
CHOOSE-YOUR-OWN ADVENTURE:

A LIGHTWEIGHT, HIGH-PERFORMANCE APPROACH TO DEFECT AND

VARIATION MITIGATION IN RECONFIGURABLE LOGIC

Raphael Yoram Rubin

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2018

Supervisor of Dissertation

André M. DeHon, Professor
Electrical and Systems Engineering

Graduate Group Chairperson

Lyle Ungar, Professor
Computer and Information Science

Dissertation Committee:

Jonathan M. Smith, Pompa Professor of Engineering and Applied Science

Boon Thau Loo, Professor of Computer and Information Science

Joseph Devietti, Assistant Professor of Computer and Information Science

Dr. Stephen Trimberger, Xilinx, Inc. (Retired)

CHOOSE-YOUR-OWN ADVENTURE:

A LIGHTWEIGHT, HIGH-PERFORMANCE APPROACH TO DEFECT AND

VARIATION MITIGATION IN RECONFIGURABLE LOGIC

COPYRIGHT

Raphael Yoram Rubin

2018

This work is licensed under the Creative Commons

Attribution-NonCommerical-ShareAlike 4.0 International

(CC BY-NC-SA 4.0) License.

To view a copy of this license, visit:

https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/

For Poppy.

iii

Acknowledgements

People

I’d like to thank my advisor, André DeHon, and my committee chair, Jonathan M.

Smith, for seemingly unlimited patience and support. I am also grateful to the rest of

my committee, Boon Thau Loo, Joe Devietti, and Steve Trimberger for their feedback

and approval.

My labmate, Ben Gojman, has been my unwavering comrade in arms during our

Ph.D. studies, an excellent research collaborator and aesthetic advisor, and a caring

friend. Nikil Mehta and Hans Giesen have also been key research contributors and

valuable friends.

My parents, Alice Palokoff and David Rubin, have been waiting for far too long to

see this dissertation done. I hope the results vindicate their many years of anticipation

and encouragement.

My wife, Anne Hanna, always knew that I was going to get this done. Thanks,

most of all, to her, for taking significant time out from working on her own dissertation

to help drag me across the finish line.

iv

Funding

In addition to the amazing people above, this research was also supported by the

following funding sources:

• NSF grants CCF-0403674, CCF-0726602, CCF-0904577, and CNS-1406225

• DARPA grant HR0011-13-C-0005

• ONR grant N00014-15-1-2006

• Toshiba Corporation

• the University of Pennsylvania School of Engineering and Applied Science

All opinions, findings, conclusions, and recommendations expressed in this docu-

ment are those of the author and do not necessarily reflect the views of any funding

agencies.

v

ABSTRACT

CHOOSE-YOUR-OWN ADVENTURE:

A LIGHTWEIGHT, HIGH-PERFORMANCE APPROACH TO DEFECT AND

VARIATION MITIGATION IN RECONFIGURABLE LOGIC

Raphael Yoram Rubin

André M. DeHon

For field-programmable gate arrays (FPGAs), fine-grained pre-computed alternative

configurations, combined with simple test-based selection, produce limited per-chip

specialization to counter yield loss, increased delay, and increased energy costs that

come from fabrication defects and variation. This lightweight approach achieves much

of the benefit of knowledge-based full specialization while reducing to practical, palat-

able levels the computational, testing, and load-time costs that obstruct the appli-

cation of the knowledge-based approach. In practice this may more than double the

power-limited computational capabilities of dies fabricated with 22nm technologies.

Contributions of this work:

• Choose-Your-own-Adventure (CYA), a novel, lightweight, scalable methodology

to achieve defect and variation mitigation

• Implementation of CYA, including preparatory components (generation of di-

verse alternative paths) and FPGA load-time components

• Detailed performance characterization of CYA

– Comparison to conventional loading and dynamic frequency and voltage

scaling (DFVS)

– Limit studies to characterize the quality of the CYA implementation and

identify potential areas for further optimization

vi

Contents

Acknowledgements iv

Abstract vi

Contents vii

List of Tables xii

List of Figures xiv

List of Algorithms xvii

1 Introduction 1

1.1 Hypothesis . 1

1.2 The Problem . 1

1.3 Previous Strategies . 3

1.3.1 Component-Specific Mapping (CSM) 6

1.4 CYA: Path-Multiplicity Based CSM 10

1.5 Results . 13

1.6 Pertinent Publications . 16

1.7 Who Did What . 18

1.8 Key Contributions . 19

vii

2 Setting 20

2.1 International Technology Roadmap for Semiconductors 20

2.2 Transistor Fundamentals . 21

2.3 What Has Changed? . 25

2.4 Summary . 27

3 Current Solutions 28

3.1 Chapter Organization . 30

3.2 Techniques That Address Variations Only 30

3.2.1 Statistical Static Timing Analysis (SSTA) 30

3.2.2 Body Biasing . 31

3.2.3 Clock Phase Skewing and Slack Stealing 31

3.3 Techniques That Address Low Defect Rates 32

3.3.1 Multiple Bitstreams . 32

3.3.2 EasyPath™ . 33

3.4 Techniques That Address High Defect Rates 33

3.4.1 Modular Redundancy . 33

3.4.2 Hardware-Sparing In-Factory Repair 34

3.4.3 Avoiding Faults . 35

4 CYA 37

4.1 Inspiration . 38

4.1.1 Illustrative Example . 38

4.2 CYA Components . 40

4.2.1 CYA Bitstream . 41

4.2.2 Routing . 42

4.2.3 Alternatives Generation . 42

viii

4.2.4 Bitstream Loader . 44

4.3 Alternative Diversity . 47

4.3.1 Problems with Resource-Cost Alternatives Generation 47

4.4 Foundational Experiments . 53

4.4.1 Experimental Framework . 54

4.4.2 Experimental Flow . 56

4.4.3 Experimental Architecture . 57

4.4.4 Experimental Design . 59

4.5 Initial Results . 60

4.5.1 Path-Cost Algorithm vs. Resource-Cost Algorithm 62

4.5.2 C-Box Population . 62

4.5.3 Additional Tracks . 62

4.5.4 Impact on Circuit Delay . 68

4.5.5 Impact of Switch and Wire Defects 71

4.5.6 Summary . 73

4.6 Bitstream Impact . 73

4.6.1 Bitstream Size . 75

4.6.2 Bitstream Load Time . 78

4.6.3 Updated Bitstream Tables . 81

4.7 Repair of Different Resource Types 85

4.7.1 The Fabric and the Tile . 85

4.7.2 Channel Wires . 85

4.7.3 Input C-Boxes . 88

4.7.4 S-Boxes and Output C-Boxes 90

4.7.5 CLB Pins . 90

4.7.6 Logic (Subblocks) . 90

ix

4.7.7 All Resource Types . 91

5 Failure Modes and Defect Models 104

5.1 Functional Faults . 105

5.1.1 Incorrect Inversions . 105

5.1.2 Outputs That Are Not Functions of the Source 106

5.1.3 Functions With Unintended Inputs 106

5.1.4 Example Test Circuit . 108

5.2 Delay Faults . 109

5.2.1 Delay Budgeting . 110

5.2.2 Test Circuit and Procedure 113

5.2.3 Single Frequency Delay Results 116

6 Delay and Energy Optimization with CYA 121

6.1 Delay Optimization . 121

6.2 Energy Optimization . 125

6.2.1 Energy Impacts of Voltage Reduction and Variations 125

6.2.2 Experiments . 133

7 Limit Studies 142

7.1 Pathfinder Negotiated Alternative Selection 143

7.2 Pathfinder Knowledge-Based Repair 149

7.3 Full-Knowledge Routing . 155

7.4 CYA and the Costs and Benefits of Component-Specific Mapping . . 160

8 Conclusions and Future Prospects 169

Appendices 172

x

A Topological Systematic Error 173

A.1 Resource Quantity . 175

A.2 Resource Properties . 176

B Architecture Files 186

B.1 4x4 fcin 1.00 fcout 1.00.arch . 186

B.2 4x4 fcin 0.50 fcout 0.25.arch . 189

B.3 One alt guaranteed seg len 4.xml . 192

Acronyms 200

Bibliography 202

xi

List of Tables

2.1 ITRS scaling and process variation projections 26

4.1 Full-yield 95% confidence interval vs. # of chips 60

4.2 CYA yield improvement for Toronto 20 benchmarks (VPR 4.3) 74

4.3 Bitstream table parameters . 75

4.4 CYA bitstream sizes for Toronto 20 benchmarks (VPR 4.3) 76

4.5 CYA bitstream load times for Toronto 20 benchmarks (VPR 4.3) . . 79

4.6 Toronto 20 benchmark parameters for VPR 5 82

4.7 CYA bitstream sizes for Toronto 20 benchmarks (VPR 5) 83

4.8 CYA bitstream load times for Toronto 20 benchmarks (VPR 5) . . . 84

4.9 Resource area data (22nm technology) 92

4.10 Distribution of max CYA-repairable defect density (Toronto 20) . . . 100

4.11 CYA yield improvement for Toronto 20 benchmarks (VPR 5) 102

5.1 Variables for slack calculations . 112

6.1 Energy optimization by voltage reduction (Toronto 20, nominal chips) 126

6.2 Leakage & delay with variations (Toronto 20, conventional loading) . 128

6.3 Energy/operation with variations (Toronto 20, conventional loading) . 136

6.4 Optimal energy/operation using DFVS (Toronto 20) 137

6.5 Optimal energy/operation using CYA (Toronto 20) 138

xii

6.6 DFVS and CYA energy savings vs. conventional loading (Toronto 20) 139

6.7 DFVS and CYA variation energy loss mitigation (Toronto 20) 140

7.1 Energy and voltage, Pathfinder alternative selection (Toronto 20) . . 148

7.2 Energy and voltage, Pathfinder knowledge repair (Toronto 20) 154

7.3 Energy and voltage, full-knowledge routing (Toronto 20) 159

7.4 Median energy usage of CSM methods (Toronto 20) 162

7.5 Median % of possible CSM energy savings obtained (Toronto 20) . . . 164

7.6 Median % of possible low-Vdd energy savings obtained (Toronto 20) . 166

7.7 Median % recovery of energy lost due to variations (Toronto 20) . . . 168

A.1 CYA energy savings relative to DFVS (Toronto 20) 185

xiii

List of Figures

1.1 Defect repair on an FPGA using resource interchangeability 6

1.2 Avoiding multiple defects with one repair path 8

1.3 Repair flexibility via path multiplicity 8

1.4 CYA CAD flow vs. conventional flow 10

1.5 Yield improvement via CSM . 17

2.1 Cartoon resistor . 21

2.2 Basic structure of a MOSFET . 22

2.3 Operation of a planner MOSFET . 23

4.1 FPGA channel with base and reserved tracks 38

4.2 CYA CAD flow (reprise) . 40

4.3 Path-Cost Algorithm motivating examples 48

4.4 Paths tree generation . 49

4.5 Duplicate detection and new path addition using a paths tree 50

4.6 Buffered switch and wire segment model 58

4.7 Yield benefits of CYA alternatives . 61

4.8 Resource-Cost/Path-Cost yield comparison 63

4.9 Effects of C-Box population on yield 64

4.10 Effects of extra base tracks on yield 65

xiv

4.11 Effects of reserved tracks on yield . 66

4.12 Effects of extra base tracks vs. reserved tracks 67

4.13 Yield and delay preservation by CYA at high defect rates 69

4.14 Effects of stuck-open switch and broken-wire defect types 72

4.15 FPGA block diagram . 86

4.16 FPGA tile wiring diagram . 87

4.17 Bridge faults in staggered interconnect 88

4.18 Directional single-driver segment wiring diagram 89

4.19 Bi-directional multi-driver segment wiring diagram 89

4.20 Yield impact of bridges vs. breaks . 93

4.21 Yield impact of CLB input buffer defects 94

4.22 Yield impact of S-Box buffer defects 95

4.23 Yield impact of CLB I/O pin wire breaks 96

4.24 Yield impact of dead subblocks . 97

4.25 Combined yield impact of all defect types (per-resource defect model) 98

4.26 Combined yield impact of all defect types (per-area defect model) . . 99

4.27 Distribution of max CYA-repairable defect density (Toronto 20) . . . 101

4.28 CYA repair effectiveness for Toronto 20 benchmarks 103

5.1 Transition and inversion fault testing circuit 109

5.2 des slack histogram (nominal mapping) 111

5.3 Harris delay self-test circuit . 114

5.4 Gojman delay measurement circuit and sample results 115

5.5 CYA delay improvements at 0.8V in the presence of variations 118

5.6 CYA delay improvements at 0.7V in the presence of variations 119

5.7 CYA delay improvements at 0.6V in the presence of variations 120

xv

6.1 Delay impact of voltage reduction in CYA 123

6.2 Energy impact of voltage reduction in CYA 124

6.3 Inverter delay distribution under variation 129

6.4 Delay distribution vs. Vdd (Gojman measurements) 130

6.5 Static/dynamic energy breakdown for a single multiplier 131

6.6 Energy consumption vs. voltage for des (nominal chip) 132

6.7 des energy/operation vs. Vdd, all loading methods 141

7.1 Delay yield, Pathfinder alternative selection and CYA (des) 145

7.2 Energy yield, Pathfinder alternative selection and CYA (des) 146

7.3 Energy vs. load time, Pathfinder alt. selection and CYA (Toronto 20) 147

7.4 Delay yield, adding Pathfinder knowledge repair (des) 151

7.5 Energy yield, adding Pathfinder knowledge repair (des) 152

7.6 Energy vs. load time, adding Pathfinder know. repair (Toronto 20) . . 153

7.7 Delay yield, adding full-knowledge routing (des) 156

7.8 Energy yield, adding full-knowledge routing (des) 157

7.9 Energy vs. load time, adding full-knowledge routing (Toronto 20) . . 158

7.10 % of possible CSM energy savings obtained (Toronto 20) 163

7.11 % of possible low-Vdd energy savings obtained (Toronto 20) 165

7.12 % recovery of energy lost due to variations (Toronto 20) 167

A.1 Delay of stressed vs. relaxed locked static routes (Toronto 20) 177

A.2 Speed advantage of reserved resources for a single net 179

A.3 Delay of unlocked vs. locked relaxed static routes (Toronto 20) 181

A.4 Delay of CYA vs. static mapping (Toronto 20) 182

A.5 (CYA delay)/(static map delay) vs. voltage for Toronto 20 designs . . 183

A.6 (CYA energy)/(static map energy) vs. voltage for Toronto 20 designs 184

xvi

List of Algorithms

4.1 Resource-Cost Algorithm for alternatives generation 43

4.2 Bitstream Load Algorithm . 46

4.3 isUsable Function for Bitstream Load Algorithm 47

4.4 Path-Cost Algorithm for alternatives generation 51

4.5 PathCost.FindShortest Function for Path-Cost Algorithm 52

5.1 Iterative Slack Distribution Algorithm 113

xvii

Chapter 1

Introduction

1.1 Hypothesis

Pre-computed per-net alternatives provide a lightweight method to exploit the recon-

figurability and redundancy of field-programmable gate arrays (FPGAs) to address

fabrication defects and variations. The improvements to yield and energy efficiency

can more than double power-limited performance of dies fabricated with 22nm tech-

nologies.

1.2 The Problem

Moore’s Law [62] describes the trend of the doubling of the number of transistors per

die every 18 months, largely resulting from the reduction of the size of each transistor

(one of many characteristics included in the umbrella term “feature sizes”). Dennard

scaling [17], a companion trend of shrinking per-transistor power consumption, en-

ables Moore’s Law: smaller transistors can be switched with lower voltage, resulting

in constant power density despite the increasing density of transistors enabled by

1

size-scaling. However, Moore’s Law scaling has now driven component sizes down to

near-atomic scales, where detailed control over produced structures becomes increas-

ingly difficult, if not impossible. Operating voltages must be raised and clocks must

be slowed to compensate for the resulting variations, preventing the voltage from scal-

ing with field-effect transistor (FET) feature size. Consequently, Dennard scaling has

ended — energy-efficiency improvements no longer match the pace of transistor area

scaling. We can no longer operate as many transistors as we can fabricate in a given

area. This scaling mismatch is expected to worsen with continued scaling, leading to

a steady increase in the fraction of each die which must remain inactive to meet strict

power budgets. This trend/problem is commonly termed “Dark Silicon” [20].

Mehta [61] (elaborated in Mehta [59]) demonstrates that component-specific map-

ping (CSM) can be used to improve operational energy efficiency for FPGAs. A com-

plementary project, by Gojman [26], demonstrates how to perform the detailed delay

characterization of each chip required for knowledge-based CSM. This represents a

significant advance beyond Culbertson’s [14] defect-only characterization (detection

of lost signals, as opposed to the slowing of signals caused by variations). However,

Gojman’s characterization methodology requires days or even weeks of analysis for

a single chip, and utilizing these measurements requires redoing stages of the design

compilation for each individual chip. The run times of current place-and-route tools

are already considered overly burdensome, often taking hours or even days. Multi-

plying that cost by the number of deployments, while at the same time adding sub-

stantial per-chip characterization costs, is more than sufficient to prevent widespread

adoption.

Rather than measuring first and then specializing all aspects of a design for every

target chip, Choose-Your-own-Adventure (CYA) produces as-needed specialization

at load time using composable pre-computed partial repair solutions and coarse-

2

grained as-needed testing. This approach avoids the per-chip computer-aided de-

sign (CAD), complete characterization, and data management challenges that plague

Mehta’s knowledge-based approach. Despite having much less chip-specific informa-

tion, CYA achieves on average 52% of the energy savings of knowledge-based CSM

that are specifically attributable to the customization of the mapping (Table 7.5).

In addition, both techniques inherently incorporate a form of dynamic frequency and

voltage scaling (DFVS) (see Section 1.3). Counting the effects of DFVS, CYA achieves

on average 83% of the total energy savings of knowledge-based CSM relative to con-

ventional loading practices (Table 7.6). This dissertation describes the details of the

CYA methodology and its implementation, and presents experiments demonstrating

its capabilities, sensitivities, and limitations.

1.3 Previous Strategies for Mitigating Post-Fabri-

cation Defects and Variations

Some post-fabrication strategies use low-level physical approaches to effectively re-

move defects and reduce variations. Body biasing [80, 63, 48] is one such technique.

Body biasing divides the chip into control regions and shifts the threshold voltage

in each region in order to reverse variation-induced Vth shifts. This works well when

Vth shifts are spatially correlated or uniform across an entire die. However, with ran-

dom variations (an increasing concern, see [43]), neighboring transistors may vary in

opposite directions from nominal Vth. In such a case, applying a single correction

factor to both transistors will improve one but further degrade the other. The larger

the granularity of the control regions, the smaller the potential benefit we can get

from uniformly correcting each region. The significant area overhead required to sup-

port body biasing negates the utility of this technique at granularities that effectively

3

address random variations. For a more detailed analysis see Section 3.2.2.

Architectural sparing (including extra resources to replace defective ones), such

as the row and column sparing used by Altera [13, 57, 47] and the segment sparing

described by Yu [95], is another relatively low-level corrective approach. However,

both the extra resources and their supporting infrastructure add area and delay,

which also increases energy costs. Moreover, in light of variations, it is difficult to

determine a priori which resources to discard or remap when the specific operational

voltage is not known. This determination can be made at load-time, but at this

point the sparing approach takes on the character of CSM, becoming more of an

architectural optimization for that purpose than a distinct solution.

As variations increase, it becomes more important not only to correct or mitigate

variations, but also to more precisely quantify what correction or mitigation even

means. Specifically, we want to be able to say that, using a given correction protocol,

a certain class of designs can be expected to operate reliably on chips with a certain

level of variations, within certain voltage, clock speed, and other operating parameter

ranges, for the full desired lifetime of the device. I refer to the process of establishing

these parameter ranges as “margining”.

Acquiring more detailed knowledge about the properties of each individual chip

often enables one to certify some chips for use with more demanding operational pa-

rameters (i.e., tighter margins). For example, speed/power binning is the practice

of testing chips at a few different clock speeds and voltages to determine the rough

performance characteristics of each chip. The chips that are reliable at higher fre-

quencies or lower voltages are offered at a premium commensurate with the extra

utility to customers, rather than limiting all chips to the safe settings of the worst of

the bunch.

Dynamic voltage scaling (DVS) [11], dynamic frequency scaling (DFS), and the

4

combination, dynamic frequency and voltage scaling (DFVS), take this knowledge-

based customization a step further, adjusting the supply voltage, clock speed, or

both to save power while maintaining the requirements of a specific application or

workload. For FPGAs, DVS/DFS often refer to the determination of an appropriate

supply level/clock speed for a specific design on a given chip, rather than continuing

to adjust these parameters during operation to match current workloads. DVS/DFS

can only optimize the efficiency/speed at which a pre-determined mapping operates

on any given chip, and so their effectiveness is limited by the worst of that chip’s

resources (transistors, wires, etc.) used by the given mapping. This limitation can

be addressed with the use of CSM to replace bad resources with better resources,

enabling dynamic scaling to achieve lower voltages/higher clock speeds.

At this point in the process, we have accepted the demise of the perfect-chip

assumption. The next step now becomes resilient design: creating circuits that will

operate correctly on partially defective and otherwise variable hardware. The classic

modular redundancy approach [65, 10, 2, 67] provides solutions to high rates of defects,

but comes with a high cost. The minimum implementation triplicates (in special

cases duplicates) a circuit, and thus triples (or doubles) the energy costs. Alternative

approaches can be much more efficient.

Statistical static timing analysis (SSTA) [85, 49, 77, 52, 44] factors delay sen-

sitivity and a model of expected delay variation into the CAD flow. At best this

reduces sensitivity to post-fabrication variations and enables some tightening of mar-

gins. However, this reduction only goes so far and still requires the margins to account

for the fact that any single transistor may vary enough to slow down the design. It

would be better if we could entirely avoid using those worst resources, so that we

can push further and reduce margins, if not eliminate them entirely, to guard against

post-fabrication variations.

5

Configuration 1 Configuration 2 Configuration 3

N
o

de
fe

ct
s

CLBCLB

CLB CLB

CLBCLB

CLB CLB

CLBCLB

CLB CLB

D
ef

ec
ts

CLBCLB

CLB CLB

CLBCLB

CLB CLB

CLBCLB

CLB CLB

Figure 1.1: The rich pool of interchangeable resources in an FPGA provides many
functionally equivalent configurations. For nominal, defect-free FPGAs, arbitrary
selection is adequate. When defects are present, CSM enables us to select a configu-
ration that best matches each chip.

Design-specific performance tweaks such as clock skewing [76, 74] and slack steal-

ing can also provide delay improvements for nominal or lightly varying devices. How-

ever, these techniques do not address the complete failure of some switches that occurs

at more energy efficient voltages.

1.3.1 Component-specific Mapping (CSM)

FPGAs are designed to maximize the range of supported user circuits. This is

achieved by providing rich pools of generic, interchangeable resources, almost in-

variably exceeding the needs of any single application (illustrated in Figure 1.1). For

working around defects and variations, this translates to plentiful spare resources and

6

the freedom to discard bad resources for usable spares. We can use this freedom to

adapt the mapping of a user circuit to the unique capacities of each target FPGA,

i.e., CSM.

This concept was demonstrated in practice by Hewlett Packard in the context of

the TERAMAC project [14]. To make it work, all FPGAs are thoroughly tested to

locate defects, and the resulting information stored for later use. When an appli-

cation is mapped (much like a computer program is compiled) for TERAMAC, the

tools use the stored knowledge to work around defects. Mehta [59] demonstrated

the ability of this form of knowledge-based specialization to tighten variation-driven

energy margins. His results set an energy efficiency target for the present work (see

Chapter 7).

This approach pre-emptively performs full custom mapping for each part of a

user design for each target FPGA, performing considerable work to specialize nets

which may not require the extra attention. In contrast, Lakamraju and Tessier [46]

propose an incremental approach: work with the nominal configuration and only

reroute nets affected by defects or disturbed by the rerouting of other nets. For small

numbers of defects, they show that this approach produces a repair solution in a

fraction of the time required for routing from scratch. The speedup comes largely

from leveraging common solutions (i.e., the original pre-repair route) which account

for most of the configurations of most nets (when defects are few). Taking this concept

a step further, individual repair solutions may satisfy the needs of multiple chips

with differing defect patterns (see Figure 1.2). Thus, we can save work by reusing

repair solutions in addition to portions of the pre-repair configurations. Moreover,

these single-net repair solutions can be pre-computed, eliminating the troublesome

requirement that the FPGA loader also be capable of performing full routing.

Hyder and Wawrzynek [34] use this idea — they shuffle the various bitstreams

7

CLBCLB

CLB CLB

(a)

CLBCLB

CLB CLB

(b)

CLBCLB

CLB CLB

(c)

Figure 1.2: (a) shows a design mapped on a healthy FPGA. A single repair solution
addresses the different defects in FPGAs (b) and (c).

(a) Conventional FPGA configuration with a single path for each of three shown
two-point nets.

(b) Configuration with path multiplicity. Each of the three nets is shown with two different
paths (a green original path, and an orange alternative path). When configuring an FPGA,
one of the two paths is selected for each net.

(c) Path selection for the three nets, used to work around three different defects.

Figure 1.3: Path multiplicity offers repair flexibility.

8

(single FPGA configurations) amongst the chips in a multi-FPGA system (5 chips

in an experimental BEE2) to find a functional overall configuration. Xilinx uses

this idea for the EasyPath™program [42, 50, 86] to recover some value from chips

that fail to meet normal production specs. Customer applications are matched to

potentially defective FPGAs, using design-specific testing. Chips that pass are sold

at a reduced rate to the respective customers with the guarantee of full performance

and functionality of a standard FPGA, but only for the one specific application.

With CSM, a single design is compiled into different configurations with equivalent

functionality to match the characteristics of specific FPGAs. We can also produce

multiple equivalent mappings targeting coverage of avoidable defect patterns (again,

consider the three example configurations in Figure 1.1) rather than the specific defect

patterns of individual chips. The library of alternative configurations can be used

much like the different system components of Hyder and the different applications in

EasyPath™. However, in this case, the goal is to produce the same functionality in

each chip.

Configuration multiplicity has been studied at a number of different scales [75],

including the coarsest (full-chip bitstream multiplicity) [84, 56], coarse block multi-

plicity [32] and shuffling (an intra-chip variant of Hyder’s approach), and multiplicity

at the level of paths or “two-point nets” (Trimberger [83], Campergher [9], Rubin [70]).

Figure 1.3 shows a simplified example of path multiplicity.

Fine-grained solutions are composable: each repair domain may choose alterna-

tives independently to some degree, resulting in a combinatorially large number of

global configurations from relatively few alternatives. This provides a significant ad-

vantage in terms of the number of possible solutions produced by a given alternative

generation effort, so much so that path multiplicity is capable of achieving most of

the benefits of full-knowledge-based CSM despite its significantly lower costs (see

9

Figure 1.4: CYA CAD flow vs. conventional flow

Chapter 7).

This dissertation describes Choose-Your-own-Adventure (CYA), my novel ap-

proach to CSM, details the implementation I used to test it, and demonstrates its

advantages.

1.4 CYA: Path-Multiplicity Based CSM

Choose-Your-own-Adventure (CYA) combines path based multiplicity and simple

testing into a powerful, lightweight, and practical methodology for CSM.

10

The CYA process (Figure 1.4) matches conventional FPGA CAD flow until after

the routing stage, at which point the conventional flow has a complete and fixed

configuration. The next CYA stage is alternatives generation. One two-point net at

a time, the alternatives generator searches the FPGA resource graph for other legal

paths to connect that source/sink pair. This procedure processes each two-point net

until the requested number of alternative paths are discovered, or until reasonable

effort fails to reveal additional distinct paths. In general, one would request at least

one alternative for each two-point net. In this work, most studies use a target of 64

alternatives.

The core of the alternatives generator was inspired by the popular routing al-

gorithm Pathfinder [58]. It is built around shortest-path searches (Dijkstra [19] or

A∗ [31]), where costs that shift from one search to the next drive solutions towards

specific goals. For alternatives generation, the goals are first to do no harm, and

second to produce a diverse set of paths to maximize the probability that at least one

will work well for each chip.

To achieve the first goal, I constrain alternate paths to resources that are unused in

the base route or only used by the originating net. It should be noted that these nets

start with logic blocks (logic elements (LEs) or look-up tables (LUTs)). Therefore,

these alternatives provide repair/swapping for both interconnect and logic.

The second goal, alternative diversity, is achieved by penalizing expansions that

follow previously recorded alternatives.

Costi = (Costi−1 +NodeCosts)

· (1 + PrevAltCount ·RepetitionPenaltyFactor)
(1.1a)

TotalPenalty ≥ RepetitionPenaltyFactorLength of Shared Prefix (1.1b)

11

This common-prefix path penalty adds exponential pressure on the search to break

away from the previous paths. An additional per-node usage penalty provides linear

pressure to avoid previously used nodes, whether or not the paths to those nodes

are part of previously recorded prefixes. These searches are repeated until the re-

quested number of alternatives are generated or no new paths are discovered after

several attempts, where the penalty factor is increased with each failed attempt. The

alternative generation procedures are covered in depth in Section 4.2.3.

Once generated, alternatives are added to the bitstream (the “machine code”

streamed into an FPGA to configure it), along with the conventional “base” route.

The CYA bitstream may also include supplemental instructions for testing procedures

or other information to assist the mapping process.

The CYA bitstream loader builds on the conventional loader, adding the support

needed to select alternatives and to act on those decisions. The first step is to map

the base configuration, much like a conventional loader. Next, the mapped FPGA is

tested to verify proper functionality. Then, broken two-point nets are unmapped and

each is repaired individually by mapping and testing its alternatives one after the

other until one works. If any net runs out of alternatives, the loader reports failure

and aborts.

The pre-computed alternatives focus on routed nets, that is, nets that send signals

outside the originating cluster. Local nets, those that terminate entirely within the

originating cluster, are simpler to remap on the fly. In the process of evaluating alter-

natives for a routed net, the loader may remap local nets to any currently available

LEs within the cluster.

When focused solely on correcting defects, the loader need only test for functional

correctness. During the repair of each two-point net, each candidate path will be

tested to determine its suitability. Iterating through each net with the same tests

12

provides a simple but complete testing regime.

Extending the loader to support testing of the circuit functionality at any specified

fixed speed requires only a few minor changes. First, the modeled delays from the

original routing are annotated into the bitstream. The annotated delay budgets are

then adjusted to allow some nets to operate more slowly than modeled when this will

not slow down the entire design (elaborated in Section 5.2.1). Finally, functionality

testing is performed at a frequency related to the slack budget for each two point net.

Delay optimization is achieved by performing complete, fixed-speed load/repair at

various target delays, following a chosen search pattern (e.g., a binary search for the

fastest workable speed). To provide delay budgets for each two point net at different

clock frequencies, I simply scale the original budgets by the ratio of the current target

delay to the modeled target delay recorded in the bitstream.

To optimize energy, delay optimizing load/repair is performed at various voltages,

to select the most energy-efficient voltage at which the design functions properly.

Further research may provide models to estimate the most efficient voltage; however,

for my results (see Section 6.2), I assume power metering to directly identify the most

efficient voltage rather than relying on approximations from other parameters.

1.5 Results

The experiments (discussed in Section 4.4 and forward) follow a set of benchmarks

(the “Toronto 20” [6] benchmarks, which are commonly used in FPGA research) and

a set of virtual chips (each with a unique pattern of defects and fabrication variations)

through a set of CAD flows and loading simulations. Section 4.4.3 details the basic

FPGA architecture used for the experiments up through Section 4.6.2, as well as

the meanings of the architectural parameters explored. Section 4.6.3 describes an

13

updated architecture that was used from that point forward.

The CAD stages in these experiments are based on an analogue of traditional

CAD flow — synthesis, packing, placement, and routing (the yellow-shaded portions

of Figure 1.4) — followed by simulated loading and analysis to measure area, delay,

and energy. Additional stages provide data for full-knowledge routing and CYA (the

blue-shaded portions of Figure 1.4). This CAD flow is feed-forward and intermediate

results are preserved to be used for different experiments at later stages. For exam-

ple, I only resynthesize a netlist when changing LUT size, but I use fixed synthesis,

packing, and placements if I want to examine the impact of changing channel width.

Changes in Vdd or defect/variation patterns (i.e., comparing different chips) only affect

the final stage of the flow (loading for most experiments, routing for full-knowledge).

Sections 4.5 to 5.1 explore the ability of CYA to address post-fabrication defects.

Figure 1.5 illustrates the resulting substantial yield improvements for des — CYA

maintains full yield at defect densities several orders of magnitude beyond both the

point at which observable numbers of imperfect chips begin to appear, and the point

at which oblivious mapping (use of a single static map) on those imperfect chips begins

to experience failures. Across the full Toronto 20 benchmark suite, I saw no failed

loads at defect densities as high as 81 defects/cm2 (Table 4.10). Moreover, it is likely

that the rare failures at this defect density, as well as many of the failures at higher

defect densities, may be addressed (as future work) with minor improvements to CYA,

with complementary solutions (e.g., [46]), or by establishing testing methodologies to

catch obviously irreparable combinations of defects. Consequently, it is significant

that, in my experiments, CYA maintains 95% yield up to 2400 defects/cm2 for all

Toronto 20 designs.

Moving from hard defect repair to variation tolerance requires only a minimal shift

in testing procedures — now, instead of asking only whether a given path is functional

14

or broken, I ask whether that path functions fast enough to satisfy a prescribed

delay budget and use this test to determine which paths are usable or need to be

replaced with an alternative. The logic of the CYA repair process otherwise remains

unchanged. The results of these experiments are reported in Sections 5.2 and 6.1. At

the standard operating voltage for the 22nm technology used in these experiments

(Vdd = 0.8V), CYA provides only a small speed-up. However, at lower voltages, CYA

begins to substantially improve both total and parametric yield (yield of chips that

operate at a given speed). Figures 5.5 to 5.7 show examples of this behavior for des.

These low-voltage parametric yield enhancements enable the most exciting capa-

bility of variation tolerance: energy savings achieved through voltage reduction (Sec-

tion 6.2). Lowering the voltage reduces dynamic energy consumption, but this comes

at the cost of increasing variation-related faults and slowdowns. Conventionally-

loaded chips are forced to run slower (at increasing cost in static energy), or fail to

run at all. CYA repair substantially mitigates these effects, allowing both yield and

energy recovery. Table 6.6 shows the energy reduction of CYA relative to conven-

tional loading for all Toronto 20 designs (an average of 61%), while Table 6.7 shows

the recovery of the energy lost to variations (an average of 70%).

Chapter 7 compares the delay and energy benefits of CYA to those of more costly

CSM techniques, both to estimate the maximum possible gains available with CSM,

and to map out the load-time and other costs associated with realizing further gains

beyond those offered by CYA. The limited alternative list and greedy selection used

by CYA account for roughly half of the difference in energy savings achievable with

CYA as compared to the (impractically costly but maximally effective) technique of

“full-knowledge” routing. Overall, CYA achieves 52% of the overall energy savings

achievable with CSM, and 83% of the portion of that savings that is attributable solely

to mapping specialization (rather than simply to the inherently-included DFVS).

15

Moreover, given that full-knowledge routing requires 7 orders of magnitude more

load time to mitigate only 15% more of the energy cost of variations than CYA does

(85%, compared to CYA’s 70%), it seems clear that CYA represents a cost/benefit

sweet spot in the CSM energy savings landscape.

1.6 Pertinent Publications

The following publications of mine cover work discussed in or closely related to this

dissertation:

1. Choose-Your-Own-Adventure Routing: Lightweight Load-Time Defect Avoid-

ance [69, 70]

2. Component-Specific Mapping for Low-Power Operation in the Presence of Vari-

ation and Aging [27]

3. Timing-Driven Pathfinder Pathology and Remediation: Quantifying and Re-

ducing Delay Noise in VPR-Pathfinder [71, 72]

4. Limit Study of Energy & Delay Benefits of Component-Specific Routing [61]

5. Pitfalls and Tradeoffs in Simultaneous, On-Chip FPGA Delay Measurement [51]

6. Continuous Online Self-Monitoring Introspection Circuitry for Timing Repair

by Incremental Partial-reconfiguration (COSMIC TRIP) [22, 23]

7. Quality-Time Tradeoffs in Component-Specific Mapping: How to Train Your

Dynamically Reconfigurable Array of Gates with Outrageous Network-delays

(DRAGON) [24]

8. Self-Adaptive Timing Repair [25]

16

95

 0

 20

 40

 60

 80

 100

0.0001 0.001 0.01 0.1 1 10 100 1000 10000 100000

Y
ie

ld
 %

Defect Density (defects/cm
2
) (log)

Full Knowledge
CYA
Oblivious
Perfect

Figure 1.5: Yield comparison of the following routing methodologies: requiring perfect
chips (“perfect”), using static mapping on all chips (“oblivious”), using CYA mapping
on all chips (“CYA”), and using full-knowledge routing on all chips (“full-knowledge”).

Yield figures are for des mapped to 1000 chips, using 22nm technology and a die
area of 9 million λ2 (4400µm2). All chips had 20% extra base tracks, 16 reserved
tracks, and single-driver interconnect, and the CYA mapping used 64 alternatives.
Simulations were performed in VPR 5 [53].

The “goodness” arrow next to the yield axis is a reminder that higher yields are
preferred.

17

1.7 Who Did What

The full-knowledge CSM work was a group project. Benjamin Gojman specialized

in the implications for nanowire-based technologies. Nikil Mehta specialized in con-

ventional and near-future technologies. Mehta’s work provided many of the detailed

area, delay, and energy models used to produce the data presented throughout my

dissertation.

My own modifications to VPR to support defects, variations, and knowledge-

based routing provided a foundation for the full-knowledge research as well as the

CYA project. Relevant code files are included with the electronic deposit of this dis-

sertation. Hans Geisen and I jointly modified channel construction in VPR to enable

reservation for repair solutions in directional interconnect [24, 23] (see Section 4.6.3).

Hans Geisen also extended CYA into incremental [24] and online [22] variants.

My work on noise management [72] for the PathFinder [58] routing algorithm,

detailed in [71], made possible the meaningful full-knowledge results in both Mehta’s

dissertation and this one. I also used these modifications to prepare base routes for

CYA (see Section 4.4.2).

18

1.8 Key Contributions

• CYA, a novel, lightweight, scalable methodology to achieve defect and variation

mitigation

• Implementation of CYA, including preparatory components (generation of di-

verse alternative paths) and FPGA load-time components

• Detailed performance characterization of CYA

– Comparison to conventional loading and DFVS

– Limit studies to characterize the quality of the CYA implementation and

identify potential areas for further optimization

19

Chapter 2

Setting

2.1 International Technology Roadmap for Semi-

conductors

The International Technology Roadmap for Semiconductors (ITRS), as the name

implies, is a roadmap for the semiconductor industry. It is produced through the

cooperation of companies that manufacture computer chips, companies that supply

and produce materials and equipment for the manufacturers, and researchers (public,

private, and academic). Its purpose is to set short-term and long-term goals for the

industry and to identify the challenges that must be addressed to meet those goals.

In short, the roadmap is the predominant authority on the research needs of the

semiconductor industry.

The 2001 edition of the roadmap [36] mentioned non-visual defects, parametric

defects, and process variation, but did not emphasize these as key challenges facing

the industry. By the 2009 edition, this attitude had changed dramatically, with defect

and variation issues being viewed as key challenges for near-term technologies. What

caused this shift?

20

Figure 2.1: Cartoon representation of a resistor. Free charges carry current from one
end to the other.

2.2 Transistor Fundamentals

A brief review of the basic concepts of transistor technology will help illustrate the

changing nature of the problems which arise with transistors at the 22 nm technology

node and beyond.

Current computer chips consist mostly of field-effect transistors (FETs) and wiring

to connect those transistors. A FET is an analog device, essentially just a variable

resistor. In a normal resistor (Figure 2.1), relatively mobile “charge carriers” (specif-

ically, electrons) carry charges from one terminal to another. The resistance R of a

resistor is a function (Equation (2.1)) of its length L, its cross-sectional area WH

(width times height), the density of charge carriers, and how easy it is to move the

charge carriers (mobility). The density and mobility of the charge carriers are jointly

represented in the single resistivity parameter ρ, a property of the material of which

the resistor is composed.

R = ρ
L

WH
(2.1)

Inserting this equation into Ohm’s law (V = IR), we get Equation (2.2), which relates

the current I through the resistor to the voltage V applied across its terminals.

I = WHV

ρL
(2.2)

In a FET (Figure 2.2), a “channel” region serves as a variable resistor which con-

21

Tox

Tg

L

Gate

Source Drain

Oxide

Body

(a) Cross-section

L

Gate
Source Drain

W

(b) Top-down

Figure 2.2: The basic structure of a metal-oxide semiconductor field-effect transistor
(MOSFET).

trols the rate at which current is allowed to flow between the “source” and the “drain”.

A capacitor serving as a “gate” applies an electric field to the channel to control the

availability of charge carriers in the channel, and, thus, its resistance. The gate field

pushes charge carriers away from the channel region to increase its resistance or pulls

charge carriers into the channel to decrease its resistance (Figure 2.3), effectively dis-

abling or enabling current transmission between the source and the drain. The time

it takes to fully charge the gate capacitor is what causes the switching delay of the

transistor.

22

Gate

Source Drain
+ +

++

(a) Off

Gate

Source Drain
++ +

++

++++

(b) Intermediate

Gate

Source Drain
 Channel

++ +

++

++++
++

++ ++++
++

(c) On

Figure 2.3: A MOSFET in three states. (a) With a neutral voltage on the gate, the
charge carriers in the body disperse, resulting in a high resistance between the source
and drain. (b) As charge builds up in the gate it attracts carriers. (c) Increasing
the density of carriers reduces resistance, establishing a channel of relatively good
conductivity between the source and drain.

23

Transistor current and delay can be approximated using Equations (2.3) [59]:

Isat = WvsatCox

(
Vgs − Vth −

Vd,sat
2

)γ
(2.3a)

Isub = W

L
µCox(n− 1) (VT)2 e

Vgs−Vth
nVT

(
1− e−

Vds
VT

)
(2.3b)

Ion =

Isat for Vds = Vdd ≥ Vth

Isub for Vds = Vdd < Vth

(2.3c)

Ioff = Isub (Vgs = 0) = W

L
µCox(n− 1) (VT)2 e

− Vth
nVT

(
1− e−

Vds
VT

)
(2.3d)

τp = CVdd
Ion

(2.3e)

These equations describe the current Ion that can flow between the source and

drain when the voltage Vds between these points (equal to the supply voltage Vdd) is

above (Isat) or below (Isub) the threshold voltage Vth for the transistor. This threshold

voltage is defined as the minimum voltage that establishes a conductive channel that

spans the full length of the transistor (connecting the source and drain terminals).

The delay τp is determined by the switched capacitance C, the supply voltage Vdd, and

the current Ion. In these equations, Vgs is the gate-source voltage difference and Vd,sat

is the drain saturation voltage, above which increases in the drain-source voltage no

longer affect the current flow.

From this model we can begin to see how variations arise. Topological deviations,

such as errors in channel width W or length L, alter resistance. Variation in thickness

of the oxide layer (the dielectric between the gate and the body forming a structure

with capacitance Cox) alter the strength of the field from the gate in the body, which

can also alter Vth and the slope factor n. Likewise, a change in the number of charge

carriers resulting from effects such as random dopant fluctuation (RDF) will make

it easier or harder for the gate to induce a channel, which can alter both Vth and

24

the charge carrier mobility µ. Crystal defects, impurities, and local temperature

variations can also affect these parameters, as well as changing the charge carrier

saturation velocity vsat, its associated constant γ, and the thermal voltage VT . Finally,

Vth can also be changed by the induction of a field in the body (typically from below)

which counters or assists the field from the gate. When done deliberately, this last

effect is called “body biasing” (as discussed in Section 3.2.2).

Fabrication variations can result not only in parametric deviations, but also in

hard defects. For example, if the gate material extends past the oxide, it may short

with one of the terminals. A loose particle might block dopant injection and then wash

away before the next fabrication step. Errors in the substrate can alter the electrical

properties in the body or induce gross geometric errors. In short, transistors require

very fine control of the production environment and processes to achieve reliable

outcomes.

2.3 What Has Changed?

Conventional semiconductor feature sizes cannot scale below the width of an atom

(0.5 nm for a silicon lattice). However, long before this point, the discrete nature and

statistical behavior of individual atoms may pose challenges to scaling. Traditional

semiconductor doping depends on the statistics of large numbers of dopants to create

consistent devices, but variation increases as device size, and hence nominal dopant

count, decreases. Small features are more susceptible to movement or displacement

of a few atoms and local variations in processing, such as etching and reaction rates.

As a result, we expect increasing parameter variation in devices (e.g., [37] (Table

18, Design chapter), [4, 7]). These variation effects are in addition to the traditionally

increasing challenge of avoiding catastrophic photolithographic defects (e.g., [8]).

25

Year 2005 2006 2007 2008 2009 2010 2011 2012
DRAM 1

2 Pitch (nm) 80 70 65 57 52 45 40 36
3σVdd

10 10 10 10 10 10 10 10
3σVth

RDF (min size) 24 29 31 35 40 40 40 58
3σVth

total (min size) 26 29 33 37 42 42 42 58
3σVth

total (typical logic) 16 18 20 20 20 26
3σ critical dimensions 10 10 12 12 12 12 12 12
3σ circuit performance 41 42 46 48 49 51 60 63

Year 2013 2014 2015 2016 2017 2018 2019 2020
DRAM 1

2 Pitch (nm) 32 28 25 22.5 20 17.9 15.9 14.2
3σVdd

10 10 10 10 10 10 10 10
3σVth

RDF (min size) 58 81 81 81 81 112 112 112
3σVth

total (min size) 58 81 81 81 81 112 112 112
3σVth

total (typical logic) 26 36 36 36 50 50 50 50
3σ critical dimensions 12 12 12 12 12 12 12 12
3σ circuit performance 63 63 63 63 65 66 69 69

Table 2.1: As scaling continues, cost-effective management of process variation is
expected to become increasingly difficult. Consequently, if Moore’s Law is to continue,
an increasing burden of variation tolerance is projected to be left to post-fabrication
solutions.

Except for critical dimensions, all variability (σ) values are given as a percentage
(%) of nominal. Topological variability is given as a percentage of the dimensions
of a minimum-sized transistor as opposed to the design-nominal dimensions for each
transistor. This data is compiled from the 2005, 2007, and 2009 ITRS reports.[37,
38, 39]

Dopant implantation is a Poisson process [78]. For large transistors with many

dopants, the size of any variations will be negligible relative to the total dopant

population. Thus, for older technologies the total number of dopants and their dis-

tribution in the body of a transistor are consistent enough that variation is not a

concern. Newer technologies are a different story.

RDF is a hard problem to solve and the resulting variation persists through fab-

rication. Table 2.1 shows this trend in action. At 80 nm (where the ITRS began

projecting these parameters), Vth variations from RDF are on the same scale as Vdd

26

(system supply voltage)1 and topological variations. However, process improvements

hold Vdd and topological variations steady while the impact of RDF grows. In the

ITRS projections for 2011, dopant fluctuations are expected to account for half of

performance variations [40].

RDF cannot be detected visually, thus visual inspection is insufficient to identify

slow circuits. A slow circuit may not fail a slow signal propagation test, as the bits do

get through eventually. It also will not trigger a quiescent current test and may even

have favorable power characteristics. To catch an RDF-related parametric defect may

require testing a circuit in operation at full speed. That means we may lose the cost

savings of early detection of bad dies, assuming we can catch such defects at all.

These issues are not a surprise, as the emergence of RDF as a significant limiter

was predicted almost half a century ago by Hoeneisen and Mead [33]. If anything, the

surprise (at least from a 1971 perspective) is that reliable 14nm circuits (e.g., Intel’s

Broadwell processors) can be built at all.

2.4 Summary

Killer defects are getting smaller and harder to identify visually. We also must worry

about invisible parametric defects that are even harder to identify. In short, “fabrica-

tion of chips with 100% working transistors and interconnects becomes prohibitively

expensive” [39, Design]. While it is important to continue improving manufacturing,

post-fabrication defect tolerance can reduce the burden of perfection, thereby reduc-

ing the cost of developing future technologies. Looking forward, these strategies may

be key enablers for otherwise impractical or even impossible technologies.

1 Vdd must be raised to compensate for Vth variation, thereby increasing the power consumption
of an entire chip.

27

Chapter 3

Current Solutions

Defect tolerance and variation tolerance in field-programmable gate arrays (FPGAs)

(and logic in general) have been studied for over a decade (several decades for gen-

eral logic). Many solutions have been published to address various aspects of these

problems.

There are several categories of variations, which are typically addressed with dif-

ferent solutions:

• Die-to-die variations and larger scale (e.g., wafer-to-wafer) variations have a

uniform impact on a die. Techniques (including my own) that address within-

die variations have little or no impact on these large scale variations.

• Systematic variations are consistent patterns of variation that result from spe-

cific design and manufacturing choices. For example, dies around the edge of a

wafer may be slower than dies fabricated at the middle of the wafer. Systematic

errors, once identified and understood, may be reduced by addressing the source

of the variation. For FPGAs, systematic variations can also be addressed using

the timing models available in CAD tools.

28

• Spatially-correlated variations are non-systematic variations that result from

sources that affect areas larger than individual transistors and wires. For cor-

related variations, solutions may leverage statistical knowledge about the vari-

ation distribution to avoid multiple likely bad devices at once. For example, if

one look-up table (LUT) is identified as particularly slow, a placer might avoid

adjacent LUTs, expecting them to be slow as well. Random dopant fluctuation

(RDF) is not thought to result in spatially-correlated variations.

• Random variations are the variations that are not systematic and are indepen-

dent of the variations in nearby devices. Some of the most significant sources of

random variation in current and projected future fabrication (such as RDF) op-

erate independently on individual transistors. For FPGAs, random variations

and, likewise, random defects, are an important motivation for component-spe-

cific mapping (CSM).

In addition to variations (which result in slow components, here referred to as

“parametric defects”), my work, along with many of the techniques listed in this

chapter, addresses the presence of completely non-functional components (“faults”)

that result from physical defects. “Fault tolerance” is often used to describe both

faults resulting from persistent physical defects and transient faults.

Transient faults, such as single-event upsets (SEUs), do not correspond to physical

defects and cannot be addressed by repairing or avoiding a device where a fault

occurred. Hence, transient fault tolerance techniques focus on structures that resist

disruption (e.g., radiation shielding), techniques to detect errors (e.g., parity checks),

and techniques to recover from data corruption (e.g., error correcting codes). Triple

modular redundancy (TMR) is the only technique discussed in this chapter that can

be used to tolerate transient faults.

29

Techniques that target persistent faults focus on finding and eliminating defects.

TMR can also be used to address persistent faults. My research addresses persistent

faults from physical defects and parametric defects (i.e., variations), but not transient

faults.

3.1 Chapter Organization

The existing solutions discussed in this chapter are organized into three categories:

1. Solutions that address low-amplitude variations only (Section 3.2).

2. Solutions that will not effectively solve large numbers of defects (Section 3.3).

3. Solutions that are effective for both variations and defects and are therefore

more comparable to my work (Section 3.4).

3.2 Techniques That Address Variations Only

Much recent variation tolerance research focuses on techniques that do not migrate

logic and routing from bad resources to better resources. These techniques are gen-

erally limited to reducing specific small margins, and do not address hard defects.

Therefore, these techniques are not fully comparable to my work; however, each is

described briefly below.

3.2.1 Statistical Static Timing Analysis (SSTA)

Statistical static timing analysis (SSTA) [85] uses statistical analysis to identify which

nets are likely to break timing in the presence of variations. This analysis is used to

reduce potential timing failures when a circuit is implemented on physical devices.

30

For FPGAs, a number of publications examine the value of adding SSTA to the clus-

tering, placement, and routing stages of conventional FPGA CAD [49, 77, 52, 44].

According to Mehta [60], the most optimistic results so far predict a 12.6% improve-

ment in timing yield (the fraction of chips that run correctly at a given frequency)

for 3σVth
/µVth

= 10%.

3.2.2 Body Biasing

Nabaa et al. [63] explored regional biasing in FPGAs that is similar to the approach

proposed for processors in [80]. (Resource overhead makes body biasing too costly to

apply to individual transistors.) Nabaa’s approach characterizes each physical FPGA

tile (a logic block and nearby routing resources) to calibrate for process variation.

That calibration is combined with the slack of the logical circuit (the user design

loaded onto the FPGA). Body biasing is applied to each tile to improve performance

where necessary and to reduce power consumption in regions with extra slack. Be-

cause biasing is applied regionally, it is most effective for variations which benefit from

uniform tuning (e.g., spatially-correlated variations). With an estimated 1.6% area

overhead, Nabaa’s simulations achieve a 30% reduction in σVth
and a 78% reduction

in σpower for the modeled 130nm technology. However, with high degrees of random

variation (e.g., RDF), as are seen in smaller-pitch technologies, the advantages of

biasing are limited by the most extreme transistors — tuning for one transistor may

cause another in the region to fail.

3.2.3 Clock Phase Skewing and Slack Stealing

When the clocked elements (e.g., latches) at the ends of a combinatorial chain are

skewed (the clock triggers one slightly earlier than the other), the available period

31

for signal propagation changes. For example, if a sink latch is slightly early, the

signal must propagate from the source to that sink in less than a full clock cycle. In

certain circumstances such skews may be used to effectively increase the clock period

for a particularly slow chain of logic without slowing down the rest of the chip [76].

Multiple clocks and local phase shifting can be used compensate for variations in logic

and the clock distribution network [74]. However, this technique is limited not only

to adjustments on the order of the clock period, but also to the available delay that

can be shifted from one circuit to another. It cannot compensate for switches that

are broken or that slow down the circuit beyond these limits. To address these more

extreme cases, it is preferable to be able to avoid the bad switch entirely.

3.3 Techniques That Address Low Defect Rates

3.3.1 Multiple Bitstreams

Typically there are many ways to map a design to an FPGA. We can exploit this

freedom to choose a mapping which avoids defective or undesirable devices. At a

coarse granularity, we could place and route a design several times to produce multiple

bitstreams. Then, when we program a specific FPGA, we can select (by trial and

error if necessary) a bitstream from this library that avoids any defects present in

that chip [84, 56, 75]. However, this technique does not scale well with increasing

defect rates, potentially requiring an exponentially growing number of pre-generated

bitstreams.

32

3.3.2 EasyPath™

The Xilinx EasyPath™ [86, 42] program is similar to the multiple-bitstream approach.

Multiple bitstreams are tested on each FPGA to find one that works. However, for

EasyPath™, multiple FPGAs are also tested for each bitstream to find FPGAs that

match the needs of the customer. The purpose of this program is to reduce waste

by finding applications for chips that fail quality testing and cannot be sold as fully

functioning FPGAs. While EasyPath™ is successful at achieving this goal, it does

not offer a general solution to the problem of mapping an arbitrary application to an

arbitrary imperfect chip.

3.4 Techniques That Address High Defect Rates

The techniques discussed in this section attack similar aspects of the defect/variation

problem to those addressed by my own work. Many are already used in common

practice and show significant benefits; however, Choose-Your-own-Adventure (CYA)

has certain distinct advantages relative to each.

3.4.1 Modular Redundancy

A seminal work on defect tolerance is John Von Neumann’s “Probabilistic Logics and

the Synthesis of Reliable Organisms from Unreliable Components” [65], in which he

introduced and analyzed the use of redundancy, particularly triple modular redun-

dancy (TMR). TMR continues to be a standard defect tolerance solution, particularly

in critical systems and in devices operating in harsh environments where single-event

upsets (SEUs) are common.

For FPGAs, TMR is recommended to bolster robustness, particularly to protect

against SEUs, a major concern in high radiation environments such as space applica-

33

tions. Documents from Xilinx [10] and Actel [2] highlight architectural features that

aid in the integration of TMR into logical circuits. Pratt et al. [67] developed a tool

to automatically add TMR selectively to those portions of a design that will most

benefit from redundancy. At the physical circuit level, Actel produced radiation-

hardened parts [18] that use TMR to protect particularly sensitive structures. At

Xilinx, Trimberger [82] patented specific structures that may be used for TMR or to

enhance functionality when redundancy is not needed.

TMR comes with high costs: a minimum of 200% area and power overhead are

needed for almost all applications, and the inline voting process also adds delay.

TMR also does not scale well with increasing defect rates — Von Neumann’s analysis

shows that overhead grows exponentially with the number of simultaneous failures

the system is designed to tolerate. Consequently, more modern techniques generally

prefer solutions with lower overhead and focus on addressing specific failure modalities

rather than generic faults.

3.4.2 Hardware-Sparing In-Factory Repair

Another approach to defect tolerance is to perform the defect tolerance behind the

scenes, always presenting the end system with the appearance of a perfect component.

Column sparing has long been used to improve yield for memories [21]. Post-

fabrication testing identifies columns and rows that contain defects. A permanent

alteration (e.g., blowing out a fuse) disables the offending region and remaps the

array to fill the gap. The shipped memories appear defect-free to the consumer.

In FPGAs, Altera has employed this kind of behind-the-scenes sparing at the level

of rows and columns to enhance yield and enable production of very high capacity

components (e.g., [12, 13, 57, 47]). Yu and Lemieux show how to spare at the finer

granularity of individual wire tracks [96, 95].

34

These implementations of sparing result in additional area and delay overhead.

For an 80% yield target and an interconnect defect rate of around 2 · 10−4 defects

per wire segment, Yu and Lemieux estimate their design requires 50% area overhead,

while the coarse-grained row sparing technique requires over 100% area overhead. By

comparison, Figure 4.7 shows that a CYA solution attains the same yield at defect

rates an order of magnitude higher, with only ∼20% area overhead. The interconnect

defect density in Yu and Lemieux’s work is approximately 100 defects/cm2 in the

45nm technology they used, corresponding to ∼400 defects/cm2 in my 22nm studies.

Table 4.10 shows CYA producing 95% yields at defect densities an order of magnitude

higher or more, in simulated chips which contain not only interconnect defects, but

also logic defects.

The delay effects of CYA and sparing methods also differ. In both methods,

the area overhead imposes an inherent delay burden, so CYA’s reduced area offers a

relative advantage here. Moreover, unlike sparing methods, CYA does not need to

pay the delay costs associated with adding in-path bypass circuitry.

3.4.3 Avoiding Faults

The multiple-bitstreams solution (Section 3.3.1) does not repair defects, nor does it

hide them. It prevents faults by using non-defective devices and avoiding defective

devices.

HP’s TERAMAC project applied component-specific mapping (CSM) to fault

avoidance, using extensive testing and component-specific (knowledge-based) CAD.

TERAMAC demonstrated the ability to effectively use chips with element defect

rates of up to 3–10% [15]. Similarly, Katsuki et al. mapped out the delay of regions

of a chip and used that map during placement to keep critical paths away from the

slowest resources on the component [41]. One of the weaknesses of this approach is

35

the long runtime for conventional FPGA mapping tools. To accelerate the mapping

process, TERAMAC employed a richer and more regular interconnect architecture

than conventional FPGAs [3], trading density for mapping speed.

Local substitution of resources can potentially reduce or avoid the high cost of

complete FPGA remapping at the expense of accepting less-optimal mappings. Lach

introduced a design style for FPGAs that reserved one or more logic blocks in an

N × N tile so that defects could be repaired with local sparing [45]. Lakamraju

and Tessier note that reserving spare LUTs in an island-style cluster also allows local

repair of logic [46].

Given the domain [89, 81] style of most FPGAs, one simple way to generate

alternatives is to reassign entire domains (e.g., [97]). With a small number of defects,

a comparable number of spare domains could be used to replace domains that contain

defects with defect-free domains. Domain swapping is very coarse-grained and, similar

to the multiple full-bitstreams solution, this large repair granularity does not take full

advantage of inherent FPGA configurability.

Campergher et al. [9] and Trimberger [83] describe approaches most similar to my

alternatives scheme, in which every path is covered by an alternate path. Although

these concepts are clearly a good start, the published descriptions and characteriza-

tions are unfortunately extremely limited, making it difficult to perform qualitative

or quantitative comparisons. The Trimberger methodology, in particular, is compa-

rable to CYA with only 1 reserved track and 1 alternative. As Figures 4.7 and 4.11

suggest, this limited pool of reserve resources and alternatives leaves significant room

for improvement. In addition, as I show in Chapters 5 and 6, CYA provides a prac-

tical, customizable framework for more complex forms of variation tolerance, such as

parametric repair and delay and energy optimization.

36

Chapter 4

CYA

This chapter is an introduction to the Choose-Your-own-Adventure (CYA) approach

to defect tolerance. I begin with motivation and an intuition-building example (Sec-

tion 4.1) to demonstrate the key components of CYA. Section 4.2 dives into the

details of the basic CYA implementation. Section 4.3 identifies a weakness in the

initial algorithm used to pre-compute repair solutions (“alternatives”) and provides

an improved algorithm. Section 4.4 sets up experimental methodologies to perform

an initial assessment of CYA. The results of these assessments and a full analysis are

presented in Section 4.5. Section 4.6 looks at the costs of using CYA in terms of the

size of the bitstream and estimated load time, and introduces the updated VPR 5-

based FPGA model which will used throughout the remainder of the dissertation.

Finally, Section 4.7 explores the yield impacts of defects in the various reconfigurable

resource classes in an FPGA and adopts a more physically realistic (per-area rather

than per-resource) defect density model to elucidate their combined effect.

37

{ {

{
Reserved Track

Base Tracks
Channel

Figure 4.1: Channel with four tracks, one of which is reserved. Three nets saturate
the three base tracks.

4.1 Inspiration

The name Choose-Your-own-Adventure is an homage to the eponymous Choose Your

Own Adventure novels [66]. Those books are structured around user decisions. This

device enables a single immutable hardcopy book to provide many variants of a story,

tailoring the plot, on each read-through, to the whims of the reader. Likewise, in

Choose-Your-own-Adventure bootstrapping, a single immutable field-programmable

gate array (FPGA) bitstream provides choices which result in loaded configurations

tailored to the peculiarities of each individual consumer FPGA.

4.1.1 Illustrative Example

Consider a simple FPGA channel (Figure 4.1). We have four tracks and need to route

three nets through this channel. Labeling the fourth track as “off limits” (reserved),

we route the channel, packing the nets into the first three tracks (base tracks). Then,

for each net, we find an alternate path using the fourth track. When programming

the FPGA, the loader tries the default route, and, if it is bad, the loader tries the

alternate path. If the chip has at most one defect in the channel (or defects in at

38

most one track), the defect(s) will either be in the fourth track and will not disturb

the default routes, or it/they will upset a single route, forcing that route to use the

alternate path on the fourth track.

We can expand the notion of tracks to domains. By domains, I refer to architec-

tures where the interconnect network is partitioned into independent sets of routing

resources (e.g., [89]). With domains, the initial track choice leaving a source block

determines the track that will be used when entering the destination block. The in-

dependence property of domains means that when we reserve a domain, we do not

affect the rest of the network. Resources that are part of the reserved domain are

not available to the base domains and vice versa. Now we can look at a whole chip

and say that default paths are routed in the base domains and alternatives are routed

on the reserved domain and unused portions of the base domains. This allows us to

guarantee that an FPGA with a single defect anywhere in the interconnect has an

unused alternate route that will avoid the defect.

If we want to provide resilience to any two defects we can add a second domain

reserved for alternatives and prepare alternative paths using each domain. We can

add additional domains to tolerate more defects. However, we should not need a full

alternate domain to tolerate each single defect. In normal FPGA routing, we are able

to both find multiple paths between a source and sink in a single domain and route

multiple two-point nets in a single domain. Consequently, each additional domain

should allow us to tolerate multiple additional defects.

39

4.2 CYA Components

I now describe CYA bitstream composition, generation, and loading. Figure 4.2

(repeating Figure 1.4) provides a roadmap for this discussion.

Figure 4.2: CYA computer-aided design (CAD) flow

40

4.2.1 CYA Bitstream

Elaboration Synthesis

PackPlaceRoute

Alternatives
Generation

Bitstream Load

CYA Bitstream Loader

Load Base Config First Net

Test
Path

Keep/Commit
Path

Good

Next Net?
Yes

Done

 No

Next
Path?

Abort!

Yes

 No

Bitstream
Basic Config

- Base Config
- Alternatives
- Testing Instructions
- Additional Metadata

 Bad

User
Design

Conventional Flow CYA

CYA Bitstream

The CYA bitstream is a list of two-point nets each with:

• a base path configuration

• a list of alternatives

• a set of testing instructions

• optional metadata such as the delay budget (used in Chapters 5 and 6)

This means that bitstream programming is ordered by logical functions rather

than by physical location on the FPGA. For fabrics where the configuration bits are

not randomly addressable, such as Virtex frames [91, 93], I assume the presence of a

translator (see Section 4.2.4) that can add or remove the portion of the input path

that applies to the configured frame.

The base route is a normal FPGA route prepared using only base tracks.

An alternative is a different path from the base route that can be used for defect

avoidance. It consists of a set of resources that connects a single source to a single sink

(i.e., a two-point net) that differs by at least one resource from the corresponding path

found in the base route. Alternative paths may use both the reserved spare resources

and any non-reserved resources that were left unused by the base route, and are

forbidden from using any resources which are part of the base paths of other nets.

This guarantees that we are free to switch from a base path to any of its alternative

paths without interfering with any of the base routes.

To detect defective paths, the loader must check the functionality of each path.

For a two-point net, the test must simply check that a high-to-low and a low-to-high

transition of the source are each correctly observed at the destination. The infor-

mation needed for this test can be inferred from the path definitions. To generalize

41

testing for more complex cases (e.g., look-up table (LUT) and Flip-Flop testing, or

testing for bridging) and to simplify the design of the loader, I embed test instructions

in the bitstream. In the simplest scheme described here, multi-point nets are handled

by checking each two-point net independently.

4.2.2 Routing

Elaboration Synthesis

PackPlaceRoute

Alternatives
Generation

Bitstream Load

CYA Bitstream Loader

Load Base Config First Net

Test
Path

Keep/Commit
Path

Good

Next Net?
Yes

Done

 No

Next
Path?

Abort!

Yes

 No

Bitstream
Basic Config

- Base Config
- Alternatives
- Testing Instructions
- Additional Metadata

 Bad

User
Design

Conventional Flow CYA

CYA Bitstream

The base route can be generated with a standard

FPGA router such as Pathfinder [58]. The only differ-

ence is that we may choose to reserve some resources

solely for use in the preparation of alternate paths.

The router must therefore be capable of acknowledg-

ing these resources as being “off limits” to the base

route.

4.2.3 Alternatives Generation

Elaboration Synthesis

PackPlaceRoute

Alternatives
Generation

Bitstream Load

CYA Bitstream Loader

Load Base Config First Net

Test
Path

Keep/Commit
Path

Good

Next Net?
Yes

Done

 No

Next
Path?

Abort!

Yes

 No

Bitstream
Basic Config

- Base Config
- Alternatives
- Testing Instructions
- Additional Metadata

 Bad

User
Design

Conventional Flow CYA

CYA Bitstream

Alternatives are paths that must not conflict with the

base route. We want a diverse (see Section 4.3) set of

alternatives for each base path, to maximize the op-

portunity for defect avoidance. To encourage this di-

versity, I associate a cost with resource usage similar

to Pathfinder resource costs. This allows me to use

repeated calls to a shortest path search to find different routes as long as I up-

date the cost of each resource in the graph as it is used. This Resource-Cost Algo-

rithm is shown in Algorithm 4.1. Pathfinder-based routers can easily be modified

to add this functionality. During alternative generation, the cost for each resource

42

is: cost = alternatives using + 1. In Section 4.3 I note the shortcomings of the

Resource-Cost Algorithm and introduce a more sophisticated Path-Cost Algorithm.

Algorithm 4.1: Resource-Cost Algorithm for alternatives generation
input : Route base route
output: Bitsteam C

foreach Resource R ∈ {base route} do Disable R ;

foreach Net N ∈ {base route.nets} do
foreach GraphNode sink ∈ N.sinks do

C.addPath(N,N.base path(sink));
foreach Resource R ∈ {all Resources} do

R.alternatives using = 0;
foreach Resource R ∈ {N.base path(sink)} do

Enable R;
for i=1 to number of alternatives do

Path P ← FindShortest(N.source,sink);
C.addAlternative(P);
foreach Resource R ∈ P do

R.alternatives using + +;

foreach Resource R ∈ {N.base path} do
Disable R;

return C;

43

4.2.4 Bitstream Loader

Elaboration Synthesis

PackPlaceRoute

Alternatives
Generation

Bitstream Load

CYA Bitstream Loader

Load Base Config First Net

Test
Path

Keep/Commit
Path

Good

Next Net?
Yes

Done

 No

Next
Path?

Abort!

Yes

 No

Bitstream
Basic Config

- Base Config
- Alternatives
- Testing Instructions
- Additional Metadata

 Bad

User
Design

Conventional Flow CYA

CYA Bitstream

I decompose the loader into four components, a pro-

grammer, a deprogrammer, a tester, and a controller.

Programmer

By the term “programmer” I refer to that element of

any FPGA bitstream loader that sets the configuration

bits. In the simplest case, we might have random access to the configuration bits (c.f.

Xilinx 6200 [90]). This makes it fast and easy to set each bit but demands greater

area overhead for configuration support than conventional configuration chains.

At the cost of more time and work loading the bitstream, we can exploit the frame

schemes that exist in modern FPGAs (e.g., [91, 93]). Specifically, we could organize

the bitstream to specify the frame address and the address of bits to change within

the frame. Then, the loader can: (1) read out the old frame, (2) change the specified

bits in the frame, and (3) load the modified frame. This is the same kind of operation

used by Xilinx J-bits to perform bitstream modification on Virtex series components

[28]. Such a scheme would require no changes to the core of the FPGA. The cost is

longer load times, as we must spend an entire frame read/write sequence for every

frame touched by an alternative (see Section 4.6.2 and Tables 4.4 and 4.5).

Deprogrammer

When a path fails, the loader must undo the configuration changes to release resources

for other paths. Functionally, the deprogrammer must roll back the configuration to

its state before the last path was added. One way to accomplish this is to record

changes made during programming so that they can be reverted; this has the advan-

tage of demanding no semantic understanding of the bitstream, but requires space

44

to store the changes. An alternate version might use the same path specification for

programming with the configuration sense reversed.

Tester

The tester is responsible for testing each path and reporting the success or failure

of the test. The bitstream loader only needs to know if the end-to-end path test

fails. The alternatives encoded in the bitstream directly tell the loader what to try

next when a test fails. If the bitstream loader does not have random access into

the bitstream, the loader will need adequate local space to store the current test

specification to be used with the sequence of alternatives.

One simple way to support testing is to drive and recover data using the internal

clustered logic block (CLB) flip-flops. These flip-flops can still be used for observ-

ability even if they are not used in the design. In some cases, we might reconfigure

the CLB logic to facilitate testing. For example, the source CLB would be configured

to drive the path under test from a flip-flop and configure the destination LUT as

a buffer with its flip-flop enabled. It may be possible to set up the tests using bit-

stream configuration, trigger transition tests using readback capture, and then view

the results using configuration and state readback [92, 93]. End-to-end connectivity

tests check that we can see both driven zeros and driven ones at the destination.

Timing tests can be performed using a variant of “launch-from-capture” transition

fault testing (e.g., [73, 86]). This simple change from “does the signal get through”

to “does the signal arrive on time” can be combined with an outer loop to optimize

overall delay, as described in Sections 5.2 and 6.1.

To expand the class of resources covered by this approach, LUTs/subblocks can

be tested with conventional procedures (e.g., test patterns) before this path testing.

Additionally, it may be necessary to swap LUTs at the start or end of a path before

45

performing the path test.

Controller

The controller coordinates the other units to implement Algorithms 4.2 and 4.3. It is a

very straightforward entity that makes no complex decisions and performs no complex

actions. Notably, the controller does not need to understand the FPGA architecture

or the semantics of the configuration bits. All the intelligence about the meaning of

the bitstream is effectively compiled into the bitstream. The controller only needs

to mechanically follow the bitstream load program. With suitable test support, the

embedded PowerPC on Virtex devices could be used to run this algorithm, using the

internal configuration access port (ICAP) [93] to perform the configuration.

Algorithm 4.2: Bitstream Load Algorithm
input : Bitstream B
output: Boolean configured?

foreach 2PT Net N ∈ {B} do
found← FALSE;
while (not found) do

if N.outOfPaths then
return failure;

P ← N.nextPath;
if P.isUsable(P) then

Program(P);
if Test(P) then

found← TRUE;
else

DeProgram(P);

return success;

46

Algorithm 4.3: isUsable Function for Bitstream Load Algorithm
input : Path P
output: Boolean usable

/* First free up the LUT, if required and possible */
if inUse(P.node) then

if canMove(currentOccupant(P.node)) then
move(currentOccupant(P.node));

else
return FALSE;

/* To utilize fanout, two-point nets may share common prefixes */
while P.hasMore and P.next.matches(Current Configuration) do

P.step;

while P.hasMore do
if inUse(P.next.node) then

return FALSE;
P.step;

return TRUE;

4.3 Alternative Diversity

In this section, I identify weaknesses of the Resource-Cost Algorithm (Section 4.2.3)

and develop the alternative Path-Cost Algorithm.

4.3.1 Problems with Resource-Cost Alternatives Generation

Figure 4.3 shows two example graphs. In each graph, we suppose that we want to

connect the net s→ t. These graphs highlight certain cases where the Resource-Cost

Algorithm is incapable of locating all the useful alternatives.

Uniform Paths

In Figure 4.3a, the paths from s to t all have equivalent costs. The router will first

identify the path s → a → c → d → t. On the second pass the nodes used by the

47

b

a

c

d

e

s t

(a) Uniform length paths
b

a c d

e

s t

g

(b) Longer paths

g

(c) Inside node “g”

Figure 4.3: In each of the above examples, the Resource-Cost alternatives generation
algorithm fails to locate all useful alternatives. The improved Path-Cost algorithm is
capable of discovering the missed paths.

first pass will all be more expensive. So the partial path s → c will use b instead of

a. Since c→ e→ t is now cheaper than c→ d→ t, the second half of the route will

use e resulting in s→ b→ c→ e→ t. After the second pass the new costs for b and

e will be raised and will now match a and d. After that point, since the costs are

once again balanced there is nothing to drive decisions on the third pass that are any

different from the first, leaving us in a loop that will only find those two paths over

and over. However, two paths remain (s→ a→ c→ e→ t and s→ b→ c→ d→ t)

that are capable of avoiding two defect combinations not covered by the first two

paths: {b, d} and {a, e}.

Non-Uniform Paths

Non-minimal length paths can also be valuable. A minor slowdown on nets off the

critical paths does not impact performance, and, even for critical paths, a small

performance degradation may be preferable to failure. The Resource-Cost Algorithm

does not prohibit non-minimum delay paths, but it often fails to find them.

In the second example (Figure 4.3b) we are still trying to route s→ t. Again the

Resource-Cost Algorithm will find paths along the top (s → a → c → d → t) and

bottom (s → b → g → e → t) after which it will find no new unique paths. Any

other paths will actually be longer. The paths that cross over in the middle, as in

48

a c ds t

e ts a c

(a) Two unique paths

a c ds t

e ta c

(b) Combine s

a c ds t

e tc

(c) Combine a

a c ds t

e t

(d) Combine c

Figure 4.4: The merger of two paths into a tree structure.

the previous example, now must use an extra edge, c↔ g.

Furthermore, some switch configurations internal to a node (e.g., Figure 4.3c)

may have alternate configurations where passing through multiple switches (e.g., the

two upper sides of the triangle in Figure 4.3c) can route around a defect in a single

direct switch (e.g., the path along the base of the triangle). If we have a partial path

b→ g → e, the path that skips around the direct switch in g still uses the wires b→ g

and g → e. When the cost structures do not include a switch congestion factor, there

is no incentive to identify the two-switch path that avoids the direct switch.

Paths Tree

A paths tree is a structure that merges the prefix subpaths of multiple paths. Fig-

ure 4.4 shows the combination of two paths to form a simple paths tree. Node by

node, as long as a new path follows a path already expressed by the tree, nodes are

absorbed. When the path diverges from the pre-existing path, it forms a new branch

in the tree. Duplicate detection can use the same process, declaring a duplicate if the

new path never diverges from the paths tree (Figure 4.5b).

49

d t

e t

b c e t

s a c

(a) Three paths in a tree

d t

e t

b c e t

s

e ts b c

a c

(b) Duplicate path

d t

e t

b c e t

s

d ts b c

a c

(c) New path

d t

e t

b c e t

s

d t

a c

(d) Full paths tree for the graph in
Figure 4.3a

Figure 4.5: Checking paths against a paths tree to identify duplicates and add new
paths.

Path-Cost Aware Routing

The above observations of failures in the Resource-Cost Algorithm led me to develop

a substitute alternatives generation algorithm that is capable of: (1) assigning costs

to paths in additions to resources, (2) crossing between previously discovered paths

even when the crossing is not free, and (3) diverting from and returning to an existing

path as long as the detour avoids some resource. Furthermore, it is useful to (4)

avoid generating duplicate paths to reduce router runtime and (5) require minimal

modifications to the router to minimize the cost of adoption. I achieve these goals

by using the paths tree to perform early duplicate detection and encourage greater

diversity, as shown in Algorithms 4.4 and 4.5.

Consider once again the search for a third path in Figure 4.3a. The weights are

still symmetric at s, so the expansion will still get to c through a. While the weights

of d and e are balanced, the router recognizes s → a → c → d in the path tree

50

Algorithm 4.4: Path-Cost Algorithm for alternatives generation
input : Route base route
output: Bitsteam C

foreach Resource R ∈ {base route} do Disable R ;
foreach Net N ∈ {base route.nets} do

foreach GraphNode sink ∈ N.sinks do
foreach Resource R ∈ {all resources} do R.alternatives using = 0 ;
foreach Resource R ∈ {N.base path(sink)} do Enable R ;
TreeNode paths tree← new TreeNode(base path);
failure count← 0;
pf ← path factor base;
for i = 1 to number of alternatives && failure count < fail limit do

Path P ← PathCost.FindShortest(N.source,sink,paths tree,pf);
if P = Fail then

failure count+ +;
pf = pf × path factor scale;

else
foreach Resource R ∈ P do R.alternatives using + + ;
paths tree.add(P);

C.addNet(paths tree);
foreach Resource R ∈ {N.base path} do Disable R ;

return C;

and charges it a corresponding extra cost. s → a → c → e is not in the path tree

prefix and consequently does not pay this cost. In this example, any extra cost from

duplicated path prefixes breaks the tie and will result in the discovery of all four paths

for this graph.

If we make the cost of continuing along an old path sufficiently high, the costs at

c during the search for a third path in Figure 4.3b will be sufficiently unbalanced that

the path will be forced to use the c→ g crossover segment, even though g has already

been reached by a shorter path via b. To support this behavior, Algorithm 4.5 uses a

priority queue of paths to expand and allows nodes to be visited multiple times with

different path prefixes. To drive the router to identify full paths to the sink rather

51

Algorithm 4.5: PathCost.FindShortest Function for Path-Cost Algorithm
input : GraphNode source
input : GraphNode sink
input : TreeNode paths tree
input : double path factor
output: a path

PriorityQueue Queue← new PriorityQueue;
Queue.enqueue(source, paths tree.root, 0);
while !Queue.empty do

QueueEntry h← Queue.dequeue();
GraphNode g ← h.resource;
TreeNode t← h.tree pointer;
if g = sink then /* Found the sink */

if t = unique then
Return(backTrace(h)); /* Path is unique */

else
foreach GraphNode n ∈ {g.Neighbors} do /* Expand */

TreeNode m;
if (t.node = g) and [∃m | ((m ∈ {t.Children}) and (m.node = n))]
then

m← matching child;
/* m.usage counts alternatives using node m */

path cost← m.usage ∗ path factor;
else

m← unique; /* Path is unique */
path cost← 1;

cost← h.cost+ pathfinder cost(g, n) ∗ path cost;
if cost < n.old cost then

Enqueue(n,m, cost);
n.old cost← cost;

return Fail;

52

than generating all unique prefixes first, I use A∗ routing techniques (e.g., [81]) that

include an estimate of the remaining cost to the destination in the priority queue

ordering function.

The Path-Cost Algorithm identifies more unique alternatives, on average, than the

Resource-Cost Algorithm (see [70]). For many nets where the Resource-Cost Algo-

rithm found fewer than 10 unique alternatives, the Path-Cost Algorithm successfully

provided the 40 requested alternatives. Furthermore, the Path-Cost Algorithm man-

ages to find better paths and place those paths earlier in the search order than the

Resource-Cost Algorithm does. Figure 4.8 shows the impact on defect tolerance of us-

ing each alternative-generation algorithm to produce only 5 alternatives. The nearly

four orders of magnitude improvement in defect tolerance with the Path-Cost Algo-

rithm demonstrates that its 5 alternatives were significantly more effective than the

5 found by the Resource-Cost Algorithm.

4.4 Foundational Experiments

I designed a set of foundational experiments to characterize several aspects of the

CYA approach:

1. How much yield improvement can we get from CYA at each defect rate, and

over what range of defect rates is it effective?

2. How many alternatives does CYA need to store? How does this impact bit-

stream size and load time?

3. How does CYA yield improve with dedicated reserved tracks available only for

alternatives?

53

4. How do extra base tracks beyond the minimum number required for the design

to be routable impact CYA yield?

5. How should additional tracks be partitioned between extra and reserved tracks?

4.4.1 Experimental Framework

Defect Map

I want to characterize the likelihood that a given chip can be made to function

correctly in the presence of a given level of initial fabrication defects (the yield).

To do this I need to be able to model defects and vary the defect rate. If I simply

varied the defect rate and generated independent sets of defects for each experiment, it

would: (a) make experiments non-repeatable, (b) prevent direct comparisons between

techniques or options (because experiments never see the same set of defects), and (c)

create occasional anomalies where an experiment at a higher defect rate outperforms

an experiment at a lower defect rate (due to less favorable location of defects in

the lower defect rate experiment). To provide clean experiments and avoid these

pitfalls, I generate a collection of partially defective virtual “chips” (defect maps)

with a tunable defect rate that I reuse across experiments. Specifically, I assign an

independent, uniformly distributed, random value to each resource in the chip. Then

I apply the target defect rate as a threshold to differentiate good resources from bad.

This guarantees that the number of defects in each chip monotonically increases with

increasing defect rates. That is, as I apply higher and higher defect rates, this process

will simply add more and more defects to the existing set without removing any of

the initial defects, making the results at each defect rate easily comparable to each

other.

With the exception of Figure 4.14, all figures and tables model both stuck-open

54

switch and broken-wire defects. In most of the results presented in this chapter,

defects in all types of resources share the same per-resource defect rate. However, all

figures from Figure 4.26 forward, and all tables from Table 4.11 forward, instead use

a constant per-area defect density, reflecting an improved defect model developed for

later experiments (see Section 4.7.7).

Simulators

Initially, VPR 4.3 [5] provided the scaffolding for my CYA simulator. I implemented

each of the components in Section 4.2 using or modifying existing portions of the VPR

4.3 router. After obtaining promising preliminary results, the CYA enhancements

were ported to VPR 5 [53] to add simulation of single-driver interconnect. Variation,

delay, and energy modeling based on SPICE [64] (specifically the HSPICE [35] imple-

mentation) were also added in the VPR 5 version. (See Section 4.6.3 for additional

details.)

Since the simulator has the advantage of global knowledge, the simulator does

testing before programming. This does not alter the semantics at a functional level

but it did obviate the necessity of simulating the deprogrammer.

VPR (both 4 and 5) uses a simplified CLB representation which does not model

the internal structure of each CLB in detail — each net entering a given CLB simply

proceeds directly from its corresponding input pin to a common, abstract “sink”.

(This also implies a fully populated input crossbar.) On the output side of the

CLB, there is no crossbar — each subblock is directly tied to a single output pin.

Consequently, LUT selection (and in some cases, duplication) is determined by the

net emanating from that logic element (LE), not those feeding into it.

55

4.4.2 Experimental Flow

Placement

I prepare my placements using the unaltered VPR placer, with no extra options. A

single placement is generated for each benchmark before all other work. This fixed

placement is used for all subsequent operations.

Minimum Channel Width

For experiments where channel width (the number of tracks per channel), W , is a

controlled parameter, I needed to find the minimum routable channel width (Wmin).

For this purpose I used VPR with the “-verify binary search” option. All other

options remained at their default settings. Note that this means that the router uses

a timing-driven A∗ path search.

Extra Base Tracks

Designs are seldom mapped to FPGAs at their absolute minimum channel width.

Typically some “extra” tracks are available, making it both easier to find a route

(e.g., Swarz [79]) and possible to find faster, more direct routes (e.g., Marquardt [54]).

Following the conclusions of these studies, I allocate extra tracks (e.g., 0.2Wmin ad-

ditional tracks) when preparing the base route. I examine the impact of provisioning

extra tracks in Section 4.5.3.

Base Route

To generate the base route, I use VPR’s fixed-width router configured with the option

“-max router iterations 100”. I route each design using a target channel width

determined by the minimum channel width and the number of extra tracks (e.g.,

56

W = 1.2Wmin when I allocate 20% extra tracks). I also specify the number of

additional reserved tracks, which will be used only during alternative generation.

Generating Alternatives

The base route is passed to the alternatives generator. Initially, all resources are

available to the alternative paths, except those belonging to the base route, which

are marked as “off limits”. The block I/O pins and other resources belonging to a

particular base path are also marked as available during the generation of its own

alternatives, but they remain off limits to the alternatives associated with any other

base path. I generate 40 alternatives for each path. I chose this number to be

sufficiently large that this step need be performed only once for each base route.

Loading a bitstream with these alternatives onto each defect map will then allow us

to determine how many alternatives are needed to successfully load the design, as a

function of the defect rate.

Loading the Bitstream

Once I have generated a defect map, a base route, and a set of alternatives, I can

simply feed them back into a bitstream loader simulating Algorithm 4.2, which I

added to VPR.

4.4.3 Experimental Architecture

The architecture used for the VPR 4.3 experiments is based on the example architec-

ture file “4x4lut sanitized.arch” that is included with the stock VPR 4.3 distribution.

(Architecture changes made for my VPR 5 experiments are discussed in Section 4.6.3.)

The key parameters I kept from that architecture are:

• “subset” switch boxes (S-Boxes)

57

sram

2x

1x

10x

5x
5x

(a) Buffered switch circuit.

H
o
riz

o
n
ta

l

 C
h
a
n
n
e
l

 Vertical

Channel

 Vertical

Channel

 Vertical

Channel

 Vertical

Channel

 Vertical

Channel

m m+1 m+2 m+3 m+4

(b) Length 4 horizontal route segment (drivers and wire for this
segment shown in bold).

Figure 4.6: Buffered switch and wire segment model.

• uniform segment length of 4 (Lseg = 4)

• 4 LUTs per CLB (n = 4, O = 4)

• 4 inputs per LUT (k = 4)

• 10 input pins (I = 10)

To better fit the uniform defect rate model, I use a single buffered switch type

(Figure 4.6a) for all S-Box switches, instead of the mix of buffered and unbuffered

switch types found in the example architecture.

The default staggering pattern assigned segment offsets in groups that are a frac-

tion of the total channel width. Adding more tracks at the edge of the channel alters

the distribution of staggers for the base tracks, resulting in unbalanced alterations

to the interconnect topology. To avoid this, my architecture cycles staggers for each

track. This maintains fixed connectivity for the existing tracks as I add more tracks

to the channels.

Finally, for connection box (C-Box) population, I present results with fully pop-

ulated C-Boxes (Fcin = 1 and Fcout = 1) as well as Fcin = 0.50 and Fcout = 0.25, as

found in the original architecture files distributed with VPR. Most VPR 4.3 results

use fully populated C-Boxes; for these experiments, C-Boxes should be assumed to

58

be fully populated except when explicitly stated otherwise.

The complete architecture for the fully populated C-Boxes is provided in Ap-

pendix B.1, and the depopulated architecture is provided in Appendix B.2.

4.4.4 Experimental Design

I performed all of my tests on the Toronto 20 designs [6], a set of benchmarks com-

monly used in FPGA research. Each simulation collected the following data: (1)

the yield of functioning devices at each defect level, (2) the number of alternatives

needed to produce a functioning device, (3) the critical path delay of the repaired

logic (Section 4.5.4), and (4) the total path length of all the needed alternatives, used

to estimate bitstream costs (Section 4.6).

Data was collected from 20–10000 (depending on the experiment) independently

generated defect maps (Section 4.4.1), each of which was used for multiple defect

rates ranging up to 10%. For each algorithm and parameter set (number of extra

and reserved tracks, number of alternatives, etc.), I estimated the yield probability

at that defect rate as the fraction of the defect maps that could be repaired. As with

any statistical experiment, the size of the experimental sample set determines the

likely error in my estimated results. In particular, it is useful to understand how high

of a failure rate can still result in 100% measured yield amongst a certain number

of samples. For example, an experiment with a sample size of 20 chips must have a

true per-sample success rate of 0.997 or higher to achieve perfect yields 95% of the

time (0.951/20 ≈ 0.997, assuming a binomial success/failure distribution). Table 4.1

summarizes the 95% confidence intervals that can be inferred from full-yield results

at all sample sizes used in this dissertation.

59

Sample size Full yield 95% confidence interval
20 chips ≥ 0.997439

100 chips ≥ 0.999487
500 chips ≥ 0.999897

1000 chips ≥ 0.999949
10000 chips ≥ 0.999995

Table 4.1: 95% confidence intervals that can be inferred from full-yield results at
various chip sample sizes (under the assumption of binomially distributed yield suc-
cess/failure).

4.5 Initial Results

Figure 4.7 illustrates the yield benefits of CYA. For clarity, this figure, like many

figures in this dissertation, shows representative results from just one of the Toronto

20 benchmarks, des, rather than for all 20 designs. With 20% extra base tracks and

an additional 20% reserved tracks, des maintains essentially 100% yield at defect

rates five orders of magnitude above the point where defective chips actually begin to

appear in our 100-chip sample (shown in the “Perfect Yield” curve). Even with only

a single alternative, CYA achieves near 100% yield2 for defect rates 200 times higher

than the point where one achieves high design-specific yield (i.e., alternatives=0 case;

this roughly corresponds to EasyPath™ [42]). The figure further shows how the

benefits vary with the number of available alternatives. Note that 40 alternatives

provide only a slight improvement in yield over the case of 30 alternatives. This

trend suggests that the addition of further alternatives beyond this point will offer

little benefit for designs at these scales.
2For these experiments, “near 100% yield” implies no failures occurred across all chips in the

sample. The experiments in this section employed 100 simulated chips.

60

 0

 20

 40

 60

 80

 100

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

800000

200

Y
ie

ld
 (

%
)

Defect Rate (log scale)

Alternatives
Perfect

0
1
5

10
20
30
40

Figure 4.7: Yield vs. defect rate for des with 20% extra base tracks, 20% additional
reserved tracks, and 1–40 alternatives per net (Path-Cost Algorithm, fully populated
C-Boxes, VPR 4.3 [5], multi-driver interconnect, 100 chips). The rates of perfect chip
production and of successful use of the base route on imperfect chips (zero-alternatives
case) are shown for comparison.

61

4.5.1 Path-Cost Algorithm vs. Resource-Cost Algorithm

Figure 4.8 shows the difference between the Resource-Cost Algorithm and the Path-

Cost Algorithm on des when using only 5 alternatives. The shaded area represents

improvement in yield for the Path-Cost Algorithm. At this number of alternatives,

the Path-Cost Algorithm maintains 100% yield for defect rates nearly 4 orders of

magnitude higher than the Resource-Cost Algorithm. All other results in this thesis,

including Figure 4.7, use the Path-Cost Algorithm.

4.5.2 C-Box Population

Architectures with depopulated connection boxes (C-Boxes, the crossbars connecting

CLBs to the general interconnect) show more modest benefits from CYA (see Fig-

ure 4.9). CYA increases yield compared to the no-alternatives case, but we do begin

to see some yield loss at defect rates as low as 10−6. It is not surprising that the

lower connectivity of depopulation results in lower defect tolerance. Later improve-

ments to the alternatives generation capabilities (specifically, adding the ability to

address defective LUTs, which enables the selection of different CLB output pins, see

Section 4.7.6) reduced the impact of C-Box depopulation.

4.5.3 Additional Tracks

Since a typical FPGA design is seldom routed at Wmin, I wanted to understand

the impact of larger channel widths. Using a larger channel width means a smaller

fraction of the routing resources are occupied by the base route, potentially leaving

more resources available for alternatives. This led me to wonder if extra tracks might

reduce or eliminate the need for reserved tracks.

With the assumption of full C-Box population in place, I examined the effects of

62

 0

 20

 40

 60

 80

 100

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

8000

Y
ie

ld
 (

%
)

Defect Rate (log scale)

Resource Cost (old)
Path Cost (new)

Figure 4.8: Yield vs. defect rate for the Resource-Cost Algorithm and the Path-
Cost Algorithm (des, no extra base tracks, 20% reserved tracks, 5 alternatives, fully
populated C-Boxes, VPR 4.3 [5], multi-driver interconnect, 100 chips).

63

 0

 20

 40

 60

 80

 100

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

400

Y
ie

ld
 (

%
)

Defect Rate (log scale)

1.0 1.00 Perfect
1.0 1.00 0 alts
1.0 1.00 40 alts
0.5 0.25 Perfect
0.5 0.25 0 alts
0.5 0.25 40 alts

Fcin Fcout # Alts

Figure 4.9: Yield vs. defect rate for des with depopulated and fully populated C-
Boxes (depopulated case sets Wmin, no extra base tracks, 20% reserved tracks, 40
alternatives, Path-Cost Algorithm, VPR 4.3 [5], multi-driver interconnect, 100 chips).

64

 0

 20

 40

 60

 80

 100

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Y
ie

ld
 (

%
)

Defect Rate (log scale)

 # Alts W
 0 minc
 0 minc(1.2)
40 minc
40 minc(1.2)

Figure 4.10: Yield vs. defect rate with and without extra base tracks (des, 20%
reserved tracks, 0 or 40 alternatives, Path-Cost Algorithm, fully populated C-Boxes,
VPR 4.3 [5], multi-driver interconnect, 100 chips).

65

 0

 20

 40

 60

 80

 100

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

5000

Y
ie

ld
 (

%
)

Defect Rate (log scale)

Reservation
0
1
2
3
4
5

Figure 4.11: Yield vs. defect rate for different numbers of reserved tracks (des, 20%
extra base tracks, 40 alternatives, Path-Cost Algorithm, fully populated C-Boxes,
VPR 4.3 [5], multi-driver interconnect, 100 chips).

66

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

 0 1 2 3 4 5 6 7 8 9

Y
ie

ld
 (

%
)

Number of Reserved Tracks

Number of Extra Base Tracks

Number of Alternatives

0 1 5 10 20 30 40

Figure 4.12: Effects of dividing additional tracks between extra base tracks and re-
served tracks (des, 1.4Wmin total tracks, 0–40 alternatives, Path-Cost Algorithm,
fully populated C-Boxes, VPR 4.3 [5], multi-driver interconnect, 100 chips, defect
rate 10−3). Note that the number of reserved tracks decreases and the number of
extra base tracks increases going from left to right.

67

varying numbers of extra base tracks and reserved alternative tracks on CYA yields.

In Figure 4.10, we see that adding 20% extra base tracks to des with 20% reserved

tracks provides essentially no benefit compared to a case with no extra base tracks.

Conversely, Figure 4.11 shows that adding a single reserve track per channel to des

with 20% extra base tracks maintains 100% yield at defect rates more than three orders

of magnitude above the level at which failures begin to appear in the absence of reserved

tracks. This result demonstrates that there is value in reserving tracks exclusively for

alternatives even when there are a number of extra tracks. Alternatives constrained

to using only the non-reserved tracks tend to be fragmented by the need to avoid

resources used by the base route, making them significantly less effective at providing

repair diversity.

Figure 4.12 makes this contrast between the usefulness of extra base tracks vs.

reserved alternative tracks more explicit. In this graph, I fix the number of additional

tracks above Wmin at 9 (40%), while varying the division of these tracks between extra

base tracks and reserved alternative tracks. These data show that each track which

is converted from an extra base track to a reserved track improves the effectiveness of

CYA; however, the most significant improvements come from the addition of the first

four reserved tracks (roughly 0.2Wmin). In practice, the number of useful reserved

tracks will be a function of the defect rate. In this case, CYA proved to be too effective

to demonstrate the reserved track/extra base track tradeoff at a per-resource defect

rate of 10−4, as the presence of even a single reserved track ensured near 100% yield.

The figure therefore shows data at a defect rate of 10−3.

4.5.4 Impact on Circuit Delay

Results presented up to this point were produced using CYA algorithms that almost

entirely ignored circuit delay. The one exception to this is that the Pathfinder delay

68

 0

 20

 40

 60

 80

 100

10
-5

10
-4

10
-3

 3

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

1
0

0
%

 Y
ie

ld

Y
ie

ld
 (

%
)

C
ritic

a
l P

a
th

 (n
s
)

Defect Rate (log scale)

Yield
Nominal Delay
Mean Delay
Max Delay

Figure 4.13: Yield and critical path delay vs. defect rate for CYA, as compared to
nominal chips (des, no extra base tracks, 20% reserved tracks, 40 alternatives, Path-
Cost Algorithm, fully populated C-Boxes, VPR 4.3 [5], multi-driver interconnect, 100
chips). CYA preserves 100% yield and near-nominal delays up to per-component
defect rates of approximately 10−4.

69

component of the cost function was used for alternatives generation (see Section 4.2.3).

However, in my path generation algorithm, producing a diverse set of alternatives is

prioritized over minimizing delay for all alternatives. Thus, we expect the full set

of alternatives to contain non-minimal delay paths. Later, in Chapters 5 and 6, the

algorithms are expanded to address delay, and the simulation model is enhanced to

provide more realistic delay values for nominal chips and to simulate the effects of

post-fabrication variations on delay. Given the slight preference of the alternatives

generation process for faster paths, the empirical relationship between the delay of

repaired circuits and the underlying defect rate provides insight into the adequacy of

the resources available for repair, as well as an indication of how much adjustment

will be required to avoid significant slow-downs.

In Figure 4.13 the “Max Delay” curve matches the nominal delay perfectly up to a

per-component defect rate of around 2 ·10−5. Up to fairly high defect rates of around

10−4, some unlucky chips begin to suffer a little extra delay (∼2%). This worsens to

∼14% before the yield starts to fall off between 4 · 10−4 and 8 · 10−4. In the worst

cases, we still only see a slowdown of 24% before CYA yield drops to 0. Note that

CYA shows no slowdown past the point where we have no “perfect” chips and past the

point where oblivious routing yield (the fraction of cases where defects do not occur

on any of the resources used in the base route) falls below 80% (see Figure 4.9 for the

non-CYA yield data).

The “Mean Delay” curve tells an even more encouraging story about the impact

of CYA repair on delay. Even counting the most unlucky chips, the average slowdown

is less than 0.2% for even the worst defect rates at which CYA achieves full yield.

Without any further modifications, parametric yield (the fraction of cases where

CYA produces a functioning configuration that matches the defect-free delay) is nearly

as good as functional yield. My additional enhancements to address delay in the

70

presence of variations (covered in Section 5.2) further rein in the outliers that appear

in Figure 4.13. Figure 6.1 shows the impact of adding delay awareness to CYA.

4.5.5 Impact of Switch and Wire Defects

Figure 4.14 separates out the contributions of switch and wire defects, using des

as an example. Note that each source-to-sink path for a two-point net will have

exactly one more switch than wire segment. That is, except for the final C-box

switch to the destination cluster, every switch in the path is followed by a wire

segment. Consequently, with equal switch and wire defect rates, we will see a slightly

higher likelihood of a path failing due to switch defects than due to wire defects,

which is consistent with the results shown.

Our ability to successfully replace a failed base route path with an alternative will

depend both on: (a) whether or not the alternative is defect-free, and (b) whether

or not some resource needed by the alternative has already been used by a preceding

displaced base route path. The likelihood of an alternative being defect-free is the

same as any source-to-sink path as discussed above. The likelihood of the alternative

being free of already-used resources depends on how good a job CYA does at encour-

aging resource diversity in the routes. The fact that the broken wire and stuck-open

switch curves are so close suggests that it is achieving a similar quality of diversity

in both cases.

When we route multi-point nets with efficient fanout trees, the prefixes of many

two-point paths will share the same resources in the base route. As a result, defects

that occur closer to the source of a multi-point net fanout tree will disrupt more

two-point nets than defects that occur closer to the sinks. This effect has roughly the

same impact in both the broken wire and stuck-open switch cases, since wires and

switches come in pairs along the path.

71

 0

 20

 40

 60

 80

 100

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

Y
ie

ld
 (

%
)

Defect Rate (log scale)

Switches Stuck-Open
Wires Broken
Both

Figure 4.14: Yield vs. defect rate for stuck-open switch and broken-wire defect types
(des, no extra base tracks, 20% reserved tracks, 40 alternatives, Path-Cost Algorithm,
fully populated C-Boxes, VPR 4.3 [5], multi-driver interconnect, 100 chips).

72

In real chips, wire and switch defects may not occur at the same rates. If one

defect type is substantially more common than the other, the composite defect rate

will be dominated by that of the resource type with the larger defect rate, so we can

understand the primary yield effect using the curve for the dominant defect source.

The “both” defects curve in Figure 4.14 shows the composite effect in the case where

the defect rates are the same, illustrating how they compose when neither defect rate

dominates.

4.5.6 Summary

While my examples above all discuss results for des only, the results for the other

Toronto 20 designs [6] were similar. Table 4.2 shows the results for experiments with

a defect rate of 10−4 and no extra base tracks. The larger designs show dramatic

yield improvements with the addition of alternatives, improving from zero yield to

near-100% yield as we go from 0 to 40 alternatives in the presence of reserve tracks.

4.6 Bitstream Impact

Storing and loading alternatives will make the bitstream larger and lengthen bit-

stream load time. Tables 4.4 and 4.5 record design and experimental statistics and

estimate bitstream sizes and load times for CYA on the Toronto 20 benchmarks [6].

These estimates suggest that the CYA bitstream may be a factor of 2–50 larger than a

conventional bitstream depending on the number of alternatives stored (Section 4.6.1)

and take 2–200 times longer to load depending on the configuration architecture (Sec-

tion 4.6.2). In practice, bitstream size and load time are so insignificant that even

these large overheads would have little impact for most applications. Moreover, the

assumptions that were used for these estimates are intentionally conservative; there-

73

Reserved Tracks
+0% +20%

alternatives # alternatives
Design 0 1 40 0 1 40

name LUTs s W N2pt % yield
tseng 1064 17 29 2069 60 70 70 50 100 100
ex5p 1120 17 48 2516 36 44 44 41 97 100
apex4 1336 19 46 2908 23 36 36 30 99 100
dsip 1372 27 28 3260 29 36 36 31 97 100

misex3 1448 20 41 3215 26 34 34 29 95 100
diffeq 1516 20 32 2987 38 49 49 37 97 100
alu4 1556 20 38 3367 21 30 30 31 96 100
des 1660 32 28 3612 15 35 36 23 98 100

bigkey 1708 27 24 3661 22 35 35 32 95 100
seq 1792 22 44 4000 22 29 29 19 96 100

apex2 1940 23 44 4386 21 31 31 22 99 100
s298 1956 23 32 4107 22 30 30 40 90 100
frisc 3572 30 49 7427 7 11 11 5 84 100

elliptic 3624 31 45 7153 5 11 11 3 87 100
spla 3820 31 60 8757 1 8 8 4 92 100
pdc 4760 35 68 10968 1 4 4 0 78 100

ex1010 4804 35 49 10772 1 4 4 0 86 100
s38417 6440 41 38 12284 0 9 9 1 86 100

s38584.1 6452 41 36 11185 1 9 9 0 90 99
clma 8548 47 58 18266 0 0 0 0 69 98

Geometric Mean 0 0 0 0 91 99

Table 4.2: CYA yield improvement for the Toronto 20 [6] benchmarks, sorted by size.
(No extra base tracks, Path-Cost Algorithm, fully populated C-Boxes, VPR 4.3 [5],
multi-driver interconnect, 100 chips, defect rate 10−4 for both stuck-open switches
and wire breaks.) See Table 4.3 for a key to the design parameters.

74

Symbol Definition
s Number of CLBs across the side of the FPGA;

s2 is the total number of CLBs in the FPGA
W Number of tracks per channel
N2pt Number of two-point nets in the design
Tpl Total path length of the base configuration:∑N2pt

i=1 (net2pt[i].path length)
tialt Number of alternatives tried for two-point net i during configuration
Talt Total number of paths (base + alts) tried during configuration:

N2pt +∑N2pt

i=1 tialt
Tplalt Total length of all paths (base + alts) tried during configuration:

Tpl +∑N2pt

i=1
∑tialt
j=1 (net2pt[i].alt[j].path length)

Ftch Number of frames touched setting and clearing paths

Table 4.3: Bitstream table parameters.

fore, with improved modeling and improvements to storage and loading methodolo-

gies, actual overhead may be reduced significantly in practice.

4.6.1 Bitstream Size

I estimate the number of routing configuration bits, Bconv, for a conventional, unen-

coded FPGA bitstream as:

Bconv = s2 ·W · (Fcin · I + Fcout ·O + 1 + 4/Lseg) (4.1)

I, O, Fcin, Fcout, and Lseg are defined in Section 4.4.3. Measurements in this section

and Section 4.6.2 use Fcin = Fcout = 1 (fully-populated C-Boxes). s and W are defined

in Table 4.3. I assume that 5 bits are required to configure the switchpoint at the

end of each segment (2 bits to specify which of the 4 sides is the source and 3 bits to

specify drive in each of the other 3 directions). 1 additional bit per tile is required to

configure the mid-segment switchpoints for each segment.

75

Design Bitstream Size
Conventional CYA-1 CYA-40

name Tpl Kbits Kbits ratio Kbits ratio
tseng 6232 131 333 2.5 4448 34
ex5p 7570 217 409 1.9 5504 26
apex4 11644 260 597 2.3 8913 35
dsip 13136 319 689 2.2 10074 32

misex3 12920 257 662 2.6 9891 39
diffeq 8989 200 480 2.4 6416 33
alu4 13580 238 675 2.8 9989 43
des 14458 448 766 1.7 11229 26

bigkey 14867 274 778 2.8 11405 42
seq 16046 333 823 2.5 12283 37

apex2 17646 364 925 2.5 13531 38
s298 16547 265 867 3.3 12690 48
frisc 30115 690 1635 2.4 24306 36

elliptic 35850 676 1855 2.7 29166 44
spla 43890 901 2288 2.5 36057 41
pdc 54965 1302 3005 2.3 46971 37

ex1010 43400 938 2433 2.6 35503 38
s38417 37072 999 2265 2.3 30044 31

s38584.1 45094 946 2527 2.7 36890 40
clma 91901 2002 5145 2.6 79365 40

Table 4.4: CYA vs. conventional bitstream size comparison for the Toronto 20 [6]
benchmarks, sorted by size. (No extra base tracks, 20% additional reserved tracks,
fully-populated C-Boxes, VPR 4.3 [5], multi-driver interconnect.)

76

The CYA bitstream contains additional information specifying the configuration

of each alternative for each two-point net. Assuming sparse storage where we must

provide an address for each configuration bit, I estimate the number of bits required

to specify a CYA bitstream as follows:

Balt = N2pt ·
(⌈

log2

(
s2I ·W · Fcin

)⌉
+
⌈
log2

(
s2O ·W · Fcout

)⌉)
+ (Tpl − 2N2pt) ·

(⌈
log2

(
s2W

)⌉
+ 5

) (4.2a)

Btpath = N2pt · 5
(⌈

log2

(
s2O

)⌉
+ 1

)
(4.2b)

Bcya = (Nalt + 1) ·Balt +Btpath (4.2c)

Balt is the number of bits required to store one alternative for every two-point net,

Btpath is the number of bits required to specify the tests for all the nets, and Bcya is

the resulting total size of a bitstream with Nalt alternatives. N2pt and Tpl are defined

in Table 4.3.

Each path starts and ends at a C-Box, so the first term in the computation of

Balt (Equation (4.2a)) is for specifying the start and end C-Box connections, while

the second term is for specifying the S-Box switch settings. I again assume that an

S-Box switchpoint requires 5 bits.

To test a two-point net, we need to: (1) set a zero into the driver, (2) set up a

one for transition on the driver, (3) read out the result of the zero-one test, (4) set

up a zero for transition on the driver, and (5) read out the result of the one-zero test.

This sets the multiplier of 5 in the computation of Btpath (Equation (4.2b)).

Table 4.4 compares the bitstream sizes for the Toronto 20 designs (Nalt = 1 and

40) with conventional bitstream sizes. As expected, the bitstream size increases in

rough proportion to the number of alternatives provided. Beyond configuration mul-

tiplicity, the overhead in these CYA bitstream size estimates comes from providing

77

a complete address for every configuration or test resource. Exploiting locality and

regularity should enable significant reduction of this cost. My approach here deliber-

ately avoids making assumptions about the structure of the FPGA architecture and

bitstream; exploiting architectural structure (e.g., domains [89]) would allow more

compact expression of paths and alternatives.

4.6.2 Bitstream Load Time

Conventional bitstream load time is typically limited by load bandwidth:

Lconv = Bconv/BWload (4.3)

For concreteness, I assume a system like the Virtex-5 [93] that can load 16-bit values

at 50MHz, giving BWload =16b/20ns.

With random access into the stored bitstream, CYA can skip over alternatives that

it does not need to load. The number of bits we need to read in this case is the total

number of bits required to specify all of the alternatives tried during configuration

plus the total number of bits required to specify testing for each of those alternatives:

Rcya =
{
Talt ·

[⌈
log2

(
s2I ·W · Fcin

)⌉
+
⌈
log2

(
s2O ·W · Fcout

)⌉]
+ (Tplalt − 2Talt) ·

(⌈
log2

(
s2W

)⌉
+ 5

)}
+ Talt · 5

(⌈
log2

(
s2O

)⌉
+ 1

) (4.4)

Note the correspondence with Equations (4.2a) and (4.2b). Talt and Tplalt are defined

in Table 4.3. If we have random access to set configuration bits and set and read

CLB flip-flops for testing, the time to read Rcya bits will determine CYA load time.

Alternately, if we use a frame modification scheme (Section 4.2.4), time will be

determined not by the number of bits changed, but by the number of frames touched

78

Design Experimental Load Time
Conv Random Frame

name Tpl Talt Tplalt Access Modification
ms ms ratio ms ratio

tseng 6232 2079 6272 0.168 0.292 1.7 28 164
ex5p 7570 2533 7633 0.278 0.359 1.3 34 121
apex4 11644 2924 11702 0.333 0.494 1.5 44 131
dsip 13136 3284 13344 0.409 0.580 1.4 50 121

misex3 12920 3245 13100 0.328 0.551 1.7 49 148
diffeq 8989 3013 9123 0.256 0.424 1.7 40 156
alu4 13580 3428 13972 0.304 0.572 1.9 52 170
des 14458 3626 14480 0.574 0.639 1.1 54 94

bigkey 14867 3736 15524 0.350 0.669 1.9 58 164
seq 16046 4033 16202 0.426 0.683 1.6 60 141

apex2 17646 4437 17952 0.466 0.782 1.7 67 143
s298 16547 4166 17004 0.339 0.738 2.2 63 186
frisc 30115 7519 31065 0.882 1.380 1.6 115 130

elliptic 35850 7195 36150 0.865 1.489 1.7 119 138
spla 43890 8792 44170 1.154 1.830 1.6 145 126
pdc 54965 11052 55426 1.666 2.423 1.5 183 110

ex1010 43400 10830 43956 1.201 2.048 1.7 162 135
s38417 37072 12376 37486 1.278 2.006 1.6 164 129

s38584.1 45094 11304 46184 1.211 2.145 1.8 171 141
clma 91901 18501 94432 2.563 4.239 1.7 311 122

Table 4.5: CYA (random or frame-based access) vs. conventional bitstream load time
comparison for the Toronto 20 [6] benchmarks, sorted by size. (No extra base tracks,
20% additional reserved tracks, fully-populated C-Boxes, VPR 4.3 [5], multi-driver
interconnect, 100 chips, defect rate 10−4.)

79

and the time to shift and modify each frame. I assume the C-Box connections at the

beginning and end of a path are each in one frame. For a conservative estimate, I

assume that every S-Box switch in the path touches a separate frame. This means

that the path length is equal to the number of frames touched, so I estimate the

frames touched as Tplalt. When a path is bad, we must unload it, meaning that all

but Tpl of the frames must be touched twice.

Ftch = 2Tplalt − Tpl (4.5)

For concreteness, I assume 1312-bit frames, similar to Virtex-5 [93], and define frame

load time to match the previous bandwidth assumptions (Tframe = 1312b/BWload).

Using Equation (4.5), I estimate the CYA load time:

Lframe = (Ftch + 5 · Talt) · Tframe (4.6)

In this equation, the extra 5 frames loaded per alternative are intended to account for

tests of the type included in the random access calculations (Section 4.6.1 and Equa-

tion (4.2b)).

As Table 4.5 shows, the frame scheme loads two orders of magnitude slower than

a conventional bitstream load. This is the trade-off it makes to guarantee that no

changes are required to the core of the FPGA architecture. The random read case is

a factor of 2–3 slower than the conventional case, and its slowdown is driven largely

by the simplistic encoding assumed in my bitstream size estimate. I expect that the

overhead for both cases can be reduced significantly with minor modifications.

80

4.6.3 Updated Bitstream Tables

As mentioned in Section 4.4.1, after obtaining the initial results discussed in Sec-

tion 4.5, I ported my models to VPR 5 [53] to add simulation of single-driver (direct

drive) interconnect, which is more representative of current hardware. For similar

reasons, several other parameters were also changed at this point:

• 8 LUTs plus 4 spares per CLB (n = 12, O = 12)

• 6 inputs per LUT (k = 6)

• 27 input pins plus 16 spares (I = 43)

The architecture configuration file in Appendix B.3 provides further architecture pa-

rameters for these experiments.

VPR 5 only supports direct drive with Wilton S-Boxes [55], not the diamond (sub-

set) S-Boxes used in my VPR 4.3 experiments. The Wilton S-Box topology required

modifications to support split channels for the reserved tracks (described in [24, 23]),

as it breaks domains by design, which prevents clean track-based reservation.

Repair of logic defects (Section 4.7.6) was added in the CYA algorithm used in

the VPR 5 experiments. This made it possible to use more realistically depopu-

lated C-Boxes. The population parameters for these experiments were Fcin = 0.15,

Fcout = 0.2, Fcin,extra = 0.25, and Fcout,extra = 0.1. An improved defect density model

(modeling defects per unit area rather than per resource), as well as variation, delay,

and energy modeling based on SPICE [64] (specifically, HSPICE [35]) were also de-

veloped for later experiments with this model. Routing based on the work described

in [71, 72] was also added at this point, to ensure the quality and reliability of delay

results computed for base routes.3

3The congestion-oblivious delay lower bounds discussed in Appendix A.1 are a related application
of this work.

81

Table 4.6 updates the Toronto 20 bitstream parameters given in Table 4.2 to those

for my VPR 5 model. Table 4.7 gives the resulting bitstream sizes (compare to Ta-

ble 4.4 for the VPR 4.3 sizes, and note the changed size ordering). Table 4.8 gives the

updated bitstream load times (compare to Table 4.5). Note that VPR 5 experiments

also typically used a maximum of 64 alternatives, rather than the 40-alternative cap

used in the VPR 4.3 experiments. As shown in Figure 4.7 and Table 4.11, the yield

impact of these extra alternatives is not typically significant for this benchmark set.

All results reported from this point forward are based on this VPR 5 model.

name LUTs s W N2pt

des 556 16 64 1453
ex5p 612 9 88 1487
s298 630 9 80 1642
tseng 663 10 64 1090
diffeq 671 10 80 1391
bigkey 763 14 64 1515
misex3 767 10 88 2002
alu4 794 10 80 1914
apex4 795 11 96 2185
seq 828 11 96 2358
dsip 873 14 64 1729
apex2 922 11 96 2640

elliptic 1815 16 88 3805
frisc 1888 16 112 4474
spla 1927 16 120 5391
pdc 2369 18 136 6781

s38584.1 2475 18 80 4416
ex1010 2519 18 144 7619
s38417 2628 19 80 4233
clma 2957 20 112 7871

Table 4.6: Toronto 20 [6] benchmark parameters updated for VPR 5 [53] CAD flow
with single-driver interconnect, sorted by benchmark size. (Compare to the first five
columns of Table 4.2 for VPR 4.3 [5].) See Table 4.3 for a key to the parameters.

82

Design Bitstream Size
Conv CYA-1 CYA-64

name s W N2pt Tpl Mbits Mbits ratio Mbits ratio
des 16 64 1453 4396 174 241 1.4 4933 29
ex5p 9 88 1487 4477 76 223 2.9 4723 63
s298 9 80 1642 4938 69 243 3.5 5105 74
tseng 10 64 1090 2261 68 131 1.9 2232 33
diffeq 10 80 1391 2812 85 167 2.0 2853 34
bigkey 14 64 1515 4609 133 249 1.9 5078 39
misex3 10 88 2002 6036 93 314 3.4 6507 70
alu4 10 80 1914 5793 85 297 3.5 6124 73
apex4 11 96 2185 6593 123 347 2.8 7247 59
seq 11 96 2358 7112 123 374 3.0 7818 64
dsip 14 64 1729 5247 133 284 2.1 5779 44
apex2 11 96 2640 7961 123 419 3.4 8751 72

elliptic 16 88 3805 11514 239 647 2.7 13410 57
frisc 16 112 4474 13509 304 768 2.5 16014 53
spla 16 120 5391 16285 326 926 2.8 19306 60
pdc 18 136 6781 27238 467 1468 3.1 34156 74

s38584.1 18 80 4416 13424 275 753 2.7 15641 57
ex1010 18 144 7619 30598 494 1649 3.3 38369 78
s38417 19 80 4233 12820 306 749 2.4 15221 50
clma 20 112 7871 23784 475 1421 3.0 29245 62

Table 4.7: CYA vs. conventional bitstream size comparison for the Toronto 20 [6]
benchmarks (sorted by size), updated to use VPR 5 [53] with single-driver intercon-
nect and the full defect model. (1 and 64 alternatives, 20% extra base tracks, 16
reserved tracks.) Compare to Table 4.4 for VPR 4.3.

83

Design Experimental Load Time
Conv Random Frame

name Tpl Talt Tplalt Access Modification
ms ms ratio ms ratio

des 4396 1613 4807 0.219 0.235 1.1 22 100
ex5p 4477 1658 4989 0.095 0.216 2.3 23 241
s298 4938 2015 5989 0.087 0.258 3.0 28 323
tseng 2261 1504 3484 0.086 0.180 2.1 20 234
diffeq 2812 1541 3261 0.107 0.179 1.7 19 178
bigkey 4609 2427 7342 0.168 0.353 2.1 36 215
misex3 6036 2104 6316 0.118 0.289 2.5 28 238
alu4 5793 2060 6405 0.107 0.286 2.7 28 262
apex4 6593 2413 7482 0.155 0.341 2.2 34 219
seq 7112 2473 7492 0.155 0.345 2.2 33 212
dsip 5247 2343 7771 0.168 0.357 2.1 36 215
apex2 7961 2737 8333 0.155 0.383 2.5 37 238

elliptic 11514 4293 13437 0.301 0.653 2.2 60 199
frisc 13509 4828 14684 0.383 0.729 1.9 66 172
spla 16285 5888 18170 0.411 0.896 2.2 81 197
pdc 27238 7209 28991 0.589 1.293 2.2 110 187

s38584.1 13424 4738 14775 0.347 0.719 2.1 65 187
ex1010 30598 9130 36647 0.624 1.635 2.6 145 232
s38417 12820 5002 15881 0.386 0.803 2.1 72 186
clma 23784 8413 25707 0.599 1.348 2.2 114 190

Table 4.8: CYA (random or frame-based access) vs. conventional bitstream load time
comparison for the Toronto 20 [6] benchmarks, sorted by size. (20% extra base tracks,
16 reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, 1000 chips,
800 defects/cm2.) Compare to Table 4.5 for VPR 4.3.

84

4.7 Repair of Different Resource Types

In this section I demonstrate that CYA is capable of repair around defects in all types

of resources in the reconfigurable fabric of a typical FPGA. Almost all simulations

supporting these results (Figures 4.20 to 4.25) use the same per-resource defect rates

for all resource types. Figure 4.26 switches to a more realistic assumption of constant

defect density per unit area, resulting in different per-resource defect rates for different

types of resources.

4.7.1 The Fabric and the Tile

A typical FPGA fabric is composed of a matrix of uniform tiles, as exemplified in

Figure 4.15. Zooming in, Figure 4.16 illustrates a single tile, as modeled in my

enhanced version of VPR 5 [53]. Note that the number of resources is reduced for

clarity.

4.7.2 Channel Wires

Channel wires are modeled as rectangular strips of conductive material with lengths

that are an integer multiple of the edge length of one tile in the FPGA. Uniformly

distributed random values are sampled to determine if a defect is present. To account

for the various wire lengths, measured in terms of the integer number of tiles spanned

by the wires, samples are taken for each tile spanned by a given wire.

Breaks are sampled once per tile for each wire. I conservatively model the loss

of an entire wire if any defects are present. In practice, a break that is beyond the

exit point of a signal may not hinder the signal; indeed, the reduced capacitance may

actually speed up signal propagation. However, a partial-use model for broken wires

exceeds the scope of this dissertation.

85

��í�

.io

.io

.io

.io

.io

.io

.io

.io

.io .io

.clb

.clb

.clb

.clb

.io .io

.io .io

.clb

.clb

.clb

.clb

.io .io

.io .io

.clb

.clb

.clb

.clb

.io .io

.io .io

.clb

.clb

.clb

.clb

.io .io

.io

.io

.io

.io

.io

.io

.io

.io

Figure 4.15: The basic organization of a FPGA. The three primary components are
logic (the 4x4 array of clustered logic blocks (CLBs) in the middle), input/output
blocks around the edge providing external connections, and the interconnect wires
(shown here as lines in the gaps between blocks). Figure 4.16 shows a more detailed
view of the structure of CLBs and the surrounding interconnect.

86

Figure 4.16: An example FPGA tile (a CLB and the surrounding interconnect) as
modeled in VPR 5 [53]. This is the model used to specify connectivity and to com-
pute area, delay, and energy in my simulations. The CLB and input C-Box structures
shown here are common to both single and multi-driver interconnect architectures.
The S-Box structure shown (including the incorporated output C-Box) is only repre-
sentative of single-driver directional interconnect.

87

(a) (b)

Figure 4.17: Portions of a staggered interconnect affected by bridges (shorting of
wires) at different locations along a wire that spans multiple tiles.

Bridges (i.e., shorts) are sampled once per tile for each pair of parallel, adjacent

wires spanning that tile. Figure 4.17 highlights the portions of a staggered intercon-

nect (a common architectural practice) affected by bridges at different locations along

a wire that is longer than a single tile. For single-driver interconnect (Figure 4.18),

bridging two wires effectively shorts the output of two or more drivers, rendering both

useless. For multi-driver interconnect (Figure 4.19), there is potential for partial use

of bridged wires, if a single signal occupies both wires, but this adds to the capacitive

load of the segment and would at very least slow signal propagation. Such partial use

is beyond the scope of this dissertation.

Figure 4.20 shows the yield impact of these types of defects in the single-driver

interconnect case. Here, I compare the yield of defect-free chips (“nominal” case),

the yield of chips for which the base route happens to be functional without use of

alternatives (“oblivious” mapping, comparable to EasyPath™ [42]), and the yield of

chips which are successfully repaired by CYA.

4.7.3 Input C-Boxes

An input C-Box is modeled as buffers coming from channel wires feeding into a

multiplexer (mux) that feeds into a CLB input pin. The yield impact of input C-

Box defects, shown in Figure 4.21, comes from independent loss of individual inputs

(effectively a stuck-open switch) to that mux.

88

Figure 4.18: A directional (i.e., single-directional), single-driver segment. The prop-
agated signal is selected by a multiplexer before the driver, rather than by choosing
amongst several drivers. There are still multiple taps along the length.

Figure 4.19: A bi-directional, multi-driver segment. Such a segment includes multiple
bi-directional switches. Each driver is cut off if it is not used, so we can pick one of
many drivers or use none, leaving the segment undriven.

89

4.7.4 S-Boxes and Output C-Boxes

The crossbars that drive channel wires in FPGAs with single-driver interconnect

are S-Boxes which have inputs from both channel wires and CLB output pins. In

the older, multi-driver, architectures, these two sets of inputs were often treated as

separate crossbars, with S-Boxes for channel-wire-to-channel-wire connectivity and

C-Boxes for CLB-to-channel-wire connectivity (and vice versa). Figure 4.22 shows

the yield impacts of S-Box defects in a single-driver interconnect.

4.7.5 CLB Pins

Like channel wires, CLB pins are modeled as strips of conductive material. However,

their role in the topology of the interconnect and their connectivity differ significantly.

In addition, my simulations assume no bridging between CLB pins, only allowing

connectivity breaks. Therefore, it is worth exploring the impact of CLB pin defects

(Figure 4.23) independently from the impact of channel wire defects (Figure 4.20).

4.7.6 Logic (Subblocks)

Each subblock is modeled as a single entity in my simulations. Thus, a single ran-

dom sample drawn for each subblock determines whether there are any defects in its

resources, or whether all are perfect. Those resources include:

• an input crossbar (a set of buffers and muxes)

• a LUT

• a flip-flop or latch

• a mux to select between clocked and unclocked output from the LUT

90

• a loopback wire, effectively a CLB input pin driven by the subblock instead of

by a selection of channel wires

The presence of any defects in these resources triggers the discard of the entire

subblock, making it reasonable to use a single composite defect probability for the

entire unit. Though internal repair of subblocks is beyond the scope of this disser-

tation, it should be noted that DeHon [16] demonstrated that there is considerable

flexibility to work around LUT defects through a strategically-chosen set of simple

configuration transformations.

The yield impact of these defects is shown in Figure 4.24.

4.7.7 All Resource Types

Figure 4.25 shows the combined impact of defects in all of the domains described in

this section. The defect maps for each resource type are identical to those used in

the preceding single-resource-type defect simulations.

Simulating the combined impact of all defect types illustrates that CYA can re-

pair defects in all of the modeled types of resources. However, it is unrealistic to

assume that each resource type fails with equal probability, meaning that the results

in Figure 4.25 are likely somewhat skewed from what would be seen in real-world de-

vices. To get a more realistic perspective, I shift from a per-resource notion of defect

probability to a model in which we assume that defects are randomly but uniformly

distributed across the die — a constant “defect density” rather than the previous

assumption of a constant “defect rate”.4 To enact this shift, the defect threshold for

the defect target corresponding to each resource type is scaled by its area. The area

of each defect target is shown in Table 4.9. Figure 4.26 shows the yield impact on
4I use area models dominated by transistor area. Combined with uniform transistor size, this

makes the “defect density” nearly equivalent to the transistor “defect rate”.

91

Target Type Tech Relative Area (λ2) Absolute Area (µm2)
wire metal (break target) 1100 0.14
wire gap (bridge target) 1100 0.14
C-Box input 24 0.001
C-Box output 24 0.003
S-Box input 24 0.001
S-Box output 8 0.003
subblock 10000 1.2

Table 4.9: The area of each type of defect target, in both absolute units (µm2) and
technology relative units (λ2), for a 22nm technology.

des of this shift to uniform defect density, and Figure 4.27 and Table 4.10 summarize

these results across the Toronto 20 [6] benchmarks.

With this improved defect model in hand, Figure 4.28 and Table 4.11 show the

overall effectiveness of CYA repair for all Toronto 20 designs across a range of defect

densities. The top half of Figure 4.28 shows the yield for each design from 1000

simulated chips (with 64 alternatives available) and the bottom half of the figure shows

highest number of alternatives used by any yielding chip for that design. The range

of results across all designs suggests the degree to which alternative requirements and

yield outcomes are likely to depend on the specifics of the design being mapped.

Table 4.11 shows the growth in CYA yield for each of the Toronto 20 designs

as the number of alternatives increases, at a relatively high defect density of 800

defects/cm2. At such a high defect density, not all designs achieve 100% yield even

with 64 alternatives available, but the failure rates are still very low. Even for the

worst design, ex1010, 995/1000 chips were ultimately repairable under these test

conditions.

92

95

 0

 20

 40

 60

 80

 100

1x10
-9

1x10
-8

1x10
-7

1x10
-6

1x10
-5 0.0001 0.001 0.01 0.1

Y
ie

ld
 %

Defect Rate (log)

Oblivious: shorts
Oblivious: breaks
Perfect: shorts
Perfect: breaks
CYA: shorts
CYA: breaks

Figure 4.20: Yield vs. defect rate for nominal (perfect chips), oblivious (base route
with no alternatives), and CYA routing, comparing the impacts of bridges (shorts)
and breaks (des, 22nm technology, 20% extra base tracks, 16 reserved tracks, 64
alternatives, VPR 5 [53], single-driver interconnect, 1000 chips).

93

95

 0

 20

 40

 60

 80

 100

1x10
-9

1x10
-8

1x10
-7

1x10
-6

1x10
-5 0.0001 0.001 0.01 0.1

Y
ie

ld
 %

Defect Rate (log)

Oblivious
Perfect
CYA

Figure 4.21: Yield vs. defect rate for defects in CLB input buffers (des, 22nm tech-
nology, 20% extra base tracks, 16 reserved tracks, 64 alternatives, VPR 5 [53], single-
driver interconnect, 1000 chips).

94

95

 0

 20

 40

 60

 80

 100

1x10
-9

1x10
-8

1x10
-7

1x10
-6

1x10
-5 0.0001 0.001 0.01 0.1

Y
ie

ld
 %

Defect Rate (log)

Oblivious
Perfect
CYA

Figure 4.22: Yield vs. defect rate for defects in S-Box buffers (des, 22nm technology,
20% extra base tracks, 16 reserved tracks, 64 alternatives, VPR 5 [53], single-driver
interconnect, 1000 chips).

95

95

 0

 20

 40

 60

 80

 100

1x10
-9

1x10
-8

1x10
-7

1x10
-6

1x10
-5 0.0001 0.001 0.01 0.1

Y
ie

ld
 %

Defect Rate (log)

Oblivious
Perfect
CYA

Figure 4.23: Yield vs. defect rate for wire breaks in the input and output CLB pins
(des, 22nm technology, 20% extra base tracks, 16 reserved tracks, 64 alternatives,
VPR 5 [53], single-driver interconnect, 1000 chips).

96

95

 0

 20

 40

 60

 80

 100

1x10
-9

1x10
-8

1x10
-7

1x10
-6

1x10
-5 0.0001 0.001 0.01 0.1

Y
ie

ld
 %

Defect Rate (log)

Oblivious
Perfect
CYA

Figure 4.24: Yield vs. defect rate for dead subblocks (des, 22nm technology, 20% extra
base tracks, 16 reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect,
1000 chips).

97

95

 0

 20

 40

 60

 80

 100

1x10
-9

1x10
-8

1x10
-7

1x10
-6

1x10
-5 0.0001 0.001 0.01 0.1

Y
ie

ld
 %

Defect Rate (log)

Oblivious
Perfect
CYA

Figure 4.25: The combined impact of defects in all of the resource types modeled
in Section 4.7 (des, 22nm technology, 20% extra base tracks, 16 reserved tracks, 64
alternatives, VPR 5 [53], single-driver interconnect, 1000 chips).

In these simulations, the defect rate shown on the x-axis represents the identical,
independent failure probabilities of each defect target (wire segment, switch, subblock,
etc.), regardless of the physical area of the target. This is not intended to present a
physically realistic failure model; rather, it is intended to summarize the combined
effects of the individual failure types shown in Figures 4.20 to 4.24. See Figure 4.26
for a more realistic failure model.

98

95

 0

 20

 40

 60

 80

 100

0.0001 0.001 0.01 0.1 1 10 100 1000 10000 100000

Y
ie

ld
 %

Defect Density (defects/cm
2
) (log)

Oblivious
Perfect
CYA

Figure 4.26: The combined impact of defects in all resource types (des, 22nm tech-
nology, 20% extra base tracks, 16 reserved tracks, 64 alternatives, VPR 5 [53], single-
driver interconnect, 1000 chips).

This is a more realistic version of Figure 4.25. Failure probabilities are scaled by the
area of each defect target. (See Table 4.9 for the area estimates.) The x-axis shows
the defect density in physical units (defects/cm2).

99

Defect Density (defects/cm2)
name min max mean median 95% yield CDF
alu4 2400 48000 25000 24000 8100

apex2 810 40000 17000 16000 8100
apex4 810 32000 14000 16000 7300

bigkey 810 81000 35000 32000 8100
clma 160 8100 6000 6500 2400
des 2400 65000 33000 32000 16000

diffeq 1600 73000 30000 32000 8100
dsip 1600 65000 31000 32000 8100

elliptic 81 24000 9700 8100 4000
ex1010 160 8100 5700 5700 2400

ex5p 4800 48000 27000 24000 16000
frisc 570 24000 9200 8100 4000

misex3 320 48000 21000 24000 8100
pdc 570 8100 6900 8100 2400

s298 810 48000 20000 24000 8100
s38417 570 32000 14000 16000 4800

s38584.1 400 32000 14000 16000 7300
seq 730 40000 18000 16000 7300

spla 810 16000 7500 8100 4000
tseng 810 81000 34000 32000 8100
Mean 1070 41200 18900 19200 7150

Table 4.10: Distribution parameters of maximum CYA-repairable defect density for
each Toronto 20 design. (22 nm technology, 20% extra base tracks, 16 reserved tracks,
64 alternatives, VPR 5 [53], single-driver interconnect, 1000 chips)

100

●●●●

●● ●● ●●● ●●● ●●●●●

●●●●● ●●●●● ●●● ●● ● ●● ●●● ●●●●● ●●●●●● ●● ●●● ●● ●●●●● ●●●●●●●●● ●● ●●●●●●

●●● ●●● ●●●● ●●● ●●● ● ●●●●●● ●● ●● ●● ●●● ●● ●● ● ●● ●●● ●● ●●●● ●●● ●●●● ●● ● ●● ●●● ●●● ●●●●●●● ●●● ●●●● ●● ●●● ●●● ● ●●●● ● ●●●●●● ●●● ●●●●●●●●● ● ●●●● ●●● ● ●● ● ●●●● ● ●●●●● ●● ●●● ●●●● ● ●●● ●● ● ●●●● ●● ●● ●●●●● ●●● ●●●●● ●●● ●● ●●●●● ● ●●●● ● ●●●●● ● ● ● ●● ●●●●●●●●● ●●●●● ● ●● ●● ●●●● ● ●●●● ●●●●●● ●● ●●● ● ●●●●●●●●● ●●● ●●●● ●● ●● ● ● ●●●● ●● ● ●●● ●● ●●● ●● ●●● ●●●●● ●●● ●● ●●●● ●●● ●● ●●●● ●●● ●● ● ●●● ●● ●● ●●●● ● ●● ●●● ● ●●●● ●●● ● ●●● ● ●●●●●● ●●●● ● ●● ● ●● ●●●●● ●●●●● ●●● ●●●●● ●● ● ● ●●● ●●●● ● ● ●● ●●● ●● ●●● ●●● ●●● ● ●●●

●●●● ●●●●●●● ●●●● ●●● ●● ●●● ●● ●●●●● ●

● ●● ●●●● ● ●● ●●● ● ●●● ●●●● ● ● ●●●● ●●●●● ●●●● ●● ●●● ●●● ●●●● ● ●●● ●● ●●●● ● ●●● ●●● ● ●●●● ● ●●●●●●● ● ●● ● ●● ● ●● ●● ●●● ●● ●●●●●● ●●● ●● ●● ●● ●●● ●● ●●● ● ●

● ●● ●● ●●● ●●●●●●●● ●●●●●●●●● ● ●●●●● ●

●●●

●●

●●●● ●●● ● ●●●

● ●●● ●● ● ●●● ● ●● ● ●●● ●● ● ●●● ●● ●● ● ●●● ●● ●●● ● ● ●● ●● ●● ●● ● ●●● ●● ●●● ● ●● ●● ●●● ●● ●● ●● ●● ●●●● ● ● ●●● ● ●● ● ●● ● ●●●● ●●●● ●●●●●● ● ●●● ●● ● ●● ●●● ●● ●● ●● ●● ●● ●● ●●● ● ●●●● ● ●●● ●● ●● ●● ●● ●● ●● ●●● ●● ● ●● ● ●● ●●● ●●● ● ●●●●●● ● ●●●● ● ● ●● ● ●● ●●● ●●● ●●●●● ● ●●● ●●● ● ● ●●● ● ●●●● ●●● ●● ●●● ●● ●● ●●● ● ●●●● ● ● ●●●● ● ●●●● ●● ● ●●●● ●● ● ●● ●●● ●●●● ● ●

tseng

spla

seq

s38584.1

s38417

s298

pdc

misex3

frisc

ex5p

ex1010

elliptic

dsip

diffeq

des

clma

bigkey

apex4

apex2

alu4

Defect Density (defects/cm2) (log)

102 103 104 105

Figure 4.27: Distribution of maximum CYA-repairable defect density for each Toronto
20 design. (22 nm technology, 20% extra base tracks, 16 reserved tracks, 64 alterna-
tives, VPR 5 [53], single-driver interconnect, 1000 chips)

101

alternatives
name 0 1 2 4 6 8 10 20 30 40 64
des 4 34 54 71 86 93 99 100 100 100 100
ex5p 9 48 64 79 86 94 98 100 100 100 100
s298 10 53 67 84 93 96 97 99 99 99 100
tseng 18 49 59 77 90 99 99 99 100 100 100
diffeq 12 48 65 78 89 99 99 99 99 100 100
bigkey 7 31 49 72 88 96 99 99 100 100 100
misex3 5 41 57 77 89 96 98 99 99 99 99
alu4 7 40 59 82 93 98 99 100 100 100 100
apex4 1 32 49 72 85 93 98 99 100 100 100
seq 2 34 53 74 88 96 98 99 99 99 99
dsip 2 28 44 69 85 95 98 99 100 100 100
apex2 1 34 53 74 85 94 98 99 100 100 100

elliptic 0 12 23 53 75 86 93 98 99 99 99
frisc 0 3 11 37 59 80 91 98 99 99 99
spla 0 3 11 38 66 81 93 98 99 100 100
pdc 0 0 3 28 57 73 87 98 99 99 99

s38584.1 0 2 8 27 50 85 97 99 99 99 99
ex1010 0 0 2 21 51 65 82 95 98 99 99
s38417 0 2 7 30 55 85 96 99 99 99 99
clma 0 0 3 24 50 71 89 98 99 99 99

Mean 4 25 37 58 76 89 95 99 99 99 99.9

Table 4.11: CYA yield improvement for Toronto 20 [6] benchmarks (sorted by size),
updated to use VPR 5 [53] with single-driver interconnect and the full defect model.
(Compare to Table 4.2 for VPR 4.3 [5]. See Table 4.6 for the updated benchmark
parameters.) These data represent simulations of 1000 chips with 20% extra base
tracks, 16 reserved tracks, and a defect density of 800 defects/cm2.

Note that the percentages shown in this table are truncated rather than rounded;
the lowest yield at 64 alternatives is ex1010 with 995 successful chips out of the 1000
sampled. No benchmarks failed to route at defect densities lower than 81 defects/cm2;
the first failure occurs at this density in elliptic.

102

 0

 20

 40

 60

 80

 100

Y
ie

ld
 %

Defect Rate

 0

 10

 20

 30

 40

 50

 60

0.001 0.01 0.1 1 10 100 1000 10000

A
lt
e

rn
a
ti
v
e
s
 u

s
e

d

Defect Density (defects/cm
2
)

Highest Alternative Used

Figure 4.28: CYA repair effectiveness (yield and alternatives needed) vs. defect den-
sity, for all Toronto 20 [6] benchmarks (20% extra base tracks, 16 reserved tracks,
64 alternatives available, VPR 5 [53], single-driver interconnect, 1000 chips). Both
graphs show points for each benchmark at each sampled defect density, along with a
shaded envelope that encompasses all benchmarks.

The upper graph shows the fraction of 1000 simulated chips that were successfully
configured in simulation. The lower graph shows the highest index of the alternatives
used amongst the yielding chips, which is an estimate of the number of alternatives
needed in the bitstream to achieve the yields shown above.

103

Chapter 5

Failure Modes and Defect Models

In this dissertation, I consider two classes of failure modes: functional faults (incorrect

values, Section 5.1), and delay faults (late arrival of correct values, Section 5.2). For

both defect types, I consider only unchanging physical conditions where the behavior

of a circuit is consistent. Critical defects (e.g., power to ground shorts), intermit-

tent circuits, single event upsets (e.g., particle strikes), environmental conditions,

interference (e.g., crosstalk), and aging are beyond the scope of this dissertation.

(Choose-Your-own-Adventure (CYA) as a foundation for addressing aging is explored

in Giesen [22].)

The work discussed in this dissertation is entirely simulation-based; thus, physi-

cal fault testing methodologies are also beyond its direct scope. However, the defect

(Section 5.1) and delay (Section 5.2.2) analysis techniques discussed in this chapter

are manifestly capable of providing the hardware support needed for practical imple-

mentation of CYA. These techniques require no area overhead, and the timing results

presented in [24] (and reproduced in part in Chapter 7) suggest entirely tolerable load

time requirements.

The delay budgeting procedure described in Section 5.2.1 enables CYA to per-

104

form parametric repair (repair to a desired speed) of chips that run too slowly in the

presence of variations (Section 5.2.3). This parametric repair in turn provides the

foundation for the highly effective CYA-based delay and energy optimization proce-

dures discussed in Chapter 6.

5.1 Functional Faults

At the end of a net (a “sink”), a quiesced circuit will produce either a 0 or a 1. This

value can be seen as the output of a function, which, when correct, will be the output

of the source block (or depending upon the architecture, the inverse of the value sent

at the source) and nothing else. However, in the presence of faults, this expected

output is only one of several possible types of functions the circuit could produce:

1. The expected function output

2. The exact inverse of the expected output (Section 5.1.1)

3. A constant 0 or 1 output, regardless of the source block output (Section 5.1.2)

4. A variable output, different from the expected function, which depends, in part

or in its entirety, on other, unintended sources (Section 5.1.3)

Some of these failure modes may be somewhat physically unlikely; however, the pur-

pose of this discussion is to ensure that we cover the full space of possible incorrect

quiescent behaviors with a clear set of testing procedures.

5.1.1 Incorrect Inversions

Signal propagation can be confirmed by showing that the output toggles on the same

cycles as the test input. Inversions can be detected by showing that the output is

105

always the inverse of the testing pattern (Figure 5.1). Alternately, as long as all

transitions are verified, only a single value needs to be checked to determine whether

the circuit is correct or inverted. Inversions may be treated as a defect, or may be

remedied by a trivial permutation of the configuration of the down stream look-up

table (LUT).

5.1.2 Outputs That Are Not Functions of the Source

If there is a disconnect between source and sink, the sink will not receive the transi-

tions of the test pattern. This can be discovered by simply toggling the source and

noting a lack of transitions at the sink.

5.1.3 Functions With Unintended Inputs

Now that we’ve considered circuits that are solely functions of the intended inputs,

as well as those that produce outputs from no inputs, all that remains are cases

where the output is at least in part a function of unintended inputs. For example,

at a circuit level, a pair of bridged (i.e., shorted) wires may effectively produce an

output that is a logical “or” of the outputs of two logic elements. Alternately, with

always-driven segments in modern interconnect, the bridging of two segments may

result in contention between two drivers, squelching transitions and only producing

clean output when both signals are the same, effectively resulting in a logical “and”.

In theory, we can detect these faults by exhaustive testing — transmitting all

possible combinations of state from every logic element (LE), as well as all possible

transitions between those states, and monitoring all sinks to validate correct behav-

ior. However, this work is about practical implementations, and the exponentially

exploding set of test cases for exhaustive validation is clearly not practical. Conse-

106

quently, this is a good point to step away from the abstract analysis and consider the

concrete physical realities of the system.

Realistically, only physically adjacent nets will interfere with each other, reducing

the number of interactions we must consider. Testing procedures can then focus on

limited subregions of a design. This not only greatly reduces the number of test

patterns to consider, but also creates opportunities for parallel testing. The key to

parallel testing is to make sure that only paths with sufficient physical separation

are tested concurrently. This will avoid direct cross-contamination between tests.

However, Linscott [51] shows that indirect, higher-order interactions can skew the

results of simultaneous tests of even distant circuits on the same die. Exploration

of the implications of these results and development of corrective methodologies for

parallel testing are beyond the scope of this dissertation. Thus, all results in this

work address only sequential testing, but do take advantage of the ability to assume

single-path tests.

Testing efficiency can also be improved by recognizing that it is extremely unlikely

that structural flaws will produce arbitrary binary functions. “And” and “Or” are

the only realistic faulty but functional (in the sense that the circuit switches at all)

pathological behaviors to test [1]. This observation means that testing with all nets

other than the net under test (NUT) held high, and again with all other nets held low,

will expose these defects. A simple four-phase procedure can perform the necessary

tests for each NUT. The four phases consist of low-to-high and high-to-low transitions

of the NUT (the same two phases discussed in Section 4.2.1) performed twice, once

with the potentially conflicting nets held low and again with those nets held high.

107

5.1.4 Example Test Circuit

Figure 5.1 provides a sketch of a test circuit which can detect functional defects.

Defect detection with this circuit would use a multi-cycle testing procedure, in which

the output of the NUT is compared with an input test pattern. A NUT with a correct

transition schedule (output always changes with the test pattern such that it always

matches or is always perfectly inverted) would be considered functioning or trivially

repairable. Irreparable defects or variable influence from other sources would produce

an altered transition schedule, i.e., a mix of matched and mismatched outputs.

Using this test circuit, the testing procedure begins by using the reset signal to set

both output latches to 0. The desired sequence of testing signals is then sent through

the NUT, and the test pattern and NUT output are used as inputs to the circuit. After

the entire test pattern is complete, the state of the “Pass” and “Inverted” outputs

determines whether the NUT should be considered functional/trivially repairable.

During testing, the input comparison XOR at the left produces a 0 if the output

of the test circuit matches the reference test pattern and a 1 if it does not match. The

upper latch is set and remains high if the comparison detects even a single mismatch

during the entire testing process. The lower latch is set and remains high if the

comparison detects even a single match. The circuit will pass testing (the “Pass”

XOR) if and only if exactly one of these latches is high at the end of the test (i.e.,

the output always matched the test pattern or was always inverted), and will fail

otherwise (a mix of matches and mismatches occurred).

Detection of any mismatches (upper latch) will also set the “Inverted” output

flag. A perfectly inverted signal is trivially correctable with modifications to the logic

tables stored in the affected LUTs. If the repair mechanism is not prepared to handle

those corrections, the upper output latch and final XOR may be omitted and the

output of the lower latch used as the sole measure of correctness.

108

This circuit could also be adapted to a delay fault testing context (Section 5.2.2)

by adding registers between the test circuit and the comparison logic, to better isolate

the delay of the test circuit from the measurement logic.

Figure 5.1: A testing circuit which confirms that the output transitions match the
input test pattern and adds a flag to indicate whether the output is inverted or not.

5.2 Delay Faults

Tests of quiescent behavior are generally insufficient to ensure satisfactory perfor-

mance in real-world circuits. In practical applications, we need to guarantee not only

that signals are correct, but also that they arrive on time. A delay fault is a late

signal, which may result in the propagation of an incorrect value to downstream cir-

cuits. A chronically slow circuit is considered a “parametric defect”, because for some

parameter values (in this case, certain clock speeds) it can act like a hard defect (i.e.,

it results in an incorrect or unchanging value during some clock cycles).

CYA’s support for parametric defect repair demonstrates the power of its modular

abstraction. Only two modifications were required to add this capability: a refinement

of the definition of a good path (by including the delay budget for each two-point

net in the bitstream, as noted in Section 4.2.1 and expanded in Section 5.2.1), and

the addition of an updated testing circuit and procedure (to verify that each path is

109

fast enough). With these two modifications, CYA can repair a circuit to operate at a

given clock frequency.

5.2.1 Delay Budgeting

Delay testing takes as input the delay budget for each two-point net. These budgets

must be sufficient to guarantee that the overall design will work at the specified speed.

Conveniently, a complete delay budget specification, including the design speed and

predicted delay for each two-point net, are generated during normal routing.

The net delays produced by the router are the predicted delays from physical

models. While the circuit will perform as expected if each net is no slower than these

predictions, there is often a certain amount of additional “slack” time available to

each net, allowing it to run more slowly than predicted without worsening the overall

circuit performance. Figure 5.2 shows the slacks for each net in a sample design.

We will always have one or more “critical paths”, nets with no slack that determine

the maximum speed of the design, but the amount of slack in the remaining nets

is often considerable — in this example, almost all non-critical nets can slow down

significantly without penalty. We want to represent this freedom in the delay budget,

to avoid too-aggressively rejecting paths that are slightly, harmlessly, slower than

their modeled delays.

Variables relevant to slack computations are defined in Table 5.1. For this work,

I used a relatively simple slack-distribution algorithm similar to the Minimax-PERT

algorithm in [94]. For each two-point net, Aa,b, we can determine the total available

slack in terms of Da,b, the delay of the longest “long-path” (the full distance a signal

travels in one clock cycle) that passes through Aa,b. The difference between Da,b and

the delay of the critical path, Tcrit, is sa,b, the total slack potentially available to Aa,b.

However, this slack must be shared with all of the other nets along that long-path.

110

Slack (% of critical path)

N
um

be
r

of
 2

 p
oi

nt
 n

et
s

0 20 40 60 80

0

50

100

150

Figure 5.2: Histogram showing the slacks for all two-point nets in a nominal mapping
of des at 0.8V (22nm technology, VPR 5 [53], single-driver interconnect).

111

Tcrit the delay of the critical path
Aa,b the two-point net from source a to sink b
τa,b the delay of Aa,b
pja,b the jth “long-path” (the distance a signal travels in one clock cycle)

on the list of all long-paths that include Aa,b
dja,b the delay of pja,b
Da,b the maximum long-path delay through Aa,b (maxj{dja,b})
sa,b the slack of Aa,b (Tcrit −Da,b)
Ba,b the delay budget (permissible delay) for Aa,b

Table 5.1: Variables for slack calculations.

The simplest way to do this is to give Aa,b a share proportional to its share of the

delay Da,b, as shown in Equation (5.1):

share ofsa,b = sa,b ×
τa,b
Da,b

. (5.1)

We then add this on to Aa,b’s nominal delay, τa,b, to get an initial estimate for Aa,b’s

delay budget:

Ba,b = τa,b + share of sa,b

= τa,b(1 + sa,b
Da,b

)

= τa,b(1 + Tcrit
Da,b

− 1)

= τa,bTcrit
Da,b

.

(5.2)

Since sa,b is the minimum of the slacks of the set of paths {pa,b} that pass through Aa,b,

undistributed residual slack remains on less-critical paths. These residual slacks are

distributed by repeated iteration of this process until they are reduced to insignificance

112

(less than τa,b

107 in my experiments), as shown in Equation (5.3) and Algorithm 5.1.

B0
a,b = τa,b (5.3a)

Bi
a,b =

Bi−1
a,b Tcrit

Di−1
a,b

(5.3b)

lim
i→∞

Bi
a,b → Bi−1

a,b (5.3c)

Algorithm 5.1: Iterative Slack Distribution Algorithm
{settled nets} ← {};

foreach Net N ∈ {all nets} do
BN ← DN ;

while ∃N ∈ {all nets}|N /∈ {settled nets} do
foreach Net N ∈ {all nets}|N /∈ {settled nets} do

share← sN∗Bn

Tcrit−sN
;

if share ≥ ε ∗DN then
BN ← BN + share;

else
{settled nets}.Add(N);

Update all slacks();

The primary design goal for this slack spreading routine was to avoid egregious

slack waste while converging with (empirically) negligible runtime. All trials took

under 2 seconds, and most were less than 1 second. A more sophisticated algorithm

design might provide even greater benefits, particularly in light of existing literature

on the subject, but is beyond the scope of this dissertation.

5.2.2 Test Circuit and Procedure

Path delay testing within field-programmable gate arrays (FPGAs) is a well estab-

lished practice. For example, Harris [30] shows a circuit (Figure 5.3) that compares

113

the state on the input and output of a flip-flop, at the end of the test circuit, to see if a

transition arrived too late to be captured. More refined versions of this technique are

used to measure post-fabrication variations in [88] and Gojman [26]. Gojman demon-

strates a precision of 1.6 ps and an accuracy of 10–30 ps for path delay measurements

on 20 real-world Altera Cyclone III 65 nm FPGAs (see Figure 5.4).

Existing circuits provide adequate testing to satisfy the delay testing requirements

of CYA. Additional modeling and simulation of testing circuits is beyond the scope

of this dissertation.

Figure 5.3: Circuit used by Harris [30] for delay self-testing. This circuit can be
implemented in ordinary FPGA logic, injected solely for testing, and removed for
normal operation. (Image from Harris [30].)

114

CUTCUT

LaunchLaunch CaptureCapture

Rising Error

Detection

Falling Error

Detection

Test Clock

QDQD

QD

QD

Stimuli

Generator

Rising

Error

Counter

Falling

Error

Counter

Comp.

<

Comp.

<
Test Clock

(a) Path-delay measurement circuit from Gojman [26].

Rising Transition Error Rate Falling Transition Error Rate

500 513 526 540
Frequency (MHz)

0
2
0

4
0

6
0

8
0

1
0
0

M
ea

su
re

d
 E

rr
o
r

R
a
te

 (
%

)

50% Error Rate

(b) Measured rising and falling transition error rates for a path. (Image from Gojman [26].)

Figure 5.4: Gojman delay measurement circuit schematic and a sample of real delays
(measured on an Altera Cyclone III).

115

5.2.3 Single Frequency Delay Results

Figures 5.5 to 5.7 demonstrate that CYA with delay fault repair is, in fact, capable

of improving parametric yield (the portion of the simulated chips that are able to

function at a given speed). These graphs compare delay yield results for:

1. Nominal: static mapping on perfect chips

2. Oblivious: those same static maps in the presence of variations, with delays

optimized using dynamic frequency scaling (DFS)

3. CYA nominal: delay-fault repair CYA on perfect chips, using the above static

mapping as the base route

4. CYA: delay-fault repair CYA in the presence of variations, also delay-optimized

using DFS

5. CYA normalized: delay-fault repair CYA results scaled by the factor (nominal

delay)/(CYA nominal delay)

The purpose of the normalization in Item 5 is to account for a slight systematic error

in my experiments that results from the need to implement split channels to enable

reservation of resources in the Wilton switch box (S-Box) topology used by VPR 5 [53].

Without this correction, CYA receives a slight unfair delay advantage relative to static

mapping, but energy results and comparisons with other CSM methods (Chapters 6

and 7) are not significantly affected. See Appendix A for further details.

As shown in Figure 5.5, CYA’s delay reduction is relatively small when variations

only have minor effects on performance, as is true at the standard operating voltage

for this 22nm technology (Vdd = 0.8V). This graph suggests a speedup in operating

frequencies of only 1-4%.

116

This situation changes completely under conditions where variations are more

significant, as is true both at lower operating voltages (useful for energy efficiency),

and for technologies with smaller feature sizes. The former case, with Vdd = 0.7V

and Vdd = 0.6V, is shown in Figures 5.6 and 5.7. CYA both recovers much of the

delay lost to variations, closing the gap by a median of 66–87%, and restores the

ability to achieve 100% yield, even as 2.6–5% of the statically-mapped chips fail to

work at any speed. Note that the systematic error, as measured by the gap between

the nominal and CYA nominal lines, also decays into insignificance as the voltage is

lowered. The advantages of CYA under high-variation conditions become particularly

relevant when we are interested in optimizing the energy and delay of each chip. This

is the focus of Chapter 6.

117

 0

 20

 40

 60

 80

 100

 800 850 900 950

18 37

11940
Y

ie
ld

 (
%

)

Delay (ps) (clock period)

CYA
CYA Normalized
Oblivious
Nominal
CYA Nominal

Figure 5.5: At 0.8V, defects slow static mapping by a median of about 6% for des
(oblivious vs. nominal lines). CYA (normalized) improves upon the oblivious delay by
a median of about 2%. Normalized CYA delay values are scaled using the corrective
factor (nominal delay)/(CYA nominal delay), to account for a slight systematic error
resulting from the implementation of split channels (see Appendix A).

All 500 chips are simulated in VPR 5 [53] using single-driver interconnect, 22 nm
technology, and σVth

= 0.0364V. Mappings are generated with 20% extra base tracks
and 16 reserved tracks, and CYA uses 64 alternatives.

118

 0

 20

 40

 60

 80

 100

 1000 1100 1200 1300 1400 1500

86 45

192
Oblivious maximum
of 97.4% at 25270 ps

Y
ie

ld
 (

%
)

Delay (ps) (clock period)

CYA
CYA Normalized
Oblivious
Nominal
CYA Nominal

Figure 5.6: At 0.7V, Vth variations begin to significantly affect the operating frequency
of des running on the obliviously loaded chips. 2.6% of chips fail entirely and do not
work at any speed. Note that the impact of the systematic delay error (Appendix A)
has also decreased significantly for this design at this voltage.

All 500 chips are simulated in VPR 5 [53] using single-driver interconnect, 22 nm
technology, and σVth

= 0.0364V. Mappings are generated with 20% extra base tracks
and 16 reserved tracks, and CYA uses 64 alternatives.

119

 0

 20

 40

 60

 80

 100

 1400 1600 1800 2000 2200 2400 2600

878 137

804
Oblivious maximum of 95% at 6620 ps

Y
ie

ld
 (

%
)

Delay (ps) (clock period)

CYA
CYA Normalized
Oblivious
Nominal
CYA Nominal

Figure 5.7: At 0.6V, Vth variations have an even greater impact on the operating fre-
quency of des running on the obliviously loaded chips. 5% of chips now fail entirely.
In contrast, CYA repair continues to achieve full yield, albeit at the cost of an ap-
proximately 55% increase in delay relative to the nominal case. The systematic delay
error (Appendix A) for this design continues to decrease with decreasing voltage.

All 500 chips are simulated in VPR 5 [53] using single-driver interconnect, 22 nm
technology, and σVth

= 0.0364V. Mappings are generated with 20% extra base tracks
and 16 reserved tracks, and CYA uses 64 alternatives.

120

Chapter 6

Delay and Energy Optimization

with CYA

In this chapter, I demonstrate the flexibility of Choose-Your-own-Adventure (CYA)

as a platform for achieving complex repair and optimization goals. Specifically, I

describe how to use CYA to reduce delay and optimize energy usage in the presence

of variations.

6.1 Delay Optimization

Section 5.2 describes a CYA-based methodology for addressing parametric defects

(i.e., repair to a target speed). The success or failure of any given repair attempt (for

a particular circuit on a particular chip at a particular speed) can be treated as a test

and used as part of an optimization process (e.g., a binary search) to find the fastest

possible speed at which the circuit can be run on that chip. The results of such an

optimization process have already been shown in Figures 5.5 to 5.7 of Section 5.2.3

— the parametric yield versus clock period results were derived in this way.

121

Note that the 0.8V results in Figure 5.5 showed that, at a variation rate appro-

priate to the 22nm technology modeled, delay-optimizing CYA reduced median delay

for des by a modest 2%, relative to the results of dynamic frequency scaling (DFS)

with a single (oblivious) configuration. This amounts to recovery of about a third of

the slowdown attributable to variations. The difference is more pronounced, however,

when variations increase, as occurs when moving to smaller feature sizes, or when Vdd

is reduced. For example, with Vdd adjusted to 0.7V, median recovery of lost delay by

CYA was close to 2/3, and CYA continued to enable 100% yields (at slower speeds),

even as oblivious mapping failed entirely on 2.6% of chips (Figure 5.6). At 0.6V,

median delay recovery by CYA increased to 87% and overall CYA yield remained at

100%, while oblivious mapping failure rates increased to 5% (Figure 5.7).

This suggests that delay-optimizing CYA can provide significant benefits for both

speedup and yield in newer, higher-variation technologies, as well as for energy op-

timization (through voltage reduction) in both older and newer technologies. Fig-

ures 6.1 and 6.2 show an example of these optimizations acting on a single chip —

delay-optimizing CYA provides greater and greater delay and energy benefits relative

to both oblivious mapping (static mapping with DFS) and defect-only CYA (with

DFS) as the voltage is decreased.

Note that defect-only CYA continues to yield on this chip well below the voltage

where oblivious mapping fails. However, this does not result in meaningful energy im-

provements on its own because, without delay optimization, CYA is content to select

resources just as slow as those used by the oblivious map. With delay optimization,

CYA achieves a minimum energy (at 0.55V) of 41% lower than the minimum achieved

by both oblivious mapping and defect-only CYA (which occurs at 0.7V). This sug-

gests that we may, in general, be able to obtain significant energy savings using a

CYA-based energy optimization strategy, as I will explore further in Section 6.2.

122

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

D
e
la

y
 (

n
s
)

Vdd

CYA Defects only
CYA Delay

Oblivious

Figure 6.1: Impact of voltage reduction on delay for des running on a single simulated
chip. This illustrates the difference between CYA with and without optimization of
delay.

Experiment parameters: 22nm technology, σVth
= 0.0364V , 20% extra base tracks,

16 reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect.

123

 1

 2

 4

 8

 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.5 pJ (-41%)

E
n
e
rg

y
 p

e
r

O
p
e

ra
ti
o
n
 (

p
J
)

Vdd

CYA Defects only
CYA Delay

Oblivious

Figure 6.2: Impact of voltage reduction on energy usage of des running on a single
simulated chip, again showing the difference between CYA with and without opti-
mization of delay. The delay-agnostic algorithm freely selects slow paths as long as
they are functional. The slowness of the mapping negates dynamic energy savings.

Experiment parameters: 22nm technology, σVth
= 0.0364V , 20% extra base tracks,

16 reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect.

124

6.2 Energy Optimization

Energy-optimizing CYA, largely enabled by delay-optimizing CYA (Section 6.1), re-

duces energy consumption of the Toronto 20 benchmarks at variation rates appro-

priate to 22nm technology by an average of 61% relative to conventional bitstream

loading practice (Table 6.6) and recovers an average of 70% of the energy lost to

variations (see Table 6.7). Read on for more details.

Optimizing the energy usage of a design has a number of clear benefits. Most

obviously, it can reduce operating costs for stationary systems, lower battery require-

ments for portable devices, and reduce environmental impacts. In addition, lowering

power requirements could help alleviate the “Dark Silicon” problem (see Section 1.2)

by reducing the amount of waste heat that needs to be dissipated per operation and

thus increasing the possible active transistor density. Even if energy reduction comes

at the cost of increased delay, the ability to activate more processing units in parallel

could enable net performance improvements.

6.2.1 Energy Impacts of Voltage Reduction and Variations

Tuning Vdd is an essential part of optimizing energy usage. In a perfect chip, voltage

reduction (up to a point) reduces dynamic energy costs (the cost of flipping bits)

more than it increases static energy costs (the cost of current leakage), thus reducing

the total energy consumed to complete a computation (energy per operation). For

the 20 benchmarks I use (Toronto 20 [6]), Table 6.1 shows the energy consumption of

perfect chips running at 0.8V (the normal operating voltage for the 22nm technology

used in these simulations) and the energy at the optimal voltage.

In a chip with post-fabrication variations, lowering voltage begins to result in

excessive delays and failures, reducing or negating energy savings, as was shown in

125

Energy (pJ) Energy Reduction Optimal Vdd
Vdd = 0.8V At optimal Vdd (%) (V)

alu4 0.90 0.20 78 0.30
apex2 1.19 0.28 77 0.35
apex4 0.81 0.21 74 0.35

bigkey 0.95 0.20 79 0.30
clma 2.62 0.73 72 0.40
des 1.25 0.30 76 0.35

diffeq 0.26 0.07 73 0.40
dsip 1.44 0.27 82 0.30

elliptic 1.09 0.30 73 0.40
ex1010 3.39 0.93 72 0.40

ex5p 0.62 0.15 76 0.35
frisc 1.19 0.32 73 0.45

misex3 0.93 0.21 77 0.35
pdc 3.63 0.98 73 0.40

s298 0.81 0.18 78 0.30
s38417 1.96 0.48 75 0.35

s38584.1 2.69 0.62 77 0.35
seq 1.10 0.26 76 0.35

spla 2.85 0.76 73 0.40
tseng 0.28 0.07 75 0.35
Mean 1.50 0.38 76 0.36

Table 6.1: Energy consumption by variation-free chips at standard (Vdd = 0.8V) and
energy-optimized (per-design) voltages. These results demonstrate the potential for
energy savings through voltage reduction if chips can be fabricated free of variations.

Experiment parameters: 22nm technology, 20% extra base tracks, 16 reserved tracks,
VPR 5 [53], single-driver interconnect.

126

Figures 6.1 and 6.2. By avoiding slow and non-functional resources, component-

specific mapping provides a method to retain much of the voltage-reduction energy

efficiency available with perfect chips.

Variations also result in a distribution of leakage energy and delay values, from the

level of individual components all the way up to critical delays of entire circuits [61].

Figure 6.3 (from [61]) shows the delay distribution for individual 22nm inverters (two

transistors) at Vdd = 0.3V, while Figure 6.4 shows the evolution of this distribution

with Vdd for a more complex structure type (C-DUKs, see [26]). These effects com-

pound further to create variations in the static energy and critical path delay values

of entire statically mapped circuits, rather than the single result that arises in the

variation-free case. Table 6.2 shows this impact at 0.8V for each of my benchmarks

across 10000 chips.

To understand the effects of variations and voltage reduction in more detail, it is

useful to recall the transistor current and delay equations first presented in Section 2.2

as Equation (2.3):

Isat = WvsatCox

(
Vgs − Vth −

Vd,sat
2

)γ
(6.1a)

Isub = W

L
µCox(n− 1) (VT)2 e

Vgs−Vth
nVT

(
1− e−

Vds
VT

)
(6.1b)

Ion =

Isat for Vds = Vdd ≥ Vth

Isub for Vds = Vdd < Vth

(6.1c)

Ioff = Isub (Vgs = 0) = W

L
µCox(n− 1) (VT)2 e

− Vth
nVT

(
1− e−

Vds
VT

)
(6.1d)

τp = CVdd
Ion

(6.1e)

These equations have important consequences for energy consumption, especially in

127

Edyn Leakage (pJ/µs) Critical Path (ns)
name (pJ) min med max CDF min med max CDF
alu4 0.8 500 524 550 0.9 0.9 1.1

apex2 1.0 711 740 769 1.0 1.0 1.3
apex4 0.7 711 740 770 1.1 1.1 1.3

bigkey 0.9 801 830 860 0.5 0.5 0.7
clma 1.6 2670 2720 2780 2.0 2.1 2.3
des 1.1 1050 1080 1110 0.8 0.9 1.1

diffeq 0.2 499 524 550 0.5 0.6 0.8
dsip 1.4 801 830 859 0.5 0.5 0.6

elliptic 0.7 1380 1420 1450 1.3 1.5 1.6
ex1010 2.2 2730 2790 2840 2.1 2.3 2.5

ex5p 0.5 444 465 488 0.9 0.9 1.1
frisc 0.6 1720 1760 1800 1.7 1.8 2.0

misex3 0.8 547 570 595 0.9 1.0 1.3
pdc 2.6 2600 2640 2690 1.9 2.1 2.4

s298 0.7 406 429 451 0.9 1.0 1.4
s38417 1.6 1780 1820 1870 0.9 1.0 1.1

s38584.1 2.4 1600 1640 1680 0.9 1.0 1.2
seq 0.9 711 740 769 1.0 1.1 1.3

spla 2.2 1830 1870 1920 1.8 1.9 2.2
tseng 0.2 413 433 453 0.5 0.6 0.7
Mean 1.2 1190 1230 1260 1.1 1.2 1.4

Table 6.2: Variation impact on the components of energy consumption at 0.8V. The
effects of variations on dynamic energy (Edyn) are higher-order only, and so are ignored
in my models. Both leakage power and cycle duration (i.e., critical path delay) are
affected.

Experiment parameters: 22nm technology, σVth
= 0.0364V, 20% extra base tracks, 16

reserved tracks, VPR 5 [53], single-driver interconnect, 10000 chips.

128

Delay (s)

P
ro

ba
bi

lit
y

D
en

si
ty

0.0

0.5

1.0

1e−10 1e−09 1e−08 1e−07 1e−06

Figure 6.3: Inverter delay distribution under variation (Wp=Wn=L=22nm, Vdd =
0.3V). (Source: Mehta [61])

the presence of variations.5

As can be seen from Equation (6.1d), leakage current (Ioff) decreases as Vdd is

lowered, due to reduction of the
(
1− e−Vds/VT

)
factor in Equation (6.1d). However,

in the sub-threshold voltage region (Vdd < Vth), this trend competes with an expo-

nential growth in delay, caused by the exponential decline of the drive current
(
in

Equation (6.1b), Vgs = Vdd results in Ion = Isub ∝ eVdd/nVT

)
. This tends to pro-

duce a U-shaped static energy curve, as exemplified by the dash-dotted green line in
5 See [87] or Mehta [61] Section 2.2 for more details beyond those discussed below.

129

C-DUK Delay (ps)

0
5

10
20

30
40

50
Fr

eq
ue

nc
y

0.9 V, µ 778, σ 60
1.0 V, µ 592, σ 39
1.1 V, µ 486, σ 28
1.2 V, µ 418, σ 22

340 380 420 460 500 540 580 620 660 700 740 780 820 860 900 940

Figure 6.4: Real-world measurements illustrating both the increasing delay and
widening distribution of delays resulting from the reduction of Vdd. These measure-
ments were performed on a 65nm technology with a standard operating voltage of
1.2V. (Source: Gojman [26].)

Figure 6.6.

The effects of Vdd reduction on dynamic energy are more straightforward: reducing

Vdd decreases the swing of gates, reducing the number of electrons that need to move

around to turn a gate on or off (a linear to quadratic effect, see [59]) and lowering

the dynamic energy consumption. Figures 6.5 and 6.6 (note the logarithmic energy

scales in both) show that the contributions of static and dynamic energy dominate

the total energy usage in different Vdd ranges, generally resulting in a total energy

minimum somewhere in the subthreshold voltage region [29]. This is why subthreshold

operation can provide significant energy savings in nominal chips.

However, a chip with variations will have transistors in which Vth deviates both

above and below its nominal value. Transistors with higher Vth will have lower Ion at

any given Vdd, meaning that they will take longer to drive transitions in downstream

logic. Clock speeds will need to be further slowed to compensate, exponentially so in

130

Vdd (V)

E
n

e
rg

y
/O

p
e

ra
ti
o

n
 (

p
J
)

0.001

0.01

0.1 0.2 0.3 0.4 0.5

Total
Dynamic
Static

Figure 6.5: Static/dynamic breakdown of energy per operation for a 16-bit multiplier
at 22nm (Vth = 300mV). (source: Mehta [61])

131

2
-5

2
-4

2
-3

2
-2

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1.0 pJ (-75%)

E
n
e
rg

y
 p

e
r

O
p
e

ra
ti
o

n
 (

p
J
)

Vdd (V)

Total
Dynamic

Static

0.5

1

2

1.0 pJ (-75%)

Figure 6.6: Energy consumption of des at 22nm, without variations. As in Figure 6.5,
lowering Vdd below the standard voltage (0.8V), deep into the sub-threshold range,
reduces energy consumption. Minimum energy consumption occurs at 0.35V. Static
energy dominates at lower voltages and dynamic energy dominates at higher voltages.

132

subthreshold operations, resulting in additional static energy penalties.

Compounding the problem, there may also be transistors with lower than nominal

Vth. These transistors will have exponentially higher Ioff (leakage current), which will

also be active over the exponentially longer clock cycles, further increasing the static

energy consumption of the circuit.

Dynamic energy, on the other hand, is not strongly affected by variations.6 Thus,

if component-specific mapping can mitigate the static energy penalties associated with

variations, voltage reduction will continue to offer energy savings through reduction

of dynamic energy expenditures, just as it does in nominal chips. The experiments

below show that CYA performs this task well.

6.2.2 Experiments

In conventional bitstream loading, manufacturers provide, for each line of chips, a set

of timing guarantees which apply to standard operating conditions only (including

Vdd). To map any given design, the user specifies the desired operating speed and

computer-aided design (CAD) tools attempt to produce a single static map that will

work at that clock speed if the timing guarantees hold true. In my simulations, I

model conventional loading by running all chips at the standard voltage (0.8V) and

using the slowest critical path from all 10000 simulated chips to represent the fastest

speed available to this method. This significantly overestimates the speed and energy

efficiency available to conventional loading, as manufacturers’ timing guarantees nec-

essarily provide for significant safety margins to ensure that advertised speeds will

always be achieved, and to account for aging.

The energy distribution at Vdd = 0.8V resulting from conventional loading in the

presence of variations is shown in Table 6.3 for all 20 of my benchmarks. We can
6The effects are higher-order at most and are not included in my models.

133

see from this table that the energy distribution is not very broad, but the average

energy consumption is 6–11 times that which can be achieved in nominal chips. The

question is how much of this lost energy efficiency can be restored by using CYA.

To optimize energy usage, CYA-based energy optimization essentially implements

a component-specific version of dynamic frequency and voltage scaling (DFVS). Stan-

dard DFVS, like conventional loading, uses a single static map, but customizes the

clock speed and voltage for each individual chip. It first seeks the fastest usable clock

speed at each tested voltage, and then uses these results to find the most energy-

efficient operating voltage overall. Using CYA rather than static mapping allows

chips to run faster and have higher functioning yield at each voltage. This makes

CYA-configured chips more efficient at any given voltage and allows even lower volt-

ages to be accessed.

Voltage and energy distributions for DFVS (“oblivious mapping”) are shown in

Table 6.4. Comparable results for CYA are shown in Table 6.5. As is clear from

these tables, and from the comparison statistics given in Tables 6.6 and 6.7, CYA

significantly improves the energy efficiency relative not only to conventional loading

(Table 6.3), but also relative to oblivious mapping. On average, across all benchmarks,

oblivious mapping reduces energy to 54% of that required by conventional loading

(absolute energy reduction), while CYA reduces energy to 39% of the conventional

loading requirement. This corresponds to a recovery by CYA of 70% of the energy

lost to variations (relative energy reduction), as compared to only a 54% recovery by

oblivious mapping (Table 6.7). Because CYA can route around defective resources,

its energy costs are also substantially less variable than those achieved with DFVS,

as can be seen by comparing the standard deviation columns of Tables 6.4 and 6.5 or

by examining the box plots in Figure 6.7.

Figure 6.7 shows a graphical comparison of nominal, conventional, oblivious, and

134

CYA energy results for a single benchmark (des).

While these improvements are substantial, CYA still does not completely recover

the full 76% energy savings that can be obtained in nominal chips by optimal tuning

of the operating voltage (see Table 6.1). Of course, variation-free fabrication is not

realistic at modern feature sizes with any known technology, so it is useful to explore

the best possible results that can be obtained in practice. The next chapter, Chap-

ter 7, explores the theoretical limits of optimization in chips with variations, using

full-knowledge customized mapping for each individual chip. We will see that CYA

achieves most of the benefits of full-knowledge mapping at only a small fraction of

the cost.

135

Vdd Energy (pJ)
name (V) min med max mean s.d. ∆E % ∆E CDF
alu4 0.80 1.25 1.29 1.38 1.29 0.01 1.09 546

apex2 0.80 1.77 1.82 1.99 1.83 0.02 1.55 560
apex4 0.80 1.42 1.48 1.63 1.49 0.02 1.28 619

bigkey 0.80 1.26 1.31 1.49 1.31 0.02 1.11 555
clma 0.80 6.87 7.24 7.95 7.25 0.13 6.52 896
des 0.80 1.94 2.02 2.22 2.02 0.03 1.72 572

diffeq 0.80 0.48 0.51 0.61 0.51 0.01 0.44 649
dsip 0.80 1.73 1.78 1.90 1.78 0.02 1.52 571

elliptic 0.80 2.57 2.75 3.03 2.76 0.06 2.45 821
ex1010 0.80 8.10 8.58 9.25 8.59 0.14 7.65 821

ex5p 0.80 0.93 0.96 1.07 0.97 0.01 0.82 563
frisc 0.80 3.51 3.77 4.17 3.77 0.08 3.44 1064

misex3 0.80 1.34 1.39 1.56 1.39 0.02 1.17 548
pdc 0.80 7.72 8.10 8.85 8.11 0.12 7.12 727

s298 0.80 1.12 1.16 1.31 1.16 0.01 0.98 548
s38417 0.80 3.27 3.40 3.70 3.41 0.05 2.92 605

s38584.1 0.80 3.86 4.00 4.30 4.00 0.05 3.38 546
seq 0.80 1.68 1.73 1.94 1.73 0.02 1.47 565

spla 0.80 5.50 5.78 6.24 5.79 0.09 5.02 660
tseng 0.80 0.46 0.49 0.56 0.49 0.01 0.42 597
Mean 0.80 2.84 2.98 3.26 2.98 0.05 2.60 652

Table 6.3: The energy per operation with variations, using conventional loading for
each benchmark. That is, Vdd is 0.8V for all chips, and the clock period for each
benchmark is determined by the slowest of the 10000 chips for that benchmark. ∆E
numbers are relative to the optimal energy achievable by adjusting Vdd in nominal
chips (Table 6.1). Static energy (leakage rate) is the only component of the energy
calculations affected by the variations of each chip.

Experiment parameters: 22nm technology, σVth
= 0.0364V, 20% extra base tracks, 16

reserved tracks, VPR 5 [53], single-driver interconnect, 10000 chips.

136

Voltage (V) Energy (pJ)
name min max CDF min med max mean s.d. CDF
alu4 0.55 0.80 0.58 0.70 1.32 0.72 0.07

apex2 0.55 0.80 0.83 1.01 1.92 1.04 0.11
apex4 0.55 0.80 0.67 0.82 1.60 0.83 0.09

bigkey 0.55 0.80 0.58 0.73 1.42 0.75 0.08
clma 0.60 0.80 2.80 3.47 7.18 3.57 0.41
des 0.55 0.80 0.86 1.05 2.13 1.07 0.11

diffeq 0.55 0.80 0.22 0.27 0.55 0.28 0.03
dsip 0.50 0.75 0.81 1.01 1.78 1.03 0.11

elliptic 0.55 0.80 1.04 1.30 2.75 1.33 0.15
ex5p 0.55 0.80 0.44 0.52 0.99 0.54 0.06

frisc 0.60 0.80 1.38 1.73 3.83 1.77 0.21
misex3 0.55 0.75 0.61 0.74 1.52 0.76 0.08

pdc 0.60 0.80 3.45 4.20 8.41 4.32 0.46
s298 0.55 0.80 0.50 0.61 1.18 0.62 0.06

s38584.1 0.55 0.80 1.74 2.17 4.04 2.22 0.24
seq 0.55 0.75 0.76 0.94 1.89 0.96 0.10

spla 0.55 0.80 2.42 2.88 5.82 2.94 0.33
tseng 0.55 0.75 0.20 0.25 0.52 0.26 0.03
Mean 0.56 0.79 1.10 1.36 2.71 1.39 0.15

Table 6.4: Oblivious (DFVS) energy statistics for 10000 simulated chips for each
benchmark.

Experiment parameters: 22nm technology, σVth
= 0.0364V, 20% extra base tracks, 16

reserved tracks, VPR 5 [53], single-driver interconnect, 10000 chips.

137

Voltage (V) Energy (pJ)
name min max CDF min med max mean s.d. CDF
alu4 0.45 0.60 0.48 0.53 0.66 0.53 0.02

apex2 0.45 0.60 0.68 0.77 0.98 0.77 0.03
apex4 0.50 0.65 0.56 0.61 1.00 0.62 0.03

bigkey 0.45 0.70 0.45 0.54 0.99 0.55 0.04
clma 0.50 0.70 2.26 2.53 4.14 2.56 0.16
des 0.45 0.65 0.69 0.76 1.22 0.76 0.03

diffeq 0.45 0.70 0.17 0.20 0.40 0.20 0.02
dsip 0.40 0.65 0.62 0.74 1.42 0.75 0.06

elliptic 0.50 0.70 0.83 0.96 2.00 0.97 0.05
ex5p 0.45 0.65 0.36 0.39 0.57 0.40 0.01

frisc 0.50 0.70 1.07 1.27 2.08 1.29 0.09
misex3 0.45 0.70 0.51 0.56 1.11 0.56 0.03

pdc 0.50 0.70 2.89 3.22 5.72 3.25 0.18
s298 0.45 0.70 0.41 0.47 0.79 0.47 0.03

s38584.1 0.45 0.60 1.44 1.64 2.16 1.64 0.08
seq 0.45 0.65 0.64 0.70 1.04 0.71 0.03

spla 0.50 0.70 1.98 2.14 3.47 2.16 0.09
tseng 0.45 0.70 0.16 0.19 0.36 0.19 0.01
Mean 0.46 0.67 0.90 1.01 1.67 1.02 0.06

Table 6.5: CYA energy statistics for 10000 simulated chips for each benchmark.

Experiment parameters: 22nm technology, σVth
= 0.0364V, 20% extra base tracks, 16

reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, 10000 chips.

138

Oblivious CYA
name min med max mean CDF min med max mean CDF
alu4 0 46 55 44 49 59 63 59

apex2 0 45 54 43 46 58 63 58
apex4 0 45 54 44 34 59 63 58

bigkey 0 44 55 43 25 59 66 58
clma 0 52 60 51 44 65 70 65
des 0 48 57 47 39 62 67 62

diffeq 0 47 58 46 28 61 69 60
dsip 5 43 55 42 21 59 65 58

elliptic 0 53 60 52 27 65 70 65
ex5p 0 46 54 44 41 59 64 59

frisc 0 54 62 53 47 66 73 66
misex3 3 47 56 45 19 60 65 59

pdc 0 48 57 47 31 60 65 60
s298 0 48 56 46 34 60 65 59

s38584.1 0 46 56 44 47 59 64 59
seq 2 46 56 45 40 59 64 59

spla 0 50 58 49 41 63 67 63
tseng 2 48 58 47 30 62 67 61
Mean 1 47 57 46 36 61 66 61

Table 6.6: Percentage energy reduction relative to conventional loading. The “obliv-
ious” columns show the energy savings achieved with DFVS using a single bitstream
for all 10000 chips. The “CYA” columns show the greater benefits of energy opti-
mization with CYA.

Experiment parameters: 22nm technology, σVth
= 0.0364V, 20% extra base tracks, 16

reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, 10000 chips.

139

Oblivious CYA
name min med max mean CDF min med max mean CDF
alu4 0 54 65 53 58 70 75 70

apex2 0 53 64 51 54 68 74 68
apex4 0 52 63 51 39 68 73 68

bigkey 0 52 65 51 29 69 78 69
clma 0 58 67 56 50 72 78 72
des 0 57 67 55 46 73 78 73

diffeq 0 54 66 53 32 70 79 70
dsip 5 51 64 50 24 69 77 68

elliptic 0 59 68 58 31 73 78 73
ex5p 0 54 64 52 48 70 74 70

frisc 0 59 68 58 51 72 79 72
misex3 3 55 66 53 22 71 75 70

pdc 0 55 65 53 35 69 73 68
s298 0 56 67 55 40 71 76 70

s38584.1 0 54 67 53 56 70 76 70
seq 3 54 66 52 47 70 75 70

spla 0 58 67 57 47 73 77 72
tseng 2 56 68 55 35 72 79 72
Mean 1 55 66 54 41 71 76 70

Table 6.7: Percentage of energy lost due to variations (relative to nominal) recovered
(mitigated) by oblivious (DFVS) and CYA mapping.

Experiment parameters: 22nm technology, σVth
= 0.0364V, 20% extra base tracks, 16

reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, 10000 chips.

140

●

●

Vdd (V)

E
ne

rg
y

(p
J)

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●
●

●●●●●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●
●

●

●●●

●

●
●
●

●

●
●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●
●●●●

●

●
●
●
●

●

●

●

●

●

●

●
●

●
●

●●
●
●
●
●●
●

●

●●●

●

●

●
●

●●
●
●●

●

●●
●

●●

●
●●

●

●

●
●

●

●

●

●●

●

●
●

●●

●

●

●
●

●
●●

●●
●

●

●

●

●●

●●
●

●

●

●
●

●
●

●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●●●
●

●

●

●●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●
●●●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●
●

●

●

●
●
●

●●
●

●
●

●

●●●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●
●
●

●

●
●●

●

●

●

●

●
●
●
●●●●

●
●

●

●

●
●●●●
●

●●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●●
●

●

●●

●
●

●
●

●

●
●
●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●
●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●●

●
●

●

●
●●
●

●

●

●
●
●

●

●
●●

●
●
●

●●
●●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●●
●
●

●

●
●
●

●

●●
●

●
●●

●

●
●

●●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●
●

●

●

●
●
●

●

●
●
●

●●●●
●

●

●
●

●●●

●●●
●●

●
●●
●

●

●

●

●●●●

●
●●
●●
●

●

●●●

●

●
●●
●

●

●●
●
●

●

●

●

●●
●
●

●

●
●
●

●

●

●

●
●

●

●

●
●●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●●●●
●●

●

●●
●
●
●●●●

●

●

●

●

●
●

●

●

●
●
●
●

●
●
●

●

●

●
●●●●
●

●

●
●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●

●
●

●●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●●

●

●
●

●●

●
●
●

●●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●
●●●

●
●
●

●
●

●

●

●

●

●

●●

●

●
●●●●

●
●●

●●

●

●

●

●

●●

●

●●
●●
●●
●
●

●

●

●

●●●

●

●

●
●
●

●

●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●●

●

●

●
●●

●
●
●

●

●●

●

●
●●

●

●●●●

●

●
●
●

●

●

●
●

●●●
●
●

●

●

●

●

●●

●●

●

●

●

●
●

●

●●●●●●●●●
●●●

●
●

●●

●

●

●

●
●

●●

●

●
●
●●

●

●●●●

●●

●
●●
●
●
●
●

●●●

●

●
●

●
●

●
●
●●

●

●

●

●

●●

●

●

●

●●●
●

●

●●

●

●●
●

●
●

●
●
●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●●
●

●●●
●

●

●
●
●●

●

●●

●

●

●

●●
●

●

●

●
●●●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●●●

●

●●

●

●●●●

●

●●

●

●

●●●●●●
●●●

●

●
●
●
●●●●

●

●●

●

●●
●

●

●
●
●●

●

●
●
●

●

●●
●
●
●

●
●●●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

●

●●●
●

●●●

●

●

●

●

●
●●
●
●●

●

●
●●●●
●
●

●●

●
●

●
●●

●

●
●

●

●●●●

●

●

●
●
●●
●
●

●

●

●

●

●●

●
●

●

●●

●
●
●●●

●

●●
●
●●●
●●
●
●

●

●

●

●

●

●

●●●●●

●

●●
●●
●

●

●●
●
●
●

●

●
●

●

●

●

●

●
●●●
●

●

●●●
● ●

●

●●

●
●
●

●●●●●
●●
●

●

●

●
●

●

●●●

●

●

●

●

●●
●
●
●
●
●●●
●

●●
●

●●
●
●

●

●
●
●
●
●●
●
●
●
●
●

●

●●●

●

●
●●
●

●●●●●
●

●

●●●●●

●

●●
●
●●

●

●

●
●

●
●
●
●
●●
●

●

●●

●

●

●

●
●
●●

●

●●●
●●
●

●

●●●
●
●
●
●●

●

●●
●●

●
●●
●●
●
●
●●●
●
●

●
●

●●●●●●

●
●●

●

●●
●
●●●●●●

●
●

●●
●
●●

●

●

●
●

●
●

●●●●

●
●

●

●●●●

●
●●●
●

●
●

●●

●

●

●

●

●●
●

●
●
●●
●

●

●●

●●●

●

●

●

●
●●
●●

●●●

●

●●

●

●

●

●
●
●●

●●●
●
●
●
●
●
●

●
●●
●●●

●

●●

●

●
●●●●
●●

●●

●●

●

●●

●

●●

●

●

●

●

●
●●●
●
●●
●
●
●
●●●

●

●●●●●

●

●
●●

●

●

●
●●

●
●

●

●●●
●
●

●
●

●
●
●●●●
●
●●●●●

●

●●●●
●●
●
●●●●

●

●
●
●

●

●
●●●
●

●

●●

●

●●●

●

●

●

●●
●

●

●●
●

●

●●●●

●

●

●

●●●●●
●
●●●
●
●●
●
●
●●●●●

●

●
●●●●●

●

●
●

●●

●●●●
●
●●
●●●

●

●

●

●
●●
●

●
●

●●●●

●

●

●

●
●
●
●●
●

●

●
●●●

●

●
●

●

●●●
●
●
●●●●●

●

●●

●

●

●

●

●
●

●

●
●
●
●
●●
●
●●
●●

●
●

●
●

●●●
●
●●●●
●●
●

●

●

●●●●

●
●
●●
●

●

●

●●
●●●

●
●

●

●

●
●
●●
●
●
●●
●
●●●
●●
●
●
●
●

●

●●
●●

●

●●
●

●

●

●

●●
●●
●●
●
●
●●

●

●●●
●
●●

●

●

●

●●
●●

●●

●

●

●●●

●

●
●●
●

●

●
●

●
●
●●●
●

●

●

●

●●●●
●●

●

●●●●
●●●

●●●
●
●●●●

●●
●●

●●●●
●

●

●

●●
●
●●

●

●●●

●

●●●●●

●

●●

●

●●●●●
●

●

●●

●●

●
●
●

●
●
●
●●
●
●

●

●●●

●
●

●●
●●●
●●
●●

●
●●●
●
●●●

●
●
●
● ●●●●

●
●
●

●

●●●
●

●●●●●
●
●●

●

●●●●●●●
●●●●

●
●

●
●
●●●●●●●
●

●

●●●
●
●●●
●●●●●●●●●
●
●
●●●●
●●●●●●●●●●
●
●

●

●

●
●

●

●
●
●●●●

●
●

●●●●●●●
●
●
●●●
●
●

●

●●●●●

●
●

●●
●●●●●
●●●●
●
●
●
●●●●
●●
●●●●●●●●●●
●
●●
●
●●
●●●
●
●
●
●●
●●●●●●
●
●●●●
●
●●●●●●●●●●●
●
●●
●
●

●
●
●●●●●●●
●●

●

●●●●
●
●●

●●
●●
●●●

●

●●
●●
●●●
●
●
●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●

●

●●
●●●

●

●

●●●●●●●
●
●●

●

●

●●●●
●
●
●

●

●●●
●
●
●●●●●●

●

●

●●●●●●●
●
●●●●●●●●

●●●●●●●●
●
●●●●●●

●

●●●●●●●●●●●
●

●

●●●●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●●●●

●

●●
●
●●●●●●●●●●●●●●●
●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●
●

●●●●●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●
●
●●

●

●
●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●

●●●●●●●●●●●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●

0.5

1.0

2.0

5.0

10.0

20.0

50.0

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●
●
●●

●

●
●●●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●
●

●

●

●

●●

●●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●
●
●

●●

●

●

●

●

●

●

●
●●●●●●●
●
●

●

●
●

●●

●

●

●●
●

●

●

●

●●

●

●●●

●

●●
●●●

●
●
●●

●●●

●●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●
●

●
●●
●

●

●

●

●

●●

●

●

●

●
●

●
●●

●●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●●

●
●●

●

●

●
●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●
●

●●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●●

●
●●●
●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●
●
●

●●

●

●●

●
●
●

●

●

●

●

●

●
●

●
●●

●
●
●●●
●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●
●

●

●
●●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●
●
●

●
●

●
●

●

●

●●
●

●

●
●
●●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●●
●

●●●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●●●

●

●

●
●●

●
●●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●
●
●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●
●

●

●

●

●
●●

●●
●●
●●

●

●

●

●
●

●●

●●●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●●
●●
●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●●

●●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●●●●

●

●

●
●

●
●

●
●●

●

●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●
●

●
●●

●

●
●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●●
●●

●

●●

●

●
●

●

●●●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●●
●●

●●
●

●

●●

●
●
●

●

●
●
●●

●

●●

●●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●●●

●

●●●

●

●

●
●●
●●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●●●
●

●

●

●

●

●

●

●
●●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●
●
●

●

●
●

●

●

●

●

●●
●

●
●●●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●●
●

●
●●●

●

●

●●

●

●●

●

●●
●

●●
●

●

●

●

●

●

●
●●●●
●
●

●

●
●
●

●●

●

●

●

●●●
●

●●

●

●

●

●

●

●
●
●●●●
●

●
●

●
●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●●●
●
●
●
●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●
●

●●●●

●

●●●●●
●

●

●

●

●●●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

●
●

●
●●
●●

●
●

●
●

●

●

●
●●

●

●
●●
●

●

●
●●

●

●

●

●
●

●
●

●●●

●
●

●

●●

●
●
●

●
●●
●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●●●

●

●

●

●

●●●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●
●

●●
●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●
●

●●

●

●

●

●●●●

●

●●

●

●
●
●●●

●
●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●
●
●

●

●

●

●
●

●

●

●
●
●
●
●
●

●●

●

●

●

●

●
●●

●

●

●

●●

●

●
●●
●●●

●●
●●

●

●

●

●
●●●
●●
●●

●

●

●
●
●

●

●●

●

●

●
●●

●
●
●●
●
●
●

●

●●
●●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●
●●
●●

●

●

●
●

●

●

●●

●
●

●

●

●

●●
●

●

●
●

●

●
●●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●●●●
●

●

●●
●

●

●●

●

●

●●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●●

●●
●●

●

●

●

●
●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●●

●

●

●

●●●
●

●

●●
●●●

●

●
●
●●

●
●

●

●

●
●
●

●
●

●●

●

●

●

●

●

●

●

●
●●
●●

●

●●

●

●

●

●

●●
●●●
●
●

●

●

●

●

●
●●

●

●

●

●●

●

●●●●
●
●

●
●●●

●
●
●●●

●
●

●

●●●

●

●●

●

●

●

●●●●

●

●
●●●●●
●
●
●

●

●●
●
●

●
●
●

●

●●●●

●

●

●

●

●

●
●
●

●

●

●

●●●
●●●●●●●●
●
●●●

●

●

●

●●●

●
●●
●●

●

●

●

●

●

●●
●

●

●●●
●
●
●

●

●●

●

●●●
●●●
●
●●●●

●

●●●

●

●
●●

●

●

●
●
●
●●●●●●●
●
●

●

●
●●
●
●●
●●●●●●●
●●

●

●

●

●●

●●●
●

●

●

●

●

●

●●●
●●
●

●

●●

●

●
●

●

●

●

●

●
●
●●●●●●
●
●
●
●

●
●

●
●●
●●

●
●●●

●●

●●

●

●

●

●

●●●●●

●

●●

●

●●
●●

●

●●
●
●

●

●
●●
●
●
●●

●
●
●

●●●
●●●●

●

●

●

●
●
●

●●●●●

●

●
●
●

●

●●●

●

●●●●●●●

●
●
●●●●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●
●
●
●
●

●

●
●●●

●

●●●●●
●
●
●●●●
●
●●●●●

●

●

●

●●
●●

●

●

●●●
●●
●
●
●●

●
●

●●
●
●●●●●●●

●
●
●●●●●

●

●●●●
●

●
●
●●●●●●●●●
●

●

●

●
●●●●●
●
●
●
●●●●●●
●●
●

●●●
●
●●●
●
●●

●

●●●●
●●●●●●●
●
●●●●●●●●●
●●●
●
●
●
●●●●

●
●

●
●
●
●
●●●●●●●●●●●●●●

●

●●●●●●●●●●
●●●●●●●

●
●●●●

●

●
●
●

●

●

●●●

●

●

●

●●●●●●
●
●
●
●●●

●

●●●●●
●
●●●
●
●

●

●●●●
●
●●●●
●

●

●●●●

●

●●●●
●
●
●
●●●●●●●●●
●
●
●●●●●
●●●●

●

●

●

●●●●●
●
●●●●●

●

●●

●

●

●

●
●●●
●

●

●

●

●●
●●●●
●●●●

●●●

●

●●

●
●●●●●●

●

●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●
●

●

●
●
●●●●●●●●●●●●●

●

●●●●●●●●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●
●●
●
●

●●●●●●●●●●●●●●

●

●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●
●
●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●
●●●●●●●

●

●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●
●●
●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●

●●●●●●●
●●●
●●
●●●●●
●
●●
●
●●●
●
●
●●●
●
●●
●●
●●●●●●●
●●●●
●●
●
●●
●●●●
●●●●
●
●
●

●●●●●
●
●
●
●●●●●
●
●●●●●●
●
●●●●
●
●●●●
●●
●●
●
●●●●●●
●
●●●●
●
●●●●●●
●●
●●●
●
●
●
●
●●●
●●●●●●●●
●
●●●●
●
●
●
●●
●
●●●●●●●●●●
●
●
●

0.5

1.0

2.0

5.0

10.0

20.0

50.0

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●

●●●●●●●●●●●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●

0.5

1.0

2.0

5.0

10.0

20.0

50.0

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.5

1.0

2.0

5.0

10.0

20.0

50.0
Nominal
CYA
CYA envelope
Oblivious
Oblivious worst case
Conventional

Figure 6.7: Distribution of energy per operation of des vs. Vdd, for all loading methods.

Nominal results (static mapping on perfect chips) fall along a single (blue) line, using
less energy than all other methods. Conventional results (red) are all mapped at
0.8V and the range of energy variation is too small to see on this graph. Oblivious
(orange) and CYA (green/purple) mapping produce a substantial range of energy
values at each voltage, as shown in the box plots, the “oblivious worst case” line, and
the outlined “envelope” of the CYA results. Box widths correspond to the fraction
of chips that were mapped successfully at each voltage; oblivious mapping failed to
map any chips below 0.5V.
Experiment parameters: 22nm technology, σVth

= 0.0364V, 20% extra base tracks, 16
reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, 10000 chips.

141

Chapter 7

Limit Studies

The goal of Choose-Your-own-Adventure (CYA) is to make practical the benefits

of component-specific mapping (CSM) for delay and energy savings. This chapter

examines the tradeoffs associated with the CYA approach and explores possible future

avenues of improvement.

A number of costs have slowed adoption of CSM, including those associated with:

1. Per-chip testing/measurement

2. Per-chip, per-design computer-aided design (CAD)

3. Increases in load time and/or in-situ computation (e.g., increased bitstream size

and load time due to alternatives)

CYA mitigates these costs by making certain compromises between delay/energy

optimization and CAD/loading efficiency:

1. It commits to using all base paths that pass testing (see Section 7.3).

2. It provides only a limited set of alternative routes for defect and delay repair

(see Section 7.2).

142

3. It greedily selects amongst those alternatives during repair (see Section 7.1).

In this chapter I strip away these layers of compromise, one after the other, to show the

delay and energy costs (relative to full-knowledge routing) and CAD/loading efficiency

benefits of this approach. The results of these tests are discussed individually in

Sections 7.1 to 7.3. Section 7.4 brings all of these results together for comparison.

7.1 Pathfinder Negotiated Alternative Selection

For this first study, the initial mapping and testing of the base route remains intact,

leaving a common starting point for repair. In addition, the same limited selection

of alternatives is generated as in CYA. The only change is that the “first to work”

greedy selection of alternative paths for repair is now replaced with a Pathfinder-

based heuristic congestion negotiation process. As the challenge of selecting amongst

alternatives is closely similar to that of free-form routing, the capabilities of Pathfinder

are a natural fit for this task.7

For a net requiring repair, the Pathfinder-based alternative selector works by

first filtering the available alternatives using the same acceptance tests as CYA. The

acceptable paths for each net are collected into a paths tree (Section 4.3.1), as in

path-cost aware alternatives generation (Section 4.3). These paths trees are then

used as constraints for a shortest path search — only expansions that follow the trees

are permitted, but no following penalty is applied to the cost function. This is in

contrast to the approach taken in path-cost routing, in which following a paths tree

is strongly penalized.

As shown in [24] and Figure 7.3, this results in a large jump in load-time compu-

tational overhead relative to CYA, requiring a fair bit of computational power and
7It has been suggested that alternative selection might also be an interesting application for SAT

solvers. This may be a promising experiment for future work.

143

memory to support Pathfinder. Load times increase by two orders of magnitude, from

a few seconds to several minutes; see the referenced paper for details of the timing

model. There is also a notable increase in the number of paths tested — CYA usu-

ally tries only a small number of the theoretically acceptable paths because it almost

always finds a working solution within the first few alternatives tested. Some paths

may also never be tried by CYA because they conflict with alternatives already se-

lected to repair other nets. However, despite the increased costs of using Pathfinder to

choose alternatives, this process is still extremely light-weight relative to the detailed

measurements required to perform knowledge-based routing (Section 7.3).

Figures 7.1 and 7.2 show that, in exchange for these additional costs, Pathfinder al-

ternative selection does improve both delay and energy efficiency compared to CYA’s

greedy selection. Over all the Toronto 20 designs, the median energy consumption is

lower by approximately 8% (see Table 7.4). As shown in Table 7.5, on average, about

12% of the energy savings that full-knowledge routing achieves relative to oblivious

(dynamic frequency and voltage scaling (DFVS)) loading can be restored by using

Pathfinder alternative selection rather than CYA’s greedy selection. Other, more

efficient alternative selection methods may be able to improve on the timing costs

of the Pathfinder-based algorithm while still retaining much of its delay and energy

advantage.

144

 0

 20

 40

 60

 80

 100

 1400 1600 1800 2000 2200

Y
ie

ld
 (

%
)

Delay (ns)

Pathfinder Selection
CYA

Figure 7.1: Delay parametric yield for CYA and Pathfinder-based alternative
selection.

Experiment parameters: Vdd = 0.6V, des, 22nm technology, σVth
= 0.0364V, 20%

extra base tracks, 16 reserved tracks, 64 alternatives, VPR 5 [53], single-driver inter-
connect, 500 chips.

145

 0

 20

 40

 60

 80

 100

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Y
ie

ld
 (

%
)

Energy per Operation (pJ)

Pathfinder Selection
CYA

Figure 7.2: Energy parametric yield for CYA and Pathfinder-based alternative
selection.

Experiment parameters: energy-optimizing Vdd, des, 22nm technology, σVth
=

0.0364V, 20% extra base tracks, 16 reserved tracks, 64 alternatives, VPR 5 [53],
single-driver interconnect, 500 chips.

146

1.2

1.4

1.6

1.8

2.0

Time (s)

N
or

m
al

iz
ed

 e
ne

rg
y

10−1 100 101 102 103 104

CYA
Pathfinder Selection

Figure 7.3: Energy vs. CAD/loading time for CYA and Pathfinder-based alterna-
tive selection. Each point is the 95th percentile of normalized energy consumption
amongst 20 chips, for one of the Toronto 20 [6] benchmarks. Normalization for each
chip was performed with respect to the energy consumption achievable for that same
chip using full-knowledge routing. See [24] (graph source) for details of the timing
model. The crosshairs show the median time and energy for each alternative selection
method.

Experiment parameters: 22nm technology, σVth
= 0.0364V, 20% extra base tracks, 16

reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, 20 chips.

147

Voltage (V) Energy (pJ)
name min max CDF min med max mean s.d. CDF
alu4 0.45 0.50 0.46 0.49 0.53 0.49 0.01

apex2 0.45 0.55 0.67 0.71 0.76 0.71 0.02
apex4 0.50 0.55 0.54 0.58 0.62 0.58 0.01

bigkey 0.45 0.55 0.45 0.51 0.65 0.52 0.03
clma 0.50 0.60 2.12 2.30 2.52 2.31 0.07
des 0.45 0.55 0.67 0.70 0.76 0.70 0.02

diffeq 0.50 0.60 0.16 0.18 0.22 0.18 0.01
dsip 0.40 0.55 0.61 0.69 0.80 0.69 0.03

elliptic 0.50 0.60 0.80 0.86 0.98 0.86 0.03
ex1010 0.55 0.60 2.77 2.98 3.20 2.97 0.08

ex5p 0.45 0.55 0.35 0.37 0.42 0.37 0.01
frisc 0.50 0.60 1.01 1.12 1.30 1.12 0.05

misex3 0.45 0.55 0.49 0.52 0.56 0.52 0.01
pdc 0.50 0.60 2.78 2.94 3.26 2.95 0.08

s298 0.45 0.55 0.41 0.43 0.49 0.44 0.01
s38417 0.50 0.60 1.21 1.31 1.57 1.32 0.05

s38584.1 0.45 0.55 1.40 1.52 1.68 1.52 0.06
seq 0.50 0.55 0.61 0.65 0.70 0.65 0.02

spla 0.50 0.55 1.91 2.00 2.23 2.00 0.04
tseng 0.45 0.55 0.15 0.17 0.19 0.17 0.01
Mean 0.48 0.57 0.98 1.05 1.17 1.05 0.03

Table 7.1: Statistics of minimum energy and energy-minimizing voltage for Path-
finder-based alternative selection.

Experiment parameters: 22nm technology, σVth
= 0.0364V, 20% extra base tracks, 16

reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, 500 chips.

148

7.2 Pathfinder Knowledge-Based Repair

The next question is how much repair capability and energy efficiency is lost by limit-

ing the set of paths available for repair. To test this, I proceed similarly to Section 7.1,

but remove the constraint that repairs must use only the precomputed alternatives.

Essentially this constitutes a limited version of full-knowledge routing (i.e., routing

based on complete characterization of all resource variations), constrained to the space

of broken nets and resources not used in the functional portions of the base path.

It should be noted that, because of the use of Pathfinder for repair, the results

of this test will not be the same as the results we would obtain through greedy

selection amongst all possible alternative paths. As discussed in the previous section,

CYA’s greedy alternative selection trades speed in finding an acceptable path for the

possibility of missing out on a better path. So, as before, Pathfinder repair with

unlimited path choices will try more paths than CYA with unlimited alternatives,

but it may find better paths as a result.

As illustrated by Table 4.11, precisely because of CYA’s greedy selection of the first

acceptable alternative, adding alternatives to CYA shows diminishing returns after

a certain point. Thus, completely removing alternative limits, rather than simply

increasing some finite alternative count, is likely beneficial primarily when negotiated

alternative selection is already in use, as in the present tests.

Since Pathfinder-based alternative selection from an unlimited choice of paths

is essentially limited full-knowledge routing, we should expect that the cost of this

approach will begin to more closely resemble that of full-knowledge routing. Specif-

ically, it requires that all variations in repair resources (but not in resources that

are unavailable for repair, such as non-shareable, consumed base resources, unused

blocks, and out-of-bounds interconnect) be completely characterized, in order to en-

149

able Pathfinder to select the best repair pathways. As discussed in Section 1.2, this

kind of comprehensive characterization can take hours to weeks per chip. However,

some savings are still present on the routing side, due to the fact that only broken

nets need to be routed and these nets can only be routed onto reserve and unused

base resources. Timing results are shown in Figure 7.6 — note the roughly four order

of magnitude increase in time costs compared to Pathfinder alternative selection.

In exchange for this significant increase in CAD/loading time, we see in Fig-

ures 7.4 and 7.5 that free-form routing for repair does provide noticeable delay and

energy improvements compared to smart selection amongst pre-computed alterna-

tives. Median energy costs improve by about 10% across all benchmarks (Table 7.4).

Table 7.5 shows that an additional 14% of the energy savings that full-knowledge

routing achieves relative to oblivious loading can be restored by this step of removing

the limit on alternatives.

150

 0

 20

 40

 60

 80

 100

 1400 1600 1800 2000 2200

Y
ie

ld
 (

%
)

Delay (ns)

Knowledge Repair
Pathfinder Selection
CYA

Figure 7.4: Delay parametric yield for CYA, Pathfinder-based alternative se-
lection, and Pathfinder knowledge-based repair.

Experiment parameters: Vdd = 0.6V, des, 22nm technology, σVth
= 0.0364V, 20%

extra base tracks, 16 reserved tracks, 64 alternatives, VPR 5 [53], single-driver inter-
connect, 500 chips.

151

 0

 20

 40

 60

 80

 100

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Y
ie

ld
 (

%
)

Energy per Operation (pJ)

Knowledge Repair
Pathfinder Selection
CYA

Figure 7.5: Energy parametric yield for CYA, Pathfinder-based alternative se-
lection, and Pathfinder knowledge-based repair.

Experiment parameters: energy-optimizing Vdd, des, 22nm technology, σVth
=

0.0364V, 20% extra base tracks, 16 reserved tracks, 64 alternatives, VPR 5 [53],
single-driver interconnect, 500 chips.

152

1.2

1.4

1.6

1.8

2.0

Time (s)

N
or

m
al

iz
ed

 e
ne

rg
y

10−1 100 101 102 103 104 105 106 107

CYA
Pathfinder Selection
Pathfinder Repair

Figure 7.6: Energy vs. CAD/loading time for CYA, Pathfinder-based alternative
selection, and Pathfinder knowledge-based repair. Each point is the 95th
percentile of normalized energy consumption amongst 20 chips, for one of the Toronto
20 [6] benchmarks. Normalization for each chip was performed with respect to the
energy consumption achievable for that same chip using full-knowledge routing. See
[24] (graph source) for details of the timing model. The crosshairs show the median
time and energy for each alternative selection method.

Experiment parameters: 22nm technology, σVth
= 0.0364V, 20% extra base tracks, 16

reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, 20 chips.

153

Voltage (V) Energy (pJ)
name min max CDF min med max mean s.d. CDF
alu4 0.40 0.50 0.41 0.44 0.47 0.44 0.01

apex2 0.45 0.50 0.60 0.64 0.68 0.64 0.01
apex4 0.45 0.55 0.48 0.51 0.55 0.51 0.01

bigkey 0.40 0.50 0.41 0.44 0.52 0.44 0.02
clma 0.50 0.55 1.97 2.08 2.24 2.08 0.04
des 0.40 0.50 0.60 0.65 0.70 0.65 0.02

diffeq 0.45 0.55 0.15 0.17 0.18 0.17 0.01
dsip 0.35 0.50 0.54 0.59 0.73 0.59 0.02

elliptic 0.50 0.55 0.73 0.80 0.89 0.80 0.02
ex1010 0.50 0.55 2.57 2.68 2.85 2.68 0.05

ex5p 0.45 0.50 0.31 0.33 0.35 0.33 0.01
frisc 0.50 0.60 0.92 0.99 1.11 0.99 0.03

misex3 0.40 0.50 0.43 0.47 0.50 0.47 0.01
pdc 0.50 0.55 2.54 2.69 2.83 2.69 0.04

s298 0.40 0.50 0.36 0.39 0.42 0.39 0.01
s38417 0.45 0.55 1.05 1.14 1.26 1.14 0.03

s38584.1 0.40 0.55 1.26 1.37 1.57 1.37 0.04
seq 0.45 0.50 0.56 0.59 0.64 0.59 0.01

spla 0.45 0.55 1.72 1.84 1.98 1.84 0.04
tseng 0.45 0.55 0.14 0.16 0.18 0.16 0.01
Mean 0.44 0.53 0.89 0.95 1.03 0.95 0.02

Table 7.2: Statistics of minimum energy and energy-minimizing voltage for Path-
finder knowledge-based repair.

Experiment parameters: 22nm technology, σVth
= 0.0364V, 20% extra base tracks, 16

reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, 500 chips.

154

7.3 Full-Knowledge Routing

At this time, Pathfinder is still considered the highest-quality practical router avail-

able for general field-programmable gate arrays (FPGAs). Combined with exten-

sive physical characterization of each chip and the noise reduction techniques in

Rubin [71, 72], Pathfinder routing is the current most effective solution for CSM.

Full-knowledge full-design routing of this type is not currently a practical real-world

approach, due to the prohibitive time cost of comprehensive characterization (hours

to weeks) and individualized CAD (hours to days) for each chip, as well as the cost

of storing large amounts of per-chip data. However, the difference between oblivious

loading (DFVS) and full-knowledge full-design Pathfinder routing does provide an

excellent measure for the maximum possible utility of specializing each design for

each chip.

Figures 7.7 to 7.9 show the delay/energy improvements and extra CAD/load time

costs resulting from using full-knowledge full-design routing instead of simply knowl-

edge-based repair. For all 20 benchmarks, the median energy savings relative to

knowledge-based repair are around 12% (see Table 7.4), at a cost of approximately

1.5 orders of magnitude more load time. The switch to full-design routing accounts

for the remaining 22% of the utility of component specialization (see Table 7.5).

We can now answer the key question of this chapter: just how much of the benefit

of component specialization do we achieve using lightweight CYA? The answer is

that CYA provides about 52% of full-knowledge’s energy savings relative to oblivious

(DFVS) loading (Table 7.5), and about 83% of its savings relative to conventional

loading (Table 7.6).

155

 0

 20

 40

 60

 80

 100

 1400 1600 1800 2000 2200

Y
ie

ld
 (

%
)

Delay (ns)

Full Knowledge
Knowledge Repair
Pathfinder Selection
CYA

Figure 7.7: Delay parametric yield for CYA, Pathfinder-based alternative se-
lection, Pathfinder knowledge-based repair, and full-knowledge routing.

Experiment parameters: Vdd = 0.6V, des, 22nm technology, σVth
= 0.0364V, 20%

extra base tracks, 16 reserved tracks, 64 alternatives, VPR 5 [53], single-driver inter-
connect, 500 chips.

156

 0

 20

 40

 60

 80

 100

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Y
ie

ld
 (

%
)

Energy per Operation (pJ)

Full Knowledge
Knowledge Repair
Pathfinder Selection
CYA

Figure 7.8: Energy parametric yield for CYA, Pathfinder-based alternative se-
lection, Pathfinder knowledge-based repair, and full-knowledge routing.

Experiment parameters: energy-optimizing Vdd, des, 22nm technology, σVth
=

0.0364V, 20% extra base tracks, 16 reserved tracks, 64 alternatives, VPR 5 [53],
single-driver interconnect, 500 chips.

157

1.0

1.2

1.4

1.6

1.8

2.0

Time (s)

N
or

m
al

iz
ed

 e
ne

rg
y

10−1 100 101 102 103 104 105 106 107 108 109

CYA
Pathfinder Selection
Pathfinder Repair
Full−Knowledge

Figure 7.9: Energy vs. CAD/loading time for CYA, Pathfinder-based alternative
selection, Pathfinder knowledge-based repair, and full-knowledge routing.
Each point is the 95th percentile of normalized energy consumption amongst 20 chips,
for one of the Toronto 20 [6] benchmarks. Normalization for each chip was performed
with respect to the energy consumption achievable for that same chip using full-
knowledge routing. See [24] (graph source) for details of the timing model. The
crosshairs show the median time and energy for each alternative selection method.

Experiment parameters: 22nm technology, σVth
= 0.0364V, 20% extra base tracks, 16

reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, 20 chips.

158

Voltage (V) Energy (pJ)
name min max CDF min med max mean s.d. CDF
alu4 0.40 0.45 0.36 0.37 0.39 0.37 0.00

apex2 0.40 0.45 0.50 0.52 0.55 0.52 0.01
apex4 0.45 0.50 0.40 0.41 0.43 0.41 0.01

bigkey 0.40 0.45 0.36 0.38 0.40 0.38 0.01
clma 0.45 0.50 1.60 1.68 1.77 1.68 0.03
des 0.45 0.45 0.56 0.59 0.61 0.59 0.01

diffeq 0.45 0.50 0.12 0.13 0.14 0.13 0.00
dsip 0.35 0.40 0.48 0.50 0.53 0.50 0.01

elliptic 0.45 0.50 0.63 0.67 0.71 0.67 0.01
ex1010 0.45 0.55 2.00 2.09 2.26 2.10 0.04

ex5p 0.40 0.50 0.27 0.28 0.30 0.28 0.01
frisc 0.45 0.50 0.75 0.78 0.85 0.79 0.02

misex3 0.40 0.45 0.37 0.38 0.40 0.39 0.01
pdc 0.45 0.50 2.04 2.11 2.26 2.11 0.03

s298 0.40 0.45 0.30 0.31 0.33 0.31 0.01
s38417 0.45 0.50 0.87 0.90 0.96 0.90 0.01

s38584.1 0.40 0.45 1.12 1.16 1.22 1.16 0.01
seq 0.40 0.45 0.47 0.49 0.51 0.49 0.01

spla 0.45 0.50 1.40 1.46 1.52 1.47 0.02
tseng 0.45 0.50 0.12 0.13 0.14 0.13 0.00
Mean 0.42 0.48 0.74 0.77 0.81 0.77 0.01

Table 7.3: Statistics of minimum energy and energy-minimizing voltage for full-
knowledge, full-design routing.

Experiment parameters: 22nm technology, σVth
= 0.0364V, 20% extra base tracks, 16

reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, 500 chips.

159

7.4 CYA and the Costs and Benefits of Compo-

nent-Specific Mapping

At this point it is useful to review and summarize what this series of experiments

can teach us about the achievements and limitations of the present implementation

of CYA, particularly in terms of what we can learn about the capabilities and costs

of CSM. This will enable us to both establish the likely envelope of potential fu-

ture advances and, in Chapter 8, contemplate further directions for exploration and

development.

We begin with some summary data and visualizations. Table 7.4 shows the median

energy usage for each loading method and each design across all 500 simulated chips.

The steady energy efficiency improvements are clear as we proceed from conventional

loading, to oblivious (DFVS) loading, to CYA, through more costly CSM methods,

all the way to perfect chips.

Figure 7.10 and Table 7.5 report the degree to which CYA, Pathfinder-based alter-

native selection, and Pathfinder knowledge-based repair achieve the energy savings of-

fered by full-design full-knowledge routing relative to oblivious (DFVS) loading. This

enables us to distinguish the portion of the energy savings specifically attributable to

each component of CSM.

Figure 7.11 and Table 7.6 report a similar comparison, only now savings are mea-

sured relative to the gap between full-knowledge routing and conventional loading.

The advantage of oblivious loading/DFVS over conventional loading is also shown

in these two charts. This demonstrates the advantages offered by CSM above and

beyond the baseline utility of DFVS, which is implicitly part of all tested CSM strate-

gies.

Finally, Figure 7.12 and Table 7.7 report the degree to which each loading scheme

160

mitigates the conventional-loading energy impact of variations, relative to energy op-

timization on defect-free chips. These comparisons illustrate the degree to which con-

ventional loading is leaving energy savings on the table relative to all tested variation-

mitigation strategies. They also allow us to begin to contemplate the value of these

types of defect mitigation compared to fabrication-time defect reduction in improving

energy efficiency.

As discussed in Chapter 6, CYA achieves a 61% reduction in total energy usage,

compared to that of conventional loading (Table 6.6), and recovers about 70% of the

energy lost due to variations (Table 6.7). This accounts for 83% of the savings relative

to conventional loading that are achieved by full-knowledge routing (Table 7.6).

Focusing specifically on the benefits of mapping specialization (above and beyond

the contributions of DFVS to CYA’s success), we can examine Table 7.5 to peel away

the layers of the onion one by one. From this table, we see that CYA achieves about

half (52%) of the total benefit of CSM, switching to “smarter” alternative selection

grants another 12% improvement, and removing the limits on alternatives saves yet

another 14%. This leaves only 22% of the benefits of CSM that we miss out on by

not doing unfettered full-knowledge routing of the entire design.

161

Conv Obliv CYA Pathfinder Knowledge Full Nomname Selection Repair Knowledge
alu4 1.30 0.70 0.53 0.49 0.44 0.37 0.20

apex2 1.80 1.00 0.77 0.71 0.63 0.52 0.28
apex4 1.50 0.81 0.61 0.58 0.51 0.41 0.21

bigkey 1.30 0.74 0.54 0.51 0.44 0.38 0.20
clma 7.20 3.50 2.50 2.30 2.10 1.70 0.73
des 2.00 1.00 0.76 0.70 0.65 0.59 0.30

diffeq 0.51 0.27 0.20 0.18 0.16 0.13 0.07
dsip 1.80 1.00 0.74 0.69 0.59 0.50 0.27

elliptic 2.80 1.30 0.96 0.86 0.80 0.67 0.30
ex1010 8.60 4.20 3.20 3.00 2.70 2.10 0.93

ex5p 0.96 0.53 0.39 0.37 0.33 0.28 0.15
frisc 3.80 1.70 1.30 1.10 0.99 0.78 0.32

misex3 1.40 0.74 0.56 0.52 0.46 0.38 0.21
pdc 8.10 4.20 3.20 2.90 2.70 2.10 0.98

s298 1.20 0.61 0.46 0.44 0.39 0.31 0.18
s38417 3.40 1.90 1.50 1.30 1.10 0.90 0.48

s38584.1 4.00 2.20 1.60 1.50 1.40 1.20 0.62
seq 1.70 0.93 0.71 0.65 0.60 0.49 0.26

spla 5.80 2.90 2.10 2.00 1.80 1.50 0.76
tseng 0.49 0.25 0.19 0.17 0.16 0.13 0.07
Mean 2.98 1.53 1.14 1.05 0.95 0.77 0.38

Table 7.4: Median energy usage (in pJ) of each of the Toronto 20 designs with σVth
=

0.0364V under conventional loading, oblivious loading (DFVS), CYA, Pathfinder-
based alternative selection, Pathfinder knowledge-based repair, and full-knowledge
routing, compared with optimized energy usage on nominal chips.

Note that the smaller sample size of the experiments in this chapter (due to the high
computational costs of full-knowledge routing) means that the conventional, oblivious,
and CYA results in this table are slightly different from those reported in Tables 6.3
to 6.5.

Experiment parameters: 22nm technology, 20% extra base tracks, 16 reserved tracks,
64 alternatives, VPR 5 [53], single-driver interconnect, 500 chips.

162

● ● ●●●●● ● ●●

●●

●●● ●●●

● ●● ● ●●● ●●●●● ●● ●

●● ●●● ●● ● ●● ●●●●● ● ●

●●●● ● ●●●

● ●●● ●● ●● ●● ●●●● ●●● ●● ●●●

● ●● ●● ●●● ● ● ●● ●● ●●●● ●● ●

●● ●● ●● ●●●●● ●● ●●●●

● ●●● ●●● ●●● ●

●● ●●

● ● ●● ● ●● ●● ● ●●● ●● ●●

● ●● ●●●

●● ●●● ● ●●● ● ●●● ●●● ●●● ● ● ●

●●●●●●● ●●● ●●●

●● ●●● ●●●●●●●●●●●●●

●●● ●● ● ●●

● ●●●● ●●

● ●● ●● ● ● ●●●● ●● ●●● ●

●●● ●●●● ● ● ●●● ●● ●●● ●●●●tseng

spla

seq

s38584.1

s38417

s298

pdc

misex3

frisc

ex5p

ex1010

elliptic

dsip

diffeq

des

clma

bigkey

apex4

apex2

alu4

0 20 40 60 80 100

Relative Utility (%)

● ●●●● ● ●

●● ●●

● ●●

●●●● ●

●

●●● ●●● ● ●●● ● ●● ● ●●●●

●● ●● ●●

● ●●● ● ●● ●● ● ●● ●

● ●● ● ●● ● ●●●●● ●● ●

● ●● ●● ●● ●● ●●

●● ●●● ● ●

●●● ●● ●● ●●● ●

●● ●

●●●●● ● ●●●●

●●●● ● ● ●

● ●

● ●● ●● ●●● ●● ●●●

●● ● ●●

●● ●● ●

● ●● ●● ●●● ● ● ●● ●● ●● ●●● ●● ●

● ● ●● ●● ●

● ●●●●

●● ●● ● ●●●● ●● ●● ●●

●● ●● ●

● ●●

● ● ●● ●● ●●●● ● ●●●● ● ●●

●● ●●●● ●●●

● ●●● ● ●● ● ● ● ●● ●

●● ● ●●

● ● ●● ●●

●●

● ● ●● ●● ●● ● ●●●● ●●

●●● ●

● ● ● ●●

● ●● ●●●

●● ●●● ●● ●

● ●●● ●● ● ●●●●●● ● ●

●

● ●● ● ●

●●● ●●● ●●● ●●●● ●●●● ●● ●● ●

●● ●● ●

● ●

●● ●● ●● ●●●●●●●●●●●●●

●● ● ●●●●

●● ●● ●

●● ●● ● ●

●●

●

● ●●● ●

● ● ●● ●

● ●

●●● ●● ●● ●● ● ●● ●● ●●● ●

●●●●

●● ●●

●● ● ●●● ● ●●

● ● ● ●● ●● ●● ●

● ● ●●●

CYA
Pathfinder Selection
Knowledge Repair

Figure 7.10: Percentage energy savings relative to the gap between full-design full-
knowledge routing and oblivious loading (DFVS). For each benchmark, the
box-and-whisker and outliers are shown for CYA, Pathfinder-based alternative selec-
tion, and Pathfinder knowledge-based repair. This graph shows that CYA achieves a
substantial portion of the benefits available to more costly CSM techniques. Table 7.5
records the median energy savings for each loading method.

Experiment parameters: 22nm technology, σVth
= 0.0364V, 20% extra base tracks, 16

reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, 500 chips.

163

Oblivious CYA Pathfinder Knowledge Full
name Selection Repair Knowledge
alu4 0 52 64 80 100

apex2 0 50 62 76 100
apex4 0 50 59 76 100

bigkey 0 56 63 84 100
clma 0 54 66 78 100
des 0 63 76 88 100

diffeq 0 51 65 78 100
dsip 0 53 62 82 100

elliptic 0 53 70 80 100
ex1010 0 51 59 73 100

ex5p 0 55 65 81 100
frisc 0 48 65 79 100

misex3 0 51 63 78 100
pdc 0 48 60 73 100

s298 0 48 59 74 100
s38417 0 43 58 76 100

s38584.1 0 54 65 79 100
seq 0 52 63 76 100

spla 0 52 63 74 100
tseng 0 55 69 80 100
Mean 0 52 64 78 100

Table 7.5: Median percentage energy savings relative to the gap between full-design
full-knowledge routing and oblivious loading (DFVS). These data show that
CYA achieves a substantial portion of the benefits available to more costly CSM
techniques. A graphical representation of the full distributions is shown in Figure 7.10.

Experiment parameters: 22nm technology, σVth
= 0.0364V, 20% extra base tracks, 16

reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, 500 chips.

164

●●● ●● ●● ● ●●●● ●●● ● ●●●●● ● ●● ●●● ● ●●● ●● ● ●● ● ●●● ●● ● ●● ●●●●● ●● ●●● ●● ●● ●● ●● ● ●●● ●●●● ●●●

●●● ●●●● ●● ● ●●● ●●●● ●● ●● ●●● ●●● ● ●●●● ●●● ● ●●●●●●● ● ●● ●●●●●

●● ● ●●●● ●● ● ●● ●● ●● ● ● ●●●● ●●

● ●●● ●● ●●● ● ●● ●●● ●● ●●●● ●●●●

● ●● ●●●●● ●●● ●●● ●●●● ●●● ● ●●●● ● ●●● ●●● ●●●● ●

● ●●● ●●● ●●●● ●●●● ●● ●● ●● ●●● ●● ●●●● ● ●●● ●●● ●● ●●

●●● ●● ●●●● ●● ●● ●● ●●●● ●●●● ●● ●

●● ● ●● ●●●● ●●●● ●●

●●●●●● ●● ●●●●●● ●●● ●●●● ● ●● ●●●●●●● ●●●●●● ●● ●●●●

● ●●●●●●● ●●●●●●●●●●●●● ●●●●●● ●● ● ●● ●●●●● ●●●● ●●● ● ● ●●●●● ●●● ● ●●● ●●●●●● ●●●●● ● ● ● ●●●●●● ● ●● ●●● ●●

● ● ●●● ●● ●●● ●●●● ● ●●● ●● ●● ● ● ●●● ●●● ●● ●● ●●●● ●●● ● ●●●● ●● ●●● ●● ●●● ●●●●● ●● ●●● ●● ● ● ●●●

● ●● ● ●● ●●● ●●● ●●

●● ●● ●●● ●● ●●●● ●●● ●● ●● ● ●● ●●●●●●● ●●●● ● ●●●● ●●●● ●● ●● ●●

● ● ●● ●●●● ●●● ●●●● ●● ●● ●●●●●● ●●●●● ●●● ●●● ●●● ●●●●

● ●● ●● ●●● ●●● ●●●● ● ●●● ●●● ●●

● ●●● ● ●● ●●● ●●● ●

●●● ●●● ●●●● ●● ●● ●● ●● ● ●●● ●●●●● ●●● ●●●● ●●●●● ●●●● ●●●●● ●● ●●●●

●● ●●● ●●●●● ●● ●●●● ●● ●●● ●● ● ●●● ●●● ●●●●● ●●●●●● ●● ●●●●●●

● ● ●●● ●● ● ●●●●●●●● ●●●● ●●● ●●●●● ●● ● ●●●●●●●●● ●●●● ●● ● ●● ●● ●●● ●● ● ●●●● ●● ●●●●●● ●●●● ●●

●● ●●● ●●●●●●●● ●●● ●●● ● ●● ●● ●● ● ● ●●● ●●●● ● ●● ●● ●●● ●tseng

spla

seq

s38584.1

s38417

s298

pdc

misex3

frisc

ex5p

ex1010

elliptic

dsip

diffeq

des

clma

bigkey

apex4

apex2

alu4

0 20 40 60 80 100

Relative Utility (%)

●● ●● ●●●●● ●● ● ●●● ● ●●●● ●● ● ●● ● ●

●● ●●

●●● ●

● ●

●● ● ●● ●●● ● ●●● ●● ● ●● ●●

●● ●● ● ●● ●●

●●●●

●● ● ●●●● ●● ● ●● ● ●● ● ● ●● ●● ●

● ●● ●●● ●●● ● ● ●● ●● ● ●●●●●● ●● ● ●

●●● ●●●●●● ●● ●

●●●

●● ● ●● ● ●●●● ●●●●

●● ●●● ●●●● ● ● ●● ●

●● ●● ●●

●● ●●● ● ● ●

● ●● ●● ● ●●●● ●●● ●●

●● ● ●● ● ●● ●● ●●● ● ●●●● ●● ●●● ●●● ●

●● ●●●●

● ●● ● ●●●●● ●● ●● ●●● ●●●

●● ●●●● ● ● ● ●●

●●●● ●●

●

●● ●●●● ●● ●●●●● ●

●● ●●●● ● ●● ●●●● ●●● ●●● ●●●

●●● ●● ●● ● ●● ●●

● ●

● ●● ● ●● ● ●●●● ●●●● ●● ●

●● ● ●● ●● ● ●●● ●● ● ●● ● ●●●

● ●●● ●● ●● ●●

●● ●●● ●● ●●●● ●● ●● ●

●● ● ●●●● ●● ●● ● ● ●● ●●● ●●● ● ●●●● ●●● ●●●● ● ●●

●●●● ●● ●● ●● ● ●●●

●●● ●●●● ●●

●●●●●

●● ●●● ●● ●●● ●● ● ●●●● ●● ●●● ● ●●● ●

●● ●●●● ●● ● ●●●●●● ●● ● ●●

●

●●●● ●● ●●● ●●

● ●●● ● ●● ● ●● ● ●

●●● ●●● ● ●●●●

● ●●● ●●

●●●●

●●● ● ●● ●● ●● ●●● ●● ●● ●● ●

●●● ●● ●●● ●●

●●●●

●● ●

●● ● ●●●● ●● ● ● ●● ●●● ● ●●● ●●● ●●

●● ●●● ●● ● ●●●

● ●● ●●●●●

●

●●● ●● ●●●● ●●●

●● ● ●● ●●● ● ●● ● ● ●● ●● ●●

● ●●●● ●

● ●●● ●

● ●● ● ● ●●● ●●● ●●●● ● ●●● ●●●● ●●

●● ● ●● ●●● ● ●● ●● ●● ●● ●●● ● ●● ●

●● ●● ●●● ●●● ●● ●

● ●● ●

● ●● ●●●● ● ●● ●●● ●●● ●●

● ● ●● ● ●●●●● ●●● ● ●● ●● ● ●● ●

● ●● ●● ●● ●● ●●●● ●●

● ●

● ●● ● ● ● ●● ●● ● ●●● ●● ●

●●● ●● ●● ●●● ●

● ●● ● ●●● ●●

●● ●●● ●● ●● ● ●●● ●● ● ● ●●

● ● ●● ●● ● ●● ●●● ● ● ●●●

●●●●

●●● ●● ●●●

● ●●● ●● ●●● ●● ● ●●

●●● ●●●●● ● ●● ●●● ● ●● ●●●

●● ● ● ●●●●● ●●

●●●

●● ●● ● ●●● ●●● ●● ●●●● ● ● ●●●● ●● ●● ●● ●

●● ●● ●●●● ●● ●● ●●

●● ●●●● ●●

●●

Oblivious
CYA
Pathfinder Selection
Knowledge Repair

Figure 7.11: Percentage energy savings relative to the gap between full-knowledge
routing and conventional loading. For each benchmark, the box-and-whisker and
outliers are shown for oblivious loading (DFVS), CYA, Pathfinder-based alternative
selection, and Pathfinder knowledge-based repair. This graph highlights the portion
of each technique’s energy savings that are directly attributable to mapping special-
ization, above and beyond the benefits of DFVS. Table 7.6 records the median energy
savings for each loading method.

Experiment parameters: 22nm technology, σVth
= 0.0364V, 20% extra base tracks, 16

reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, 500 chips.

165

Oblivious CYA Pathfinder Knowledge Full
name Selection Repair Knowledge
alu4 64 83 87 93 100

apex2 62 81 85 91 100
apex4 62 81 85 91 100

bigkey 62 83 86 94 100
clma 68 85 89 93 100
des 68 88 92 96 100

diffeq 63 82 87 92 100
dsip 60 82 85 93 100

elliptic 70 86 91 94 100
ex1010 68 84 86 91 100

ex5p 64 84 87 93 100
frisc 68 84 89 93 100

misex3 65 83 87 92 100
pdc 65 82 86 90 100

s298 65 82 86 91 100
s38417 61 78 84 91 100

s38584.1 64 83 87 92 100
seq 64 82 87 91 100

spla 67 84 88 91 100
tseng 66 84 89 93 100
Mean 65 83 87 92 100

Table 7.6: Median percentage energy savings relative to the gap between full-knowl-
edge routing and conventional loading. These data highlight the portion of each
technique’s energy savings that are attributable to mapping specialization, above and
beyond the benefits of DFVS. A graphical representation of the full distributions is
shown in Figure 7.11.

Experiment parameters: 22nm technology, σVth
= 0.0364V, 20% extra base tracks, 16

reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, 500 chips.

166

●● ●●● ●● ● ●●●● ●● ●●●● ●●● ●● ● ●●● ●● ●●● ●● ●●●●●● ● ● ●●● ●●●●● ●● ●●●● ●● ●● ●● ● ●●● ●●●●●● ●●●●●● ●● ●● ●●●● ● ●● ●● ●● ●●● ●● ●● ●●● ●●●● ● ●● ●● ● ●●● ● ●●● ● ●● ●● ●●●● ●●●●● ●●● ●● ● ●●●●● ● ●●●● ● ●●● ● ●●●● ●● ● ●● ●● ● ●● ●● ● ●● ● ●● ●● ● ● ●●●● ●● ●● ● ●●● ●●● ●● ●●●●●● ●

●● ● ● ●● ●● ●● ● ● ●●● ●●● ●● ● ●● ●●● ●●● ●● ●●● ●● ● ●● ●● ●●●●● ●●●● ●● ● ●●●● ●●● ● ●●●● ●● ● ●● ●● ● ●●● ●●●● ● ● ●●● ● ●● ●● ●●●●● ● ●● ●●● ●●● ● ●● ●●● ●●● ●● ●● ●●●●●● ●●● ●● ● ●●● ●●● ●● ●●● ● ●● ●● ● ●● ●●●● ● ●● ● ●●● ●●●●● ● ●● ●● ●● ●● ●●●● ● ●●● ●● ●●● ●● ●●● ●● ●●● ●●● ●● ●● ●●●●●● ●●●●● ●● ● ●●●●●● ● ● ●

● ●●●●●●●●● ●●●●●● ● ● ●● ●●●●●● ● ●● ●● ●●● ●●●●● ●●● ●● ●●●● ●●●●●●● ●● ●● ●●● ●●●● ● ●● ●● ●●● ●●●● ●●●● ●● ●●● ● ● ●● ● ●●● ●● ● ●●●●●●● ● ●●●●● ●●●●●●●●● ●● ●●● ●● ●●● ●●● ● ●●●● ● ●● ●● ●●●●●● ●●● ●●●●●● ●●● ●●●● ●●●●● ●● ● ●● ●● ●●● ●● ●●● ● ●● ● ●●●● ● ● ●●●● ●● ●● ●●● ● ●● ●●●●● ●●●● ●●●● ●● ●●●●● ●●● ● ●●●● ●●● ●

● ●●● ●● ● ●● ● ●● ●●● ●●● ●●● ●●● ● ●●●● ● ●● ● ●● ●● ●●● ●● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●● ●● ●● ● ●●● ● ●● ●●● ●●●● ● ●●●●● ●● ●●● ●● ● ●● ● ● ●●●● ●●● ●● ●

●● ●●● ●● ●●●●● ●● ● ● ●● ●● ●● ●●● ●● ●●● ●●● ●●● ●●●● ● ● ●●● ●● ●● ●● ●● ●● ●●● ●● ● ●●●●●●●●● ●●●● ● ●● ●●● ●● ●●●●●● ●● ●● ●● ●●● ●●● ●●● ● ●●● ● ● ●●● ●●● ● ●● ●●●● ●● ● ●● ● ●● ● ●●● ●●● ●● ● ●● ●●● ● ●●● ●●● ● ●●● ●● ●●●●● ●●●●● ●● ●● ● ●●● ●● ● ● ●● ●● ●●● ●● ●● ●● ● ●●● ● ●● ●●●● ●●● ● ● ●● ● ●● ●●●● ● ●●●● ●●● ●● ●●●●●●● ●● ●● ● ●●● ●●●●● ●● ●●● ●●● ● ●●● ●● ● ●● ●● ●●●● ●● ●●

●●●●●●● ●● ● ● ● ● ●● ● ●●●● ● ●● ●●●● ●●● ●●● ●●● ●●●●● ●● ●● ●●●●●● ●● ●● ●● ● ●●●● ●● ●●●● ●●●● ●● ●●● ●●● ●● ●● ●● ●● ●● ● ●●● ● ●● ●● ●● ●● ●●● ● ●● ●●●●● ●● ●● ●● ●● ●●●●● ●●● ● ●● ●●●●● ● ●●● ●● ●●● ●●● ●●● ● ●● ●● ●● ●● ●●● ●●●● ●●● ● ●● ●● ●● ●● ● ●● ● ●● ●●●●● ● ●● ● ●● ●● ●● ●● ●● ●● ● ●●● ●●● ●● ●●●● ●● ● ●● ●● ●●● ●● ● ●●● ● ● ●●● ●● ●● ●●●●● ●●● ●●● ● ●●● ●●● ●● ●● ● ●● ●● ● ●● ● ●●● ●●● ● ●● ●●● ●●● ●●● ●●● ●●● ● ● ● ●● ●● ●● ● ●●●●●● ●● ●●● ●● ● ●● ●●● ●●●●● ●●●● ● ●●● ● ● ●● ●●●●● ●● ● ●● ●● ●●●● ●●● ● ●● ●● ● ●● ●●●● ● ●●●

●●● ●●● ●●● ●●● ●●● ●● ●● ●●● ●● ● ●● ● ●● ●●● ●●● ●●● ●●● ●●● ● ●● ● ●●● ●●●● ●● ●● ●● ●● ●●● ●●● ●● ●● ● ●●● ●● ●● ● ●●●● ●●●● ● ●●●●● ● ●●● ●●●●● ● ● ●●●●●● ●● ●●● ●● ●● ●●●● ●● ● ●● ●●●●● ● ●●● ● ●● ● ●●● ●● ●● ●● ●●●● ●● ● ●● ●●

●● ●● ●●●●● ●● ● ●●● ● ●● ●● ● ●●● ●● ●●●● ●●●●● ● ●● ●● ● ●● ● ●● ●●● ●● ●● ●●● ● ●● ●● ●● ● ●● ●● ●●● ● ●●●● ●●●●● ●●● ●●●●● ●●● ●●●●●● ●●● ●●● ●●●●●● ●●●● ● ●

●● ● ●● ●● ●●● ●●●●●● ●● ● ●●● ●●●●● ● ●●●● ● ●●● ●●●●●●● ●● ●● ●● ● ● ●●● ● ●●●● ●●● ●●● ● ●●●●● ●●● ●●● ●●●● ●● ●● ● ●● ●●●●● ● ●● ●●●●● ●●● ●● ●● ●● ●● ●● ●● ●●●●●●● ●● ●●● ●●● ● ●●●● ● ●● ● ●●● ●●●●●● ●●●● ●●● ● ●● ●●●● ● ●● ●●●●●●●●●● ● ●● ●●●● ●●●● ●●●●● ●● ● ●● ●●● ●● ●● ● ●● ●●●● ● ●●● ●●

●● ●● ●●●● ●●● ●●● ●●● ●● ● ●● ● ●●●● ●●●● ●●● ●● ●●●● ●●● ●●● ●●● ●●● ●●● ●●●● ●●●● ●●●● ●●● ●●●● ● ●● ● ●●●● ●● ●● ●● ●● ●●● ●● ●● ● ●●●● ●●●● ●● ●●● ● ●●● ●● ●●●● ●●●● ●●●●●● ● ●● ●●●●● ● ●●● ●● ● ●●●●● ● ●● ● ●●●●●●●●●●● ●●● ●●●●●● ●●● ●●● ●●●● ●● ● ●● ●●●● ●● ●●●● ●● ● ●●● ● ●●●● ●● ●● ●● ●●● ●●● ● ●●●● ●●●● ● ●● ●● ●●● ● ●●●●● ●● ●● ●● ●●● ● ●● ●●● ●●●● ● ●●● ● ●●● ●●● ●●● ●●● ●● ●● ● ●●● ●● ●● ●● ●●● ● ●● ●● ● ●●●

●● ● ●●●● ● ●● ●●● ●● ●●●● ●● ●● ●●●● ●●●●●●● ●● ●● ●● ●● ●●● ● ●● ●● ●●● ●● ●● ●●● ● ●●● ● ●● ● ●● ●●● ●●●● ●●● ● ●●●●●● ●●●●● ●●● ●●● ●●● ●● ●● ●● ●●● ● ●●● ●●● ●●● ●● ● ●● ●● ● ●● ●●● ●● ● ●● ●●● ● ●●● ●● ●● ●● ● ●●● ●●●● ●●● ●● ●●●● ●● ●● ●● ●●● ●● ●●● ●● ●● ●●● ● ●●● ●●●● ●●●● ● ●● ●●●● ●●● ●● ●● ● ●● ●● ●● ●● ●●●●●● ●● ●● ● ●●● ●● ●●● ●●● ●●●●●● ●●● ● ●● ●● ●● ●● ●●●● ●● ●● ●●● ●●●●● ●●● ●● ●●●

●● ●●●●●● ●● ●●● ●● ●● ● ●●● ●● ●● ●● ● ●● ● ● ●● ●●● ●●● ●●● ●●● ●● ● ●●●● ●● ● ●● ●●●●● ●● ●●● ●●●●●● ●●● ●●● ● ●●●●●

● ● ●● ●●● ●●● ●●●● ●● ●● ● ●●● ●●●● ● ●●● ● ●●● ●● ●●●●●●● ●● ●● ● ●●●●●● ●● ●● ● ●● ●● ● ● ●● ●● ●● ●●● ●●●● ●●●●● ● ●● ●● ● ●● ●● ●● ●●●● ●●●● ● ●●● ● ●● ●●● ●●● ●●● ● ● ●● ● ●●●●●● ●●● ●●● ● ●● ●● ● ● ●●●●●● ●● ●●● ●● ●●●● ●● ●●● ●●●● ●● ●● ● ●● ● ●● ●●● ●●● ● ●●● ●●● ● ●● ●● ● ● ●● ●● ●● ●●●●● ●●● ● ●●

●●●● ● ●●● ●● ●● ●●●●● ●●● ●●● ● ●●● ●● ●● ● ●●●● ●●● ●● ● ●●● ●●● ●● ●● ●● ●●● ● ●● ● ●●● ●●● ●●● ● ●● ● ●● ● ●●● ●●● ●●● ● ● ●● ●●● ●●● ●●●● ●● ●● ● ●●● ●●● ●● ●● ● ●● ●●● ● ●●● ●● ●●● ●●● ●●●●● ●● ●● ● ●●●● ●●● ●● ●●●● ●●●● ●● ●●● ●●●●● ●●●● ●● ●●●● ●● ●● ●●● ●● ●● ●●● ●●

●● ●●●●● ●●● ●● ●●● ●● ●●● ● ●●●● ●●● ●● ● ●● ● ●●●● ●●●●● ● ● ●●● ●● ●●●● ● ● ●●●● ● ●● ●●●●●●●● ●●● ●●●● ● ●●●●● ●●●● ● ●●● ●● ●● ● ●● ●●● ●●● ●●●● ●●● ●● ●● ●●● ●●● ●●●●● ●●●●● ●●●● ●●●● ●●● ● ●●● ● ● ●●●● ●● ●● ● ●● ●● ●●

●● ●●●●●●●● ●● ● ●●●●● ●●● ●●● ●● ●● ●● ●●● ●● ●● ●●●●● ●● ●●●●● ● ●● ●●● ●●● ●● ●

●●● ●● ●● ●●●● ● ●● ●● ●● ● ●● ●●● ● ●●●● ●●● ●● ●●● ●● ●●● ●● ●● ● ●●● ●● ●●● ● ●● ●● ● ●●● ●●●● ● ●● ●●● ●●●● ● ●● ●● ●●● ●●● ●●● ●● ●● ●●● ● ●● ● ●●●●●●● ●● ● ●● ●● ●● ●● ● ●●● ●● ●● ● ● ●● ●● ●●● ●●●● ●● ● ●●●● ●●●●●● ●● ●●● ●● ●● ●● ●● ●●● ●●●● ● ●●● ●● ●●● ● ●● ● ●● ●● ●●●● ●●● ●● ●● ●● ●● ●● ●●● ●●● ● ●●● ● ●●●●● ● ●●● ●● ●●●●● ●●●●● ●● ●● ●● ●●● ●

●● ●●● ●● ●● ● ●● ●●●●● ●● ●●● ●● ● ● ● ●● ●●● ●●●●● ●● ●●● ●● ● ●●● ●●●● ●● ●● ●●● ●●●● ●●●●● ●● ●●●● ● ●●● ●●● ● ●● ●● ●●● ●● ● ●●● ●● ●● ● ●●●●● ●● ● ● ●●● ●●● ● ● ●● ● ● ●●●● ●●● ●●●●● ●● ● ●●●● ●●●● ●●●● ●● ●● ●● ●●● ●● ●● ●● ●●● ●●● ● ●●● ●●● ●●●● ●● ●●● ● ●●● ●● ●●●● ●● ●● ● ●● ●●● ●● ● ●●● ●● ●● ●● ●● ●● ● ●●●● ● ●● ●● ●●● ● ● ●● ●●●● ● ●● ●●● ●●● ●●● ●● ●●● ●● ●●●●● ● ●●● ●● ●● ●● ●●●● ● ●●●● ●●● ●●● ●● ●●● ●●●● ●●●● ●● ● ●

● ● ●●● ●● ●●● ●● ●● ●● ●● ●●●● ●●●●● ● ●●● ●● ● ● ●●●●●● ●● ●●● ●●● ●●●●● ● ●●●●●● ●● ●●● ● ●● ●● ● ●● ●●●● ●●● ●● ● ●● ●●●● ● ● ●● ●●●● ●● ● ● ●●●●● ● ● ●● ●● ●● ●● ●●●●●● ●●● ●● ●●● ●● ●● ●● ●●●●● ●● ●● ● ●●● ●●●● ●●● ● ● ●● ● ●●●● ●●●●●●●● ●● ●●● ●● ●●●● ●● ●●● ● ●● ●● ● ●●●● ●● ●● ●●● ●● ● ●●●●● ● ●●● ● ●●●● ●●●● ●● ●●●● ●●● ●●● ●●● ●● ●●● ●● ● ●●●● ● ●●● ●● ●●● ●● ●●●●●● ●●● ●● ●●● ●●●●●●●● ● ●● ●● ●●● ●● ● ●● ●● ●● ●● ●● ●●● ●●●● ●●● ●●● ●●●● ●● ●● ● ●

●● ● ● ●●●●● ●● ●●●●● ●● ● ●●●● ●● ●●●● ●● ●●●●● ● ●●● ● ●● ●● ●● ●●● ●●● ● ●●● ●●●● ●●●● ●● ●●●●●● ●●●● ●●● ●●● ●●● ●● ● ●●● ● ●● ●● ● ●● ●● ●● ●● ● ●●●● ●● ● ●●●●●● ●●●● ●● ● ●● ●●●● ●●● ●●● ● ●●●●●●●●● ●● ● ●●●● ● ● ● ●●● ●●●● ●●●●●● ● ●●● ●● ●●● ● ●●● ●● ● ●● ●●● ●●● ● ●● ●●●● ●●● ●●● ●● ● ●●●● ●● ● ●●● ●●● ●●●● ●● ●tseng

spla

seq

s38584.1

s38417

s298

pdc

misex3

frisc

ex5p

ex1010

elliptic

dsip

diffeq

des

clma

bigkey

apex4

apex2

alu4

0 20 40 60 80

Variations Mitigated (%)

●● ●● ●●●●● ●● ● ●●● ● ●●●● ●● ● ●● ● ●

● ●● ●

●●●

●●

●● ●● ●● ● ●●

●● ● ●● ●●● ●● ●●● ● ●● ● ●● ●●

●●●● ●●● ● ●●

● ●● ●●

●● ●● ●● ●●●●● ● ●● ●●

●● ● ●●●● ●● ● ●● ● ●● ● ● ● ●● ●

●● ●●● ●● ● ●●● ●● ● ●● ●●●● ●● ● ●

●●●●● ●

●●●

●●● ●●● ● ●●● ●

●● ● ●● ● ●●● ●●● ●●●●

●● ●● ●● ●●●● ● ● ●● ●

●●● ●● ●

●●●● ●● ●●● ●● ●●

●●●

● ●● ●● ● ●●●● ●●● ●●

●● ● ●● ● ●● ●● ●● ●● ●●● ●●● ●● ●●● ●●● ●

●

●● ●●

●● ●●●

● ●● ● ●● ●●●● ●● ●● ●●● ●●● ●

●●● ●●●● ● ● ●●

●● ●●●●●●●

● ●

● ●● ●

● ●●●● ●● ●●●●● ●

●● ●●● ●●●● ●● ●●● ● ●●

●● ●● ●● ● ●●

●

●●●●●●

●● ● ●● ●●●● ●●●● ●● ●

●● ●●● ●● ● ●● ● ●● ● ●● ●●●●

● ●●●● ●●● ●●

●●●●● ●● ●● ●●

●●●●● ●●

●● ● ●●●● ●●● ●● ● ● ●● ●● ●● ●● ●● ● ●●●● ● ●● ●●●● ●● ●●

●●● ● ●● ●● ●●● ●

●● ●●●

●● ●●●●

●●● ●●

●● ●●● ●● ●●● ●● ●●●● ●●●● ● ●●● ●

●● ●● ●● ● ●● ● ●● ●●● ●● ● ● ●

●

● ●●●●●● ●●

●●●●● ●●●

● ●●● ● ●● ● ●● ● ●

●●●● ●●● ● ●● ●●

●●●●● ●

●●●●● ●

●●●●

●●● ● ●● ●● ●● ●●● ●● ●● ●● ●

●●● ●● ● ●●● ●●

●●●●

●● ● ●●●

●●● ●●●

●● ● ●●●● ●● ● ● ● ●●● ● ●●● ●●● ●●

●● ●●● ●●● ● ●●●●

● ●●●●

●●●●●●● ●● ●●●●

● ●●● ●● ●●●● ●●●

●● ● ●●●●●● ●● ● ● ●● ●● ●●

●●●●●●

●● ●●●

●●● ●● ●●

● ●● ●● ●●● ● ●● ●●●● ● ●●● ● ●●●● ●●

● ●●● ●● ●●● ● ●● ●● ●● ●● ●●● ● ●● ●

●●● ● ●●●● ●●●● ●

● ●●●● ●

●●● ●●

● ●● ● ●●●● ● ●● ●●● ●●● ●●

● ● ● ●● ●●●●● ●●●● ● ●●● ● ●● ●

● ●● ●● ●●●●● ●●●● ●●●

●●

●●● ●●

● ●● ● ● ● ●● ●● ● ●●● ●● ●

●● ●● ●● ●● ● ●●● ●

● ●● ● ●●● ●●

●●●●●●

●● ●● ●● ●● ● ●●● ●● ● ● ●●

● ● ●●● ● ●● ●●● ●● ●● ●● ●

●●● ●●

●●● ●●●● ●

● ●●● ●● ●●● ●● ● ●

●● ●● ● ●●●● ● ●●●

●● ● ●●●●● ●●

●●●●

●

●●● ●● ● ●●● ●●● ●● ●●●● ● ● ●●● ●●● ● ●● ●●● ●

●●● ●● ●● ●● ● ●● ●● ●

●●● ●●●

●●

●● ●●

Oblivious
CYA
Pathfinder Selection
Knowledge Repair
Full Knowledge

Figure 7.12: Percentage energy savings relative to the gap between nominal chips
and conventional loading with variations. For each benchmark, the box-and-
whisker and outliers are shown for oblivious loading (DFVS), CYA, Pathfinder-based
alternative selection, Pathfinder knowledge-based repair, and full-knowledge routing.
These comparisons illustrate that a significant portion of the energy lost to variations
that can be recovered using relatively lightweight variation-mitigation strategies. Ta-
ble 7.7 records the median energy savings for each loading method.

Experiment parameters: 22nm technology, σVth
= 0.0364V, 20% extra base tracks, 16

reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, 500 chips.

167

Oblivious CYA Pathfinder Knowledge Full
name Selection Repair Knowledge
alu4 54 70 74 78 84

apex2 53 69 72 77 85
apex4 52 68 71 76 84

bigkey 52 69 72 79 84
clma 58 72 76 79 85
des 57 73 77 80 83

diffeq 54 70 74 78 86
dsip 51 69 72 78 84

elliptic 59 73 77 80 85
ex1010 57 71 73 77 85

ex5p 53 70 73 77 83
frisc 59 72 77 81 87

misex3 55 71 74 79 86
pdc 55 69 72 76 84

s298 56 71 74 78 86
s38417 52 67 72 78 86

s38584.1 54 70 73 78 84
seq 54 70 74 77 85

spla 57 73 75 79 86
tseng 56 72 76 80 86
Mean 55 70 74 78 85

Table 7.7: Median percentage energy savings relative to the gap between nominal
chips and conventional loading with variations. These comparisons illustrate
that a significant portion of the energy lost to variations that can be recovered using
relatively lightweight variation-mitigation strategies. A graphical representation of
the full distributions is shown in Figure 7.12.

Experiment parameters: 22nm technology, σVth
= 0.0364V, 20% extra base tracks, 16

reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, 500 chips.

168

Chapter 8

Conclusions and Future Prospects

Choose-Your-own-Adventure (CYA) is a powerful and practical tool for mitigation of

defects and variations in field-programmable gate arrays (FPGAs).

With computer-aided design (CAD) overheads that are a function of the design

rather than of the number of chips to be programmed, and with a load-time overhead

of seconds, CYA is able to reliably produce working mappings for arbitrary designs

on chips with hard-defect densities of up to 81 defects/cm2, and maintains 95% yields

up to 2400 defects/cm2 (22nm technology, Toronto 20 benchmarks [6], Section 4.7.7).

Moreover, many of the mapping failures at this defect rate are likely addressable in

future work by minor improvements to CYA (permuting LUT inputs and outputs,

allowing logic to move across CLBs, etc.), complementary solutions (such as [46]),

and lightweight testing methodologies to detect and reject those chips with the most

severe defect clusters at the factory.

In the presence of parametric defects (variations), CYA reduces energy costs by

approximately 61% compared to conventional loading (22nm technology, Toronto 20

benchmarks). This amounts to a recovery of 70% of the energy lost to variations

(see Chapter 6). Moreover, despite its low overhead, CYA attains half (52%) of the

169

energy savings offered by the most extreme (and impractically expensive) form of com-

ponent-specific mapping (CSM), full-design full-knowledge routing (see Chapter 7).

These advantages are likely to increase even further with the use of higher-variation

technologies.

These benefits mean that CYA, even without any further improvements, has the

ability to address many important current challenges. Low-overhead CSM opens up

the possibility of using high-variation technologies and architectures that would oth-

erwise be impractical or impossible to deploy, such as smaller feature scales and nano-

PLAs, and of using more cheaply-fabricated (i.e., higher-defect/higher-variation) ver-

sions of existing technologies. Moreover, CYA has already inspired and serves as the

foundation for effective methodologies for repair of aging-induced variation (COS-

MIC TRIP [22]) and for quick FPGA loading with incremental online optimization

(DRAGON [24]).8

In addition to these possible applications for CYA in its current form, there are

several interesting research areas for further development, to increase its effectiveness

for these and other purposes. More sophisticated slack budgeting tools or moving from

two-point net to long-path slack timing could offer additional speedups during delay

repair and optimization. Bitstream storage and loading overhead can be reduced

and/or the breadth of alternative options increased by implementing composable

paths (partial paths that can be combined in multiple ways) and other compression

techniques. Parallel testing methodologies to test multiple nets simultaneously (as

mentioned in Section 5.1.3) can be developed to reduce bootstrap time. Statistical

modeling of likely types of defect combinations may help generate more effective sets

of alternatives and efficiently select those alternatives most likely to repair a given net.

As discussed in Chapter 7, Pathfinder-based alternative selection makes more effective
8These projects were collaborations with Geisen, Gojman, and DeHon.

170

use of the available alternatives than CYA’s current single-pass, stateless, greedy

selection model, albeit at somewhat greater load-time compute requirements; further

effort along these lines can develop algorithms with intermediate cost/intelligence

profiles to optimize this trade-off.

Architecture-level adjustments can also make CYA in particular and CSM in gen-

eral cheaper and more effective. As discussed in Section 4.2.4, one possibility along

these lines might be to implement directly addressable configurations, instead of

block-based loading. Other possibilities might include modifying topologies to en-

able easy reservation of repair channels (to avoid the types of switch box (S-Box)

difficulties discussed in Appendix A.2), or making architectures more testable (for

general CSM).

Perhaps the most important avenue for future study is the development of CSM-

aware quality control methodologies — how do we decide which imperfect chips can

still be certified “CYA-mappable”? Relatedly, we may wish to ship with additional

spare resources for lifetime repair of aging-related defects and variations (as is already

common practice for storage technologies); development of proper budgeting methods

for these resources will also be critical.

With these sorts of tools in hand, CYA can serve as a transition pathway towards

a world in which high-variation chips are the norm and CSM of many types becomes

the new standard. Scaling can continue to push beyond the yield and energy barriers

which are presently emplaced by static mapping (see [61]) and only partly resolved by

large-scale core sparing. In the long term, CYA and related cheap CSM techniques can

even open the field for newer and higher-variation technologies which would otherwise

be inconceivable.

171

Appendices

172

Appendix A

Topological Systematic Error

It is important, in establishing the benefits of the component-specific mapping (CSM)

strategies discussed in this thesis, to confirm that the demonstrated benefits do not

result, in part, from other factors. In particular, CSM could possibly receive an unfair

advantage in comparisons with static maps from the addition of reserved tracks for

repair (Section 4.1.1) which are not available to the base (static) route. Possible

advantages could arise either from relief of congestion by the increase in routing

options or from the slightly different topology of the reserved tracks (due to the way

the reservation was specified). This topological difference results in reserved tracks

having both a slightly higher speed and slightly different connectivity with each other

and with the base tracks, which may provide different routing options. The purpose

of this appendix is to explore the effects of the presence of these repair resources on

CSM/static mapping comparisons.

In order to test these effects, I separately examine, first, the effects of increasing

the number of tracks (by expanding the base channel width), second, the effects of

the repair resource speeds (by examining a simplified design), and, third, the effects

of the differing topology of the repair resources (by unlocking those resources for

173

base routing). Finally, I bring all of these effects together to enable calibration of

comparisons between Choose-Your-own-Adventure (CYA) and static mapping delay

and energy measurements. All tests in this appendix are performed on nominal chips

to isolate the effects of resource quantity/speed/topology in the absence of variations.

Figure A.1 demonstrates that the effects of repair resource quantity on the delay

are largely eliminated by using a base channel width of 1.2Wmin. For 14 of the 20

benchmarks, using this “relaxed” channel width causes delay to attain its lower bound

value, showing that having more (reserved) resources available will not offer additional

delay advantages. For the remaining 6 benchmarks, the data suggest that any delay

advantage offered by those additional resources is likely to be fairly small.

Speed tests (Figure A.2) show that the repair resources are at most 1% faster

than the base resources, so this difference is not significant in CYA/static mapping

comparisons.

The topological differences between the reserved resources and the base resources

could in principle have a more noticeable effect. This can be seen by comparing static

mapping delays with reserved resources “locked” and “unlocked” (Figure A.3) — the

median speedup of the “unlocked” routes is about 9%. However, CYA does not in fact

receive much unfair advantage from this difference (Figure A.4), as it is constrained

to use the locked base route when not repairing a defect.9 Thus, the median speedup

for CYA relative to relaxed locked static routes is only about 2%.

For energy calculations, the impacts of the reserved resources are even smaller.

The resource differences have significant effects on energy consumption only through

the connection between static energy (leakage) and delay. In the most relevant voltage

range for energy minimization in the presence of variations (Vdd ≥ 0.4V)10, 75% of the
9Full-knowledge routing, on the other hand, will benefit from the topological differences.

10All energy minima in all experiments occurred at or above Vdd = 0.4V, except in 2% of the dsip
full-knowledge routes, which achieved minimum energy at Vdd = 0.35V (Table 7.3).

174

benchmarks show less than 1% energy skew, with the worst outlier (frisc) showing

only 8% skew at 0.4V.

As a consequence, the potential systematic error in my reporting of the energy

efficiency advantages of CYA in particular and CSM in general is almost always less

than one tenth of the utility shown in my data tables in Chapters 6 and 7. The few

outliers noted in this appendix (frisc being the worst by a large margin) are not

strong outliers in those tables (e.g., Table 6.6), suggesting that the true impacts of

this systematic error are even less significant overall.

The following sections discuss more details of my systematic error tests.

A.1 Resource Quantity

My first set of tests addresses the impact of the quantity of resources available to

routing.

It is common practice in field-programmable gate array (FPGA) research to begin

analysis by finding the minimum-sized FPGA (minimum number of look-up tables

(LUTs) and minimum channel width) that fits a given computation or benchmark.

However, at this minimum channel width, it is highly likely that some nets will take

non-minimal paths, in terms of both Manhattan distance and delay. Often, the nets

so affected either are intrinsically critical paths or become critical paths as a result of

the non-minimal routing. In order to eliminate the distorting influence of this routing

“stress”, typically one adds extra tracks to the minimal channel width to “relax” the

route [79, 54]. The goal is to provide sufficient routing resources to ensure that the

critical path will follow a delay-optimal route.

To reliably estimate the effectiveness of this relaxation, it is useful to compute a

congestion-oblivious delay lower bound [71, 72]. Each net is assigned a delay-optimal

175

path as if it were routed in isolation, without having to contend for resources with

other nets. If a route achieves this delay after full routing (congestion negotiation,

etc.), then adding more resources of the same type cannot reduce delay.

Figure A.1 shows that, as expected, the high-stress routes frequently fail to achieve

the congestion-oblivious lower bound delay. With the addition of approximately 20%

extra tracks, 14 of the 20 benchmarks achieve the lower bound delay. Even for

the remaining 6 benchmarks, the excess delay (achieved delay minus lower bound)

is small. This suggests that, provided that all CSM/static comparisons using these

benchmarks are done at a “relaxed” channel width of 1.2Wmin or higher, the distorting

effects of CSM having access to a few additional reserved channels should mostly be

ignorable.

It should be noted that the additional tracks in these experiments were added by

expanding the simulated chip. Adding resources in this fashion lengthens wires and

increases the connectivity of some resources (more inputs to multiplexors and higher

fanout (stubs) from each wire). This does increase the overall delay and energy

consumption of the chip relative to the stressed route, even at the lower bound, but

it does not affect my ability to draw comparisons to CYA routes performed on chips

at the same (relaxed) size.

A.2 Resource Properties

My remaining tests address the fact that all resources may not be equal. Reserving

tracks for repair that are unavailable for base routing may result in CSM having access

not only to more resources, but also to potentially faster resources (due to a reduction

in capacitance resulting from the topological changes needed to reserve tracks). In

addition, the slightly differing connectivity of the repair resources could potentially

176

al
u4

ap
ex

2

ap
ex

4

bi
gk

ey

cl
m

a

de
s

di
ffe

q

ds
ip

el
lip

tic

ex
10

10

ex
5p

fr
is

c

m
is

ex
3

pd
c

s2
98

s3
84

17

s3
85

84
.1

se
q

sp
la

ts
en

g

D
el

ay
 R

at
io

 (
re

la
tiv

e
to

 "
re

la
xe

d
lo

ck
ed

"
ro

ut
ed

 d
el

ay
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
stressed
locked

relaxed
locked

Figure A.1: Relative delay of stressed (Wmin) vs. relaxed (1.2Wmin) static routes at
0.8V, with reserved resources present but locked. Grey bars show the delay lower
bound for each design at each channel width, while red bars stacked on top indicate
the excess delay of the actual route. Note that in most cases relaxing the route cures
the delay excess entirely, and the excess delay is small in the other cases.

Experiment parameters: 22nm technology, 16 reserved tracks, VPR 5 [53], single-
driver interconnect, nominal chips.

177

provide an advantage to routes permitted to use these resources. In this section I

examine how these issues arise in my experimental framework and demonstrate that

their impacts on my results are nevertheless negligible.

There may be some subtle differences amongst tracks in the base resources, but

these differences are addressed by the lower bound analysis discussed in Appendix A.1.

Differences between the base resources as a whole and those resources reserved for

repair may be more significant. Stock VPR 5 [68] supports only Wilton switch boxes

(S-Boxes) [55] for single driver architectures. By design, these S-Boxes break do-

mains, which prevents clean track-based reservation. Consequently, in a joint effort

with Hans Giesen, I added support for a disjoint “shadow channel” for reserved re-

sources [24, 23]. While this reserved sub-channel is in many ways similar to the

base channel, tracks in this (smaller) channel have slightly different connectivity and

slightly lower capacitance (due to a reduced number of stubs) than the base tracks.

The resulting greater speed of the reserved resources can be cleanly demonstrated

by mapping two clocked LUTs to opposite ends of the same row of an FPGA, at

varying chip sizes, and comparing the delay of base vs. reserved track mappings of

a two point net joining them. The reserved track speedup, while not zero, is always

less than 1%, and so is essentially negligible for the purpose of my experiments (see

Figure A.2).

The topological differences between base and reserved resources can result in more

significant delay reduction for nets routed through reserved resources. To see the

effects of this speedup, I compare the routed delays for each of the Toronto 20 [6]

benchmarks, as computed with the reserved resources either “locked” (unavailable

for use) or “unlocked” (available). Figure A.3 shows that unlocking the reserved

resources for static mapping results in a median 9% reduction in delay across all Vdd

values. However, a similar comparison between relaxed locked static mapping and

178

 99.1

 99.2

 99.3

 99.4

 99.5

 99.6

 99.7

 99.8

 99.9

 100

 0 20 40 60 80 100

(u
n

lo
c
k
e
d
 d

e
la

y
)/

(l
o
c
k
e
d
 d

e
la

y
)

(%
)

Distance (FPGA tiles)

Figure A.2: Relative speed of reserved (“unlocked”) vs. base (“locked”) resources at
0.8V, for a single net routed between two LUTs at varying separations in the same
row of an FPGA. The reserved path is always faster, but never by more than 1%.

Experiment parameters: 22nm technology, 16 reserved tracks, VPR 5 [53], single-
driver interconnect, nominal chips.

179

CYA (Figures A.4 and A.5) shows that CYA actually receives little unfair benefit

(median 2% across all voltages) from the topology difference. This is most likely

because CYA does not make fundamental structural changes to the base (“locked”)

route, but rather updates it only incrementally and greedily, as needed.

As a result, in most cases of interest, CYA receives little unfair delay benefit from

the reserved channel topology. In the few cases in the main text where this potential

benefit is relevant (in Section 5.2.3), raw CYA results are shown alongside the same

results rescaled by the ratio of relaxed locked to relaxed CYA delay in nominal chips.

Energy impacts are even less significant, and are mediated primarily through the

relation of static energy to delay. As static energy is only a small component of

the total energy throughout most of the voltage range in which energy minima are

found, the energy advantage CYA receives from its repair resource topology relative

to relaxed locked static mapping is less than 1% for the vast majority of benchmarks

(see Figure A.6).

The outliers in this graph, such as frisc, are particularly instructive when I

compare the nominal energy results measured in this appendix with the variation

results presented in Chapter 6. Table A.1 shows that, in the presence of variations,

none of the outliers in the nominal CYA vs. relaxed unlocked comparison are notice-

ably different from the other benchmarks. (Table 7.7 suggests that the same is true

for Pathfinder alternative selection, Pathfinder repair, and full-knowledge full-design

CSM methodologies.) This implies that the effects of the reserved resources become

even more unimportant in the face of variations.

In consequence, it appears that any potential systematic error associated with the

use of reserved resources for CSM has a negligible effect on the key results reported

in this dissertation.

180

al
u4

ap
ex

2

ap
ex

4

bi
gk

ey

cl
m

a

de
s

di
ffe

q

ds
ip

el
lip

tic

ex
10

10

ex
5p

fr
is

c

m
is

ex
3

pd
c

s2
98

s3
84

17

s3
85

84
.1

se
q

sp
la

ts
en

g

D
el

ay
 R

at
io

 (
re

la
tiv

e
to

 "
re

la
xe

d
lo

ck
ed

"
ro

ut
ed

 d
el

ay
)

0.0

0.2

0.4

0.6

0.8

1.0

relaxed
locked

relaxed
unlocked

Figure A.3: Relative delay of unlocked (reserved resources available for routing) vs.
locked (reserved resources unavailable) static routes at 0.8V, with channel widths
relaxed to 1.2Wmin. Grey bars show the delay lower bound for each design under each
test condition, while red bars stacked on top indicate the excess delay of the actual
route. Because relaxation causes most designs to achieve their delay lower bound,
the difference between the locked and unlocked delays is primarily attributable to the
effects of the different properties of the reserved resources.

Experiment parameters: 22nm technology, 20% extra base tracks, 16 reserved tracks,
VPR 5 [53], single-driver interconnect, nominal chips.

181

al
u4

ap
ex

2

ap
ex

4

bi
gk

ey

cl
m

a

de
s

di
ffe

q

ds
ip

el
lip

tic

ex
10

10

ex
5p

fr
is

c

m
is

ex
3

pd
c

s2
98

s3
84

17

s3
85

84
.1

se
q

sp
la

ts
en

g

D
el

ay
 R

at
io

 (
re

la
tiv

e
to

 "
re

la
xe

d
lo

ck
ed

"
ro

ut
ed

 d
el

ay
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
stressed
locked

relaxed
locked

relaxed
unlocked

relaxed
CYA

Figure A.4: Relative delay at 0.8V of stressed locked static mapping, relaxed unlocked
static mapping, and 1.2Wmin CYA, compared to relaxed locked static mapping. Grey
bars show the delay lower bound for each design under each test condition, while red
bars stacked on top indicate the excess delay of the actual route. Comparing CYA to
relaxed locked static mapping results allows us to estimate the systematic advantage
CYA receives from its use of reserved resources.

Experiment parameters: 22nm technology, 0% or 20% extra base tracks, 16 reserved
tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, nominal chips.

182

a a

a a a a

a a a a a a

a

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

D
el

ay
 r

at
io

 o
f C

YA
:F

ix
ed

 M
ap

pi
ng

b b

b b b b

b b b b b b

b

c c c

c c

c c c c c c c cd d d

d d

d d d d d d d

d

e e e

e e

e e e e e e e

e

f f

f f f f

f f f f

f f f

g g g g g g g g g g g g

g

h h h

h h

h h h h h h h

h

i i i i i i i i i i i i

i

j j j

j j

j j j j
j j

j
j

k k k k k k k k k k k k k
l l l l l l l l l l l l

l
m m m

m m

m m m m m m m
m

n n n n n n n n n

n n n n

o o o o o o o

o o o o o

o

p p p p p p p p p p p p p

q q q q q q q q q q q q

q

r r r r r r r r r r r r

r

s

s s s s s

s s s s s s s

t t t t t t t t t t t t t

a
b
c
d

e
f
g
h

i
j
k
l

m
n
o
p

q
r
s
t

ex1010
pdc
alu4
spla

ex5p
apex2
des
misex3

seq
apex4
diffeq
s38417

s38584.1
s298
clma
tseng

elliptic
bigkey
dsip
frisc

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Vdd (V)

Figure A.5: Ratio of relaxed CYA delay to relaxed locked static mapping delay for
each benchmark, across the full range of Vdd values tested.

Experiment parameters: 22nm technology, 20% extra base tracks, 16 reserved tracks,
64 alternatives, VPR 5 [53], single-driver interconnect, nominal chips.

183

a a

a a a a
a a a a a a

a

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

E
ne

rg
y

ra
tio

 o
f C

YA
:F

ix
ed

 M
ap

pi
ng

b b

b b b b b b b b b b b

c c
c

c c c c c c c c c c

d d d

d d d d d d d d d d

e e e

e e e e e e e e e e

f f

f f f f f f f f f f f

g g
g

g g g g g g g g g
g

h
h

h

h h h h h h h h h
h

i i
i

i i i i i i i i i

i

j j
j

j j j j j j j j j j

k k
k

k
k k k k k k k k k

l
l

l
l

l l l l l l l l l

m

m

m

m m
m m m m m m m m

n

n

n

n
n n n n n n n n n

o
o

o

o

o

o
o

o o o o o o

p

p

p

p

p
p

p p p p p p
p

q
q

q

q

q

q
q

q q q q
q

q

r

r

r

r

r
r r r r r r r

r

s

s

s

s

s
s s s s s s s

s

t
t

t

t

t

t

t

t t
t

t

t

t

a
b
c
d

e
f
g
h

i
j
k
l

m
n
o
p

q
r
s
t

ex1010
pdc
alu4
spla

ex5p
apex2
des
misex3

seq
apex4
diffeq
s38417

s38584.1
s298
clma
tseng

elliptic
bigkey
dsip
frisc

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Vdd (V)

Figure A.6: Ratio of relaxed CYA energy to relaxed locked static mapping energy for
each benchmark, across the full range of Vdd values tested.

Experiment parameters: 22nm technology, 20% extra base tracks, 16 reserved tracks,
64 alternatives, VPR 5 [53], single-driver interconnect, nominal chips.

184

name min med max mean CDF
alu4 0 24 61 25

apex2 0 24 61 25
apex4 0 24 61 25

bigkey 0 26 62 26
clma 0 27 65 27
des 0 27 63 28

diffeq 0 26 65 26
dsip 0 26 60 26

elliptic 0 26 66 26
ex5p 0 25 61 26

frisc 0 27 67 27
misex3 0 25 64 26

pdc 0 24 60 24
s298 0 23 59 24

s38584.1 0 24 58 25
seq 0 25 61 26

spla 0 25 64 26
tseng 0 26 65 26
Mean 0 25 62 26

Table A.1: Percentage energy savings of CYA relative to dynamic frequency and
voltage scaling (DFVS) mapping for all Toronto 20 [6] benchmarks.
Experiment parameters: 22nm technology, σVth

= 0.0364V, 20% extra base tracks, 16
reserved tracks, 64 alternatives, VPR 5 [53], single-driver interconnect, 10000 chips.

185

Appendix B

Architecture Files

B.1 4x4 fcin 1.00 fcout 1.00.arch

#based on 4 lut_sanitized and 4 x4lut_sanitized from the vpr
4.3 dist

with our computations of 22nm characteristics

Uniform channels . Each pin appears on only one side.
io_rat 4
chan_width_io 1
chan_width_x uniform 1
chan_width_y uniform 1

Cluster of size 4, with 10 logic inputs .
inpin class: 0 bottom
inpin class: 0 left
inpin class: 0 top
inpin class: 0 right
inpin class: 0 bottom
inpin class: 0 left
inpin class: 0 top
inpin class: 0 right
inpin class: 0 bottom
inpin class: 0 left
outpin class: 1 top
outpin class: 1 right
outpin class: 1 bottom

186

outpin class: 1 left
inpin class: 2 global top # Clock , global -> routed on a

special resource .

Class 0 -> logic cluster inputs , Class 1 -> Outputs , Class
2 -> clock.

subblocks_per_clb 4
subblock_lut_size 4

parameters needed only for detailed routing .
switch_block_type subset
Fc_type fractional
Fc_output 1
Fc_input 1
Fc_pad 1

orig 1lut clb version , 4lut blocks multiply block size
dependent factors by 2

segment frequency : 1 length : 1 wire_switch : 0 opin_switch : 0
Frac_cb : 1. \

Frac_sb : 1. Rmetal : 195 Cmetal : 0.7e -15
R and C are per unit length so only double to compensate

for clb size
note only 1 seg type cause I’m staying simple and want

fully buffered
segment frequency : 1 length : 4 wire_switch : 0 opin_switch : 0

Frac_cb : 1. \
Frac_sb : 1. Rmetal : 390 Cmetal : 1.4e -15

Switch used as a tri -state buffer within the routing , and
also as the

output buffer used to drive from a CLB output pin to a
routing wire.

same as seg len 1 22nm , switches left untouched
switch 0 buffered : yes R: 6553 Cin: 0.2e -15 Cout: 0.2e -15 \

Tdel: 24e -12
switch 0 buffered : yes R: 7207 Cin: 0.2e -15 Cout: 0.2e -15

\

Used only by the area model.

R_minW_nmos 1967

187

R_minW_pmos 3738
R_minW_nmos 4000
R_minW_pmos 8000

Timing info below.

C_ipin_cblock 0.2e -15

ignored
T_ipin_cblock 72e -12

T_ipad 24e -12 # clk_to_Q + 2:1 mux
T_opad 24e -12 # Tsetup
T_sblk_opin_to_sblk_ipin 48e -12 # No local routing
T_clb_ipin_to_sblk_ipin 24e -12 # No local routing
T_sblk_opin_to_clb_opin 0.

Delays through the BLE (LUT and a FF)
T_subblock T_comb : 24e -12 T_seq_in : 36e -12 T_seq_out : 24e -12
T_subblock T_comb : 24e -12 T_seq_in : 36e -12 T_seq_out : 24e -12
T_subblock T_comb : 24e -12 T_seq_in : 36e -12 T_seq_out : 24e -12
T_subblock T_comb : 24e -12 T_seq_in : 36e -12 T_seq_out : 24e -12
device model parameters
Vdd 0.600 # supply voltage (V)
Vth 0.202 # threshold voltage (V)
Transistor_Width_Factor 4 # ratio of actual PMOS/NMOS width

to minimum width
Transistor_Length 11 # effective channel length (nm)

188

B.2 4x4 fcin 0.50 fcout 0.25.arch

#based on 4 lut_sanitized and 4 x4lut_sanitized from the vpr
4.3 dist

with our computations of 22nm characteristics

Uniform channels . Each pin appears on only one side.
io_rat 4
chan_width_io 1
chan_width_x uniform 1
chan_width_y uniform 1

Cluster of size 4, with 10 logic inputs .
inpin class: 0 bottom
inpin class: 0 left
inpin class: 0 top
inpin class: 0 right
inpin class: 0 bottom
inpin class: 0 left
inpin class: 0 top
inpin class: 0 right
inpin class: 0 bottom
inpin class: 0 left
outpin class: 1 top
outpin class: 1 right
outpin class: 1 bottom
outpin class: 1 left
inpin class: 2 global top # Clock , global -> routed on a

special resource .

Class 0 -> logic cluster inputs , Class 1 -> Outputs , Class
2 -> clock.

subblocks_per_clb 4
subblock_lut_size 4

parameters needed only for detailed routing .
switch_block_type subset
Fc_type fractional
Fc_input 0.5
Fc_output 0.25
Fc_pad 1

orig 1lut clb version , 4lut blocks multiply block size

189

dependent factors by 2
segment frequency : 1 length : 1 wire_switch : 0 opin_switch : 0

Frac_cb : 1. \
Frac_sb : 1. Rmetal : 195 Cmetal : 0.7e -15
R and C are per unit length so only double to compensate

for clb size
note only 1 seg type cause I’m staying simple and want

fully buffered
segment frequency : 1 length : 4 wire_switch : 0 opin_switch : 0

Frac_cb : 1. \
Frac_sb : 1. Rmetal : 390 Cmetal : 1.4e -15

Switch used as a tri -state buffer within the routing , and
also as the

output buffer used to drive from a CLB output pin to a
routing wire.

same as seg len 1 22nm , switches left untouched
switch 0 buffered : yes R: 6553 Cin: 0.2e -15 Cout: 0.2e -15 \

Tdel: 24e -12
switch 0 buffered : yes R: 7207 Cin: 0.2e -15 Cout: 0.2e -15

\

Used only by the area model.

R_minW_nmos 1967
R_minW_pmos 3738
R_minW_nmos 4000
R_minW_pmos 8000

Timing info below.

C_ipin_cblock 0.2e -15

ignored
T_ipin_cblock 72e -12

T_ipad 24e -12 # clk_to_Q + 2:1 mux
T_opad 24e -12 # Tsetup
T_sblk_opin_to_sblk_ipin 48e -12 # No local routing
T_clb_ipin_to_sblk_ipin 24e -12 # No local routing
T_sblk_opin_to_clb_opin 0.

190

Delays through the BLE (LUT and a FF)
T_subblock T_comb : 24e -12 T_seq_in : 36e -12 T_seq_out : 24e -12
T_subblock T_comb : 24e -12 T_seq_in : 36e -12 T_seq_out : 24e -12
T_subblock T_comb : 24e -12 T_seq_in : 36e -12 T_seq_out : 24e -12
T_subblock T_comb : 24e -12 T_seq_in : 36e -12 T_seq_out : 24e -12
device model parameters
Vdd 0.600 # supply voltage (V)
Vth 0.202 # threshold voltage (V)
Transistor_Width_Factor 4 # ratio of actual PMOS/NMOS width

to minimum width
Transistor_Length 11 # effective channel length (nm)

191

B.3 One alt guaranteed seg len 4.xml

<!--
VPR 5 Architecture File
#
authors: Nikil Mehta <nikil@caltech .edu >
Hans Giesen <giesen@seas .upenn.edu > (ITR changes)
#
Generated using the following command line:
./ arch.py \-\- extra\-input\-pins 16 \-\- extra\- output \-pins

4 \-\- lseg 4 \-\- fcin 0.15 \-\- fcout 0.2
\-\- fcin\-extra\-pins 0.25 \-\- fcout\-extra\-pins 0.1
\-\- power lp One_alt_guaranteed_seg_len_4_smaller .xml

-->

<architecture >

<layout auto="1.0"/>

<device >

<!--
my technology parameters .

-->
<tech tech="22" vdd="0.8" vth_sigma =" 0.0364 "

p_to_n_ratio ="1"/>
<nmos cdrain ="3.036e -17" cgate="2.024e -17"

csource ="2.2e -17" vth0="0.385"/>
<pmos cdrain ="3.058e -17" cgate="1.782e -17"

csource ="2.662e -17" vth0=" -0.412"/>
<wire resistivity ="6.01" cap_per_length ="1.5"

half_pitch ="33" aspect_ratio ="2"/>

<!--
sbox type.

type: subset / wilton / universal (always wilton
for unidir switches)

fs: number of segments that a switch outputs
to (always 3 for unidir switches)

-->
<switch_block type=" wilton " fs="3"/>

<!--
cbox isolation buffer .

192

vpr assumes there is an isolation buffer between
track and cbox

input. the buffer is shared if a track connects
to cboxes above

and below. e.g., one buffer per *track* (and per
cbox location).

NOTE: I ignore this , and actually figure out the
cin and tdel of

the cbox myself . Set this to 0.

capacitance: c_in for the buffer (or c_in of
cbox if there is no buffer)

timing: delay of track -> clb input (so ,
isolation buffer + cbox switch delay)

-->
<timing C_ipin_cblock ="0" T_ipin_cblock ="0"/>

<!--
channel width distributions .

width: width of channels between pads and core ,
relative to widest core channel

x: relative width of x channel relative to y
y: relative width of x channel relative to x

-->
<chan_width_distr >

<io width=" 1.000000 "/>
<x distr=" uniform " peak=" 1.000000 "/>
<y distr=" uniform " peak=" 1.000000 "/>

</ chan_width_distr >

<!--
area estimation .
NOTE: I ignore this , since I calculate my own

areas.

R_minW: resistance of minimum
width nmos/pmos transistors

ipin_mux_trans_size: size of each transistor
in ipin mux

grid_logic_tile_area: for estimating functional
block area

-->
<sizing R_minW_nmos ="1" R_minW_pmos ="1"

193

ipin_mux_trans_size =" 0.000000 "/>
<area grid_logic_tile_area =" 0.000000 "/>

</ device >

<switchlist >

<!--
switch details .

important:
name: unique identifier for switch

(used by segment definitions)
type: buffered (bidir) or mux (unidir)
R: equivalent resistance of switch
Cin: input capacitance of switch
Cout: output capactiance of switch
Tdel: intrinsic switch delay (includes

both mux + buffer for unidir case)

only for area estimation:
buf_size: size of buffer in minimum sized

transistor units (UNIDIR ONLY)
mux_trans_size: size of each transistor in mux in

minimum size transistor units (UNIDIR ONLY)

my stuff:
<type >_input_inverter_sizes: list of ’_’

separated sizes for input inverter chain of
switch

<type >_output_inverter_sizes: list of ’_’
separated sizes for output inverter chain of
switch

NOTE: <type > can be cin , cout and sbox for
selective sizing .

NOTE: I ignore the nominal values of R, Cin ,
Cout , Tdel and the

areas since I calculate all of that using my
models .

-->
<switch name=" nominal " type="mux" R="0" Cin="0"

Cout="0" Tdel="0" buf_size ="1" mux_trans_size ="1"
cin_input_inverter_sizes ="1"

194

cin_output_inverter_sizes ="1"
cout_input_inverter_sizes ="1"
cout_output_inverter_sizes ="1"
sbox_input_inverter_sizes ="1"
sbox_output_inverter_sizes ="1"/>

</ switchlist >

<segmentlist >

<!--
segment details .

length: number of logic blocks spanned by
this segment (longline = entire fpga)

type: bidir or unidir
freq: fraction of routing tracks

composed of this segment
rmetal: resistance per unit length (in

terms of *logic blocks *, e.g. 10 ohms/block)
cmetal: capacitance per unit length (in

terms of *logic blocks *, e.g. 10 F/block)

NOTE: I ignore rmetal and cmetal since I
calculate them myself .

-->
<segment length ="4" type=" unidir " freq=" 1.000000 "

Rmetal =" 498.759 " Cmetal =" 2.71123e -15">

<!--
segment switch type.

mux_name: name of switch type used to
drive this segment (UNIDIR ONLY)

wire_switch: name of switch type used to
drive this segment from segment (BIDIR
ONLY)

opin_switch: name of switch type used to
drive this segment from clb/pad output
pins (BIDIR ONLY)

-->
<mux name=" nominal "/>

<!--
segment population .

195

depopulation pattern for segments . binary
list that specifies connections .

note that sb string has (length + 1) digits ;
cb string just has length

take segment length 6 for example:

sb type: ’1 0 1 0 1 0 1’ segment corner
turns at every other intersection

cb type: ’0 0 0 1 1 1’ connect to last 3
cboxes only

-->
<sb type=" pattern ">1 1 1 1 1</sb>
<cb type=" pattern ">1 1 1 1</cb>

</ segment >

</ segmentlist >

<typelist >

<type name=".clb">

<!--
cbox connectivity .

fc_in: number of tracks in each
bordering channel to which each logic
input pin connects

fc_out: number of tracks in each
bordering channel to which each logic
output pin connects

-->
<fc_in type="frac">0.15 </fc_in >
<fc_out type="frac">0.2 </ fc_out >
<fc_in_extra_pins

type="frac">0.25 </ fc_in_extra_pins >
<fc_out_extra_pins

type="frac">0.1 </ fc_out_extra_pins >

<!--
clb/lut inputs .

max_subblocks: luts per clb (N)
max_subblock_inputs: inputs per lut (K)

196

T_comb: delay from lut input
to lut output when this lut is only
combinational

T_seq_in: delay from lut input
to flop input for seqeuential mode (lut
delay + t_setup)

T_seq_out: delay from flop input
to flop output for seqeuential mode
(clk_to_q)

NOTE: I ignore this , since I calculate my own
delays .

-->
<subblocks max_subblocks ="8"

max_subblock_inputs ="6">
<timing >

<T_comb >
<trow >0</trow >
<trow >0</trow >
<trow >0</trow >
<trow >0</trow >
<trow >0</trow >
<trow >0</trow >

</ T_comb >
<T_seq_in >

<trow >0</trow >
</ T_seq_in >
<T_seq_out >

<trow >0</trow >
</ T_seq_out >

</ timing >
</ subblocks >

<!--
lut timing .

T_sblk_opin_to_fb_opin: delay from lut
output to clb output

T_sblk_opin_to_sblk_ipin: delay from lut
output to lut input

T_fb_ipin_to_sblk_ipin: delay from clb
input to lut input

NOTE: I ignore this , since I calculate my own

197

delays .
-->
<timing >

<tedge type=" T_sblk_opin_to_fb_opin ">0</tedge >
<tedge

type=" T_sblk_opin_to_sblk_ipin ">0</tedge >
<tedge type=" T_fb_ipin_to_sblk_ipin ">0</tedge >

</ timing >

<!--
clb pin numbers .

note: order must match the .net file!
-->
<pinclasses >

<class type="in">0 1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24 25 26
-36 -37 -38 -39 -40 -41 -42 -43 -44 -45
-46 -47 -48 -49 -50 -51</class >

<class type="out">27 28 29 30 31 32 33 34 -52
-53 -54 -55</class >

<class type=" global ">35</class >
</ pinclasses >

<!--
clb pin locations .

-->
<pinlocations >

<loc side=" bottom "> 0 4 8 12 16 20 24 28 32
36 40 44 48 52</loc >

<loc side="left"> 1 5 9 13 17 21 25 29 33 37
41 45 49 53</loc >

<loc side="top"> 2 6 10 14 18 22 26 30 34 38
42 46 50 54</loc >

<loc side="right"> 3 7 11 15 19 23 27 31 35
39 43 47 51 55</loc >

</ pinlocations >

<!--
clb locations .

columns of the fpga that use this block
(type=fill , priority =1 means only use this
block)

-->

198

<gridlocations >
<loc type="fill" priority ="1"/>

</ gridlocations >

</type >

<!--
io pad timing .

capacity: number of actual IOs per IO pad
t_inpad: delay through input pad (clk_to_q +

2:1 mux)
t_outpad: delay through output pad (t_setup)
fc_in: number of tracks in each bordering

channel to which each input pad connects
fc_iout: number of tracks in each bordering

channel to which each output pad connects
-->
<io capacity ="8" t_inpad ="0" t_outpad ="0">

<fc_in type="frac">1.000000 </fc_in >
<fc_out type="frac">1.000000 </ fc_out >

</io>

</ typelist >

</ architecture >

199

Acronyms

C-Box Connection box, the set of switches that connect a CLB to the surrounding

network. 59, 60, 62–68, 70, 73, 75–78, 80–82, 89, 90, 92, 94

CAD Computer-Aided Design. 3, 5, 10, 11, 13, 14, 41, 84, 132, 142, 143, 147, 150,

153, 155, 158, 169

CLB Clustered Logic Block. 46, 56, 59, 63, 79, 82, 88–90, 92, 93, 96, 98, 169

CSM Component-Specific Mapping. 2–7, 9, 10, 15, 16, 19, 30, 36, 117, 142, 155,

160, 161, 163, 164, 170, 171, 173, 175, 176, 180

CYA Choose-Your-own-Adventure. vi, vii, 2, 3, 10–12, 14–17, 19, 20, 34, 36–39, 41,

42, 54–56, 61, 63, 69–72, 74, 75, 77–82, 85–87, 90, 93–95, 102–107, 110, 114,

117–126, 134, 136, 138–147, 149, 151–153, 155–158, 160–165, 167, 169–171,

174–176, 180, 182–185

DFS Dynamic Frequency Scaling. 4, 5, 117, 123

DFVS Dynamic Frequency and Voltage Scaling. vi, 3, 5, 16, 19, 134, 136, 137, 139,

140, 144, 155, 160–167, 185

DVS Dynamic Voltage Scaling. 4, 5

FET Field-Effect Transistor. 2, 22

200

FPGA Field-Programmable Gate Array. vi, 1, 2, 5–9, 11–13, 16, 19, 29, 30, 32–35,

37–39, 45, 60, 87–89, 92, 114, 115, 155, 169, 170, 175, 178, 179

ICAP Internal Configuration Access Port. 47

ITRS International Technology Roadmap for Semiconductors. 21, 27, 28

LE Logic Element. 11, 12, 56, 109

LUT Look-Up Table. 11, 14, 30, 37, 43, 46, 56, 59, 63, 82, 92, 93, 108, 169, 175,

178, 179

MOSFET Metal-Oxide-Semiconductor FET. 23, 24

NUT Net Under Test. 110

RDF Random Dopant Fluctuation. 25, 27, 28, 30, 32

S-Box Switch box, the set of switches at the intersection between two channels. 58,

59, 78, 81, 82, 89, 92, 94, 97, 117, 171, 178

SEU Single-Event Upset. 30, 34

SSTA Statistical Static Timing Analysis. 5, 31

TMR Triple Modular Redundancy. 30, 31, 34, 35

201

Bibliography

[1] M. Abramovici and P.R. Menon. A practical approach to fault simulation and

test generation for bridging faults. IEEE Transactions on Computers,

C-34(7):658–663, July 1985.

[2] Actel. Design Techniques for Radiation-Hardened FPGAs. Actel, Inc., 955 East

Arques Avenue, Sunnyvale, CA 94086, 1997. Dual and TMR Application Note

AC128 https://www.actel.com/documents/Des_Tech_RH_AN.pdf.

[3] Rick Amerson, Richard Carter, W. Bruce Culbertson, Phil Kuekes, and Greg

Snider. Plasma: An FPGA for million gate systems. In Proceedings of the

International Symposium on Field-Programmable Gate Arrays, pages 10–16,

February 1996.

[4] K. Bernstein, D.J. Frank, A.E. Gattiker, W. Haensch, B.L. Ji, S.R. Nassif, E.J.

Nowak, D.J. Pearson, and N.J. Rohrer. High-performance CMOS variability in

the 65-nm regime and beyond. IBM Journal of Research and Development,

50(4/5):433–449, July/September 2006.

[5] Vaughn Betz. VPR and T-VPack: Versatile Packing, Placement and Routing

for FPGAs. http://www.eecg.toronto.edu/˜vaughn/vpr/vpr.html, March

27 1999. Version 4.30.

202

https://www.actel.com/documents/Des_Tech_RH_AN.pdf
https://www.actel.com/documents/Des_Tech_RH_AN.pdf
http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html
http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html
http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html

[6] Vaughn Betz and Jonathan Rose. FPGA Place-and-Route Challenge.

http://www.eecg.toronto.edu/˜vaughn/challenge/challenge.html, 1999.

[7] Shekhar Borkar. Designing reliable systems from unreliable components: the

challenges of transistor variability and degradation. IEEE Micro, 25(6):10–16,

November–December 2005.

[8] Nicola Campregher, Peter Y.K. Cheung, George A. Constantinides, and Milan

Vasilko. Yield modelling and yield enhancement for FPGAs using fault

tolerance schemes. In Proceedings of the International Conference on

Field-Programmable Logic and Applications, 2005.

[9] Nicola Campregher, Peter Y.K. Cheung, George A. Constantinides, and Milan

Vasilko. Reconfiguration and fine-grained redundancy for fault tolerance in

FPGAs. In Proceedings of the International Conference on Field-Programmable

Logic and Applications, 2006.

[10] Carl Carmichael, Michael Caffrey, and Anthony Salazar. Correcting

Single-Event Upsets Through Virtex Partial Configuration. Xilinx, Inc., 2100

Logic Drive, San Jose, CA 95124, 2000. XAPP 216,

http://www.xilinx.com/bvdocs/appnotes/xapp216.pdf.

[11] C.T. Chow, L.S.M. Tsui, Philip H.W. Leong, Wayne Luk, and Steve J.E.

Wilton. Dynamic voltage scaling for commercial FPGAs. In Proceedings of the

International Conference on Field-Programmable Technology, pages 173–180,

2005.

[12] Richard G. Cliff, Rina Raman, and Srinivas T. Reddy. Programmable logic

devices with spare circuits for replacement of defects. United States Patent

Number: 5,434,514, July 18 1995.

203

http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.xilinx.com/bvdocs/appnotes/xapp216.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp216.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp216.pdf

[13] Richard G. Cliff, Rina Raman, and Srinivas T. Reddy. Implementation of

redundancy for a programmable logic device. United States Patent Number:

5,498,975, March 12 1996.

[14] W. Bruce Culbertson, Rick Amerson, Richard Carter, Phil Kuekes, and Greg

Snider. The Teramac custom computer: Extending the limits with defect

tolerance. Defect and Fault-Tolerance in VLSI Systems, IEEE International

Symposium on, 0:2, 1996.

[15] W. Bruce Culbertson, Rick Amerson, Richard Carter, Phil Kuekes, and Greg

Snider. Defect tolerance on the TERAMAC custom computer. In Proceedings

of the IEEE Symposium on FPGAs for Custom Computing Machines, pages

116–123, April 1997.

[16] André DeHon and Nikil Mehta. Exploiting partially defective LUTs: Why you

don’t need perfect fabrication. In Proceedings of the International Conference

on Field-Programmable Technology, pages 12–19, December 2013.

[17] Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu, V. Leo Rideout, Ernest

Bassous, and Andre R. LeBlanc. Design of ion-implanted MOSFETs with very

small physical dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268,

October 1974.

[18] Fethi Dhaoui, Zhigang Wang, John McCollum, Richard Chan, and Vidyadhara

Bellippady. Radiation-tolerant flash-based FPGA memory cells, May 2008.

[19] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1):269–271, December 1959.

[20] Hadi Esmaeilzadeh, Emily Blem, Rene St. Amant, Karthikeyan Sankaralingam,

and Doug Burger. Dark silicon and the end of multicore scaling. In Proceedings

204

of the International Symposium on Computer Architecture, ISCA ’11, pages

365–376, New York, NY, USA, 2011. ACM.

[21] B.F. Fitzgerald and E.P. Thoma. Circuit implementation of fusible redundant

addresses on rams for productivity enhancement. IBM Journal of Research and

Development, 24(3):291–298, May 1980.

[22] Hans Giesen, Benjamin Gojman, Raphael Rubin, and André DeHon.

Continuous Online Self-Monitoring Introspection Circuitry for Timing Repair

by Incremental Partial-reconfiguration (COSMIC TRIP). In Proceedings of the

IEEE Symposium on Field-Programmable Custom Computing Machines, pages

111–118, 2016.

[23] Hans Giesen, Benjamin Gojman, Raphael Rubin, Ji Kim, and André DeHon.

Continuous Online Self-Monitoring Introspection Circuitry for Timing Repair

by Incremental Partial-reconfiguration (COSMIC TRIP). ACM Transactions

on Reconfigurable Technology and Systems, 11(1):3:1–3:23, January 2018.

[24] Hans Giesen, Raphael Rubin, Benjamin Gojman, and André DeHon.

Quality-time tradeoffs in component-specific mapping: How to train your

Dynamically Reconfigurable Array of Gates with Outrageous Network-delays.

In Proceedings of the International Symposium on Field-Programmable Gate

Arrays, pages 85–94, February 2017.

[25] Hans Giesen, Raphael Rubin, Benjamin Gojman, and André DeHon.

Self-adaptive timing repair. IEEE Design & Test, 34(6):54–62, December 2017.

[26] Benjamin Gojman. GROK-FPGA: Generating Real On-chip Knowledge for

FPGA Fine-Grain Delays using Timing Extraction. PhD thesis, University of

Pennsylvania, 2014.

205

[27] Benjamin Gojman, Nikil Mehta, Raphael Rubin, and André DeHon.

Component-specific mapping for low-power operation in the presence of

variation and aging. In Low-Power Variation-Tolerant Design in Nanometer

Silicon, chapter 12, pages 381–432. Springer, 2011.

[28] Steve Guccione, Delon Levi, and Prasanna Sundararajan. JBits: Java based

interface for reconfigurable computing. In Proceedings of the International

Conference on Military and Aerospace Programmable Logic Devices, 1999.

[29] Scott Hanson, Bo Zhai, Kerry Bernstein, David Blaauw, Andres Bryant, Leland

Chang, Koushik K. Das, Wilfried Haensch, Edward J. Nowak, and Dinnis M.

Sylvester. Ultralow-voltage, minimum-energy CMOS. IBM Journal of

Research and Development, 50(4–5):469–490, July/September 2006.

[30] I.G. Harris, P.R. Menon, and R. Tessier. BIST-based delay path testing in

FPGA architectures. In Proceedings of International Test Conference, pages

932–938, November 2001.

[31] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science

and Cybernetics, 4(2):100–107, 1968.

[32] Chen He, Margarida F. Jacome, and Gustavo de Veciana. A

reconfiguration-based defect-tolerant design paradigm for nanotechnologies.

IEEE Design and Test of Computers, 22(4):316–326, July-August 2005.

[33] B. Hoeneisen and C.A. Mead. Fundamental limitations in microelectronics–i.

mos technology. Solid-State Electronics, 15(7):819–829, 1972.

206

[34] Zohair Hyder and John Wawrzynek. Defect tolerance in multiple-FPGA

systems. In Proceedings of the International Conference on Field-Programmable

Logic and Applications, pages 247–254, August 2005.

[35] Synopsys, Inc. HSPICE. http://www.synopsys.com/Tools/Verification/

AMSVerification/CircuitSimulation/HSPICE, 2010.

[36] 2001 International Technology Roadmap for Semiconductors. https://www.

dropbox.com/sh/vxigcu48nfe4t81/AACuMvZEh1peQ6G8miYFCSEJa?dl=0,

2001.

[37] 2005 International Technology Roadmap for Semiconductors. https://www.

dropbox.com/sh/2urwqghq1gzk511/AADuZE5F68lz2DYGpA3TspSna?dl=0,

2005.

[38] 2007 International Technology Roadmap for Semiconductors. https://www.

dropbox.com/sh/floxh3swiynur47/AAAwTAwf1RUzyNu8qv-PMfiUa?dl=0,

2007.

[39] 2009 International Technology Roadmap for Semiconductors. https://www.

dropbox.com/sh/ia1jkem3v708hx1/AAB1fo1HrYIKClJNk0dB7YrCa?dl=0,

2009.

[40] 2011 International Technology Roadmap for Semiconductors.

http://www.itrs2.net/2011-itrs.html, 2011.

[41] Kazuya Katsuki, Manabu Kotani, Kazutoshi Kobayashi, and Hidetoshi

Onodera. A yield and speed enhancement scheme under within-die variations

on 90nm LUT array. In Proceedings of the IEEE Custom Integrated Circuits

Conference, pages 601–604, 2005.

207

http://www.synopsys.com/Tools/Verification/AMSVerification/CircuitSimulation/HSPICE
http://www.synopsys.com/Tools/Verification/AMSVerification/CircuitSimulation/HSPICE
http://www.synopsys.com/Tools/Verification/AMSVerification/CircuitSimulation/HSPICE
https://www.dropbox.com/sh/vxigcu48nfe4t81/AACuMvZEh1peQ6G8miYFCSEJa?dl=0
https://www.dropbox.com/sh/vxigcu48nfe4t81/AACuMvZEh1peQ6G8miYFCSEJa?dl=0
https://www.dropbox.com/sh/2urwqghq1gzk511/AADuZE5F68lz2DYGpA3TspSna?dl=0
https://www.dropbox.com/sh/2urwqghq1gzk511/AADuZE5F68lz2DYGpA3TspSna?dl=0
https://www.dropbox.com/sh/floxh3swiynur47/AAAwTAwf1RUzyNu8qv-PMfiUa?dl=0
https://www.dropbox.com/sh/floxh3swiynur47/AAAwTAwf1RUzyNu8qv-PMfiUa?dl=0
https://www.dropbox.com/sh/ia1jkem3v708hx1/AAB1fo1HrYIKClJNk0dB7YrCa?dl=0
https://www.dropbox.com/sh/ia1jkem3v708hx1/AAB1fo1HrYIKClJNk0dB7YrCa?dl=0
http://www.itrs2.net/2011-itrs.html

[42] Gokal Krishnan. Flexibility with EasyPath FPGAs. Xcell Journal, 0(4):96–98,

2005.

[43] K.J. Kuhn. CMOS transistor scaling past 32nm and implications on variation.

In 2010 IEEE/SEMI Advanced Semiconductor Manufacturing Conference

(ASMC), pages 241–246, July 2010.

[44] Akhilesh Kumar and Mohab Anis. FPGA Design for Timing Yield Under

Process Variations. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 18(3):423–435, March 2010.

[45] John Lach, William H. Mangione-Smith, and Miodrag Potkonjak. Efficiently

Supporting Fault-Tolerance in FPGAs. In Proceedings of the International

Symposium on Field-Programmable Gate Arrays, pages 105–115, February 1998.

[46] Vijay Lakamraju and Russell Tessier. Tolerating operational faults in

cluster-based FPGAs. In Proceedings of the International Symposium on

Field-Programmable Gate Arrays, pages 187–194, New York, NY, USA, 2000.

ACM.

[47] Christopher Lane, Ketan Zaveri, Hyun Yi, Giles Powell, Paul Leventis, David

Jefferson, David Lewis, Triet Nyguen, Vikram Santurkar, Michael Chan, Andy

Lee, Brian Johnson, and David Cashman. Programmable logic device with

redundant circuitry. United States Patent Number: 6,965,249, November 15

2005.

[48] G.V. Leming and K. Nepal. Low-power FPGA routing switches using adaptive

body biasing technique. In Circuits and Systems, 2009. MWSCAS ’09. 52nd

IEEE International Midwest Symposium on, pages 447–450, August 2009.

208

http://doi.acm.org/10.1145/275107.275125
http://doi.acm.org/10.1145/275107.275125

[49] Yan Lin, Lei He, and Mike Hutton. Stochastic physical synthesis considering

prerouting interconnect uncertainty and process variation for FPGAs. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 16(2):124, 2008.

[50] Zhi-Ming Ling, Jae Cho, Robert W. Wells, Clay S. Johnson, and Shelly G.

Davis. Method of using partially defective programmable logic devices. United

States Patent Number: 6,664,808, December 16 2003.

[51] Timothy A. Linscott, Benjamin Gojman, Raphael Rubin, and André DeHon.

Pitfalls and tradeoffs in simultaneous, on-chip FPGA delay measurement. In

Proceedings of the International Symposium on Field-Programmable Gate

Arrays, pages 100–104, February 2016.

[52] Gregory Lucas, Chen Dong, and Deming Chen. Variation-aware placement for

FPGAs with multi-cycle statistical timing analysis. In Proceedings of the

International Symposium on Field-Programmable Gate Arrays, pages 177–180,

New York, New York, USA, 2010. ACM.

[53] Jason Luu, Ian Kuon, Peter Jamieson, Ted Campbell, Andy Ye, Wei Mark

Fang, and Jonathan Rose. VPR 5.0: FPGA CAD and architecture exploration

tools with single-driver routing, heterogeneity and process scaling. In

Proceedings of the ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, FPGA ’09, pages 133–142, New York, NY, USA,

2009. ACM.

[54] Alexander Marquardt, Vaughn Betz, and Jonathan Rose. Timing-driven

placement for FPGAs. In Proceedings of the International Symposium on

Field-Programmable Gate Arrays, pages 203–213, 2000.

209

[55] M. Imran Masud and Steve Wilton. A new switch block for segmented FPGAs.

In Proceedings of the International Conference on Field-Programmable Logic

and Applications, pages 274–281, 1999.

[56] Yohei Matsumoto, Masakazu Hioki, Takashi Kawanami, Hanpei Koike,

Toshiyuki Tsutsumi, Tadashi Nakagawa, and Toshihiro Sekigawa. Suppression

of intrinsic delay variation in FPGAs using multiple configurations. ACM

Transactions on Reconfigurable Technology and Systems, 1(1), March 2008.

[57] Cameron McClintock, Andy L. Lee, and Richard G. Cliff. Redundancy circuitry

for logic circuits. United States Patent Number: 6,034,536, March 7 2000.

[58] Larry McMurchie and Carl Ebeling. PathFinder: A Negotiation-Based

Performance-Driven Router for FPGAs. In Proceedings of the International

Symposium on Field-Programmable Gate Arrays, pages 111–117, 1995.

[59] Nikil Mehta. An Ultra-Low Energy, Variation Tolerant FPGA Architecture

Using Component-Specific Mapping. PhD thesis, California Institute of

Technology, 2013.

[60] Nikil Mehta and André DeHon. Variation and aging tolerance in FPGA. In

Low-Power Variation-Tolerant Design in Nanometer Silicon, chapter 11, pages

365–380. Springer, 2011.

[61] Nikil Mehta, Raphael Rubin, and André DeHon. Limit Study of Energy &

Delay Benefits of Component-Specific Routing. In Proceedings of the

International Symposium on Field-Programmable Gate Arrays, pages 97–106,

2012.

[62] Gordon E. Moore. Cramming more components onto integrated circuits.

Electronics Magazine, page 4, 1965.

210

http://doi.acm.org/10.1145/201310.201328
http://doi.acm.org/10.1145/201310.201328
http://ic.ese.upenn.edu/abstracts/cspec_limit_fpga2012.html
http://ic.ese.upenn.edu/abstracts/cspec_limit_fpga2012.html

[63] Geoges Nabaa, Navid Azizi, and Farid N. Najm. An adaptive FPGA

architecture with process variation compensation and reduced leakage. In

Proceedings of the ACM/IEEE Design Automation Conference, pages 624–629,

2006.

[64] Laurence W. Nagel and D.O. Pederson. SPICE (Simulation Program with

Integrated Circuit Emphasis). Technical Report UCB/ERL M382, EECS

Department, University of California, Berkeley, April 1973.

[65] John Von Neumann. Probabilistic logic and the synthesis of reliable organisms

from unreliable components. In Claude Shannon and John McCarthy, editors,

Automata Studies. Princeton University Press, 1956.

[66] Edward Packard. The Cave of Time. Bantam Books, 1979.

[67] Brian Pratt, Michael Caffrey, Paul Graham, Keith Morgan, and Michael

Wirthlin. Improving FPGA design robustness with partial TMR. In

Proceedings of the IEEE International Reliability Physics Symposium, pages

226–232, 2006.

[68] Jonathan Rose et al. VPR and T-VPack: Versatile Packing, Placement and

Routing for FPGAs. http://www.eecg.utoronto.ca/vpr/, 2009.

[69] Raphael Rubin and André DeHon. Choose-Your-Own-Adventure Routing:

Lightweight Load-Time Defect Avoidance. In Proceedings of the International

Symposium on Field-Programmable Gate Arrays, pages 23–32, 2009.

[70] Raphael Rubin and André DeHon. Choose-Your-Own-Adventure Routing:

Lightweight Load-Time Defect Avoidance. ACM Transactions on

Reconfigurable Technology and Systems, 4(4), December 2011.

211

http://www.eecg.utoronto.ca/vpr/
http://www.eecg.utoronto.ca/vpr/
http://www.eecg.utoronto.ca/vpr/
http://ic.ese.upenn.edu/abstracts/cya_fpga2009.html
http://ic.ese.upenn.edu/abstracts/cya_fpga2009.html
http://ic.ese.upenn.edu/abstracts/cya_trets2011.html
http://ic.ese.upenn.edu/abstracts/cya_trets2011.html

[71] Raphael Rubin and André DeHon. Timing-Driven Pathfinder Pathology and

Remediation: Quantifying and Reducing Delay Noise in VPR-Pathfinder. In

Proceedings of the International Symposium on Field-Programmable Gate

Arrays, pages 173–176, 2011.

[72] Raphael Rubin and André DeHon. Timing-Driven Pathfinder Pathology and

Remediation: Quantifying and Reducing Delay Noise in VPR-Pathfinder,

supplemental materials.

http://ic.ese.upenn.edu/publications/pf_fpga_2011/, 2011.

[73] Jayashree Saxena, Kenneth M. Butler, John Gatt, R. Raghuraman,

Sudheendra Phani Kumar, Supatra Basu, David J. Campbell, and John

Berech. Scan-based transition fault testing — Implementation and low cost test

challenges. Proceedings of International Test Conference, pages 1120–1129,

2002.

[74] P. Sedcole, J.S. Wong, and P.Y.K. Cheung. Modelling and compensating for

clock skew variability in FPGAs. In ICECE Technology, 2008. FPT 2008.

International Conference on, pages 217–224, December 2008.

[75] Pete Sedcole and Peter Y.K. Cheung. Parametric yield modeling and

simulations of FPGA circuits considering within-die delay variations. ACM

Transactions on Reconfigurable Technology and Systems, 1(2), June 2008.

[76] Deshanand P. Singh and Stephen D. Brown. Constrained clock shifting for field

programmable gate arrays. In Proceedings of the International Symposium on

Field-Programmable Gate Arrays, pages 121–126. ACM, 2002.

212

http://ic.ese.upenn.edu/abstracts/pathfinder_noise_fpga2011.html
http://ic.ese.upenn.edu/abstracts/pathfinder_noise_fpga2011.html
http://ic.ese.upenn.edu/publications/pf_fpga_2011/

[77] Satish Sivaswamy and Kia Bazargan. Statistical analysis and process

variation-aware routing and skew assignment for FPGAs. ACM Transactions

on Reconfigurable Technology and Systems, 1(1):1–35, 2008.

[78] P.A. Stolk, F.P. Widdershoven, and D.B.M. Klaassen. Modeling statistical

dopant fluctuations in MOS transistors. Electron Devices, IEEE Transactions

on, 45(9):1960–1971, September 1998.

[79] Jordan S. Swarz, Vaughn Betz, and Jonathan Rose. A Fast Routability-Driven

Router for FPGAs. In Proceedings of the International Symposium on

Field-Programmable Gate Arrays, pages 140–149. ACM/SIGDA, February 1998.

[80] R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas. Mitigating parameter

variation with dynamic fine-grain body biasing. In Microarchitecture, 2007.

MICRO 2007. 40th Annual IEEE/ACM International Symposium on, pages

27–42, December 2007.

[81] Russell Tessier. Negotiated A* Routing for FPGAs. In Proceedings of the 5th

Canadian Workshop on Field Programmable Devices, June 1998.

[82] Stephen M. Trimberger. Method and apparatus for multiple context and high

reliability operation of programmable logic devices, May 2007.

[83] Stephen M. Trimberger. Structures and methods of overcoming localized

defects in programmable integrated circuits by routing during the programming

thereof. United States Patent Number: 7,251,804, July 31 2007.

[84] Stephen M. Trimberger. Utilizing multiple test bitstreams to avoid localized

defects in partially defective programmable integrated circuits. United States

Patent Number: 7,424,655, September 9 2008.

213

http://www.eecg.toronto.edu/~vaughn/papers/fpga98.pdf
http://www.eecg.toronto.edu/~vaughn/papers/fpga98.pdf
http://www.ecs.umass.edu/ece/tessier/fpd98.pdf

[85] C. Visweswariah, K. Ravindran, K. Kalafala, S.G. Walker, S. Narayan, D.K.

Beece, J. Piaget, N. Venkateswaran, and J.G. Hemmett. First-order

incremental block-based statistical timing analysis. Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, 25(10):2170–2180,

October 2006.

[86] Robert W. Wells, Zhi-Ming Ling, Robert D. Patrie, Vincent L. Tong, Jae Cho,

and Shahin Toutounchi. Application-specific testing methods for programmable

logic devices. United States Patent Number: 6,817,006, November 9 2004.

[87] Neil H.E. Weste and David Harris. CMOS VLSI Design: A Circuits and

Systems Perspective. Addison-Wesley, third edition, 2005.

[88] Justin S. Wong, Pete Sedcole, and Peter Y.K. Cheung. Self-measurement of

combinatorial circuit delays in FPGAs. ACM Transactions on Reconfigurable

Technology and Systems, 2(2):1–22, June 2009.

[89] Yu-Liang Wu, Shuji Tsukiyama, and Malgorzata Marek-Sadowska. Graph

based analysis of 2-D FPGA routing. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 15(1):33–44, January 1996.

[90] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. XC6200 FPGA Advanced

Product Specification, version 1.0 edition, June 1996.

[91] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. Xilinx Virtex-4 Family

Overview, June 2005. DS112,

http://direct.xilinx.com/bvdocs/publications/ds112.pdf.

[92] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. Virtex FPGA Series

Configuration and Readback, March 2005. XAPP 138.

214

http://direct.xilinx.com/bvdocs/publications/ds112.pdf
http://direct.xilinx.com/bvdocs/publications/ds112.pdf
http://direct.xilinx.com/bvdocs/publications/ds112.pdf

[93] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. Virtex-5 FPGA

Configuration User Guide, September 2008. UG191,

http://www.xilinx.com/bvdocs/userguides/ug191.pdf.

[94] H. Youssef and E. Shragowitz. Timing constraints for correct performance. In

Proceedings of the International Conference on Computer-Aided Design, pages

24–27, Nov 1990.

[95] Anthony J. Yu and Guy G. Lemieux. Defect-tolerant FPGA switch block and

connection block with fine-grain redundancy for yield enhancement. In

Proceedings of the International Conference on Field-Programmable Logic and

Applications, pages 255–262, 2005.

[96] Anthony J. Yu and Guy G. Lemieux. FPGA defect tolerance: Impact of

granularity. In Proceedings of the International Conference on

Field-Programmable Technology, pages 189–196, 2005.

[97] Sugihara Yuuri, Kume Youhei, Kobayashi Kazutoshi, and Onodera Hidetoshi.

Track swapping on critical paths utilizing random variations for FPGAs to

enhance speed and yield. IEICE Technical Report, 107(340):13–18, 2007.

215

http://www.xilinx.com/bvdocs/userguides/ug191.pdf
http://www.xilinx.com/bvdocs/userguides/ug191.pdf
http://www.xilinx.com/bvdocs/userguides/ug191.pdf

	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	1 Introduction
	1.1 Hypothesis
	1.2 The Problem
	1.3 Previous Strategies
	1.3.1 Component-Specific Mapping (CSM)

	1.4 CYA: Path-Multiplicity Based CSM
	1.5 Results
	1.6 Pertinent Publications
	1.7 Who Did What
	1.8 Key Contributions

	2 Setting
	2.1 International Technology Roadmap for Semiconductors
	2.2 Transistor Fundamentals
	2.3 What Has Changed?
	2.4 Summary

	3 Current Solutions
	3.1 Chapter Organization
	3.2 Techniques That Address Variations Only
	3.2.1 Statistical Static Timing Analysis (SSTA)
	3.2.2 Body Biasing
	3.2.3 Clock Phase Skewing and Slack Stealing

	3.3 Techniques That Address Low Defect Rates
	3.3.1 Multiple Bitstreams
	3.3.2 EasyPath™

	3.4 Techniques That Address High Defect Rates
	3.4.1 Modular Redundancy
	3.4.2 Hardware-Sparing In-Factory Repair
	3.4.3 Avoiding Faults

	4 CYA
	4.1 Inspiration
	4.1.1 Illustrative Example

	4.2 CYA Components
	4.2.1 CYA Bitstream
	4.2.2 Routing
	4.2.3 Alternatives Generation
	4.2.4 Bitstream Loader
	Programmer
	Deprogrammer
	Tester
	Controller

	4.3 Alternative Diversity
	4.3.1 Problems with Resource-Cost Alternatives Generation
	Uniform Paths
	Non-Uniform Paths
	Paths Tree
	Path-Cost Aware Routing

	4.4 Foundational Experiments
	4.4.1 Experimental Framework
	Defect Map
	Simulators

	4.4.2 Experimental Flow
	Placement
	Minimum Channel Width
	Extra Base Tracks
	Base Route
	Generating Alternatives
	Loading the Bitstream

	4.4.3 Experimental Architecture
	4.4.4 Experimental Design

	4.5 Initial Results
	4.5.1 Path-Cost Algorithm vs. Resource-Cost Algorithm
	4.5.2 C-Box Population
	4.5.3 Additional Tracks
	4.5.4 Impact on Circuit Delay
	4.5.5 Impact of Switch and Wire Defects
	4.5.6 Summary

	4.6 Bitstream Impact
	4.6.1 Bitstream Size
	4.6.2 Bitstream Load Time
	4.6.3 Updated Bitstream Tables

	4.7 Repair of Different Resource Types
	4.7.1 The Fabric and the Tile
	4.7.2 Channel Wires
	4.7.3 Input C-Boxes
	4.7.4 S-Boxes and Output C-Boxes
	4.7.5 CLB Pins
	4.7.6 Logic (Subblocks)
	4.7.7 All Resource Types

	5 Failure Modes and Defect Models
	5.1 Functional Faults
	5.1.1 Incorrect Inversions
	5.1.2 Outputs That Are Not Functions of the Source
	5.1.3 Functions With Unintended Inputs
	5.1.4 Example Test Circuit

	5.2 Delay Faults
	5.2.1 Delay Budgeting
	5.2.2 Test Circuit and Procedure
	5.2.3 Single Frequency Delay Results

	6 Delay and Energy Optimization with CYA
	6.1 Delay Optimization
	6.2 Energy Optimization
	6.2.1 Energy Impacts of Voltage Reduction and Variations
	6.2.2 Experiments

	7 Limit Studies
	7.1 Pathfinder Negotiated Alternative Selection
	7.2 Pathfinder Knowledge-Based Repair
	7.3 Full-Knowledge Routing
	7.4 CYA and the Costs and Benefits of Component-Specific Mapping

	8 Conclusions and Future Prospects
	Appendices
	A Topological Systematic Error
	A.1 Resource Quantity
	A.2 Resource Properties

	B Architecture Files
	B.1 4x4_fcin_1.00_fcout_1.00.arch
	B.2 4x4_fcin_0.50_fcout_0.25.arch
	B.3 One_alt_guaranteed_seg_len_4.xml

	Acronyms
	Bibliography

