96-140), enriched with 
acidic amino acids.3, 4 IDPs such as αS can play important roles in modulating and 
regulating biological systems due to their structural plasticity, flexible binding capability, 
and environmental sensitivity. The main function of αS has remained unclear, despite 
intense research in the field. However, due to its localization in pre-synaptic terminals 
and interaction with synaptic components, it is suggested that αS is likely associated with 
the function of synapse, such as neurotransmitter release, dopamine metabolism, vesicle 
trafficking, and other important  activities.5-10 Other functions, such as molecular 
chaperoning, DNA repair, and antioxidant activity, have been proposed as well.11-13 
Although αS is highly localized in pre-synaptic terminals, it is also found in red blood 
cells, body tissues, and organs.14  
 
Under certain stressed conditions, αS monomers can undergo misfolding and aggregate 
into oligomers and protofilaments enriched in β-sheet content (Figure 1). Protofilaments 
can form longer, bundled fibrils that are toxic to the brain. Since misfolded proteins can 
induce other monomers to misfold and aggregate, these toxic fibrils tend to accumulate in 
Lewy bodies and are believed to be the cause of neuronal death (Figure 1).1, 2, 7, 15 
Therefore, it is believed that αS contributes to the neurotoxicity found in PD, meaning 
that the investigation in the biophysical properties of αS may shed light on finding 
possible therapeutic options for PD and other related neurodegenerative diseases. 
 

In recent years, it has been proposed that αS function and pathology can be altered by 
post-translational modifications (PTMs). Many PTMs such as phosphorylation, 
acetylation, ubiquitination, truncation, and nitration have been studied, and their effects 
on vesicle binding, conformational properties, and cell toxicity have been characterized.16 
The most prototypical PTM is phosphorylation of serine 129 (pS129), where a significant 
increase of pS129 was observed within LBs, suggesting a role in its pathology and 
aggregation.17-19 Another important PTM is aldehyde-induced covalent modification. It 
was first suggested that lipid peroxidation of polyunsaturated fatty acids (PUFA) 
generates toxic aldehyde species, most notably 4-hydroxy-2-nonenal (HNE) (Figure 
2A).20 During oxidative stress, the oxygen-derived free radicals induce lipid peroxidation 
and interact with PUFA to produce toxic aldehyde species (Figure 2). However, recent 
studies have shown that lipid peroxidation is not the only source of HNE production in 
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the body. Food consumption has also been implicated to be a source of HNE 
accumulation within the body, especially those cooked with oxidized oil (Figure 2A).21 
Nonetheless, HNE can react with proteins and form adducts, most notably a Michael 
Addition reaction with histidine or Schiff Base reaction with lysine (Figure 2B).20  
 

 

 
Figure 1. The Pathogenesis of Parkinson’s disease. Aggregation-prone αS monomers 
aggregate to form oligomers. Oligomers from unmodified αS can form fibrils, while 
HNE-modified αS do not develop in fibrils. Regardless, both lead to neuronal death and 
cell toxicity. If oligomers and fibrils accumulate in the brain, it leads to toxic Lewy 
bodies within substantia nigra.1, 2, 15, 22 

 
While HNE can accumulate in tissues and organs throughout the body, the central 
nervous system is highly vulnerable to such aldehydes due to its high levels of 
polyunsaturated lipids in neuronal cell membranes and poor antioxidative defenses. It is 
believed that lipid peroxidation products increase with ageing.20 Therefore, age-related 
diseases such as neurodegenerative diseases, obesity, and metabolic syndrome have been 
implicated to be affected by HNE and other lipid peroxidation products.23 In 
neurodegenerative diseases, many studies have shown increased oxidation of the brain 
lipids, carbohydrates, proteins, and DNA. In Alzheimer’s disease, HNE is found to 
impair glucose transport in rat hippocampal neurons, block glutamate transport in rat 
neocortical synaptosomes, cause neuronal death and cell apoptosis, and inhibit 
degradation mechanism of oxidized proteins by the proteasome.24, 25 In PD, HNE-protein 
adducts were found in Lewy Bodies and in mitochondria in PD and other Lewy Body 
diseases.26, 27 Many studies have explored the effects of HNE-induced modifications on 
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αS. In the study by Qin, HNE induced the formation of αS oligomers and promoted 
increased β-sheet formation, inhibited fibril formation, and increased neurotoxicity 
(Figure 1).22 Xiang discovered that HNE preferentially interacted with histidine 50 
before reacting with other lysine residues, possibly indicating an important role of H50 in 
αS pathology.28 
 

 
 
 
 

 
 
Figure 2. Pathway of HNE Formation and Reactivity towards Histidine and Lysine. 
 
 

A 

B 
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The recent utilization of cryo-electron microscopy (cryo-EM) to elucidate the fibril 
structures of αS shed light on the importance of residue H50 in its fibril formation. It was 
found that fibril structure was stabilized through the salt-bridge interaction of E57 and 
H50 of two protofilaments, meaning that the fibril structure is highly influenced by 
changes to the H50.29 These findings were further supported by Boyer when their cryo-
EM structure of H50Q αS fibrils showed previously unobserved polymorphs, 
demonstrating how modifications to the H50 residue can influence aggregate structure 
and thus cytotoxicity of αS.30 These studies have implied that H50 may have a positional 
significance in fibril formation and produce different effects on its biophysical properties, 
depending on the nature of the modification. This raises a natural question of whether 
HNE-induced αS pathogenesis is caused by the site-specific alteration at H50 by HNE. 
While many studies have focused on HNE-induced αS oligomers, no studies have 
explored the specific effects of H50-HNE modification on αS monomers (αS-H50-HNE).  
 
The goal of this project is to study the biochemical consequence of having αS H50 
modified by HNE, especially the implications for its pathology. To accomplish this goal, 
the project was divided into four important objectives: 1) observe how HNE reacts with 
αS, 2) monitor how HNE modification on H50 affects αS aggregation properties, 3) 
measure the effects of HNE-H50 interaction on lipid binding, and 4) investigate how this 
site-specific interaction affects cell uptake and internalization. 
 
The first part of this project will consist of HNE reaction with αS. HNE will be directly 
reacted with αS and purified using high performance liquid chromatography (HPLC). 
Taking advantage of HNE electrophilic reactivity and the nucleophilic nature of H50, it is 
likely that HNE will preferentially react with H50 before any other lysine residues. Thus, 
the purified single Michael addition adducts will likely represent the H50-HNE 
modification. To verify that H50 is the first residue to react with HNE, the purified 
Michael addition adducts were analyzed through trypsin digest. Matrix-assisted laser 
desorption/ionization (MALDI-MS) will be used to monitor the mass changes that 
correlate with the HNE modification on αS.  
 
Characterization of αS Aggregation will be the second part to of the project. Congo red 
assay, SDS-PAGE, and dynamic light scattering (DLS) were used to characterize the 
effects of H50-HNE modification on αS aggregation. Congo Red is a dye that has a high 
affinity towards amyloid structures and will be used in an assay to measure the kinetics of 
αS aggregation. To help characterize the size of αS aggregates and the degree of αS 
incorporation, dynamic light scattering (DLS) and SDS-PAGE analysis will be used, 
respectively. Due to past studies showing the involvement of H50 in fibril formation28, it 
was hypothesized that the specific interaction of H50 and HNE will alter how αS 
normally aggregates over time.  
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Figure 3. Synthesis of HNE-modified α-synuclein monomers labeled with Atto488. 
Unnatural amino acid mutagenesis was achieved to express α-synuclein PpY114. Click 
chemistry can be used to label α-synuclein at position 114 where propargyl tyrosine 
(PpY) was incorporated through unnatural amino acid mutagenesis. 
 
The third part of the experiment is the Measurement of αS lipid binding. The HNE-
modified αS were fluorescently labeled, and lipid binding was observed using 
fluorescence correlation spectroscopy (FCS). Because FCS measures the dependence of 
fluorescence intensity fluctuations on particle size, a fluorescent probe was designed to 
label αS without perturbing its native aggregating or lipid binding properties. Cysteine-
maleimide labeling cannot be utilized for this experiment since the thiol group of cysteine 
is highly nucleophilic and will more favorably react with HNE over H50 during the 
modification process. Instead, unnatural amino acid (Uaa) mutagenesis will be used to 
incorporate an alkyne biorthogonal reactive handle that will specifically interact with 
fluorescent molecule (Figure 3). By utilizing Uaa mutagenesis, αS is expressed with 
propargyl tyrosine (PpY) incorporated at position 114, a position that is not involved in 
αS lipid binding or aggregation. PpY 114 later will undergo alkyne-azide click chemistry 
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to attach Atto488 (Figure 3). Thus, these fluorescently-labeled αS will be introduced to 
lipid vesicles, and lipid binding will be monitored using FCS.   
 
The project will be culminated with Cell uptake and internalization studies. The 
fluorescently labeled αS with H50-HNE modification will be introduced to SH-SY5Y 
cells to analyze cell uptake and localization data. Fluorescence microscopy is used to 
qualitatively analyze cell uptake and internalization of fluorescently labeled αS within the 
cells. To determine αS internalization within the cells, lysosomal biomarker will be added 
as well.  
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Materials and Methods 
 
General Considerations 
 
Bioreagents, Chemicals, and Materials 
 
Ampicillin, CaCl2, Tris buffer, ZnCl2, and CuSO4 were purchased from Fisher. 
Streptomycin was purchased from MP Biomedicals. HEPES buffer, FeCl2, MgSO4, 
THPTA, sodium ascorbate, and Atto488-azide were purchased from Sigma-Aldrich. 
isopropyl-β-D-1-thiogalactopyranoside was purchased from Lab Scientific. HiTrap™ Q 
HP column was purchased from GE Healthcare. 2-mercaptoethanol was purchased from 
BioRad. Imadazole was purchased from Alfa Aesar. Ni-NTA resin was purchased from 
GoldBio. Lysotracker Deep Red was purchased from Life Technologies (Carlsbad, CA). 
HNE was purchased from Cayman Chemical.  
 
Instruments 
 
MALDI-MS was performed using Bruker Ultraflex III. Protein purification was achieved 
by using FPLC (Amersham AKTA Explorer FPLC). Modification adducts were purified 
using Varian Prostar system (Agilent Technologies; Santa Clara, CA) HPLC on a C4 
column (Grace Davison Discovery Sciences). Congo Red absorbance was measured 
using Tecan Infinite M1000 plate reader (Mannedorf, Switzerland). Protein aggregate 
sizes were analyzed using Malvern Zetasizer Nano. Olympus IX71 microscope (Spectra-
Physics) was used to develop a lab-built instrument capable of FCS measurements. 
 
HNE reaction with αS 
 
Expression of wildtype αS and αS with unnatural amino acid PpY incorporated at 
position 114 
 
To express αS WT, the plasmid containing the αS gene fused with an intein and His 
purification tag was transformed into E. coli BL21 cells.31, 32 This was accomplished by 
mixing the BL21 cells with the plasmid for 15 minutes on ice and heat shocking the 
sample at 42 °C for 30 seconds. Afterwards, the sample was rested on ice for 2 minutes 
before 950 µL of Super Optimal broth with Catabolite repression (SOC) media was 
added. Then, the sample was incubated in 37 °C for one hour. The sample was plated on 
LB/ampicillin (Fisher Bioreagents) plate (100 µg/mL of antibiotics) and incubated 
overnight. 
 
After colonies were observed, the colonies were transferred to 5 mL of LB media 
supplemented with 100 µg/mL of ampicillin for αS WT. The primary cultures were 
incubated at 37 °C while shaking at 250 rpm. After growing the primary cultures, they 
were transferred into 1 mL of LB media. After inoculation, the bacterial samples were 
grown at 37 °C while shaking at 250 rpm. When OD600 reached 0.7-1.0, isopropyl-β-D-1-
thiogalactopyranoside (IPTG, Lab Scientific) was added to a final concentration of 1 
mM. The cultures were incubated at 18 °C overnight while shaking at 250 rpm.  
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After overnight induction, the samples were spun at 4,000 rpm for 30 minutes. The 
supernatant was removed, and the cell pellets were mixed with resuspension buffer (40 
mM Tris buffer, pH 8.3 with 1 Roche protease inhibitor cocktail pill). The resuspended 
cell samples were sonicated on ice (sonication: amplitude 30, 5 minutes, 1 second on, 1 
second off) and the cell debris was centrifuged (14,00 rpm, 20 minutes, 4 °C).  
 
The supernatant was purified by incubating it with 3 mL of Ni-NTA resin (GoldBio). The 
supernatant with Ni-NTA resin was washed with 15 mL of 50 mM HEPES buffer (pH 
7.5; Sigma Aldrich) and 20 mL of 5 mM HEPES buffer with 200 mM imidazole (Alfa 
Aesar) at pH 7.5. The protein was eluted with 12 mL of 50 mM HEPES buffer with 300 
mM imidazole (pH 7.5). 2-mercaptoethanol (BME, BioRad) was added to the eluted 
protein sample to 200 mM final concentration, and the solution allowed to react at room 
temperature overnight. Afterwards, the protein samples were dialyzed at 4 °C in 20 mM 
Tris (pH 8.0) overnight and underwent a reverse nickel column purification to remove the 
cleaved intein with the His6 tag. MALDI-MS, an ionization technique based on mixing 
protein sample with laser energy absorbing matrix, was utilized to confirm the identity of 
the expressed protein. The masses were confirmed on MALDI-MS (Bruker Ultraflex III; 
Billerica, MA). The dialyzed samples underwent FPLC (Amersham AKTA Explorer 
FPLC) on a HiTrap™ Q HP column (GE Healthcare) to purify the desired αS products.  
 
HNE modification of αS 
 
To confirm that HNE can modify α-synuclein through Michael addition, different 
concentrations of HNE (Cayman Chemical) and WT αS were incubated together 
overnight in PBS (pH 7.4) at 37 °C. The modifications were confirmed using MALDI-
MS.  
 
Purification of singly-modified αS monomers 
 
To purify the specific H50-modified αS, a mixture of αS and HNE (1:5-1:10 ratio) was 
incubated at 37 °C overnight. The samples were purified with the Varian Prostar system 
(Agilent Technologies; Santa Clara, CA) HPLC, where proteins with different levels of 
modification were separated and then the fractions were lyophilized.  
 
Trypsin Digest Protocol 
 
The lyophilized samples were mixed with 25 µL of dissolving agent of 6 M Gdn-HCl 
(Invitrogen)+50 mM Tris (Fisher Scientific) at pH 8. Afterwards, 5 µL of 10 mM BME 
was added to the reaction. The samples were heated at 95 °C for 5-10 minutes. After 
denaturation, the reaction was cooled for several minutes before diluting and spin 
filtering the samples with 50 mM Tris-HCL (pH 7.6; Fisher Scientific). After reducing 
the Gdn-HCl concentration below 1 M, the samples were mixed with 1.55 µL of 1 mM 
CaCl2 (Fisher Chemical). For protein digestion, 1 µL of 1 mg/mL trypsin was added to 
samples, and these samples were incubated at 37 °C overnight. The peptide sizes were 
confirmed using MALDI-MS.  
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Characterization of αS Aggregation  
 
Aggregation Assay 
 
αS WT or αS H50-HNE samples (300 µL of 100 µM) in Tris buffer (20 mM Tris, 100 
mM NaCl, pH 7.5) were incubated in 37 °C while shaking at 1300 rpm. Absorbance 
measurements at various time points (0, 4, 6, 8, 10, 12, 24, 28, 32, 36, 48, 60 hours) were 
taken by mixing 140 µL of Congo Red (20 µM in 20 mM Tris, 100 mM NaCl pH 7.5) 
with 10 µL of sample. Tecan Infinite M1000 plate reader (Mannedorf, Switzerland) was 
used to measure the absorbance at 480 nm and 540 nm.  
 
Dynamic Light Scattering (DLS) 
 
Taking the samples from the aggregation samples, 160 µL of were taken from each 
sample and diluted with 500 µL Tris buffer (20 mM Tris, 100 mM NaCl, pH 7.5) in 
disposable cuvettes (BrandTech™ BRAND™ Plastic Cuvettes). Measurements were 
taken on the Malvern Zetasizer Nano (Dispersant RI: 1.332, Viscosity: 0.9020). The size 
of a particle was calculated by using the Stokes-Einstein equation: 
 

d(H)=kT/(3πηD)    (1) 
      

where d(H) is the hydrodynamic diameter, D is translational diffusion coefficient, k is 
Boltzmann’s constant, T=absolute temperature, and η is viscosity.  
 
Quantification of total αS incorporation SDS-PAGE gel 
 
After aggregating the αS WT and αS-HNE samples, 30 µL of each were spun down at 
13,200 rpm for 90 minutes at 4 °C. Afterwards, the supernatant was discarded, and the 
pellet was resuspended in 30 µL Tris buffer (20 mM Tris, 100 mM NaCl, pH 7.5).  
10 µL of each sample was combined with SDS (final concentration at 25 mM). The 
combined samples were boiled on heat block for 20 minutes and cooled in ice for 10-15 
minutes. 3 µL of 4x loading dye and loaded onto the SDS-PAGE (18% acrylamide, 
Coomassie stain). Band intensity quantification was performed with NIH ImageJ 
software.  
 
Measurement of αS lipid binding  
 
Expression of αS with unnatural amino acid PpY incorporated at position 114 
 
For αS PpY114 expression, the αS plasmid containing a TAG codon at position 114 (2-3 
µL) was added to 50 µL of E. coli BL21 cells containing orthogonal tRNACUA and pXF-
tRNA synthetase pair encoded by the pDULE-pXF plasmid.32 After allowing the mixture 
to rest on ice for 30 minutes, the sample was heat shocked at 42 °C for one minute and 
put onto ice for two minutes. SOC media (450 µL) was added and the mixture was 
incubated at 37 °C for one hour. The sample was plated on LB/ampicillin (Fisher 



10 
 

Bioreagents)/streptomycin (MP Biomedicals) plates (100 µg/mL of each antibiotics) and 
incubated overnight. 
 
Afterwards, the colonies were transferred to 5 mL of LB media supplemented with 
ampicillin/streptomycin. The primary cultures were incubated at 37 °C while shaking at 
250 rpm. After growing the primary cultures, they were transferred into 500 mL of M9 
media (500 mL M9 salts, 1 mL 10% w/v yeast extract (Millipore), 6.25 mL 40% w/v 
glucose, 500 µL of 15 mg/mL ZnCl2 (Fisher Scientific), 500 µL of 15 mg/mL FeCl2 
(Sigma-Aldrich), 1 mL of 1 M MgSO4 (Sigma-Aldrich), 0.5 µL of CaCl2, 100mg/L 
ampicillin and streptomycin) . After inoculation, the bacterial samples were grown at 
37 °C while shaking at 250 rpm. When OD600 reached 0.7-1.0, 110 mg of PpY (dissolved 
in MilliQ water) were added before isopropyl-β-D-1-thiogalactopyranoside (IPTG, Lab 
Scientific) was added to a final concentration of 1 mM. The cultures were incubated at 
18 °C overnight while shaking at 250 rpm.  
 
After overnight induction, the samples were spun at 4,000 rpm for 30 minutes. The 
supernatant was removed, and the cell pellets were mixed with resuspension buffer (40 
mM Tris buffer, pH 8.3 with 1 Roche protease inhibitor cocktail pill). The resuspended 
cell samples were sonicated on ice (sonication: amplitude 30, 5 minutes, 1 second on, 1 
second off) and the cell debris was centrifuged (14,00 rpm, 20 minutes, 4 °C).  
 
The supernatant was purified by incubating it with 3 mL of Ni-NTA resin (GoldBio). The 
supernatant with Ni-NTA resin was washed with 15 mL of 50 mM HEPES buffer (pH 
7.5; Sigma Aldrich) and 20 mL of 5 mM HEPES buffer with 200 mM imidazole (Alfa 
Aesar) at pH 7.5. The protein was eluted with 12 mL of 50 mM HEPES buffer with 300 
mM imidazole (pH 7.5). 2-mercaptoethanol (BME, BioRad) was added to the eluted 
protein sample to 200 mM final concentration, and the solution allowed to react at room 
temperature overnight. Afterwards, the protein samples were dialyzed at 4 °C in 20 mM 
Tris (pH 8.0) overnight and underwent a reverse nickel column purification to remove the 
cleaved intein with the His6 tag. MALDI-MS, an ionization technique based on mixing 
protein sample with laser energy absorbing matrix, was utilized to confirm the identity of 
the expressed protein. The masses were confirmed on MALDI-MS (Bruker Ultraflex III; 
Billerica, MA). The dialyzed samples underwent FPLC (Amersham AKTA Explorer 
FPLC) on a HiTrap™ Q HP column (GE Healthcare) to purify the desired α-synuclein 
products.  
 
HNE-modification of αS PpY114 
 
HNE (5-10 molar equivalents) was added to 1 molar equivalent of αS. The mixture was 
incubated overnight in PBS (pH 7.4) at 37 °C. To purify the H50-modified αS, the mixed 
sample were injected into Varian Prostar system (Agilent Technologies; Santa Clara, CA) 
HPLC, and the singly modified αS species were separated on a C4 column (Grace 
Davison Discovery Sciences). The identities of the samples were confirmed with 
MALDI-MS analysis.  
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Labeling of HNE-modified αS with Atto488 
  
One molar equivalent of the protein sample was mixed with the catalytic mixture (2 
molar equivalents of CuSO4 (Fisher Scientific), 10 molar equivalents of THPTA (Sigma-
Aldrich), 20 molar equivalents of sodium ascorbate (Sigma-Aldrich), 1.5 molar 
equivalent of dye-azide). Atto488-azide (Sigma-Aldrich) was used for labeling in this 
experiment. The mixture was incubated at 37 °C for 2 hours. After completion of the 
reaction was confirmed, TCEP was added to a final concentration of 30 mM and 
incubated at room temperature for 20 minutes. Then, the labeled sample was purified by 
Varian Prostar system (Agilent Technologies; Santa Clara, CA) HPLC, and purified 
fractions were lyophilized. The lyophilized products were stored in a vial at room 
temperature.  
 
Using FCS to determine lipid binding 
 
αS samples labeled with Atto488 were introduced with various lipid vesicle 
concentrations (0.005 mM-0.5 mM) consisting of 50:50; POPS/POPC. The 
autocorrelation curve was fit to a 2-component equation33: 
 
G(τ)=1/N×[(A×1/(1+τ/τ1)×(1/(1+s2τ/τ1))1/2)]+[Q×(1-A)×1/(1+ τ/τ2)×1/(1+s2τ/τ2)1/2]      (2) 
  
where is G(τ) the autocorrelation function, N is the number of molecules in the focal 
volume, τ1 is the characteristic diffusion time of αS, τ2 is the characteristic diffusion time 
of the vesicles, s is a structural factor of the instrument, Q is the brightness factor, and A 
is the fraction of αS bound. To fit autocorrelation curves for αS in the presence of lipid 
vesicles, it was important to fix the diffusion time of bound and unbound αS with 
experimentally determined values. Diffusion time of the unbound αS, τ1 was determined 
by measuring protein in buffer without lipids. The diffusion time of vesicles, τ2, was 
determined by measuring protein in presence of saturated concentration of vesicles (2 
mM lipid). BODIPY-labeled 50:50 POPS/POPC, which are the same size of unlabeled 
vesicles, were used to confirm the diffusion time of the vesicles. For the binding assay, 
the fraction of αS bound at each concentration was obtained from fitting to each 
autocorrelation curve. Averages and standard deviations were calculated at each lipid 
concentration. The binding curve fit of the following equation34 was used to determine 
Kd,app:  
                                                       A= Bmaxx/(Kd,app+x)            (3) 
 
where A is the fraction of αS bound, x is the accessible lipid concentration, Bmax is the 
maximum fraction of αS bound, and Kd,app is the apparent dissociation constant. 
 
For FCS, eight-well chambered cover glasses (Nunc: Rochester, NY) underwent plasma 
cleaning before incubating it overnight with polylysine-conjugated polyethylene glycol 
(PEG-PLL; Pierce), which was prepared using a lab-built PEGylation protocol. 
Afterwards, the chambers were washed and stored in MilliQ water. A lab-built instrument 
derived from a Olympus IX71 microscope (continuous emission 488 nm DPSS 50 mW 
laser; Spectra-Physics, Santa Clara, CA) was used for FCS measurements. With the laser 
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power was set to 4.5 μW, fluorescence emission that were collected from the objective 
was separated from the excitation signal with a Z488rdc long pass dichroic filter and an 
HQ600/200nm bandpass filter (Chroma, Bellows Falls, VT). The emission signal was 
focused onto the aperture of a 50 μm optical fiber, and signal amplification was obtained 
by an avalanche photodiode (Perkin Elmer, Waltham, MA). A digital autocorrelator 
(Flex03Q-12, correlator.com, Bridgewater, NJ) was used to obtain autocorrelation curves 
(30 correlation curves of 30 seconds for each measurement), and fitting was 
accomplished with a lab-written code in MATLAB (The MathWOrks, Natick, MA) 
 
Cell uptake and internalization studies 
 
Cell uptake and localization of αS in SH-SY5Y Cells  
 
SH-SY5Y cells were grown at 37 °C in a humidified atmosphere of 5% CO2. The cells 
were cultured in Dulbecco's Modified Eagle's Medium (DMEM) plus 10% fetal bovine 
serum, 50 U/ml penicillin, and 50 μg/ml streptomycin. Cells were passaged upon 
reaching approximately 95% confluence (0.05% Trypsin-EDTA, Life Technologies, 
Carlsbad, CA) and propagated. For experimental use, the cells were pelleted and 
resuspended in fresh media that lack Trypsin-EDTA.  
 
Cell imaging was performed with a confocal fluorescence microscopy (Olympus FV3000 
scanning system assembled on a IX83 inverted microscope platform, 60× Plan-Apo/1.1-
NA water-immersion objective with DIC capability; Tokyo, Japan). Since Atto488 was 
used for labeling, the gaining setting for the blue channel was used (excitation 488 nm, 
emission BP 500-540 nm). Images were obtained in 8-well ibidi chambers (μ-Slide, 8-
well glass bottom, ibidi GmbH, Germany) coated with poly-D-lysine. 
 
For cell uptake studies, 200 nM of labeled αS WT or αS-H50-HNE samples was 
incubated with cells (24 hours). To study the colocalization with lysosomes, the cells 
were treated with 75 nM Lysotracker Deep Red (Life Technologies, Carlsbad, CA) 1 
hour before imaging.  
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Results and Discussion 
 
HNE reaction with αS 
 
HNE Modification of αS 
 
A previous study showed that singly-modified HNE-modified αS can be produced 
depending on the concentration of HNE introduced to αS.22 To measure the appropriate 
level of HNE needed to maximize the yield of H50-HNE modified αS monomers, it was 
important to test various concentrations of HNE with αS WT. Thus, various molar ratios 
of αS: HNE were explored to find the appropriate amount of HNE needed for single 
Michael addition adducts (Δ+156 m/z). Figure 4 shows mass changes of αS 
corresponding to the various molar ratios of αS:HNE mixed at 37 °C overnight. When 
HNE was added to αS WT at a protein:HNE ratio of 1:2, only the αS WT mass (14460 
m/z) was observed and the Michael addition adduct (14616 m/z) signal is hardly 
observed (Figure 4A). The Michael addition adduct signal gradually increased as more 
HNE was added, meaning that the Michael Addition adduct mass signal correlated with 
the amount of HNE introduced to αS for an overnight reaction (Figure 4B-E). As a 
result, 1:6 or 1:10 αS:HNE molar ratio showed high Michael addition adduct signal, 
making that molar ratio range desirable for an overnight reaction (Figure 4C-D). While 
Figure 4E does have a high single Michael addition adduct signal, it also had an 
additional unnecessary Michael addition adduct peak (14772 m/z), implying that HNE 
has reacted at multiple sites.  
 
Separation of HNE-modified α-synuclein through HPLC 
 
After establishing the appropriate amount of HNE needed for HNE-H50 modification, it 
was important to determine whether αS-H50-HNE monomers with a single Michael 
addition can be isolated and purified using HPLC. To purify the αS-H50-HNE monomers 
for biochemical studies, the HNE-reacted αS was injected into the Varian HPLC for 
separation. MALDI-MS shows HNE Michael addition adducts (Δ+156) (Figure 5A). 
After injection into the Varian HPLC, distinct peaks of each modified αS could be 
separated, as two differentiated peaks are shown in the HPLC chromatogram (Figure 
5B). The later peak (elution time=35 min) corresponds to the elution of αS-H50-HNE 
monomers (single Michael addition adduct) (Figure 5B). This meant that the fractions of 
only single-modified αS were able to be separated using HPLC. The MALDI-MS 
confirmed the identity and purity of αS-H50-HNE monomers (Figure 5C). Therefore, the 
isolation of αS-H50-HNE monomers supported the possibility of further investigating the 
site-specific effects of H50-HNE on αS biochemical properties. 
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Figure 4. Different Concentrations of HNE reacted with αS at 37 °C overnight.  MALDI-
MS masses obtained for protein:aldehyde concentration ratios of (A) 1:2, (B) 1:4, (C) 1:6, 
(D) 1:10, and (E) 1:40. 
 
 
Trypsin Digest of H50 modified α-synuclein 
 
To verify the site-specific modification at H50, trypsin digest was performed on HNE-
modified samples. It was expected that the single Michael addition on H50 for the 46-58 
peptide would be observed on MALDI MS. However, MALDI MS showed four 
distinguishable peaks at 1433 m/z (46-58 peptide sequence with +138), 1451 m/z (46-58 
peptide sequence with +156), 1662 m/z (46-60 peptide sequence with +138), and 1680 
m/z (46-60 peptide sequence with +156) (Figure 6A), indicating the likelihood of a 
Schiff base reaction occurring on some of the peptides. Since αS-HNE-H50 showed only 
a Michael addition on a protein level, it is important to explore the possible reasoning  
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Figure 5. Separation of each HNE-modified αS. A) MALDI MS of HNE-modified αS is 
shown after overnight reaction. B) HPLC chromatogram of the HNE-modified αS at 215 
nm (black) showing that separation of each HNE adduct is possible. C) MALDI-MS of 
the purified fractions of αS-H50-HNE monomers after HPLC. 
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Figure 6. MALDI of Trypsin Digest peptides of H50-modified αS. A) The HNE-
modified αS specifically at H50 underwent trypsin digest and yielded two important 
peaks. One peak is at 1433 m/z and the other is 106 m/z. These peaks showed a Schiff 
base modification (expected peptide+Δ138). B) The possible modification mechanism for 
the observed Schiff base mass change in part A. Red letters indicate the site of 
modification.  
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behind why some of the trypsin-digested peptides showed only Schiff base adducts. 
While the exact reason for this observed mass difference is not known, several studies 
have published results showing similar patterns. In one study, modification of 
Cytochrome C by HNE showed Michael addition (Δ+156 m/z) on a protein level, but 
Schiff base reaction (Δ+138 m/z) with trypsin-digested peptides of the same protein.35 
Similar results were observed in a study where they examined bovine serum albumin and 
lysozyme as models for HNE modifications.36 Since the identified peptides include H50, 
it was unlikely that an retro-Michael addition has occurred. Rather, it is likely that both 
Michael addition and Schiff base reactions can occur simultaneously, where the Schiff 
base forms under trypsin digest conditions.  
 
The mass peaks of 1433 m/z (46-58 peptide sequence with +138) and 1662 m/z (46-60 
peptide sequence with +138) could correspond to Schiff base reaction of HNE with K58 
or K60 and H50-HNE Michael addition (Figure 6B). The acidic conditions of trypsin 
digest could favor Schiff base formation and intramolecular trapping through the pre-
existing H50-HNE bond would favor this cyclization. Trypsin digest for double HNE 
addition on αS was also explored, but it was unable to identify any other modifications. 
This may mean that the addition HNE reactions with the lysine residues may be random 
and do not have a preferential reactivity towards a specific lysine residue, leading to the 
difficulty of trying to identify the second HNE modification on αS. These data also 
support simultaneous Schiff base and Michael adduct formation, as Michael adduct 
dissociation and reformation of a separate Schiff base would be unlikely to occur only on 
the fragment with H50. Thus, the trypsin digest analysis largely confirms the first HNE 
modification site to be H50.  
 
Characterization of αS Aggregation  
 
Congo Red Aggregation Assay and αS incorporation assay 
 
While HNE-modified αS is expected to form only oligomers based on studies by Xiang28, 
it was uncertain whether αS-H50-HNE monomers would have the same aggregation 
patterns as a unpurified HNE-modified αS. If αS-H50-HNE monomers alone could 
inhibit fibril formation, this may signify that H50-HNE interaction alone plays an 
important role in aggregation and require the reexamination of how aldehydes affect the 
biophysical properties of αS.  
 
To evaluate the effects of H50-HNE adduction on the aggregation of αS, Congo Red 
aggregation assays were performed. The identity and purity of the samples were 
confirmed using MALDI-MS (Figure 7). Figure 7A only showed the mass of αS WT 
(14457 m/z), and Figure 7B only showed the mass of αS-H50-HNE monomers (14613 
m/z). Since the samples corresponded only to the expected masses, this eliminated any 
possibility that other impurities may affect aggregation.  
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Figure 7. MALDI masses of αS samples before starting aggregation experiment. (A) αS 
WT. Expected mass of αS WT is 14460 m/z. (B) αS H50-HNE. Expected mass of αS H50-
HNE is 14616 m/z.  
 
 
The Congo Red aggregation assay was performed on two types of samples: αS WT 
(Control) and αS H50-HNE (Experimental). Under aggregation conditions, Congo Red 
absorbance at 540 nm and 480 nm were measured at each timepoint to monitor the 
aggregation process. Since Congo Red is known to have high binding affinity towards 
amyloids, it can be expected that the absorbance signal will increase as aggregation 
occurs before reaching saturation. Figure 8 shows the plot of Congo Red absorbance 
(540 nm/480 nm) at each timepoint (0, 4, 6, 8, 10, 12, 24, 28, 32, 36, 48, and 60 hours) 
for αS WT (Blue curve) and αS H50-HNE (Red curve). The aggregation curve for αS 
WT was sigmoidal where the nucleation phase showed a rapid increase in Congo Red 
absorbance signal over time, and saturated around absorbance 1.2 at 12-16 hours, 
indicating that αS fibrils were fully formed around 12 hours (Figure 8). Meanwhile, the 
αS-H50-HNE showed a flatter sigmoidal curve where nucleation phase had a much 
slower increase in Congo Red absorbance signal over time, and a much lower saturation 
point after 60 hours (Figure 8). In fact, the αS-H50-HNE did not even reach absorbance 
1.0, suggesting a possible alteration to the structural or aggregation properties of αS. The 
T1/2 (half-life time) was 8.56 ± 0.24 hours for αS WT and 17.70 ± 1.29 hours for αS H50-
HNE, showing a significant difference in aggregation kinetics (Figure 8) After 60 hours, 
MALDI-MS revealed that αS-H50-HNE samples had both αS WT and αS H50-HNE 
adducts since both αS WT mass (14456 m/z) and αS-H50-HNE mass (14613) was 
observed (Figure 9). This contrasts with the MALDI-MS before the experiments started 
where no αS WT peaks could be found in the αS H50-HNE sample (Figure 7), indicating 
the possibility of a retro-Michael addition at H50 under aggregation conditions. This may 
indicate that there are some conditions where Michael addition adducts may be 
reversible.  

A B 
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Figure 8. Congo Red Aggregation Assay for αS WT and αS-H50-HNE. Absorbances at 
480 nm and 540 nm was measured at timepoints 0, 4, 6, 8, 10, 12, 24, 28, 32, 36, 48, and 
60 hours. The T1/2 is 8.56 ± 0.24 hours for αS WT and 17.70 ± 1.29 hours for αS H50-
HNE. Red line indicates αS-H50-HNE aggregation and blue line indicates αS WT 
aggregation.  
 

13000 14000 15000 16000 17000
0

200

400

600

800

Aggregation assay αS H50-HNE after 60 hours

m/z

In
te

ns
ity

 (c
ou

nt
s)

14456
14613

 
Figure 9. MALDI-MS showing the masses of the αS-H50-HNE sample at 60-hour 
timepoint. Both αS WT (14456 m/z) and αS-H50-HNE (14613 m/z) masses are observed.  
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Figure 10. Quantification of αs incorporated in fibrils and aggregates with SDS-PAGE. 
The relative band intensity of αS samples were measured and compared between αS WT 
and αS-HNE modified samples (*p<0.05).  
 
 
To quantify the amount of αS incorporated in the fibrils or aggregates, the aggregated αS 
were isolated, solubilized, and run on an SDS-PAGE gel. The band intensities were 
analyzed to quantify the relative amounts of αS incorporated in aggregated samples. 
Figure 10 shows the relative band intensity of αS WT and αS-H50-HNE, meaning the 
relative amount of αS incorporated in the aggregates can be compared for each sample. 
When the band intensities were quantified, there was a significant difference (*p<0.05) 
between the amount of αS incorporated in αS WT aggregates and the amount of αS 
incorporated in αS-H50-HNE aggregates, as αS-H50-HNE showed a much lower αS 
relative band intensity than that of αS WT (Figure 10). 
 
Cryo-EM studies have shown that H50 and E57 form a salt bridge, which is at the core of 
αS fibril formation.8 Mutational studies have also shown that HNE-mediated toxicity 
disappears after mutating H50.22, 29 It was predicted that HNE could interfere with this 
interaction and change how fibrils are formed. The aggregation assay and αS 
incorporation assay data in this report show that HNE modification at H50 clearly 
impeded its ability to form fibrils. This may mean that HNE prevented the formation of a 
salt bridge between H50 and E57 required to make efficient fibrils. Moreover, this might 
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suggest that a single modification at H50 is enough to completely change its aggregation 
properties and structure-based biotoxicity, contradicting the original beliefs about how 
oligomerization is necessary for fibril prevention and toxicity. Therefore, it was 
necessary to explore the amount of αS incorporation and the cluster size of aggregated 
samples. 
 
Dynamic light scattering (DLS) analysis of αs aggregated samples 
 
The samples that were under aggregation conditions for 60 hours were analyzed on DLS 
for size analysis. Since DLS can determine the size of a sample particle, the rationale was 
that DLS will be able to determine how the size of the aggregates are affected by HNE. It 
is expected that αS WT particles have a larger average size since Congo Red assay and 
αS incorporation experiments have showed faster aggregation kinetics and higher αS 
content for αS WT fibril samples. Figure 11A shows the size distribution of αS WT 
fibrils (3 measurements named αS WT 1, 2, and 3), which all had a size around 1000 
d.nm (diameter nm). Figure 11B represent the size distribution of αS-H50-HNE 
aggregated (3 measurements named αS-H50-HNE 1, 2, and 3), which all had a size 
slightly below 1000 d.nm (diameter nm). Figure 11C shows both Figure 11A and 
Figure 11B for better comparison, which indicated that the size of the αS-H50-HNE 
aggregates were slightly smaller than the size of the αS fibrils. The comparison of the 
samples clearly shows this small difference in size since αS-H50-HNE peaks are slightly 
shifted to the left side of the αS WT fibrils (Figure 11C).  This observation led to two 
possible implications: 1) HNE-H50 interaction may lead to smaller αS aggregates and 2) 
these aggregates are not likely αS oligomers, which are favorably stabilized in excess 
HNE.22 It is uncertain whether these smaller aggregates represent fibril intermediates 
from HNE-dissociated αS, but it is obvious that alteration of H50 can dictate the 
structural and interactive dynamics of αS. It may be interesting to characterize the 
conformational structure of the aggregates with transmission electron microscopy or 
cyro-EM since the DLS can only confirm the overall bulk of the aggregates.  
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Figure 11. DLS of αS WT fibrils and αS HNE-modified aggregates. The size distribution 
by intensity represents the (A) three sample measurements of αS WT and (B) three 
sample measurements of αS-H50-HNE after aggregation. (C) The size distribution of 
both samples integrated on same plot are shown for comparison.  
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Measurement of αS lipid binding  
 
Expression and Purification of α-synuclein PpY114 
 
The Petersson lab had previously engineered a way to site-specifically incorporate PpY 
on αS using unnatural amino acid mutagenesis.31, 32, 37 This method was preferred over 
cysteine labeling since cysteine can interact with HNE and disrupt the desired HNE 
modification on H50. In this case, propargyl tyrosine (PpY) with a reactive handle for 
alkyne was incorporated into αS so that it can function as a reactive handle for alkyne-
azide click chemistry. Position 114 was selected for PpY incorporation because it was 
located in a region not involved in lipid binding or aggregation.38 The incorporation of 
PpY at position 114 was accomplished via amber codon suppression. αS-PpY114 was 
expressed using a αS construct fused with a C-terminal intein tag. The intein tag was later 
cleaved with BME and the αS PpY114 was later purified with the FPLC. The purified αS 
PpY114 was confirmed using MALDI-MS (Figure 12).   
 
 

  
Figure 12. Purification of αS PpY114. The observed mass (14528 m/z) corresponded to 
the expected mass (14532 m/z) of αS PpY114. 
 

     
Figure 13. HNE-modification to αS PpY114. The highlighted peak mass (14686 m/z) 
matches the expected mass for HNE-modified mass (14688 m/z).  
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Figure 14. HPLC Purification of H50 HNE-modified αS PpY114. (A) HPLC 
chromatogram of the HNE-reacted αS PpY114 for which MALDI-MS is shown. (B) The 
purified samples of HNE reacted with H50 αS were confirmed with MALDI-MS. The 
observed masses (14688 m/z) matched the expected mass of HNE-modified αS. 
 
 
HNE modification of αS PpY114 
 
Using the same method to react HNE with αS WT, αS PpY114 was also reacted with 
HNE. After purifying αS PpY114 on the FPLC, the samples were reacted with HNE 
overnight to yield a single Michael addition adduct at H50, which the mass (14686 m/z) 
was confirmed on the MALDI-MS (Figure 13). To purify only αS with a single HNE 
modification at H50, the reacted sample was injected onto Varian HPLC. Figure 14A 
shows the HPLC chromatogram at 215 nm where the HNE-modified αS PpY114 was 
eluted at the later peak (elution time=32 min). Afterwards, the purity of HNE-modified 
αS PpY114 was confirmed with MALDI-MS since the 14688 mass was observed (Figure 
14B). Therefore, the results showed that it was possible to isolate HNE-modified αS with 
PpY incorporated at position 114.  
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Labeling of HNE-modified α-synuclein with Atto488 
 
Following the reaction of HNE and αS-PpY114, the click chemistry labeling of PpY114 
alkyne with Atto488-azide was achieved in the presence of a copper catalyst.6 This 
mixture was injected onto the HPLC for purification. To confirm that αS-PpY114 was 
labeled correctly with Atto488-azide, the reaction product mass (15486 m/z) was 
analyzed through MALDI-MS and matched the expected mass (15478 m/z) (Figure 15). 
This demonstrated that it was possible to label HNE-modified αS without having the 
HNE interfere in the process, meaning the labeled protein can be used as a probe to 
monitor vesicle binding and uptake in cell studies.  
 
 

 
  

Figure 15. MALDI-MS data of HNE-modified αS PpY114 labeled with Atto488-azide 
after HPLC purification. The observed mass (15477 m/z) matches the expected mass 
(15478 m/z).  
 
 
The effects of HNE-modified αS on lipid vesicle binding  
 
Using the samples labeled with Atto488, the vesicle binding affinity of αS-HNE was 
explored with FCS. At a constant αS concentration, the FCS data were collected with 
increasing lipid concentrations. The autocorrelation curves were fit to Equation 2 to 
calculate the amount of lipid bound and free αS. Thus, Figure 16 presents the fraction of 
bound αS plotted as a function of increasing lipid concentration, which allows direct 
comparison of lipid binding affinity. αS WT (black) and HNE-modified αS (green) 
samples were incubated with POPS/POPC (50:50) lipid vesicles, and the amount of αS 
bound to lipid vesicle was measured at each lipid concentration. For higher binding 
affinity, it is expected that the fraction of αS bound to lipids will reach 1.0 at lower lipid 
concentrations. Figure 16 shows that αS-H50-HNE had a stronger binding affinity 
towards lipids than that of αS WT, since the αS-H50-HNE reached 1.0 at a lower vesicle 
concentration (Figure 16). By applying Equation 3 to calculate the binding affinity (Kd, 

app), the results showed that the calculated binding affinity (Kd, app) was 10.7 ± 1.4 µM for 
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αS WT and 5.7 ± 0.9 µM for αS-H50-HNE, meaning αs-H50-HNE leads to a two-fold 
increase in vesicle binding.  
 
It is unlikely that this result is solely due to a positional or conformational effect, since 
H50Q mutation did not significantly affect the conformational structure or lipid binding 
affinity of αS.39 This may mean that the chemical properties of the modification might 
dictate its increased binding affinity towards lipid vesicles. Although there is no data on 
how αS-H50-HNE affects lipid vesicle binding, several studies have implicated several 
possibilities. One possibility is that HNE may directly interact with phospholipids and 
may undergo a Michael Addition/Schiff Base reaction.40 Since HNE is highly reactive, it 
is unsurprising to expect such reactions to happen with phospholipid. However, further 
studies need to establish the stability and reversibility of such reactions in various 
conditions before this conclusion can be made.  
 
Another possibility may be related to the amphipathic nature of αS. It is generally known 
that the long amphipathic α-helical structure is crucial for membrane bounding. A study 
from Braun found that the seven imperfect 11-mer repeats play an important role in the 
amphipathic nature of αS and truncation of this region led to a 15% decrease in lipid 
binding affinity.41 Additionally, molecular dynamics simulations showed that HNE may 
be stably bound in the carbonyl region of the POPC bilayer.42 The aldehyde and hydroxyl 
group were found to reside towards the carbonyl groups of POPC lipid molecules, while 
the aliphatic tail of HNE was located along with other aliphatic tails from POPC. In other 
words, the amphiphilic character of HNE may enhance its stabilization in the lipid bilayer 
by both hydrophobic interactions between HNE hydrocarbon chain and aliphatic tails of 
lipids and polar interactions between the polar groups of HNE and the headgroups of 
lipids. Therefore, the implication is that H50-HNE modification enhances the 
amphipathic nature of αS and may induce the α-helical characteristics of αS, leading to a 
stronger binding affinity towards phospholipid membranes. A similar study done with 
acetylated αS confirmed the increased lipid binding where a longer α-helical structure can 
lead to a better binding affinity.43 Consequentially, this may explain why HNE 
modification promote higher binding affinity towards lipid vesicles. 
 
Regardless, both possibilities might implicate that HNE-modified αS can contribute to 
the permeabilization of lipid and cell membranes. It has been shown that HNE-induced 
αS oligomers can permeabilize DOPG vesicles.44 Despite its reactivity towards lipid 
vesicles, HNE is expected to have little to no effect on the properties of lipid bilayers, 
such as membrane thickness and area per lipid under physiological conditions.42 Also, 
based on the raw diffusion time signal of αS-H50-HNE monomers, there were no 
indication of a vesicle structure disruption. However, this may change when larger HNE 
bioparticles bind with lipid bilayers, potentially causing permeabilization observed with 
HNE-modified αS oligomers. Therefore, it might be possible that the amphiphilic nature 
of HNE may play a role in its αS-mediated toxicity.  

 
 



27 
 

   
Figure 16. The binding affinity of αS WT and αS-H50-HNE samples on lipid vesicles. 
POPS/POPC (50:50) were mixed with both samples. The binding affinity (Kd, app) of αs 
WT was 10.7 ± 1.4 µM and 5.7 ± 0.9 µM. The green line indicates αS-H50-HNE samples 
and black line indicates αS WT samples. 
 
Cell uptake and internalization studies 
 
The effects of HNE-modified αS on SH-SY5Y cells 
 
To learn if HNE-modified αS monomers can affect cell uptake, the labeled αS-H50-HNE 
monomers were introduced to SH-SY5Y cells. Although the exact role of HNE-modified 
αS in cell uptake and internalization is not fully established, some studies have suggested 
that HNE-induced αS oligomers might increase cell uptake and cell-to-cell transfer, 
indicating a possibility that the reactive ability of HNE might help permeabilize cell 
membranes and bilayers for better uptake.45, 46 This raises an important question whether 
HNE modification can increase cell uptake or cell-to-cell transmission. Also, it was 
predicted that αS-H50-HNE monomers will internalize within the endosomal/lysosomal 
system since past studies have shown HNE-modified and other PTM-modified αS can 
localize in those regions.46 This may mean that the HNE-modified αS may be involved in 
the lysosomal system or pathway. In Figure 17, the images show SH-SY5Y cells that 
have been exposed to fluorescently labeled αS WT or αS-H50-HNE samples. Since both 
αS WT and αS-H50-HNE were labeled with Atto488, those components are observed in 
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the green channel. The lysosomal biomarker is shown in blue and indicates the location 
of the lysosomal system within the cell. Data such as those shown in Figure 17 indicate 
that there was minor cell uptake in both αS WT and αS-H50-HNE samples since little 
amounts of green fluorescence was observed within the cells (Figure 17). Interestingly, 
when αS samples were observed in cells, they were clustered and localized within 
endosomal/lysosomal biomarkers for both samples (Figure 17). While these results 
might indicate that αS might participate in the lysosomal/endosomal pathway, it is 
important to cautiously acknowledge that such results may not be indicative of how αS or 
HNE-modified αS may interact with cells. Further studies and replications are needed to 
conclusively determine the implications of these results.  
 

  
Figure 18. Cell uptake and internalization experiments of αS WT and αS-H50-HNE 
samples with SH-SY5Y cells. Green indicates the Atto488-labeled samples and blue 
indicates the lysosomal biomarker. Scale=20 µm. 
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Conclusion 
 

In conclusion, this report studied the site-specific HNE modification of αS H50 and its 
effect on the biophysical properties of αS. The αS monomers with the site-specific 
interaction of H50 and HNE were successfully isolated using HPLC. This isolation 
allowed for further experiments that explored the specific effects of the H50-HNE 
interaction on aggregation, lipid binding, and cell uptake. Congo Red assay, αS 
incorporation assay, and DLS experiments showed a significant decrease in aggregation 
kinetics and aggregate sizes when H50 was modified with HNE. This may indicate that 
the single HNE modification on H50 can change the aggregation patterns or size of αS 
aggregates, although its structural relevance to αS pathology is yet to be established. 
Structural characterization techniques such as Cryo-EM or TEM might shed more light 
on how the site-specific modification changes the aggregation process. Also, it was 
observed that the H50-HNE Michael addition can undergo dissociation in aggregation 
conditions, proving the reversibility of this specific reaction. Lipid binding experiments 
showed a two-fold increase in lipid binding affinity for αS-H50-HNE samples (5.7 ± 0.9 
µM) compared to the lipid binding affinity of αS WT (10.7 ± 1.4 µM). This increase in 
lipid membranes might propose an important role in αS function, possibly influencing 
neurotransmission release and synaptic function in dopaminergic synapses. Preliminary 
cell studies showed that both αS WT and αS-H50-HNE monomers resulted in very little 
uptake. However, when uptake was observed, both αS WT and αS-H50-HNE monomers 
internalized in the lysosomal region, implicating its potential participation in the 
lysosomal/endosomal pathway. However, further experiments are needed to assess the 
accuracy of these cell study results. Together, the report showed that the H50-HNE 
interaction alone can significantly change the biophysical properties of αS, highlighting 
the potential role it may have in αS function or pathology.  
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Appendices 
 
Appendix 1. SDS-PAGE gel of incorporated αS in aggregated samples of αS WT and 
αS-H50-HNE.  
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Appendix 2. Autocorrelation curves for αS-H50-HNE samples in buffer, 0.01 mM 
POPS/PC, and 0.01 mM POPS/PC. 
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